
ITERATIVE DEEPENING FOR MELODY ALIGNMENT AND
RETRIEVAL

Norman Adams, Daniela Marquez, Gregory Wakefield
Electrical Engineering and Computer Science

University of Michigan
1101 Beal Ave., Ann Arbor, 48109, USA

nhadams@umich.edu

ABSTRACT
For melodic theme retrieval there is a fundamental trade-
off between retrieval performance and retrieval speed.
Melodic representations of large dimension yield the best
retrieval performance, but at high computational cost, and
vice versa. In the present work we explore the use of it-
erative deepening to achieve robust retrieval performance,
but without the accompanying computational burden. In
particular, we propose the use of a smooth pitch contour
that facilitates query and target representations of variable
length. We implement an iterative query-by-humming
system that yields a dramatic increase in speed, with-
out degrading performance compared to contemporary re-
trieval systems. Furthermore, we expand the conventional
iterative framework to retain the alignment paths found in
each iteration. These alignment paths are used to adapt the
alignment window of subsequent iterations, further expe-
diting retrieval without degrading performance.

Keywords: Iterative deepening, DTW, melody retrieval.

1 INTRODUCTION
Melodies, similar to other time-series representations,
present a particular challenge for database retrieval; the
temporal elasticity of musical performance prevents the
use of a direct similarity measure, such as Euclidean
distance [1]. This problem is acute for casually sung
melodies, which are often the focus of MIR applica-
tions [2, 3, 4]. To address the problem, a wide variety
of dynamic alignment methods have been developed that
account for a time warping between tokens, thus provid-
ing a more robust measure of similarity in the face of hu-
man performance factors [5, 6, 7, 8, 9]. Unfortunately,
all such alignment methods present a computational bur-
den in comparison to direct similarity measures. Dy-
namic alignment methods have computational complexity

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2005 Queen Mary, University of London

O(N2), where N is the length of the tokens, rather than
O(N) for direct measures. Accordingly, it is desirable to
keep the length, or dimension, of tokens as small as pos-
sible. However, this comes at the expense of degraded
retrieval performance.

In the present work we propose the use of itera-
tive deepening (ID) coupled with dynamic time warping
(DTW) to expedite melody retrieval without degrading
performance. Iterative deepening uses a scalable repre-
sentation to retrieve target tokens with successively more
accurate similarity measures [10]. Only a fraction of the
targets are retained after each iteration, hence the proba-
bility of false dismissals increases. However, by allowing
small increases in false dismissals, iterative deepening can
greatly speed retrieval. We describe and evaluate iterative
deepening in the context of a query-by-humming (QBH)
system, and present results showing a dramatic speed in-
crease with a negligible increase in false dismissals. Fur-
thermore, we propose a novel method to further expedite
performance by retaining alignment information for fu-
ture iterations and using an adaptive alignment window.
In so doing, we achieve an even greater speed increase
over conventional methods with only minimal detriment
to retrieval performance.

The remainder of this section provides background in-
formation about melodic representations for QBH and the
tradeoff between retrieval performance and speed. Sec-
tion 2 presents in turn dynamic alignment, iterative deep-
ening, and adaptive iterative deepening. Section 3 de-
scribes our methods for evaluation, along with results and
discussion. Section 4 concludes the paper.

1.1 Background

The MIR community has explored many melodic repre-
sentations for music retrieval; sequences of notes [2, 7, 11]
and various quantizations thereof [9, 12, 13, 14], smooth
pitch contours1 [5, 6, 15], sequences of histograms [5, 8],
and hidden Markov models (HMM) [4, 16]. Such research
has focused primarily on the retrieval performance a given
representation affords, without considering the retrieval
speed in great detail. For modestly sized target databases,

1In the present work, the “pitch contour” is defined as the
output of a pitch tracking algorithm. See Fig. 1 for a sample pitch
contour. Other authors use “pitch contour” to refer to a coarsely
quantized sequence of pitch differences of a note sequence [13].

199

as are often used for QBH experiments, retrieval speed is
not a problem. But as the target database becomes mas-
sive expedient retrieval becomes a more dif�cult and de-
sirable goal. While note-based melodic representations
have tended to dominate research in query-by-humming
systems [2, 9, 11, 12], there is growing interest in smooth
pitch contour representations [5, 6, 15, 17, 18]. This is
due largely to the dif�culty of transcribing casually sung
melodies, where detecting note onsets is especially error-
prone [4, 11, 19]. Unfortunately, while contour represen-
tations yield promising results, they present a large com-
putational burden [5, 6, 17, 15].

Previous work by the authors comparing different
melodic representations found that representations that
yield the most robust retrieval performance also yield
the slowest retrieval time [5]. In particular, we found
a smooth pitch contour yields the best performance on
large databases, but only for relatively long contours, with
length (i.e. dimension) N ∼ 100. In contrast, a simple
note representation has dimension N ∼ 10, which facil-
itates relatively rapid retrieval but gives mediocre perfor-
mance on large databases. Furthermore, we found that us-
ing a pitch contour with small dimension, N ∼ 10, yields
performance similar to conventional note representations.

The tradeoff between robust and rapid retrieval is
common in database problems. As such, the database
community has begun exploring methods to speed dy-
namic alignment and retrieval of long time series. Tech-
niques include lower bounds [20], alignment and continu-
ity constraints [6], indexing [16, 21], and iterative meth-
ods [10, 22]. In the present work, we adapt the latter to
the unique challenges of MIR by using a melodic repre-
sentation that is readily decimated to arbitrary length.

2 METHODS
2.1 Representation

We restrict our attention to smooth pitch contour represen-
tations of melody. For a sung or hummed query, the pitch
contour is estimated using a time-domain method [11, 23].
This algorithm computes the autocorrelation for overlap-
ping frames of recorded data with constant step-size 10ms.
A set of candidate peaks is selected for every frame and
the Viterbi algorithm is used to construct a smooth con-
tour. The values of fundamental frequency are then con-
verted to MIDI pitch2. The estimated pitch contour con-
tains gaps where no pitch is estimated. These gaps are
‘�lled in’ by extending the end of each pitched region
to the start of the next. The autocorrelation values are
used in extending the regions so as to prevent incongruous
pitch �uctuations [5]. Direct use of the estimated contour
yields a representation with prohibitively large dimension,
N > 1000. Hence the contours are decimated to yield a
dimension 10 < N < 200 [1, 15]. In the present work,
queries are individually resampled such that the dimen-
sion N is constant for all queries.

Fig. 1 shows a sample pitch contour for the main
theme from �My Bonnie lies over the ocean� with N =

2The real-valued MIDI pitch number p is related to a signal’s
fundamental frequency in Hz, f0, as p = 12 log

2
(f0/261)+60.

Figure 1: Sample alignment for the melody sung to the
lyrics �My Bonnie lies over the ocean. My Bonnie lies
over the sea.�. The top contour is the target, and the bot-
tom contour is the query.

80. Included in Fig. 1 is the piecewise constant ideal con-
tour for the same theme stored in the target database. Note
that the target contour has been time-scaled to have equal
duration as the query. The next section details the similar-
ity measure used for comparing query and target contours.

2.2 Time Series Alignment

Query-by-humming systems typically operate by comput-
ing a measure of similarity between a sung query and ev-
ery theme in a database of targets. The target themes are
then rank ordered by similarity. In the present work we
use DTW to align the query to each target in the database,
interpreting the alignment cost as a measure of distance
between the query and target [5]. For a given query
contour with length N , every target theme is �rst time-
scaled to yield a piece-wise constant contour of length
N ′ ≈ N . The mean pitch difference between the query
and target is then subtracted, yielding query contour Q =
(q1, q2, · · · qN) and target contour T = (t1, t2, · · · tN ′).
To account for a time-warping of the query relative to the
target, the elements of the query contour must be aligned
to the appropriate elements of the target. A sample align-
ment is shown in Fig. 1 for a query/target pair of the main
theme from the traditional tune �My Bonnie lies over the
ocean.�.

For a given continuity and cost scheme, a brute-force
search of all possible alignments is computationally pro-
hibitive, hence dynamic programming is employed so as
to compute the cost of only the optimal alignment [24].
Let Γ = [γn,k] be an N × N ′ matrix of minimum pre�x
alignment costs; γ n,k is the minimum alignment cost for
(q1 · · · qn) and (t1 · · · tk). Let a warping path be given by
w = (w1, w2, · · ·wT), where wt = (n, k) indicates that
qn is aligned with tk. The warping path must adhere to
several constraints to be physically meaningful. The path
must begin with the �rst elements of the query and target
contour, and end with the last elements; w1 = (1, 1) and
wT = (N,N ′). The path must be monotonic nondecreas-
ing and adhere to a local continuity constraint. Starting
in the lower left corner of Γ, every element of Γ is found
recursively by

γn,k = min





γn−1,k + ζ

γn,k−1 + ζ

γn−1,k−1



+ |qn − tk| (1)

where ζ ≥ 0 is an additive cost penalty applied to favor

200

more direct alignments. To speed computation and pre-
vent extreme warpings, the alignment path is restricted to
be near the main diagonal n = k. In particular, ∀n, k :
|n − k| > N/5 → γ n,k = ∞. The �nal alignment cost
for Q and T is given by γ N,N ′ . The computational com-
plexity of this procedure is O(N 2). Note that the �nal
alignment cost is not normalized by T , which would ren-
der the alignment suboptimal for the cost scheme in (1).
However, the effect of suboptimal alignment on retrieval
performance remains an unanswered question. Indeed, we
have informally explored alignment procedures, not pre-
sented here, that yield suboptimal alignments but slightly
improved retrieval performance.

2.3 Iterative Deepening

Consider the following simple QBH experiment, which
highlights the tradeoff between retrieval performance and
N . For any given N , we are interested in searching over
a fraction of the target database. Let us de�ne a ‘suc-
cess threshold’ as the top percentage of the ordered tar-
get database that the correct theme must be in for the
retrieval to be considered a success3. We then com-
pute the fraction of queries for which the retrieval is suc-
cessful as a function of the ‘success threshold’, and la-
bel this fraction the ‘success rate’ [14]. Fig. 2 gives
the retrieval performance for a DTW QBH system for
N = {12, 14, 20, 30, 50, 100, 150}. The query and tar-
get databases used to generate this �gure are the same as
those detailed in Section 3. The abscissa represents the
success threshold, and the ordinate gives the fraction of
queries for which the retrieval is successful. For example,
for a 10% success threshold, the N = 20 representation
yields a success rate of 0.86.

For this experiment the target database contained 1000
themes. Hence the left edge of each curve, which gives
the success rate for a 0.1% threshold, is equivalent to the
classi�cation accuracy of the system. The point corre-
sponding to a 1% threshold gives the fraction of queries
for which the correct theme was in the top ten themes re-
turned by the retrieval system. It is evident from the �gure
that the best classi�cation accuracy, 85%, is achieved only
for N = 150. Extending the 85% ‘success’ rate across the
�gure highlights the ‘85% performance capacity’ versus
dimension. That is, N = 14 may yield mediocre clas-
si�cation accuracy, but if all that is desired is that the
correct theme is in the top 20% of the returned targets,
then N = 14 would appear to perform reasonably well.
While this may not be a good stopping point for our re-
trieval system, we have made the problem somewhat sim-
pler by determining that 800 of the 1000 targets can be
discarded. This motivates a retrieval system that makes
multiple passes through the target database and removes,
after each iteration, as many targets as possible subject to a
bound on false dismissals. Numerous iterative techniques
have been proposed, which often make strictly two passes
through the database [14, 16, 20]. In the present work

3For example, consider a target database with 100 themes.
If the rank of the correct theme for a given query is 7, then the
retrieval is considered a success if the success threshold is 10%,
but a failure if the success threshold is 5%.

0.1 1 4 10 20 30 50
0.5

0.6

0.7

0.8

0.9

Percentage of Target Database

S
uc

ce
ss

 R
at

e

150
100
 50
 30
 20
 14
 12

Figure 2: Retrieval performance for varying dimension,
N .

we explore a retrieval architecture amenable to a variable
number of iterations [10].

Consider a direct DTW system, which must align a
query of length NM with the full set of targets. Let the
computational cost for the direct method be cF = C ·N2

M

for some constant C. Rather than performing the rather
costly length NM alignment with all targets, the iter-
ative method uses a sequence of increasing representa-
tion lengths, N = (N1, N2, · · ·NM). The query is �rst
aligned with all the targets using length N1. After each
iteration, the alignment costs are sorted and only the tar-
gets yielding the smallest alignment costs are retained for
subsequent iterations. Let ri be the fraction of the target
database retained for the ith iteration, r = (1, r2, · · · rM).
Clearly, the speci�c choice of (r2, · · · rM) has consid-
erable impact on the ultimate retrieval performance and
speed. The computational cost for the iterative method is4

cID = C · (N2

1
+ r2N

2

2
+ · · ·+ rMN2

M). (2)

Hence the computational cost for the iterative method rel-
ative to the direct method is

ρ =
cID

cF

=

(

N1

NM

)2

+ r2

(

N2

NM

)2

+ · · ·+ rM . (3)

2.4 Adaptive Alignment Constraints

While it is clear that iterative deepening can greatly ex-
pedite many database retrieval tasks, the method is waste-
ful in the sense that the alignments themselves are dis-
carded after each iteration. Computing the optimal align-
ment for the same query/target pair for multiple represen-
tation lengths is somewhat redundant. As N increases,
the overall shape of the optimal alignment is unlikely to
change, but rather the �ne detail of the optimal alignment
will be resolved. This observation implies that the iter-
ative deepening framework can yield even faster perfor-
mance if information about prior alignments is incorpo-
rated into each iteration. In Section 2.2 we found that an

4We are neglecting the cost due to the additional sort opera-
tions the iterative method requires, which is small compared to
the alignment cost.

201

Target

Q
ue

ry

5 10 15 20

5

10

15

20

Figure 3: Sample alignment for N = 20.

Target

Q
ue

ry

20 40 60 80 100 120

20

40

60

80

100

120

Figure 4: Sample alignment for N = 120.

alignment window of 20% yields good retrieval perfor-
mance. By de�ning the alignment window relative to the
previous alignment rather than the main diagonal, we can
reduce the width of the window considerably without sac-
ri�cing alignment performance, thus quickening retrieval.
A similar idea was recently proposed in [22].

Adaptive alignment windows are perhaps best de-
scribed with an example. Consider the alignment of
N = 20 contours for the same query and target shown
in Fig. 1. Fig. 3 shows the 20% alignment window in
grey, and the �nal alignment path in black. We then re-
align the query and target for N = 120. We do this in two
ways, with and without prior alignment. Without using
the prior alignment we cannot safely reduce the alignment
window width below 20%. This case is shown in Fig. 4.
Note that the basic shape of the alignment in Figs. 3 and
4 is the same. Instead of using a 20% window centered
around the main diagonal, we can use a narrow 10% win-
dow centered around the shape of the N = 20 alignment.
This case is shown in Fig. 5. The alignment window in
Fig. 5 is computed by scaling the N = 20 alignment to the
N = 120 matrix and vertically stretching the the window.
Note that the �nal alignments shown in Figs. 4 and 5 are
identical. This implies that we can use the prior alignment

Target

Q
ue

ry

20 40 60 80 100 120

20

40

60

80

100

120

Figure 5: Sample alignment for N = 120 using a con-
strained alignment window from N = 20.

to halve the size of the current alignment window, without
degrading the quality of the �nal alignment. By de�nition,
the adaptive alignment constraint cannot expedite the �rst
iteration of retrieval, but the speed of all subsequent iter-
ations will be doubled. Hence the computational cost of
the adaptive iterative deepening (AID) relative to the di-
rect method is

ρ′ =
cAID

cF

=

(

N1

NM

)2

+
1

2

(

r2

(

N2

NM

)2

+ · · ·+ rM

)

.

(4)

3 EVALUATION
We evaluate the performance of the iterative deepening
in the context of a query-by-humming system. Previ-
ous work by the authors found that retrieval performance
plateaus for N > 150, and falls to chance for N <

10. Hence an iterative retrieval system that begins with
N ∼ 10 and ends with N ∼ 150 would be a judicious
choice. We implement an ID-QBH system using M = 3
iterations, with N1 = 14, N2 = 32 and N3 = 144.
The values of mathbfN were determined experimentally.
N1 is the most critical of the three, for smaller values
yield substantially worse performance and larger values
yield substantially slower retrieval. The precise values of
N2 and N3 are not critical, although we found that N2

should generally be closer to N1 than N3. We found us-
ing M > 3 did not improve performance, whereas per-
formance for M = 3 does improve performance some-
what over M = 2. For comparison we present results
for conventional DTW QBH systems using N = 14 and
N = 144. The next two subsections describe the query
and target databases used for evaluation. Section 3.3 de-
tails the choice of r2 and r3, the fraction of the target
database retained for the second and third iterations, re-
spectively. Results are then presented in section 3.5.

3.1 Query Database

For performance evaluation, we employ a query test
set containing many sample queries of fourteen popular

202

tunes, from the Beatles’ �Hey, Jude� to Richard Rodgers’
�Sound of Music.� A total of 480 queries were collected
from �fteen participants in our study. Each participant
was asked to sing a familiar portion of a subset of the four-
teen tunes four times each. The participants had a variety
of musical backgrounds; some had considerable musical
or vocal training while most had none at all. Participants
were instructed to sing each query as naturally as possi-
ble using the lyrics of the tune5. The queries are mono-
phonic, 16 bit recordings sampled at 44.1 kHz and resam-
pled to 8 kHz to reduce processing time. The queries are
between 4 and 20 seconds in length. All data were col-
lected in a quiet classroom setting and participants were
free to progress at their own pace.

Note that for all fourteen melodies, every participant
sang the same set of measures. For a real-world QBH
system, this is an unreasonable assumption. This problem
can be ameliorated by allowing for zero-cost insertion and
deletion steps at the beginning and end of the alignment6,
similar to [4]. Another common practice is to include mul-
tiple themes for each tune in the target database [17], in-
creasing the size of the target database.

3.2 Target Database

Measuring the retrieval performance of our QBH methods
on a target database of only the fourteen themes for which
we have sample queries would not indicate how well the
methods would perform in a broader context. Accord-
ingly, we augment the target database with extra themes
not included in the query test set. We ensure that the addi-
tional targets are suf�ciently similar to the 14 ‘authentic’
targets by building a Markov model that generates ‘syn-
thetic’ targets with similar �rst-order statistics as the au-
thentic themes [5, 25]. In particular, we generate 986 syn-
thetic themes, yielding a target database of 1000 themes.
We can verify that the synthetic themes are similar to the
authentic themes by considering the ratio of authentic to
synthetic targets that are retained after each iteration of
system retrieval. We �nd that for the ith iteration, the
number of incorrect authentic themes included in the it-
eration is about ri ·

13

999
. Hence each authentic theme is as

similar, in the sense of DTW alignment cost, to the other
13 authentic themes as it is to the 986 synthetic themes.
While many of the synthetic themes are musically unsat-
isfying, they clearly demonstrate enough similarity to the
authentic themes so as to challenge the retrieval system.
We note from the outset that using synthetic targets lim-
its how the results can be interpreted. However, we are
concerned with relative trends rather than absolute perfor-
mance.

3.3 Performance-Speed Tradeoff

Having �xed the number of iterations, M = 3, and di-
mensions, N = (14, 32, 144), we must choose r2 and r3

5This contrasts substantially from the common practice of
having participants sing isolated pitches on a neutral vowel, re-
quiring participants to perform note segmentation [11].

6Although, for this approach to be effective, the alignment
window must be made considerably larger near the beginning
and end of the alignment

to completely specify the system. Clearly, as r2 and r3

increase, both the retrieval performance and the retrieval
time increase. We seek to minimize r2 and r3 without de-
grading retrieval performance. This can be done by esti-
mating the distribution of approximation error at each rep-
resentation length, and using this to estimate the probabil-
ity of false dismissal for each ri [10]. In the present work
we simply examine the net retrieval performance versus
r2 and r3, and choose the smallest values that do not sub-
stantially degrade retrieval. Figures 6 and 7 highlight the
tradeoff between retrieval performance and speed.

Fig. 6 gives the mean reciprocal rank (MRR) versus
r2 and r3, and Fig. 7 gives ρ versus r2 and r3. In both
plots the minimum value of r2 and r3 is 0.1%, and the
maximum value of r2 is 50% and the maximum value of
r3 is 10%. Note that for r2 = 0.1%, the MRR equals the
classi�cation accuracy of a direct N = 14 system, and
for r3 = 0.1% the MRR equals the classi�cation accuracy
of a direct N = 32 system. From (3) we know that as
r2 and r3 approach zero, ρ converges to 0.0095, which
is readily apparent in Fig. 7. While MRR decreases with
r2 and r3, a distinct threshold is evident; so long as r2 is
greater than 10−20% and r3 is greater than 1−2% the
MRR is approximately constant at 0.85. Accordingly, we
set r2 = 20% and r3 = 2%. By (3) and (4), this yields
ρ = 0.039 and ρ′ = 0.024. Hence the iterative system
will be about 25 times faster than conventional DTW with
N = 144, and the adaptive iterative method will be about
41 times faster.

3.4 Results

Performance results are summarized in Tables 1 and 2.
From the two tables it is clear that the iterative QBH sys-
tems yield much faster retrieval than a direct N = 144
DTW QBH system, without degrading performance sub-
stantially. The iterative systems successfully circumvent
the tradeoff between retrieval performance and speed that
‘one-pass’ retrieval systems are subject to, yielding a sys-
tem with the performance of the N = 144 system and the
speed of the N = 14 system.

Table 1 reports three retrieval performance metrics for
four QBH systems. The top two systems listed are di-
rect implementations of the DTW system described in sec-
tion 2.2 for N = 14 and N = 144. The third system listed
in the iterative method described in section 2.3, and the
fourth system listed is the adaptive iterative method de-
scribed in section 2.4. The �rst performance metric listed
is classi�cation accuracy (CA), the fraction of queries for
which the correct theme is rank one in the retrieved list of
themes. The second performance metric listed is the top
10 fraction (Top 10), the fraction of queries for which the
correct theme is amongst the top ten themes returned. The
third performance metric listed is the mean reciprocal rank
(MRR), the average inverse rank of the correct theme.

From Table 1, it is clear DTW for N = 144 outper-
forms the case when N = 14 in all three performance
measures. In terms of CA and MRR, the higher dimen-
sion yields considerably better performance. In terms of
the top 10 fraction however, the case of N = 14 does not
perform as poorly, yielding a top 10 fraction of 0.80 com-

203

0.5
4

20
50

0.3
1

3
10

0.7

0.75

0.8

0.85

 r
2
 (%) r

3
 (%)

M
R

R

Figure 6: Mean reciprocal rank.

Table 1: Retrieval performance of four QBH systems

System CA Top 10 MRR
DTW, N = 14 0.663 0.803 0.723
DTW, N = 144 0.840 0.869 0.851
Iterative DTW 0.837 0.862 0.847
Adt. It. DTW 0.835 0.860 0.845

pared to 0.86 for the case of N = 144. While a small rep-
resentation may not yield good CA or MRR, apparently it
can determine which set of 10 targets are likely to contain
the correct theme. Comparing the retrieval performance
of the two iterative systems to that of the direct systems,
we see that the two iterative systems yield retrieval perfor-
mance virtually identical to that of the direct system. All
three metrics fall modestly from the direct N = 144 sys-
tem to the iterative system, and further still for the adap-
tive iterative system. The performance drop is negligible
compared to the performance difference between the di-
rect N = 14 and N = 144 systems, however.

While the two iterative systems yield retrieval perfor-
mance virtually identical to the direct N = 144 system,
the retrieval speed of the iterative systems is closer to that
of the direct N = 14 system. Table 2 gives both the av-
erage total number of alignment cells, γn,k, that must be
computed for each query, and the average total retrieval
time per query7. The direct N = 144 yields an aver-
age per query retrieval time of 106 seconds. This sys-
tem is far too slow to deploy directly on a massive target
database. The other three systems all yield a retrieval time
of less than 5 seconds. The direct N = 14 system yields
the fastest retrieval, but at the expense of good retrieval
performance. The iterative system yields an average re-
trieval time of 4.9 seconds, 21 times faster than the direct
N = 144 system. The adaptive iterative system yields an
average retrieval time of 3.5 seconds, 30 times faster than
the direct N = 144 system.

7The retrieval time listed is the actual retrieval time we
recorded for our MATLAB implementation running on a laptop
PC, with a 1.8 GHz CPU

0.5
4

20
50

0.3
1

3
10

0

0.04

0.08

0.12

 r
2
 (%) r

3
 (%)

ρ

Figure 7: Computation gain.

Table 2: Computation cost of four QBH systems

System Cells (1000’s) Time (s)
DTW, N = 14 93 1.61
DTW, N = 144 7720 106
Iterative DTW 329 4.87
Adt. It. DTW 208 3.49

3.5 Discussion

For our choice of M , N, and r, (3) predicts that the iter-
ative method is 25 times faster than the direct implemen-
tation, and (4) predicts that the adaptive iterative method
is 41 times faster. The disparity between the predicted
and observed computational cost for the iterative method
is due to the extra sort operations the iterative method re-
quires. The disparity between the predicted and observed
computational cost for the adaptive iterative method is
larger. In this case the disparity is also due to the large
memory requirements of the adaptive iterative method.
After each iteration, the optimal alignment paths must be
stored for use in subsequent iterations. The alignment
paths consume a considerable amount of memory, and ul-
timately delay retrieval. When measured in terms of the
average total number of cell visits per query, the speed
increases for the iterative method and adaptive iterative
method are 23 and 37, respectively.

From Fig. 6 it is evident that for this target database,
if all that is desired is that the correct theme be in the
top 10 of returned themes, then the �nal N = 144 iter-
ation is largely unnecessary. That is, the MRR plateaus
for r3 > 1%. Hence retrieval performance can be further
expedited in this case by simply returning the results of
the N = 32 iteration. Indeed, for the iterative methods
the �nal N = 144 iteration simply determines the order
of the 20 themes returned by the N = 32 iteration. How-
ever, we have found that as the target database grows, the
�nal N = 144 iteration becomes critical [5]. As the target
space becomes more densely populated with themes, in-
creasing the dimension of the target space plays a crucial
role in retrieval. Hence iterative methods can greatly facil-
itate QBH systems with massive target databases, where
having a large melodic representation is critical for robust

204

retrieval, but too slow for direct implementation. The iter-
ative methods allow for the retrieval time to grow less than
linearly as the target database size increases. Furthermore,
constraining the alignment window size as much as pos-
sible is critical for deploying QBH systems on massive
target databases, for as the alignment window shrinks the
computational complexity of the alignment converges to
O(N)8 [20].

A 30 fold speed increase over direct methods, while
substantial, may not be suf�cient for scaling DTW meth-
ods to truly massive databases, for the computational com-
plexity is still linear with the target database size. How-
ever, we have conducted informal experiments that in-
dicate that r can be reasonably reduced as the target
database grows. Hence the total computational complex-
ity of this method may effectively be less than linear with
target database size.

Finally, we note that retrieval performance for all sys-
tems can be increased considerably by removing the sam-
ple queries of three subjects from our test database. For
example, the MRR of the direct N = 144 system in-
creases to 0.93 if these queries are removed. These queries
are very inaccurate and some are virtually monotone; the
lyrics are their only recognizable feature. It is unclear
that any QBH system should be designed to accommo-
date such queries without explicitly modeling singer pro-
duction and transcription error [4, 7].

4 CONCLUSION

Previous work by the authors explored the tradeoff be-
tween retrieval performance and retrieval speed. In the
present work we proposed iterative deepening as a tech-
nique to circumvent this tradeoff, in particular for large
target databases. We employed a smooth pitch contour
that is amenable to variable representation length. An it-
erative query-by-humming system was implemented that
makes three passes through the target database, remov-
ing as many targets as possible with each iteration with-
out introducing undue false dismissals. We also expanded
the conventional iterative framework to retain the align-
ments found in each iteration. These alignments are used
to adapt the alignment window of subsequent iterations,
further expediting retrieval. We �nd that iterative deepen-
ing can speed retrieval by a factor of 25, and the adaptive
iterative method can speed retrieval by a factor of 40, both
without signi�cantly degrading retrieval performance.

ACKNOWLEDGEMENTS

This research was supported by a CARAT/Rackham Inter-
disciplinary Fellowship and a grant from the ITR project
of the NSF. We would also like to thank Joe Heremans for
his assistance with query and target collection.

8Other authors define the window size as a separate constant
rather than as a fraction of N [22]. Although this has no effect
on the exact computational cost, it does yield a complexity that
is, strictly speaking, linear in N .

REFERENCES
[1] E. Keogh, K. Chakrabarti, M. Pazzani, and

S. Mehrotra. Dimensionality Reduction for Fast
Similarity Search in Large Time Series Databases.
Knowledge and Information Systems 3(3), 2000.

[2] R. J. McNab, L. A. Smith, and I. H. Witten et al.
Towards the Digital Music Library: Tune Retrieval
from Acoustic Input. Proc. ACM Digital Libraries
Conference, 1996. Bethesda, MD.

[3] J. S. Downie and M. Nelson. Evaluation of a Simple
and Effective Music Information Retrieval Method.
In Proc. ACM SIGIR, pages 73�80, 2000.

[4] C. Meek and W. Birmingham. Johnny can’t sing: A
comprehensive error model for sung music queries.
Proc. ISMIR, October 2002.

[5] N. H. Adams, M. A. Bartsch, J. Shiffrin, and G. H.
Wake�eld. Time Series Alignment for Music Infor-
mation Retrieval. Proc. ISMIR, 2004. Barcelona,
Spain.

[6] N. Hu and R. Dannenberg. A Comparison of
Melodic Retrieval Techniques Using Sung Queries.
Joint Conf. on Digital Libraries, 2002.

[7] A. Pikrakis, S. Theodoridis, and D. Kamarotos.
Recognition of Isolated Musical Patterns Using Con-
text Dependent Dynamic Time Warping. IEEE
Trans. Speech and Audio Processing, 11(3):175�
183, May 2003.

[8] J. Song, S.Y. Bae, and K. Yoon. Mid-Level Mu-
sic Melody Representation of Polyphonic Audio for
Query-by-Humming System. Proc. ISMIR, 2002.
Paris, France.

[9] M. Grachten, J.-L. Arcos, and R. L·opez de M·antaras.
Melodic Similarity: Looking for a Good Abstraction
Level. Proc. ISMIR, 2004. Barcelona, Spain.

[10] S. Chu, E. Keogh, D. Hart, and M. Pazzani. Iter-
ative Deepening Dynamic Time Warping for Time
Series. Second SIAM International Conference on
Data Mining, 2002.

[11] N.H. Adams, M.A. Bartsch, and G.H. Wake�eld.
Note Segmentation and Quantization for Music In-
formation Retreival. to appear IEEE Trans. Speech
and Audio Processing, January 2006.

[12] A. Ghias, J. Logan, D. Chamberlin, and B.C. Smith.
Query by humming: Musical information retrieval
in an audio database. In ACM Multimedia, pages
231�236, 1995.

[13] Y. E. Kim, W. Chai, R. Garcia, and B. Vercoe. Anal-
ysis of a Contour-based Representation for Melody.
In Proc. ISMIR, October 2000.

[14] R.B. Dannenberg and N. Hu. Understanding Search
Performance in Query-by-Humming Systems. Proc.
ISMIR, 2004. Barcelona, Spain.

205

[15] D. Mazzoni and R. B. Dannenberg. Melody Match-
ing Directly from Audio. Proc. ISMIR, 2001.
Bloomington, IN.

[16] H. Jin and H.V. Jagadish. Indexing Hidden Markov
Models for Music Retrieval. Proc. ISMIR, 2002.
Paris, France.

[17] R. B. Dannenberg, W. P. Birmingham, and G. Tzane-
takis et. al. The MUSART Testbed for Query-By-
Humming Evaluation. In Proc. ISMIR, 2003.

[18] Y. Zhu and D. Shasha. Warping Indexes with Enve-
lope Transforms for Query by Humming. In Proc.
International Conference of Management of Data
(SIGMOD), San Diego, CA, 2003.

[19] R. J. McNab and L. A. Smith. Evaluation of a
Melody Transcription System. IEEE Int. Conf. on
Multimedia and Expo, 2000, 2:819�822, 2000.

[20] C.A. Ratanamahatana and E. Keogh. Everything
you know about Dynamic Time Warping is Wrong.
In Proc. 3rd Workshop of Mining Temporal and Se-
quential Data, 2004.

[21] S.W. Kim, S. Park, and W.W. Chu. Ef�cient pro-
cessing of similarity search under time warping in
sequence databases: an index-based approach. In-
formation Systems, 29(5):405�420, 2004.

[22] S. Salvador and P. Chan. FastDTW: Toward Ac-
curate Dynamic Time Warping in Linear Time and
Space. In Proc. KDD Workshop on Mining Tempo-
ral and Sequential Data, 2004.

[23] P. Boersma. Accurate Short-Term Analysis of
the Fundamental Frequency and the Harmonics-to-
Noise Ratio of a Sampled Sound. In Proc. Institute
of Phonetic Sciences of the University of Amsterdam,
volume 17, pages 97�110. 1993.

[24] L.R. Rabiner and B.H. Juang. Fundamentals of
Speech Recognition. Prentice Hall, Upper Saddle
River, NJ, 1993.

[25] A. Ito, S.-P. Heo, M. Suzuki, and S. Makino.
Comparison of Features for DP-Matching Based
Query-by-Humming System. Proc. ISMIR, 2004.
Barcelona, Spain.

206

