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ABSTRACT
In the automatic classification of music many different
segmentations of the audio signal have been used to cal-
culate features. These include individual short frames (23
ms), longer frames (200 ms), short sliding textural win-
dows (1 sec) of a stream of 23 ms frames, large fixed win-
dows (10 sec) and whole files. In this work we present
an evaluation of these different segmentations, showing
that they are sub-optimal for genre classification and in-
troduce the use of an onset detection based segmentation,
which appears to outperform all of the fixed and sliding
windows segmentation schemes in terms of classification
accuracy and model size.
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1 INTRODUCTION
In recent years the demand for automatic, content-based
multimedia analysis has grown considerably due to the
ever increasing quantities of multimedia content available
to users. Similarly, advances in local computing power
have made local versions of such systems more feasible.
However, the efficient and optimal use of information
available in a content streams is still an issue, with
very different strategies being employed by different
researchers.

Audio classification systems are usually divided
into two sections: feature extraction and classification.
Evaluations have been conducted both into the different
features that can be calculated from the audio signal
and the performance of classification schemes trained
on those features. However, the optimum length of
fixed-length segmentation windows has not been in-
vestigated, nor whether fixed-length windows provide
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good features for audio classification. West and Cox
(2004) compared systems based on short frames of the
signal (23 ms), with systems that used a 1 second sliding
window of these frames, to capture more information
than was available in the individual audio frames, and a
system that compressed an entire piece to just a single
vector of features (Tzanetakis, 2003). Tzanetakis et al.
(2001) demonstrates a system based on a 1 second sliding
window of the calculated features and in Tzanetakis
(2003), a whole file based system. Schmidt and Stone
(2002) and Xu et al. (2003) investigated systems based
on the classification of individual short audio frames (23
ms) and Jiang et al. (2002) classifies overlapped 200 ms
analysis frames. West and Cox (2004) showed that it is
beneficial to represent an audio sample as a sequence
of features rather than a single probability distribution.
We also demonstrated that a tree-based classifier gives
improved performance on these features over a “flat”
classifier.

In this paper we introduce a new segmentation based
on an onset detection function, which outperforms the
fixed segmentations in terms of both model size and clas-
sification accuracy. The paper is organised as follows:
first we discuss the modelling of musical events in the
audio stream, then the parameterisations used in our ex-
periments, the development of onset detection functions
for segmentation, the classification scheme we have used
and finally the results achieved and the conclusions drawn
from them.

2 MODELLING EVENTS IN THE
AUDIO STREAM

Averaging sequences of features calculated from short au-
dio frames (23 ms) across a whole piece tends to drive
the distributions from each class of audio towards the cen-
tre of the feature space, reducing the separability of the
classes. Therefore, it is more advantageous to model the
distributions of different sounds in the audio stream than
the audio stream as a whole. Similarly, modelling short
audio frames from a signal is also sub-optimal as a musi-
cal event is composed of many different frames, occupy-
ing different locations in the feature space. This leads to a
very complex set of distributions of features for each piece
that are both hard to model and contain less information
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for classification than the distribution of features from a
single musical event would. Sounds do not occur in fixed
length segments and when human beings listen to music,
they are able to segment the audio into individual events
without any conscious effort, or prior experience of the
timbre of the sound. This suggests the possibility of seg-
menting an audio stream as a sequence of musical events
or simultaneously occurring musical events. We believe
that directed segmentation techniques, such as onset de-
tection, should be able to provide a much more informa-
tive segmentation of the audio data for classification than
any fixed length segmentation due to the fact that sounds
do not occur in fixed length segments.

Systems based on long sliding windows (e.g. 1 sec-
ond) that are highly overlapped are a step in the right di-
rection, as they allow a classification scheme to attempt
to model multiple distributions for a single class of au-
dio. However, they complicate the distributions as long
windows are likely to capture several different musical
events. This style of segmentation also includes a very
large amount redundant information as a single sound may
contribute to 80 or more feature vectors (based on a 1 sec
window, over 23 ms frames with a 50% overlap). A seg-
mentation based on an onset detection technique allows a
musical event to be represented by a single vector of fea-
tures and ensures that only individual events or events that
occur simultaneously contribute to that feature vector.

3 EXPERIMENTAL SETUP -
PARAMETERISATION

In Jiang et al. (2002) an Octave-based Spectral Contrast
feature is proposed, which is designed to provide better
discrimination among musical genres than Mel-Frequency
Cepstral Coefficients. In order to provide a better rep-
resentation than MFCCs, Octave-based Spectral Contrast
features consider the strength of spectral peaks and valleys
in each sub-band separately, so that both relative spectral
characteristics, in the sub-band, and the distribution of
harmonic and non-harmonic components are encoded in
the feature. In most music, the strong spectral peaks tend
to correspond with harmonic components, whilst non-
harmonic components (stochastic noise sounds) often ap-
pear in spectral valleys (Jiang et al., 2002), which reflects
the dominance of pitched sounds in Western music. Spec-
tral Contrast is a way of mitigating against the fact that av-
eraging two very different spectra within a sub-band could
lead to the same average spectrum.

A full description of the procedure for calculating
Spectral Contrast feature is beyond the scope of this paper.
However, an overview of the process and the similarities
with the calculation of MFCCs is shown in Figure 1.

4 EXPERIMENTAL SETUP -
SEGMENTATIONS

Initially, audio is sampled at 22050Hz and the two stereo
channels channels summed to produce a monaural sig-
nal. It is then divided into overlapping analysis frames
and Hamming windowed. Spectral contrast features are
calculated for each analysis frame and then, optionally,

Figure 1: Overview of Spectral Contrast Feature calcula-
tion

Figure 2: Audio segmentations and temporal modelling
windows evaluated

the means and variances of these frames are calculated
(replacing the original parameterisation), using a sliding
window across the whole file, or across segments identi-
fied using an onset detection function, returning one vec-
tor of features per segment.

The segmentations evaluated in this system are: 23 ms
audio frames, 200 ms audio frames, 23 ms audio frames
with a 1 second sliding temporal modelling window, 23
ms audio frames with non-overlapping 10 second win-
dows, 23 ms audio frames with whole file temporal mod-
elling (returns 1 vector per file), 23 ms audio frames with
onset detection based segmentation and temporal mod-
elling. These segmentations are schematically shown in
Figure 2.

4.1 Developing Onset detection functions

Energy based onset detection techniques have been used
by a number of researchers to segment audio, including
Goto and Muraoka (1995), Dixon et al. (2003), Heittola
and Klapuri (2002), Schloss (1985) and Duxbury et al.
(2003). The essential idea is that peaks in the positive
differences in the signal envelope correspond to onsets in
the audio stream, i.e. the beginning of musical events.

4.1.1 Thresholding an onset detection function

An onset is detected at a particular audio frame if the on-
set detection function is greater than a specified threshold,
and that frame has a greater onset detection function value
than all the frames within a small isolation window.

Duxbury et al. (2003) use a dynamic median threshold
to “peak-pick” the detection function, as shown in Figure
3. A relatively short window (1 - 2 seconds) of the onset
detection function is used to calculate a median, which is
then used as the threshold. A weight can also be applied
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Figure 3: An onset detection plot with dynamic threshold-
ing

Figure 4: Spectrogram of male voice with vibrato

to the median in order to adjust the threshold slightly. Our
initial experiments showed that a dynamic threshold was
always more successful than a fixed threshold, so the dy-
namic threshold is used in all the reported experiments.

4.1.2 Improving performance of energy based
techniques

Several authors have addressed the integration, along the
frequency axis, of the perceived magnitude of an audio
signal by calculating changes in each bin output by an FFT
and integrating their results, (Duxbury et al., 2003). Un-
fortunately, this technique is vulnerable to false detections
in the presence of pitch oscillations within a single event,
such as vibrato in a singer’s voice. This effect is shown in
fig 4. The oscillations caused by vibrato move the energy
into a different FFT bin at a rate of about 3 - 5 Hz. One
solution to this is to divide the frequency domain into a
smaller number of overlapping bands, integrate the energy
within a band and then calculate the first order differences,
which are subsequently integrated across the bands. We
used the Mel-frequency scale and the Octave scale for this
non-linear integration of bands. The former approximates
a model of the human perception of sound, whilst the later
is based on one of the primary scales used in music.

Initial experiments have shown that the octave scale,
which uses fewer, much broader bands, is much less suc-
cessful for this task. This may be because the bands are
broad enough that the sustained portions of several con-
current sounds overlap within a band and the onset of the
later sounds may be missed and interpreted as the sus-
tained portion of the first event. Therefore, results re-
ported here are for Mel-scale or FFT bands.

4.1.3 FFT Phase based onset detection

In Bello and Sandler (2003) an alternative to energy-based
onset detection techniques for musical audio streams is
proposed and Duxbury et al. (2003) combined it with ex-
isting techniques to produce a complex domain onset de-
tection function.

When performing spectral analysis of a signal, it is
segmented into a series of analysis frames and a Fast
Fourier transformation (FFT) is applied to each segment.
The transform returns a magnitude |S (n, k) | and a phase
ϕ(n, k) for each bin. The unwrapped phase, ϕ̃ (n, k), is
the absolute phase mapped to the range [−π, π]. Energy
based techniques consider only the magnitude of the FFT
and not the phase, which contains the timing information
of the signal.

A musical event can be broken down in to three stages;
the onset, the sustained period and the offset. During the
sustained period of a pitched note, we would expect both
the amplitude and phase of the FFT to remain relatively
stable. However during a transient (onsets and offsets)
both are likely to change significantly.

During attack transients, we would expect to see a
much higher level of deviation than during the sustained
part of the signal. By measuring the spread of the distri-
bution of these phase values for all of the FFT bins and
applying a threshold we can construct an onset detection
function. Peaks in this detection function correspond to
both onset and offset transients so it may need to be com-
bined with the magnitude changes to differentiate onsets
and offsets.

4.1.4 Optimisation

A dynamic median has three parameters that need to be
optimised in order to achieve the best performance, the
median window size, the onset isolation window size
and the threshold weight. In order to determine the best
possible accuracy achievable with each onset detection
technique, an exhaustive optimisation of these parameters
was made. To achieve this, a ground-truth transcription of
the onset times of the notes in a number test pieces was
required. This was produced by hand. Eight test pieces,
from four genres, were annotated for this task, each of
length 1 minute.

The best performing onset detection functions from a
set of 20 potential functions were examined. These in-
cluded entropy, spectral centroid, energy and phase based
functions. The results achieved are listed in Table 1. The
detection functions are evaluated by the calculation of F-
measure, which is the harmonic mean of the precision (#
correct prediction / total # predictions) and recall (# cor-
rect predictions / # onsets in the original files). An onset
is considered correct if it is within 30 ms of a ground-truth
onset. F-measure penalises large differences between pre-
cision and recall and yields a balanced evaluation metric.
A generalisation of F-measure can be used to weight the
importance of each component statistic, but in this context
they are of equal importance. The window sizes are re-
ported in numbers of frames, where the frames are 23ms
in length and are overlapped by 11.5ms. Where a range
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Figure 5: Noise reduction in detection functions with a
Mel-scale filter-bank

of values achieve the same accuracy the smallest window
sizes are returned to keep memory requirements as low as
possible.

Table 1 shows that the two best best performing func-
tions (results 4 and 5) are based on energy or both en-
ergy and phase deviations in Mel-scale bands. Both tech-
niques have the very useful feature that they do not re-
quire a threshold to be set in order to obtain optimal per-
formance. The small increase in accuracy demonstrated
by the Mel-band detection functions over the FFT band
functions can be attributed to the reduction of noise in the
detection function, as shown in Figure 5.

5 CLASSIFICATION SCHEME
In West and Cox (2004) we presented a new model for
the classification of feature vectors, calculated from an au-
dio stream and belonging to complex distributions. This
model is based on the building of maximal binary classifi-
cation trees, as described by Breiman et al. (1984). These
are conventionally built by forming a root node contain-
ing all the training data and then splitting that data into
two child nodes by the thresholding of a single variable, a
linear combination of variables or the value of a categor-
ical variable. We have significantly improved this model
by replacing the splitting process, which must form and
evaluate a very large set of possible single variable splits,
with a pair of single Gaussian distributions, tested with
Mahalanobis distance measurements. The single Gaus-
sian distributions can be estimated with either diagonal or
full covariance matrices, however full covariance matrix
distributions take significantly longer to estimate.

At each node the set of possible splits are enumerated
by forming all the combinations of audio classes, without
repetition or permutations. A single Gaussian classifier is
trained to duplicate each of these splits and the classifier
returning the best split is selected and finalised.

5.1 Selecting the best split

There are a number of different criteria available for eval-
uating the success of a split. In this evaluation we have
used the Gini index of Diversity described by Breiman
et al. (1984), which is given by:

d (t) =
∑

i,j,i6=j

p (Ci|t) p (Cj |t) (1)

Figure 6: Overview of an iteration of the classification tree
training process

where t is the current node, p (Cj |t) and p (Ci|t) are the
prior probabilities of the i-th and j-th classes, at node t,
respectively. The best split of node t is the split s that
maximises the change in diversity ( ∆d (s, t) ), which is
given by:

∆d (s, t) = d (t) − PLd (tL) − PRd (tR) (2)

where PL and PR are the proportion of examples in the
child nodes tL and tR respectively. The Gini criterion will
initially group together classes that are similar in some
characteristic, but towards the bottom of the tree, will pre-
fer splits that isolate a single class from the rest of the
data. An diagrammatic overview of the splitting process
is shown in Figure 6.

5.2 Maximum liklihood classification

When classifying a novel example, a likelihood of mem-
bership of each class is estimated as the percentage of the
training data belonging to each class at the leaf node that
the input feature vector exited the tree at, normalised by
the prior probabilities of the classes. A whole piece is
classified by summing the log likelihoods of each feature
vector, which is equivalent to taking the product of the
likelihoods values, and selecting the class with the highest
likelihood.

One difficulty with this technique is that not all classes
have counts at every leaf node, and hence some of the
likelihoods are zero. This would lead to a likelihood of
zero for any class for which this had occurred. This situa-
tion might arise if the model is presented with an example
containing a timbre that was not seen in that class during
training. An example of this might be a reggae track con-
taining a trumpet solo, when trumpets had previously only
been seen in the Classical and Jazz classes. Therefore, the
likelihoods are smoothed using Lidstone’s law, (Lidstone,
1920). The equation for Lidstone’s smoothing is:

PLi (i|N) =
(ni + 0.5)

(n + (0.5 ∗ C))
(3)
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Table 1: Onset Detection Optimisation results

Onset detection function Median win Threshold wt Isolation win F-measure
1 2nd order FFT band positive 1st order energy differences, summed 30 0.9 14 80.27%
2 Phase deviations multiplied by 1st order energy differences in FFT

bands, summed
30 0.2 16 84.54%

3 1st order FFT band positive energy differences, summed 30 0.2 16 86.87%
4 1st order positive energy differences in Mel-scale bands, summed 30 0.0 16 86.87%
5 Phase deviations multiplied by 1st order energy differences in Mel-

scale bands, summed
30 0.0 16 88.92%

Optimisation results calculated over eight 60 second samples

where PLi is the smoothed likelihood of class i, N is
the leaf node that the feature vector was classified into, ni

is the number of class i training vectors at node N , n is
the total number of training vectors at node N and C is
the number of classes.

6 TEST DATASET AND
EXPERIMENTAL SETUP

In this evaluation models were built to classify audio into
7 genres; Rock, Reggae, Heavy Metal, Classical, Jazz &
Blues, Jungle and Drum & Bass. Each class was com-
posed of 150, 30 second samples selected at random from
the audio database. Each experiment was performed with
3-fold cross validation.

6.1 Onset-detection based temporal modelling

Results reported as using “onset-detection based temporal
modelling” were segmented with the best performing on-
set detector, as detailed in section 4.1. This was a phase
and energy based onset detector that takes the product of
the phase and energy deviations in Mel-scale bands, sums
the bands and half-wave rectifies the result in order to pro-
duce the final onset detection function.

7 CLASSIFICATION RESULTS
7.1 Analysis

The classification results in Table 2 show a clear advan-
tage for the modelling of a sequence of features (results 4,
5, 6, 7 and 8) over the modelling of a single probability
distribution of those features (results 1 and 3). However,
the direct modelling of a sequence frames (both 23 ms and
200 ms frames) is a very complex problem, as shown by
the very large number of leaf nodes in the decision tree
models trained on that data. Only diagonal covariance
models were trained on this data as the training time for
these models was the longest by far. The use of a sliding
temporal modelling window (results 5 and 6) both signif-
icantly improves the accuracy of these results and simpli-
fies the models trained on the data, whilst including the
same number of feature vectors.

The use of an onset detection based segmentation
and temporal modelling (results 7 and 8) yielded slightly
better classification results, significantly smaller feature
file sizes, simplified decision tree models and significantly
faster execution times than either of the sliding temporal
modelling window results. The increased efficiency

of the model training process can be attributed to the
removal of redundant data in the parameterisation. In the
sliding window results this redundant data is useful as
the complex decision trees must be grown to describe the
many distributions and the extra data allows the accurate
estimation of covariance matrices at lower branches of the
tree. As the decision trees for data segmented with onset
detection are simpler, the redundant data is not necessary.

A possible explanation for the ability of the directed
segmentation to produce simpler decision tree models is
that it divides the data into “semantically meaningful”
units, in a similar way to the decomposition produced by
human perception of audio, i.e. into individual sounds.
An individual sound will be composed of a variety of
audio frames, some of which will be shared by other, very
different sounds. This produces complex distributions in
feature space, which are hard to model. The use of a tem-
poral modelling window simplifies these distributions as
it captures some of the local texture, i.e. the set of frames
that compose the sounds in the window. Unfortunately,
this window is likely to capture more than one sound,
which will also complicate the distributions in feature
space.

The use of full covariance matrices in the Gaussian
classifiers consistently simplifies the decision tree model.
However, it does not neccesarily increase clasification ac-
curacy and introduces an additional computational cost.
Using full covariance models on the sliding window data
reduced the model size by a third but often had to be re-
duced to diagonal covariance at lower branches of the tree,
due to there being insufficient data to accurately estimate
a full covariance matrix. Using full covariance models on
the segmented data reduced the model size by two thirds
and produced a significant increase in accuracy. This may
be due to the fact that the segmented data produces fewer,
more easily modelled distributions without the complica-
tions that were introduced by capturing multiple sounds in
the sliding window.

8 CONCLUSION
We have shown that onset detection based segmentations
of musical audio provide better features for classification
than the fixed or sliding segmentations examined. These
features produced from onset detection based segmen-
tations are both simpler to model and produce more
accurate models. We have also shown, by eliminating
redundancy, that they make a more efficient use of the
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Table 2: Segment Classification results
Model description Covar Accuracy Std Dev Leaf Nodes Run-time File size

1 23ms audio frames with whole file window diag 65.60% 1.97% 102 2,602 s 1.4 Kb
2 23ms audio frames diag 68.96% 0.57% 207,098 1,451,520 s 244 Kb
3 23ms audio frames with non-overlapping 10s win-

dow
diag 70.41% 2.21% 271 2,701 s 1.8 Kb

4 200ms audio frames full 72.02% 0.13% 48,527 102,541 s 29 Kb
5 23ms audio frames with sliding 1s window full 79.69% 0.67% 18,067 47,261 s 244 Kb
6 23ms audio frames with sliding 1s window diag 80.59% 1.75% 24,579 24,085 s 244 Kb
7 23ms audio frames with onset detection based seg-

mentation
diag 80.42% 1.14% 10,731 4,562 s 32 Kb

8 23ms audio frames with onset detection based seg-
mentation

full 83.31% 1.59% 3,317 16,214 s 32 Kb

Results calculated using 3-fold cross validation and profiled using a 2.2 GHz AMD Athlon processor with 1 Gb of DDR RAM

data available in the audio stream. This supports the
contention that onset detection based segmentation of
an audio stream leads to more musically meaningful
segments, which could be used to produce better content
based music identification and analysis systems than
other segmentations of the audio stream.

We have also shown that Mel-band filtering of onset
detection functions and the combination of detection func-
tions in Mel-scale bands, reduces noise and improves the
accuracy of the final detection function.
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