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ABSTRACT 
Tonality is an important aspect of musical structure. 
Detecting key of music is one of the major tasks in tonal 
analysis and will benefit semantic segmentation of music 
for indexing and searching. This paper presents an 
HMM-based approach for segmenting musical signals 
based on key change and identifying the key of each 
segment. Classical piano music was used in the 
experiment. The performance, evaluated by three 
proposed measures (recall, precision and label accuracy), 
demonstrates the promise of the method. 
 
Keywords: key detection, music segmentation, Hidden 
Markov Models.  

1 INTRODUCTION 
Tonality is an important aspect of musical structure. It 
describes the relationships between the elements of 
melody and harmony. Detecting key of music is one of 
the major tasks in tonal analysis. Developing 
computational models to mimic the perception and 
detection of key will help automate the analysis of 
development of musical themes and emotion.  

From the practical perspective, semantic 
segmentation of music, including segmentation based on 
key change, will benefit intelligent music editing 
systems and automatic indexing of music repository.  

Furthermore, detection of key is a critical step for 
finding repeated patterns in music for music indexing 
and searching. For example, Foote [1] proposed a 
representation called self-similarity matrix for analyzing 
the recurrent structure of music, where a repetition 
typically will result in a diagonal pattern in the self-
similarity matrix. However, if a theme repeats at a 
different key, without considering the key change, the 
diagonal pattern will not appear and the repetition will 
not be detected. For example, Figure 1 shows the self-
similarity matrix zoomed in at a repetition of the theme 
at a different key in Mozart’s piano sonata. The diagonal 
pattern could not be seen from the original self-
similarity matrix representation without considering key 
change. However, if know the key change in advance 
and adjust accordingly when comparing two frequency 

vectors to get the self-similarity matrix, the diagonal 
pattern will come out. 
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Figure 1. Zoom in of the last repetition in  
“Mozart: Piano Sonata No. 15 In C” (left: original 
self-similarity matrix; right: key-adjusted self-
similarity matrix). 

 
This paper presents an HMM-based generative model 

for automatic key detection of music.  Specifically, 
given a musical piece (or part of it), the system will 
segment it into sections based on key change and 
identify the key of each section. Please note that here we 
want to segment the piece and identify the key of each 
segment at the same time. A simpler task could be, 
given a segment of a particular key, detecting the key of 
it. In fact, previous research on key detection of acoustic 
musical signals typically assumes that the musical 
segment remains the same key, so that the algorithm can 
analyze the pitch profile of the segment to infer the key 
[2,3,4].   

Another related work was done by Sheh [5], who 
investigated a similar problem of segmenting musical 
signals based on chord change and identifying the chord 
of each segment, where EM-trained Hidden Markov 
Models were employed. 

The remainder of this paper is organized as follows. 
Section 2 gives a brief introduction of musical key and 
other relevant terms. Section 3 presents the chromagram 
representation and the framework of using Hidden 
Markov Models (HMMs) for detecting key change. 
Section 4 demonstrates the promise of the method by 
experiments using classical piano music and some 
evaluation metrics. Section 5 concludes the paper and 
proposes future work. 

2 MUSICAL KEY AND MODULATION 
In Music theory, the key is the tonal center of a piece. It 
can be either in major or minor mode. A scale is an 
ascending or descending series of notes or pitches The 
chromatic scale is a musical scale that contains all 
twelve pitches of the Western tempered scale. The 
diatonic scale is most familiar as the major scale or the 
"natural" minor scale. The major mode has half-steps 
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between scale steps 3 and 4, and 7 and 8. The natural 
minor mode has half-steps between 2 and 3, and 5 and 6. 

A piece may change key at some point. This is called 
modulation. Modulation to the dominant (a fifth above 
the original key) or the subdominant (a fourth above) is 
relatively easy, as are modulations to the relative major 
of a minor key or to the relative minor of a major key. A 
thing needs to mention is that there might be ambiguity 
of key. It can be hard to determine the key of a quite 
long passage. Some music is even atonal, meaning there 
is no tonal center. Thus, in this paper, we will focus on 
tonal music with least ambuiguity of tonal center. 

3 APPROACH 
This section presents an HMM-based approach for 
detecting key change in classical piano music. 

3.1 Chromagram Representation 

Chromagram, also called the Pitch Class Profile features 
(PCP), is a frame-based representation very similar to 
Short-time Fourier Transform (STFT). It combines the 
frequency components in STFT belonging to the same 
pitch class and results in a 12-dimensional 
representation, corresponding to C, C#, D, D#, E, F, F#, 
G, G#, A, A#, B in music, or a generalized version of 
24-dimensional representation simply for higher 
resolution. Specifically, for the 24-dimensional 
representation, let ],[ nKX STFT  denote the magnitude 
spectrogram of signal ][nx . The chromagram of ][nx  is 
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The mapping between frequency index K in STFT 

and frequency index K’ in PCP is 
 

24mod)]//(log24[)( 12 ffNFFTKKP s⋅⋅=     (2) 
 

where NFFT is the FFT length, 
sf  is the sampling rate, 

1f  is the reference frequency corresponding to a note in 
the standard tuning system, for example, MIDI note C3 
(32.7031956626Hz). In the following, we will use the 
24-dimensional PCP representation for better resolution.  

In the following, we will focus on the chromagram 
representation for key analysis of classical piano music, 
simply because of its advantage of direct mapping to the 
musical meaning. It doesn’t mean it is best for any types 
of applications or any musical genres. However, all the 
following approaches should be generalized fairly easily 
using other representations. 

3.2 Parameters and Configuration of HMM 

In the following, the task of key detection will be 
divided into two steps: 

 
1. Detect the key without considering its mode. For 

example, both C major and A minor will be denoted 

as key 1, C# major and A# minor will be denoted as 
key 2, and so on. Thus, there could be 12 different 
keys in this step. 

 
2. Detect the mode (major or minor). 
 

The task is divided in this way, because diatonic 
scales are assumed and relative modes share the same 
diatonic scale. Thus, step 1 attempts to determine the 
height of the diatonic scale. And again, both steps 
involve segmentation based on key (mode) change as 
well as identification of keys (modes). 

The model used for key change detection should be 
able to capture the dynamic of sequences, and to 
incorporate prior musical knowledge easily since large 
volume of training data is normally unavailable. Thus, 
we propose to use Hidden Markov Models for this task, 
because HMM is a generative model for labelling 
structured sequence and satisfies both of the above 
properties [6]. 
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Figure 2. Demonstration of Hidden Markov Models. 

 
Figure 2 shows a graph of HMM used for key change 

detection. The hidden states correspond to different keys 
(or modes). The observations correspond to each frame 
represented as 24-dimensional chromagram vectors. The 
task will be decoding the underlying sequence of hidden 
states (keys or modes) from the observation sequence 
using Viterbi approach. 

The parameters of HMM need to be configured 
include: 
� The number of states N corresponding to the 

number of different keys (=12) or the number of 
different modes (=2), respectively, in the two steps. 

 
� The state transition probability distribution 

}{ ija=A  corresponding to the probability of 
changing from key (mode) i to key (mode) j. Thus, 
A is a 1212 ×  matrix (in step 1) and a 22 ×  matrix 
(in step 2), respectively. 

 
� The initial state distribution }{ iπ=Π  corresponding 

to the probability at which a piece of music starts 
from key (mode) i. 

 
� The observation probability distribution )}({ vbj=B  

corresponding to the probability density at which a 
chromagram v is generated by key (mode) j. 
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Due to the small amount of labeled audio data and 
the clear musical meanings of the parameters, Π  and A 
were empirically set as follows: 

 

1⋅=Π
12
1  

 
where 1  is a 12-dimensional vector in step 1 and a 2-
dimensional vector in step 2. This configuration denotes 
equal probabilities of starting from different keys 
(modes). 
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where d is 12 in step 1 and is 2 in step2. stayprob is the 
probability of staying in the same state and 

1)1( =⋅−+ bdstayprob . For step 1, this configuration 
denotes equal probabilities of changing from a key to a 
different key. It can be easily shown that when stayprob 
gets smaller, the state sequence gets less stable (changes 
more often). In our experiment, stayprob will be varying 
within a range (e.g., [0.9900 0.9995]) in step 1 and be 
set to 20101 −−  in step 2 to see how it impacts the 
performance. 

For observation probability distribution, instead of 
Gaussian probabilistic models, commonly used for 
modeling observations of continuous random vectors in 
HMM, the cosine distances between the observation (the 
24-dimensional chromagram vector) and the pre-defined 
template vectors were used to represent how likely the 
observation was emitted by the corresponding keys or 
modes, i.e., 
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where 

jθ  is the template of state j (corresponding to the 
jth key or mode). Note that, strictly speaking, the model 
using cosine distances is not a probability density, 
because it does not integrate to 1; however, since we 
only care about the relative likelihood of being at 
different keys, it is still a reasonable model.  

The advantage of using cosine distance instead of 
Gaussian distribution is that the key (or mode) is more 
correlated with the relative amplitudes of different 
frequency components rather than the absolute values of 
the amplitudes. Figure 3 shows an example for 
demonstrating this. Suppose points A, B and C to be 
three chromagram vectors. Based on musical 
knowledge, B and C are more likely to be generated by 
the same key (or, mode) than A and C, because B and C 
have more similar energy profile. However, if we look 
at the Euclidean space, A and C are closer to each other 
than B and C; thus, if we use Gaussian distribution to 

model the observation probability distribution, A and C 
will be more likely to be generated by the same key, 
which is not true. 
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Figure 3. Comparison of observation 
distributions of Gaussian and cosine distance. 

 
For step 1, the template of a key was empirically set 

corresponding to the diatonic scale of that key. For 
example, the template for key 1 (C major or A minor) is 

Todd ]101010110101[1 =θ  (Figure 4), 0=even
1θ , where 

odd
1θ  denotes sub-vector of 1θ  with odd indexes (i.e., 

)23:2:1(1θ ) and even
1θ  denotes sub-vector of 1θ  with 

even indexes (i.e., )24:2:2(1θ ). This means we ignore 
the elements with even indexes when calculating the 
cosine distance. The templates of other keys were set 
simply by rotating 1θ  accordingly: 

 
))1(2,( 1 −⋅= jrj θθ   (4) 

 
]24mod)[(][..),,( ikitskr +== αβαβ  

 
where j=1, 2, …, 12 and i, k=1, 2, …, 24. Let us also 
define 2424mod24 = . 
 
 

 
Figure 4. Configuration of the template for C 
major (or A minor). 

For step 2, the templates of modes were empirically 
set as follows:  

 
Todd

major ]000010000000[=θ ,  
 

Todd
minor ]001000000000[=θ ,  
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0== even
minor

even
major θθ ,  

 
This setting comes from musical knowledge that 

typically in a major piece, the dominant (G in C major) 
appears more often than the submediant (A in C major), 
while in a minor piece, the tonic (A in A minor) appears 
more often than the subtonic (G in A minor). Please 
note the templates need to be rotated accordingly 
(Equation 4) based on its key detected from step 1. 

Apparently, the above is a simplified model and there 
can be several refinements of it. For example, if we 
consider the prior knowledge of modulation, we can 
encode in A the information that each key tends to 
change to its “close” keys rather than the other keys. 
The initial key or mode of a piece may not be uniformly 
distributed as well. But to quantize the numbers, we will 
need a very large corpus of pre-labeled musical data, 
which is not available here. 

4 EXPERIMENTAL EVALUATION 

4.1 Data Set 

Ten classical piano pieces (Table 1) were used in the 
experiment of key detection, since the chromagram 
representation of piano music has very clear mapping 
between its structure and its musical meaning (Section 
3.1). These pieces were chosen randomly as long as they 
have fairly clear tonal structure (relatively tonal instead 
of atonal). The truth was manually labeled by the author 
based on the score notation to be compared with the 
computed results.  

The data were mixed into 8-bit mono and down-
sampled to 11kHz. Each piece was segmented into 
frames of 1024 samples with 512 samples overlap. 

 

Table 1. Ten classical piano pieces in the experiment. 

1.  Mozart: Piano Sonata No. 15 In C (I. Allegro)  
2.  Schubert: Moment Musical No. 2  
3.  Dvorak: Humoresque No. 7  
4.  Rubenstein: Melody In F  
5.  Paderewski: Menuett  
6.  Chopin: ‘Military’ Polonaise  
7.  Beethoven: Minuet In G  
8.  Mozart: Sonata No. 11 In A ‘Rondo All Turca’  
9.  Schumann: From Kinderszenen (1. Von Fremden    
Landern Und Menschen)  
10. Chopin: Waltz In D-flat, Op. 64 No. 1 ‘Minute Waltz’  

4.2 Evaluation Measures 

To evaluate the results, two aspects need to be 
considered: label accuracy (how the computed label of 
each frame is consistent with the actual label) and 
segmentation accuracy (how the detected locations of 
transitions are consistent with the actual locations). 

Label accuracy is defined as the proportion of frames 
that are labeled correctly, i.e., 

 

framestotal
correctlylabeledframesaccuracyLabel

#
#

=   (5) 

 
Two metrics were proposed and used for evaluating 

segmentation accuracy. Precision is defined as the 
proportion of detected transitions that are relevant. 
Recall is defined as the proportion of relevant transitions 
detected. 

Thus, if B={relevant transitions}, C={detected 
transitions} and CBA ∩= , from the above definition,  

 

C
APrecision =   (6)  

 

B
ARecall =   (7) 

 
 

 
 

Figure 5. An example for measuring 
segmentation performance (above: detected 
transitions; below: relevant transitions).  

 
To compute precision and recall, we need a 

parameter w: whenever a detected transition t1 is close 
enough to a relevant transition t2 such that |t1-t2|<w, the 
transitions are deemed identical (a hit). Obviously, 
greater w will result in higher precision and recall. In the 
example shown in Figure 5, the width of each shaded 
area corresponds to 2w-1. If a detected transition falls 
into a shaded area, there is a hit. Thus, the precision in 
this example is 3/6=0.5; the recall is 3/4=0.75. Given w, 
higher precision and recall indicates better performance. 
In my experiment (512 window step at 11kHz sampling 
rate), w will vary within a range to see how precision 
and recall vary accordingly: for key detection, w varies 
from 10 frames (~0.46s) to 80 frames (~3.72s). The 
range of w for key detection is fairly large because 
modulation of music (change from one key to another 
key) is very often a smooth process that may take 
several bars.  

Assume we randomly segment a piece into (k+1) 
parts, i.e., k random detected transitions. Let n be the 
length of the whole piece (number of frames) and let m 
be the number of frames “close enough” to each 
relevant transition, i.e., m=2w-1. Also assume there are l 
actual segmenting points. To compute average precision 
and recall of random segmentation, the problem can be 
categorized as a hyper-geometric distribution: if we 
choose k balls from a box of ml black balls (i.e., m black 
balls corresponding to each segmenting point) and (n-
ml) white balls, assuming no overlap occurs, what is the 
distribution of the number of black balls we get. Thus, 
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where B denotes the number of black balls chosen 
corresponding to a particular segmenting point. If we 
know the value of l in advance and make k=l (thus, not 
completely random), and n>>m,  
 

m

n
l )1(1Recall −−≈   (10) 

 
The equations shown that, given n and l, precision 

increases by increasing w (i.e., increasing m); and recall 
increases by increasing k or w.  Equation 8 and 10 will 
be used later as the baseline (upper bound of the 
performance of random segmentation) to be compared 
to the performance of the segmentation algorithm. 

4.3 Results 

Figure 6 shows key detection result of Mozart’s piano 
sonata No. 11 with stayprob=0.996 for step 1 and 
stayprob2=1-.1-20 in step 2. The figure above presents 
the result of key detection without considering mode 
(step 1) and the figure below presents the result of mode 
detection (step 2). 

To show label accuracy, recall and precision of key 
detection averaged over all the pieces, we can either fix 
w and change stayprob (Figure 7), or fix stayprob and 
change w (Figure 8). 

In Figure 7, two groups of results are shown in the 
plot: one corresponds to the performance of step 1 
without considering modes; the other corresponds to the 
overall performance of key detection with mode into 
consideration. It clearly shows that when stayprob is 
increasing, precision is also increasing while recall and 
label accuracy are decreasing. 
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Figure 6. Key detection of  “Mozart: Sonata No. 
11 In A ‘Rondo All Turca’” (solid line: computed 
key; dotted line: truth) 

 
 In Figure 8, three groups of results are shown in the 

plot: one corresponds to the performance of step 1 
without considering modes; one corresponds to the 
overall performance of key detection with mode into 
consideration; and one corresponds to recall and 
precision based on random segmentation (Equation 8 
and 10). Additionally, label accuracy based on random 
should be around 8%, without considering modes.  

It clearly shows that when w is increasing, recall and 
precision are also increasing. Please note that label 
accuracy is irrelevant to w.  

The above two figures show that the segmentation 

Figure 8. Performance of key detection with 
varying w (stayprob=0.996; stayprob2=1-.1-20). 
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performance (recall and precision) base on the algorithm 
is significantly better than random segmentation. 

5 DISCUSSION 
Ideally, all the HMM parameters should be learned from 
a labeled musical corpus. The training can be made 
(efficiently) using a maximum likelihood (ML) estimate 
since all the nodes are observed. Especially, if the 
training set has the similar timbre property as the test 
set, the observation distribution can be more accurately 
estimated employing the timbre information besides 
prior musical knowledge, and the overall performance 
should be further improved.  

However, this training data set should be very huge. 
Manually labelling it will involve tremendous amount of 
work. For example, if the training data set is not big 
enough, the state transition matrix will be very sparse 
(0’s at many cells) and this may result in many test 
errors, because any transition that does not appear in the 
training set will not be recognized. One possibility for 
future improvement is using Bayesian approach to 
combine the prior knowledge (via empirical 
configurations) and the information obtained from a 
small amount of training data.  
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Figure 9. Confusion matrix of key detection. 

 
Another interesting thing to investigate is how the 

algorithm was confused with keys and whether the 
errors make a musical sense. Figure 9 shows the 
confusion matrix of key detection (without considering 
modes; stayprob=0.996; stayprob2=1-.1-20). It shows 
that most errors came from confusion between the 
original key and the dominant or sub-dominant key 
(e.g., F Æ C, G Æ C, F# Æ C#). This is consistent with 
music theory presented in Section 2 that these keys are 
closer to each other and share more common notes.   

6 CONCLUSION AND FUTURE WORK 
This paper presented an HMM-based approach for 
detecting key change. Experimental result, evaluated by 

three proposed measures, demonstrates the promise of 
the method. Although constraints on music have been 
made to build simplified models, e.g., diatonic scales, 
the framework should be easily generalized to handle 
other types of music.  

Each step in the presented framework has been 
carefully designed with consideration of its musical 
meaning: from using chromagram representation, to 
employing cosine-distance observation probability 
distribution, to empirical configurations of HMM 
parameters. The experimental result is fairly robust and 
significantly better than random segmentation. 

Future improvement could be adding a training stage 
(if training data is available) to make this general model 
customized to specific types of music. More 
representations need to be explored for other music 
genres. Furthermore, the HMM parameters should be 
chosen most appropriate for different applications: for 
segmentation-based applications, we should maximize 
precision and recall; for key relevant applications (such 
as detecting repeated patterns that was presented is 
Section 1), we should maximize label accuracy. 

Similar framework has also been applied to chord 
detection task for classical piano music, which will not 
be covered in this paper. 
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