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ABSTRACT 

This paper describes a method for melody detection in 
polyphonic musical signals. Our approach starts by ob-
taining a set of pitch candidates for each time frame, with 
recourse to an auditory model. Trajectories of the most 
salient pitches are then constructed. Next, note candi-
dates are obtained by trajectory segmentation (in terms of 
frequency and pitch salience variations). Too short, low-
salience and harmonically related notes are then elimi-
nated. Finally, the notes comprising the melody are ex-
tracted. This is the main topic of this paper. 

We select the melody notes by making use of note sa-
liences and melodic smoothness. First, we select the 
notes with highest pitch salience at each moment. Then, 
by the melodic smoothness principle, we exploit the fact 
that tonal melodies are usually smooth. Thus, long music 
intervals indicate the presence of possibly erroneous 
notes, which are substituted by notes that smooth out the 
melodic contour.  

Finally, false positives in the extracted melody should 
be eliminated. To this end, we remove spurious notes 
that correspond to abrupt drops in note saliences or du-
rations. Additionally, note clustering is conducted to 
further discriminate between true melody notes and false 
positives.  
 
Keywords: Melody detection, melodic smoothness, fea-
ture extraction, note clustering 

1 INTRODUCTION 

Query-by-humming (QBH) is a particularly intuitive way 
of searching for a musical piece, since melody humming 
is a natural habit of humans. This is an important re-
search topic in an emergent and promising field called 
Music Information Retrieval (MIR). Several techniques 
have been proposed in order to attain that goal, e.g., [1]. 
However, this work is presently restricted to the MIDI 
domain, which places important usability questions. In 
fact, usually we look for recorded songs, which can be 

obtained from CDs or are stored in audio formats such as 
mp3. Additionally, in musical pieces in the MIDI format, 
the melody is usually available in a separate channel. The 
main issues are, then, to extract the notes from the 
hummed query (a well-known monophonic pitch extrac-
tion problem) and to match the query to the melody (an 
information retrieval problem).  

On the other hand, querying “real-world” polyphonic 
recorded musical pieces requires the analysis of poly-
phonic musical waveforms. This is a rather complex task 
since many types of instruments can be playing at the 
same time, with severe spectral interference between 
each other. So far, only little work has been conducted 
to tackle the problem of melody detection in polyphonic 
audio, e.g., [2, 3, 4, 5]. Additionally, most of the work is 
only concerned with the extraction of melodic pitch 
lines, rather than melody notes. 

In our approach, we put the focus on the melody, no 
matter what other sources are present. Thus, we base our 
strategy in two main assumptions that we designate as 
the “salience principle” and the “melodic smoothness 
principle”. By the salience principle, we assume that the 
melody notes are, in general, salient in the mixture (i.e., 
in terms of their intensity). As for the melodic smooth-
ness principle, we exploit the fact that note frequency 
intervals tend, generally, to be small. Finally, false notes 
present in the obtained melody are deleted by setting out 
the ones that correspond to abrupt salience or duration 
decreases and by performing note clustering to further 
separate true melody notes from false positives. 

2 MELODY DETECTION SYSTEM 

Our melody detection algorithm comprises five stages, as 
illustrated in Figure 1. The general strategy was de-
scribed previously, e.g., [5] and, thus, only a brief pres-
entation is provided here, for the sake of completeness. 
New improvements to the melody extraction stage are 
described in more detail. 
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Figure 1. Melody detection system overview. 

In the Multi-Pitch Detection (MPD) stage, the objec-
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tive is to capture the most salient pitch candidates, which 
constitute the basis of possible future notes. We perform 
pitch detection in a frame-based analysis, with a 46.44 
ms frame length and a hop size of 5.8 ms. For each ob-
tained pitch, a pitch salience is computed, which is ap-
proximately equal to the energy of the corresponding 
fundamental frequency. Our approach is based on 
Slaney and Lyon’s auditory model [6]. 

Multi-Pitch Trajectory Construction (MPTC), in the 
second stage, aims to create a set of pitch tracks, formed 
by connecting consecutive pitch candidates with similar 
frequency values. To this end, we based ourselves on the 
algorithm proposed by Serra [7]. The general idea is to 
find regions of stable pitches, which indicate the pres-
ence of musical notes. In order not to loose information 
on the dynamic properties of musical notes, e.g., fre-
quency modulations, glissandos, we had especial care in 
guaranteeing that such behaviours were kept within a 
single track. Thus, each trajectory may contain more 
than one note and should, therefore, be segmented. 

The segmentation of tracks resulting from the MPTC 
stage is performed in two phases: frequency segmenta-
tion, aiming to separate notes with different MIDI val-
ues, and salience segmentation, with the objective of 
dividing consecutive notes at the same MIDI note num-
ber. Our trajectory segmentation algorithm is described 
with detail in [8]. 

In the fourth stage, irrelevant note candidates are 
eliminated, based on their saliences, durations and on 
the analysis of harmonic relations. We make use of per-
ceptual rules of sound organization, namely “harmonic-
ity” and “common fate” [9], where common frequency 
and amplitude modulation are exploited.  

In the last stage, our goal is to obtain a final set of 
notes comprising the melody of the song under analysis. 
In fact, although a significant amount of irrelevant notes 
are eliminated in the previous stage, many notes are still 
present. Therefore, we have to extract the ones that con-
vey the main melodic line. This is the main topic of this 
paper and is described in the following section. 

3 EXTRACTION OF MELODY NOTES 

The definition of the notes comprising the melody of a 
song under analysis, being probably the most important 
task of any melody detection algorithm, is also the most 
difficult one to carry out. In fact, many aspects of audi-
tory organization influence the perception of melody by 
humans, for instance in terms of the role played by the 
pitch, timbre and intensity content of the sound signal.  

In order to limit the scope of our study, we focus this 
analysis on Western tonal music, where a clear solo is 
present, as in [9]. 

We base our strategy on the assumptions that i) the 
main melodic line often stands out in the mixture (sali-
ence principle) and that ii) melodies are usually smooth 
in terms of the note frequency intervals, which tend to be 
small (melodic smoothness principle). In addition, we 
attempt to eliminate false notes in the resulting melody 

by removal of spurious notes and note clustering.  

3.1 Selection of the Most Salient Notes 

In the first step of the melody extraction stage, we select 
the most salient notes at each time as initial melody can-
didates. The used criteria for comparing the salience be-
tween notes, as well as algorithmic details, were de-
scribed previously, e.g., [5]. Namely, notes below MIDI 
number 50 (146.83 Hz) are excluded. This is motivated 
by the fact that the notes comprising the melody are, usu-
ally, in a middle frequency range. Moreover, bass notes 
usually contain a lot of energy and so, if no frequency 
limit was set, such notes would probably be selected as 
part of the melody. Anyway, this restriction will be re-
laxed later on, when melodic smoothness is applied.  

In the implemented algorithm, some of the selected 
notes were truncated, since melody notes are not al-
lowed to overlap in time. 

The results of melody extraction by selecting the most 
salient notes are illustrated in Figure 2, for an excerpt 
from Pachelbel’s Kanon. There, the correct notes are 
depicted in grey and the black continuous lines denote 
the obtained melody notes. The dashed lines stand for 
the notes that result from the note elimination stage. We 
can see that some erroneous notes are extracted, whereas 
true melody notes are excluded. Namely, some octave 
errors occur. As a matter of fact, one of the limitations 
of only taking into consideration note saliences is that 
the notes comprising the melody are not always the most 
salient ones. In this situation, wrong notes may be se-
lected as belonging to the melody, whereas true notes 
are left out. This is particularly clear when abrupt transi-
tions between notes are found, as can be seen in Figure 
2. Hence, we improved our method by smoothing out the 
melody contour, as follows. 
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Figure 2. Extraction of the most salient notes (ex-
cerpt from “Pachelbel’s Kanon”). 

3.2 Melody Smoothing 

As referred above, taking into consideration only the 
most salient notes has the limitation that, frequently, 
non-melodic notes are more salient than melodic ones. 
As a consequence, erroneous notes are often picked up, 
whereas true notes are excluded. Particularly, abrupt 
transitions between notes give strong evidence that 
wrong notes were selected. In fact, small frequency tran-
sitions favour melody coherence, since smaller steps in 
pitch hang together better [9]. In an attempt to demon-
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strate that musicians generally prefer to use smaller note 
steps, the psychologist Otto Ortmann counted the num-
ber of sequential intervals in several songs by classical 
composers, having found that the smallest ones occur 
more frequently and that their respective number 
roughly decreases in inverse proportion to the size of the 
interval [9]. So being, we improved the melody extrac-
tion stage by taking advantage of this melodic smooth-
ness principle. This is a culturally dependent principle, 
which is particularly relevant for Western tonal music. 

We started to improve the initial melody by perform-
ing octave correction. In fact, in the note elimination 
stage not all harmonically related notes are eliminated 
and, thus, some octave errors occur when sub or super-
harmonic notes are more salient than the right notes. In 
order to correct octave errors, we select all notes for 
which no octaves (either above or below) are found and 
compute their average MIDI values. Then, we analyse 
all notes that have octaves with common onsets: if the 
octave is closer to the computed average, the original 
note is replaced by the corresponding octave. This sim-
ple first step already improves the final melody signifi-
cantly. However, some octave errors, as well as abrupt 
transitions, are still kept, which will be worked out in the 
following stages. 

In the second step, we analyse the obtained notes and 
look for regions of smoothness, i.e., regions where there 
are no abrupt transitions between consecutive notes. 
Here, we define a transition as being abrupt if the inter-
vals between consecutive notes are above a fifth, i.e., 
seven semitones, as illustrated in Figure 3. There, the 
bold notes (a1, a2 and a3) are marked as abrupt. In the 
same example, four initial regions of smoothness are 
detected (R1, R2, R3 and R4).  
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Figure 3. Regions of smoothness. 

Then, we select the longest region as a correct region 
(region R3, in Figure 3, filled in grey) and define the 
allowed note range for its adjacent regions (R2 and R4).  

Regarding the left region, we define its allowed range 
based on the first note of the correct region, e.g., MIDI 
value 70 in this example. Keeping in mind the impor-
tance of the perfect fifth, the allowed range for the left 
region is 70 ± 7, i.e., [63, 77]. As region R2 contains no 
note in the allowed range, this region is a candidate for 
elimination. However, before deletion, we first check if 
each of its notes contains an octave in the allowed range. 
If so, the corresponding notes are substituted by the 
found octaves. If at least one octave is found, no note is 
deleted in this iteration. On the contrary, if no octave is 

found, all the notes are eliminated.  
As for the right region, we proceed likewise. Hence, 

we define the allowed range based on the last note of the 
correct region, e.g., 69 in this example, resulting the 
range [62, 76]. Since region R4 contains notes in the 
allowed range, its first note, i.e., note a3, is marked as 
non-abrupt. However, we still look for an octave of the 
referred note in the allowed range. In case it is found, 
the abrupt note is substituted, as before.  

In short words, regions that correspond to sudden 
movements to different registers are interpreted as being 
incoherent and are, consequently, eliminated. However, 
abrupt transitions are allowed if adjacent regions are 
both coherent in melodic terms, as happens in Figure 3 
for regions R3 and R4. This situation occurs in some mu-
sical pieces as, for example, Pachelbel’s Kanon, as can 
be seen in Figure 2 and Figure 4. 

If no notes are substituted/eliminated for the current 
region, the following regions are analysed in the same 
way, in descending length order. If no change at all is 
performed for all regions, the algorithm stops. Other-
wise, whenever a change is performed, the procedure for 
definition of regions of smoothness, analysis of 
neighbours and deletion/substitution is repeated until no 
change is done. In the successive iterations, regions of 
smoothness are defined taking into consideration notes 
previously marked as non-abrupt, e.g., the notes in re-
gion R4. Therefore, in a following iteration, regions R3 
and R4 will not be divided. 

Finally, since some regions are eliminated, their notes 
need to be substituted by other notes that are more likely 
to belong to the melody, according to the smoothness 
principle. Thus, we fill each gap in the melody with the 
most salient note candidates that are in the allowed 
range for that region. In this gap filling procedure, the 
previous restriction on the minimum allowed note no 
longer applies: the most salient note in the allowed range 
is selected, no matter its MIDI value. In fact, such re-
striction was imposed as a necessity to prevent the selec-
tion of too many erroneous notes (particularly bass 
notes), which would jeopardize melody smoothing. 
Therefore, we kept the general assumption that melodies 
are contained in middle frequency ranges, but allowing 
now the selection of low-frequency notes, as long as the 
smoothness requirement is fulfilled. 
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Figure 4. Extracted melody after melodic 
smoothness (excerpt from “Pachelbel’s Kanon”). 

The results of the implemented procedures are illus-
trated in Figure 4, for the same excerpt from Pachelbel’ 
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Kanon. We can see that only one erroneous note resulted 
(signalled by an ellipse), which corresponds to an octave 
error. This example is particularly challenging to our 
melody-smoothing algorithm due to the periodic abrupt 
transitions present. Yet, the performance was very good. 

Since our proposed melody extraction approach out-
puts the most salient notes at each time in the allowed 
note range, false positives may arise. Such notes may be 
output both when pauses between melody notes are suf-
ficiently long and when the solo is absent (e.g., singing 
has stopped and another instrument dominates for some 
time). Thus, spurious notes should be removed, as well 
as notes that are obtained when the solo is absent. 

3.3 Elimination of Spurious Notes 

As referred, when pauses between melody notes are 
fairly long, spurious notes, resulting either from noise or 
background instruments, may be included in the melody. 
We observed that, usually, such notes have lower sali-
ences and shorter durations, leading to clear minima in 
the pitch salience and duration contours. 

As for the pitch salience contour, we start by comput-
ing the average pitch salience of each note in the ex-
tracted melody and, then, look for deep valleys in the 
pitch salience sequence. Since saliences were normal-
ized to the [0, 100] in the MPD stage, we defined a val-
ley as being deep if it is at least 30 units below the re-
spective left and right global maxima. Hence, notes in 
deep valleys of the pitch salience contour are disposed.  

A jazz excerpt (jazz3 sample, see Table 1), where the 
solo is often absent, was chosen to illustrate the con-
ducted procedure.  
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Figure 5. Illustration of pitch salience contour 
(jazz3 excerpt). 
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Figure 6. Illustration of elimination of spurious 
notes based on pitch salience (jazz3 excerpt). 

Figure 5 depicts the pitch salience contour, where ‘*’ 
denote false positives and ‘o’ represent the deleted 

notes. It can be seen that one true note (the last one) 
was, nevertheless, removed. Besides, with a lower 
elimination threshold, a few more false notes would 
have been deleted. However, best overall results were 
obtained with the defined threshold. 

The extracted melody notes are visualized in Figure 
6. There, the thick lines denote true melody notes, 
whereas the thin ones stand for false positives. The grey 
lines represent deleted notes. It can be seen that, though 
some extra notes are disposed, some false positives re-
main present in this excerpt. 

Regarding the duration contour, we proceeded like-
wise. However, we observed that duration variations are 
much more common than pitch salience variations. In 
this way, we decided to eliminate only isolated abrupt 
duration transitions, i.e., isolated notes delimited by 
much longer notes, where a note is too short if its dura-
tion is at least 20% its neighbours’. Additionally, in or-
der not to inadvertently delete short ornamental notes, a 
minimum difference of two semi-tones was defined. 

3.4 Note Clustering 

As observed above, when the solo is absent, notes from 
the dominant accompaniment are output. It can be argued 
that this behaviour corresponds to the way humans 
memorize songs: a continuous “line” that comprises both 
melody per se and dominant accompaniments. However, 
since our goal is to extract the melody in a strict sense 
(not a predominant pitch line), the accompaniment 
should be eliminated. To this end, true notes and false 
positives are discriminated via note clustering.  

This work is related to the classification of musical 
instruments in a polyphonic context. Only little work has 
been conducted in this field, e.g. [10], so far with limited 
accuracy. In fact, this is a complex task, since, in one 
hand, it is difficult to define acoustic invariants that are 
good timbre correlates and, on the other hand, the pro-
posed features are difficult to measure in a polyphonic 
context due to spectral overlapping between sources. 

The conducted procedures, namely feature extraction 
and selection, dimensionality reduction and clustering, 
are described as follows. 

3.4.1 Feature Extraction 

In order to acquire information on the source of each 
note, we use a set of features that aim to capture sound 
pitch, intensity and timbre content in both the attack and 
steady-state parts of each note. Namely, the following 
features were used, based on related work, e.g., [11, 12]:  
- 1) Spectral centroid, which correlates well with the 

perceived sound brightness; 
- 2) Relative spectral centroid, calculated as the ratio of 

the centroid to the fundamental frequency 
- 3) Pitch salience, which is closely related to the inten-

sity of the sound; 
- 4) Pitch stability, measured as the frequency variation 

over successive time frames, related to aspects such as 
pitch jitter or modulation; 
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- 5) Harmonic magnitude, which gives a measure of 
spectral shape; 

- 6) Relative harmonic magnitude ratio, the same as 
before, except that now relative values are used; 

- 7) Spectral irregularity, calculated as the average dif-
ference between the magnitude of a harmonic and its 
two neighbours; 

- 8) Spectral inharmonicity, computed as the sum of 
differences of each harmonic frequency from its theo-
retical value; 

- 9) Spectral skewness, which is the magnitude of the 
harmonics weighed by their respective inharmonic-
ities; 

- 10) Harmonic frequency, whose absolute values give 
also information on inharmonicity; 

- 11) Relative harmonic frequency ratio, the same as 
before, except that relative values are used here; 

- 12) Harmonic onset time, calculated as the absolute 
time delay of each harmonic compared to the note on-
set; a measure of onset asynchrony; 

- 13) Relative onset time, the same as before, except that 
relative timings are used here; 

- 14) Attack duration, which correlates to the type of 
coupling between the excitation and resonant struc-
tures; short attacks indicate tight coupling; 

- 15) Frequency slope in the attack, which measures the 
amount of glissando before pitch stability; 

- 16) Note duration; 

The listed features were extracted on top of the audi-
tory front-end used in the MPD stage. In this way, the 
harmonic frequencies and magnitudes of each pitch can-
didate in each time frame are obtained directly from a 
correlogram frame, by using the respective correlogram 
columns [5]. Then, for each column, local peaks are 
detected and matched to the expected frequencies of 
each harmonic. If no peak is found in the allowed range 
of the frequency partial, the filter-bank channel whose 
centre frequency is closest to the theoretical value is 
selected. Hence, in this case the harmonic frequencies 
and magnitudes are the ones of the filter channel. This is 
carried out much in the same way as Martin did [11]. 

Furthermore, for partials above the sixth, several of 
them may be mapped to the same cochlear channel [11]. 
In this case, some upper harmonics get the same magni-
tude values. Coincidentally or not, we tested our ap-
proach with different numbers of harmonics and best 
results were obtained with exactly six. Therefore, only 
six frequency partials were used. Spectral features are 
then computed based on the obtained harmonic frequen-
cies and magnitudes in the steady-part of the signal. 

Finally, instead of storing sequences of feature val-
ues, we computed statistical summaries for each feature. 
Namely, mean and standard deviation were used, except 
for those features that have a sole value for each note 
(e.g., frequency slope, duration). In addition, each fea-
ture vector was normalized to the [0, 1] interval, so as to 
avoid numerical problems resulting from the different 
feature ranges. 

The computation of some of the features was prob-

lematic, as a consequence of the polyphonic context we 
are working in. Namely, the frequency slope was diffi-
cult to measure for notes with many missing frequency 
values in the beginning. Therefore, the slope was simply 
calculated by interpolating the first and last frequency 
values in the attack. Also, some harmonic magnitudes 
may be corrupted due to spectral collisions. Therefore, 
those elements should be discarded and clustering 
should be conducted following a missing feature strategy 
[10]. We will address this issue in future developments. 

3.4.2 Feature Selection and Dimensionality Reduction 

The number of implemented features is very high com-
pared to the number of notes available in each song ex-
cerpt. In addition, a high number of features may lead to 
the so-called curse of dimensionality [13]. Hence, feature 
selection and dimensionality reduction were performed 
prior to clustering. 

As referred, it is important to select the best combina-
tion of features to include. Since it is impractical to ana-
lyse every different combination of features, forward 
selection was conducted [13]. In this way, starting from 
an empty feature set, the algorithm adds, step by step, 
the feature that leads to the best model accuracy. The 
combination of features that gives the best overall 
performance is then selected.  

In addition, the dimension of the feature space was 
reduced with recourse to Principal Component Analysis 
(PCA) [13]. This is a widely used technique whose basic 
idea is to project the computed feature matrix into an 
orthogonal basis that best expresses the original data set. 
Moreover, the resulting projected data is decorrelated.  
As for the selection of the principal components, we 
kept the ones that retained 90% of the variance. 

3.4.3 Clustering 

Finally, after feature extraction, selection and dimension-
ality reduction, true notes and false positives are dis-
criminated via clustering. To this end, we used Gaussian 
Mixture Models (GMMs) [13]. 

GMMs are extensively used for unsupervised cluster-
ing of data. Basically, Gaussian distributions are fitted to 
the observed data and so GMMs model the probability 
density of observed features by multivariate Gaussian 
mixture densities. 

In order to separate false positives from true melody 
notes, we defined only two clusters (a “melody cluster” 
and a “garbage cluster”), initialised with the K-means 
clustering algorithm [13].  

Next, the parameters of the model (mean vector, co-
variance matrix - diagonal, in this case - and mixing co-
efficients) are iteratively estimated with recourse to the 
Expectation-Maximization algorithm [13]. The algo-
rithm stops when the likelihood function stabilizes for 
consecutive iterations.  

After that, each note is allotted to a cluster based on 
the posterior probabilities in each: the cluster with the 
highest probability is selected. 

Finally, the melody is assigned to the cluster with 
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maximum salience, where cluster salience is computed 
as the sum of the average pitch salience of each note 
multiplied by its duration. 

The procedure for note clustering is illustrated in 
Figure 7, for the same jazz excerpt used before. As can 
be seen, all false positives were eliminated. However, 
three true melody notes were erroneously deleted. In 
fact, there seems to be a trade-off between keeping all 
the true melody notes and removing all false positives. 
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Figure 7. Illustration of note clustering (jazz3 ex-
cerpt). 

3.4.4 Clustering the Whole Note Set 

We also decided to test a different approach, where clus-
tering was performed on the whole note set that resulted 
from the note elimination stage. Some constraints should 
be imposed on the performed clustering (e.g., no overlap 
between notes) [4]. However, we ignored this issue since 
the procedures for detection of salient notes and melody 
smoothing guarantee the consistency of the results. Fur-
thermore, harmonically related notes may come from the 
same source and, thus, such constraints are problematic 
in this situation. 

Therefore, notes were clustered with the GMM algo-
rithm, using now five clusters. Then, for each cluster, 
salient notes were detected, melody smoothing was per-
formed and spurious notes were eliminated. 

Finally, the melody was assigned to the cluster with 
the highest salience, as before. 

4 EXPERIMENTAL RESULTS 

One difficulty regarding the evaluation of MIR systems 
results from the absence of standard test collections and 
benchmark problems. This problem was partly solved 
through the creation of a set of evaluation databases by 
researchers from the Music Technology Group of Uni-
versity Pompeu Fabra (MTG - UPF), Barcelona, Spain, 
for the ISMIR 2004 Audio Description Contest (ADC) 
[14]. Several competitions were organized as part of it. 
Naturally, we are more interested in the database created 
for the Melody Extraction Contest (MEC-04).  

In this way, we evaluated the proposed algorithms 
with both the MEC-04 database and a test-bed we had 
previously created (see Table 1, where the top 11 lines 
correspond to our test-bed and the next 10 refer to the 
MEC-04 database). Both databases were defined taking 
into consideration its diversity and musical content. 
Therefore, the selected song excerpts contain a solo (vo-

cal or instrumental), and accompaniment parts (guitar, 
bass, percussion, other vocals, etc.). In addition, in some 
excerpts the solo is absent for some time. In our test-
bed, we collected excerpts of about 6 seconds from 11 
songs, which were manually annotated. As for the MEC-
04 database, 10 excerpts, each of around 20 seconds, 
were automatically annotated based on monophonic 
pitch estimation from multi-track recordings [14].  

For accuracy computation, the detected melody notes 
were compared with the correct notes. To this end, we 
used two of the metrics defined in [14], with some adap-
tations. In the first metric, the pitched accuracy (PA), 
i.e., the accuracy regarding only the notes comprising 
the melody, was performed. In the second one, a global 
accuracy (GA) was computed taking into consideration 
also the matching of frames where the melody is absent. 
Additionally, another frame-based metric was consid-
ered, where octave errors were ignored [14]. For this 
one, only summary results are presented. 

In terms of frame comparison, we defined the target 
frequency values for each time frame as the reference 
frequencies of the corresponding MIDI notes. In the 
same way, the extracted frequencies were defined from 
the reference frequencies corresponding to the extracted 
melody notes. The accuracy was calculated as the per-
centage of correctly identified frames. In the original 
metric defined in [14], exact frequency values were 
used. However, since we do not know the precise fre-
quency values for the excerpts in our test-bed, reference 
MIDI frequencies were used for the sake of uniformity. 
Also, the determination of exact frequency values does 
not seem very relevant in a melody detection context.  

Five evaluations were performed: i) extraction of sa-
lient notes only (SN); ii) note salience plus melodic 
smoothness (MS); iii) elimination of spurious notes (ES); 
iv) note clustering (NC); and v) note clustering in the 
whole note set (NCW). For each evaluation, results for 
the two used metrics were computed. 

The obtained results are summarized in Table 2. 
Short descriptions of the used song excerpts are pre-
sented in Table 1. 

Regarding the MS evaluation, we can see that good 
results were achieved. There, an average accuracy of 
84.0 / 75.4% (PA / GA, respectively) was attained. 
Without melody smoothing, the average accuracy was 
74.7 / 66.2% (SN evaluation) and so our implementation 
of the melodic smoothness principle amounts for an av-
erage improvement of 9.3 / 9.2%. A high number of 
octave errors was corrected, especially in the excerpts 
from Battlefield Band and Pachelbel’s Kanon. 

The results from the choral sample were also interest-
ing, since four simultaneous voices are present, plus 
orchestral accompaniment. Still, the algorithm could 
reasonably detect the melody, which we defined as cor-
responding to the soprano. The use of this example con-
tradicts our previous assumptions, but we were inter-
ested in the results for a special situation like this one. 

As for the MEC-04 database, the results were also 
good, except for the opera excerpts. These samples seem 
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ID Song Title Genre Solo Type 

1 Pachelbel’s Kanon Classical Instrumental 
2 Handel’s Hallelujah Choral Vocal 
3 Enya - Only Time Neo-Classical Vocal 
4 Dido - Thank You Pop Vocal 
5 Ricky Martin - Private Emotion Pop Vocal 
6 Avril Lavigne - Complicated Pop / Rock Vocal 
7 Claudio Roditi - Rua Dona Margarida Jazz / Easy Instrumental 
8 Mambo Kings - Bella Maria de Mi Alma Bolero Instrumental 
9 Compay Segundo - Chan Chan Son Cubano Vocal 

10 Juan Luis Guerra - Palomita Blanca Bachata Vocal 
11 Battlefield Band - Snow on the Hills Scottish Folk Instrumental 
12 daisy2 Synthesized singing voice Vocal 
13 daisy3 Synthesized singing voice Vocal 
14 jazz2 Saxophone phrases Instrumental 
15 jazz3 Saxophone phrases Instrumental 
16 midi1 MIDI synthesized Instrumental 
17 midi2 MIDI synthesized Instrumental 
18 opera_fem2 Opera singing Vocal 
19 opera_male3 Opera singing Vocal 
20 pop1 Pop singing Vocal 
21 pop4 Pop singing Vocal 

Table 1. Description of used song excerpts. 

 
Salient Notes Melody Smoothing Elim. Spurious Note Clustering Note Clust. Whole 

ID 
PA GA PA GA PA GA PA GA PA GA 

1 59.3 58.3 89.5 88.1 89.5 88.1 89.5 88.1 89.5 88.1 
2 62.6 54.9 78.7 67.9 78.7 67.9 81.5 76.8 81.5 72.3 
3 94.0 90.9 94.0 90.9 94.0 90.9 94.0 90.9 94.0 90.9 
4 92.0 74.2 94.9 73.5 94.9 73.5 94.9 73.5 94.9 73.5 
5 64.4 44.2 72.0 53.7 72.0 53.7 75.9 58.6 72.0 53.7 
6 75.6 68.8 93.7 84.2 93.7 88.6 93.7 88.6 93.7 88.6 
7 89.0 83.0 98.3 91.7 98.3 91.7 98.3 91.7 98.3 91.7 
8 87.7 81.0 90.8 83.8 90.8 83.8 90.8 83.8 90.8 83.8 
9 82.4 63.3 82.4 65.0 82.4 65.0 82.4 69.6 82.4 65.0 

10 73.5 51.8 80.2 57.2 80.2 57.2 80.2 57.2 80.2 57.2 
11 47.1 46.9 93.6 92.3 93.6 92.3 93.6 92.3 93.6 92.3 
12 91.6 79.5 92.3 82.0 92.3 84.9 87.1 80.4 92.3 84.9 
13 84.4 84.3 97.2 97.1 97.2 97.1 97.2 97.1 97.2 97.1 
14 69.6 65.0 73.6 70.4 76.1 73.7 73.4 71.2 76.1 73.7 
15 82.4 59.8 86.6 63.8 85.5 74.3 78.8 84.6 85.5 74.3 
16 64.1 62.2 85.9 83.8 86.1 85.4 86.1 85.4 88.2 88.4 
17 97.9 96.3 97.9 96.3 97.9 96.3 97.9 96.3 97.9 96.3 
18 64.8 57.8 69.8 62.0 69.8 62.0 69.8 62.0 69.8 62.0 
19 38.5 37.1 41.3 38.7 41.3 39.4 41.3 39.4 42.5 40.6 
20 69.9 62.6 70.2 65.3 70.7 69.6 69.3 68.4 70.7 69.6 
21 78.6 69.0 82.0 75.1 82.2 76.7 82.2 76.7 82.2 76.7 

Avg 74.7 66.2 84.0 75.4 84.1 76.8 83.7 77.7 84.4 77.2 

Table 2. Results of the melody detection system. 

to pose additional difficulties to the pitch detection al-
gorithm, in the first stage of our system. We plan to ad-
dress this issue in the near future. 
Another interesting fact is that the proposed approach is 
almost immune to octave errors. Indeed, disregarding 
octave errors, the accuracy for SM raised to 85.0 / 
76.2%, i.e., an improvement of only 1.0 / 0.8%. 

Regarding the elimination of spurious notes (ES 
evaluation), we can see that GA improved slightly 
(1.4%). As a consequence of note elimination, the origi-
nal durations of some notes were restored (recall that 
some of them were truncated in the note salience stage), 
which led to a slight improvement of PA (0.1%).  

As for note clustering, the global accuracy improved 

181



   

 

 

a bit more (0.9%, comparing to the ES evaluation and 
2.3%, regarding SM), but some excerpts still have many 
false positives. In fact, different songs prefer different 
features combinations. For example, almost all false 
positives from Juan Luis Guerra’s sample were elimi-
nated with a particular feature set. However, best overall 
results were achieved using the following features, in 
order of insertion from the forward selection algorithm: 
5, 6, 2, 8, 1, 3, 7, 10, 11, 9, 15 and 14. From the ob-
tained results we can see that, while many false positives 
were deleted, a few true notes were also wrongly elimi-
nated, leading to a 0.4% drop in the pitched accuracy. 

Clustering the whole note set (NCW evaluation) led to 
similar results: 84.4% for PA and 77.2% for GA. Again, 
different excerpts prefer different features combinations, 
but best global results were attained with only these: 5, 
6, 10, 11 and 1. 

The main limitation of the note clustering stage is its 
lack of robustness. In fact, the best set of features varies 
from sample to sample and some particular feature com-
binations simply cannot discriminate between true notes 
and false positives, leading to a notorious fall in melody 
detection accuracy. Therefore, so far, robustness cannot 
be guaranteed after the elimination of spurious notes. 
However, longer song excerpts could possibly improve 
the accuracy for note clustering. 

Finally, for the sake of comparison with the results 
from the ISMIR 2004 ADC, we also tested our approach 
with the exact frequency values used there. As a conse-
quence, the accuracy for the ES evaluation, taking into 
consideration only the MEC-04 database, dropped from 
79.9 / 75.5% to 75.0 / 69.9%, i.e., approximately 5%. In 
our opinion, when the goal is predominant pitch estima-
tion, exact frequency values are important. However, 
accuracy computation in terms of MIDI reference values 
seems more relevant for melody detection tasks, where 
exact frequency values are not needed in the output. 

5 CONCLUSIONS 

We propose a system for melody detection in polyphonic 
musical signals. This is a main issue for MIR applica-
tions, such as QBH in “real-world” music databases. The 
work conducted in this field is presently restricted to the 
MIDI domain, and so we guess we make an interesting 
contribution to the area, with some encouraging results. 
Additionally, we tackled the problem of false positives. 
As expected, this proved to be a very difficult task, and 
so only slight improvements were achieved. 

Regarding future work, we plan to further work out 
some of the described limitations, namely in what con-
cerns the reliability of feature computation and the im-
provement of the elimination of false positives.  
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