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Römerstr. 164, D-53117 Bonn, Germany

{meinard, frank, clausen}@cs.uni-bonn.de

ABSTRACT

In this paper, we describe an efficient method for audio

matching which performs effectively for a wide range of

classical music. The basic goal of audio matching can

be described as follows: consider an audio database con-

taining several CD recordings for one and the same piece

of music interpreted by various musicians. Then, given

a short query audio clip of one interpretation, the goal is

to automatically retrieve the corresponding excerpts from

the other interpretations. To solve this problem, we in-

troduce a new type of chroma-based audio feature that

strongly correlates to the harmonic progression of the au-

dio signal. Our feature shows a high degree of robustness

to variations in parameters such as dynamics, timbre, ar-

ticulation, and local tempo deviations. As another contri-

bution, we describe a robust matching procedure, which

allows to handle global tempo variations. Finally, we give

a detailed account on our experiments, which have been

carried out on a database of more than 110 hours of audio

comprising a wide range of classical music.

Keywords: audio matching, chroma feature, music

identification

1 INTRODUCTION

Content-based document analysis and retrieval for mu-

sic data has been a challenging research field for many

years now. In the retrieval context, the query-by-example

paradigm has attracted a large amount of attention: given

a query in form of a music excerpt, the task is to automat-

ically retrieve all excerpts from the database containing

parts or aspects similar to the query. This problem is par-

ticularly difficult for digital waveform-based audio data

such as CD recordings. Due to the complexity of such

data, the notion of “similarity” used to compare different

audio clips is a delicate issue and largely depends on the

respective application as well as the user requirements.
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In this paper, we consider the subproblem of audio

matching. Here the goal is to retrieve all audio clips from

the database that in some sense represent the same musical

content as the query clip. This is typically the case when

the same piece of music is available in several interpre-

tations and arrangements. For example, given a twenty-

second excerpt of Bernstein’s interpretation of the theme

of Beethoven’s Fifth, the goal is to find all other corre-

sponding audio clips in the database; this includes the rep-

etition in the exposition or in the recapitulation within the

same interpretation as well as the corresponding excerpts

in all recordings of the same piece interpreted by other

conductors such as Karajan or Sawallisch. It is even more

challenging to also include arrangements such as Liszt’s

piano transcription of Beethoven’s Fifth or a synthesized

version of a corresponding MIDI file. Obviously, the de-

gree of difficulty increases with the degree of variations

one wants to permit in the audio matching.

A straightforward, general strategy for audio match-

ing works as follows: first convert the query as well as

the audio files of the database into sequences of suitable

audio features. Then compare the feature sequence ob-

tained from the query with feature subsequences obtained

from the audio files by means of some suitably defined

distance measure. To implement such a procedure, one

has to account for the following fundamental questions.

Which kind of music is to be considered? What is the un-

derlying notion of similarity to be used in the audio match-

ing? How can this notion of similarity be incorporated in

the features and the distance measure? What are typical

query lengths? Furthermore, in view of large data sets, the

question of efficiency also is of fundamental importance.

Our approach to audio matching follows these lines

and works for Western tonal music based on the 12 pitch

classes also known as chroma. Given a query clip between

10 and 30 seconds of length, the goal in our retrieval sce-

nario is to find all corresponding audio clips regardless

of the specific interpretation and instrumentation as de-

scribed in the above Beethoven example. In other words,

the retrieval process has to be robust to changes of parame-

ters such as timbre, dynamics, articulation, and tempo. To

this end, we introduce a new kind of audio feature consid-

ering short-time statistics over chroma-based energy dis-

tributions (see Sect. 3). It turns out that such features are

capable of absorbing variations in the aforementioned pa-

rameters but are still valuable to distinguish musically un-
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related audio clips. The crucial point is that incorporating

a large degree of robustness into the audio features allows

us to use a relatively rigid distance measure to compare

the resulting feature sequences. This leads to robust as

well as efficient matching algorithms, see Sect. 4. There,

we also explain how to handle global tempo variations

by independently processing suitable modifications of the

query clip. We evaluated our matching procedure on a

database containing more than 110 hours of audio mate-

rial, which consists of a wide range of classical music and

includes complex orchestral and vocal works. In Sect. 5,

we will report on our experimental results. Further mate-

rial and audio examples can be found at www-mmdb.iai.

uni-bonn.de/projects/audiomatching. In Sect. 2,

we give a brief overview of related work and conclude in

Sect. 6 with some comments on future work and possible

extensions of the audio matching scenario.

2 RELATED WORK

The problem of audio matching can be regarded as an ex-

tension of the audio identification problem. Here, a query

typically consists of short audio fragment obtained from

some unknown audio recording. Then the goal is to iden-

tify the original recording contained in a given large au-

dio database. Furthermore, the exact position of the query

within this recording is to be specified. The identification

problem can be regarded as a largely solved problem, even

in the presence of noise and slight temporal distortions of

the query, see, e.g., Allamanche et al. (2001); Kurth et al.

(2002); Wang (2003) and the references therein. Current

identification systems, however, are not suitable for a less

strict notion of similarity.

In the related problem of music synchronization,

which is sometimes also referred to as audio matching,

one major goal is to align audio recordings of music to

symbolic score or MIDI information. One possible ap-

proach, as suggested by Turetsky and Ellis (2003) or Hu

et al. (2003), is to solve the problem in the audio do-

main by converting the score or MIDI information into

a sequence of acoustic features (e.g., spectral, chroma or

MFCC vectors). By means of dynamic time warping, this

sequence is then compared with the corresponding feature

sequence extracted from the audio version. Note that the

objective of our audio matching scenario is beyond the

one of audio synchronization: in the latter case the goal

is to time-align two given versions of the same underlying

piece of music, whereas in the audio matching scenario

the goal is to identify short audio fragments similar to the

query hidden in the database.

The design of audio features that are robust to varia-

tions of specific parameters is of fundamental importance

to most content-based audio analysis applications. Among

a large number of publications, we quote two papers rep-

resenting different strategies, which will be applied in our

feature design. The chroma-based approach as suggested

by Bartsch and Wakefield (2005) represents the spectral

energy contained in each of the 12 traditional pitch classes

of the equal-tempered scale. Such features strongly cor-

relate to the harmonic progression of the audio, which

are often prominent in Western music. Another general

strategy is to consider certain statistics such as pitch his-

tograms for audio signals, which may suffice to distin-

guish different music genre, see, e.g., Tzanetakis et al.

(2002). We will combine aspects of these two approaches

in evaluating chroma-based audio features by means of

short-time statistics.

3 AUDIO FEATURES

In this section, we give a detailed account on the design

of audio features, possessing a high degree of robustness

to variations of parameters such as timbre, dynamics, ar-

ticulation, and local tempo deviations as well as to slight

variations in note groups such as trills or grace notes. Cor-

relating strongly to the harmonics information contained

in the audio signals, the features are well suited for our au-

dio matching scenario. In the feature design, we proceed

in two-stages: in the first stage, we use a small analysis

window to investigate how the signal’s energy locally dis-

tributes among the 12 chroma classes (Sect. 3.1). In the

second stage, we use a much larger (concerning the ac-

tual time span measured in seconds) statistics window to

compute thresholded short-time statistics over these en-

ergy distributions (Sect. 3.2). In Sect. 3.3, we then discuss

the qualities as well as drawbacks of the resulting features.

3.1 Chroma Feature

The local chroma energy distributions (first stage) are

computed as follows.

(1) Decompose the audio signal into 88 frequency bands

corresponding to the musical notes A0 to C8 (MIDI

pitches p = 21 to p = 108). To properly separate ad-

jacent notes, we use a filter bank consisting of elliptic

filters with excellent cut-off properties as well as the

forward-backward filtering strategy as described by

Müller et al. (2004).
(2) Compute the short-time mean-square power

(STMSP) for each of the 88 subbands by convolving

the squared subband signals with a rectangular

window corresponding to 200 ms with an overlap of

half the size.
(3) Compute STMSPs of all chroma classes by adding

up the corresponding STMSPs of all pitches belong-

ing to the respective class. For example, to compute

the STMSP of the chroma class A, add up the STM-

SPs of the pitches A0,A1,. . .,A7. This yields a real

12-dimensional vector ~v = (v1, . . . , v12) ∈ R
12 for

each analysis window.
(4) Finally, for each window compute the energy distri-

bution relative to the 12 chroma classes by replacing

the vectors ~v from Step (3) by ~v/(
∑12

i=1 vi).

Altogether, the audio signal is converted into a se-

quence of 12-dimensional chroma distribution vectors—

10 vectors per second, each vector corresponding to 200

ms. For the Beethoven example, the resulting 12 curves

are shown in Fig. 1. To suppress random-like energy dis-

tributions occurring during passages of extremely low en-

ergy, (e.g., passages of silence before the actual start of

the recording or during long pauses), we assign an equally

distributed chroma energy to these passages.
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Figure 1: The first 21 seconds (first 20 measures) of Bern-

stein’s interpretation of Beethoven’s Fifth Symphony. The

light curves represent the local chroma energy distribu-

tions (10 features per second). The dark bars represent the

CENS features (1 feature per second).

3.2 Short-time statistics

In view of our audio matching application, the local

chroma energy distribution features are still too sensitive,

particularly when looking at variations in the articulation

and local tempo deviations. Therefore, we introduce a

second, much larger statistics window and consider suit-

able statistics concerning the energy distributions over this

window. The details of the second stage are as follows:

(5) Quantize each normalized chroma vector ~v =
(v1, . . . , v12) from Step (4) by assigning the value 4
if a chroma component vi exceeds the value 0.4 (i.e.,

if it contains more than 40 percent of the signal’s to-

tal energy in the ith chroma component for the re-

spective analysis window). Similarly, we assign the

value 3 if 0.2 ≤ vi < 0.4, the value 2 if 0.1 ≤
vi < 0.2, the value 1 if 0.05 ≤ vi < 0.1, and the

value 0 otherwise. For example, the chroma vector

~v = (0.02, 0.5, 0.3, 0.07, 1.1, 0, . . . , 0) is thus trans-

formed into the vector ~vq := (0, 4, 3, 1, 2, 0, . . . , 0).

(6) Convolve the sequence of the quantized chroma vec-

tors from Step (5) component-wise using a Hann

window of length 41. This again results in a sequence

of 12-dimensional vectors with non-negative entries,

representing a kind of weighted statistics of the en-

ergy distribution over a window of 41 consecutive

chroma vectors. In a last step, downsample the se-

quence by a factor of 10 and normalize the vectors

with respect to the Euclidean norm.

Thus, after Step (6) we obtain one vector per second,

each spanning roughly 4100 ms of audio. For short,

these features are simply referred to as CENS features

(Chroma Energy distribution Normalized Statistics),

which are elements of the set F of vectors defined by

F :=
{

~x = (x1, . . . , x12) ∈ R
12 | xi ≥ 0,

∑12
i=1x

2
i = 1

}

.

Fig. 1 shows the resulting sequence of CENS features for

our running example.
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Figure 2: CENS features for the first 21 seconds of Sawal-

lisch’s recording corresponding to the same measures as

the Beethoven example of Fig. 1.

3.3 Discussion of CENS features

As mentioned above, the CENS feature sequences corre-

late closely with the smoothed harmonic progression of

the underlying audio signal. Such sequences, as illustrated

by Fig. 1 and Fig. 2, often characterize a piece of music

accurately but independently of the specific interpretation.

Other parameters, however, such as dynamics, timbre, or

articulation are masked out to a large extent: the normal-

ization in Step (4) makes the CENS features invariant to

dynamic variations. Furthermore, using chroma instead of

pitches (see Step (3)) not only takes into account the close

octave relationship in both melody and harmony as typical

for Western music (see Bartsch and Wakefield (2005)), but

also introduces a high degree of robustness to variations

in timbre. Then, applying energy thresholds (see Step (5))

makes the CENS features insensitive to noise components

as may arise during note attacks. Finally, taking statistics

over relatively large windows not only smoothes out local

time deviations as may occur for articulatory reasons but

also compensates for different realizations of note groups

such as trills or arpeggios.

A major problem with the feature design is to satisfy

two conflicting goals: robustness on the one hand and ac-

curacy on the other hand. Our two-stage approach admits

a high degree of flexibility in the feature design to find

a good tradeoff. The small window in the first stage is

used to pick up local information, which is then statisti-

cally evaluated in the second stage with respect to a much

larger window—note that simply enlarging the analysis

window in Step (2) without using the second stage may

average out valuable local harmonics information leading

to less meaningful features. Furthermore, modifying pa-

rameters of the second stage such as the size of the statis-

tics window or the thresholds in Step (5) allows to enhance

or mask out certain aspects without repeating the cost-

intensive computations in the first stage. We will make

use of this strategy in Sect. 4.2, when dealing with the

problem of global tempo variations.

Finally, we want to mention some problems concern-

ing CENS features. The usage of a filter bank with fixed
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frequency bands is based on the assumption of well-tuned

instruments. Slight deviations of up to 30–40 cents from

the center frequencies can be tackled by the filters, which

have relatively wide pass bands of constant amplitude re-

sponse. Global deviations in tuning can be compensated

by employing a suitably adjusted filter bank. However,

phenomena such as strong string vibratos or pitch oscilla-

tion as is typical for, e.g., kettle drums lead to significant

and problematic pitch smearing effects. Here, the detec-

tion and smoothing of such fluctuations, which is certainly

not an easy task, may be necessary prior to the filtering

step. However, as we will see in Sect. 5, the CENS fea-

tures generally still lead to good matching results even in

presence of the artifacts mentioned above.

4 AUDIO MATCHING

In this section, we first describe the basic idea of our audio

matching procedure, then explain how to incorporate in-

variance to global tempo variations, and close with some

notes on efficiency.

4.1 Basic matching procedure

The audio database consists of a collection of CD audio

recordings, typically containing various interpretations for

one and the same piece of music. To simplify things,

we may assume that this collection is represented by one

large document D by concatenating the individual record-

ings (we keep track of the boundaries in a supplemental

data structure). The query Q consists of a short audio

clip, typically lasting between 10 and 30 seconds. In the

feature extraction step, as described in Sect. 3, the docu-

ment D as well as the query Q are transformed into se-

quences of CENS-feature vectors. We denote these fea-

ture sequences by F [D] = (~v1, ~v2, . . . , ~vN ) and F [Q] =
(~w1, ~w2, . . . , ~wM ) with ~vn ∈ F for n ∈ [1 : N ] and

~wm ∈ F for m ∈ [1 : M ].
The goal of audio matching is to identify audio clips

in D that are similar to Q. To this end, we compare

the sequence F [Q] to any subsequence of F [D] consist-

ing of M consecutive vectors. More specifically, letting
~X = (~x1, . . . , ~xM ) ∈ FM and ~Y = (~y1, . . . , ~yM ) ∈
FM , we set dM ( ~X, ~Y ) := 1− 1

M

∑M
m=1〈~xm, ~ym〉, where

〈~xm, ~ym〉 denotes the inner product of the vectors ~xm and

~ym (thus coinciding with the cosine of the angle between

~xm and ~ym, since ~xm and ~ym are assumed to be normal-

ized). Note that dM is zero in case ~X and ~Y coincide and

assumes values in the real interval [0, 1] ⊂ R. Next, we

define the distance function ∆ : [1 : N ] → [0, 1] with

respect to F [D] and F [Q] by

∆(i) := dM ((~vi, ~vi+1 . . . , ~vi+M−1), (~w1, ~w2, . . . , ~wM ))

for i ∈ [1 : N − M + 1] and ∆(i) := 1 for i ∈ [N −
M + 2 : N ]. In particular, ∆(i) describes the distance

between F [Q] and the subsequence of F [D] starting at

position i and consisting of M consecutive vectors. The

computation of ∆ is also illustrated by Fig. 3.

We now determine the best matches of Q within D by

successively considering minima of the distance function

· · ·

∆(1) ∆(2) ∆(3) · · · ∆(N − M + 1)

~v1 ~v2 · · · ~vM ~vM+1 · · · ~vN

~w1

~w2

...

~wM

Figure 3: Schematic illustration of the computation

of the distance function ∆ with respect to F [Q] =
(~w1, . . . , ~wM ) and F [D] = (~v1, . . . , ~vN ).

∆: in the first step, we determine the index i ∈ [1 : N ]
minimizing ∆. Then the audio clip corresponding to

the feature sequence (~vi, ~vi+1 . . . , ~vi+M−1) is our best

match. We then exclude a neighborhood of length M
of the best match from further considerations by setting

∆(j) = 1 for j ∈ [i−⌈M/2⌉ : i+⌈M/2⌉]∩ [1 : N ], thus

avoiding matches with a large overlap to the subsequent

matches. In the second step, we determine the feature in-

dex minimizing the modified distance function, resulting

in the second best match, and so on. This procedure is

repeated until a predefined number of matches has been

retrieved or until the distance of a retrieved match exceeds

a specified threshold.

As an illustrating example, let’s consider a database

D consisting of four pieces: one interpretation of Bach’s

Toccata BWV565, two interpretations (Bernstein, Sawal-

lisch) of the first movement of Beethoven’s Fifth Sym-

phony op. 67, and one interpretation of Shostakovich’s

Waltz 2 from his second Jazz Suite. The query Q again

consists of the first 21 seconds (20 measures) of Bern-

stein’s interpretation of Beethoven’s Fifth Symphony (cf.

Fig. 1). The upper part of Fig. 4 shows the resulting

distance function ∆. The lower part shows the feature

sequences corresponding to the ten best matches sorted

from left to right according to their distance. Here, the

best match (coinciding with the query) is shown on the

leftmost side, where the matching rank and the respec-

tive ∆-distance (1/0.011) are indicated above the fea-

ture sequence and the position (0 − 21, measured in sec-

onds) within the audio file is indicated below the feature

sequence. Corresponding parameters for the other nine

matches are given in the same fashion.

Note that the distance 0.011 for the best match is not

exactly zero, since the interpretation in D starts with a

small segment of silence, which has been removed from

the query Q. Furthermore, note that the first 20 measures

of Beethoven’s Fifth, corresponding to Q, appear again in

the repetition of the exposition and once more with some

slight modifications in the recapitulation. Matches 1, 2,

and 5 correspond to these excerpts in Bernstein’s inter-

pretation, whereas matches 3, 4, and 6 to those in Sawal-

lisch’s interpretation. In Sect. 5, we continue this discus-

sion and give additional examples.

4.2 Global tempo variations

So far, our matching procedure only considers subse-

quences of F [D] having the same length M as F [Q]. As

a consequence, a global tempo difference between two

291



Bach Beethoven/Bernstein Beethoven/Sawallisch Shostakovich

0

1

1 / 0.011

C
 

0

1

C
#

0

1

D
 

0

1

D
#

0

1

E
 

0

1

F
 

0

1

F
#

0

1

G
 

0

1

G
#

0

1

A
 

0

1

A
#

0

1

0 − 21

B
 

2 / 0.015

101 − 122

3 / 0.072

1 − 22

4 / 0.073

95 − 116

5 / 0.153

297 − 318

6 / 0.194

275 − 296

7 / 0.291

448 − 469

8 / 0.292

236 − 257

9 / 0.297

417 − 438

10 / 0.303

486 − 507

Figure 4: Distance function ∆ (top) and CENS feature se-

quences of the first ten matches for a data set D consisting

of four pieces and query Q corresponding to Fig. 1.

audio clips, even though representing the same excerpt

of music, will typically lead to a larger distance than it

should. For example, Bernstein’s interpretation of the first

movement of Beethoven’s Fifth is much slower (roughly

85 percent) than Karajan’s interpretation. While there are

21 CENS feature vectors for the first 20 measures com-

puted from Bernstein’s interpretation, there are only 17 in

Karajan’s case. To account for such global tempo vari-

ations in the audio matching scenario, we create several

versions of the query audio clip corresponding to differ-

ent tempos and then process all these query versions in-

dependently. Here, our two-stage approach exhibits an-

other benefit, since such tempo changes can be simulated

by changing the size of the satistics window as well as

the downsampling factor in Steps (5) and (6) of the CENS

feature computation. For example, using a window size

of 53 (instead of 41) and a downsampling factor of 13
(instead of 10) simulates a tempo change by a factor of

10/13 ≈ 0.77 of the origianl query. In our experiments,

we used 8 different query versions as indicated by Table 1,

covering global tempo variations of roughly −40 to +40
percent.

Next, for each of the eight resulting CENS-feature

sequences we compute a distance function denoted by

∆7, . . . ,∆14 (the index indicating the downsampling fac-

tor). In particular, the original distance function ∆ equals

∆10. Finally, we define ∆min : [1 : N ] → [0, 1] by set-

ting ∆min(i) := min(∆7(i), . . . ,∆14(i)) for i ∈ [1 : N ].
We then proceed with ∆min as described in Sect 4.1 to

determine the best audio matches. Fig. 5 illustrates how
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Figure 5: Top: ∆9, . . . ,∆13 (first eleven values) for the

21 second Bernstein query applied to Karajan’s interpre-

tation. Bottom: ∆7, . . . ,∆14 and ∆min-distance function.

ws 29 33 37 41 45 49 53 57
df 7 8 9 10 11 12 13 14
tc 1.43 1.25 1.1 1.0 0.9 0.83 0.77 0.7

Table 1: Tempo changes (tc) simulated by changing statis-

tics window sizes (ws) and downsampling factors (df).

changing the query tempo affects the distance function.

In conclusion, we note that global tempo deviations

are accounted for by employing several suitably modified

queries, whereas local tempo deviations are absorbed to a

high degree by using CENS features.

4.3 Efficient implementation

At this point, we want to mention that the distance func-

tion ∆ given by ∆(i) = 1− 1
M

∑M

m=1〈~vi+m−1, ~wm〉 can

be computed efficiently. Here, one has to note that each

of the 12 components of the vector
∑M

m=1〈~vi+m−1, ~wm〉
can be expressed as a convolution, which can then be

evaluated efficiently using FFT-based convolution algo-

rithms. By this technique, ∆ can be calculated with

O(DN log M) operations, where D = 12 denotes the di-

mension of the vectors. In other words, the query length

M only contributes a logarithmic factor to the total arith-

metic complexity. Thus, even long queries may be pro-

cessed very efficiently. The experimental setting as well

as the running time to process a typical query is described

in the next section.

5 EXPERIMENTS

We implemented our audio matching procedure in MAT-

LAB and tested it on a database containing 112 hours

of uncompressed audio material (mono, 22050 Hz), re-

quiring 16.5 GB of disk space. The database comprises

1167 audio files reflecting a wide range of classical mu-

sic, including, among others, pieces by Bach, Bartok,

Bernstein, Beethoven, Chopin, Dvorak, Elgar, Mozart,

Orff, Ravel, Schubert, Shostakovich, Vivaldi, and Wag-

ner. In particular, it contains all Beethoven symphonies,

all Beethoven piano sonatas, all Mozart piano concertos,

several Schubert and Dvorak symphonies—many of the
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pieces in several versions. Some of the orchestral pieces

are also included as piano arrangements or synthesized

MIDI-versions. In a preprocessing step, we computed the

CENS features for all audio files of the database, resulting

in a single sequence F [D] as described in Sect. 4.1. Stor-

ing the features F [D] requires only 40.3 MB (opposed to

16.5 GB for the original data), amounting in a data reduc-

tion of a factor of more than 400. Note that the feature

sequence F [D] is all we need during the matching proce-

dure. Our tests were run on an Intel Pentium IV, 3 GHz

with 1 GByte RAM under Windows 2000. Processing a

query of 10 to 30 seconds of duration takes roughly one

second w.r.t. ∆ and about 7 − 10 seconds w.r.t. ∆min. As

is also mentioned in Sect. 6, the processing time may fur-

ther be reduced by employing suitable indexing methods.

5.1 Representative matching results

We now discuss in detail some representative matching

results obtained from our procedure, using the query clips

shown in Table 2. For each query clip, the columns con-

tain from left to right an acronym, the specification of the

piece of music, the measures corresponding to the clip,

and the interpreter. Demo audio material of the examples

discussed in this paper is provided at www-mmdb.iai.

uni-bonn.de/projects/audiomatching, where ad-

ditional matching results and visualizations can be found

as well.

We continue our Beethoven example. Recall that the

query, in the following referred to as “BeetF” (see Ta-

ble 2), corresponds to the first 20 measures, which ap-

pear once more in the repetition of the exposition and

with some slight modifications in the recapitulation. Since

our database contains Beethoven’s Fifth in five different

versions—four orchestral version conducted by Bernstein,

Karajan, Kegel, and Sawallisch, respectively, and Liszt’s

piano transcription played by Scherbakov—there are alto-

gether 15 occurrences in our database similar to the query

“BeetF”. Using our matching procedure, we automatically

determined the best 15 matches in the entire database w.r.t.

∆min. Those 15 matches contained 14 of the 15 “correct”

occurences—only the 14th match (distance 0.217) corre-

sponding to some excerpt of Schumann’s third symphony

was “wrong”. Furthermore, it turned out that the first

13 matches are exactly the ones having a ∆min-distance

of less than 0.2 from the query, see also Fig. 6 and Ta-

ble 3. The 15th match (excerpt in the recapitulation by

Kegel) already has a distance of 0.220. Note that even

the occurrences in the exposition of Scherbakov’s piano

version were correctly identified as 11th and 13th match,

even though differing significantly in timbre and articula-

tion from the orchestral query. Only the occurrence in the

recapitulation of the piano version was not among the top

matches.
As a second example, we queried the piano version

“BeLiF” of about 26 seconds of duration (see Table 2),

which corresponds to the first part of the development

of Beethoven’s Fifth. The ∆min-distances of the best

twenty matches are shown in Table 3. The first six of

these matches contain all five “correct” occurrences in the

five interpretations corresponding to the query excerpt, see

also Fig 7. Only the 4th match comes from the first move-

Query Piece measures interpreter

BachAn Bach BWV 988, Goldberg “Aria” 1-n MIDI
BeetF Beethoven Op. 67 “Fifth” 1-20 Bernstein
BeLiF Beethoven Op. 67 “Fifth” (Liszt) 129-170 Scherbakov
Orff Carmina Burana 1-4 Jochum
SchuU Schubert D759 “Unfinished” 9-21 Abbado
ShoWn Shostakovich Jazz Suite 2, Waltz 2 1-n Chailly
VivaS RV269 No.1 “Spring” 44-55 MIDI

Table 2: Query audio clips used in the experiments. If not

specified otherwise, the measures correspond to the first

movement of the respective piece.

No. BachA8 BeetF BeLiF Orff ShoW22 SchuU VivaS

1 0.005 0.011 0.010 0.005 0.017 0.024 0.095
2 0.020 0.015 0.139 0.037 0.051 0.052 0.139
3 0.090 0.044 0.142 0.065 0.098 0.061 0.154
4 0.093 0.051 0.168 0.138 0.104 0.070 0.155
5 0.093 0.058 0.168 0.148 0.109 0.071 0.172
6 0.095 0.069 0.172 0.150 0.140 0.072 0.210
7 0.098 0.072 0.200 0.152 0.148 0.073 0.221
8 0.102 0.073 0.203 0.155 0.163 0.091 0.238
9 0.104 0.143 0.204 0.158 0.167 0.097 0.241

10 0.107 0.180 0.214 0.165 0.173 0.100 0.244
11 0.107 0.183 0.221 0.166 0.186 0.101 0.248
12 0.108 0.195 0.221 0.166 0.187 0.103 0.257
13 0.110 0.197 0.225 0.167 0.188 0.107 0.262
14 0.110 0.217 0.229 0.179 0.192 0.108 0.267
15 0.112 0.220 0.230 0.179 0.193 0.122 0.268
16 0.114 0.224 0.231 0.172 0.194 0.151 0.271
17 0.117 0.225 0.232 0.173 0.197 0.158 0.273
18 0.120 0.229 0.234 0.174 0.198 0.205 0.275
19 0.122 0.237 0.235 0.174 0.199 0.207 0.276
20 0.122 0.238 0.236 0.176 0.199 0.214 0.279

Table 3: Each column shows the ∆min-distances of the

twenty best matches to the query indicated by Table 2.

Bernstein Karajan Kegel Scherbakov Sawallisch

Figure 6: Bottom: ∆min-distance function for the en-

tire database w.r.t. the query “BeetF”. Top: Enlargement

showing the five interpretations of the first movement of

Beethoven’s Fifth containing all of the 13 matches with

∆min-distance < 0.2 to the query.

ment (measures 200–214) of Mozart’s symphony No. 40,

KV 550. Even though seemingly unrelated to the query,

the harmonic progression of Mozart’s piece exhibits a

strong correlation to the Beethoven query at these mea-

sures. As a general tendency, it has turned out in our ex-

periments that for queries of about 20 seconds of duration

the “correct” matches have a distance lower than 0.2 to the

query. In general, only few “false” matches have a ∆min-

distance to the query lower than this distance threshold.

A similar result was obtained when querying “SchuU”

corresponding to measures 9–21 of the first theme of

Schubert’s “Unfinished” conducted by Abbado. Our

database contains the “Unfinished” in six different inter-

pretations (Abbado, Maag, Mik, Nanut, Sacci, Solti), the

theme appearing once more in the repetition of the exposi-

tion and in the recapitulation. Only in the Maag interpreta-
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Bernstein Karajan Kegel Scherbakov Sawallisch Mozart

Figure 7: Section consisting of the five interpretations

of the first movement of Beethoven’s Fifth and the

first movement of Mozart’s symphony No. 40, KV 550.

The five occurences in the Beethoven interpretations are

among the best six matches, all having ∆min-distance

< 0.2 to the query “BeLiF”.

Abbado Maag Mik Nanut Sacci Solti

Figure 8: Section consisting of the five interpretations of

the first movement of Schubert’s Unfinished. The 17 oc-

curences exactly correspond to the 17 matches with ∆min-

distance < 0.2 to the query “SchuU”.

tion the exposition is not repeated, leading to a total num-

ber of 17 occurrences similar to the query. The best 17
matches retrieved by our algorithm exactly correspond to

these 17 occurences, all of those matches having a ∆min-

distance well below 0.2, see Table 3 and Fig. 8. The

18th match, corresponding to some excerpt of Chopin’s

Scherzo Op. 20, already had a ∆min-distance of 0.205.

Our database also contains two interpretations

(Jochum, Ormandy) of the Carmina Burana by Carl Orff,

a piece consisting of 25 short episodes. Here, the first

episode “O Fortuna” appears again at the end of the piece

as 25th episode. The query “Orff” corresponds to the first

four measures of “O Fortuna” in the Jochum interpreta-

tion (22 seconds of duration), employing the full orches-

tra, percussion, and chorus. Again, the best four matches

exactly correspond to the first four measures in the first

and 25th episodes of the two interpretations. The fifth

match is then an excerpt from the third movement of Schu-

mann’s Symphony No. 4, Op. 120. When asking for all

matches having a ∆min-distance of less than 0.2 to the

query, our matching procedure retrieved 75 matches from

the database. The reason for the relatively large num-

ber of matches within a small distance to the query is the

relatively unspecific, unvaried progression in the CENS-

feature sequence of the query, which is shared by many

other pieces as well. In Sect. 5.2, we will discuss a sim-

ilar example (“BachAn”) in more detail. It is interesting

to note that among the 75 matches, there are 22 matches

from various episodes of the Carmina Burana, which are

variations of the original theme.

To test the robustness of our matching procedure to

the respective instrumentation and articulation, we also

used queries synthesized from uninterpreted MIDI ver-

sions. For example, the query “VivaS” (see Table 2) con-

sists of a synthesized version of the measures 44–55 of

Vivaldi’s Spring RV269, No. 1. This piece is contained

in our database in 7 different interpretations. The best

seven matches were exactly the “correct” excerpts, where

query ShoW12 ShoW20 ShoW27
duration (sec) 13 22 29

#(matches, ∆min ≤ 0.2) 590 23 8
Chailly 1/2/6/10 1/2/7/3 1/2/7/4
Yablonsky 119/59/103/138 4/5/36/6 3/5/8/6

Table 4: Total number of matches with ∆min-distance

lower than 0.2 for queries of different durations.

the first 5 of these matches had a ∆min-distance of less

than 0.2 from the query (see also Table 3). The robust-

ness to different instrumentations is also shown by the

Shostakovich example in the next section.

5.2 Dependence on query length

Not surprisingly, the quality of the matching results de-

pends on the length of the query: queries of short duration

will generally lead to a large number of matches in a close

neighborhood of the query. Enlarging the query length

will generally reduce the number of such matches. We

illustrate this principle by means of the second Waltz of

Shostakovich’s Jazz Suite No. 2. This piece is of the form

A1A2BA3A4, where the first theme consists of 38 mea-

sures and appears four times (parts A1, A2, A3, A4), each

time in a different instrumentation. In part A1 the melody

is played by strings, then in A2 by clarinet and wood in-

struments, in A3 by trombone and brass, and finally in A4

in a tutti version. The Waltz is contained in our database

in two different interpretations (Chailly,Yablonsky) lead-

ing to a total number of 8 occurrences of the theme.

The query “ShoWn” (see Table 2) consists of the first

n measures of the theme in the Chailly interpretation. Ta-

ble 4 compares the total number of matches to the query

duration. For example, the query clip “ShoW12” (dura-

tion of 13 seconds) leads to 590 matches with a ∆min-

distance lower than 0.2. Among these matches the four

occurrences A1, A2, A3, and A4 in the Chailly interpre-

tation could be found at position 1 (the query itself), 2,

6 and 10, respectively. Similarly, the four occurrences in

the Yablonsky interpretation could be found at the posi-

tions 119/59/103/138. Enlarging the query to 20 mea-

sures (22 seconds) led to a much smaller number of 23
matches with a ∆min-distance lower than 0.2. Only the

trombone theme in the Yablonsky version (36th match

with ∆min-distance of 0.207) was not among the first 23
matches. Finally, querying “ShoW27” led to 8 matches

with a ∆min-distance lower than 0.2, exactly correspond-

ing to the eight “correct” occurrences, see Fig. 9. Among

these matches, the two trombone versions have the largest

∆min-distances. This is caused by the fact that the spectra

of low-pitched instruments such as the trombone gener-

ally exhibit phenomena such as oscillations and smearing

effects resulting in degraded CENS features.

As a final example, we consider the Goldberg Varia-

tions by J.S. Bach, BWV 988. This piece consists of an

Aria, thirty variations and a repetition of the Aria at the

end of the piece. The interesting fact is that the varia-

tions are on the Aria’s bass line, which closely correlates

with the harmonic progression of the piece. Since the

sequence of CENS features also closely correlates with

this progression, a large number of matches is to be ex-

pected when querying the theme of the Aria. The query
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Chailly Yablonsky

clarinet strings trombone tutti clarinet strings trombone tutti

Figure 9: Second to fourth row: ∆min-distance func-

tion for the entire database w.r.t. the queries “ShoW27”,

“ShoW20”, and “ShoW12”. The light bars indicate the

matching regions. First row: Enlargement for the query

“ShoW27” showing the two interpretations of the Waltz.

Note that the theme appears in each interpretation in four

different instrumentations.

“BachAn” consists of the first n measures of the Aria

synthesized from some uninterpreted MIDI, see Table 2.

Querying “BachA4” (10 seconds of duration) led to 576
matches with ∆min-distance of less than 0.2. Among

these matches, 214 correspond to some excerpt originat-

ing from a variation of one of the four Goldberg interpre-

tations contained in our database. Increasing the duration

of the query, we obtained 307 such matches for “BachA8”

(20 seconds), 195 of them corresponding to some Gold-

berg excerpt. Similarly, one obtained 144 such matches

for “BachA12” (30 seconds), 127 of them corresponding

to some Goldberg excerpt.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced an audio matching pro-

cedure which, given a query audio clip of between 10

and 30 seconds of duration, automatically and efficiently

identifies all corresponding audio clips in the database

irrespective of the specific interpretation or instrumen-

tation. A representative selection of our experimental

results, including the ones discussed in this paper, can

be found at www-mmdb.iai.uni-bonn.de/projects/

audiomatching. As it turns out, our procedure performs

well for most of our query examples within a wide range

of classical music proving the usefulness of our CESN

features. The top matches almost always include the “cor-

rect” occurrences, even in case of synthesized MIDI ver-

sions and interpretations in different instrumentations.

In conclusion, our experimental results suggest that a

query duration of roughly 20 seconds seems to be suffi-

cient for a good characterization of most audio excerpts.

Enlarging the duration generally makes the matching pro-

cess even more stable and reduces the number of “false”

matches. Our matching process may produce a large

number of “false” matches (false positives) or miss “cor-

rect” matches (false negatives) in case the underlying mu-

sic does not exhibit characteristic harmonics information,

as is, for example, the case for music with an unchang-

ing harmonic progression or for purely percussive mu-

sic. “False” matches with small ∆min-distance generally

differ considerably from the query (accidentally having a

similar harmonic progression). Here, our future goal is to

provide the user with a choice of additional, orthogonal

features such as beat, timbre, or dynamics, to allow for a

ranking adapted to the user’s needs.

For the future, we also plan to employ indexing meth-

ods to significantly reduce the query times of our match-

ing algorithm (in the present implementation it requires

7–10 seconds for processing single query w.r.t. ∆min).

As a further extension of our matching procedure, we also

want to retrieve audio clips that differ from the query by

a global pitch transposition. This, e.g., includes arrange-

ments played in different keys or themes appearing in var-

ious keys as is typically the case for a sonata. First exper-

iments show that such pitch transpositions can be handled

by cyclically shifting the components of the CENS fea-

tures extracted from the query.

As an application, we plan to employ our audio match-

ing strategy to substantially accelerate music synchroniza-

tion. Here, the idea is to identify salient audio matches,

which can then be used as anchor matches as suggested

by Müller et al. (2004).

Finally, note that we evaluated our experiments manu-

ally, by comparing the retrieved matches with the expected

occurrences as a ground truth (knowing exactly the config-

uration of our audio database). Here, an automated proce-

dure allowing to conduct large-scale tests is an important

issue to be considered.
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