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ABSTRACT

This paper presents a melody spotting system based on
Variable Duration Hidden Markov Models (VDHMM’s),
capable of locating monophonic melodies in a database
of raw audio recordings. The audio recordings may ei-
ther contain a single instrument performing in solo mode,
or an ensemble of instruments where one of the instru-
ments has a leading role. The melody to be spotted is pre-
sented to the system as a sequence of note durations and
music intervals. In the sequel, this sequence is treated as
a pattern prototype and based on it, a VDHMM is con-
structed. The probabilities of the associated VDHMM
are determined according to a set of rules that account
(a) for the allowable note duration flexibility and (b) with
possible structural deviations from the prototype pattern.
In addition, for each raw audio recording in the data-
base, a sequence of note durations and music intervals is
extracted by means of a multi pitch tracking algorithm.
These sequences are subsequently fed as input to the con-
structed VDHMM that models the pattern to be located.
The VDHMM employs an enhanced Viterbi algorithm,
previously introduced by the authors, in order to account
for pitch tracking errors and performance improvisations
of the instrument players. For each audio recording in
the database, the best-state sequence generated by the en-
hanced Viterbi algorithm is further post-processed in or-
der to locate occurrences of the melody which is searched.
Our method has been successfully tested with a variety of
cello recordings in the context of Western Classical music,
as well as with Greek traditional multi-instrument record-
ings, in which clarinet has a leading role.

Keywords: Melody Spotting, Variable Duration Hidden
Markov Models.
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1 INTRODUCTION

Melody spotting can be defined as the problem of loca-
ting occurrences of a given melody in a database of mu-
sic recordings. Depending on the origin and representa-
tion of the melody to be spotted, as well as the nature of
the music recordings to be searched, several variations of
the melody spotting problem can be encountered in prac-
tice. Most research effort has focused on comparing sung
(or  hummed)  queries  to  MIDI  data  [1,2,3,4 ,5]
in the context of the so-called “Query-by-Humming”
systems. Such systems mainly employ Dynamic Time
Warping techniques (variations of the Edit Distance) for
melody matching, in order to account for pitch and tempo
errors that are usually inherent in any real hummed tune.

In an effort to circumvent the need for MIDI metadata
in the database, certain researchers have proposed using
standard Hidden Markov Models for locating monophonic
melodies in databases consisting of raw audio data. In [6]
and [7] the database consists of recordings of a single in-
strument performing in solo mode, whereas in [8] the case
of studio recordings of operas, that contain a leading vo-
calist, is treated.  In [6–8] , the input to the system is
assumed to be a symbolic representation of the melody
to be searched (e.g., a MIDI-like representation). This
assumption leads to a different melody matching philo-
sophy, when compared with “Query-by-Humming” sys-
tems. The term “Query-by-Melody” is often used in or-
der to describe the functionality of systems like those pro-
posed in [6–8].

In our approach, the melody to be spotted is also as-
sumed to be available in a symbolic format, e.g., a MIDI
like representation. This type of representation makes
it possible to convert the melody to be searched toa
sequence of note durations and music intervals (time -
music interval representation). This sequence is subse-
quently treated as apatternand a Variable Duration Hid-
den Markov Model (VDHMM) is built in order to model
it. Using VDHMM’s makes it possible to account for vari-
ability of note durations and also permits to model varia-
tions of the pattern’s sequence of music intervals. The
resulting VDHMM is then fed with (feature) sequences
of note durations and music intervals that have been ex-
tracted fromthe raw audio recordingsby means of a
multi-pitch tracking analysis model. We have focused on
multi-pitch tracking algorithms because we want to treat,
in a unified manner, both single-instrument recordings and
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multi-instrument recordings in which one of the instru-
ments has a leading role. For each feature sequence, the
VDHMM generates abest-state sequence by means of an
enhanced Viterbi algorithm,which has been previously in-
troduced by the authors [9]. The enhanced Viterbi algo-
rithm is able to deal with pitch tracking errors stemming
from the application of the multi-pitch algorithm to the
raw audio recordings. Once a best-state sequence is ge-
nerated, it can be further processed by a simple parser in
order to locate instances of the musical pattern. For each
detected occurrence of the melody in question, a recogni-
tion probability is also returned, thus allowing for sorting
the list of results.

The novelty of our approach consists of the following:
a) a VDHMM is being employed to such problem for the
first time, providing a noticeably enhanced performance
in the system. This is because VDHMM allows the use of
a robust, non-standard cost function for the Viterbi algo-
rithm it presents.
b) A unified treatment of both monophonic and non-
monophonic raw audio data, provided that in the non-
monophonic case, an instrument has a leading role.

Section 2 presents the pitch tracking procedure that is
applied to the raw audio recordings. Section 3 describes
the methodology with which the VDHMM is built in order
to model the melody to be spotted. Section 4 describes the
enhanced Viterbi algorithm and the post-processing stage
that is applied on the best-state sequence. Implementation
and experiment details are given in Section 5 and finally
conclusions are drawn in Section 6.

2 FEATURE EXTRACTION FROM RAW
AUDIO RECORDINGS

The goal of this stage is to convert each raw audio recor-
ding in the database to a sequence of music intervals with-
out discarding note durations. The use of music intervals
ensures invariance to transposition of melodies, while note
durations preserve information related to rhythm. This
type of intervalic representation is an option between other
standard music representation approaches (e.g. [10]).

At first, a sequence of fundamental frequencies is ex-
tracted from the audio recording using Tolonen’s multi-
pitch analysis model [11]. Tolonen’s method splits the
audio recording into a number of frames by means of a
moving window technique and extracts a set of pitch can-
didates from each frame. In our experiments, we always
choose the strongest pitch candidate as the fundamental
frequency of the frame. For single instrument recordings,
this is the obvious choice, however for audio recordings,
consisting of an ensemble of instruments, where one of
the instruments has a leading role, this choice does not
guarantee that the extracted fundamental frequency coin-
cides with the pitch of the leading instrument. Although
this can distort the extracted sequence of fundamentals,
such errors can be efficiently dealt with by the enhanced
Viterbi algorithm of Section 4.

Without loss of generality, letF = {f1, f2, . . . , fN},
be the sequence of extracted fundamentals, whereN is
the number of frames into which the audio recording is
split. Each fundamental frequency is in turn quantized

to the closest half-tone frequency on a logarithmic fre-
quency axis and, finally, the difference of the quantized
sequence is calculated. The frequency resolution adopted
at the quantization step can be considered as a parameter
to our method, i.e., it is also possible to adopt quarter-tone
resolution, depending on the nature of the signals to be
classified. For micro-tonal music, as is the case of Greek
Traditional Music, quarter-tone resolution is a more rea-
sonable choice.

Eachfi is then mapped to a positive number, sayk,
equal to the distance offi from fs (the lowest fundamen-
tal frequency of interest,A1 = 55Hz in our experiments).
For half-tone resolution,k = round(12 log2

fi

fs
), where

round(·) denotes the roundoff operation. As a result,F
is mapped to sequenceL = {li; i = 1 . . . N}, where
li ∈ [0, lmax]. It is now straightforward to computeD,
the sequence of music intervals and note durations, from
L. This is achieved by calculating the difference ofL, i.e.,
D = {di = li+1 − li; i = 1 . . . N − 1}. We assume that
di ∈ [−G,G], whereG is the maximum allowable music
interval. In the rest of this paper, we will refer todi’s as
“symbols” and toD as the “symbol sequence”.

It is worth noticing that, most of the time,li+1 is equal
to li, since each note in an audio recording is very likely
to span more than one consecutive frames. Therefore, we
can rewriteD as

D = {0z1
,m1,0z2

,m2, . . . ,0zN−1
,mN−1,0zN

} (1)

where0zk
stands forzk successive zeros and eachmi is

a non-zerodi. As a result,D consists ofsubsequences of
zerosseparated bynon-zero values(themi’s), with each
mi denoting a music interval, i.e.,the beginning of a new
note. The physical meaning of a subsequence of zeros is
that it represents the duration of a musical note.

3 MODELING THE MELODY TO BE
SPOTTED BY MEANS OF A VDHMM

We now turn our attention to the representation of the
melody to be spotted. Following the notation adopted in
equation (1), the melody will also first be represented as a
sequence of music intervals and note durations. Without
loss of generality, let

Mp = {(fr1, t1), (fr2, t2), . . . , (frM , tM )}

be a melody consisting ofM notes, where for each pair
(fri, ti), fri is the pitch of thei − th note (measured
in Hz) andti is the respective note duration (measured
in seconds). This time-frequency representation is not re-
strictive, as it can be computed in a straightforward man-
ner from data stored in symbolic format (e.g., MIDI). Fol-
lowing the approach adopted in Section 2, eachfri can
also be quantized to the closest half-tone frequency, say
lri. As a result,Mp is mapped toLp = {(lri, ti); i =
1 . . .M}, wherelri ∈ [0, lmax] and ti is still measured
in seconds. Thei − th note duration is mapped to a se-
quence ofzi zeros, sayOzi

, wherezi = round(ti/step),
with step being the step of the moving window technique
that was also used for the raw audio recordings (measured
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in seconds).Mp can now be written as

Dp = {0z1
,mr1,0z2

,mr2, . . . ,0zM−1
,mrM−1,0zM

}
(2)

wheremri = lri+1 − lri. Taking equation (2) as a star-
ting point, a VDHMM can now be built for the melody
to be spotted. Before proceeding, it has to be noted that,
with the exception of the first note of the melody (which
has been mapped to a sequence of zeros), each note cor-
responds to a non-zero symbol followed by a sequence of
zeros. The VDHMM is thus built according to the fol-
lowing set of rules:
(I) One state is created for each subsequence of zerosOzk

,
k = 1 . . .M . These are the Z-states,Z1 . . . , ZM . Each
Z-state only emits zeros with probability equal to one.
Therefore, each note duration is modeled by a Z-state.
(II) The state duration for each Z-state is modeled by a
Gaussian probability density function, namely,pZi

(τ) =
G(τ, µZi

, σ2

Zi
). The values ofµZi

andσZi
depend on the

allowable tempo fluctuation and time elasticity, due to per-
formance variations of the instrument players. By adopt-
ing different zero-states, we allow a different state dura-
tion model for each note, something that is dictated by the
nature of real world signals.
(III) For eachmri, i = 1 . . .M − 1, marking the begin-
ning of a note, a separate state is created. These are the
S-states,S1, . . . , SM−1. Each S-state only emits the re-
spectivemri with probability equal to one.
(IV) This is a left-to-right model, where each Z-state,Zi,
is followed by an S-state,Si, and eachSi is definitely
followed by Zi+1. It must pointed out that, according
to this approach, each note of the melody corresponds
to a pair of states, namely a non-zero state followed by
a zero-state, with the exception, of course, of the first
note (figure 1). In addition, for a melody consisting of
a sequence ofM notes, the respective HMM consists of
S = 2 +M +M − 1 = 2M + 1 states.

Z1 S1
Z2

SN-1
.. ZN

o
ZM

o
Z1

o
Z2

mr
1

mr
M-1

2nd note

{

1st note

{

Mth note

{

Figure 1: Mapping melody to a VDHMM

(V) A third type of state is added, both in the beginning
and in the end of the VDHMM of figure (1), which we call
theend-state. Each end-state is allowed to emit any music
interval (symbol), as well as zeros, with equal probability.
If the end states are namedE1 andE2, the successor to
E1 can be eitherZ1 or E2 andE2 is now the rightmost
state of the model. As a result, the following state tran-
sitions are allowed to take place:E1 → Z1, E1 → E2

andE2 → E1. The state duration for the end states is
modeled by a uniform probability density function with a
maximum state duration equal to≃ 1 seconds. This com-
pletes a basic version of the VDHMM (shown in figure
2).

We have now reached the point where this basic ver-
sion of the VDHMM can be used as a melody spotter.

This is because, if the sequence of music intervals, that
has been extracted from the raw audio recording (equation
(1)), is fed as input to this VDHMM and the Viterbi algo-
rithm is used for the calculation of the best-state sequence,
the VDHMM is expected to iterate between the end-states,
E1 andE2, until the melody is encountered. Then, the
VDHMM will go through the sequence of Z-states and S-
states modeling the music intervals of the melody, until
it jumps toE2 and will start again iterating between the
end-states, until one more occurrence of the melody is en-
countered or the end of the feature sequence is reached.

Z1 S1 Z2
SM-1

.. ZME1
E2

Figure 2: Basic version of the VDHMM

After the whole feature sequence of the raw audio
recording is processed, a simple parser can post-process
the best-state sequence and any state subsequences cor-
responding to occurrences of the melody can be easily
located. This is because, whenever an instance of the
melody is detected, the VDHMM will go through a se-
quence of states consisting only Z-states and S-states.
It is therefore straightforward to locate such sequences
of states with a simple parser (like in a simple string-
matching situation).

The VDHMM described so far is only suitable for ex-
act matches of the melody to be spotted in the raw audio
recording, i.e., only note durations are allowed to vary ac-
cording to the Gaussian pdf’s that model the state dura-
tion. However, if certain state transitions are added, the
VDHMM of figure (2) can also deal with the cases of
missing notes and repeating sub-patterns, by extending the
aforementioned set of rules. Specifically:
(VI) Missing notes can be accounted for, if certain addi-
tional state transitions are permitted. For example, if the
i-th note is expected to be absent, then a transition from
Zi−1 to Si, denoted asZi−1 → Si, should also be made
possible. This is because the i-th note corresponds to the
pair of states{Si−1, Zi} and similarly, the (i+1)-th note
starts at stateSi, whereas the (i-1)-th note ends at state
Zi−1 (figure 3).
(VII) In the same manner, accounting for successive rep-
etitions of a sub-pattern of the prototype, leads to per-
mitting backward state transitions to take place. For in-
stance, if notes{i, i+ 1, . . . , i+K} are expected to form
a repeating pattern, then clearly, the backward transition
Zi+K → Si−1 must be added. This is again because the
(i+K)-th note ends at stateZi+K , whereas the i-th note
starts at stateSi−1 (figure 3).

Missing notes and repeated sub-patterns are particu-
larly useful to model, when dealing with music where im-
provisation of the instrument players is a common phe-
nomenon, like in the case of Greek Traditional Clarinet
performing a leading role while accompanied by an en-
semble of instruments.
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Si-2 Si Zi+1
Zi-1 Si-1 Zi

......

i-th note

{

(i-1)-th note

{
(i+1)-th note

{

Si+k-1 Zi+k

(i+k)-th note

{

Figure 3:Zi−1 → Si accounts for a possibly missing i-th
note.Zi+K → Si−1 accounts for a repeating sub-pattern
of k + 1 notes

Furthermore, it is also possible to relax the constraint
that each S-state emits only one symbol, if one is unsure
of the exact score of the melody to be searched, or if one
wishes to locate variations of the melody with a single
search. For example, stateSi could also be allowed to
emit symbolsmri+1 ormri-1.

4 THE ENHANCED VITERBI
ALGORITHM

Translated in the HMM terminology, let
H = {π,A,B,G} be the resulting VDHMM, where
πSx1 is the vector of initial probabilities,AS×S is the
state transition matrix andB(2G+1)×S is the symbol
probability matrix (G is the maximum allowed music
interval). Regarding theGS×2 matrix, the first element of
the i-th row is equal to the mean value of the Gaussian
function modeling the duration of the i-th state and the
second element is the standard deviation of the respective
Gaussian. For the VDHMM of figure (2):
(a) BothZ1 andE1 can be the first state, suggesting that
π(1) = π(2) = 0.5 andπ(i) = 0, i = 3 . . . S.
(b) A is upper triangular with each element of the first
diagonal being equal to one. All other elements ofA have
zero values, unless backward transitions are possible, as
is the case when modeling repeating sub-patterns.
(c) For the Z-states, each column ofB has only one
element with value equal to 1,BZi

(ds = 0) = 1 (and
all other elements are zero valued) and similarly, for
each S-state,BSi

(ds = mri) = 1 and all other elements
are zero valued, unless of course, a S-state is allowed to
emit more than one music intervals (in which case all
allowable emissions can be set to be equiprobable).

In practice, sequenceD, which has been extracted
from a raw audio recording,suffers from a number of
pitch-tracking errors. Such errors are more frequent when
dealing with multi-instrument recordings, where one of
the instruments has a leading role.This can be seen in
figure (4), where pitch-tracking errors have been marked
in circles. In the feature sequence of the audio recording,
such errors are likely to appear as subsequences of sym-
bols whose sum is equal to zero or to amri of the pattern
to be located (for a study of pitch-tracking errors see [12]).

If H employs a standard Viterbi algorithm for the cal-
culation of the best-state sequence, a melody spotting fail-
ure will result, asH will only iterate between the end-
states. This can be accommodated if the enhanced Viterbi
algorithm that has been introduced by the authors in [9] is
adopted. In this paper, we will only summarize the equa-

Figure 4: Pitch tracking results from an audio recording
where a cello instrument performs in solo mode. Errors
have been marked in circles

tions for the calculation of the best-state sequence.
Basically, the essence of this algorithm is to be able

to account for all possible pitch-tracking errors (e.g. pitch
doubling errors) by incorporating them in the cost func-
tion of the Viterbi algorithm.

As an example, consider the feature sequenceDt =
{0z1

,+1,0z2
,+1,0z3

,+1,0z4
,+1,0z5

,+2,0z6
,+1,

0z7
,+1,0z8

,−1,0z9
,+2,0z10

} of figure (4), which
can be considered as a variation of the prototypeDp =
{0zp1

,+2,0zp2
,+2,0zp3

,+2,0zp4
,+1,0zp5

,+2,0zp6
}.

If Dt is given as input to a VDHMM built forDp,
a melody spotting failure will occur, which is clearly
undesirable.

On the other hand, careful observation ofDt reveals
that, m7 (the 7th music interval), which is equal to1
andm8, which is equal to−1, cancel out. In addition,
m1+m2 = 2, which is the respective music interval of the
prototype pattern that is modeled by the VDHMM. Simi-
larly, m3 +m4 = 2 (which is again the respective music
interval of the prototype).

These observations lead us to the idea that one canen-
hance the performance of the VDHMM, by inserting in
the model a mechanism capable of deciding which sym-
bol cancellation/summations are desired. For example,
regarding sequenceDt:
(a) if +1 and −1 are canceled out, the subsequence
{0z7

, 1,0z8
,−1,0z9

} can be replaced by a single subse-
quence of zeros,0z7+z8+z9+2. This, in turn, suggests that
if a modified version ofDt, sayD̂t, is generated by taking
into account the aforementioned symbol cancellation,D̂t

would possess a structure closer to the prototypeDp.
(b) Concerning symbolsm1 andm2, which sum to+2,
it is desirable to treat subsequence{+1,0z2

,+1} as one
symbol, equal to+2. Similarly, concerning symbolsm3

andm4, which sum to+2, it is desirable to treat subse-
quence{+1,0z4

,+1} as one symbol equal to+2.
If these transformations are applied to the original fea-

ture sequenceDt, the new sequencêDt becomes
D̂t = {0z1

,+2,0z3
,+2,0z5

,+2,0z6
,+1,0z7+z8+z9+2,

+2,0z10
}, which is likely to be different fromDp only in
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the number of zeros separating the non-zero valued sym-
bols (depending on the observed tempo fluctuation).

In order to present in brief the equations for the en-
hanced Viterbi algorithm, certain definitions must first be
given. For an observation sequenceD = {d1d2 . . . dN}
and a discrete observation VDHMMH, let us define the
forward variableat(j) as in [13], i.e.,

at(j) = P (d1d2 . . . dt, state j ends at t|H), j = 1 . . . S
(3)

that isat(j) stands for the probability that the model finds
itself in thej-th state after the firstt symbols have been
emitted. It can be shown that ([13]),

at(j) = max
1≤τ≤T,1≤i≤S,i6=j

[δt(i, τ, j)] (4)

δt(i, τ, j) = at−τ (i)Aijpj(τ)
t∏

s=t−τ+1

Bj(ds) (5)

where τ is the time duration variable,T is its maxi-
mum allowable value within any state,S is the total num-
ber of states,A is the state transition matrix,pj is the
duration probability distribution at statej andB is the
symbol probability matrix. Equations (4) and (5) sug-
gest that there exist (S × T − T ) candidate arguments,
δt(i, τ, j), for the maximization of each quantityat(j).
In order to retrieve the best state sequence, i.e., for back-
tracking purposes, the state that corresponds to the ar-
gument that maximizes equation (4), is stored in a two-
dimensional arrayψ, asψ(j, t). Therefore,ψ(j, t) =
arg max[δt(i, τ, j)], 1 ≤ τ ≤ T, 1 ≤ i ≤ S, i 6= j In
addition, the number of symbols spent on statej is stored
in a two-dimensional matrixc, asc(j, t).

It is important to notice that, if
∑t

s=t−τ+1
ds = 0,

this indicates a possible pitch tracking error cancellation.
Thus, one must also take into consideration that the sym-
bols{dt, dt−1, . . . , dt−τ+1} could be the result of a pitch
tracking error, and must be replaced by a zero that lasts for
τ successive time instances. This is quantified by consi-
dering, for the Z-states, (SxT −T ) additionalδ̂ arguments
to augment equation (4), namely

δ̂t(i, τ, j) = at−τ (i)Aijpj(τ)
t∏

s=t−τ+1

Bj(ds = 0) (6)

Thus, maximization is now computed over allδ and δ̂
quantities. If maximization occurs for âδ argument, say
δ̂t(i, τ, j), then the number of symbols spent at statej is
equal toτ , as is the case with the standard VDHMM. If,
in the end, it turns out that for some states of the best-state
sequence, a symbol cancellation took place, it is useful to
store this information in a separate two-dimensional ma-
trix, s, by setting the respectives(j, t) element equal to
“1”.

If at(j) refers to an S-state,then a symbol summation
is desirable, if the sum

∑t

s=t−τ+1
ds is equal to the ac-

tual music interval associated with the respective S-state
of the VDHMM. If this holds true, the whole subsequence
of symbols is treated as one symbol equal to the respective
sum and again, for each S-state, (SxT − T ) additionalδ̂

arguments must be computed forat(j), according to the
following equation:

δ̂t(i, τ, j) = at−τ (i)Aijpj(τ)Bj(
t∑

s=t−τ+1

ds) (7)

Similar to the previous case, maximization is again com-
puted over allδ and δ̂ quantities. The need to account
for possible symbol summations reveals the fact that, al-
though in the first place the HMM was expected to spend
one frame at each S-state, it turns out that a Gaussian prob-
ability density function, namelypSi

(τ) = G(τ, µSi
, σ2

Si
),

must also be associated with each S-state.
After the whole feature sequence of the raw audio

recording is processed, a simple parser can post-process
the best-state sequence and any state subsequences cor-
responding to occurrences of the melody can be easily
located. This is because, whenever an instance of the
melody is detected, the VDHMM will go through a se-
quence of states consisting only of Z-states and S-states.
It is therefore straightforward to locate such sequences
of states with a simple parser (like in a simple string-
matching situation).

4.1 Computational cost related issues

The proposed enhanced Viterbi algorithm leads to in-
creased recognition accuracy to the expense of increasing
the computational cost, due to the fact that theδ̂t(i, τ, j)
arguments need also be computed. However, it is possible
to reduce the computational cost, if the following assump-
tions are adopted:
(a) A Z-state may only emit sequences of symbols (di’s)
that start and end with a zero-valueddi. This suggests that
for the Z-states, the emitted symbol sequence must be of
the form{0zk

,mk, . . . ,ml−1,0zl
}, l >= k. If l = k then

only one zero-valued subsequence has been emitted. As a
result, for the Z-states, the respective equations need only
be computed when the following hold:dt = 0, dt+1 6= 0,
dt−τ+1 = 0 anddt−τ 6= 0
(b) In a similar manner,a S-state may only emit se-
quences of symbols (di’s) that start and end with a non-
zerodi. Equivalently, for the S-states, the emitted sym-
bol sequence must be of the form{mk,0zk+1

, . . . ,ml},
l >= k. If l = k then only one non-zerodi has been emit-
ted. As a result, for the S-states, the respective equations
need only be computed when the following hold:dt 6= 0,
dt+1 = 0, dt−τ+1 6= 0 anddt−τ = 0.

5 EXPERIMENTS

As it has already been mentioned, Tolonen’s multipitch
analysis model [11] was adopted as a pitch tracker for our
experiments and the following parameter tuning was de-
cided: the moving window length was set equal to50ms
(each window was multiplied by a Hamming function)
and a5ms step was adopted between successive windows.
This small step ensures that rapid changes in the signal
are captured effectively by the pitch tracker, to the ex-
pense of increasing the length of the feature sequence.
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The pre-processing stage involving a pre-whitening fil-
ter was omitted. For the two channel filter bank, we
used butterworth bandpass filters with frequency ranges
70Hz − 1000Hz and1000Hz − 10KHz. The parame-
ter which controls frequency domain compression was set
equal to0.7. From each frame, the strongest candidate
frequency returned by the model, was chosen as the fun-
damental frequency of the frame.

Our method was tested on two raw audio data sets:
the first set consisted ofcommercially available solo Cello
recordings of J.S Bach’s Six Suites for Cello (BWV 1007-
1012), performed by seven different artists (namely Boris
Pergamenschikow, Yo-Yo Ma, Anner Byslma, Ralph Kir-
shbaum, Roel Dieltiens, Peter Bruns and Paolo Beschi).
The printed scores of these Cello Suites served as the ba-
sis to define (with the help of musicologists) a total of
≃ 50 melodies consisting of3 to16 notes. These melodies
were manually converted to sequences of note durations
and music intervals, following the representation adopted
in Section 3. For the quantization step, half-tone reso-
lution was adopted and an alphabet of121 discrete sym-
bols was used, implying music intervals in the range of
−60 . . . + 60 half-tones, i.e.,G = 60. The duration of
the Z-states of the resulting VDHMM’s was tuned by per-
mitting a 20% tempo fluctuation, in order to account for
performance variations. The maximum state duration for
the S-states was set equal to40ms. Depending on the pat-
tern, e.g., for moving bass melodies, certain S-states were
allowed to emit more than one music intervals, in order to
be able to locate pattern variations. The proposed method
succeeded in locating approximately95% of the pattern
occurrences.

The second raw audio data set consisted of≃ 140
commercially available recordings of Greek Traditional
music performed by an ensemble of instruments where
Greek Traditional Clarinet has a leading role.A de-
tailed description of the music corpus can be accessed at
http://www.di.uoa.gr/pikrakis/melodyspotter.html. Due
to the fact that Greek Traditional Music is micro-tonal,
quarter-tone resolution was adopted. Although printed
scores are not available for this type of music, follow-
ing musicological advice,we focused on locating twelve
types of patterns that have been shaped and categorized
in practice over the years in the context of Greek Tradi-
tional Music (a description of the patterns can be found
in [12]). These patterns exhibit significant time elastic-
ity due to improvisations in the performance of musicians
and it was therefore considered appropriate to permit a
50% tempo fluctuation, when modeling the Z-states. In
this set of raw audio data, our method successfully spot-
ted 83% of the pattern occurrences. This performance
is mainly due to the fact, that, despite the application of
an enhanced Viterbi algorithm, the leading instrument’s
melodic contour can often be severely distorted in the ex-
tracted feature sequence of an audio recording, due to the
presence of the accompanying instrument ensemble. A
prototype of our melody spotting system was initially de-
veloped in MATLAB and was subsequently ported to a
C-development framework.

6 CONCLUSIONS
In this paper we presented a system capable of spotting
monophonic melodies in a database of raw audio record-
ings. Both monophonic and non-monophonic raw audio
data have been treated in a unified manner. A VDHMM
has been employed for the first time as a model for the pat-
terns to be spotted. Pitch tracking errors have been dealt
with an enhanced Viterbi algorithm that results in notice-
ably enhanced performance.
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