
COMPARING PITCH SPELLING ALGORITHMS

David Meredith Geraint A. Wiggins

Centre for Cognition, Computation and Culture

Department of Computing

Goldsmiths’ College, University of London

New Cross, London, SE14 6NW.

dave@titanmusic.com, g.wiggins@gold.ac.uk

ABSTRACT

A pitch spelling algorithm predicts the pitch names of the

notes in a musical passage when given the onset-time,

MIDI note number and possibly the duration and voice of

each note. Various versions of the algorithms of Longuet-

Higgins, Cambouropoulos, Temperley and Sleator, Chew

and Chen, and Meredith were run on a corpus contain-

ing 195972 notes, equally divided between eight clas-

sical and baroque composers. The standard deviation

of the accuracies achieved by each algorithm over the

eight composers was used as a measure of its style de-

pendence (SD). Meredith’s ps1303 was the most ac-

curate algorithm, spelling 99.43% of the notes correctly

(SD = 0.54). The best version of Chew and Chen’s al-

gorithm was the least dependent on style (SD = 0.35)

and spelt 99.15% of the notes correctly. A new version

of Cambouropoulos’s algorithm, combining features of

all three versions described by Cambouropoulos himself,

also spelt 99.15% of the notes correctly (SD = 0.47). The

best version of Temperley and Sleator’s algorithm spelt

97.79% of the notes correctly, but nearly 70% of its errors

were due to a single sudden enharmonic change. Longuet-

Higgins’s algorithm spelt 98.21% of the notes correctly

(SD = 1.79) but only when it processed the music a voice

at a time.

Keywords: pitch spelling, transcription, algorithms,

evaluation.

1 INTRODUCTION

A pitch spelling algorithm is an algorithm that attempts to

compute the correct pitch names (e.g., C]4, B[5 etc.) of

the notes in a passage of tonal music, when given only the

onset-time, MIDI note number and possibly the duration

and voice of each note.

There are good practical reasons for attempting to de-

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee pro-

vided that copies are not made or distributed for profit or com-

mercial advantage and that copies bear this notice and the full

citation on the first page.

c©2005 Queen Mary, University of London

Figure 1: Three perceptually similar patterns with differ-

ent chromatic pitch interval structures (from the first bar

of the Prelude in C minor (BWV 871/1) from Book 2 of

J. S. Bach’s Das Wohltemperirte Clavier).

velop a reliable pitch spelling algorithm. First, until such

an algorithm is devised, it will be impossible to construct

a reliable MIDI-to-notation transcription system—that is,

a system that reliably computes a correctly notated score

of a passage when given only a MIDI file of the passage as

input. Second, existing audio transcription systems gen-

erate not notated scores but MIDI-like, ‘piano roll’ repre-

sentations as output (Abdallah and Plumbley, 2004). So, if

one needs to produce a notated score from a digital audio

recording, one needs not only an audio transcription sys-

tem but also a MIDI-to-notation transcription algorithm

(incorporating a pitch spelling algorithm).

Third, knowing the letter-names of the pitch events in

a passage is useful in music information retrieval and mu-

sical pattern discovery (see, for example, Meredith et al.,

2002, pp. 328–330). In particular, two occurrences of a

motif on different degrees of a scale might be perceived

to be similar even if the corresponding chromatic inter-

vals in the patterns differ. Figure 1, for example, shows an

instance of tonal melodic sequence in which the three pat-

terns A, B and C are perceived to be three occurrences of

the same motif even though the corresponding chromatic

intervals are different in the three patterns. Note that, in

this example, one important aspect of the perceived simi-

larity between patterns A, B and C is nicely represented in

the notation by the fact that they all have the same scale-

step interval structure (i.e., a descending step followed by

two ascending steps). In other words, one result of the

choice of pitch names for the notes in this passage is that

the scale-step interval structures are the same for these

three perceptually similar but chromatically different pat-

280

terns.

If the pitch names of the notes are encoded, matches

such as the ones in Figure 1 can be found using fast

exact-matching algorithms (e.g., Knuth et al., 1977; Galil,

1979). However, if just MIDI note numbers are used,

matches such as the ones in Figure 1 can only be found

using slower and more error-prone approximate-matching

algorithms (e.g., Cambouropoulos et al., 2002).

In the study reported here, pitch spelling algorithms

proposed by several authors were analysed, evaluated

and, in some cases, improved. The algorithms studied

were those of Longuet-Higgins (1987), Cambouropoulos

(1996, 2001, 2003), Temperley (2001), Chew and Chen

(2003, 2005) and Meredith (2003, 2005). A number of

different versions of each of these algorithms were run on

a test corpus containing 195972 notes, equally divided be-

tween eight classical and baroque composers.

Section 2 below is a discussion of the methodology

used in this study to evaluate the algorithms. The vari-

ous versions of the algorithms that were tested are then

briefly described in section 3. The results obtained are

summarised and discussed in section 4. Finally, in sec-

tion 5 we present the main conclusions that can be drawn

from this study and suggest ways in which the research

reported here could be continued.

2 METHODOLOGY

When comparing algorithms, one must first identify rel-

evant evaluation criteria—that is, specific ways in which

the performance of one algorithm might be considered in-

terestingly different from that of another. Then appropri-

ate performance metrics have to be defined for these eval-

uation criteria. A performance metric for a particular eval-

uation criterion is a way of measuring the performance of

an algorithm with respect to that criterion. When compar-

ing pitch spelling algorithms, these performance metrics

are used to measure how well an algorithm performs on

some specified test corpus of works.

In this paper, we use two principal evaluation criteria:

spelling accuracy, that is, how well an algorithm predicts

the pitch names of the notes; and style dependence, that

is, how much the spelling accuracy of an algorithm is af-

fected by the style of the music being processed. The per-

formance metric used here to measure spelling accuracy is

note accuracy: the note accuracy of an algorithm A over

a set of movements S is defined to be the proportion of

notes in S spelt correctly by A. In the study reported here,

the note accuracies were measured over the complete test

corpus and over each of the eight subsets of this corpus

containing the works by a particular composer. The stan-

dard deviation of the note accuracies over these eight com-

poser subsets was used as a measure of style dependence

(SD).

A test corpus should, ideally, be a large, representa-

tive sample of the population of works that the algorithms

will be used to process in the future. Unfortunately, most

of the test corpora used in previous publications for eval-

uating pitch spelling algorithms have not been properly

representative of any wider population of works. In some

cases, this has been because the test corpus was either

far too small (Longuet-Higgins, 1987; Cambouropoulos,

1996; Chew and Chen, 2003, 2005) or too small to repre-

sent the target population of works (Stoddard et al., 2004).

In other cases, the test corpus has consisted of movements

that are too closely related in terms of genre, composer

and instrumentation (Meredith, 2003; Cambouropoulos,

2001, 2003). In yet other cases, the test corpora consisted

of small fragments from works that were either incip-

its and main themes (Cambouropoulos, 1996) or extracts

specially chosen to illustrate particular music-theoretical

phenomena (Temperley, 2001). Such corpora cannot be

considered representative of some interesting wider pop-

ulation of complete musical works. The test corpus used

by Meredith (2005) was relatively large (1729886 notes),

but it was very unevenly divided between the nine com-

posers represented, ranging from 2962 notes from works

by B. Marcello to 627083 notes from works by J. S. Bach.

This meant that the results obtained for the different com-

posers were not comparable and thus not appropriate for

measuring style dependence.

In the study described here, the test corpus contained

195972 notes, consisting of 216 movements from works

by eight baroque and classical composers (Corelli, Vi-

valdi, Telemann, J. S. Bach, Handel, Haydn, Mozart and

Beethoven). This corpus was chosen so that it contained

almost exactly 24500 notes for each of the eight com-

posers represented.

Several algorithms tested here achieved note accu-

racies higher than 99% which prompts one to question

whether the differences between these values are statis-

tically significant. To date, only Meredith (2005) has at-

tempted to measure the statistical significance of the dif-

ference between the spelling accuracies achieved by pitch

spelling algorithms. However, he used McNemar’s test

for this purpose (McNemar, 1969, pp. 54–8), and this test

is not strictly appropriate in this situation because its va-

lidity depends on the correctness of any particular pitch

name being independent of the correctness of the pitch

names assigned to the notes around it—which is usually

not the case since pitch spelling algorithms typically use

the context surrounding a note to determine its pitch name.

In fact, it seems that there is no straightforward statistical

method that is entirely appropriate for measuring the sig-

nificance of the difference between two spelling accura-

cies. In order to avoid the possibility of giving misleading

estimates of significance, we have therefore decided not

to provide such estimates in this paper.

Occasionally in tonal music, a modulation occurs that

results in a passage being in an extremely flat or extremely

sharp key that requires many double flats or double sharps.

Composers often choose to notate such passages in en-

harmonically equivalent keys that require fewer acciden-

tals because this usually makes the music easier to read.

When this happens, a sudden enharmonic change occurs

in the score in which the notated key suddenly changes

to a very distant key even though no such modulation is

heard by the listener (Temperley, 2001, p. 135). The test

corpus used here contained just one example of such a

sudden enharmonic change. This occurs at bar 166 in the

fourth movement of Haydn’s Symphony No. 100 in G ma-

jor (‘Military’) (Hob. I:100) where the notated key sud-

281

Pitch name class

Sharpness

. . .

. . .
F[

−8

C[

−7

G[

−6

D[

−5

A[

−4

E[

−3

B[

−2

F

−1

C

0

G

1

D

2

A

3

E

4

B

5

F]

6

C]

7

G]

8

D]

9

A]

10

E]

11

B]

12

. . .

. . .

Figure 2: The ‘line of fifths’ showing the sharpness associated with each pitch name class.

denly changes from D[major to C] major, even though

no change in key is perceived by the listener. As no mod-

ulation is perceived by the listener, it can be argued that

spelling this movement without the enharmonic change

(i.e., staying in D[major) would also be correct. It was

therefore decided that the output of each algorithm for

this movement should be compared with two “correct”

spellings: one in which the notes are spelt as they are

in the original score; and a second, modified version, in

which the enharmonic change is omitted. When an algo-

rithm performed better on the modified version than on

the original, an alternative value for its note accuracy will

be given in the results.

3 THE ALGORITHMS TESTED

The algorithms considered in this study were those of

Longuet-Higgins (1987), Cambouropoulos (1996, 2001,

2003), Temperley (2001), Chew and Chen (2003, 2005)

and Meredith (2003, 2005). A number of different ver-

sions of each of these algorithms were run on the test cor-

pus. These algorithms will now be briefly described.

3.1 Longuet-Higgins’s pitch spelling algorithm

Pitch spelling is one of the tasks performed by Longuet-

Higgins’s (1987) music.p program, which was designed

to be used only on monophonic melodies (Longuet-

Higgins, 1987, p. 114). Given the MIDI note number and

onset time of each note, Longuet-Higgins’s algorithm esti-

mates a value of sharpness, q, which is an integer indicat-

ing the position of the pitch name of the note on the line of

fifths (Temperley, 2001, p. 117) (see Figure 2). The pitch

name of each note can then be computed from its MIDI

note number and its sharpness. Longuet-Higgins’s algo-

rithm is based on a “theory of tonality” (Longuet-Higgins,

1987, p. 115) which consists of six rules. The first of these

rules ensures that each note is spelt so that it is as close as

possible to the local tonic on the line of fifths (Longuet-

Higgins, 1987, pp. 112–113). The other rules control the

way in which the algorithm deals with chromatic intervals

and modulations. In particular, the second rule states that

if the current key implies two consecutive chromatic in-

tervals (i.e., intervals spanning more than 6 steps on the

line of fifths), then the key should be changed so that both

intervals become diatonic (i.e., they span less than 6 steps

on the line of fifths) (Longuet-Higgins, 1987, p. 113). The

algorithm is also restricted to assigning pitch names be-

tween G[[and A on the line of fifths.

In the version of the algorithm implemented in

music.p the second of the six rules in Longuet-

Higgins’s theory is not implemented correctly. Specifi-

cally, this rule implies that a subdominant preceded and

followed by a sharpened subdominant (]4̂− 4̂−]4̂) should

trigger a modulation, as should the sequence [2̂ − 2̂ − [2̂.

However, neither of these sequences actually triggers a

modulation in Longuet-Higgins’s implementation. A new

r r r r r r r r r r r r r r r r r r r r
Figure 3: Cambouropoulos’s own caption to this figure

reads: “Shifting overlapping window technique. For each

window only the middle section of spelled pitches (bold

line) is retained. Dots represent the pitches of the input

sequence.” (Reproduced (with minor corrections and al-

terations) from Cambouropoulos, 2003, p. 420, Fig. 6 and

Cambouropoulos, 1996, p. 245, Fig. 8.)

version of the algorithm was therefore constructed in

which the implementation of this second rule was cor-

rected. Both the original and corrected versions were also

further modified to produce other versions that were not

restricted to assigning pitch names within any particular

range on the line of fifths.

Each of these versions of Longuet-Higgins’s algo-

rithm was run on two different versions of the test cor-

pus: one in which the notes within each movement were

sorted so that the voices were arranged ‘end-to-end’; and

a second version in which the notes were sorted by onset

time and MIDI note number (with preference given to on-

set time). Longuet-Higgins’s insistence that his program

should only be used on monophonic music led us to ex-

pect his algorithm to perform better on the version of the

dataset in which the voices were arranged ‘end-to-end’.

3.2 Cambouropoulos’s pitch spelling algorithms

Cambouropoulos (1996, 2001, 2003) has published de-

scriptions of three versions of his pitch spelling algorithm.

In all three, it is assumed that the passage of music to be

processed has been represented as a sequence of MIDI

note numbers in which the notes are in the same order

as in the music. This sequence of MIDI note numbers

is then processed using a “shifting overlapping window-

ing technique” (Cambouropoulos, 2003, p. 420), in which

each window contains a certain number of contiguous el-

ements in the input sequence (see Figure 3).

Cambouropoulos allows ‘white note’ pitch classes

(i.e., 0, 2, 4, 5, 7, 9 and 11) to be spelt in three differ-

ent ways (e.g., pitch class 0 can be spelt as B], C\ or D[[)
and ‘black note’ pitch classes to be spelt in two different

ways (e.g., pitch class 6 can be spelt as F] or G[) (see,

for example, Cambouropoulos, 1996, p. 242). All possi-

ble spellings for each window are then generated and a

penalty score is computed for each spelling. This penalty

score is found by computing a penalty value for each pitch

interval in the spelling and summing these interval penalty

values. A given interval is penalised more heavily the

less frequently it occurs in the major and minor scales,

a principle that Cambouropoulos (2003, p. 421) calls in-

terval optimisation. An interval is also penalised if either

282

TPR 1 (Pitch Variance Rule) Prefer to label nearby events so that they are

close together on the line of fifths.

TPR 2 (Voice-Leading Rule) Given two events that are adjacent in time and

a half-step apart in pitch height: if the first event is remote from the

current center of gravity, it should be spelled so that it is five steps

away from the second on the line of fifths.

TPR 3 (Harmonic Feedback Rule) Prefer TPC representations which re-

sult in good harmonic representations.

Figure 4: Temperley’s preference rule system for pitch

spelling (from Temperley, 2001, pp. 124–132, 359).

of the pitch names forming the interval is a double-sharp

or a double-flat, a principle that Cambouropoulos (2003,

p. 421) calls notational parsimony. For each window, the

algorithm chooses the spelling that has the lowest penalty

score.

The earliest published version of this method

(Cambouropoulos, 1996) was designed for processing

monophonic melodies and includes a rule, based on

Krumhansl’s (1990, pp. 150–151) principle of contextual

asymmetry, that is applied as a ‘tie-breaker’ when two

or more spellings for a given window achieve the least

penalty score. The two more recent published versions

(Cambouropoulos, 2001, 2003) are adapted for processing

polyphonic music. However, they differ from each other

in that the earlier of the two (Cambouropoulos, 2001, p. 5)

uses a “variable length window” which always contains a

fixed number of distinct MIDI note numbers.

An analysis of the versions of this algorithm described

by Cambouropoulos in his publications revealed a num-

ber of ways in which two versions might differ in their

detailed features. For example, one might use a variable

length window and the other a fixed length window; one

might use the ‘tie breaker’ function and the other might

not; and so on. Twenty-six versions of the algorithm

were tested in this study, including those described by

Cambouropoulos himself together with other versions that

were carefully selected so that an estimate could be ob-

tained as quickly as possible of the best combination of

detailed features. This ‘optimal’ combination was then

tested by implementing it in a final version of the algo-

rithm which was run on the test corpus.

3.3 Temperley and Sleator’s pitch spelling algorithm

Temperley’s (2001) theory of music cognition consists of

preference rule systems for six aspects of musical struc-

ture: metre, phrasing, counterpoint, harmony, key and

pitch spelling. Most of this theory has been implemented

by Daniel Sleator in a suite of computer programs called

Melisma.1 These programs take “note list” representations

as input (Temperley, 2001, pp. 9–12) in which the pitch of

each note (or sequence of tied notes) is represented by its

MIDI note number and its onset-time and offset-time are

given in milliseconds.

Temperley’s theory of pitch spelling—or, as he calls

it, “tonal-pitch-class labeling” (Temperley, 2001, pp. 123–

132)—consists of the three tonal-pitch-class preference

1Available online at
<http://www.link.cs.cmu.edu/music-analysis/>.

rules (TPRs) shown in Figure 4. In Temperley’s theory,

the tonal pitch class (TPC) of a note is an integer that in-

dicates the position of the pitch name class of the note

on the line of fifths (Temperley, 2001, pp. 118, 123–125).

Temperley (2001, p. 125) claims that TPR 1 (see Fig-

ure 4) is “the most important” TPR and that “in many

cases, this rule is sufficient to ensure the correct spelling

of passages”. TPR 2 is designed to account for the

way that notes are typically spelt in chromatic scale seg-

ments (Temperley, 2001, pp. 127–130). TPR 3 states that

the system should “prefer TPC representations which re-

sult in good harmonic representations” (Temperley, 2001,

p. 131). Temperley formally defines the concept of a

“good harmonic representation” in the first rule of his the-

ory of harmony, HPR 1 (Temperley, 2001, p. 149), which

states that, in choosing the roots for chords, certain spec-

ified TPC-root relationships should be preferred over oth-

ers. Temperley’s theories of pitch spelling and harmony

are therefore interdependent and this is reflected in the fact

that they are both implemented in the harmony program

in Melisma.

The complexity of Temperley’s pitch spelling algo-

rithm is increased still further by the fact that his the-

ory of harmony depends on his theory of metrical struc-

ture. For example, the second harmonic preference rule

states that the system should “prefer chord spans that start

on strong beats of the meter” (Temperley, 2001, pp. 151,

359). The harmony program therefore requires as in-

put both a “note list” and a representation of the metri-

cal structure of the passage in the form of a “beat list”

of the type generated by the Melisma meter program.

Consequently, if one wishes to use Temperley’s theory to

determine the pitch names of the notes in a passage, one

must carry out a process which we denote here by “MH”

in which one first uses the meter program to generate a

beat list from a note-list and then processes both the note

list and the beat list using the harmony program to com-

pute the pitch names of the notes in the passage.

In an attempt to take harmonic rhythm into ac-

count when computing metrical structure, Temperley and

Sleator also experimented with a “two-pass” method

(Temperley, 2001, pp. 46–47), in which the meter and

harmony programs are both run twice, once in a special

“prechord” mode and then again in “normal” mode. We

denote this “two-pass” method by “MH2P”.

The output of the meter program depends on tempo.

Therefore, in the evaluation described here, both MH and

MH2P were run on six different versions of the test cor-

pus, one in which the music is at a “natural” tempo and

five other versions in which the tempo is multiplied by 2,

4, 1
2 , 1

4 and 1
6 . To test the extent to which pitch spelling

depends on metrical structure, the half-speed version of

the test corpus was run through the meter program and

then the beat list generated for each movement was mod-

ified so that every beat had the same strength. These beat

lists were then used to generate pitch names using the

harmony program. We denote this procedure by HNM

(for “Harmony-No-Meter”). Finally, a very simple imple-

mentation of TPR 1 was run on the dataset to test Temper-

ley’s (2001, p. 125) claim that “in many cases, this rule is

sufficient to ensure the correct spelling of passages” .

283

3.4 Chew and Chen’s pitch spelling algorithm

Chew and Chen (2003, 2005) describe several variants of a

real-time pitch spelling algorithm based on Chew’s (2000)

“Spiral Array Model” which is a geometric model of tonal

pitch relations. In the spiral array, the pitch name classes

are arranged on a helix so that adjacent pitch name classes

within this helix are a perfect fifth apart and adjacent pitch

name classes along the length of the cylinder in which the

helix is embedded are a major third apart. Let S be a set of

notes, let p(n) denote the vector representing the position

in the spiral array of the pitch name class of the note n, and

let d(n) be the duration of note n. Chew and Chen (2005,

p. 67) define the center of effect (CE) of S, denoted by

CE(S), to be

CE(S) =
∑

n∈S d(n)p(n)∑
n∈S d(n)

.

That is, the CE of a set of notes is the weighted centroid

of the position vectors of the pitch name classes of the

notes in the spiral array, each note being weighted by its

duration.

In Chew and Chen’s algorithm, it is assumed that the

input data gives the MIDI note number, together with the

onset and duration in milliseconds of each note. The data

is then divided into equal time slices called chunks (Chew

and Chen, 2005, p. 67) and the algorithm spells the notes

a chunk at a time. Let’s denote by Wsound(i, j) the set of

notes that are sounding in chunks i to j; and let Wstart(i, j)
denote the set of notes that start in chunks i to j. Let’s sup-

pose that the algorithm is about to spell the notes in chunk

j. According to Chew and Chen (2005, pp. 70–71), the al-

gorithm first computes the global CE, CEglobal,j , which is

the CE of the set of notes in a sliding global context win-

dow that consists of the ws chunks immediately preceding

the jth chunk. In other words, the algorithm computes the

value

CEglobal,j = CE(Wsound(j − ws, j − 1)), (1)

where ws is a parameter of the algorithm. Next, each note

in chunk j is assigned a pitch name which is as close as

possible to CEglobal,j in the spiral array. Then a local CE,

CElocal,j , is computed which is the CE of the set of notes

in a local context window consisting of the chunk j that

has just been spelt, together with the (wr − 1) chunks im-

mediately preceding the jth chunk. That is, the algorithm

computes the value of

CElocal,j = CE(Wsound(j − wr + 1, j)), (2)

where wr is another parameter of the algorithm. Next the

algorithm computes the cumulative CE, CEcum,j , which

is the CE of the notes in a cumulative window consist-

ing of all the chunks preceding the jth chunk. That is, it

computes the value of CEcum,j = CE(Wsound(1, j − 1)).
Finally, the notes in chunk j are re-spelt so that their

pitch names are as close as possible to the hybrid CE,

CEhybrid,j = f.CElocal,j + (1 − f).CEcum,j , where f is a

parameter with a value between 0 and 1 which determines

the relative weight given to the local and cumulative CEs.

Table 1: The sets of parameter values used to evaluate

Chew and Chen’s algorithm.
Parameter Set of values used

ws {0, 4, 8, 16}
wr {2, 4, 6}

f {0, 0.25, 0.5, 0.75, 1}

r/h

{√
2/15,

√
15/2

}
Chunk size in ms {500, 1000, 2000}
Wsound or Wstart {Wsound, Wstart}

Spiral array or line of fifths {Spiral array, Line of fifths}
Range of permitted pitch name classes {F[[. . . B , F[[[. . . B]}

In our implementation of Chew and Chen’s algorithm,

another parameter is r/h, the aspect ratio of the spiral ar-

ray, where r is the radius of the cylinder in which the helix

is embedded and h is the distance parallel to the axis of the

helix corresponding to one step along the spiral array (i.e.,

two pitch name classes a perfect fifth apart). Other param-

eters in our implementation allow the user to: (1) choose

to use the line of fifths instead of the spiral array; (2) spec-

ify the size of each chunk in milliseconds; (3) specify the

segment of the spiral array (or line of fifths) from which

the algorithm is permitted to choose pitch names; and (4)

replace Wsound with Wstart in Eqs. 1 and 2. Our implemen-

tation of Chew and Chen’s algorithm was run on the test

corpus 1260 times, each time with a different combination

of parameter values. All possible combinations were used

of the parameter values shown in Table 1.

3.5 Meredith’s pitch spelling algorithms

Meredith (2003, 2005) presents an algorithm called ps13

which takes as input a sequence of ordered pairs, I , in

which each ordered pair 〈ton, n〉 gives the onset time ton

and the MIDI note number, n, of a note or sequence of

tied notes in the passage to be analysed.2 The elements

of I are sorted by increasing onset time and MIDI note

number (with preference given to onset time).

If S is an ordered set, let |S| denote the length of S
and let S[i] denote the (i + 1)th element of S (e.g., S[0]
is the first element in S). An ordered set of pitch classes,

C, is first derived from I such that |C| = |I| and C[i]
is the pitch class of the note represented by I[i] for all

0 ≤ i < |I|. ps13 consists of two stages, Stage 1 and

Stage 2.

Stage 1 consists of the following steps:

1. For each 0 ≤ i < |C| and each pitch class 0 ≤ p ≤
11, compute a value CNT(i, p) giving the number of

times that p occurs within a context surrounding C[i]
that includes C[i], Kpre notes immediately preceding

C[i] and Kpost − 1 notes immediately following C[i].
Kpre is called the precontext and Kpost is called the

postcontext.

2. For each 0 ≤ i < |C| and each pitch class 0 ≤ p ≤
11, compute the number of diatonic steps (mod7),

2ps13 is currently the subject of patent applications in the
UK (GB0406166.9) and US (US10/821962). Please contact the
author at dave@titanmusic.com if you wish to use the al-
gorithm. Permission will normally be granted for free use of the
algorithm for non-commercial purposes.

284

Figure 5: Examples of the types of passing and neighbour note errors corrected in Stage 2 of ps13.

D(i, p), that there would be from the tonic to the

pitch name of C[i] if p were the pitch class of the

tonic at the point where C[i] occurs. Assume that

the notes are spelt so that they are as close as possi-

ble to the pitch name of p on the line of fifths, with

every note 6 semitones away from p (mod 12) being

assigned a pitch name which is an augmented fourth

above that of p. In other words, the notes are spelt as

they would be in a harmonic chromatic scale whose

tonic has pitch class p.

3. For each 0 ≤ i < |C| and each pitch class 0 ≤ p ≤
11, compute the value

D′(i, p) = (D(i, p) − D(0, p)) mod 7.

D′(i, p) gives the number of diatonic steps (mod 7)

from the pitch name of the first note (i.e., the note

corresponding to C[0]) to the pitch name of C[i] if

the tonic pitch class is p.

4. For each 0 ≤ i < |C| and each diatonic interval

0 ≤ d ≤ 6, compute the set of tonic pitch classes,

X(i, d) = {p | D′(i, p) = d} .

X(i, d) contains the tonic pitch classes that would

lead to the diatonic interval from the first note to C[i]
being d.

5. For each 0 ≤ i < |C| and each diatonic interval 0 ≤
d ≤ 6, compute the sum, N(i, d), of the values of

CNT(i, p) for all the tonic pitch classes p ∈ X(i, d).
That is,

N(i, d) =
∑

p∈X(i,d)

CNT(i, p).

6. For each 0 ≤ i < |C|, compute dmax(i), the value

of d for which N(i, d) is a maximum.

7. Assign a letter name to the first note, C[0]. This can

be done, for example, by using the following table

C[0] 0 1 2 3 4 5

Letter name of C[0] C C D E E F

C[0] 6 7 8 9 10 11

Letter name of C[0] F G A A B B

8. For each 0 ≤ i < |C|, make the letter name of

the note corresponding to C[i], dmax(i) steps above

the letter name assigned to the note corresponding to

C[0].

Stage 2 of the algorithm corrects those instances in the

output of Stage 1 where a neighbour note or passing note

is erroneously predicted to have the same letter name as

either the note preceding it or the note following it (see

Figure 5).

ps13 was run on the test corpus used in this study

with Kpre = 33 and Kpost = 23, these being the val-

ues that resulted in the highest note accuracy in a pilot

study in which the algorithm was run on the first book of

J. S. Bach’s Das Wohltemperirte Clavier (Meredith, 2003;

Meredith, 2005, pp. 182–183).

A second version of this algorithm, called ps1303, was

also run on the test corpus. ps1303 first predicts the pitch

names of the notes in the passage using ps13. Then, for

each note, it determines whether the pitch name predicted

by ps13 is relatively distant from the pitch names in its

context along the line of fifths. If the pitch name assigned

to a note is relatively distant from its neighbouring notes

along the line of fifths, and it can be made closer to these

neighbours by transposing it either up or down a dimin-

ished second, then it is transposed by the appropriate in-

terval.

4 RESULTS AND DISCUSSION

Table 2 gives the results obtained for selected versions of

the algorithms tested (including the best versions for each

author), sorted by decreasing overall note accuracy. The

results in parentheses in this table give the note accura-

cies obtained when the output for the fourth movement of

Haydn’s ‘Military’ Symphony was compared with the ver-

sion in which the sudden enharmonic change was omitted

(see section 2).

Of the versions of Longuet-Higgins’s algorithm tested,

the original version performed best, spelling 98.21% of

the notes correctly when the notes were sorted so that

the voices were ‘end-to-end’. Correcting the implementa-

tion of Longuet-Higgins’s second rule had no effect when

the notes in the data were sorted by onset time and MIDI

note number, and increased the number of errors when the

notes were sorted so that the voices were ‘end-to-end’. All

versions of Longuet-Higgins’s algorithm made roughly

half as many errors when the voices were end-to-end as

when the notes were sorted by onset time and MIDI note

number. This supports Longuet-Higgins’s prediction that

the algorithm would work less well on polyphonic mu-

sic. Removing the restriction that pitch names must be be-

tween G[[and A on the line of fifths more than doubled

the number of errors made by the algorithms. Finally, the

style dependence of the versions of the algorithm tested

increased monotonically with note error rate so that the

most accurate version of the algorithm was also the one

whose accuracy was least affected by musical style.

Of the 26 versions of Cambouropoulos’s algorithm

tested here, the one that performed best was based on

the variable-length window version described by Cam-

bouropoulos (2001). This version achieved a note accu-

racy of 99.07% and a style dependence of 0.46. In gen-

285

Table 2: Summary of results for selected versions of the algorithms tested. Values in columns 2 to 10 are note accuracies,

expressed as percentages. Each value in column headed SD measures style dependence and gives the standard deviation

of the percentages in the same row in columns 2 to 9.

Algorithm Bach Beethoven Corelli Handel Haydn Mozart Telemann Vivaldi Complete SD

ps1303 99.92 98.31 99.99 99.71 99.19 99.28 99.69 99.32 99.43 0.54

ps13 99.86 98.27 99.92 99.71 98.90 99.04 99.57 99.21 99.31 0.56

Temperley-Sleator (MH2P, half-speed) 99.88 96.67 99.98 99.93 86.82 (98.91) 99.31 99.89 99.87 97.79 (99.30) 4.57 (1.13)

Temperley-Sleator (MH, half-speed) 99.87 96.61 99.98 99.91 86.72 (98.82) 99.33 99.91 99.89 97.78 (99.29) 4.61 (1.16)

Chew-Chen (sounding) 99.29 98.73 99.38 99.44 98.51 99.06 99.39 99.40 99.15 0.35

Chew-Chen (starting) 99.39 98.80 99.44 99.46 98.28 99.10 99.37 99.37 99.15 0.42

Cambouropoulos (optimal) 99.08 99.01 99.44 99.49 98.07 99.36 99.28 99.43 99.15 0.47

Cambouropoulos (2001) 98.85 99.05 99.42 99.48 98.06 99.18 99.30 99.22 99.07 0.46

Temperley’s TPR 1 alone 99.38 97.83 99.51 99.32 98.25 99.04 99.39 99.57 99.04 0.65

Temperley-Sleator (HNM, half-speed) 99.71 96.72 99.96 99.87 86.95 (99.04) 99.38 99.88 95.48 97.25 (98.76) 4.49 (1.70)

Longuet-Higgins (original, voices end-to-end) 95.74 98.64 99.70 99.83 95.09 98.93 99.14 98.62 98.21 1.79

Longuet-Higgins (original, sorted by onset) 99.53 96.37 99.58 97.22 89.13 84.94 98.29 95.82 95.11 5.28

eral, the versions using a variable-length window achieved

higher note accuracies than those using a fixed-length

window of the same size. In the version of the algo-

rithm described by Cambouropoulos (1996), the penalty

score for each window spelling is computed by summing

the penalty values only for intervals between contigu-

ous notes. However, in the versions described by Cam-

bouropoulos (2001, 2003), the penalty score for each win-

dow is computed by summing the penalty values for all

the intervals between both contiguous and non-contiguous

notes within the window. Our results showed that ignor-

ing intervals between non-contiguous notes caused both

a relatively large drop in spelling accuracy and a rela-

tively large increase in style dependence. Nearly all the

versions of Cambouropoulos’s algorithm achieved higher

note accuracies than the best version of Longuet-Higgins’s

algorithm and were markedly less dependent on style than

those of Longuet-Higgins. Increasing the size of the win-

dow increased spelling accuracy but also exponentially

increased running time. If each window contained more

than 12 notes, the algorithm was too slow to be practical.

The results were used to estimate an ‘optimal’ combina-

tion of features which were then implemented in a new

version of the algorithm. This version achieved a note ac-

curacy of 99.15% and a style dependence of 0.47 on the

test corpus used here. However, it took nearly 7 times

longer to process the test corpus than the most accurate of

the other 26 versions tested.

It was found that both the MH and MH2P versions of

Temperley and Sleator’s algorithm performed very simi-

larly and did best when the music in the corpus was at

half speed (see Table 2). Both systems were highly sen-

sitive to tempo: when the music was at 4 times its nat-

ural tempo, the note accuracy of MH was only 82.74%

and that of MH2P was 74.58%. However, 70% of the er-

rors made by MH and MH2P on the half-speed version of

the corpus were caused by the sudden enharmonic change

in the fourth movement of Haydn’s ‘Military’ Symphony

discussed in section 2. When the outputs of MH and

MH2P were compared with the version of this movement

with the enharmonic change omitted, their overall note

accuracies rose to 99.3%. Ignoring metrical information

in the HNM procedure caused the overall number of er-

rors to rise by 24% when the original score of the fourth

movement of Haydn’s ‘Military’ Symphony was used as a

ground truth and by 75% when the modified version was

used. However, this fall in note accuracy was primarily

due to HNM’s inability to cope with one particular chro-

matic passage in bars 85–96 of the third movement of Vi-

valdi’s Concerto in G minor (‘L’estate’) from ‘Le Quattro

Stagioni’ (Op. 8, No. 2, RV 315). This suggests that the

use of metrical structure in Temperley and Sleator’s sys-

tem helps it to cope with certain types of chromatic pas-

sage, which, in turn, makes it less likely to spell whole

segments in the wrong key. It was found that a very sim-

ple implementation of TPR 1 alone, without any metrical

information, was able to spell 99.04% of the notes in the

test corpus correctly (SD = 0.65). Also, the performance

of this version was independent of tempo.

Of the 1260 versions of Chew and Chen’s algorithm

tested here, 12 achieved a note accuracy of 99.15%. These

12 versions of the algorithm were those in which ws =
8, wr = 2, f = 0.5 and the chunk size was set to 500

milliseconds. The parameters that were critical for high

note accuracy were therefore the duration of the windows

used and the relative weighting given to local and global

context. Amongst these 12 best versions of the algorithm,

it did not matter whether the spiral array or the line of

fifths was used, nor did the aspect ratio of the spiral array

make any difference. Of these 12 versions, the six that

considered the notes sounding within each window were

slightly less dependent on style (SD = 0.35) than those

that considered only the notes starting in each window

(SD = 0.42).

Both versions of Meredith’s algorithm achieved higher

note accuracies in this study than any of the other al-

gorithms tested. ps13 spelt 99.31% of the notes in

the corpus correctly. This value is only slightly more

than that achieved by Temperley and Sleator’s MH and

MH2P systems when the enharmonic change in the fourth

movement of Haydn’s ‘Military’ Symphony was omit-

ted. However, ps13 was considerably less dependent

on style (SD = 0.56) than the Temperley-Sleator algo-

rithms (SD = 1.13, 1.16) as well as being independent of

tempo. ps1303 made even fewer errors than ps13, spelling

99.43% of the notes in the corpus correctly (SD = 0.54).

286

5 CONCLUSIONS

Various versions of the pitch spelling algorithms

of Longuet-Higgins, Cambouropoulos, Temperley and

Sleator, Chew and Chen and Meredith were compared by

running them on a test corpus containing 195972 notes,

equally divided between eight classical and baroque com-

posers. Meredith’s ps1303 algorithm performed best,

spelling 99.43% of the notes in the corpus correctly.

The next best algorithm was Meredith’s ps13 which spelt

99.31% of the notes correctly, only slightly more than the

99.30% spelt correctly by the best version of Temperley

and Sleator’s algorithm (MH2P). However, MH2P only

achieved this note accuracy when the music in the cor-

pus was at half-speed and a sudden enharmonic change in

one movement in the corpus was ignored. Furthermore,

Temperley and Sleator’s algorithms were very sensitive

to tempo and considerably more dependent on style than

those of Meredith which are unaffected by tempo. An

attempt was made to find optimal versions of the Cam-

bouropoulos and Chew-Chen algorithms. The best ver-

sions of these algorithms tested spelt 99.15% of the notes

correctly and were slightly less dependent on style than

Meredith’s algorithms.

It would be interesting to compare the algorithms

tested here with other pitch spelling algorithms described

in the literature (e.g., that of Stoddard et al., 2004). It

would also be useful to devise an appropriate statistical

method for measuring the significance of the difference

between two note accuracies achieved on the same test

corpus. It would also be worth exploring the extent to

which pitch spelling algorithms can be used to improve

the performance of key-finding algorithms and content-

based music information retrieval systems. Finally, it

would be interesting to compare the algorithms studied

here on a large, high-quality test corpus containing en-

codings of post-classical tonal works (e.g., 19th century

romantic music, jazz). Unfortunately, such a collection of

encodings does not yet exist in the public domain.

ACKNOWLEDGEMENTS

The research reported here was funded by EPSRC grant

GR/S17253/02.

REFERENCES

S. A. Abdallah and M. D. Plumbley. Polyphonic transcrip-

tion by non-negative sparse coding of power spectra. In

Proceedings of the Fifth International Conference on

Music Information Retrieval (ISMIR 2004), Universitat

Pompeu Fabra, Barcelona, Spain, 2004.

E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos,

L. Mouchard, and Y. J. Pinzon. Computing approx-

imate repetitions in musical sequences. International

Journal of Computer Mathematics, 79(11):1135–1148,

2002.

E. Cambouropoulos. A general pitch interval representa-

tion: Theory and applications. Journal of New Music

Research, 25(3):231–251, 1996.

E. Cambouropoulos. Automatic pitch spelling: From

numbers to sharps and flats. In VIII Brazilian Sym-

posium on Computer Music (SBC&M 2001), Fortaleza,

Brazil, 2001.

E. Cambouropoulos. Pitch spelling: A computational

model. Music Perception, 20(4):411–429, 2003.

E. Chew and Y.-C. Chen. Determining context-defining

windows: Pitch spelling using the spiral array. In

Fourth International Conference on Music Information

Retrieval (ISMIR 2003) (October 26–30), Baltimore,

MD., 2003.

E. Chew and Y.-C. Chen. Real-time pitch spelling using

the Spiral Array. Computer Music Journal, 29(2):61–

76, 2005.

E. Chew. Towards a Mathematical Model of Tonality. PhD

thesis, Massachusetts Institute of Technology, Cam-

bridge, MA., 2000.

Z. Galil. On improving the worst case running time of the

Boyer-Moore string matching algorithm. Communica-

tions of the ACM, 22(9):505–508, 1979.

D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern

matching in strings. SIAM Journal on Computing, 6:

323–350, 1977.

C. L. Krumhansl. Cognitive Foundations of Musical Pitch,

volume 17 of Oxford Psychology Series. Oxford Uni-

versity Press, New York and Oxford, 1990.

H. C. Longuet-Higgins. The perception of melodies. In

H. C. Longuet-Higgins, editor, Mental Processes: Stud-

ies in Cognitive Science, pages 105–129. British Psy-

chological Society/MIT Press, London, England and

Cambridge, Mass., 1987.

Q. McNemar. Psychological Statistics. John Wiley and

Sons, New York, 4th edition, 1969.

D. Meredith, K. Lemström, and G. A. Wiggins. Algo-

rithms for discovering repeated patterns in multidimen-

sional representations of polyphonic music. Journal of

New Music Research, 31(4):321–345, 2002.

D. Meredith. Pitch spelling algorithms. In R. Kopiez,

A. C. Lehmann, I. Wolther, and C. Wolf, editors, Pro-

ceedings of the Fifth Triennial ESCOM Conference

(ESCOM5) (8-13 September 2003), pages pp. 204–207,

Hanover University of Music and Drama, Hanover,

Germany, 2003.

D. Meredith. Comparing pitch spelling algorithms on a

large corpus of tonal music. In U. K. Wiil, editor,

Computer Music Modeling and Retrieval, Second In-

ternational Symposium, CMMR 2004, Esbjerg, Den-

mark, May 26–29, 2004, Revised Papers, volume 3310

of LNCS, pages 173–192, Berlin, 2005. Springer.

J. Stoddard, C. Raphael, and P. E. Utgoff. Well-tempered

spelling: A key-invariant pitch spelling algorithm. In

Proceedings of the Fifth International Conference on

Music Information Retrieval (ISMIR 2004) (October

10–14), Universitat Pompeu Fabra, Barcelona, Spain,

2004.

D. Temperley. The Cognition of Basic Musical Structures.

MIT Press, Cambridge, MA, 2001.

287

