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ABSTRACT 
Retrieving audio material based on audio queries is an 
important and challenging issue in the research field of 
content-based access to popular music. As part of this 
research field, we present a preliminary investigation 
into retrieving cover versions of songs specified by users. 
The technique enables users to listen to songs with an 
identical tune, but performed by different singers, in 
different languages, genres, and so on. The proposed 
system is built on a query-by-example framework, which 
takes a fragment of the song submitted by the user as 
input, and returns songs similar to the query in terms of 
the main melody as output. To handle the likely 
discrepancies, e.g., tempos, transpositions, and 
accompaniments between cover versions and the original 
song, methods are presented to remove the non-vocal 
portions of the song, extract the sung notes from the 
accompanied vocals, and compare the similarities 
between the sung note sequences. 
 
Keywords: cover version, main melody, query-by-
example, accompaniments.  

1 INTRODUCTION 
Rapid advances in Internet connectivity and signal 
processing technologies have led to a dramatic and 
unprecedented increase in the availability of music 
material in recent years. Ironically, it has become more 
and more difficult to locate desired items from the 
innumerable options. Thus, techniques that could enable 
users to quickly acquire the music they want are being 
extensively explored to keep pace with the rapid 
proliferation of music material. Among such techniques, 
retrieving audio material based on audio queries is of 
particular interest in the domain of accessing popular 
music. Its root concept of query-by-humming or query-
by-song continues to motivate the development of many 
promising solutions for retrieving music beyond the 
conventional text-processing paradigm, such as 
allowing users to retrieve a song by humming a catchy 

tune without needing to name the song [1-9], or helping 
users find songs performed by their favorite singers [10], 
genre [11], mood [12], etc., by playing an excerpt of the 
music as a query. In tandem with the above solutions, 
this study presents our preliminary investigation of the 
retrieval of cover recordings, which aims to find songs 
with melodies similar to the melody of a user’s song 
query.   

A cover version of a song refers to a new rendition of 
a song that was originally recorded and made popular by 
another artist. It is often used as a means to attract 
audiences who like a familiar song, or to increase the 
popularity of an artist by adapting a proven hit. 
Sometimes pop musicians gain publicity by recording a 
cover version that contrasts with the original recording. 
Over several years, thousands upon thousands of cover 
versions have been recorded, some of which are virtually 
identical to the original version, while some are radically 
different. The only feature that is almost invariant in the 
different recordings is the main melody of the vocals. 
Usually, the most frequent difference between a cover 
song and the original version is that they are performed 
by different singers. In such cases the associated tempos, 
ornaments, accompaniments, etc., may be changed to 
cater to the taste of contemporary audiences, or to fit the 
theme of an album. Thus, in a music retrieval system, it 
would be useful if a search function for a single song 
rendered by different singers or belonging to different 
genres could be provided. 

Other common differences between cover versions 
and the original song are that they may have different 
lyrics and titles, or they are sung in different languages. 
In particular, a hit song can often be translated into 
different languages, thereby making it more popular 
worldwide. Since a translation is usually not literal, 
cover-version retrieval based on the main melody would 
be more feasible than text-based retrieval for those 
wishing to listen to a song rendered in a different 
language. In addition, it is commonplace for live 
performances to be recorded and then released as 
authorized cover songs. The method of cover-song 
retrieval could thus be applied to index and classify such 
undocumented live recordings. This would also help 
copyright holders detect unauthorized or bootleg concert 
recordings. Permission to make digital or hard copies of all or part of this

work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
commercial advantage and that copies bear this notice and the
full citation on the first page. 
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In this work, we address the problem of cover-version 
retrieval by investigating how to determine if one or 
more music collections contain similar melodies to a 
specified song query. This task belongs to the problem 
of retrieving polyphonic music documents based on 
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polyphonic music queries. In contrast to monophonic 
music, in which at most one note is played at any given 
time, polyphonic music often contains many notes that 
are played simultaneously. Thus, it is difficult to extract 
the main melody automatically from polyphonic music 
[13]. Due to this difficulty, a large number of current 
query-by-humming systems [1-4] work within the 
monophonic domain, which converts a monophonic 
audio query into a symbolic format to match a 
monophonic symbolic collection. Some studies [14,15] 
focus on locating the major themes from a piece of 
polyphonic symbolic music, in which the note 
information is given as a priori. However, very few 
systems operate in the mode of monophonic audio 
queries on a polyphonic audio collection [5,6], or 
entirely polyphonic audio queries on a polyphonic audio 
collection [7-9]. This work further differs from the 
above systems by the need to compare the main melody 
present in the vocals of polyphonic music. Thus, the 
proposed methods, though drawn from the query-by-
humming paradigm, are specifically tailored to solve the 
problem of cover-version retrieval.    

2 METHOD OVERVIEW 
Our goal is to design a system that takes as input an 
audio query from a fragment of a song, and produces as 
output a ranked list of songs that are similar to the query 
in terms of the main melody. Songs ranked high are 
then considered as the cover or original versions of the 
song requested by the user. However, as cover versions 
may differ significantly from the original song in the 
way that the accompaniments are introduced, an 
arbitrary audio query could contain non-vocal 
(accompaniment-only) segments whose melody patterns 
are not present in the songs requested by the user, or 
vice versa. To simplify the problem during this initial 
development stage, we assume that a user’s query does 
not contain salient non-vocal segments. 

In general, the structure of a popular song can be 
divided into five sections: 1) intro, usually the first 5-20 
seconds of the song, which is simply an instrumental 
statement of the subsequent sections; 2) verse, which 
typically comprises the main theme of the story 
represented in the song’s lyrics; 3) chorus, which is 
often the heart of a song, where the most recognizable 
melody is present and repeated; 4) bridge, which comes 
roughly two-thirds into a song, where a key change, 
tempo change or new lyric is usually introduced to 
create a sensation of something new coming next; 5) 
outro,  which is often a fading version of the chorus or 
an instrumental restatement of some earlier sections to 
bring the song to a conclusion. In essence, the verse and 
chorus contain the vocals sung by the lead singer, while 
the intro, bridge, and outro are largely accompaniments. 
Since a vast majority of popular songs follow the 
structure of “intro-verse-chorus-verse-chorus-bridge-
chorus-outro”, we further assume that a user would 
submit a fragment of the region between the intro and 
the bridge (if at all) of a song to the system. 

Figure 1 shows a block diagram of our cover-
version retrieval system, which operates in two phases: 
indexing and searching. The indexing phase generates 
the melody description for each of the songs (documents) 
in the collection.  It commences with removal of the 
non-vocal segments longer than two seconds1, which 
very likely belong to the intro, bridge, or outro. Then, 
main melody extraction proceeds by converting each 
song from the waveform samples into a sequence of 
musical note symbols. In the searching phase, the task is 
to determine which of the songs (documents) are 
relevant to a music query. This phase begins with the 
main melody extraction, which converts the audio query 
into a sequence of musical note symbols, and is 
followed by comparison of the similarities between the 
query’s note sequence and each document’s note 
sequence. The more similar the document’s note 
sequence, the more relevant the document will be to the 
song requested by the user. Then, a ranked list of the 
similarities between the query’s sequence and the 
document’s sequence is presented to the user.  
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Figure 1. The proposed cover-version retrieval system. 

3 NON-VOCAL SEGMENT REMOVAL 
Although it would be desirable if all the non-vocal 
regions within a music recording could be located 
automatically, the task of accurately distinguishing 
between the segments with and without singing is rather 
difficult. Our previous work [16] on this problem found 
that a vocal segment tends to be classified as non-vocal 
if it is mixed with loud background accompaniment. 
Although discarding a low “vocal-to-accompaniment-
ratio” segment is almost harmless in some applications, 
such as singer clustering [16], it could result in a very 
fragmented and unnatural melody pattern being 
extracted from a song. Thus, instead of locating all the 
vocal and non-vocal boundaries of a song document, we 
only try to detect the non-vocal segments that are longer 
than two seconds. 

The basic strategy applied here is adapted from our 
previous work [16], in which a stochastic classifier is 
                                                           
1 This corresponds to a whole rest, if 120 BPM is assumed. 

184



   
 
constructed to distinguish vocal from non-vocal regions. 
As shown in Figure 2, the classifier consists of a front-
end signal processor that converts waveform samples to 
cepstral-based feature vectors, followed by a backend 
statistical processor that performs modeling and 
matching. In modeling the acoustic characteristics of the 
vocal and non-vocal classes, two Gaussian mixture 
models (GMMs), λV and λN, are created using the 
respective feature vectors of the manually-segmented 
vocal and non-vocal parts of the music data collected 
beforehand. When an unknown song is received, the 
classifier takes as input the T-length feature vectors X = 
{x1, x2, ..., xT} extracted from that song, and produces as 
output the frame likelihoods p(xt|λV) and p(xt|λN). 
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Figure 2. Vocal/non-vocal classification. 
 

Since singing tends to continue for several frames, 
classification can be made in a segment-by-segment 
manner. Specifically, a W-length segment is classified as 
either vocal or non-vocal using 
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where s is the segment index. However, to avoid the risk 
that a large W might cross multiple vocal/non-vocal 
change boundaries, the classification is only valid for the 
segments where the classification results obtained with 
W and W/2 are consistent. 

In addition, recognizing that the accuracy of 
classification crucially depends on the reliability of the 
vocal/non-vocal models, it seems necessary to use 
training data that exhaustively covers the vocal/non-
vocal characteristics of various music styles. However, 
acquiring such a large amount of training data is usually 
cost prohibitive, since it requires considerable effort to 
manually label the music. To circumvent this problem, 
we tailor vocal/non-vocal models for each of the 
individual test music recordings, instead of designing 
models that can cover the universal vocal/non-vocal 
characteristics.  

Similar to [17] and [18], the idea is to refine the 
vocal/non-vocal models by means of the classification 
results. It is assumed that the acoustic characteristics of 
the true vocal/non-vocal segments within each music 

recording can be inferred largely from the classified 
vocal/non-vocal segments. Thus, the classified segments 
can be used to refine the models, so that the classifier 
with the refined models then repeats the likelihood 
computation and decision-making, which should 
improve recognition. There are a number of ways to 
perform model refinement. This study uses a model 
adaptation technique based on maximum a posteriori 
estimation [19]. The procedure of classification and 
model adaptation is performed iteratively, until the 
resulting vocal/non-vocal boundaries do not change 
further. Finally, non-vocal segments longer than 2 
seconds are located and removed from the recording.  

4 MAIN MELODY EXTRACTION 
4.1 Note sequence generation 

Given a music recording, the aim of main melody 
extraction is to find the sequence of musical notes 
produced by the singing part of the recording. Let e1, 
e2,…, eN be the inventory of possible notes performed 
by a singer. The task, therefore, is to determine which 
among N possible notes is most likely sung at each 
instant. To do this, the music signal is first divided into 
frames by using a fixed-length sliding window. Every 
frame is then convolved with a Hamming window and 
undergoes a fast Fourier transform (FFT) with size J. 
Since musical notes differ from each other by the 
fundamental frequencies (F0s) they present, we may 
determine if a certain note is sung in each frame by 
analyzing the spectral intensity in the frequency region 
where the F0 of the note is located.  

Let xt,j denote the signal’s energy with respect to FFT 
index j in frame t, where 1 ≤ j ≤ J. If we use the MIDI 
note number to represent e1, e2,…, eN, and map the FFT 
indices into MIDI note numbers according to the F0 of 
each note, the signal’s energy on note en in frame t can 
be estimated by  
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where ⎣ ⎦  is a floor operator, F(j) is the corresponding 
frequency of FFT index j, and U(⋅) represents a 
conversion between the FFT indices and the MIDI note 
numbers. 

Ideally, if note en is sung in frame t, the resulting 
energy, yt,n, should be the maximum among yt,1, yt,2,…, 
yt,N. However, due to the existence of harmonics, the 
note numbers that are several octaves higher than the 
sung note can also receive a large proportion of the 
signal’s energy. Sometimes the energy on a harmonic 
note number can be even larger than the energy on the 
true sung note number; hence, the note number 
receiving the largest energy is not necessarily what is 
sung. To determine the sung note more reliably, this 
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study adapts Sub-Harmonic Summation (SHS) [20] to 
this problem.  

The principle applied here is to compute a value for 
the “strength” of each possible note by summing up the 
signal’s energy on a note and its harmonic note numbers. 
Specifically, the strength of note en in frame t is 
computed using  

,  
0

12 ,, ∑
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+=
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c
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c
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where C is the number of harmonics that are taken into 
account, and h is a positive value less than 1 to discount 
the contribution of higher harmonics. The result of this 
summation is that the note number corresponding to the 
signal’s F0 will receive the largest amount of energy 
from its harmonic notes. Thus, the sung note in frame t 
could be determined by choosing the note number 
associated with the largest value of the strength, i.e., 

 .  (5)    maxarg ,
1

ntt zo
Nn≤≤

=

However, since most popular music contains 
background accompaniment during most or all vocal 
passages, the note number associated with the largest 
value of the strength may not be produced by a singer, 
but by the concurrent instruments instead. To alleviate 
the interference of the background accompaniment, we 
propose suppressing the strength pertaining to the notes 
that are likely produced by the instruments. The 
proposed method is motivated by an observation made 
in popular music that the principal accompaniments 
often contain a periodically-repeated note, compared to 
the vocals. Figure 3 shows an example of a fragment of 
a pop song, in which the tune is converted into a MIDI 
file. It is shown by software CakewalkTM for ease of 
illustration. We can see from Figure 3 that the melody 
produced by the principal accompaniment tends to be 
repeated in the adjacent measures, compared to the main 
melody produced by singing. Therefore, it can be 
assumed that a note number associated with the 
constantly-large value of the strength within and across 
adjacent measures is likely produced by the instruments. 
In response to this assumption, we modify the 
computation of strength in Eq. (4) by   
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Figure 3. A fragment of the pop song “Let It Be” 
by The Beatles, in which the tune is converted 
manually into a MIDI file. 

where L1 and L2 specify the regions [t−L2, t−L1 ] and [t + 
L1, t + L2 ], in which an average strength of note en is 
computed. Implicit in Eq. (6) is that the strength of note 
en in frame t will be largely suppressed, if the average 
strength of note en computed from the surrounding 
frames is large. Accordingly, the sung note in frame t is 
determined by   
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4.2 Note sequence rectification 

The above frame-based generation of note sequences 
may be improved by exploiting the underlying relation 
or constraints between frames. The most visible 
constraint between frames is that the length of a note is 
usually several times longer than a frame; hence, there 
should not be a drastic change like jitter between 
adjacent frames. To remove the jitters in a note 
sequence, we apply median filtering, which replaces 
each note of the frame with the local median of its 
neighboring frames.  

In addition to the short-term constraint between 
adjacent frames, we further exploit a long-term 
constraint to rectify a note sequence. This constraint is 
based on the fact that the notes sung in a music 
recording usually vary far less than the range of all 
possible sung notes. Furthermore, the range of the notes 
sung within a verse or chorus section can be even 
narrower. Figure 4 shows a segment of a pop song, in 
which the singing part is converted into a MIDI file. It is 
clear that the range of the notes within the verse can be 
distinguished from that of the chorus, mainly because 
the sung notes within a section do not spread over all the 
possible notes, but are only distributed over their own 
narrower range. An informal survey using 50 pop songs 
shows that the range of sung notes within a whole song 
and within a verse or chorus section is around 24 and 22 
semitones, respectively. Figure 5 details our statistic 
results. The range of sung notes serves as a long-term 
constraint to rectify a note sequence. 

The basic idea of rectification is to locate incorrectly 
estimated notes that result in a note sequence beyond the 
normal range. Since the accompaniment is often played 
several octaves above or below the vocals, the 
incorrectly estimated notes are likely the octave of their 
true notes. Therefore, we may adjust some suspect notes 
by moving them several octaves up or down, so that the 
range of notes within an adjusted sequence conforms to 
the normal range. To be specific, let o = {o1, o2,…, oT} 
denote a note sequence estimated using Eq. (7). An 
adjusted note sequence o′ = {o′1, o′2,…, o′T } is obtained 
by 
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where R is the normal range of the sung notes in a 
sequence, say 24, and o  is the mean note computed by 
averaging all the notes in o. In Eq. (8), a note, ot, is 
considered incorrect and needs to be adjusted if it is too 
far away from o , i.e., |ot − o | > R/2. The adjustment is 
performed by moving the incorrect note ⎣(ot− o + 
R/2)/12⎦ or ⎣(ot − o − R/2)/12⎦ octaves.   
 

Verse Chorus

 

Figure 4. A fragment of the pop song 
“Yesterday” by The Beatles, in which the singing 
is converted into a MIDI file. 
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(a) The range of sung notes within a whole song. 
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(b) The range of sung notes within a verse or chorus. 

Figure 5. Statistics of the range of sung notes in 
50 pop songs, in which the percentage of songs 
whose range of sung notes less than R semitones 
is shown. 

5 SIMILARITY COMPUTATION 
After representing music data as a sequence of note 
numbers, cover-version retrieval can be converted into a 
problem of comparing the similarity between a query’s 
sequence and each of the documents’ sequences. Since 
cover versions are often different from the original song 
in terms of key, tempo, ornament, etc., it is virtually 
impossible to find a document sequence that matches the 
query sequence exactly. Moreover, main melody 
extraction is known to be frequently imperfect, which 
further introduces errors of substitution, deletion, and 
insertion into the note sequences. For reliable melody 

similarity comparison, an approximate matching method 
tolerable to occasional note errors is therefore needed. 

Let q = {q1, q2,…, qT}, and u = {u1, u2,…, uL} be 
the note sequences extracted from a user’s query and a 
particular music document to be compared, respectively. 
The most apparent problem we face is that the lengths of 
q and u are usually unequal. Thus, it is necessary to 
temporally align q and u before computing their 
similarity. For this reason, we apply Dynamic Time 
Warping2 (DTW) to find the mapping between each qt 
and ul, 1 ≤ t ≤ T, 1 ≤ l ≤ L. DTW operates by 
constructing a T×L distance matrix D = [D(t, l)]T × L, 
where D(t, l) is the distance between note sequences {q1, 
q2,…,qt} and {u1, u2,…, ul}. It is computed by 
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and  
d(t, l) = | qt − ul| ,   (10) 

where ε is a small constant that favors the mapping 
between notes qt and ul, given the distance between note 
sequences {q1, q2,…,qt-1} and {u1, u2,…, ul-1}. The 
boundary conditions for the above recursion are defined 
by 
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After the distance matrix D is constructed, the similarity 
between q and u can be evaluated by  
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where we assume that the end of a query’s sequence 
should be aligned to a certain frame between T/2 and 
min(2T,L) of the document’s sequence, and assume that 
a document whose length of sequence is less than T/2 is 
not a relevant document to the query. 

Since a song query may be performed in a different 
key or register than the target music document, i.e., the 
so-called transposition, the resulting note sequences of 
the query and the document could be rather different. To 
deal with this problem, the dynamic range of a query’s 
note sequence needs to be adjusted to that of the 
document to be compared. This can be done by moving 
the query’s note sequence up or down several semitones, 
so that the mean of the note sequence is equal to that of 
the document to be compared. Briefly, a query’s note 
sequence is adjusted by 

)( quqq tt −+← ,  (13) 

                                                           
2 Similar work can be found in [3,4,21]. 
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where q  and u  are the means of the query’s note 
sequence and the document’s note sequence, 
respectively. However, our experiments find that the 
above adjustment can not fully overcome the 
transposition problem, since the value of ( q − u ) can 
only reflect a global difference of key between a query 
and a document, but cannot characterize the partial 
transposition or key change over the course of a query. 
To handle this problem better, we further modify the 
DTW similarity comparison by considering the key 
shifts of a query’s note sequence. Specifically, a query 
sequence q is shifted with ±1, ±2,..., ±K semitones to 
span a set of note sequences {q(1), q(-1), q(2), q(-2),…, q(K), 
q(-K)}. For a document sequence u, the similarity S (q, u) 
is then determined by choosing the one among {q(0), q(1),   
q(-1), q(2),  q(-2), …, q(K), q(-K)} that is most similar to u, 
i.e.,  

),,(max),( )( uquq k

KkK
SS

≤≤−
=        (14) 

where q(0) = q. 

6 EXPERIMENTS 
6.1 Music data 

The music database used in this study consisted of 794 
tracks3 from pop music CDs, which mainly comprised 
five genres: soundtrack, country, folk, jazz, and rock. It 
was divided into three sub-sets. The first sub-set, 
denoted as DB-1, contained 47 pairs of tracks involving 
cover/original songs. In this sub-set, the difference 
between a cover version and the original song was 
characterized by the following factors: L: language 
(including English, Mandarin, and Japanese); S: singer; 
A: principal accompaniments; T: tempo; and N: non-
vocal melodies. A summary of the characteristic 
differences within each pair of tracks is given in Table 1. 
 

Table 1. A summary of the characteristic 
difference within each cover/original pair of 
tracks in sub-set DB-1. 

Type of within-pair difference No. of pairs 
L 8 
L + S 7 
L + T 3 
L + S + T 7 
L + T + N 6 
L + S + T + N 4 
L + A + T + N 2 
L + S + A + T + N 10 

 
The second sub-set, denoted as DB-2, contained 500 

tracks, none of which was a cover version of any track 
in DB-1. The third sub-set, denoted as DB-3, contained 
200 tracks, performed by 13 female and 8 male singers, 
none of whom appeared in DB-1 and DB-2. The sub-
sets DB-1 and DB-2 were used to evaluate the cover-
                                                           
3 The database did not contain the 50 pop songs used for analyzing the 
range of sung notes as described in Sec. 4.2. 

version retrieval system, while DB-3 was used to create 
the vocal and non-vocal models. Manual annotation of 
vocal/non-vocal boundaries was only performed on DB-
1 and DB-3. The waveform signals were down-sampled 
from a CD sampling rate of 44.1 kHz to 22.05 kHz, to 
exclude the high frequency components that usually 
contain sparse vocal information.  

6.2 Experimental results 

Our first experiment was conducted using DB-1 as test 
data. It was run in a leave-one-out manner, which used 
one track at a time in DB-1 as a query trial to retrieve 
the remaining 93 tracks, and then rotated through all the 
94 tracks. To roughly reflect a real-use scenario, each 
query was only a verse or chorus obtained with manual 
segmentation. The length of query ranged from 31 to 54 
seconds. Performance of the song retrieval was 
evaluated on the basis of retrieval accuracy: 

100%.
queries #

first ranked are songs target  whosequeries #
×  

We also computed the Top-N accuracy defined as the 
percentage of the queries whose target songs are among 
Top-N. 

Table 2 shows the retrieval results for different 
configurations used in main melody extraction. In this 
experiment, each of the documents was a track with 
non-vocal segments removed manually. The inventory 
of possible sung notes consisted of the MIDI numbers 
from 41 to 83, which corresponds to the frequency 
range of 87 to 987 Hz. In FFT computation, the frame 
length and the overlap between frames were set to be 
2048 and 1704, respectively. In addition, in melody 
similarity comparison, we used K = 2 in Eq. (14) to 
handle the transposition problem. We can see from 
Table 2 that the retrieval performance obtained by using 
Eq. (5) was the worst of the three methods compared, 
mainly because this method determines the sung notes 
based on the strength computed from the observed 
signal, which is vulnerable to the interference of 
background accompaniments. It is clear from Table 2 
that a better estimation of the note strength can be 
obtained by using Eq. (7), which discounts the note 
numbers associated with the constantly-large values of 
the strength within and across adjacent measures. We 
can also see from Table 2 that melody extraction can be 
further improved by using the note sequence 
rectification of Eq. (8). 

Table 3 shows the retrieval results for different 
configurations used in melody similarity comparison. In 
this experiment, main melody extraction was performed 
using the method of Eqs. (7) and (8) with R = 24, i.e., 
the best results shown in Table 2. We can see from 
Table 3 that the retrieval performance improves as the 
value of K increases. This indicates that the more the 
possible changes of key are taken into account, the 
greater the chance that a query’s sequence will match 
the correct document’s sequence. However, increasing 
the value of K substantially increases computational 
costs, because the similarity comparison requires two 
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extra DTW operations whenever the value of K is 
increased by one. An economic value of K = 2 was thus 
chosen throughout our experiments. 

 
Table 2. Performance of cover-version retrieval 
for different configurations used in main melody 
extraction, in which each method operates 
together with five-frame median filtering. 

Accuracy (%) Main melody  
extraction method Top 1 Top 3 Top 10

Eq. (5)  60.64 71.28 78.72 
Eq. (7) 

(L1 = 64, and L2 = 192) 70.21 73.40 80.85 

R = 22 65.96 72.34 74.47 
R = 24 76.60 78.72 87.23 
R = 26 74.47 77.66 86.17 

Eqs. (7) 
and (8)  

R = 28 70.21 77.66 85.11 
 
Table 3. Performance of cover-version retrieval 
for different configurations used in melody 
similarity comparison. 

Accuracy (%) Value of K in Eq. (14)  Top 1 Top 3 Top 10
0 64.89 67.02 77.66 
1 73.40 75.53 80.85 
2 76.60 78.72 87.23 
3 76.60 79.79 88.30 

Next, we examined the performance of cover version 
retrieval based on the automatic removal of the non-
vocal segments of each document. The number of 
Gaussian densities used in the vocal and non-vocal 
models was empirically determined to be 64. The length 
of segment, W, in Eq. (1) was set to be 200. Table 4 
shows the experimental results, in which the results of 
“Manual removal” correspond to the results of “K = 2” 
in Table 3. We can see from Table 4 that although there 
is a significant performance gap between the manual 
and automatic removal of the non-vocal segments, the 
performance obtained with automatic non-vocal 
removal is much better than that obtained without non-
vocal removal. 

Experiments were further conducted to evaluate the 
retrieval performance of our system for a larger 
collection of songs. We used each of the 94 queries 
once at a time to retrieve the 593 tracks in DB-1 and 
DB-2. Since no manual annotation of vocal/non-vocal 
boundaries was performed on DB-2, the experiment was 
run on the basis of automatically removing the non-
vocal segments of each document. Table 5 shows the 
experimental results. As expected, the increased number 
of non-target songs inevitably reduced the retrieval 
accuracy. By comparing Table 5 with Table 4, we can 
find that the retrieval accuracy deteriorates sharply 
when the system operates on a larger collection of songs 
without removing the non-vocal segments. Once again, 
this indicates the necessity of non-vocal region removal. 

Figure 6 details the retrieval results for the 94 query 
trials, in which each point indicates the rank of each 

query’s target song among the 593 documents. We can 
see from Figure 6 that almost all the target songs of 
queries belonging to “L” and “L + T” were ranked 
among the Top 3, whereas a large proportion of the 
target songs of queries belonging to “L + S + A + T + 
N” were ranked outside the Top 10. This reflects the 
fact that the greater the difference between the cover 
version and the original song, the more difficult it is to 
retrieve one song by using another song as a query. 
Although the overall performance leaves much room for 
further improvement, our system shows the feasibility 
of retrieving polyphonic cover recordings in a query-by-
example framework. 

 
Table 4. Performance of cover-version retrieval 
obtained with and without removing the non-
vocal segments of each document. 

Accuracy (%) Non-vocal segment 
removal method Top 1 Top 3 Top 10
Manual removal 76.60 78.72 87.23 

Automatic removal 65.96 69.15 72.34 
Without removal  54.26 59.57 64.89 

 
Table 5. Results of cover-version retrieval for a 
collection of 594 tracks in DB-1 and DB-2. 

Accuracy (%) Non-vocal segment 
removal method Top 1 Top 3 Top 10

Automatic removal 63.83 65.96 72.34 
Without removal  47.87 54.26 60.64 
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Figure 6. The ranks of the 94 queries’ target songs. 

7 CONCLUSIONS 
In this study, we have examined the feasibility of 
retrieving cover versions of a song specified by a user. 
A query-by-example framework has been proposed to 
determine which among a collection of songs contain 
similar main melodies to a user’s song query. In 
particular, to exclude factors that are irrelevant to the 
main melody of a song, we have proposed removing the 
non-vocal segments that are longer than a whole rest. In 
addition, to alleviate the interference of background 
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accompaniments during the estimation of the sung note 
at each instant, we have proposed avoiding that a certain 
note number is regarded as a sung note if the strength of 
this note is continually large within and across adjacent 
measures. We have also proposed correcting the 
estimated sung note sequence by limiting the range of 
sung notes in a sequence to 24 semitones. Furthermore, 
we have studied the method of comparing the 
similarities between a query’s note sequence and each 
of the documents’ note sequences. This method has 
proven capable of handling the discrepancies in tempo 
and transposition between cover versions and the 
original songs.   

Despite their potential, the methods proposed in this 
study can only be baseline solutions to the cover- 
version retrieval problem. Analogous to other research 
on retrieving polyphonic documents based on 
polyphonic queries, more work is still needed to 
improve melody extraction and melody similarity 
comparison. In addition, to further explore the cover- 
version retrieval problem, the essential work is to scale 
up the music database, which covers a wider variety of 
music styles, genres, singers, languages, and so on. 
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