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ABSTRACT 

This investigation aims at finding an optimal way of 
measuring the similarity of melodies. The applicability 
for an automated analysis and classification was tested 
on a folk song collection from Luxembourg that had 
been thoroughly analysed by an expert 
ethnomusicologist. Firstly a systematization of the 
currently available approaches to similarity 
measurements of melodies was done. About 50 
similarity measures were implemented which differ in 
the way of transforming musical data and in the 
computational algorithms. Three listener experiments 
were conducted to compare the performance of the 
different measures to human experts’ ratings. Then an 
optimized model was obtained by using linear 
regression, which combines the output of several 
measures representing different musical dimensions.  
The performance of this optimized measure was 
compared with the classification work of a human 
ethnomusicologist on a collection of 577 Luxembourg 
folksongs. 

1. INTRODUCTION 

Melodic similarity is a very valuable concept for 
analyzing large melody databases. Especially with 
comprehensive folksong collections, one often wants to 
answer questions like: Which melodies are variants of 
one another? Which melodies are duplicates with minor 
differences only? How can melodies be grouped together 
according to their similarity and do they reflect inherent 
relationships? 
The study of folk song collections along this approach 
has a long tradition in ethnomusicology and goes far 
back before the computer age [1, 2, 8, 9, 10, 22, 23]. 
Now, with the computer as a convenient tool for the 
treatment of large data collections and the recent 
advances in the field of music information retrieval, our 
interest was, whether a grouping of folk song melodies 
according to their similarity could be done 
algorithmically and to which extend the quality 
approaches that of a human expert. 
In case the results indeed show little difference 
compared to the work of a human expert such an 
algorithm could become a useful tool for 
ethnomusicologists for gaining an overview on the 
similarity relations in a large melody collection.  

As reference sample we used a catalogue of 3312 
phrases taken from 577 Luxembourg folk songs. They 
were assembled from 5 different sources, which were 
sorted, analyzed, and partially annotated by 
ethnomusicologist Damien Sagrillo [20]. His 
classification work was carried out with great experience 
in ethnomusicological treatments of large melody 
collections. He gives great emphasis to musically 
relevant features and details of the melodies and phrases. 
As we were provided with a digital copy of the melody 
catalogue in its classified form, we were able to test the 
performance of our algorithmic measures against 
Sagrillo’s classification. 
 
Reviewing the literature on similarity measurement for 
melodies of the last two decades the biggest concern was 
actually not the lack of measurement procedures for 
melodic similarity but rather their abundance. Several 
very different techniques have been proposed for 
defining and computing melodic similarity. They all 
cover distinct aspects or elements of melodies, e.g. 
intervals, contour, rhythm, and tonality, and each with 
several ways of transforming the musical information 
into numerical datasets. The basic techniques for 
measuring the similarity of this type of datasets are edit 
distance, n-grams, correlation and difference 
coefficients, and hidden Markov models. In the literature 
there are plenty of examples of successful applications 
of these specific similarity measures: For example 
McNab et al. [14] and Uitdenbogerd [24] for edit 
distance and n-grams, also Downie [4] for n-grams, 
Steinbeck [23] and Schmuckler [21] for correlation and 
difference coefficients, O'Maidin [18] for a complex 
difference measure and Meek & Birmingham [15] for 
HMMs.  
 
This study evaluates for which type of data which 
similarity measures are cognitively most adequate. We 
first conducted three listener experiments to find an 
optimized similarity measure out of a set of basic 
techniques and their variants. The expert ratings 
generated in these experiments were compared with the 
output of the similarity algorithms implemented in the 
software toolkit SIMILE. An optimization was done 
using a linear regression model to combine measures 
that reflect melodic information from distinct 
dimensions. 
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Finally the model was tested on the similarity 
classification in Sagrillo’s catalogue.  
 
 

2. APPROACHES TO MEASURING MELODIC 
SIMILARITY 

2.1.  Mathematical Framework 

We developed a mathematical framework in order to 
handle the huge amount of different similarity measures 
that can be found in the literature. This allowed us to 
systematically classify the similarity measures in a 
compact and unified way. It also simplified the 
comparison of different models with one another other 
and with empirical data. Furthermore, it served as kind 
of a construction kit and as a source of inspiration for 
new similarity measures. Finally, it was very helpful for 
implementing the algorithms into our software. 

We define the “melodic space” M as a subset of the 
Cartesian product of a (real-valued) time coordinate 
(representing onsets) and a (integer- or real-valued) 
pitch coordinate. 

A similarity measure is then a map 

s : M x M -> [0,1] 

with the following properties: 

1. Symmetry: s(m,n) = s(n,m) 

2. Self identity: s(m,m) = 1 

3. Transposition-, Translation- and Dilation 
invariance. 

‘Transposition’ means translation in the pitch 
coordinate, translation is time-shift and ‘dilation’ means 
tempo change (time warp). Though these properties 
hold only approximately for human similarity 
judgments, they facilitate implementation and 
comparison. Similarity measures form a convex set, i.e. 
any linear combination of similarity measures, where 
the sum of coefficients equals 1, is again a similarity 
measure. This property enabled us to calculate 
combined, optimized measures, by means of linear 
regression. Furthermore, any product of two similarity 
measure is again a similarity measure.  

Most of the similarity measures involved the following 
processing stages:  

1. Basic transformations (Representations) 

2. Main Transformations 

3. Computation 

 

2.2.  Transformations 

The most common basic transformations are projections 
and ‘differentiations’. Projections can act on either the 
time or pitch coordinate, (with a clear preference for 
pitch projections). ‘Differentiation’ means using 
differences between coordinates instead of absolute 
coordinates, i.e. intervals and durations instead of pitch 
and onsets.  

Among the main transformations rhythmical weighting, 
fuzzifications (classifications) and contourization are 
the most important. Rhythmical weighting can be done 
for quantized melodies, i.e. melodies where the 
durations are integer multiples of a smallest time unit T. 
Then each pitch of duration nT can be substituted by a 
sequence of n equal tones with duration T. After a pitch 
projection the weighted sequence will still reflect the 
rhythmical structure. The concept of rhythmical 
weighting has been widely used in other studies e.g. [6, 
9, 23].  

Fuzzifications are based on the notion of fuzzy sets, i.e. 
sets in which an element belongs to it with a certain 
degree between 0 and 1. However, the fuzzifications 
reduce to classification if the basic set is decomposed 
into mutually disjunct subsets. This was true for all our 
cases. Other studies exploited this idea in similar ways 
e.g. [19]. 

Gaussification is a method to construct an integrable 
function from a set of discrete time-points [5]. This 
enables a comparison between two rhythms by means of 
the scalar product of two functions. This can be viewed 
as a measure for rhythmic similarity.  

Contourization is based on the idea, that the 
perceptually important notes are the extrema, i.e. the 
turning points of a melody. This extremum is taken (the 
exact choice depends on the model) and the pitches in 
between are substituted with interpolated values, e.g., 
from a linear interpolation (in fact we used this 
exclusively). The idea of contourization was e,g, 
employed in the similarity measures by Steinbeck [23] 
and Zhou & Kankanhalli [26]. 

Among the other core transformations available are the 
ranking of pitches and Fourier transformation on 
contour information (following the approach of 
Schmuckler, [21]) or methods of assigning a ‘harmonic 
vector’ like Krumhansl’s tonality vector [11] to certain 
subsets (bars) of a melody, just to name a few. 

2.3.  Similarity Computations 

The next stage of processing is the computation of a 
similarity value. The measures we used can roughly be 
classified in three categories: Vector measures, 
symbolic measures and musical (mixed) measures, 
depending on the computational algorithm. The vector 
measure treats the transformed melodies as vectors in a 
suitable real vector space such that methods like scalar 
products and other means of correlation can be applied 
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to. The symbolic measures on the contrary treat the 
melodies as strings, i.e. sequences of symbols, where 
well-known measures like edit distance (see e.g. [16]) or 
n-gram-related measures (see e.g. [4]) can be used. The 
musical or mixed measures typically involve more or 
less specific musical knowledge and the computation 
can be from either the vector or the symbolical realm. 

The symbolical measures based on edit distance and n-
grams has proven to be the best throughout. We used 
edit distance for many different alphabets (raw pitch, 
interpolated pitch, intervals, fuzzified intervals, 
fuzzified durations, implicit tonality) and we employed 
solely global alignment and the simplest cost function.  

We applied three different n-gram approaches (Sum 
Common, Coordinate Matching, Ukkonen [24]) for 
different alphabets (intervals, interval categories, 
interval directions, fuzzified rhythms) with a constant n-
gram length of 3.  

Some general problems had to be solved for some 
models to ensure transposition and tempo invariance 
and to account for melodies having different lengths 
(number of notes). If a measure is not transposition 
invariant a priori, in principle the maximum over all 
similarities of all possible transpositions by an integer 
number of semitones within an octave can be taken, like 
O'Maidin [18] proposed. Likewise, for models, which 
require the melodies to be of same length, as most of the 
correlation measures do, we took the maximum of all 
similarities of sub-melodies of the longer melody with 
the same length as the shorter one. This type of shifting 
has been proposed for example by Leppig [13]. Tempo 
invariance is generally no problem when using 
quantized melodies.  

In summary, the techniques for melodic data 
transformation and pattern matching/similarity 
measurement employed in this study incorporate the 
major approaches in this field of the last 15 years. 
Additionally, systemizing these approaches led to the 
construction of several new similarity measures (see [5, 
16] for a detailed description). We implemented in our 
software a total number of 48 different similarity 
measures, counting all variants out of which 39 were 
used in the analysis. A complete list with short 
descriptions of the various measures is found in the 
appendix. We used the same MIDI-files as program 
input that were used for the experiments. All melodies 
were quantized. 

3. LISTENER EXPERIMENTS 

3.1. Experimental Design 
We conducted three rating experiments in a test-retest-
design. The subjects of the tests were musicology 
students with longtime practical musical experience. In 
the first experiment the subjects had to judge 14 
melodies taken from western popular music to six 
systematically derived variants of each on a 7-point 

scale. The second and third experiment served as 
control experiments. In the second experiment two 
melodies from the first experiment were chosen and 
presented along with the original six variants plus six or 
five variants, which had their origin in completely 
different melodies. The third experiment used the same 
design as the first one, but tested a different error 
distribution for the variants and looked for the effects of 
transposition of the variants. 

Only subjects who showed stable and reliable 
judgments were taken into account for further analysis. 
From 82 participants of the first experiment 23 were 
chosen, which met two stability criteria: They rated the 
same pairs of reference melody and variant highly 
similar in two consecutive weeks, and they gave very 
high similarity ratings to identical variants. This type of 
reliability measurement is considered an important 
methodological improvement compared with earlier 
experiments involving similarity ratings. For the second 
experiment 12 out of 16 subjects stayed in the analysis. 
5 out of 10 subjects remained in the data analysis of the 
third experiment. 

The inter- and intrapersonal judgments of the selected 
subjects showed very high correlations on various 
measures (e.g. the coefficient Cronbach’s alpha reached 
values of 0.962, 0.978 and 0.948 for the three 
experiments respectively). This supports the assumption 
that something like a 'true' similarity’ exists, at least for 
the group of western musical experts. This is of course a 
necessary prerequisite for the comparison between 
automated algorithmic and human judgments. 

3.2. Results 

To get an overview over the performance and the 
differentiation of the 39 similarity measures in relation 
to the subjects’ mean ratings (vpn_mean), multi-
dimensional scaling (MDS; for details on algorithms 
and model options see [3], [12]) was used to display the 
results graphically. The euclidean distances between all 
39 similarity measures over all melody pairs from 
experiment 2 (variants from original vs. from different 
melodies) were computed. 18 measures that showed the 
least distance to the subjects’ means and that could be 
representative for all the 39 measures were selected for 
the MDS (13 are displayed with their names on the 
following graph). With these 18 measures (and the 
mean of subjects’ ratings) an MDS model was 
computed that used only the ordinal information in the 
distance data. The usual MDS criteria, RSQ (=portion 
of the variance explained) and stress, were used as 
indicators of fit (stress = 0.075, RSQ = 0.98). A two-
dimensional solution was chosen that is represented by 
figure 1. 

A meaningful interpretation of this solution views 
dimension 1 as the degree to which the similarity 
measures incorporate rhythmical information: To the 
right a measure from the n-gram approach are located 
that uses the fuzzified rhythm (ngukkfr) values as data. 
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The other two rhythmic measures rhytgaus 
(gaussification of onsets) und rhythfuzz (edit distance of  

Figure 1: Multidimensional scaling solution for 
similarity measures on data from experiment 2 

fuzzified duration values) are located as well to the 
extreme right on this axis. 

Dimension 2 can be interpreted as global vs. local 
information. Below, the n-grams measures are located 
that reflect only differences in short sequences of notes. 
Above contour and edit distance measures can be seen 
that give importance to the coherence of two melodies 
over their full course.  

As this study sets out to find an optimized measure from 
the considered algorithms, we chose five similarity 
measures from the 18 measures that had entered the 
MDS to find an optimal weighted combination in a 
linear regression model. The five measures represented 
different information dimensions or sources according to 
the outcome of the MDS and they had the least distance 
to the subjects’ ratings compared with their neighbours 
from the same information dimension.  

We did this selection process separately for the data 
from experiment 1 and experiment 2. Since the task of 
the subjects in experiment 2 was to differentiate between 
variants from the same melody and from variants with an 
origin in a different melody, this experiment came closer 
to the classification work done by Sagrillo. So the results 
reported in the following stem only from the data of 
experiment 2.  

The best five models for experiment 2 were (ordered 
according to their euclidean distances, minimum first): 
diffEd (2.04), nGrUkkon (2.44), harmCorE (2.98), 
conSEd (3.57) und rhythFuzz (3.65). 

•  diffEd (Edit distance of intervals) 

•  nGrUkkon (Ukkonen measure from 3-
grams of intervals)  

• harmCorE (Edit distance of harmonic 
symbols per bar, which were obtained 

by means of Krumhansl's tonality 
vectors)  

• conSEd (Edit distance for contourized 
melodies, Steinbeck's algorithm) 

• rhythFuzz (Edit distance of classified 
duration values) 

With these five measures as input for a linear regression 
analysis, we determined an optimized measure to explain 
the human data on the 7-point-scale of the following 
form:  

opti3 = 3.03*ngrukkon + 2.5*rhytfuzz + 1.44*harmcore 

Opti3 proved to be 33.4% better than the best single 
measure for experiment 2. Similarly, opti1 performed 
28.5% better than the best single measure on the data of 
experiment 1. The superior performance of the 
optimized hybrid measure opti3 (experiment 2) can be 
seen from the following diagram: 

 

 

 

 

 

 

Figure 2: Distance of different similarity measures to 
subjects’ mean ratings on data from experiment 2 

These optimized models fit the human judgements very 
well. For experiment 1 there was 83 % of the variance 
explained by the combined measure opti1, and for 
experiment 2 (opti3) even 92%. 

It is noteworthy, that we found different optimized 
similarity models for the data of experiment 1 and 2. 
This can be explained by the fact that the rating contexts 
and tasks for the subjects differed. Music experts seem 
to change their judgement strategies depending on the 
kind of task and data they are given. Thus, a decision has 
to be taken on which type melody variants should to be 
matched against each other before choosing a combined 
similarity measure for a specific application. Once the 
situation in which the similarity measure is supposed to 
operate is clearly defined, the measure can work quite 
efficiently on new data. This is shown in the following 
section. 

4.  FOLK SONG ANALYSIS 

For the analysis of the folksong collection the measure 
optimized on the data of experiment 2 (opti 3) was taken 
to work on the melodies from Luxembourg without any 
further adjustment of parameters or exchange of 
components. 

With this similarity measure several analysis tasks were 
carried out: 
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a) The description of the almost normal 
distribution of the 171,405 similarity values 
between all melodies in the collection,  

b) The analysis of ‘interesting cases’ in which the 
similarity values of different dimensions 
(melody, harmony, rhythm) differ significantly,  

c) The spotting out of doublets and variants and  

d) The classification of melodies into groups or 
families according to Sagrillo’s catalogue.  

Only steps c) and d) will be covered in the two following 
subsections. 

4.1.  Duplicates and variants 

A crucial test for any similarity measure is the task of 
identifying identical or almost identical melodies in a 
database. Unfortunately, we had no complete 
information about identical melodies, but a suffix ‘V’ in 
database of the tunes indicates a variant to a specific 
tune. There were 19 of such marked songs in the 
Luxembourg database, which we inspected manually. 
Apart from the 5 tunes marked with a ‘V’ that had the 
same lyrics but a different melody, the remaining 14 
melodies had similarity values of 0.6 or higher according 
to the opti3 measure. 

We also examined all melody pairs in the database with 
similarity values above 0.6 (49 melody pairs). These 
pairs can be roughly classified in  

1. ‘Duplicates’ (same or near same melody and 
same or near same title): 37 pairs 

2. ‘Parodies’ (same or near same melody but 
different title and probably different lyrics): 10 
pairs 

3. ‘Psalms’: 2 pairs 

The so-called ‘psalms’ are special types of songs which 
are typically written without meter, consist almost 
completely of tone repetitions and have usually small 
tone range.  Some songs could be found with 3 or more 
variants. One example is a song called ‘De Malbrough’, 
which can also be found in a collection from Lorraine. 
Inspecting it, it turned out that it is highly similar to the 
well-known (english) song ‘He’s a jolly good fellow’.   

4.2. Algorithmic and Expert Classification 

 The final task was the reconstruction of Sagrillo’s 
classification of the 3312 phrases from the Luxembourg 
melodies. Apart from the indication of variants (see 
above) Sagrillo used two hierarchical levels of similarity 
grouping. He firstly sorted the phrases numerically 
according to several gross criteria and then performed a 
very careful analysis ‘by hand’. We simply used the 
grouping on one classification level as criterion of a 
greater similarity (0=not member of the same group, 
1=member of the same group). We used logistic 
regression to model Sagrillo’s classification with our 
similarity measures and the Area under Curve (Receiver 
Operating Curves) from Signal Detection theory to 
evaluate the solutions. Due to computing limitations, we 

worked on a sample of 52,724 melody comparisons 
coming from 438 phrases classified by Sagrillo in 21 
groups.  

We first tested the performance of our opti3 measure. 
But it performed quite poorly on short phrases (usually 
only 1-3 bars) since it had been optimized for longer 
melodic lines. We received an AUC value of only 0.676. 
So an optimization for the new empirical melodic entity 
of phrases seemed necessary. This was done in an 
analogous manner to the optimization process described 
in 3.2: We calculated the AUC scores for any of the 39 
similarity measures and picked the measure for every 
information dimension that discriminated best. The five 
best measures for discriminating the phrases were: 

• Pitch/interval: rawEd (Edit distance of 
raw pitch values) 

• Contour: conSEd (Edit Distance of 
contourized pitch values, contourization 
according to Steinbeck, 1982) 

• Short motives: nGrUkkon (Ukkonen 
measures for 3-grams of intervals) 

• Harmony: harmCorr (Correlation 
measure for tonality values based on 
Krumhansl’s tonality vector)  

• Rhythm: rhytFuzz (Edit distance of 
classified duration values) 

We found an optimal model including rawEd, consEd, 
and ngrUkkon, with rawEd having the greatest weight in 
the logistic regression term. This model classified 88.6% 
of the 52,724 phrase pairs correctly (92.4% of the non-
class members and 61.1% of the class members). This 
model showed a good overall discrimination power as 
can be seen by its ROC diagram and its AUC value of 
0.845 which can be interpreted as ‘excellent’ according 
to [7].  
 

ROC Curve

1 - Specivity

1,0,8,5,30,0

S
en

si
vi

ty

1,0

,8

,5

,3

0,0

 
Figure 4: ROC curve of optimized measure for phrase 
classification 

It is possible to give more weight to the detection of 
class-members by choosing a different cut-off value for 
the logistic regression function (at the cost of assuming a 
higher percentage of misclassified non-class members). 
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With a cut-off value of 0.133 we classified 72.3% of the 
class members correctly (85.1% of the non-class 
members correct, 83.5% correct overall).  

However, the detection of the class members is still not 
perfect but an inspection of Sagrillo’s groups showed 
that his similarity classification is rather of a continuous 
nature than one of actual groups. So especially in large 
groups the first and the last members possess generally 
low similarity values in our optimized model. A more 
sophisticated approach would be to use all levels of his 
hierarchical classification or the proximity of the phrases 
in his ordered catalogue as dependent variable in the 
regression model. This is planned for the near future. 

5. SUMMARY 

As this study has focused on the classification and 
exploration of a folksong collection, the chosen 
methods gave satisfying and promising results with 
strong implications. The strikingly simple idea of 
evaluating and gauging a large number of melodic 
similarity measures from the literature with the help of 
empirical research and mathematical systematization 
enabled us to develop a successful tool. Furthermore, 
our empirical work seems to prove that the concept of 
melodic similarity is a stable and well-defined notion 
for human music experts. 
Due to the high importance of melodic similarity in 
many areas of music research and engineering, our tool 
is ready and waiting for many other applications, e.g., in 
Query-by-Humming systems, as a tool for melodic 
memory research, or as starting point for cognitive 
models of human melodic similarity judgments. Some 
of these, as well as refinements, optimization and 
evaluations of the tool in other domains, will be done in 
the future. 
  

6. REFERENCES 

[1] Bartók, B. & Lord, A.B.  Serbo-Croatian Folk 
Songs: Texts and Transcriptions of Seventy-
Five Folk Songs from the Milman Parry 
Collection and a Morphology of Serbo-
Croatian Folk Melodies. New York: Columbia 
University Press, 1951. 

[2] Bartók, B. "Why and How Do We Collect Folk 
Music?". Béla Bartók Essays. Ed. Benjamin 
Suchoff. London: Faber & Faber, 1976, 9-24. 

[3] Borg, I & Lingoes, J.C. Multidimensional 
similarity structure analysis. New York: 
Springer, 1987. 

[4] Downie, J. S. Evaluating a Simple Approach to 
Musical Information retrieval: Conceiving 
Melodic N-grams as Text. PhD thesis, 
University of Western Ontario, 1999 

[5] Frieler, K. Mathematische Musikanalyse - 
Theorie und Praxis.  PhD thesis, University of 
Hamburg (in preparation), 2004 

[6] Hofmann-Engl, L. "Rhythmic Similarity: A 
theoretical and empirical approach". 
Proceedings of the 7th International 
Conference on Music Perception and 
Cognition, Sydney 2002. Ed. C. Stevens, D. 
Burnham, G. McPherson, E. Schubert, J. 
Renwick. Adelaide, Causal Productions, 2002  

[7] Hosmer, D. W. & Lemeshow, S. Applied 
Logistic Regression. Wiley, New York, 2000.  

[8] Jesser, B. Interaktive Melodieanalyse: 
Methodik und Anwendung computergestützter 
Analyseverfahren in Musikethnologie und 
Volksliedforschung: typologische 
Untersuchung der Balladensamlung des DVA. 
Bern: Peter Lang, 1990. 

[9] Juhasz, Z. “A Model of Variation in the Music 
of a Hungarian Ethnic Group”. Journal of New 
Music Research, 29, No. 2, 2000, 159-172. 

[10] Kluge, R. Faktorenanalytischen 
Typenbestimmung an Volksliedmelodien. 
Leipzig: VEB Deutscher Verlag für Musik, 
1974. 

[11] Krumhansl, C. L. Cognitive foundations of 
musical pitch. New York: Oxford University 
Press, 1990. 

[12] Kruskal, J.B. & Wish, M. Multidimensional 
scaling. Beverly Hills: Sage, 1978. 

[13] Leppig, M. “Musikuntersuchungen in 
Rechenautomaten“. Musica 41/2, 1987, p140-
150. 

[14] McNab, R. J., Smith, L.A., Witten, I.H., 
Henderson, C.L. & Cunningham, S.J.  
“Towards the Digital Music Library: Tune 
retrieval from Acoustic Input”. Proceedings 
ACM Digital Libraries, 1996. 

[15] Meek, C. & Birmingham, W. "Johnny Can't 
Sing: A Comprehensive Error Model for Sung 
Music Queries." ISMIR 2002 Conference 
Proceedings, IRCAM, 2002, p124-132. 

[16] Mongeau, M. & Sankoff, D. “Comparision of 
Musical Sequences”. Computers and the 
Humanities 24, 1990, p161-175. 

[17] Müllensiefen, D. Variabilität und Konstanz 
von Melodien in der Erinnerung. PhD thesis, 
University of Hamburg (in preparation), 2004 

[18] O`Maidin, D. "A Geometrical Algorithm for 
Melodic Difference in Melodic Similarity". 
Melodic Similarity: Concepts, Procedures, and 
Applications. Computing in Musicology 11. Ed. 



  
 

 7

Walter B. Hewlett & Eleanor Selfridge-Field. 
Cambridge: MIT Press, 1998 

[19] Pauws, S. "Cuby hum: A Fully Operational 
Query by Humming System". ISMIR 2002 
Conference Proceedings, IRCAM, 2002, p187-
196. 

[20] Sagrillo, D. Melodiegestalten im 
luxemburgischen Volkslied: Zur Anwendung 
computergestützter Verfahren bei der 
Klassifikation von Volksliedabschnitten. Holos, 
Bonn, 1999. 

[21] Schmuckler, M. A, “Testing Models of 
Melodic Contour Similarity." Music Perception 
Vol. 16, No. 3, 1999, p109-150. 

[22] Seeger, Ch. “Versions and Variants of the 
Tunes of ‘Barbara Allen’”. Selected reports in 
ethnomusicology Vol.I, No. 1, 1966. 

[23] Steinbeck, W. Struktur und Ähnlichkeit: 
Methoden automatisierter Melodieanalyse. 
Kieler Schriften zur Musikwissenschaft XXV. 
Kassel, Basel, London: Bärenreiter, 1982 

[24] Uitdenbogerd, A. L.  Music Information 
Retrieval Technology. PhD thesis, RMIT 
University Melbourne Victoria, Australia, 2002 

[25] Zadeh, L. "Fuzzy sets". Inf. Control, 1965, 
p338-353. 

[26] Zhou, Y. & Kankanhalli, M. S. "Melody 
alignment and Similarity Metric for Content-
Based Music Retrieval". Proceedings of SPIE-
IS&T Electronic Imaging. SPIE Vol. 5021, 
2003, p112-121. 

7. APPENDIX: TABLE OF EMPLOYED 
SIMILARITY MEASURES 

 
Abbreviation Model 
  
RAWED Raw pitch edit distance  
RAWEDW Raw pitch edit distance, weighted  
RAWPCST Raw pitch P-B. corr, 0-1 
RAWPCWST Raw pitch P-B. Corr., weighted, 0-1 
CONSED Contour (Steinbeck) edit distance 
CONSPCST Contour (Steinbeck), P-B. corr., 0-1  
CONED  Contour edit distance weighted  
CONPCST Contour, P-B. corr., 0-1 
FOURRST Fourier (ranks), weighted, 0-1  
FOURRWST Fourier (ranks), weighted, 0-1  
FOURRI Fourier (ranks, intervals) 
DIFFED Intervals (Edit distance)  
DIFF Intervals (Mean difference)  
DIFFEXP Intervals (Mean difference,  exp.) 
DIFFFUZ Intervals (fuzzy), Edit Distance  
DIFFFUZC Intervals (fuzzy contour) 

NGRSUMCO n-grams  Sum Common  
NGRUKKON n-grams  Ukkonnen  
NGRCOORD Coordinate Matching (count dictinct) 
NGRSUMCR Sum Common  (interval direction)  
NGRUKKOR n-grams  Ukkonnen (interval dir.)  
NGRCOORR n-grams Coord. Match.  (interval dir.) 
NGRSUMCF n-grams  Sum Common  (fuzzy)  
NGRUKKOF n-grams  Ukkonnen   (fuzzy)  
NGRCOORF n-grams  Count distinct   (fuzzy)  
NGRSUMFR n-grams  sum common (fuzzy 

rhythm)  
NGRUKKFR n-grams  Ukkonnen  (fuzzy rhythm)  
NGRCOOFR n-grams Coord. Match. (fuzzy 

rhythm) 
RHYTGAUS Rhythm (gaussified onset points)  
RHYTFUZZ Rhythm (fuzzy), edit distance  
HARMCORR Harmonic correlation (type I)  
HARMCORK Harmonic correlation (type II)  
HARMCORE Harmonic correlation (Edit distance)  
HARMCORC Harmonic correlation (circle) 

 


