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ABSTRACT 

The presented study deals with extraction of melodic 
line(s) from polyphonic audio recordings. We base our 
work on the use of expectation maximization algorithm, 
which is employed in a two-step procedure that finds 
melodic lines in audio signals. In the first step, EM is 
used to find regions in the signal with strong and stable 
pitch (melodic fragments). In the second step, these 
fragments are grouped into clusters according to their 
properties (pitch, loudness...). The obtained clusters 
represent distinct melodic lines. Gaussian Mixture 
Models, trained with EM are used for clustering. The 
paper presents the entire process in more detail and 
gives some initial results. 

1. INTRODUCTION 

One of the problems that remain largely unsolved in 
current computer music researches is the extraction of 
perceptually meaningful features from audio signals. By 
perceptually meaningful, we denote features that a 
typical listener can perceive while listening to a piece of 
music, and these may include tempo and rhythm, 
melody, some form of harmonic structure, as well as the 
overall organisation of a piece.  

A set of tools that could handle these tasks well 
would provide good grounds for construction of large 
annotated musical audio databases. The lack of such 
data currently represents a major drawback for the 
computer music community, as it is very difficult to 
make use of a large variety of machine learning 
algorithms (requiring large amounts of annotated data) 
or make any kind of large scale evaluations of various 
MIR approaches on real-world data. It would also bridge 
the gap between a large number of researches made on 
parametric (MIDI) data that amongst other include 
similarity measures, estimation of rhythm or GTTM 
decomposition. Audio analysis, learning and 
compositional systems could also make use of such 
information.  

An overview of past researches shows that techniques 
for tempo tracking in audio signals are quite mature; 
several tools (i.e. [1]) are available for use, some of 
them work in realtime. Rhythmic organisation is already 
a harder problem, as it has more to do with higher level 
musical concepts, which are harder to represent [2]. A 
promising approach to finding harmonic structure in 
audio signals has been presented by Sheh and Ellis [3]. 

Our paper deals with extraction of melodic lines from 
audio recordings. The field has been extensively studied 
for monophonic signals, where many approaches exist 
(i.e. [4]). For polyphonic signals, the work of several 
groups is dedicated to complete transcription of audio 
signals, with the final result being a score that represents 
the original audio ([5, 6, 7]). Algorithms for simplified 
transcriptions, like extraction of melody, have been 
studied by few, with the notable exception of the work 
done by Goto [8].  

Our work builds on ideas proposed by Goto with the 
goal of producing a tool for extraction of melodic lines 
from audio recordings. The approach includes extraction 
of sinusoidal components from the original audio signal, 
EM estimation of predominant pitches, their grouping 
into melodic fragments and final GMM clustering of 
melodic fragments into melodic lines. The paper briefly 
describes each of these stages and presents some 
preliminary results. 

2. FINDING MELODIC FRAGMENTS 

The extraction of melodic lines begins with discovery of 
fragments that a melodic line is composed of – melodic 
fragments. Melodic fragments are defined as regions of 
the signal that exhibit strong and stable pitch. Pitch is 
the main attribute according to which fragments are 
discovered; other features, such as loudness or timbre, 
are not taken into consideration.  

2.1. Spectral Modeling Synthesis 

We first separate the slowly-varying sinusoidal 
components (partials) of the signal from the rest 
(transients and noise) by the well known spectral 
modeling synthesis approach (SMS, [9]). SMS analysis 
transforms the signal into a set of sinusoidal components 
with time-varying frequencies and amplitudes, and a 
residual signal, obtained by subtracting the sines from 
the original signal. We used the publicly available 
SMSTools software (http://www.iua.upf.es/mtg /clam) to 
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analyse our songs with a 100 ms Blackman-Harris 
window, 10 ms hop size. Non-harmonic style of analysis 
was chosen, as our signals are generally polyphonic and 
not necessary harmonic (drums...). 

2.2. Psychoacoustic masking 

The obtained sinusoidal components are subjected to a 
psychoacoustic masking model that eliminates the 
components masked by stronger ones. Only 
simultaneous masking is taken into consideration – 
temporal masking is ignored. Tonal and noise maskers 
are calculated from the set of sinusoidal components and 
the residual signal, as described in [10], and components 
that fall below the global masking threshold removed. 
On average, the masking procedure halves the total 
number of sinusoidal components. 

2.3. Predominant pitch estimation 

After the sinusoidal components have been extracted, 
and masking applied, we estimate the predominant 
pitch(es) in short (50 ms) segments of the signal. Our 
pitch estimating procedure is based on the PreFEst 
approach introduced by Goto [8], with some 
modifications. The method employs the Expectation-
Maximisation (EM) algorithm, which treats the set of 
sinusoidal components within a short time window as a 
probability density function (observed PDF), which is 
considered to be generated from a weighted mixture of 
tone models of all possible pitches at this time interval. 
A tone model is defined as a PDF, corresponding to a 
typical structure of a harmonic tone (fundamental 
frequency + overtones). The EM algorithm iteratively 
estimates the weights of all possible tone models, while 
searching for one that maximizes the observed PDF 
(maximizes the set of sinusoidal components within the 
chosen time window). Consequently, each tone model 
weight represents the dominance of the tone model and 
thereby the dominance of the tone model’s pitch in the 
observed PDF. 

2.4. Melodic fragments 

Weights produced by the EM algorithm indicate the 
dominant pitches in short regions of time across the 
signal. Melodic fragments are formed by tracking the 
dominant pitches through time and thereby forming 
fragments with continuous pitch contours (loudness or 

other factors are not taken into consideration). The first 
part of the procedure is similar to pitch salience 
calculation as described by Goto [8]. For each pitch with 
weight greater than a dynamically adjusted threshold, 
salience is calculated according to its dominance in a 50 
ms look-ahead window. The procedure tolerates pitch 
deviations and individual noisy frames that might 
corrupt pitch tracks by looking at the contents of the 
entire 50 ms window.  

After saliences are calculated, melodic fragments are 
formed by continuously tracking the dominant salient 
peaks and producing fragments along the way. The final 
result of this simple procedure is a set of melodic 
fragments, which may overlap in time, are at least 50 ms 
long and may have slowly changing pitches. Parameters 
of each fragment are its start and end time, its time-
varying pitch and its time-varying loudness. The 
fragments obtained provide a reasonable segmentation 
of the input signal into regions with stable dominant 
pitch. An example is given in Fig. 1, which shows 
segmentation obtained on a 5.5 seconds excerpt from 
Aretha Franklin's interpretation of the song Respect. 25 
fragments were obtained; six belong to the melody sung 
by the singer, while the majority of others belong to 
different parts of the accompaniment, which become 
dominant when lead vocals are out of the picture. 
Additionally, three noisy fragments were found, which 
were either due to consonants or drum parts.  

We performed informal listening tests by 
resynthesizing the fragments (on the basis of their pitch 
and amplitude) and comparing these resynthesized 
versions with the original signal. Most of the fragments 
perfectly captured the dominant pitch in the areas, even 
if, while listening to the entire original signal, some of 
the fragments found were not immediately obvious to 
the listener (i.e. keyboard parts in the given example). 
We carried out such tests on a set of excerpts from 10 
different songs, covering a variety of styles, from jazz, 
pop/rock to dance, and the overall performance of the 
algorithm for finding melodic fragments was found to be 
satisfying; it discovered a majority of fragments 
belonging to the main melodic line, which is the main 
point of interest in this study.  

Most errors of the fragment finding procedure are 
octave-related, when the pitch of a segment is found to 
be an octave higher or lower than the perceived pitch. 
Also, areas in which several competing melodic lines 

Figure 1. Segmentation into melodic fragments of an excerpt from Respect sung by Aretha Franklin. 



  
 

 

with similar loudnesses compete for listener's attention 
are problematic, as the EM algorithm tends to switch 
between lines thereby producing series of broken 
fragments. Sometimes, such switching also appears 
between a line and its octave equivalent, which is highly 
undesirable (i.e. bass line in the right part of Fig. 1).  

3. FORMING MELODIC LINES 

The goal of our project is to extract one or more melodic 
lines from an audio recording. How is a melodic line, or 
melody, defined? There are many definitions; Levitin 
describes melody as an auditory object that maintains its 
identity under certain transformations along the six 
dimensions of pitch, tempo, timbre, loudness, spatial 
location, and reverberant environment; sometimes with 
changes in rhythm; but rarely with changes in contour 
[12]. Not only that melodies maintain their identity 
under such transformations, or rather because of that, 
melodies themselves are usually (at least locally in time) 
composed of events that themselves are similar in pitch, 
tempo, timbre, loudness, etc.  

The fact becomes useful when we need to group 
melodic fragments, like the ones found by the procedure 
described before, into melodic lines. In fact, the process 
of discovering melodic lines becomes one of grouping 
melodic fragments through time into melodies. 
Fragments are grouped according to their properties. 
Ideally, one would make use of properties which 
accurately describe the six dimensions mentioned 
before, especially pitch, timbre, loudness and tempo. 
Out of these, timbre is the most difficult to model; we 
are not aware of studies that would reliably determine 
the timbre of predominant voices in polyphonic audio 
recordings. Many studies, however, make use of timbre 
related features, when comparing pieces according to 
their similarity, classifying music according to genre, 
identifying the singer, etc. (i.e. [13]). The features used 
in these studies could be applied to our problem, but so 
far we have not yet made such attempts. To group 
fragments into melodies, we currently make use of only 
five  features, which represent:  
- dominance: average weight of the tone model that 

originated the fragment, as calculated by the EM 
procedure; 

- pitch: centroid of fragment's frequency with regard to 
its weight; 

- loudness: mean loudness calculated according to 
Zwicker's loudness model [11] for partials belonging 
to the fragment; 

- pitch stability: average change of pitch over successive 
time instances. This could be classified as the only 
timbral feature used and mostly separates vocal parts 
from stable instruments; 

- onset steepness: steepness of overall loudness change 
during the first 50 ms of the fragment's start. The 
feature penalizes fragments that come into picture 
when a louder sound stops (i.e. fragments belonging to 
accompaniment).  

 

To group melodic fragments into melodies, we use a 
modified Gaussian mixture model estimation procedure, 
which makes use of equivalence constraints during the 
EM phase of model estimation [14]. Gaussian Mixture 
Models (GMMs) are one of the more widely used 
methods for unsupervised clustering of data, where 
clusters are approximated by Gaussian distributions, 
fitted on the provided data. Equivalence constraints are 
prior knowledge concerning pairs of data points, 
indicating if the points arise from the same source 
(belong to the same cluster - positive constraints) or 
from different sources (different clusters - negative 
constraints). They provide additional information to the 
GMM training algorithm, and seem intuitive in our 
domain. We use GMMs to cluster melodic fragments 
into melodies according to their properties. Additionally, 
we make use of two facts to automatically construct 
positive and negative equivalence constraints between 
fragments.  

Fragments may overlap in time, as can be seen in Fig. 
1. We treat melody as a succession of single events 
(pitches). Therefore, we can put negative equivalence 
constraints on all pairs of fragments that overlap in time. 
This forbids the training algorithm to put two 
overlapping fragments in the same cluster and thus the 
same melodic line. We also give special treatment to the 
bass line, which may appear quite often in melodic 
fragments (Fig. 1). To help the training algorithm with 
bass line clustering, we also put positive equivalence 
constraints on all fragments with pitch lower than 170 
Hz. This does not mean that the training algorithm will 
not add additional fragments to this cluster; it just causes 
all low pitched fragments to be grouped together.  

The clustering procedure currently only works on 
entire song excerpts (or entire songs). We are working 
on a version that will work within an approx. 5 second 
sliding window and that will dynamically process new 
fragments and reform existing clusters or form new 
clusters as it progresses through a given piece. Such 
procedure will more accurately reflect the nature of 
human perception of music, mimicking short-term 
musical memory. 

We have not yet made any extensive tests of the 
accuracy of our melody extracting procedure. This is 
mainly due to the lack of a larger annotated collection of 
songs that could be used to automatically measure the 
accuracy of the approach. Results of clustering on a 30 
second excerpt of Otis Redding's song Respect, as sung 
by Aretha Franklin, are given in Table 1.  

 

 lead 
vocal 

back 
vocals 

 
bass 

 
guitar 

 
brass 

 
keys 

 
noise 

C1 0.03 0.24 0.03 0 0.1 0.33 0.35 
C2 0.93 0.29 0 0 0.1 0 0.05 
C3 0.03 0.38 0 0.33 0.3 0 0.3 
C4 0 0 0.97 0 0.05 0.33 0.08 
C5 0 0.1 0 0.67 0.45 0.33 0.22 

Table 1. GMM clustering of fragments from "Respect" 



  
 

 

152 melodic fragments were found by the fragment 
finding procedure; all lead vocal and backing vocal parts 
were correctly discovered. All fragments were hand 
annotated into one of seven categories (lead vocal, 
backing vocals, bass, guitar, brass, keyboards, noise). 
Fragments were then clustered by the GMM algorithm 
into five clusters, which would ideally represent the 
melody (lead vocal), bass line, backing vocals, 
accompaniment and noise. Results of the clustering 
procedure are given in Table 1. It shows percentages of 
fragments belonging to the seven annotated categories in 
the five clusters. Ideally, lead vocal fragments (melody) 
would all be grouped into one cluster with no additional 
fragments. Most (93%) were indeed grouped into cluster 
2, but the cluster also contains some other fragments, 
belonging to backing vocals, brass and a small amount 
of noise. The majority of bass fragments were put into 
cluster 4, together with some low pitched keyboard 
parts, while other clusters contain a mixture of 
accompaniment and backing vocals. As our goal lies 
mainly in the discovery of the (main) melodic line, 
results are satisfying, especially if we take into 
consideration that practically no timbre based features 
were taken into consideration when clustering. Most of 
the melody is represented by fragments in cluster 2, with 
some additional backing vocal fragments, which could 
actually also be perceived as part of the melody.  

The effect of negative and positive constraints on the 
clustering procedure was also assessed; somewhat 
surprisingly, constraints did not have a large impact on 
the clustering procedure. Small improvements were 
achieved mostly in separation of accompaniment from 
lead vocal and bass lines.  

4. CONCLUSIONS 

The presented approach to melody extraction is still in 
an initial phase, but we are satisfied with first obtained 
results. Currently, we are in the process of annotating a 
larger number of pieces, which will be used for 
improving the feature set used in GMM training, as so 
far, we settled for a very small number of parameters, 
mainly because of the small set of examples we worked 
with. We plan to concentrate on timbral features, which 
are expected to bring improvements, especially with 
mismatches in parts where accompaniment becomes 
dominant. The larger database will also enable us to test 
and compare several different clustering strategies. 
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