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ABSTRACT

A segmentation strategy is explored for monophonic in-
strumental pitched non-percussive material (PNP) which
proceeds from the assertion that human-like event analy-
sis can be founded on a notion of stable pitch percept. A
constant-Q pitch detector following the work of Brown
and Puckette provides pitch tracks which are post pro-
cessed in such a way as to identify likely transitions be-
tween notes. A core part of this preparation of the pitch
detector signal is an algorithm for vibrato suppression. An
evaluation task is undertaken on slow attack and high vi-
brato PNP source files with human annotated onsets, ex-
emplars of a difficult case in monophonic source segmen-
tation. The pitch track onset detection algorithm shows an
improvement over the previous best performing algorithm
from a recent comparison study of onset detectors. Whilst
further timbral cues must play a part in a general solution,
the method shows promise as a component of a note event
analysis system.

Keywords: onset detection, pitch detection, segmenta-
tion

1 INTRODUCTION

A recent paper (Collins, 2005) compared a number of mu-
sical onset detection functions with respect to onset detec-
tion performance on sets of non-pitched percussive (NPP)
and pitched non-percussive (PNP) sound files. Whilst
many algorithms performed successfully at the NPP task,
with few false positives for a large number of correct de-
tections, the ability of the same algorithms to parse the
PNP set was substantially reduced. The most successful
attempt was that of the phase deviation algorithm (Bello
et al., 2004), which uses a measure of the change of in-
stantaneous frequency. It was proposed that this suc-
cess could be linked to the use of stable pitch cues as a
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segmentation feature, a tactic also highlighted by Tris-
tan Jehan in his event analysis/synthesis work (Jehan,
2004). Fundamental frequency trails have been segmenta-
tion features in work by teams from IRCAM (Rossignol
et al., 1999b,a) and Universitat Pompeu Fabra (Gómez
et al., 2003b,a). Whilst many signal attributes, particu-
larly timbral descriptors, may contribute to onset detection
and event parsing (Handel, 1995; Yost and Sheft, 1993;
Moore, 1997), the use of a central pitch percept is investi-
gated in this paper as one component of a plausible strat-
egy, and a significant one for the source material tackled
herein.

In this paper I attempt to explore the basis of an
improved onset detection algorithm for pitched material
which uses the stability of a pitch percept as the defining
property of a sound event. In order to obtain a clean de-
tection signal, the output of a pitch detection algorithm is
processed in various ways, including by the suppression of
vibrato, following Rossignol et al. (1999b). The choice of
pitch detection algorithm is open, but the specific detector
considered in this paper is Brown and Puckette’s constant
Q transform pitch tracker (Brown and Puckette, 1993).

The material with which I am concerned provides the
hardest case of monophonic onset detection, consisting
of musical sounds with slow attacks and containing vi-
brato, such as the singing voice (Saitou et al., 2002). Vi-
brato associated frequency and amplitude modulation pro-
vides problems to traditional energy based onset detectors,
which tend to record many false positives as they follow
the typically 4-7 Hz oscillation. For such material, the
sought after performance is a segmentation as a human
auditor would perceive sound events. Better than human
listener performance, as possible for some high speed per-
cussive sequences via non-real-time digital editing or by
algorithm (Collins, 2005) is unlikely.

The applications of such an algorithm are multifold.
Onset detection is a frontend to beat induction algorithms
(Klapuri et al., 2004), empowers segmentation for rhyth-
mic analysis and event manipulation both online and of-
fline (Jehan, 2004; Brossier et al., 2004), and provides a
basis for automatically collating event databases for com-
positional and information retrieval applications (Rossig-
nol et al., 1999b; Schwarz, 2003). Extraction of note event
locations from an audio signal is a necessary component
of automatic transcription, and the vibrato suppression in-
vestigated here may assist clear f0 estimation. For music
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Figure 1: Overview of the algorithm

information retrieval, the ’query by humming’ approach
requires the parsing of monophonic vocal melodies from
audio signal alone.

2 ALGORITHM OUTLINE

Figure 1 gives an overview of the detection algorithm and
the associated signal features based on the extracted fun-
damental frequencyf0. The following subsections will
address successive stages of the onset detector.

2.1 Pitch Detection

Brown and Puckette (1993) describe an efficient FFT
based pitch detection algorithm which cross correlates a
harmonic template with a constant Q spectrum in a search
for the best fitting fundamental frequencyf0. The form
of the template is devised so as to minimise octave errors;
the template consists of the first 11 harmonics, weighted
from 1.0 to 0.6. A further stage evaluates phase change in
the winning FFT bin to get a more accurate value for the
pitch unconstrained by the limited bin resolution. Since
the full details are given in their papers (Brown and Puck-
ette, 1992, 1993) and my implementation follows that
work I shall avoid a fuller discussion of this pitch detec-
tion method. Alternative pitch detection algorithms may
easily be placed as front-ends to the analysis system now
to be described.

The 4096 point FFT driving the pitch detector was run
with a step size of 512 samples, for a frame rate of around
86 Hz (all the audio signals involved had 44100Hz sam-
pling rate). The pitch detector output was taken from 150-
2000Hz, with values outside this range shifted by octave
steps into this compass, and values outside 22050Hz sent
to 1 Hz, where they are easily cleaned up with the algo-

Figure 2: The upperf0 track is cleaned up and the result
is the lower track

rithm next described.
A post processing stage was added to clean up some

small blips in the signal, consisting of momentary oc-
tave errors and rogue outliers. Whilst a jump to an oc-
tave which is then maintained could indicate a true oc-
tave leap in the music, some obvious short-term octave
errors were seen, with lengths of one or two frames. The
original Brown/Puckette algorithm also occasionally cre-
ated some strange values during otherwise relatively sta-
ble held pitches. The pseudocode in figure 3 reveals the
tactic employed to clean up these short-term errors. The
MATLAB indexing convention of counting from 1 is used.
The two tests check against the ratio of an equal tempered
semitone.

Figure 2 demonstrates the application of the algorithm
on a signal which has out of bound pitches and instanta-
neous errors against the general trend.

It is convenient to transform the fundamental fre-
quency track to pitch in semitones prior to vibrato sup-
pression, as a musically normalised representation. An
arbitrary reference point is selected such that 0 Hz is trans-
formed to 0 semitones.

p = 12 ∗ log2((f + 440)/440) (1)

2.2 Vibrato Suppression

The f0 track is perturbed by vibrato, and this can be at-
tributed as the chief cause of noise on that signal disrupt-
ing its use in segmentation. Rossignol et al. (1999b) noted
this in their event segmentation paper, and sketch a vi-
brato suppression algorithm. Herrera and Bonada (1998)
have also outlined both frequency domain and time do-
main vibrato suppression methods within the context of
the SMS (Spectral Modeling Synthesis) framework, us-
ing an FFT to isolate 6-7Hz vibrato by analysing peaks
in the frequency domain before suppression and IFFT re-
synthesis, and in the time domain, a 10Hz high pass fil-
ter on a 200mS window. These methods require the be-
fore application identification of the mean around which
a vibrato fluctuates, and utilise fixed windows. Rossignol

101



postprocessing(arg input)
for jj= 2 to 7 {

for ii= 1 to (length(input)-jj) {
testratio= input(ii)/input(ii+jj);
if testratio < 1.059 AND testratio> 0.945{

for kk=1 to (jj-1) {
mid = (input(ii)+input(ii+jj))*0.5;
testratio2= input(ii+kk)/mid;
if testratio2 > 1.059 OR testratio< 0.945

input(kk) = mid;
}

}
}

}
output=input;

Figure 3: Pseudocode for the outlier removal algorithm

et al. (1999a) also expands upon a selection of methods
for suppression; I followed the ‘minima-maxima detec-
tion’ method as in common with Rossignol et al. (1999b)
as the most plausible for my purposes.

Attempts to implement the Rossignol et al. (1999b) al-
gorithm, however, were somewhat thwarted by the ques-
tion of the best windowing strategy to use; their algorithm
is underspecified. A vibrato suppression algorithm is de-
scribed here which is inspired by their work but makes ex-
plicit how the search for regions of vibrato will take place,
and uses some variation in the criteria for a vibrato detec-
tion and substituting value, along with variable window
size to encompass vibrato regions.

Vibrato removal proceeds in windows of 300mS, with
a step size of 100mS. If the difference of the maximum
and minimum value of the input within this window is less
than 1.5 semitones, a search for vibrato ensues. All max-
ima and minima within the (open) window range form a
list of extrema. Lists of differences in time and in ampli-
tude of the extrema are taken, and the variances of these
lists calculated. Note that this is different to Rossignol
et al. (1999b) where the maxima and minima lists are con-
sidered separately. The quantitypextremais calculated
as the proportion of the time differences between extrema
that fall within the vibrato range of 0.025 to 0.175 sec-
onds, corresponding to 2.86 to 20 Hz frequency modula-
tion. A vibrato is detected whenpextremais large and the
variances are sufficiently small.

Given a vibrato detected in a window, the window is
now gradually extended so as to take in the whole duration
of this vibrato; this guarantees that the corrections will not
be piecemeal, giving rise to some erroneous fluctuations.
A number of conditions are checked as the window is in-
crementally widened, so as not to confuse a vibrato with
a jump to a new pitch. The mean of the input has been
precalculated in 21 frame segments centred on each point.
This mean allows a guide as to the centre point of any
vibrato oscillation; if this mean changes during the win-
dow extension, it is likely that a new note event has com-
menced. This test was particularly important in cases of
singing where the magnitude of vibrato on one tone could
encompass the smaller vibrato magnitude on a succeeding

Figure 4: Vibrato suppression for an ascending arpeg-
giated violin signal. The FFT frames are on the abscissae,
pitch in semitones or a 0/1 flag for the ordinate

tone. Secondly, the window is only extended where no
value departs more than a semitone from the mean of the
extrema list. The correction is applied, replacing all val-
ues in the window with the mean of the extrema list. After
suppressing a vibrato, the search for vibrato recommences
with the window positioned at the next frame unaffected
by the changes.

Figure 4 shows an example where the vibrato suppres-
sion works effectively. The top part of the figure shows the
input, the centre marks areas where vibrato was detected
and shows the length of the windows after extension, and
the bottom shows the vibrato suppressed output. Figure
5 shows a less clean case where the suppression does not
remove all the frequency modulation. The heuristical al-
gorithm given in this paper could likely be extended via
such tactics as a cross correlation search for matches to
sinusoidal variation exhaustively through appropriate fre-
quencies or by further rules based on a study of instrumen-
tal vibrato. It works well enough, however, for evaluation
purposes herein.
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Figure 5: Vibrato suppression for a solo soprano signal.
The FFT frames are on the abscissae, pitch in semitones
or a 0/1 flag for the ordinate

Figure 6: The upper cleaned and vibrato suppressed pitch
track is converted to a detection function

2.3 Assessing Peaks of Instability

Given the vibrato suppressed pitch tracks, note events
must be distinguished by jumps of pitch. A procedure is
applied to rate the strength of changes in the pitch trackp
over time.

df(i) =
8∑

j=1

min (|p(i) − p(i + j)|, 2) (2)

The min operator disregards the size of changes
greater than a tone to avoid overly biasing the output de-
tection functiondf based on the size of leap between notes
involved. Figure 6 demonstratesdf for a soprano signal.

Because changes are sought out, cues for multiple note
events in a row of the same pitch are the most difficult case
to spot (particularly questionable are the case of smooth
transitions between same pitch notes- how little energy
drop can a player get away with?). It is assumed that
note onsets should show some slight perturbation in pitch,
though the pitch integration area is around 90mS in the

FFT. The pitch track test may have to be combined with
other features, to be described next. However, one inter-
esting case, that is not particularly well dealt with by the
vibrato suppression stage at the present time, is that the
end and restart of a vibrato itself may indicate a transition
between successive notes.

2.4 Correction for Signal Power

Because the detection function did not take account of sig-
nal power, onsets would often appear at the very tails of
events, for events which end in silence. To counteract this,
a multiplier was introduced based on the signal power im-
mediately following a given frame. A basic temporal in-
tegration was carried out, taking a weighted sum over 10
frames, and compressing to 1 for all reasonably large val-
ues. Small values under 0.01 of the maximum power were
left unaffected and downweighted troublesome points in
the pitch detector based detection function.

2.5 Peak Picking

A detection function must yield onset locations via some
peak picking process. Bello et al. (2004) provide an adap-
tive peak picking algorithm based on a median filter on a
moving window. Their peak picker was used as a common
stage in the evaluation, following (Collins, 2005; Bello
et al., 2004), and the algorithm is not discussed further
here.

3 EVALUATION

3.1 Procedure

An evaluation of the pitch detection based onset detec-
tor was carried out using the same methodology as pre-
vious comparative studies of onset detection effectiveness
(Collins, 2005; Bello et al., 2004). Pitched non-percussive
(PNP) soundfiles originally prepared and annotated by
Juan Bello formed the test set. 11 source files were se-
lected, containing 129 onsets, comprising slow attack and
high vibrato sounds from strings and voices. The on-
sets were sparse in relatively long sound files, providing
a great challenge; with amplitude modulation associated
with vibrato, it is unsurprising that loudness based detec-
tion functions fared so poorly in Collins (2005). The tol-
erance for matches between algorithm and hand-marked
onsets was set at a very tolerant 100mS, though this win-
dow was small compared to the average distance between
note events.

The pitch track onset detection function was compared
to the phase deviation detection function with a common
adaptive peak picking stage. The peak picker has a pa-
rameterδ which acts like an adaptive threshold; this was
varied between -0.1 and 0.53 in steps of 0.01, giving 64
runs on the test set for each detection function. A Re-
ceiver Operating Characteristics curve was drawn out as
delta is varied. This ROC curve is given in figure 7. The
closest points to the top left corner indicate the better per-
formance, with many correct detections for few false pos-
itives.
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Table 1: NPP test set comparison of detection functions with Bello et al. (2004) peak picker

detection function score (eqn 4) CDR Onsets Detected False Positives bestδ
1. pitch track detection function 42.6 -17 58.1 36.4 0.13
2. phase deviation (Bello et al., 2004) 32.8 -36.4 45.0 37.0 0.13

Figure 7: ROC curve of false positives against correct de-
tections comparing phase deviation and pitch track onset
detector functions over varyingδ

Results for the bestδ for each algorithm are given in
table 1 with ratings with respect to two measures of perfor-
mance. Liu et al. (2003)’s Correct Detection Ratio (CDR)
is described by the equation:

CDR =
total − missing − spurious

total
∗ 100% (3)

but is not constrained, however, to return values between
0-100. I also introduce therefore an evaluation formula
fromDixon (2001), originally used for the assessment
of beat tracking algorithm performance as an alternative
scoring mechanism, combining matchesm, false positives
F+ (spurious) and false negativesF− (missing).

score=
m

m + F− + F+
∗ 100% (4)

The denominator includes the term for the number of on-
sets in the trialn asm+F−. These measures are the same
as in (Collins, 2005).

3.2 Discussion

A small advance is shown by the pitch detection based on-
set detector, its performance being marginally better than
the phase deviation and by extension all the energy based
detection functions considered in (Collins, 2005). The
success of a pitch detection cue gives corroborative evi-
dence that note events defined by stable pitch percept are a
plausible segmentation strategy. The fact that vibrato had
to be suppressed for effective performance shows the im-
portance of higher level feature extraction in human seg-
mentation. As noted above, the onset and offset of a vi-
brato may be a feature that helps to segment successive

notes of the same pitch. It might even be speculated that
the appearance of vibrato in long notes can be linked to
a human desire for stimulation over time, for the con-
found given by vibrato and associated amplitude modu-
lation (often at 4-7 Hz) is comparable to new amplitude
cued events at the same rate. The central pitch around
which the vibrato oscillates maintains the identity of a sin-
gle note event.

Various problems with the evaluation task were noted,
which may have underrated the performance of the pitch
detector. First, the annotations were at their most subjec-
tive for this type of note event; as Leveau et al. (2004)
note, the annotation task involves some variability in
decisions between human experts, particularly for com-
plex polyphonic music and instruments with slow attacks.
However, at the time of writing, the Bello database pro-
vided a larger test set (11 as opposed to 5 files), and the
Leveau database could not be made to function properly
within MATLAB.

Human pitch perception shows different time resolu-
tion capabilities to the computer pitch tracker used herein.
Whilst the qualitative agreement of onset locations with
the hand marked ones was much more impressive for the
stable pitch detector than the phase deviation (for exam-
ple, figure 8), these would often be early with respect to
the human marked positions (though could also appear
late). To compensate somewhat, a delay of 7 frames had
been introduced in the detection function for the compar-
ison test. The time resolution of the new onset detection
algorithm is dependent on the lower time resolution of the
pitch detection algorithm, with a 4096 point FFT (pitch
detection accuracy degrades with a shorter window); the
phase deviation was much less susceptible to this problem,
based on a 1024 point FFT. Localisation could perhaps
be improved by zero padded FFTs for the pitch detector,
parallel time domain autocorrelation and timbrally mo-
tivated onset detection (differentiating transient regions
from smooth wherever possible) and remains an area for
further investigation.

The selection of the test set also played a role. When
onsets are sparse, false positives count for proportionally
more over the run. A combination of sound files requiring
many onsets to be detected and those with sparse onsets
is a difficult combination, for onset detectors built to risk
more will score very poorly on the sparse regions. It can
be speculated that additional contextual clues due to tim-
bre and musical convention are utilised by human listeners
to focus their event detection strategy. An onset detection
algorithm which performed well for both NPP and PNP
material would most likely require some switching mech-
anism based on the recognition of instrument and playing
style. The evocation of a pitch percept and the detection
of vibrato cues may provide knowledge for deciding the
event segmentation tactic.
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Figure 8: Comparison of pitch detector (middle) and pitch
deviation (bottom) on a violin signal. The top shows the
source signal with onsets marked- those on the top line
show the human annotation, above the middle those due to
the pitch detector algorithm and below the phase deviation

For the determination, given arbitrary material, of the
best algorithm to use, a computer program might assess
the stability of pitch cues (amount of fluctuation) and gen-
eral inharmonicity to decide if pitched material is being
targeted. Attack time cues through the file may distin-
guish whether to apply a combined pitch and amplitude
algorithm or a pure pitch algorithm for slow attacks, and
how to deal with confounds from the recognition of the
specific shape of vibrato or other playing conventions (on
which much further work might be done).

In testing the algorithm, it was found that the quality
of pitch detection tracks was worse for lower register in-
struments, as for double bass or bass voice. This could
be traced to inadequacies in the constant Q pitch detec-
tor for tracking fundamentals below around 150Hz. False
matches to higher harmonics could skew the pitch tracks
and the algorithm consistently gave the worst detection
scores for such cases. Leaving these troublesome sound
files out of the test set led to much improved performance.
On a reduced test set of 6 files, the algorithm then achieved
58.7% correct detections for 21.4% false positives (Dixon
score of 48.3, CDR 1.3) as opposed to 45.3% correct to
38.2% false positives (Dixon score 32.8, CDR -37.3) for
the phase deviation.

4 CONCLUSIONS

In this paper, a pitch detection algorithm was adapted for
an onset detection task on pitched non-percussive source
material. This often slow attacking and vibrato-ridden
monophonic music provides a challenging case for event
segmentation. A very high correct identification to low
false positive rate is yet to be exhibited commensurate
with the success rates on the easier NPP task, but the tac-
tic introduced shows some promise for the PNP task. It is
the most promising of detection functions assessed so far,
particularly by qualitative comparison of results from the
new detector with that of the phase deviation algorithm.

Whilst the pitch discrimination capabilities of humans
are much more refined than a semitone, a semitone has
been used above as a practical working value for the size
of pitch changes, as opposed to vibrato. In fact, the or-
der of vibrato can approach that of note events, and some
tighter heuristics for the vibrato suppression which take
into account the nature of the vibrato percept may need to
be applied.

General improvements may arise from investigating
computational auditory models, for the goal on such mu-
sical material as targeted in this paper is to match a hu-
man auditor’s segmentation. A better pitch detection al-
gorithm as a frontend to event segmentation may be one
modeled more thoroughly on neural coding of periodicity,
with realistic pitch reaction time and stability characteris-
tics. For example, a perceptually plausible pitch detector
is proposed by Slaney and Lyon (1990).

It is likely that human auditors use instrument recog-
nition cues to decide on a segmentation strategy. Prior
knowledge of instrument timbre and associated playing
conventions provide situations where human segmenta-
tion may continue to out perform machine in the near fu-
ture.
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E. Gómez, M. Grachten, X. Amatriain, and J. Arcos.
Melodic characterization of monophonic recordings for
expressive tempo transformations. InProceedings of
Stockholm Music Acoustics Conference 2003, Stock-
holm, Sweden, 2003a.

105
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