
SYNCPLAYER — AN ADVANCED SYSTEM FOR MULTIMODAL MUSIC
ACCESS

Frank Kurth, Meinard Müller, David Damm, Christian Fremerey, Andreas Ribbrock, Michael Clausen

Universität Bonn

Institut für Informatik III

Römerstr. 164, D-53117 Bonn, Germany

{frank,meinard,damm,fremerey,ribbrock,clausen}@cs.uni-bonn.de

ABSTRACT

In this paper, we present the SyncPlayer system for mul-

timodal presentation of high quality audio and associated

music-related data. Using the SyncPlayer client interface,

a user may play back an audio recording that is locally

available on his computer. The recording is then identified

by the SyncPlayer server, a process which is performed

entirely content-based. Subsequently, the server delivers

music-related data like scores or lyrics to the client, which

are then displayed synchronously with audio playback us-

ing a multimodal visualization plug-in. In addition to vi-

sualization, the system provides functionality for content-

based music retrieval and semi-manual content annota-

tion. To the best of our knowledge, our system is moreover

the first to systematically exploit automatically generated

synchronization data for content-based symbolic brows-

ing in high quality audio recordings. SyncPlayer has al-

ready proved to be a valuable tool for evaluating algo-

rithms in MIR research on a larger scale. In this paper,

we describe the technical background of the SyncPlayer

framework in detail. We also give an overview of the un-

derlying MIR techniques of audio matching, music syn-

chronization, and text-based retrieval that are incorporated

in the current version of the system.

Keywords: MIR systems and infrastructure, multi-

modal interfaces and music access, synchronization

1 INTRODUCTION

Classical MIR techniques typically work with a sin-

gle type of music representation. Examples include

most query-by-example scenarios like audio identification

(where a short query signal is to be identified w.r.t. a large

database of audio signals), melodic queries (where a note

sequence is to be matched to a melody database), poly-

phonic search (where an excerpt of a score is searched in

Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee pro-

vided that copies are not made or distributed for profit or com-

mercial advantage and that copies bear this notice and the full

citation on the first page.

c©2005 Queen Mary, University of London

a score database), or text-based search (where a sequence

of query terms is searched in a database of textual meta-

data). As a consequence of such approaches, all steps in

the typical MIR chain of query formulation, content-based

retrieval, and display of query results are based on the

same type of data representation. However, it is evident

that there is no single data representation that is equally

suitable or even a natural choice to be used for all of the

latter tasks. As an example, consider a user querying a

melody database. While it may be the most natural op-

tion to just hum a melody resulting in a waveform-based

query, most successful algorithms for melody-based re-

trieval work in the domain of symbolic music. On the

other hand, retrieval results are most naturally presented

by playing back an actual recording of the piece of music

containing the melody, while a musical score or a piano-

roll will frequently be the most appropriate form of visu-

ally displaying a query result.

Up to now, research on integrating different types of

music representation within MIR scenarios has mainly fo-

cused on the aspects of query formulation and the actual

retrieval algorithms: considering query formulation, many

approaches like existing query-by-humming techniques

(for example Pauws (2002)) use signal processing tech-

niques to convert acoustic data to the symbolic domain in

a preprocessing step. Concerning retrieval, methods have

been proposed to query music in a cross-domain fashion.

For example, Pickens et al. (2002) present a system for

querying polyphonic audio recordings in a database of

polyphonic music given in the symbolic domain.

In contrast to this, there still is a significant lack of

MIR systems for simultaneously presenting (which in-

cludes display, visualization, playback, and browsing)

music and content-related data in an adequate multimodal

form. Generally, such data is presented based on a sin-

gle type of music data only. As an example, consider the

display of query results in content-based audio retrieval:

results are presented using acoustic playback along with

a visualized waveform (presentation based on waveform

data only). In MIDI-based retrieval, query results are typ-

ically presented as synthesized MIDI along with a MIDI-

based piano-roll.

A particular lack of appropriate systems for content-

presentation is found in several areas of MIR research.

For example, there are only few user-friendly interfaces

for analyzing results of the multitude of proposed algo-

381

rithms for automatic music annotation such as score-to-

audio synchronization (see below).

As a first step towards a proper multimodal presenta-

tion of music and content-related data, we recently pro-

posed a prototypic client-server based system for syn-

chronized playback and display of acoustic recordings

together with content-related metadata (see Kurth et al.

(2004)). The system’s capabilities were demonstrated in a

karaoke-like scenario where the displayed data consists of

lyrics information. In contrast to other systems such as a

similar system by Philocode LLC1, which is available as a

plug-in to various audio players (e.g., WinAmp or iTunes),

SyncPlayer identifies a selected musical recording and a

playback position therein entirely content-based. Hence it

does not rely on the availability of further metadata such

as ID3 tags.

In the present paper, we describe how the SyncPlayer

framework has been redesigned to constitute an inte-

grated MIR system incorporating functionality for mul-

timodal display of symbolic data, content-based querying

and semi-manual content annotation. To achieve this, we

suitably adapt and combine recent techniques from audio

identification (Clausen and Kurth (2004)), music synchro-

nization (Müller et al. (2004)), and text retrieval. To the

best of our knowledge, our system is the first to system-

atically exploit automatically generated synchronization

data for content-based symbolic browsing in high quality

audio recordings.

The main contributions of our system are summarized

as follows:

• We propose an integrated system for symbolic

(including textual) music searching and browsing

with acoustic audio playback based on high quality

recordings of the selected pieces of music.

• Our novel MultiVis (Multimodal Visualization) plug-

in offers functionality for output as well as a piano-

roll-like interface for visualization and MIDI-based

browsing. This interface turns out to be a valuable

tool for larger scale evaluation of research results in

the domain of music synchronization.

• The newly developed query engine allows for textual

search in a lyrics database, a ranked representation

of query results, and playback of the exact positions

of all matches. Our query engine is generic in that

it is extensible to musical content-based search (for

example, melody-based queries).

• An extended version of our Sync File Maker plug-in

allows for semi-manual annotation of lyrics (or gen-

eral textual) metadata to audio recordings. This func-

tionality is supported by means of signal processing

techniques for “slow-motion playback” of the under-

lying audio recording. By offering additional func-

tionality for feature extraction, the plug-in can be

used to extend and maintain the underlying audio

database.

• The SyncPlayer framework is based on a flexible

1http://www.philocode.com/minilyrics/

Figure 1: Overview of the SyncPlayer system architecture

client-server architecture, which makes it suitable

for arbitrarily distributed environments.

Our paper is organized as follows. In the next section

we describe the SyncPlayer system, consider its modes of

operation, and give a detailed account on the constitut-

ing software modules and their interaction. In the sub-

sequent sections we summarize the audio identification

and music synchronization techniques that are used in

the SyncPlayer framework. Audio identification is con-

sidered in Section 3, where we give a suitable model-

ing for the type of identification problem relevant to the

SyncPlayer scenario. Moreover, we sketch a novel fast

index-based search algorithm, which is capable of deal-

ing with very large data collections. Section 4 briefly dis-

cusses algorithms for music synchronization used in our

system. We furthermore describe a new version of our an-

notation module for semi-manual text-to-PCM synchro-

nization. In Section 5 we consider content-based music

queries. We propose a novel query module which, in the

current version of our system, allows for text-based query-

ing and browsing. In the concluding Section 6, we give an

overview of our ongoing work and propose some prob-

lems for future research.

2 SYNCPLAYER SYSTEM

In this section we describe the SyncPlayer system in de-

tail. After giving an overview of the basic operation mode,

we describe the architecture of the software system. We

give a detailed account on the client-server based frame-

work and the plug-in modules used for playback, visual-

ization, annotation, and querying. We also describe an

administration tool for creating and updating the audio in-

dex, which is used for the audio identification task.

382

Figure 2: SyncPlayer client interface (left) together with two instances of the MultiVis plug-in, one displaying lyrics

metadata, the other showing piano-roll data of an audio recording.

2.1 Basic Mode of Operation

Upon starting the SyncPlayer client application, the user

selects an audio file from his local music collection, and

acoustic playback starts automatically. Currently, MP3

and WAV audio are supported. At any time before or

during playback, the user may launch any of the sup-

plied plug-in modules. The different plug-ins offer func-

tionality for visualization, semi-automatic annotation, and

querying. The regular operation mode uses the Multi-

Vis plug-in, which provides functionality for visualizing

audio-related information synchronously to acoustic play-

back. Currently, two types of visualization are supported,

one displaying textual information (e.g., lyrics or com-

mentaries) in a karaoke-like fashion, the other giving a

piano-roll representation of the musical notes occurring in

the audio recording. The current playback position is in-

dicated in both types of visualization by highlighting cor-

responding text and note positions, respectively. Avail-

able types of visualization (lyrics or piano-roll) are dis-

played in the track selection box of the MultiVis plug-in

and may be subsequently chosen by the user. Depend-

ing on the musical contents and existing metadata for the

selected audio recording, different types of visualizations

(e.g., lyrics only, piano-roll only, both lyrics and piano-

roll, multiple lyrics tracks) may be available. Note that an

arbitrary number of MultiVis plug-ins may be launched

simultaneously, each operating in an independently se-

lectable visualization mode. Figure 2 shows the Sync-

Player client application and two instances of the Multi-

Vis plug-in for an audio recording with available lyrics

and piano-roll metadata. During playback, the piano-roll

moves, while a locator is positioned on the current notes.

All notes are highlighted at the point of their onset. Past

and future notes are displayed in different colors.

2.2 General System Architecture

The SyncPlayer framework consists of several software

components, which are summarized as follows:

• The user operates the client application, which per-

forms acoustic playback and plug-in operation (visu-

alization, annotation, querying).

• A remote computer system runs the server applica-

tion, which is used for identifying the audio record-

ings the user selects. Furthermore, the server system

is used for retrieving metadata related to the identi-

fied recordings such as lyrics or musical notes, which

are then used by the client-side visualization plug-

ins.

• A server-side administration system is used to create

and maintain an index used for audio identification

as well as for the various types of metadata.

The framework uses different types of music-related data:

• A local collection of audio recordings, which are se-

lectable for playback.

• A (possibly large) database of audio recordings

stored on a server. This collection is used in a pre-

processing step for creating an audio index.

• This audio index is permanently accessible by the

server and is used for fast audio identification

• The global metadata (e.g., title, artist, album, etc.)

for the pieces contained in the audio database are

stored in a metadata table, which is accessible by the

server application.

• The content-related metadata (lyrics, piano-roll data,

etc.) for the database items are stored in multi-track

Sync Files (one Sync File for each audio recording; a

Sync File may contain multiple tracks, each contain-

ing different metadata). There are two Sync File for-

mats: Binary Sync Files (BSFs) are generated during

the synchronization step (cf. Section 4). They store

content-related metadata along with synchronization

information (i.e., data relating actual time positions

383

to chunks of metadata) as well as audio feature data

used for creating the audio index. Textual (XML-

based) Sync Files contain content-related metadata

along with synchronization information in a human-

readable format.

Figure 1 gives an overview of the SyncPlayer system

architecture. In the following subsections, interaction of

the system components is illustrated in more detail.

2.3 Client System

When the user selects an audio recording and launches the

MultiVis plug-in, SyncPlayer automatically tries to iden-

tify both the audio recording and the current playback po-

sition within the audio recording. The identification is

performed content-based, i.e., based on the PCM wave-

form, making it independent of the availability of meta-

data (such as ID3 tags) or specific data formats. More-

over, the identification method as described in Section 3

is robust against signal distortions, lossy compression, and

cropping. For audio identification, the client system first

performs a feature extraction step. The features are then

transmitted to the server system, which performs the ac-

tual identification. Note that the feature-based approach

saves both bandwidth and helps preventing legal prob-

lems, which could result if parts of original audio record-

ings were transmitted from client to server. Upon success-

ful identification, the client system is enabled to retrieve

content-related metadata from the server.

Most of the client system is implemented in Java. As

feature extraction generally is a time-critical task, it has

been implemented in a C++-based module. This module

is then accessed using the Java Native Interface (JNI) tech-

nology. Client-server communication is performed us-

ing Java’s Remote Method Invocation (RMI) framework.

Within this framework, the client communicates with the

server using an interface of predefined functions. As a par-

ticular benefit of RMI, network communication is almost

transparent. Hence, client and server may be located at

virtually any point of the network (even on the same com-

puter system) without requiring major changes in Sync-

Player’s system configuration.

2.4 Server System

The SyncPlayer server consists of a scheduler component

and a module for audio identification (the audentify

server), which is also accessed using the Java RMI frame-

work. When receiving a request for audio identifica-

tion, the scheduler directs the request to the audentify

server, which in turn performs audio identification by

querying the audio index using fast search algorithms as

described in Section 3. Similar to feature extraction, the

actual index search is implemented in C++. Upon suc-

cessful identification, audentify returns a unique file

ID, which is subsequently used by the scheduler to re-

trieve the content-related data. For this, the scheduler first

retrieves global metadata from the metadata table stored

in a MySQL database. In particular, the metadata table

contains references to existing Sync Files.

2.5 Plug-In Modules

Subsequently, any of the running plug-ins may request the

global as well as content-related metadata stored in the re-

trieved Sync Files. Global metadata consists of the num-

ber of different tracks stored in a particular Sync File as

well as content identificators (currently, lyrics and MIDI

are supported). Access to the Sync Files is possible by re-

questing the server to deliver all metadata available for

a certain time interval [s, e]. In the current version of

our system, time stamps may be specified in milliseconds.

The server returns a sorted list of metadata events consist-

ing of pairs (t, d) where t, s ≤ t ≤ e, is a time stamp

and d is some context-based metadata related to the time

stamp t. Note that although such metadata might as well

be given in sample precision, technical reasons such as

different sampling rates and different feature extraction

methods suggest to use milliseconds as a common basis

for specifying time stamps.

Currently, three types of plug-ins are supported: in ad-

dition to the MultiVis plug-in, the Sync File Maker plug-in

can be used for semi-manual text-to-audio synchroniza-

tion, feature extraction, and Sync File creation (see Sec-

tion 4 for details). Furthermore, the Lyrics Seeker plug-in

provides text-based search in lyrics data (see Section 5).

2.6 The Index Admin Tool

The Index Admin Tool is a server-side Java application

that is used to organize existing Binary Sync Files, meta-

data and audio recordings. It can be used to define groups

containing arbitrary subsets of Binary Sync Files and gen-

erate both textual Sync Files as well as audio indexes from

those groups. For audio identification, the audentify

server uses the particular audio index that has been con-

figured in the Index Admin Tool. Exported textual Sync

Files are used by the SyncPlayer server to deliver content-

related metadata to the client application.

3 AUDIO IDENTIFICATION

When the user starts playback of a specific audio record-

ing and launches a visualization plug-in, the recording has

to be identified before the retrieval of content-related data

is possible. In order to avoid noticeable delays in display-

ing these data, identification has to be perfomed very effi-

ciently. Furthermore, as audio recordings are available in

different qualities or may have been edited prior to play-

back, identification should be robust against basic signal

processing operations such as resampling, lossy compres-

sion, cropping, or equalization.

In the last five years, several powerful audio identifica-

tion methods have been proposed such as described by Al-

lamanche et al. (2001); Wang (2003); Clausen and Kurth

(2004). We refer to the survey paper Cano et al. (2002)

for a more detailed overview of existing methodologies.

In this section we first describe how we extend the

identification technique of Clausen and Kurth (2004) to

be suitable for the SyncPlayer framework. Then, we look

at the more general scenario of audio matching and out-

line how future developments might allow identification

of a musical work regardless of the specific interpretation.

384

Figure 3: Voting matrix used for fast fault tolerant audio

identification. The prominent peaks indicate two matches.

3.1 Identification Algorithm

Assume that a database of N audio recordings is repre-

sented as a sequence D = (x1, . . . , xN) of finite energy

signals xi, 1 ≤ i ≤ N . From those signals, a compact

audio index is constructed in a preprocessing step. For

this, each signal is processed by a feature extractor F ,

which transforms a signal xi to a feature document F [xi].
The feature document F [xi] is composed of features [t, j],
each consisting of a feature class j and a time stamp t, in-

dicating where the feature occurs within the signal. For

what follows, we assume that F first transforms a sig-

nal xi using a short time Fourier transform (STFT), re-

sulting in a 2D time-frequency representation x̂i. Let

(f1, . . . , fK) denote a sequence of K pitch classes. Then,

for each local maximum of |x̂i| at time position t and

pitch fj , a feature [t, j] is added to F [xi]. Applying fea-

ture extraction to all audio signals, we obtain a collection

F [D] = (F [x1], . . . , F [xN]) of feature signals. Note that

the latter construction just sketches the idea of our event-

driven approach to feature extraction. For details, we refer

to Clausen and Kurth (2004).

The audio index is then constructed by suitably adapt-

ing inverted file indexing. In particular, for each feature

class j, we create an inverted file

HF [D](j) := {(t, i) | [t, j] ∈ F [xi]}

consisting of all pairs (t, i) such that a feature of class

j occurs at position t within the ith audio signal, i.e.,

[t, j] ∈ F [xi]. In this setting, audio identification is a sim-

ple task: consider a short audio signal q, e.g., an excerpt

of a recording that the user selects for playback. Applying

feature extraction, we obtain a feature query F [q]. Then

one easily shows that an intersection

HF [D](F [q]) :=
⋂

[t,j]∈F [q]
HF [D](j) − t (1)

of suitably adjusted inverted files

HF [D](j) − t := {(τ − t, i) | (τ, j) ∈ HF [D](j)}

returns a set HF [D](F [q]) of pairs (t, i), each correspond-

ing to an occurence of the t-shifted query features F [q]
within the ith document. It turns out that for suitably sized

queries q of only a few seconds of length, one may assume

that each of those feature-based matches (t, i) identifies q

as a specific segment of the audio signal xi. For details,

we again refer to Clausen and Kurth (2004).

To make audio identification robust to signal distor-

tions, it is appropriate to allow a certain percentage p of

feature mismatches. In terms of the query method pre-

sented in Eq. (1) this means we have to determine all

pairs (τ, i) contained in (100 − p) percent of the inter-

sected lists HF [D](j) − t. Instead of using a previously

proposed dynamic programming approach (Clausen and

Kurth (2004)), which may be too inefficient for solving

this time-critical task for very large data sets, we propose

a novel fast search technique based on a variant of geo-

metric hashing, see Wolfson and Rigoutsos (1997). The

method is outlined as follows: assume T is the maximum

first coordinate of an element occuring in any of the lists

HF [D](j) − t. Further assume that all elements of those

lists are positive (in practice, both conditions may easily

be enforced in a preprocessing step). We then construct

an integer array M of dimension T × N that will be used

in the subsequent voting scheme. In a second step, for

each [t, j] ∈ F [q] we process the list HF [D](j) − t. For

each (τ, i) contained in that list, the entry (τ, i) of matrix

M is increased by one. After this step, each of those en-

tries M [τ, i] contains the amount of features of a t-shifted

version of F [q] matching document F [xi]. Fig. 3 shows

an example of the voting matrix M with two prominent

peaks indicating two matches.

To account for slight time-distortions of query q and

original signal xi, adjacent entries of M may be pooled in

a postprocessing step. This essentially amounts to calcu-

lating sums M ′[τ, i] :=
∑λ

ℓ=−λ M [τ + ℓ, i] for all posi-

tions τ . After this, all entries of M ′ exceeding a certain

threshold are identified as matches. Note that since inter-

nal memory for M may be allocated in advance and no

further postprocessing is necessary, this procedure is very

efficient. To achieve a further speed-up, M may be or-

ganized in a hierarchical manner: at a coarse level, one

identifies (for example rectangular) regions of M contain-

ing only few votes, which are then rejected at an early

stage. As detailed by Ribbrock (2005, to appear), the lat-

ter approach amounts in a considerable gain in efficiency

as compared to previous approaches like Wang (2003).

3.2 Towards Audio Matching

In the SyncPlayer scenario, audio identification in the

above sense appears to be quite restrictive, particularly in

the case of classical music. Because of the multitude of

different available performances (and recordings) of one

and the same piece of music, it is unrealistic to assume

that a user owns the same version of a piece of music as

is stored in the server’s database. Hence, it will be of

great interest to identify a piece of music regardless of

the specific performance. We will call this problem audio

matching. Müller et al. (2005) describe an approach to au-

dio matching that works well for a broad class of Western

music. The approach is based on using rough harmonic

progressions, which is often sufficient for characterizing a

piece of music. Although the latter approach to matching

is still to be sped up by suitable indexing mechanisms, it

should be feasible to integrate audio matching into future

385

S
co

re
        

       

  
       

A
u
d
io

M
ID

I

Figure 4: Synchronization of music data in the score (top),

audio (center), and MIDI (bottom) data formats represent-

ing the same piece of music (first four measures of Etude

no. 2, op. 100, F. Burgmüller).

versions of the SyncPlayer framework to achieve indepen-

dence of the actual performance of a piece of music.

4 MUSIC SYNCHRONIZATION

In our SyncPlayer system, synchronous display of

content-related musical data relies on appropriate meth-

ods for generating corresponding synchronization data in

a preprocessing step, which is then stored in the previ-

ously described Sync Files. This amounts to linking the

respective data (like lyrics or score data) to the actual

musical recordings. In the last three years, research has

focused on developing first approaches for automatically

performing these so called synchronization tasks. Impor-

tant examples include the synchronization of music data in

the audio, MIDI and score domain as proposed by Soulez

et al. (2003); Hu et al. (2003); Turetsky and Ellis (2003);

Müller et al. (2004); Raphael (2004). In this section, we

first give a brief introduction to music synchronization and

then summarize our method for automatically synchro-

nizing score-to-audio data. Finally, we describe the Sync

File Maker plug-in, which was developed for semi-manual

synchronization of audio recordings to lyrics data.

4.1 Score-to-Audio Synchronization

In score-to-audio synchronization, we consider the score

of a particular piece of music as well as an audio record-

ing of the same piece. Then the synchronization problem

may be stated as follows: given a musical onset time in the

score representation, determine the corresponding physi-

cal onset time within the audio representation. Synchro-

nization of score and audio data is illustrated in the upper

part of Fig. 4. Note that score and audio data differ fun-

damentally in their respective structure and content. On

the one hand, the score consists of note parameters such

as pitches, note onsets, or note durations, leaving a lot

of space for various interpretations concerning, e.g., the

tempo, dynamics, or multi-note executions such as trills.

On the other hand, the waveform-based audio recording

of a particular performance encodes all the information

needed to reproduce the acoustic realization—note param-

eters, however, are not given explicitly.

To synchronize score and audio data, our approach

described in Müller et al. (2004) proceeds in two sta-

ges: in a first step, semantically meaningful descriptors

are extracted from the score and audio data streams mak-

ing them locally comparable. In short, the audio signal

is analyzed using an IIR subband filterbank consisting of

one filter for each musical pitch. Subsequent processs-

ing results in one onset signal for each of the subbands,

where note onsets show up as prominent peaks. Finally, a

peak picking step is used to obtain a score-like representa-

tion of the audio signal, which consists of one note event

(p, t, s) for each note candidate of strength s detected in

subband p at onset time t. It is straightforward to convert

the score data to a similar format. In a second step, the

two data streams are synchronized by minimizing a suit-

able cost functional using an alignment technique based

on dynamic time warping (DTW). Here, the score data

is used as a kind of ground truth in that only those note

events extracted from the audio signal are considered that

have an explicit counterpart in the score data stream.

Symbolic data is frequently stored in the widely used

semi-symbolic MIDI format, which, in contrast to score

formats is capable of accurately representing onset posi-

tions of a particular performance. Fortunately, the latter

synchronization techniques may be adapted to the prob-

lem of MIDI-to-audio synchronization. The bottom part

of Fig. 4 illustrates this type of synchronization.

The score material considered in Müller et al. (2004)

was converted to the MIDI format and then synchronized

to actual piano performances. To make these results avail-

able to our SyncPlayer, we exported the synchronization

data to SyncFiles and indexed the audio recordings as de-

scribed in Section 3.

4.2 Text-to-Audio Synchronization

Currently, text-to-audio synchronization at the lyrics level

still requires manual interaction. To assist this process,

our framework provides the Sync File Maker plug-in. Ba-

sically, the plug-in allows the user to load a text file con-

taining lyrics data for a selected audio recording. During

playback, the user may then specify lyrics positions by

pressing keys on his keyboard at the point of their acous-

tic output. As this process is frequently very difficult due

to playback speed and rhythmic complexity of a particular

audio recording, we extended the plug-in by integrating

a time-scaling functionality. Using a sliding bar, the user

may specify an adequate playback speed. The plug-in then

outputs a slower version of the original audio recording

having the same perceptible pitch (i.e., we use to time-

scaling to suppress pitching effects). Our time-scaling

method is an adapted real-time version of the WSOLA-

method by Verhelst and Roelands (1993), which basically

consists of the follwing steps: the original signal is cut

into overlapping parts using a sliding window of a time-

varying step-size of s′1 ∈ [s1 − δ : s1 + δ] samples. The

resulting signal parts are then used to construct a new sig-

nal. To achieve time scaling, adjacent parts are overlapped

using a new fixed step size s2. In order to obtain an s-

times as slow version of the original signal, we choose

386

s2 := s · s1. To suppress audible artifacts, in each step a

local autocorrelation between the current signal part and

its local neighborhood within the original signal is used

to determine the latter “best fitting” s′1, i.e., we choose s′1
to maximize autocorrelation. Using fast convolution, we

designed an algorithm for performing this step faster than

in real time (Java-based on an 1.6 GHz Intel P4 platform).

Methods for automatically synchronizing music to

lyrics data constitute an upcoming field of research. A re-

cent approach by Wang et al. (2004) presents first results

for line-level based text-to-audio synchronization.

5 QUERY ENGINE

Many types of content-based retrieval like full-text-,

melody-, or score-based retrieval (see Clausen and Kurth

(2004)) allow for an exact localization of a given query

within a matching document. In the SyncPlayer scenario,

it is then possible to provide the user with an adequate

presentation of the queries’ occurence in the retrieved doc-

ument. In particular, we may use SyncPlayer’s MultiVis

module to display any of the matches while synchronously

playing back a high-quality audio recording of the match-

ing positions.

As it is quite natural for many non-expert users to for-

mulate queries by specifying fragments of the lyrics oc-

curing in a song, we integrated a prototypical text-based

query engine into the SyncPlayer framework.

Our technique for lyrics retrieval is term-based and

also uses inverted files as an index structure. In a pre-

processing step, we generate the inverted files from our

Sync Files S := (S1, . . . , SN): basically, for each term t,
the inverted file HS(t) contains all pairs (p, i) such that t
occurs as pth lyrics term within Sync File Si. Using in-

verted files, query processing may be performed using the

same type of intersection as in Eq. (1): a textual query

q := (t1, . . . , tk), which is a sequence of words (terms),

is then used to calculate the set of all matches

HS(q) :=
⋂k

j=1
HS(tj) − j. (2)

This yields all positions of occurrences of the query q
within the lyrics stored in the Sync Files. To account for

typing errors, we preprocess each query term tj and deter-

mine the set Tj of all terms in our inverted file dictionary2

that have a close edit distance to ti. Then, instead of only

considering the exact spelling tj by using HS(tj) in (2),

we consider the union ∪t∈Tj
HS(t) of occurrences of all

terms close to t. To account for word errors like inserted

or omitted words, we preprocess all word positions oc-

curring in (2) by a suitable quantization. This amounts

to replacing j by ⌊j/Q⌋ and each element (p, i) of an in-

verted file by (⌊pj/Q⌋, i) for a suitably chosen integer Q
prior to calculating the intersection (Q = 5 was used in

our tests). The latter yields a coarse approximation of the

set of all matching positions, which may then be refined

in a postprocessing step. There, we compare q with the

exact order of occurrence of all query terms and their ac-

tual proximity at the matching position, a process which

is very similar to Google’s proximity-based ranking.

2i.e., the set of all terms with an existing inverted file

Figure 5 shows the Lyrics Seeker plug-in for textual

queries (right). A query string can be entered at the top,

a list of ranked query results is displayed below. Lyrics

positions of matched query terms are highlighted. Upon

selecting a matching position, the MultiVis plug-in is

launched (left) and playback starts at the position of the

match. Note that also in this scenario legal reasons require

that a user has access to the actual audio recordings, i.e.,

the recordings have to be stored on the computer running

the SyncPlayer client.

To conclude this section we remark that it should be

possible to improve lyrics-based retrieval significantly by

using some elaborate text retrieval techniques such as

stemming, analysis of phrases or thesauri. As a particular

adaptation to lyrics-type data, it should moreover be ben-

eficial to consider some more Google-like ranking strate-

gies such as term occurrence at prominent places (such as

song title, chorus or hook line).

6 CONCLUSIONS AND FUTURE WORK

The proposed SyncPlayer framework constitutes a pow-

erful tool for accessing music-related contents in that it

combines different modalities like acoustic, graphical and

textual representations in a synchronous fashion. This be-

comes possible by suitably integrating elaborate methods

from music- and text-based retrieval with signal process-

ing techniques. We would like to stress that the current

version only constitutes the next step towards a framework

for integrated querying, display, and annotation of musi-

cal content. There are various interesting directions for

extending the proposed SyncPlayer framework as well as

the plug-in modules in future work:

• Extension of the query engine to support melody- or

general polyphonic score-based queries. For this we

plan to integrate our own retrieval algorithms in the

respective fields, see Clausen and Kurth (2004).

• Adaptation of audio matching techniques devel-

oped by Müller et al. (2005) to allow for version-

independent audio identification,

• Extension and integration of more elaborate algo-

rithms for automatic synchronization of music and

lyrics to audio recordings.

• Improvement of the Lyrics Seeker plug-in to incor-

porate advanced ranking mechanisms and concepts

for fault tolerant queries.

• Support text-based browsing functionality with syn-

chronous playback.

For using SyncPlayer in commercial or at least

“rights-critical” scenario, it would moreover be beneficial

to incorporate some kind of digital rights management.

Thus it could be possible to allow for streaming audio

recordings in a client-server setting. This is of particu-

lar interest in retrieval scenarios, where a user generally

wants to listen to his query results.

387

Figure 5: Lyrics Seeker plug-in: text-based query (right, top) and retrieval results (right, bottom). Left: SyncPlayer client

(top) and MultiVis plug-in (bottom), which is launched upon selection of a query result.

SOFTWARE AND DEMO

The client version of our SyncPlayer is available from our

webpage3. Note that for legal reasons we are generally un-

able to provide audio recordings for download. However,

to test full functionality of the MultiVis plug-in, the web

page offers some of our own recordings for free download.

REFERENCES

E. Allamanche, J. Herre, B. Fröba, and M. Cremer. Au-

dioID: Towards Content-Based Identification of Audio

Material. In Proc. 110th AES Convention, Amsterdam,

NL, 2001.

P. Cano, E. Battle, T. Kalker, and J. Haitsma. A Review

of Audio Fingerprinting. In Proc. 5th IEEE Workshop

on MMSP, St. Thomas, Virgin Islands, USA, 2002.

M. Clausen and F. Kurth. A Unified Approach to Content-

Based and Fault Tolerant Music Recognition. IEEE

Transactions on Multimedia, 6(5), Oct. 2004.

N. Hu, R. Dannenberg, and G. Tzanetakis. Polyphonic

audio matching and alignment for music retrieval. In

Proc. IEEE WASPAA, New Paltz, NY, October 2003.

F. Kurth, M. Müller, A. Ribbrock, T. Röder, D. Damm,

and C. Fremerey. A Prototypical Service for Real-Time

Access to Local Context-Based Music Information. In

ISMIR, Barcelona, Spain, 2004.

M. Müller, F. Kurth, and M. Clausen. Audio Matching via

Chroma-based Statistical Features. In ISMIR, London,

GB (submitted), 2005.

M. Müller, F. Kurth, and T. Röder. Towards an Efficient

Algorithm for Automatic Score-to-Audio Synchroniza-

tion. In ISMIR, Barcelona, Spain, 2004.

S. Pauws. CubyHum: a fully operational query by hum-

ming system. In ISMIR, Paris, 2002.

3http://www-mmdb.iai.uni-bonn.de/projects/syncplayer/

J. Pickens, J. P. Bello, G. Monti, T. Crawford, M. Dovey,

M. Sandler, and D. Byrd. Polyphonic Score Retrieval

Using Polyphonic Audio. In ISMIR, Paris, 2002.

C. Raphael. A hybrid graphical model for aligning poly-

phonic audio with musical scores. In ISMIR, Barcelona,

October 2004.

A. Ribbrock. Schnelle Algorithmen zur Konstellation-

ssuche in Multimediadaten. PhD thesis, Department of

Computer Science, University of Bonn, 2005, to appear.

F. Soulez, X. Rodet, and D. Schwarz. Improving poly-

phonic and poly-instrumental music to score alignment.

In ISMIR, Baltimore, 2003.

R. J. Turetsky and D. P. Ellis. Force-Aligning MIDI Syn-

theses for Polyphonic Music Transcription Generation.

In ISMIR, Baltimore, USA, 2003.

W. Verhelst and M. Roelands. An overlap-add technique

based on waveform similarity (WSOLA) for high qual-

ity time-scale modification of speech. In Proc. ICASSP,

volume 2, pages 554–557, 1993.

A. Wang. An Industrial Strength Audio Search Algorithm.

In ISMIR, Baltimore, 2003.

Y. Wang, M.-Y. Kan, T. L. Nwe, A. Shenoy, and J. Yin.

LyricAlly: Automatic Synchronization of Acoustic

Musical Signals and Textual Lyrics. In MULTIMEDIA

’04: Proceedings of the 12th annual ACM international

conference on Multimedia, pages 212–219, New York,

NY, USA, 2004. ACM Press.

H. Wolfson and I. Rigoutsos. Geometric Hashing: An

Overview. IEEE Computational Science and Engineer-

ing, 4(4):10–21, 1997.

388

