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ABSTRACT

Source separation techniques like independent component

analysis and the more recent non-negative matrix factor-
ization are gaining widespread use for the monaural sep-

aration of individual tracks present in a music sample.

The underlying principle behind these approaches char-
acterises only stationary signals and fails to separate non-

stationary sources like speech or vocals. In this paper, we

make an attempt to solve this problem and propose so-
lutions to the extraction of vocal tracks from polyphonic

audio recordings. We also present techniques to iden-

tify vocal sections in a music sample and design a clas-
sifier to perform a vocal–nonvocal segmentation task. Fi-

nally, we describe an application wherein we try to extract

the melody from the separated vocal track using existing
monophonic transcription techniques. The experimental

work leads us to the conclusion that the quality of vo-

cal source separation, albeit satisfactory, is not sufficient
enough for further F0 analysis to extract the melody line

from the vocal track. We identify areas that need further
investigation to improve the quality of vocal source sepa-

ration.

Keywords: Blind source separation, independent com-
ponent analysis, non-negative matrix factorization, vocal–

nonvocal discrimination, melody extraction.

1 INTRODUCTION

Analysing an auditory scene and identifying the various

sounds present in it has, for a long time, been the primary

focus of the research field called computational auditory
scene analysis (CASA). Most of the approaches in this

field draw inspiration from the works of Bregman (1990)
who describes a set of psychoacoustic grouping cues that

could be used in the analysis and segregation of individ-

ual sources present in a mixture of sounds using signal
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processing techniques. A significant amount of work in

the field of CASA can be found in the doctoral theses

of Mellinger (1991), Cooke (1991), Brown (1992), Ellis
(1996) and Martin (1999).

The works of Attneave (1954) and Barlow (1959) re-

vealed the fact that redundancy reduction is an inherent
mechanism taking place in the sensory organs and that the

human brain analyses an input scene (for example, visual)

by exploiting the statistical regularities present in it. In
recent times, a lot of effort is being expended in sound

source separation using statistical techniques like princi-

pal component analysis (PCA) and independent compo-
nent analysis (ICA) (Comon, 1989) for redundancy re-

duction mostly inspired by the works of Casey and West-
ner (2000) and Smaragdis (2001). It is interesting to note

that there are two parallel strands of research sharing the

same goals, one of them attempting to solve the source
separation problem using classical signal processing tech-

niques and pyschoacoustic studies while the other trying

to achieve the same using statistical techniques. A formal
analysis and comparison of the results obtained from these

research fields is yet to be done.

In this paper, we focus on a particular problem that
arises when employing statistical techniques like ICA for

monaural source separation, which is the inability of these

models to separate non-stationary sources. Attempts to
solve this problem have been made by Casey and West-

ner (2000) and Smaragdis (2004b). Smaragdis proposes

an extension to non-negative matrix factorization (NMF)
(Lee and Seung, 2001) called non-negative matrix decon-

volution in which an individual non-stationary source is
characterised by a set of time-dependent spectral bases.

This is unlike the basic model that characterises each

source using a single spectral basis and thus fails to sepa-
rate non-stationary sources that necessarily should be rep-

resented using a time-varying spectral basis. Casey as-

sumes that non-stationary sources remain stationary for
small intervals of time and proceeds with the usual anal-

ysis in its basic setting. He then proposes a cluster-

ing mechanism to finally group the resulting components
(spectral bases) over time. In this paper, we identify the

ramifications of using statistical techniques like ICA or

NMF in their basic setting while trying to separate the
vocal track from polyphonic music samples with a single

voice. We propose specific solutions to handle the separa-
tion of vocals from a given sound mixture.
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An important application of vocal source separation is

the extraction of melody. Based on the assumption that

vocals carry the main melody, one could apply mono-
phonic transcription techniques to extract the melody from

the separated vocal track. This is an enticing application

as monophonic transcription is much more simpler when
compared to polyphonic music transcription and there-

fore the harder problem of extracting melody directly us-

ing polyphonic transcription techniques is bypassed. The
results of this work could also be used in the design

of query-by-humming systems. Existing systems try to

build a database of melodies by collecting annotations in
the MIDI format or by manually transcribing polyphonic

music samples. This database is then used for making
comparisons with the input query. Vocal source separa-

tion from polyphonic recordings and hence the extracted

melody could therefore be used in the automatic creation
of melody databases.

This paper is organised as follows: In Section 2, we

present a vocal–nonvocal discrimination module and out-
line the principles behind monaural source separation us-

ing statistical techniques. In Section 3, we identify prob-

lems encountered when trying to separate non-stationary
sources like vocals and propose solutions to mitigate these

problems. Section 4 deals with the experimental work.

We point to directions for future work in Section 5. Sec-
tion 6 concludes the paper.

2 MONAURAL SOURCE SEPARATION
OF VOCALS

The different stages in the design of a source separation

system for vocals are shown in Figure 1. The last mod-
ule is our proposed solution to separate non-stationary

sources and we defer its description until the next section.

The rest of the stages are described below.
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Figure 1: Building blocks of the vocal source separation
system

2.1 Vocal–nonvocal Discrimination

Since we are interested only in the separation of vocals,
it is essential to have a pre-processing stage that performs

a vocal–nonvocal discrimination task to filter out sections

that contain only the nonvocal, instrumental tracks. We
identified three features as useful candidates in the design

of a vocal–nonvocal classifier. Mel-frequency cepstral co-

efficients (MFCC) (Davis and Mermelstein, 1980) were
used in the design of a classifier to identify vocals and

instrumental sections in a music sample (Maddage et al.,
2003). Perceptual linear predictive coefficients (PLP) in-

troduced by Hermansky (Hermansky, 1990) were used by

Berenzweig et al. (2002) to train a neural network clas-

sifier for distinguishing vocals from instrumental music.

Log frequency power coefficients (LFPC) were shown to
be a useful feature in discriminating vocals with instru-

ments from pure instruments (Nwe and Wang, 2004). In

this paper, we report experiments using different com-
binations of these features and train two classifier mod-

els; namely neural networks and support vector machines.

Based on the experimental results, we arrive at the conclu-
sion that a combination of all the aforementioned features

produces the best classifier performance. The experimen-

tal results of this module also paved way to solutions for
the separation of non-stationary vocal sources that will be-

come clear in Section 3.

2.2 Monaural Source Separation: Basic Idea

The underlying principle behind these approaches (Casey

and Westner, 2000; Smaragdis, 2001) is to apply re-

dundancy reduction techniques on the time–frequency
representation of signals leading to the separation of the

individual sources present in the input mixture of sounds.

We briefly outline the important steps.

Step 1: The first step is to project the input signal

s(t) into the time–frequency plane using an invertible
transform ψ like short time Fourier transform or wavelets,

giving rise to an n × k matrix F , where n denotes the

number of frequency channels and k is the number of
time frames:

ψ : s(t) → F . (1)

Step 2: The next step is to whiten the matrix F using

PCA; this results in a matrix with uncorrelated rows. The

dimension of this matrix is reduced by retaining only those
rows that carry maximal information in terms of their vari-

ance contribution. The reduced dimension r is determined

by using a threshold φ ∈ [0, 1] and the following inequal-
ity: ∑r

i=1 ei∑n
i=1 ei

≥ φ , (2)

where ei are the eigenvalues of the covariance matrix of

F . The resulting matrix Fw is of dimension r × k where
r < n. This step also gives rise to a whitening matrix

W of dimension r × n and its pseudo-inverse called the

dewhitening matrix W+.

Step 3: The next step is to exploit the higher-order

statistics of the matrix Fw using ICA resulting in an r× k
matrix G with independent rows. We call this matrix as

the matrix with time-varying gain of the spectrum of the
individual sources in the row vectors. The ICA operation

gives rise to a transformation matrix I of dimension r× r.
Multiplying the dewhitening matrix W+ with I gives rise
to a mixing matrix B of dimension n× r:

B = W+ · I . (3)

We call this matrix the matrix with the spectral bases of
the individual sources in column vectors.
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The stages described so far have resulted in two

important matrices that will be used for the resynthesis

of the individual sources in the next step. They are the
matrixB with r spectral bases and the matrixG that carry

the time-varying gain of the individual spectral bases.

Step 4: This step involves the reconstruction of the

sources present in the original input mixture by taking the

outer product of the individual column and row vectors of
B and G respectively. Inverse transform of the resulting

matrices gives the individual sources in the time-domain.

That is,
F i = b

i ∗ g
i and

ψ−1 : F i → si(t) ,
(4)

where the superscript i is used to index the individual

sources.

2.3 ICA and NMF

Non-negative matrix factorization (NMF) introduced by

Lee and Seung (2001) operates on simple non-negativity
constraints to arrive at reduced-rank factors of a given ma-

trix, and has recently been used for monaural source sep-

aration of acoustic inputs (Smaragdis, 2004a,b). There is
psychological and physiological evidence for parts-based

representations in the brain, and NMF is one algorithm
that tries to emulate this process (Lee and Seung, 1999).

This makes it a suitable candidate to discover the indi-

vidual objects (parts) present in an acoustic input. NMF
could be seen as a replacement to the ICA step described

in the previous section. An important decision lies in

choosing the right value for the parameter r that deter-
mines the rank of the factorization. This could be done

using the same procedure that was adopted before to per-

form dimensionality reduction of the uncorrelated time–
frequency matrix after PCA as shown in Equation 2.

3 SEPARATION OF NON-STATIONARY
SIGNALS

A major shortcoming of the presented approaches to
monaural source separation is that each source is charac-

terised by a single stationary spectral basis (column vector
ofB) and only its gain varies with time (row vector ofG).

This implies that the current setting will not be able to

separate non-stationary signals that should necessarily be
described by more than a single spectral basis as shown

below:

Bi = [bi
1,b

i
2, ...,b

i
j ], B

i ⊂ B ;

Gi = [gi
1,g

i
2, ...,g

i
j ], G

i ⊂ G ;

F i = Bi ∗Gi and

ψ−1 : F i → si(t) ,

(5)

where j < r indicates the number of components needed

to characterise an individual non-stationary source i, bi
1..j

are j column vectors and g
i
1..j are j row vectors. Com-

paring the above Equation with Equation 4, we note that

for non-stationary sources, we need to consider a set of
column vectors of B and a set of row vectors of G for the

resynthesis. The ramification of this shortcoming is that

the vocal source tends to get distributed among a set of

bases where each one of them contributes to the spectral

composition of the entire vocal source. It is not possible
to arrive at a single component describing the vocal track

in its entirety unlike other stationary sources.

To illustrate the problem of separating non-stationary
sources, we consider two mixtures. The first one (sample

ID: a) is the drum track sequence used in Smaragdis

(2001) that has three sources; namely, bass drum, snare
drum and hi-hat, whose spectrum remains fairly constant

over time. The second example (sample ID: b) is a

mixture consisting of a vocal track with a guitar accom-
paniment. We sample the signal at 22.05 kHz, compute

their short time Fourier transform (STFT) (512 frequency
bins, Hamming window of length 128 samples, hop size

of 64 samples) and perform PCA and dimensionality

reduction on the resulting matrix. The results are shown
in Table 1 in which the third column shows the reduced

dimension of the matrix i.e., the number of retained

components and the last column shows the amount of
information in terms of the variance contributed by the

corresponding eigenvalues. Since there are only three

Table 1: Results of dimensionality reduction using PCA

on the STFT matrix of sound mixtures with stationary and
non-stationary sources

Sample ID Size Number of Variance(%)

(in s) components (r)

a 3 3 93.89

b 3 2 72.25
b 3 7 94.9

sources in the drum track mixture, we retained only three
components after PCA and they corresponded to 94% of

the information content of the STFT matrix which might

be sufficient to arrive at a satisfactory separation. But
if we do the same for the second example that consists

of vocals and retain only two components (vocal and

guitar), we observe that they correspond to only 72%
of the information content. Throwing away a lot of

information in this way would definitely hinder the results
of separation. On the other hand, we observe that we need

a total of seven components (instead of only two) to retain

95% of the information as shown in Table 1. This is due
to the non-stationary nature of the vocals that resulted in

the vocal spectra getting distributed among a multitude

of components. When this is the case, there has to be
a mechanism by which it should be possible to identify

and group these distributed components to form the final

individual vocal source. This is a non-trivial task and we
make an attempt to solve this problem by proposing a

couple of solutions:

Solution 1: One possible way to identify the dis-

tributed vocal components is to reuse the vocal–nonvocal

classifier described in an earlier section. We note that
the classifier’s input is a feature vector consisting of

a combination of MFCC, LFPC and PLP coefficients
computed from the spectrum. We also note that one

of the outputs from the source separation stage is the
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matrix B that contains the spectra of the sources. It is

therefore trivial to compute the same feature vector from

the individual column vectors of the matrix B as shown
below:

ϕ : b → bc,b ∈ ℜn,bc ∈ ℜp , (6)

where ϕ is a mapping from the spectral basis b of

dimension n (spectral dimension) to the feature vector
bc of dimension p (number of coefficients in MFCC,

PLP and LFPC). The individual feature vectors bc can be

presented as inputs to the classifier to identify as being a
vocal or a nonvocal component. It is now a simple task

to combine all the components that were classified as

vocals resulting in a grouping of all the distributed vocal
components. This would eventually help us to arrive

at matrices Bv and Gv (see Equation 5) that could be
used to compute the individual vocal source v in the time

domain.

Solution 2: Another solution is to rely on unsuper-

vised learning algorithms to cluster the spectral bases

in the matrix B into two groups (vocal and nonvocal).
Instead of using the spectra directly as feature vectors

to the clustering algorithm, we could once again use

the mapping ϕ in Equation 6 to compute features with
MFCC, LFPC and PLP coefficients. Since these coef-

ficients are able to distinguish well between vocals and

nonvocals, they provide a better parameterization of the
spectrum. The resulting feature vector could also be

augmented using additional information available in the
matrix G that consists of the time-varying gain of the

spectra, to provide more discriminatory power. Virtanen

(2003) mentions a similar approach to group multiple
components per source using the independence of the

time-varying gain.

We validate the presented solutions in the experimen-

tal section of this paper.

4 EXPERIMENTS AND RESULTS

4.1 Vocal–nonvocal Discrimination

A random collection of 40 minutes of popular music dis-

tributed uniformly between pure instrumental and vocals
(with accompaniment) was used for the experiments. The

entire database comprised of 240 audio files of around 5

seconds each with vocals and 80 files of around 15 sec-
onds each with pure instrumentals. The samples were

carefully hand-picked to be representative of both male as

well as female playback singers from Eastern and West-
ern music. All the audio files were 16-bit mono and sam-

pled at the rate of 22.05 kHz. The first step was to com-

pute the short time Fourier transform (STFT) of the signal
using a window function. The window size was set to

≈ 23 ms and the amount of overlap was half of the win-

dow size. Candidate features like PLP, MFCC and LFPC
were calculated from the STFT of the signal on a frame-

by-frame basis resulting in a matrix representation of the
signal with feature vectors in the columns. Finally, an av-

erage of 15 analysis frames was computed to reduce the

computational load. Each resultant feature vector, thus,

represented an analysis frame of length ≈ 184 ms.

4.1.1 Using Neural Networks

We trained a neural network using different combinations

of the features namely MFCC, PLP and LFPC. The archi-
tectural details of the network are given in Table 2 and the

network’s performance for various combinations of fea-

tures is given in Table 3.

Table 2: Neural network architectural details

No. of inputs 13 MFCC and/or 12 LFPC

and/or 39 PLP
No. of outputs 2

No. of hidden layers 1
Training algorithm Resilient backpropagation

with early-stopping

Activation function Sigmoidal
Evaluation 10-fold cross-validation

Table 3: Results of the vocal–nonvocal classifier using
neural networks

Frame-based

classification

efficiency (%)

Before After

Feature smoothing smoothing

PLP 69.25 82.02

MFCC 67.68 74.94

LFPC 68.12 73.09
PLP+MFCC 73.11 81.55

PLP+LFPC 75.25 82.35

MFCC+LFPC 71.69 78.65
PLP+LFPC+MFCC 77.24 84.87

It can be seen from the results that combinations of

features give better performance when compared to in-
dividual features. The best performance of 77.24% effi-

ciency resulted when all the features were used as inputs

to the network. The last column in Table 3 is the result of
a simple smoothing operation on the network output using

an autoregressive low-pass filter.

4.1.2 Using Support Vector Machines

Experiments using neural networks led to the conclusion

that the network’s best performance resulted when using
a combination of PLP, MFCC and LFPC features. There-

fore, the same features were used to train an SVM with

an RBF kernel. An appropriate combination of the ker-
nel parameter σ and the penalty parameter C (Burges,

1998) should be made. The optimal values were found

using cross-validation by repeating the experiments on
various combinations of σ and C. We first performed

a coarse grid search in the region C = 216, 214, ..., 2−4

and σ = 24, 22, ..., 2−10. The classifier’s frame-based er-

ror rate was computed using 5-fold cross-validation. This
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was followed by a fine grid search in regions of best per-

formance to arrive at the final values for the parameters

σ and C. The grid search is a computationally intensive
operation, and therefore only 30% of the original database

comprising of 40 minutes of audio recordings was used for

the model selection. The optimal choice of C and σ was
finally fixed at 28 and 22 respectively (see Table 4). The

Table 4: Results of the vocal–nonvocal classifier using

SVM

Features PLP + LFPC + MFCC

Kernel RBF

Parameter: C 28

Parameter: σ 22

Frame-based classifi-
cation efficiency (%)

93.47

classifier was trained again with a larger database com-

prising 30 minutes of audio recordings. We arrived at a

generalization error of 6.53% that was computed using 5-
fold cross-validation.

4.2 Vocal Source Separation

A major problem encountered while performing source

separation experiments is evaluation of the quality of

separation of the individual sources. It is difficult to
come up with a good measure that describes the quality

of source separation and that adheres well to the auditory
perception due to information loss in the analysis process.

In our case, the evaluation problem is mitigated to some

extent with an application that tries to extract the melody
from the separated monophonic vocal track. This is

because we decided to perform experiments on excerpts

from the ISMIR 2004 melody extraction contest1 that
had music samples with annotated vocals. This helped us

to make comparisons of the extracted melody with the

existing annotations that served as a ground-truth. But for
the vocal source separation, we only present an analytical

description of the experimental results.

Setup: The source separation was performed using

ICA2 and NMF in the MATLAB environment. Some
of the experimental details are shown in Table 5. The

Table 5: Experimental details of vocal source separation

Sample ID Size Number of Variance (%)

(in s) components (r)

1 6.2 10 96.17

2 3.5 10 98.19

3 5.3 9 98.19
4 5 9 98.12

5 4.2 8 98.36

6 5.1 9 98.17

third column refers to the number of components that

1http://ismir2004.ismir.net/melody contest/results.html
2http://www.cis.hut.fi/projects/ica/fastica/

were retained after the dimensionality reduction using

PCA and were further analysed using ICA. In case of

NMF, this value determined the rank r of the matrix
factorization. The value of r was chosen such that

the PCA decomposition is overcomplete resulting in

maximal retained information (Uhle et al., 2003). For the
experiments, r was determined by

r = min
{
rmax,min

{
r|

∑
r

i=1
ei∑

n

i=1
ei

≥ φ

}}
, (7)

where φ was set to 0.98 (i.e., 98% variance) and rmax

was set to a value of 10 to make sure that we do not

end up with too many components that might affect

the identification and grouping of vocal components in
the later stage. The next column in Table 5 shows the

information content of these components in terms of the

variance contribution of the corresponding eigenvalues.
All the excerpts were sampled at a rate of 22.05 kHz and

the short time Fourier transform (512 frequency bins,

Hamming window of length 128 samples, hop size of 64
samples) was used as the time–frequency representation.

We refrained from using wavelets even though this is a

better time–frequency representation of the signal. This is
because wavelet coefficients are not always non-negative

and therefore cannot be used for source separation using

NMF.

Validation of proposed solutions: Unfortunately,
reusing the vocal–nonvocal classifier did not yield satis-

factory results. The reason could be that this classifier

was trained to operate on inputs that were computed from
spectra of clean signals. By this we mean spectra that

provided a holistic parameterisation of the inputs. But we

note that the output of the source separation algorithm
results in vocal source components with distributed and

noisy spectra, and therefore the classifier was unable to

operate on these inputs.
Clustering the parameterised spectra produced per-

ceptually satisfactory results. In most of the test cases,

we observed that the two output components from the
clustering algorithm had, in one of them, the vocals

as predominant source. We also noted that in a few
examples, the quality of separation was superior when

we augmented the feature vector bc with the information

present in the corresponding time-varying gain g. In
our experiments, we presented this information directly

without extracting other information — for example, that

uses the independence of the time-varying gains present
in G as was done in Virtanen (2003). In most of the

examples, we used only the parameterised spectral bases

obtained from the matrix B and we plan to investigate on
extracting any other relevant information from the matrix

G in the future.

Observations and analysis: We analyse a particu-

lar example in detail. The music sample is a 3.5 s excerpt

consisting of a vocal track accompanied with guitar. A
total of 10 components were retained for analysis that

carried 98.19% of the information. It is not surprising
to arrive at 10 components despite the fact that only

two tracks were present in the music sample. This is
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due to the non-stationary nature of the vocal track, the

spectra of which were distributed among a multitude of

components. We performed a source separation using
NMF (r = 10) and arrived at two matrices that had 10

spectral bases and their corresponding time-varying gains.

We parameterised the spectra using MFCC, LFPC, PLP
coefficients and the time-varying gain and clustered the

resulting feature vectors. This resulted into two groups

with 7 and 3 components. The individual spectrograms
were determined using Equation 4. Inverse transform

of these spectrograms gave rise to both the individual

sources in the time domain. From Figure 2, we observe
that the guitar track (spikes) is clearly separated from the

vocal track. The same can be observed from Figure 4 in
which the formants are clearly visible. In Figure 5, we

observe the spectra of the guitar in the low frequency

range that is clearly missing from Figure 4 after careful
inspection. The vocal track was constructed from the

Vocal + Guitar

Vocal

Guitar

Figure 2: Vocal source separation results. The waveforms

depict the energy of the signals in the time domain and

scaled to fall in the range [−1,+1]
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Figure 3: Spectrogram of the mixture shown in Figure 2

with vocal and guitar sources
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Figure 4: Spectrogram of the extracted vocal from the

mixture shown in Figure 2
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Figure 5: Spectrogram of the extracted guitar from the

mixture shown in Figure 2

cluster that had 7 components and the guitar track from

the one that had 3 components. An interesting observation
is that the guitar track had remnants of vocals present in

it (seen obscurely in Figure 5) but the instrument was

clearly dominant. This is also the reason why the cluster
with the guitar track had 3 components instead of just 1.

Nevertheless, the separation was satisfactorily clean (the

word clean is used subjectively as a result of listening
tests) and one could easily distinguish the vocal track

from the guitar track by listening to these tracks.

We present a few general observations from all the
experiments. In most of the cases NMF was found to

produce qualitatively better separation of the vocal source

when compared to ICA. One possible reason for ICA re-
sulting in poor results when compared to NMF could be

the independence assumptions that might not be precisely

true for the application at hand (Virtanen, 2004). On the
other hand, NMF imposes only the less stringent non-

negativity constraints.
In all the experiments, the input signal was band-pass

filtered in the range of 100 Hz and 3000 Hz as most of
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the energy in the singing voice lies in this range. Due

to this, we were able to remove the high frequency in-

struments and only those instruments whose spectra were
falling in the singing voice range remained unseparated.

This helped a lot in further stages of the analysis. Most

importantly, we observed that the number of components
(r) retained for analysis after the PCA stage went down

and this proved to be very useful when we were trying to

group the components into vocals and nonvocals.
As already stated, the quality of the separation was as-

sessed subjectively through listening tests. In most of the

cases, both the components that resulted from the cluster-
ing stage had remnants of the nonvocal sections of the in-

put mixture thereby not resulting in a perfect separation of
vocal and nonvocal tracks. But only one of them had the

vocal track predominant in it whose energy was sufficient

enough for perceiving it as a vocal track.

4.3 Monophonic Transcription using MAMI

We supplement the source separation results by trying to
extract the melody line from the separated monophonic

vocal track. The vocal tracks obtained from the previous

stage were transcribed using MAMI, which is a system
designed for the monophonic transcription of singing

voices (Mulder et al., 2003). The output from this

stage is a sequence of notes with their F0 estimates and
onset/offset values or a MIDI file with the melody. For

comparing the results with the annotated melodies, we

performed simple computation of melodic similarities
using the MIDI toolbox (Eerola and Toiviainen, 2004).

The toolbox provides functions to calculate the distance

(or similarity) between two melodies using a user-defined
representation (distribution of pitch classes and note

durations, or melodic contour) and a distance measure

(taxicab, Euclidean, cosine). The similarity can be scaled
to range between 0 and 1, with 1 indicating perfect

similarity. The results are shown in Table 6 where the
numbers indicate the similarities on a scale of 0 to 1 using

taxicab norm as the distance measure.

Table 6: Results of the melodic similarity computations

Sample ID Similarity measure

Pitch Durational

distribution distribution Contour

1 0.16 0.5727 0.325

2 0.2371 0.9048 0.6188

3 0.3781 0.3333 0.355
4 0.6105 0.7 0.4

5 0.3096 0.3333 0.5050

6 0.4927 0.6825 0.3563

Observations and analysis: The results are admit-

tedly hazy. The melodic similarity comparisons based

on the durational distribution of notes produced the best
results with an average of 58.7% whereas the comparisons

based on pitch distribution and contour produced poor
results with an average of 36.5% and 42.7% respectively.

This should not come as a surprise owing to the fact that

there is information loss mostly the pitch information

during the analysis process of the source separation

stage. We performed the melody extraction experiments
only to get a quantitative indication of the quality of the

separated vocal track. There is still a long way to go

before one is really able to extract the melody line using
these approaches and whose results could be compared

to the existing melody extraction techniques that uses

complex F0 estimation procedures.

5 FUTURE WORK

Our experiments provide a nice starting point to investi-

gate more complex approaches to grouping the various

components that arise from the source separation stage
into vocals and non-vocals. Our primary intention was to

focus on techniques that allow us to identify and group the
vocal track that appears distributed from the source sepa-

ration algorithm. It might be difficult in the current set-

ting of monaural separation to arrive at the vocal source
in a single component. Trying to influence the separation

algorithm (ICA or NMF) by the usage of prior informa-

tion like vocal source models might not be of much help
in this case, as anyhow we cannot obtain time-dependent

spectra at the output. An interesting step forward would

be to use techniques like non-stationary ICA (Everson and
Roberts, 1999) wherein the mixing matrix evolves over

time to give rise to time-dependent spectra that would suf-

fice to characterise non-stationary signals. Another inter-
esting direction would be to revisit our proposed solution

to use a vocal–nonvocal classifier as a means to identify

and group vocal component spectra. Reusing the model
of the classifier described in this paper did not work, but

one could possibly design a robust classifier that is an ac-
curate model of instruments only and that treats any other

inputs as don’t-care. This classifier would then classify

the distributed, noisy vocal spectra as negative inputs and
classify positively only the spectra of the instruments. We

could finally group all the negatively classified inputs to

determine the vocal source.

6 CONCLUSIONS

Monaural source separation using statistical techniques

for redundancy reduction is gaining widespread use in the

research community. The drawbacks of these approaches
in separating non-stationary signals from sound mixtures

were identified and we proposed solutions to handle the

non-trivial problem of separating vocal tracks from poly-
phonic music samples. Subjective evaluation of the exper-

imental work indicated that the results are promising. We
also presented an application wherein we made an attempt

to extract the melody from the separated monophonic vo-

cal track that also served as a quantitative indicator of the
quality of the source separation. We also presented ex-

periment work on discriminating vocal and nonvocal seg-

ments present in a music sample and arrived at encourag-
ing results.

343



REFERENCES

F. Attneave. Some informational aspects of visual percep-

tion. Psychological Review, 61(3):183–193, 1954.

H. B. Barlow. Sensory mechanisms, the reduction of

redundancy, and intelligence. In The Mechanisation

of Thought Processes, pages 535–539. London: Her

Majesty’s Stationery Office, 1959.

A. Berenzweig, D. Ellis, and S. Lawrence. Using voice

segments to improve artist classification of music. In

Proc. AES-22 International Conference on Virtual, Syn-

thetic and Entertainment Audio, Espoo, Finland, June

2002.

A. S. Bregman. Auditory Scene Analysis: The Perceptual

Organization of sound. MIT Press, Cambridge, MA,

1990.

G. J. Brown. Computational auditory scene analysis: A

representational approach. PhD thesis, Department of
Computer Science, University of Sheffield, 1992.

C. J. C. Burges. A tutorial on support vector machines
for pattern recognition. Data Mining and Knowledge

Discovery, 2(2):121–167, June 1998.

M. Casey and A. Westner. Separation of mixed audio

sources by independent subspace analysis. In Proceed-

ings of the International Computer Music Conference,
Berlin, August 2000.

P. Comon. Independent component analysis – a new con-

cept? Signal Processing, 36:287–314, 1989.

M. P. Cooke. Modeling auditory processing and organi-

sation. PhD thesis, Department of Computer Science,
University of Sheffield, 1991.

S. B. Davis and P. Mermelstein. Comparison of parametric
representations for monosyllabic word recognition in

continuously spoken sentences. IEEE Transactions on

Acoustics, Speech, and Signal Processing, 28(4):357–
366, 1980.

T. Eerola and P. Toiviainen. MIR in Matlab: The MIDI
toolbox. In Proc. 5th International Conference on Mu-

sic Information Retrieval, Barcelona, Spain, October

10–14 2004.

D. Ellis. Prediction-driven computational auditory scene

analysis. PhD thesis, Department of Electrical Engi-
neering and Computer Science, Massachusetts Institute

of Technology, 1996.

R. M. Everson and S. J. Roberts. Non-stationary indepen-

dent components analysis. In Proc. International Con-

ference on Artificial Neural Networks, pages 503–508,
Edinburgh, 1999.

H. Hermansky. Perceptual linear predictive (PLP) analysis
for speech. Journal of Acoustic Society of America, 87

(4):1738–1752, 1990.

D. D. Lee and H. S. Seung. Learning the parts of objects

by non-negative matrix factorization. Nature, 401:788–

791, 1999.

D. D. Lee and H. S. Seung. Algorithms for non-negative

matrix factorization. In Advances in Neural Informa-

tion Processing Systems 13, pages 556–562. MIT Press,

Cambridge, MA, 2001.

N. C. Maddage, C. Xu, and Y. Wang. A svm-based classi-

fication approach to musical audio. In Proc. 4th Inter-

national Conference on Music Information Retrieval,
USA, October 26–30 2003.

K. D. Martin. Sound-Source Recognition: A Theory

and Computational Model. PhD thesis, Department

of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, 1999.

D. K. Mellinger. Event formation and separation in musi-

cal sound. PhD thesis, Department of Music, Stanford
University, 1991.

T. D. Mulder, J. P. Martens, M. Lesaffre, M. Leman, B. D.

Baets, and H. D. Meyer. An auditory model based tran-
scriber of vocal queries. In Proc. 4th International Con-

ference on Music Information Retrieval, USA, October

26–30 2003.

T. L. Nwe and Y. Wang. Automatic detection of vocal
segments in popular songs. In Proc. 5th International

Conference on Music Information Retrieval, Barcelona,

Spain, October 10–14 2004.

P. Smaragdis. Redundancy Reduction for Computational

Audition, a Unifying Approach. PhD thesis, Media Lab-

oratory, Massachusetts Institute of Technology, May
2001.

P. Smaragdis. Discovering auditory objects through non-

negativity constraints. In Proc. Workshop on Statistical

and Perceptual Audio Processing, Jeju, Korea, October

2004a.

P. Smaragdis. Non-negative matrix factor deconvolution;

extraction of multiple sound sources from monophonic
inputs. In Proc. 5th International Conference on Inde-

pendent Component Analysis and Blind Signal Separa-

tion, Granada, Spain, September 22–24 2004b.

C. Uhle, C. Dittmar, and T. Sporer. Extraction of drum

tracks from polyphonic music using independent sub-

space analysis. In Proc. 4th International Symposium

on Independent Component Analysis and Blind Signal

Separation, Nara, Japan, April 2003.

T. Virtanen. Sound source separation using sparse coding
with temporal continuity objective. In Proc. Interna-

tional Computer Music Conference, Singapore, 2003.

T. Virtanen. Separation of sound sources by convolu-

tive sparse coding. In Proc. Workshop on Statistical

and Perceptual Audio Processing, Jeju, Korea, October

2004.

344




