
ON TUNING THE (δ, α)-SEQUENTIAL-SAMPLING ALGORITHM FOR
δ-APPROXIMATE MATCHING WITH α-BOUNDED GAPS IN MUSICAL

SEQUENCES

Domenico Cantone Salvatore Cristofaro Simone Faro
Università di Catania, Dipartimento di Matematica e Informatica

Viale Andrea Doria 6, I-95125 Catania, Italy
cantone,cristofaro,faro@dmi.unict.it

ABSTRACT

We present a very efficient variant of the(δ, α)-
SEQUENTIAL-SAMPLING algorithm, recently introduced
by the authors, for theδ-approximate string matching
problem withα-bounded gaps, which often arises in many
questions on musical information retrieval and musical
analysis.

Though it retains the same worst-caseO(mn)-time
andO(mα)-space complexity of its progenitor to com-
pute the number of distinctδ-approximateα-gapped oc-
currences of a pattern of lengthm at each position in a text
of lengthn, our new variant achieves an averageO(n)-
time complexity in practical cases.

Extensive experimentations indicate that our algo-
rithm is more efficient than existing solutions for the same
problem, especially in the case of long patterns.

Keywords: approximate string matching, experimental
algorithms, musical information retrieval.

1 INTRODUCTION

Given a textT and a patternP over some alphabetΣ,
thestring matching problemconsists in findingall occur-
rences ofP in T . It is a very extensively studied problem
in computer science, mainly due to its direct applications
to such diverse areas as text, image and signal process-
ing, speech analysis and recognition, musical analysis, in-
formation retrieval, computational biology and chemistry,
etc.

In this paper we focus on a variant of the string match-
ing problem, namely theδ-approximate string matching
problem withα-bounded gaps. Such a problem, which
will be given a precise definition later, arises in many
questions on musical information retrieval and musical
analysis.

The paper is organized as follows. In Section 2 we

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

c©2005 Queen Mary, University of London

Figure 1:Representation of theC-minor andB-sus4chords in
the absolute pitch encoding (a.p.e.) and in the pitch interval en-
coding (p.i.e.).

discuss the applications of approximate matching in the
context of musical sequences. Then, in Section 3, we in-
troduce some basic notions and give a formal definition
of the δ-approximate matching problem withα-bounded
gaps. A brief survey of existing algorithms for this prob-
lem is given in Section 4, whereas in Section 5 we present
a new very efficient variant of the(δ, α)-SEQUENTIAL-
SAMPLING algorithm recently introduced by the authors
in Cantone et al. (2005). Experimental data obtained by
running all the discussed algorithms under different con-
ditions are presented and compared in Section 6. Finally,
we draw our conclusions in Section 7.

2 APPROXIMATE MATCHING AND
MUSICAL SEQUENCES

Musical sequences can be schematically viewed as se-
quences of integer numbers, representing either the notes
in the chromatic or diatonic notation (absolute pitch en-
coding), or the intervals, in number of semitones, between
consecutive notes (pitch interval encoding); see examples
in Figure 1.

δ-approximate string matching algorithms are very ef-
fective in searching for all similar but not necessarily iden-
tical occurrences of given melodies in musical scores. We
recall that in theδ-approximate matching problem two in-
teger strings of the same length match if the corresponding
integers differ by at most a fixed boundδ.

Intuitively, we say that a melody (orpattern) has a
δ-approximate occurrence withα-bounded gaps within
a given musical score (ortext), if the melody has aδ-
approximate matching with a subsequence of the musical
score, in which it is allowed to skip up to a fixed num-
berα of symbols (thegap) between any two consecutive
approximate matchings. In the present context, two sym-
bols have an approximate matching if the absolute value

454

Figure 2:Two bars of the study Op. 25 N. 1 by F. Chopin (first
score). The second score represents the melody. If a gap bound
of α ≥ 5 is allowed, an exact occurrence of the melody can be
found through the piece.

of their difference is bounded by a fixed numberδ.
In classical music compositions, and in particular in

compositions forPiano Solo, it is quite common to find
musical pieces based on a sweet ground melody, whose
notes are interspaced by rapidly executed arpeggios. Fig-
ure 2 shows two bars of the studyOp. 25 N. 1 for Piano
Soloby F. Chopin illustrating such a point. The notes of
the melody are the first of each group of six notes (sextu-
plet).

Arpeggios are not by any means the only musical
technicality for which approximate string matching with
bounded gaps turns out to be very useful. Other examples
are given bymusical ornaments, which are common prac-
tice in classical music, and especially in the music of the
baroque period.

3 BASIC DEFINITIONS AND
PROPERTIES

Before entering into details, we need a bit of notations and
terminology. A stringP is represented as a finite array
P [0 ..m − 1], with m ≥ 0. In such a case we say thatP
has lengthm and writelength(P) = m. In particular, for
m = 0 we obtain the empty string. ByP [i] we denote the
(i + 1)-st character ofP , for 0 ≤ i < length(P). Like-
wise, byP [i .. j] we denote the substring ofP contained
between the(i+ 1)-st and the(j + 1)-st characters ofP ,
for 0 ≤ i ≤ j < length(P). The substrings of the form
P [0 .. j] (also denoted byPj), with 0 ≤ j < length(P),
are the nonemptyprefixesof P .

Let Σ be an alphabet of integer numbers and letδ ≥ 0
be an integer. Two symbolsa and b of Σ are said to
be δ-approximate, in which case we writea =δ b, if
|a− b| ≤ δ. Two stringsP andQ over the alphabetΣ are

said to beδ-approximate, in which case we writeP
δ
= Q,

if
length(P) = length(Q), and

P [i] =δ Q[i], for i = 0, . . . , length(P) − 1 .

Given a textT of lengthn and a patternP of lengthm,
aδ-occurrence withα-bounded gaps ofP in T at position
i is an increasing sequence of indices(i0, i1, . . . , im−1)
such that (i)0 ≤ i0 andim−1 = i ≤ n−1, (ii) ih+1−ih−
1 ≤ α, for h = 0, 1, . . .m − 2,1 and (iii) P [j] =δ T [ij],
for j = 0, 1, . . .m−1. We writeP Ei

δ, αT to mean thatP
has aδ-occurrence withα-bounded gaps inT at position

1The notationx(i, j) is also used to denote a gap of at leasti
characters and at mostj characters. Using such notation, in the
problem at hand we are admitting gaps of the formx(0, α) at
each position.

i (in fact, when the boundsδ andα are well understood
from the context, we will simply writeP Ei T).

The δ-approximate string matching problem withα-
bounded gapsadmits the following variants: (a) find all
δ-occurrences withα-bounded gaps ofP in T ; (b) find all
positionsi in T such thatP Ei T ; (c) for each positioni
in T , find the number of distinctδ-occurrences ofP with
α-bounded gaps at positioni.

In Section 4.3 we will describe an efficientO(mn)-
time solution for the variants (b) and (c) above which uses
only O(mα) extra space. Variant (a) can then be solved
by running anO(m2α)-time and -space local search at
each positioni such thatP Ei T .

The following very elementary fact will be used later.

Lemma 1 Let T andP be a text of lengthn and a pat-
tern of lengthm, respectively. Also, letδ, α ≥ 0. Then,
for each 0 ≤ i < n and 0 ≤ k < m , we have that
Pk Ei

δ, α T if and only ifP [k] =δ T [i] and eitherk = 0,

or Pk−1 E
i−h
δ, α T , for someh such that1 ≤ h ≤ α+ 1.

4 ALGORITHMS FOR THE
δ-APPROXIMATE MATCHING

PROBLEM WITH α-BOUNDED GAPS

In this section we survey the state-of-the-art of theδ-
approximate matching problem withα-bounded gaps. In
particular, we consider three algorithms, based on dif-
ferent strategies. Given a patternP of lengthm and
a text T of length n, the first algorithm, based on
dynamic-programming (Crochemore et al., 2000, 2002a),
solves variants (a) and (c) of the problem inO(mn)-
space, and variant (b) inO(n)-space, requiring in both
casesO(mn)-time. The second algorithm, based on
bit-parallelism (Baeza-Yates and Gonnet, 1992), solves
only variant (b) of the problem inO(⌈mn/ω⌉)-time and
O(⌈mα/ω⌉)-space, whereω is the number of bits in
the computer word. The third algorithm, named(δ, α)-
SEQUENTIAL-SAMPLING (Cantone et al., 2005), com-
putes sequentially occurrences of prefixes ofP thus solv-
ing variants (b) and (c) of the problem inO(mn)-time and
O(mα)-space, and variant (a) inO(m2α)-space.

4.1 An algorithm based on dynamic programming

The δ-approximate matching problem withα-bounded
gaps has been first addressed in Crochemore et al. (2000),
where an algorithm based on the dynamic programming
approach, namedδ-BOUNDED-GAPS, has been proposed.
In our review, we follow the presentation given later in
Crochemore et al. (2002a), which considers also several
new versions of the approximate matching problem with
gaps.

Given as usual a textT of lengthn, a patternP of
lengthm, and two integersδ, α ≥ 0, the algorithmδ-
BOUNDED-GAPSruns inO(mn)-time and -space, at least
in the case in which one is interested in finding allδ-
occurrences withα-bounded gaps ofP in T (variant (a)).
Space requirements can be reduced toO(n), if only posi-
tionsi in T such thatP EiT need to be computed (variant

455

(b)). To solve also variant (c), one can first solve variant
(a) and then trace back and count all approximate match-
ings with gaps at each position of the textT .

The δ-BOUNDED-GAPS algorithm is presented
as an incremental procedure, based on the dy-
namic programming approach. More specifi-
cally, the δ-BOUNDED-GAPS algorithm computes
a matrix D of dimension mxn where D[i, j] =
max

(

{0 ≤ k ≤ j : Pi Ek T andj − k ≤ α} ∪ {−1}
)

.

Notice thatPi Ej T if and only if P [i] =δ T [j] and
D[i − 1, j − 1] ≥ 0, for i = 1, 2, . . . ,m − 1 andj =
1, 2, . . . , n− 1.

Using a trace-back procedure, as described in
Crochemore et al. (2002a), the valuesD[i, j] can be used
to retrieve the approximate matchings at any given posi-
tion in timeO(mα).

4.2 An algorithm based on bit-parallelism

Baeza-Yates and Gonnet (1992) presented an algorithm
for the exact string matching problem, named SHIFT-
AND, which uses bit-parallelism to simulate a nondeter-
ministic finite automaton (NFA). The simulation is carried
out by representing the automaton as an array ofL bits,
whereL+1 is the number of states of the automaton. Bits
corresponding to active states are set to1, whereas bits
corresponding to inactive states are set to0. The initial
state is not represented because it is always active.

Note that ifL ≤ ω then the entire array fits in a sin-
gle computer word, whereas ifL > ω we need⌈L/ω⌉
computer words to represent the automaton.

For each symbolc of the alphabetΣ, the SHIFT-AND

algorithm maintains a bit maskB[c] whosei-th bit is set
to 1, provided thatP [i] = c. The current configuration of
the automaton is maintained in a bit maskD, which is ini-
tialized to0L, since initially all states are inactive. While
scanning the textT from left to right, the algorithm sim-
ulates automaton transitions by the following basic shift-
and operation, for each positionj:

D = ((D ≪ 1) | 0L−11) & B[T [j]] .

If the final state is active, a matching is reported at position
j.

It turns out that the SHIFT-AND algorithm has an
O(⌈mn/ω⌉) worst-case time and requiresO(⌈L/ω⌉)-
space.

The SHIFT-AND algorithm can easily be extended to
solve also the approximate matching problem of our inter-
est.

This can be done by adapting a forward search al-
gorithm presented in Navarro and Raffinot (2001) for
the pattern matching problem with character classes and
bounded gaps, with application on protein searching.2

To take into accountδ-matches, it is enough to set to
1 thei-th bit of the masks fromB[c− δ] toB[c+ δ].

To handle alsoα-bounded gaps, we modify the au-
tomaton as follows. LetS0, S1, . . . , Sℓ be the states of

2Though Navarro and Raffinot’s algorithm is very general, as
it allows to specify different gapsx(i, j) at different positions,
it requires thati1 ≥ 1, for any two consecutive nontrivial gaps
x(i1, j1) andx(i2, j2) at adjacent positions (see footnote 1 for
the notationx(i, j)).

(δ, α)-SHIFT -AND (T , P , δ, α)
1. n = length(T)
2. m = length(P)
3. L = m+ (m− 1) · α
4. for c ∈ Σ doB[c] = 0L

5. I = F = 0L

6. i = 0
7. for j = 0 to m− 1 do
8. for c = P [j] − δ to P [j] + δ do
9. B[c] = (B[c] | (0L−11 ≪ i))

10. i = i+ 1
11. if j < m− 1 then
12. I = I | (0L−11 ≪ (i− 1))
13. F = F | (0L−11 ≪ (i+ α− 1))
14. for c ∈ Σ do
15. for k = i to i+ α− 1 do
16. B[c] = (B[c] | (0L−11 ≪ k))
17. i = i+ α

18. M = 0L−11 ≪ L− 1
19. D = 0L

20. for j = 0 to n− 1 do
21. if D & M 6= 0L then output(j)
22. D = ((D ≪ 1) | 0L−11) & B[T [j]]
23. D = D | (((F − (D & I)) & ∼F) ≪ 1)

Figure 3: The algorithm based on bit-parallelism for theδ-
approximate matching problem withα-bounded gaps.

the automaton in the order induced by its transitions,
where S0 is the initial state. Following Navarro and
Raffinot (2001), the statesS1, . . . , Sℓ−1 are calledgap-
initial states. After each gap-initial stateSi, α new states
Si,1, . . . , Si,α, linearly connected byΣ-transitions, are in-
serted. Moreover,ε-transitions fromSi to each of the new
statesSi,1, . . . , Si,α are introduced. The statesSi,α, for
i = 1, . . . , ℓ − 1, are calledgap-final states. Plainly,
the numberL of states of the resulting automaton is
m+ (m− 1) · α.

It can easily be seen thatε-transitions can be simulated
by the following operation

D = D | (((F − (D & I)) & ∼ F) ≪ 1) ,

whereI is a bit mask containing1 in the gap-initial states,
andF is a bit mask containing1 in the gap-final states.

Figure 3 shows the complete algorithm, which it is
natural to call(δ, α)-SHIFT-AND. The preprocessing
phase takesO(mα|Σ|)-time, whereas the scanning phase
takesO(⌈nm/ω⌉)-time.

4.3 The(δ, α)-SEQUENTIAL -SAMPLING algorithm

The(δ, α)-SEQUENTIAL-SAMPLING algorithm (Cantone
et al., 2005) is characterized by anO(mn)-time and an
O(mα)-space complexity. In addition, this algorithm
solves variant (c) (and therefore also variant (b)) of the ap-
proximate matching problem with gaps, as stated in Sec-
tion 3. If one is also interested in retrieving the actual ap-
proximate matching occurrences at positioni of a textT ,
a possibility would be to compute the submatrixD[k, j],
for max(0, (m−1)·(α+1)) ≤ k ≤ i and0 ≤ j ≤ m−1,
where, as before,m is the length of the pattern, and then
trace back through all possible approximate matchings.
The submatrixD[k, j] can be computed inO(m2α)-time
and -space by theδ-BOUNDED-GAPS algorithm.

The(δ, α)-SEQUENTIAL-SAMPLING algorithm com-
putes the occurrences of all prefixes of the pattern in con-

456

tinuously increasing prefixes of the text.
To be more precise, letSi denote the collection of all

pairs(j, k) such thatPk Ej T , for 0 ≤ i ≤ n, 0 ≤ j < i,
and0 ≤ k < m. Notice thatS0 = ∅. If we putS = Sn,
then the problem of finding the positionsi in T such that
P Ei T translates into the problem of finding all valuesi
such that(i,m− 1) ∈ S.

To begin with, notice that Lemma 1 justifies the fol-
lowing recursive definition of the setSi+1 in terms ofSi,
for i < n:

Si+1 = Si ∪ {(i, k) : P [k] =δ T [i] and
(k = 0 or (i− h, k − 1) ∈ Si,
for someh ∈ {1, . . . , α+ 1})}.

Such relation, coupled with the initial conditionS0 = ∅,
allows one to compute the setS in an iterative fashion.

From a practical point of view, the setS can be repre-
sented by its characteristicnxmmatrixM, whereM[i, k]
is 1 or 0, according to whether the pair(i, k) belongs or
does not belong toS, for 0 ≤ i < n and0 ≤ k < m.

Moreover, since during thei-th iteration at mostα+1
rows ofM need to be scanned —more precisely the ones
having indexj ∈ {max(0, i− α − 1), . . . , i− 1},— it is
enough to store onlyα+ 1 rows ofM at each step of the
computation, plus another one as working area.

In addition, by maintaining an extra arrayC of length
m in such a way that the following invariant holds:

C[k] =

i−1
∑

j=max(0,i−α−1)

M[j, k] , for 0 ≤ k < m , (1)

one can test whether a pair(i, k) must be added to the
setSi+1 in constant time, rather than inO(α)-time, thus
allowing to reduce space requirement toO(mα) and the
running time toO(mn).

Finally, rather than maintaining inM[j, k] the
Boolean value of the test(j, k) ∈ S, it is more convenient
to letM[j, k] count the number ofdistinctδ-occurrences
with α-gaps ofPk at positionj of T . With this change,
when thei-th iteration starts,C[k] will contain the total
number ofdistinctδ-occurrences withα-gaps ofPk at po-
sitionsmax(0, i− α− 1) throughi− 1.

Plainly, at the end of the computation one can retrieve
in constant time the number of approximate matchings at
each position of the text.

The resulting algorithm is presented in detail in Fig-
ure 4.

5 AN IMPROVED VARIANT OF THE
(δ, α)-SEQUENTIAL-SAMPLING

ALGORITHM

In this section we present a new efficient vari-
ant of the (δ, α)-SEQUENTIAL-SAMPLING algorithm
named (δ, α)-TUNED-SEQUENTIAL-SAMPLING algo-
rithm ((δ, α)-TSS for short). As its progenitor, the
(δ, α)-TSS algorithm solves variant (c) of the problem
in O(mn)-time andO(mα)-space but, practically, it re-
quires onlyO(n)-time on the average, at least in the case
of alphabets with a uniform distribution.

(δ, α)-SEQUENTIAL -SAMPLING (T , P , δ, α)
1. n = length(T)
2. m = length(P)
3. for i = 0 to α+ 1 do
4. for j = 0 to m− 2 do
5. M[i, j] = 0
6. for i = 0 to m− 2 do C[i] = 0
7. for i = 0 to n− 1 do
8. j = i mod (α+ 2)
9. for k = 0 to m− 2 do

10. C[k] = C[k] −M[j, k]
11. M[j, k] = 0
12. if (P [m− 1] =δ T [i] and C[m− 2] > 0) then
13. output(i)
14. for k = m− 2 downto 1 do
15. if (P [k] =δ T [i] and C[k − 1] > 0) then
16. M[j, k] = C[k − 1]
17. C[k] = C[k] + C[k − 1]
18. if P [0] =δ T [i] then
19. M[j, 0] = 1
20. C[0] = C[0] + 1

Figure 4:The(δ, α)-SEQUENTIAL-SAMPLING algorithm.

5.1 An estimate of the average number of matched
prefixes

In the(δ, α)-SEQUENTIAL-SAMPLING algorithm in Fig-
ure 4, thefor -loop in line 14 iterates onk fromm−2 down
to 1, for each positioni in the text, yielding anO(mn)-
time complexity. However, an iteration relative to a value
k can have some effect only ifC[k − 1] > 0, i.e. only if
Pk−1 Eh T for somei− α− 1 ≤ h ≤ i− 1.

As we will see below, in practical cases, at each posi-
tion of the text the average number of approximate match-
ing prefixes of the patternP is constant. Hence, by main-
taining in a linked list the nonnull positions of the arrayC,
we can attain an average time complexity ofO(n), rather
thanO(mn).

In our analysis, we will assume that the pattern and
text are independent random strings over an alphabet with
uniform distribution. Moreover, to simplify the analy-
sis, we will overlook some further dependence problems.
Nevertheless, we will see that our theoretical results agree
perfectly with the experimental results.

To begin with, we observe that the probabilitypδ that
two random characters of an alphabetΣ have aδ-match is
given with a good approximation by

pδ ≈
2δ + 1

σ
,

whereσ is the size of the alphabet.
Next we estimate the probability thatPk Ei T , where

Pk is a pattern prefix of lengthk + 1, with k < m, and
i is any position in the textT . Observe that Pr{P [k] =δ

T [i]} = pδ. In addition, for each0 ≤ j < k and each
positionℓ ≥ α in T , we have that the probability thatP [j]
has aδ-approximate occurrence inT [ℓ−α .. ℓ] is equal to
1−(1−pδ)

α+1. Such considerations suggest the following
rough estimate

Pr{Pk E
i T } ≈ pδ(1 − (1 − pδ)

α+1)k ,

which would hold as equality if the gappedδ-matchings
of the characters ofPk with corresponding characters of

457

Figure 5:Comparison between the expected numberϕδ of ap-
proximate matching pattern prefixes at any given position ofthe
text, as estimated by equation (2), and its experimental valuation
ψδ , for δ = 1, 2.

T were independent events, which is not the case. Nev-
ertheless, there is experimental evidence that the above
approximation is very accurate (see Figure 5).

Thus, an estimate of the expected numberϕδ of pre-
fixesPk such thatPk Ei T , for each positioni of the text,
is given by

ϕδ ≈ pδ ·

m−1
∑

k=0

(

1 − (1 − pδ)
α+1

)k

= pδ ·
1 −

(

1 − (1 − pδ)
α+1

)m

(1 − pδ)α+1
.

In fact, whenm is large enough, we have

ϕδ ≈
pδ

(1 − pδ)α+1
. (2)

In Figure 5 we have plotted the valuesϕδ (given by (2)
above) andψδ as functions of the alphabet sizeσ, for
δ = 1, 2, with the fixed valuesα = 4 andm = 140,
whereψδ is an experimental estimate of the average num-
ber of matching prefixes ofP at any given position in a
random text of 10Mb. It is interesting to notice that the
functionsϕδ andψδ, for δ = 1, 2, overlap almost per-
fectly, thus supporting the legitimacy of our approxima-
tions in the calculation ofϕδ.

5.2 Tuning the(δ, α)-SEQUENTIAL -SAMPLING
algorithm

In view of the results of the preceding section, at any
time during the execution of the(δ, α)-SEQUENTIAL-
SAMPLING algorithm the average number of nonnull
items in the arrayC is constant. Therefore, if the in-
dices of such nonnull items are maintained in an ordered
linked listL, thefor -loop at line 14 in Figure 4 can be exe-
cuted in constant average time, rather than inO(m)-time.
This will have the overall effect to reduce theO(mn)-time
complexity of the(δ, α)-SEQUENTIAL-SAMPLING algo-
rithm toO(n) average time complexity.

In more detail, our proposed variant(δ, α)-TSS works
as follows. For each positioni of the textT , the (δ, α)-
TSS algorithm scans the ordered listL in decreasing or-
der, and for each valuek in L it performs the following
operations. After updating the entriesC[k] andM[j, k], as
in lines 10 and 11 of the(δ, α)-SEQUENTIAL-SAMPLING

algorithm, the(δ, α)-TSS algorithm checks preliminarily
whetherC[k] = 0. If this is the case, the current value
of k is removed fromL. Otherwise, namely ifC[k] > 0

holds, the(δ, α)-TSS algorithm tests whether the prefix
Pk+1 has an approximate gapped matching at positioni
in the textT just by checking ifP [k + 1] =δ T [i]. If this
is so and ifk + 1 = m − 1, then a matching is reported
at positioni. Otherwise, namely ifk + 1 < m − 1, the
entriesM[i, k+1] andC[k+1] are updated in such a way
thatM[i, k+1] contains the correct number of matches of
Pk+1 at positioni in T and the invariant (1) is maintained;
then the valuek+1 is inserted inL just beforek, provided
that it is not already there. When the listL has been com-
pletely scanned, the(δ, α)-TSS algorithm checks whether
P [0] =δ T [i], and if this is the case the value0 is inserted
in the listL.

Figure 6 shows the complete code of the(δ, α)-TSS
algorithm. The listL is implemented in a circular fash-
ion by means of the arraynext of sizem. The entry
next [m − 1] is used as an extra sentinel which will al-
ways point to the first (i.e., highest) value ofk contained
in the listL. In addition, to manage insertions and dele-
tions inL efficiently, it is convenient to maintain a pointer
p to the predecessor of the current value ofk in L.

As the (δ, α)-SEQUENTIAL-SAMPLING algorithm,
the (δ, α)-TSS algorithm hasO(mn)-time andO(mα)-
space worst-case complexity. However, since the average
number of matched prefixes of the pattern at any given po-
sition of the text is constant for sufficiently long patterns,
in practice the(δ, α)-TSS algorithm works inO(n)-time.
This is confirmed experimentally, as will be shown in the
next section.

Note that, if we are interested only in variant (b) of our
approximate matching problem, we can further improve
the efficiency of the(δ, α)-TSS algorithm, at least in the
case in whichα+ 2 bits can fit in a computer word. Such
assumption is realistic, since in practical cases the length
of the gap is not greater than16. In this case, each column
of the tableM can be represented by a computer word
stored in the arrayC. The resulting algorithm turns out to
be slightly more efficient than the(δ, α)-TSS algorithm
in Figure 6.

6 EXPERIMENTAL RESULTS

In Figures 7, 8, and 9, we report experimental data rela-
tive to an extensive comparison of the running times of
our algorithm (δ, α)-TUNED-SEQUENTIAL-SAMPLING

(TTS), against the algorithmsδ-BOUNDED-GAPS (DP),
(δ, α)-SHIFT-AND (SA), and (δ, α)-SEQUENTIAL-
SAMPLING (SS).

All algorithms have been implemented in theC pro-
gramming language and have been used to search for the
same patterns in large fixed text sequences on a PC with a
Pentium IV processor at2.66GHz. In particular, they have
been tested on twoRandσ problems, forσ = 60, 90 and
on a real music text buffer.

EachRandσ problem consisted in searching for a set
of 250 random patterns of length10, 20, 40, 60, 80, 100,
120, and140 in a5Mb random text sequence over a com-
mon alphabet of sizeσ. For eachRandσ problem, the
approximation boundδ has been set to2, whereas the gap
boundα has been set to4.

The tests on real music have been performed on a

458

(δ, α)-TUNED-SEQUENTIAL -SAMPLING (T , P , δ, α)
1. n = length(T)
2. m = length(P)
3. for i = 0 to α+ 1 do
4. for j = 0 to m− 2 do
5. M[i, j] = 0
6. for i = 0 tom− 2 do C[i] = 0
7. next [0] = next [m− 1] = m− 1
8. for i = 0 to n− 1 do
9. j = i mod (α+ 2)

10. p = m− 1
11. k = next [m− 1]
12. while k < m− 1 do
13. C[k] = C[k] −M[j, k]
14. M[j, k] = 0
15. if (C[k] = 0) then
16. next [p] = next [k]
17. else
18. if (P [k + 1] =δ T [i]) then
19. if (k = m− 2) then
20. output(i)
21. else
22. M[j, k + 1] = C[k]
23. C[k + 1] = C[k + 1] + C[k]
24. if p > k + 1 then
25. next [p] = k + 1
26. next [k + 1] = k
27. p = k
28. k = next [k]
29. if (P [0] =δ T [i]) then
30. M[j, 0] = 1
31. C[0] = C[0] + 1
32. if p > 0 then next [p] = 0

Figure 6: The (δ, α)-TUNED-SEQUENTIAL-SAMPLING algo-
rithm.

4.8Mb file obtained by combining a set of classical pieces,
in MIDI format, by C. Debussy. The resulting text
buffer has been translated in the absolute pitch encod-
ing with an alphabet of101 symbols. For eachm =
10, 20, 40, 60, 80, 100, 120, 140, we have randomly se-
lected in the file250 substrings of lengthm which sub-
sequently have been searched for in the same file.

All running times have been expressed in tenths of sec-
onds.

Experimental results show that the(δ, α)-TSS algo-
rithm is faster than all other algorithms and its superior-
ity is more noticeable as the size of the pattern increases.
Moreover, it turns out from experimental results that its
running time does not depend on the length of the pattern.

7 CONCLUSIONS

We have presented a new efficientO(mn)-time vari-
ant of the (δ, α)-SEQUENTIAL-SAMPLING algorithm,
named(δ, α)-TUNED-SEQUENTIAL-SAMPLING, for the
δ-approximate string matching problem withα-bounded
gaps, which exhibits a linear behavior in practical cases.
The algorithm has been compared against various exist-
ing solutions for the same problem. Experimental results
have shown that our algorithm is very fast. The perfor-
mance of our algorithm become more remarkable as the
size of the pattern increases. In addition, our algorithm
uses onlyO(mα)-space for computing the number of all
distinct approximate matchings of the pattern at each po-
sition of the text.

Figure 7:Experimental results on a Rand60 problem withδ =
2 andα = 4.

Figure 8:Experimental results on a Rand90 problem withδ =
2 andα = 4.

Figure 9: Experimental results on Real Data withδ = 2 and
α = 4.

REFERENCES
R. A. Baeza-Yates and G. H. Gonnet. A new approach to text

searching.Commun. ACM, 35(10):74–82, 1992.

D. Cantone, S. Cristofaro, and S. Faro. An efficient algorithm
for δ-approximate matching withα-bounded gaps in musical
sequences. In S.E. Nikoletseas, editor,Proc. of the 4th Inter-
national Workshop on Experimental and Efficient Algorithms
(WEA 2005), number 3503 in Lecture Notes in Computer Sci-
ence, pages 428–439. Springer-Verlag, Berlin, 2005.

M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and W. Rytter.
Finding Motifs with Gaps. InProc. of International Sympo-
sium on Music Information Retrieval (ISMIR ’00), Plymouth,
USA, poster paper, pages 306–317, 2000.

M. Crochemore, C. Iliopoulos, C. Makris, W. Rytter, A. Tsaka-
lidis, and K. Tsichlas. Approximate string matching with
gaps.Nordic J. Comput., 9(1):54–65, 2002a.

G. Navarro and M. Raffinot. Fast and simple character classes
and bounded gaps pattern matching, with application to pro-
tein searching. InProc. 5th Annual International ACM Con-
ference on Computational Molecular Biology (RECOMB’01),
pages 231–240, 2001.

459

