ON TUNING THE (9, a)-SEQUENTIAL-SAMPLING ALGORITHM FOR

0-APPROXIMATE MATCHING WITH

a-BOUNDED GAPS IN MUSICAL

SEQUENCES

Domenico Cantone

Salvatore Cristofaro

Simone Faro

Universita di Catania, Dipartimento di Matematica e Imfatica
Viale Andrea Doria 6, 1-95125 Catania, Italy
cantone, cristofaro, faro@m .unict.it

ABSTRACT

We present a very efficient variant of thé),«)-
SEQUENTIAL-SAMPLING algorithm, recently introduced
by the authors, for thé-approximate string matching
problem witha-bounded gaps, which often arises in many
guestions on musical information retrieval and musical
analysis.

Though it retains the same worst-ca®émn)-time
and O(ma«)-space complexity of its progenitor to com-
pute the number of distinet-approximatex-gapped oc-
currences of a pattern of lengthat each position in a text
of lengthn, our new variant achieves an avera@én)-
time complexity in practical cases.

Extensive experimentations indicate that our algo-
rithm is more efficient than existing solutions for the same
problem, especially in the case of long patterns.

Keywords: approximate string matching, experimental
algorithms, musical information retrieval.

1 INTRODUCTION

Given a textT and a patternP over some alphabeét,
the string matching problensonsists in findingall occur-
rences ofP in T'. Itis a very extensively studied problem

in computer science, mainly due to its direct applications
to such diverse areas as text, image and signal proces
ing, speech analysis and recognition, musical analysis, in

formation retrieval, computational biology and chemistry
etc.

In this paper we focus on a variant of the string match-
ing problem, namely thé-approximate string matching
problem witha-bounded gaps Such a problem, which
will be given a precise definition later, arises in many
guestions on musical information retrieval and musical
analysis.

The paper is organized as follows. In Section 2 we

Permission to make digital or hard copies of all or part o thi
work for personal or classroom use is granted without fee pro
vided that copies are not made or distributed for profit or-com
mercial advantage and that copies bear this notice and the fu
citation on the first page.

(©2005 Queen Mary, University of London

454

S_

(C-minor) O (B-sus4)
Jﬁ’i—'—‘—.—| y A) } -
{~ T T - 1 AT i]
pe = 1 L H"—'—I
[- LY, »
a.p.e 00 63 07 72 ape. 359 64 66 71
pi.e. 3 4 5 , Pie. 5 2 5

Figure 1:Representation of th€-minorandB-sus4chords in
the absolute pitch encoding (a.p.e.) and in the pitch inleza-
coding (p.i.e.).

discuss the applications of approximate matching in the
context of musical sequences. Then, in Section 3, we in-
troduce some basic notions and give a formal definition
of the d-approximate matching problem witirbounded
gaps. A brief survey of existing algorithms for this prob-
lem is given in Section 4, whereas in Section 5 we present
a new very efficient variant of th&), «)-SEQUENTIAL-
SAMPLING algorithm recently introduced by the authors
in Cantone et al. (2005). Experimental data obtained by
running all the discussed algorithms under different con-
ditions are presented and compared in Section 6. Finally,
we draw our conclusions in Section 7.

2 APPROXIMATE MATCHING AND
MUSICAL SEQUENCES

Musical sequences can be schematically viewed as se-
quences of integer numbers, representing either the notes
in the chromatic or diatonic notation (absolute pitch en-
coding), or the intervals, in number of semitones, between
consecutive notes (pitch interval encoding); see examples
in Figure 1.

d-approximate string matching algorithms are very ef-
fective in searching for all similar but not necessarilyride
tical occurrences of given melodies in musical scores. We
recall that in thej-approximate matching problem two in-
teger strings of the same length match if the corresponding
integers differ by at most a fixed bound

Intuitively, we say that a melody (goattern) has a
d-approximate occurrence with-bounded gaps within
a given musical score (aexy, if the melody has a&-
approximate matching with a subsequence of the musical
score, in which it is allowed to skip up to a fixed num-
ber« of symbols (thegap) between any two consecutive
approximate matchings. In the present context, two sym-
bols have an approximate matching if the absolute value

e

___,‘."

™

Figure 2:Two bars of the study Op. 25 N. 1 by F. Chopin (first

score). The second score represents the melody. If a gaglboun

of a > 5 is allowed, an exact occurrence of the melody can be
found through the piece.

of their difference is bounded by a fixed number
In classical music compositions, and in particular in
compositions foPiano Solq it is quite common to find

1 (in fact, when the bound$ and« are well understood
from the context, we will simply writeP? <’ T').

The §-approximate string matching problem with
bounded gapsdmits the following variants: (a) find all
d-occurrences witlv-bounded gaps af in T'; (b) find all
positionsi in T such thatP <* T'; (c) for each positiori
in T, find the number of distincf-occurrences of with
a-bounded gaps at positian

In Section 4.3 we will describe an efficieGt(mn)-
time solution for the variants (b) and (c) above which uses
only O(m«) extra space. Variant (a) can then be solved
by running anO(m?«a)-time and -space local search at
each positiori such thatP < T.

The following very elementary fact will be used later.

musical pieces based on a sweet ground melody, whosd-emma 1 LetT and P be a text of lengt and a pat-
notes are interspaced by rapidly executed arpeggios. Figiern of lengthm, respectively. Also, lef,a > 0. Then,

ure 2 shows two bars of the stu@p. 25 N. 1 for Piano
Soloby F. Chopin illustrating such a point. The notes of

the melody are the first of each group of six notes (sextu-

plet).
Arpeggios are not by any means the only musical
technicality for which approximate string matching with

bounded gaps turns out to be very useful. Other examples

are given bymusical ornamentsvhich are common prac-
tice in classical music, and especially in the music of the
baroque period.

3 BASIC DEFINITIONS AND
PROPERTIES

foreach0 < i <n and 0 < k < m, we have that
P, <5, T if and only if P[k] =5 T'[i] and eitherk = 0,

or P,y <5 ' T, for someh such thatl < h < o + 1.
]

4 ALGORITHMS FOR THE
0-APPROXIMATE MATCHING
PROBLEM WITH «a-BOUNDED GAPS

In this section we survey the state-of-the-art of the
approximate matching problem witirbounded gaps. In
particular, we consider three algorithms, based on dif-
ferent strategies. Given a pattefn of length m and

Before entering into details, we need a bit of notationsanda text 7' of length n, the first algorithm, based on

terminology. A stringP is represented as a finite array
P[0..m — 1], with m > 0. In such a case we say that
has lengthm and writelength(P) = m. In particular, for
m = 0 we obtain the empty string. B¥[i] we denote the
(i 4+ 1)-st character o, for 0 < i < length(P). Like-
wise, by P[i .. j| we denote the substring &f contained
between théi + 1)-st and the(j + 1)-st characters aP,
for 0 < i < j < length(P). The substrings of the form
PJ0.. 4] (also denoted byP;), with 0 < j < length(P),
are the nonemptyrefixesof P.

Let > be an alphabet of integer numbers andléet 0
be an integer. Two symbols and b of ¥ are said to
be §-approximate in which case we writer =5 b, if
|a — b < 4. Two stringsP and@ over the alphabeX are

said to bey-approximate, in which case we wrife = Q,
if
length(P) = length(Q), and
Pli] =5 QJi], fori=0,...,length(P) —1.

Given a texfl’ of lengthn and a patterd® of lengthm,
ad-occurrence withe-bounded gaps aP in T at position
1 is an increasing sequence of indideg, i1, .. .,%m—1)
such that (ip < igandiy,—1 =i <n—1, (i) tp41—in—
1 <aq,forh=0,1,...m— 2, and (i) P[j] =5 T[i;],
forj =0,1,...m—1. We write P <5 , T'to mean thaP
has ad-occurrence withn-bounded gaps iff” at position

The notationz (4, §) is also used to denote a gap of at least
characters and at mogtcharacters. Using such notation, in the
problem at hand we are admitting gaps of the far(, o) at
each position.

dynamic-programming (Crochemore et al., 2000, 2002a),
solves variants (a) and (c) of the problem @hmn)-
space, and variant (b) i@ (n)-space, requiring in both
casesO(mn)-time. The second algorithm, based on
bit-parallelism (Baeza-Yates and Gonnet, 1992), solves
only variant (b) of the problem i®([mn/w])-time and
O([ma/w])-space, wherev is the number of bits in
the computer word. The third algorithm, nam@da)-
SEQUENTIAL-SAMPLING (Cantone et al., 2005), com-
putes sequentially occurrences of prefixe®dhus solv-

ing variants (b) and (c) of the problem@(mn)-time and
O(ma)-space, and variant (a) il(m?2«)-space.

4.1 An algorithm based on dynamic programming

The §-approximate matching problem with-bounded
gaps has been first addressed in Crochemore et al. (2000),
where an algorithm based on the dynamic programming
approach, nametl BOUNDED-GAPS, has been proposed.

In our review, we follow the presentation given later in
Crochemore et al. (2002a), which considers also several
new versions of the approximate matching problem with
gaps.

Given as usual a text' of lengthn, a patternP of
lengthm, and two integers,« > 0, the algorithmd-
BOUNDED-GAPSrunsinO(mn)-time and -space, at least
in the case in which one is interested in finding &ll
occurrences witlv-bounded gaps aP in T (variant (a)).
Space requirements can be reduce@{e), if only posi-
tionsi in T such thatP <* T’ need to be computed (variant

455

(b)). To solve also variant (c), one can first solve variant
(a) and then trace back and count all approximate match-
ings with gaps at each position of the t&xt

The §-BOUNDED-GAPS algorithm is presented
as an incremental procedure, based on the dy-
namic programming approach. More specifi-
cally, the §-BOUNDED-GAPS algorithm computes
a matrix D of dimension man where D[i, j]
max ({0 <k<j:P,<*"Tandj—k <a}U{-1}).

Notice thatP; </ T if and only if P[i] =5 T[j] and
Dli—-1,5—1) > 0,fori = 1,2,...,m —1andj =
1,2,...,n—1.

Using a trace-back procedure, as described in
Crochemore et al. (2002a), the valueg, j] can be used
to retrieve the approximate matchings at any given posi-
tion in time O(ma).

4.2 An algorithm based on bit-parallelism

Baeza-Yates and Gonnet (1992) presented an algorithm

for the exact string matching problem, namediS-
AND, which uses bit-parallelism to simulate a nondeter-
ministic finite automaton (NFA). The simulation is carried
out by representing the automaton as an array, bits,
whereL + 1 is the number of states of the automaton. Bits
corresponding to active states are sef tavhereas bits
corresponding to inactive states are sebtoThe initial
state is not represented because it is always active.

Note that if L < w then the entire array fits in a sin-
gle computer word, whereas If > w we need[L/w]|
computer words to represent the automaton.

For each symbat of the alphabel, the SHIFT-AND
algorithm maintains a bit mask|c] whosei-th bit is set
to 1, provided thatP[i] = ¢. The current configuration of
the automaton is maintained in a bit maskwhich is ini-
tialized to0*, since initially all states are inactive. While
scanning the text” from left to right, the algorithm sim-
ulates automaton transitions by the following basic shift-
and operation, for each positign

D= ((D<1)|0:711) & B[T]j]].
If the final state is active, a matching is reported at pasitio
j.
It turns out that the SIFT-AND algorithm has an
O(]mn/w]) worst-case time and requiré®([L/w])-
space.

The SHIFT-AND algorithm can easily be extended to
solve also the approximate matching problem of our inter-
est.

This can be done by adapting a forward search al-
gorithm presented in Navarro and Raffinot (2001) for

(8, a)-SHIFT-AND (T, P, ¢, @)

1. n = length(l")

2. m = length(P)

3. L=m+(m-1) -«

4, for c € ¥ do B[= 0"

5. I=F=0"

6. 1 =0

7. forj=0tom —1do

8. for ¢ = P[j] — 6 to P[j] + 6 do

9. Blc = (B[d] | (0*7'1 <« 1))
10. =14+

11. if j <m — 1then

12. I=T|0"""1<(-1))

13. F=F| (0" "< (i+a-1))
14. for c € X do

15. fork=1itoi+a—1do
16. Blc] = (B[q] | (0F7'1 < k))
17. 1=1+

18. M=0"'1<L-1

19. D=0"
20. forj=0ton—1do
21. if D & M +# 0* then output(j)
22. D= ((D<1)]0"1) & B[T[j]]
23. D=D|(F - (D&I)& ~F) «1)

Figure 3: The algorithm based on bit-parallelism for the
approximate matching problem witixbounded gaps.

the automaton in the order induced by its transitions,
where Sy is the initial state. Following Navarro and
Raffinot (2001), the stateS,...,Sy,—; are calledgap-
initial states After each gap-initial stat§;, o new states
Si1,---, 5. linearly connected b¥-transitions, are in-
serted. Moreoveg-transitions fromS; to each of the new
statesS; 1, ..., S; o are introduced. The states ,, for
i 1,...,£ — 1, are calledgap-final states Plainly,
the numberL of states of the resulting automaton is
m+(m—1)-a.

It can easily be seen thatransitions can be simulated
by the following operation

D=D|(F - (D&I)& ~F) <« 1),

wherel is a bit mask containing in the gap-initial states,
andF" is a bit mask containing in the gap-final states.

Figure 3 shows the complete algorithm, which it is
natural to call(d, a)-SHIFT-AND. The preprocessing
phase take®(ma|3|)-time, whereas the scanning phase
takesO([nm/w])-time.

4.3 The(d, ®)-SEQUENTIAL -SAMPLING algorithm

The(d, a)-SEQUENTIAL-SAMPLING algorithm (Cantone
et al., 2005) is characterized by &(mn)-time and an
O(ma)-space complexity. In addition, this algorithm
solves variant (c) (and therefore also variant (b)) of the ap

the pattern matching problem with character classes andoroximate matching problem with gaps, as stated in Sec-

bounded gaps, with application on protein searcRing.
To take into accouni-matches, it is enough to set to
1 the-th bit of the masks fronB[c — §] to Blc + 4].
To handle alsax-bounded gaps, we modify the au-
tomaton as follows. Lefy,S1,...,S, be the states of

2Though Navarro and Raffinot’s algorithm is very general, as
it allows to specify different gaps(:, 7) at different positions,
it requires that; > 1, for any two consecutive nontrivial gaps
z(i1,j1) andzx(iz, j2) at adjacent positions (see footnote 1 for
the notationz (4, 5)).

456

tion 3. If one is also interested in retrieving the actual ap-
proximate matching occurrences at positiaf a textT’,
a possibility would be to compute the submatfXk, 5],
formax(0,(m—1)-(a+1)) <k <iandd < j <m-1,
where, as beforen is the length of the pattern, and then
trace back through all possible approximate matchings.
The submatrixD|k, j] can be computed i@®(m?2a)-time
and -space by th&BoUNDED-GAPS algorithm.

The (4, a)-SEQUENTIAL-SAMPLING algorithm com-
putes the occurrences of all prefixes of the pattern in con-

tinuously increasing prefixes of the text.

To be more precise, I&; denote the collection of all
pairs(j, k) such thatP, </ T,for0 <i <n,0 < j <1,
and0 < k£ < m. Notice thatS, = @. If we putS = S,
then the problem of finding the position#n 7' such that
P < T translates into the problem of finding all values
such thafi,m — 1) € S.

To begin with, notice that Lemma 1 justifies the fol-
lowing recursive definition of the s&;; in terms ofS;,
fori < n:

SiJrl =S, U {(Z, k) : P[/{] =5 T[’L] and
(k=0or(i—h,k—1) €S,
forsomeh € {1,...,a+1})}.

Such relation, coupled with the initial conditidly = &,
allows one to compute the s8tin an iterative fashion.
From a practical point of view, the sStcan be repre-
sented by its characteristia:m matrix M, whereM i, k|
is 1 or 0, according to whether the pait, k) belongs or
does not belong t§, for0 < i < nand0 < k < m.
Moreover, since during thieth iteration at mosty + 1

(8, «)-SEQUENTIAL -SAMPLING (T, P, 4,)
n = length(l")
m = length(P)
fori=0toa+ 1do
for j =0tom — 2do
Mli,j] =0
fori=0tom —2doC[i] =0
fori=0ton—1do
j=1 mod (a+2)
for k=0tom — 2do
Clk] = C[K] — MIj, k]

M[j, k] =0
if (P[m — 1] =5 T[¢] and C[m — 2] > 0) then
outputf)

for k =m — 2 downto 1 do
if (P[k] =s T'[i]andC[k — 1] > 0) then
MUj, K] = Clk — 1]
Clk] = Clk] + C[k — 1]
if P[0] =5 T'[¢] then
Mj,01 =1

1
2
3
4
5
6
7
8
9

10

11

12.

13.

14

15

16

17

18

19

20 cloj =clo] +1

Figure 4:The (6, a)-SEQUENTIAL-SAMPLING algorithm.

rows of M need to be scanned —more precisely the onesg 1 anp estimate of the average number of matched

having indexj € {max(0,i —a —1),...,i— 1},—itis
enough to store onlg + 1 rows of M at each step of the
computation, plus another one as working area.

In addition, by maintaining an extra arr&yof length
m in such a way that the following invariant holds:

i—1

>

j=max(0,i—a—1)

Clk] = M[j, k], foro<k<m, (1)

one can test whether a pdir, k) must be added to the
setS; 11 in constant time, rather than («a)-time, thus
allowing to reduce space requirement®¢m«) and the
running time toO(mn).

Finally, rather than maintaining inM([j, k] the
Boolean value of the teg§, k) € S, it is more convenient
to let M[j, k] count the number distinctd-occurrences
with a-gaps of P, at positionj of T'. With this change,
when thei-th iteration startsC[k] will contain the total
number ofdistinctd-occurrences witlhv-gaps ofPy, at po-
sitionsmax (0,7 — a — 1) throughi — 1.

prefixes

In the (J, @)-SEQUENTIAL-SAMPLING algorithm in Fig-
ure 4, thdor-loop in line 14 iterates oh fromm—2 down

to 1, for each positioni in the text, yielding arO(mn)-
time complexity. However, an iteration relative to a value
k can have some effect only @k — 1] > 0, i.e. only if
P, <"Tforsomei—a—-1<h<i-—1.

As we will see below, in practical cases, at each posi-
tion of the text the average number of approximate match-
ing prefixes of the patterR is constant. Hence, by main-
taining in a linked list the nonnull positions of the ari@y
we can attain an average time complexity®(fn), rather
thanO(mn).

In our analysis, we will assume that the pattern and
text are independent random strings over an alphabet with
uniform distribution. Moreover, to simplify the analy-
sis, we will overlook some further dependence problems.
Nevertheless, we will see that our theoretical resultseagre
perfectly with the experimental results.

To begin with, we observe that the probability that

Plainly, at the end of the computation one can retrieve two random characters of an alphabdhave aj-match is
in constant time the number of approximate matchings atgiven with a good approximation by

each position of the text.

The resulting algorithm is presented in detail in Fig-

ure 4.

5 AN IMPROVED VARIANT OF THE
(0, a)-SEQUENTIAL-SAMPLING
ALGORITHM

In this section we present a new efficient vari-

ant of the (4, a)-SEQUENTIAL-SAMPLING algorithm
named (4, a)-TUNED-SEQUENTIAL-SAMPLING algo-
rithm ((,«)-TSS for short). As its progenitor, the

(6,)-TSS algorithm solves variant (c) of the problem

in O(mn)-time andO(ma«)-space but, practically, it re-

quires onlyO(n)-time on the average, at least in the case

of alphabets with a uniform distribution.

_26+1

g

L

bs

)

whereo is the size of the alphabet.

Next we estimate the probability th&y, <* T, where
Py is a pattern prefix of length + 1, with £ < m, and
i is any position in the text’. Observe that RiP[k] =5
T[]} = ps. In addition, for eacld < j < k and each
position? > « in T', we have that the probability tha];]
has aj-approximate occurrence [/ — « .. £] is equal to
1—(1—ps)**L. Such considerations suggest the following
rough estimate

PH{P, <" T} = ps(1 — (1 — ps)* T,

which would hold as equality if the gappédmatchings
of the characters aP, with corresponding characters of

457

holds, the(d, a)-TSS algorithm tests whether the prefix

T — P71 has an approximate gapped matching at position

15 P o . in the textT just by checking ifP[k + 1] =5 T'[4]. If this
o is so and ift + 1 = m — 1, then a matching is reported

Lr P2 ——-mm- 7 at positioni. Otherwise, namely it + 1 < m — 1, the

entriesM(i, k + 1] andC[k + 1] are updated in such a way
thatM[i, k+ 1] contains the correct number of matches of
' Py at positioni in 7' and the invariant (1) is maintained,;

0 50 100 150 200 thenthe valué 41 is inserted inC just beforek, provided
Figure 5:Comparison between the expected numbenof ap- that it is not already there. When th_e listhas been com-
proximate matching pattern prefixes at any given positiomef Pletely scanned, th@, «)-TSS algorithm checks whether
text, as estimated by equation (2), and its experimentabtiain P[0] =5 T[i], and if this is the case the valoas inserted
¥s, foro =1,2. in the list L.

T were independent events, which is not the case. Nev- F|_gure 6 ShO\.NS the _complete COd.e of t(l_zﬁea)-TSS
algorithm. The list£ is implemented in a circular fash-

ertheless, there is experimental evidence that the above ;
A . ion by means of the arrayezt of sizem. The entry
approximation is very accurate (see Figure 5).

Thus, an estimate of the expected numpgiof pre- next[m — 1] is used as an extra sentinel which will al-
fixes P, siuch thatP, <’ T, for each position of the text ways point to the first (i.e., highest) value lotontained

in the list £. In addition, to manage insertions and dele-

's given by tions in L efficiently, it is convenient to maintain a pointer
— at1yk p to the predecessor of the current valué ah L.
Y5 = Ps- Z (1= (1 =ps)*™) As the (6, a)-SEQUENTIAL-SAMPLING algorithm,
’1“:0 L1 a1y the (0, a)-TSS algorithm hag)(mn)-time andO(ma)-
= pso— (1— (1 —ps)*t)) space worst-case complexity. However, since the average
(1 —ps)ott number of matched prefixes of the pattern at any given po-

sition of the text is constant for sufficiently long patterns
in practice th€d, a)-TSS algorithm works i) (n)-time.
N Ds This is confirmed experimentally, as will be shown in the
PO A pg)att © next section.
Note that, if we are interested only in variant (b) of our
In Figure 5 we have plotted the values (given by (2) approximate matching problem, we can further improve
above) andys as functions of the alphabet size for the efficiency of thgd, «)-TSS algorithm, at least in the
6 = 1,2, with the fixed valuesy = 4 andm = 140, case in whichy + 2 bits can fit in a computer word. Such
wherey; is an experimental estimate of the average num- assumption is realistic, since in practical cases the kengt
ber of matching prefixes aP at any given position in a of the gap is not greater tha6. In this case, each column
random text of 10Mb. It is interesting to notice that the of the tableM can be represented by a computer word
functions s and s, for § = 1,2, overlap almost per- stored in the arrag. The resulting algorithm turns out to

fectly, thus supporting the legitimacy of our approxima- be slightly more efficient than thg, «)-TSS algorithm
tions in the calculation ops. in Figure 6.

In fact, whenm is large enough, we have

5.2 Tuning the (4, «)-SEQUENTIAL -SAMPLING

algorithm 6 EXPERIMENTAL RESULTS
In view of the results of the preceding section, at any In Figures 7, 8, and 9, we report experimental data rela-
time during the execution of thé), «)-SEQUENTIAL- tive to an extensive comparison of the running times of

SAMPLING algorithm the average number of nonnull our algorithm (4, «)-TUNED-SEQUENTIAL-SAMPLING
items in the arrayC is constant. Therefore, if the in- (TTS), against the algorithmsBOUNDED-GAPS (DP),
dices of such nonnull items are maintained in an ordered (d, a)-SHIFT-AND (SA), and (J, a)-SEQUENTIAL-
linked list £, thefor-loop at line 14 in Figure 4 can be exe- SAMPLING (SS).

cuted in constant average time, rather tha@®{m:)-time. All algorithms have been implemented in t@epro-
This will have the overall effect to reduce tB¥mn)-time gramming language and have been used to search for the
complexity of the(d, a)-SEQUENTIAL-SAMPLING algo- same patterns in large fixed text sequences on a PC with a
rithm to O(n) average time complexity. Pentium IV processor &66GHz. In particular, they have

In more detail, our proposed varigit «)-TSS works been tested on twRando problems, foro = 60,90 and
as follows. For each positiohof the textT’, the (9, a)- on a real music text buffer.
TSS algorithm scans the ordered lisin decreasing or- EachRandc problem consisted in searching for a set

der, and for each valuk in £ it performs the following of 250 random patterns of lengtto, 20, 40, 60, 80, 100,
operations. After updating the entriég:] andM|j, k], as 120, and140 in a5Mb random text sequence over a com-
in lines 10 and 11 of thé&), «)-SEQUENTIAL-SAMPLING mon alphabet of size. For eachRandos problem, the
algorithm, the(d, «)-TSS algorithm checks preliminarily approximation bound has been set #, whereas the gap
whetherC[k] = 0. If this is the case, the current value bounda has been set to.

of k is removed fromC. Otherwise, namely i€[k] > 0 The tests on real music have been performed on a

458

(6, a)-TUNED-SEQUENTIAL -SAMPLING (T, P, 0, &) 4 o5 T T ' T ' T
1. n = length(l") T I"rs5 7
2. m = length(P) 6 [SA .
3. fori=0toa+1do s bP g
4. for j =0tom —2do 4 -
5. M[i, j]=0 al |
6. fori=0tom—2doC[i] =0 . L i
7. nezxt[0] = nextfm — 1] =m — 1 5 :
8. fori=0ton—1do B]
9. j=1 mod (a+2) a I g : : . ! ;
10, p=m—1 0 20 40 60 80 100 120 140
11. k = next[m — 1] Figure 7:Experimental results on a Rand60 problem wiith:
12. while k <m — 1do 2 anda = 4.
13. Clk] = C[k] — My, k]
14. M[j, k] =0 8 T T T T T T T
15. if (C[k] =0) then 7|88 - .
16. next[p] = next[k] i —TSSE _____ 1
17. else_ ‘ .| pp]
18. if (P[k+ 1] =5 T[i]) then 4
19. if (k=m —2) then 4 =
20. outputg) 3 .
21. else 3 |- .
22. Mlj, k+1] =C[k] tik - i
23. C[k + 1] =Clk + 1] + C[k] a i L i i i i |
24. ifp > k + 1then 0 20 4 60 8 100 120 140
25. nezxtlp] = k+1 _
26. nextlk +1] =k Figure 8:Experimental results on a Rand90 problem with:
27. p==k 2 anda = 4.
28. = next[k]
29. if (P[0] =s T'[¢]) then 8 T T T T T T T
30. M([j,0] =1 1 -.I.gg .
31, clof =cfo] +1 6184 i .
32. if p > 0then nezt[p] =0 5 | DP =
Figure 6: The (6, a)-TUNED-SEQUENTIAL-SAMPLING algo- 4 e
rithm. 3k - =
2 - e _ e -
4.8Mb file obtained by combining a set of classical pieces, o e et i
in MIDI format, by C. Debussy. The resulting text) IR e 1 b=y 1 !
buffer has been translated in the absolute pitch encod- 0 20 40 60 80 100 120 140
ing with an alphabet ofl01 symbols. For eachn = Figure 9: Experimental results on Real Data wilh= 2 and
10, 20, 40, 60, 80, 100,120, 140, we have randomly se- « =4.
lected in the file250 substrings of lengthn which sub-
sequently have been searched for in the same file.
All running times have been expressed in tenths of sec- REFERENCES
onds. R. A. Baeza-Yates and G. H. Gonnet. A new approach to text
Experimental results show that ti& «)-TSS algo- searching Commun. ACM35(10):74-82, 1992.

rithm is faster than all other algorithms and its superior- D. Cantone, S. Cristofaro, and S. Faro. An efficient alganith
ity is more noticeable as the size of the pattern increases. for 6-approximate matching with-bounded gaps in musical

; ; ; sequences. In S.E. Nikoletseas, ediRmc. of the 4th Inter-
Moreover, it turns out from experimental results that its national Workshop on Experimental and Efficient Algorithms

running time does not depend on the length of the pattern. (WEA 2005)number 3503 in Lecture Notes in Computer Sci-
ence, pages 428-439. Springer-Verlag, Berlin, 2005.

M. Crochemore, C. S. lliopoulos, Y. J. Pinzon, and W. Rytter.

7 CONCLUSIONS Finding Motifs with Gaps. IrProc. of International Sympo-
. . . sium on Music Information Retrieval (ISMIR 'Q®Ilymouth,
We have presented a new efficie@(mn)-time vari- USA, poster paper, pages 306-317, 2000.
ant of the (4,)-SEQUENTIAL-SAMPLING algorithm, M. Crochemore, C. lliopoulos, C. Makris, W. Rytter, A. Tsaka
named(d, ov)-TUNED-SEQUENTIAL-SAMPLING, for the lidis, and K. Tsichlas. Approximate string matching with
d-approximate string matching problem witikbounded gaps.Nordic J. Comput.9(1):54-65, 2002a.

gaps, which exhibits a linear behavior in practical cases. g, Navarro and M. Raffinot. Fast and simple character classes
The algorithm has been compared against various exist- and bounded gaps pattern matching, with application to pro-

ing solutions for the same problem. Experimental results tein searching. IProc. 5th Annual International ACM Con-
have shown that our algorithm is very fast. The perfor- ference on Computational Molecular Biology (RECOMB’01)
mance of our algorithm become more remarkable as the pages 231-240, 2001.

size of the pattern increases. In addition, our algorithm

uses onlyO(ma)-space for computing the number of all

distinct approximate matchings of the pattern at each po-

sition of the text.

459

