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ABSTRACT 
The performance of autocorrelation-based metre induc-
tion was tested with two large collections of folk melo-
dies, consisting of approximately 13,000 melodies in 
MIDI file format, for which the correct metres were 
available. The analysis included a number of melodic 
accents assumed to contribute to metric structure. The 
performance was measured by the proportion of melo-
dies whose metre was correctly classified by Multiple 
Discriminant Analysis. Overall, the method predicted 
notated metre with an accuracy of 75 % for classification 
into nine categories of metre. The most frequent confu-
sions were made within the groups of duple and tri-
ple/compound metres, whereas confusions across these 
groups where significantly less frequent. In addition to 
note onset locations and note durations, Thomassen's 
melodic accent was found to be an important predictor of 
notated metre. 
Keywords: Metre, classification, autocorrelation  

1 INTRODUCTION 
Most music is organized to contain temporal peri-
odicities that evoke a percept of regularly occurring 
pulses, or beats. The period of the most salient pulse is 
typically within the range of 400 to 900 ms [1-3]. The 
perceived pulses are often hierarchically organized and 
consist of at least two simultaneous levels, whose peri-
ods have an integer ratio. This gives rise to a percept of 
regularly alternating strong and weak beats, a phenome-
non referred to as metre [4,5]. In Western music, the 
ratio of the pulse lengths is usually limited to 1:2 (duple 
metre) and 1:3 (triple metre).  Metre in which each beat 
has three subdivisions, such as 6/8 or 9/8, is referred to 
as compound metre. 

A number of computational models have been devel-
oped for the extraction of the basic pulse from music. 
Modelling of metre perception has, however, received 
less attention. Large and Kolen [6] presented a model of 
metre perception based on resonating oscillators. Toivi-

ainen [7] presented a model of competing subharmonic 
oscillators for determining the metre (duple vs. triple) 
from an acoustical representation of music. Brown [8] 
proposed a method for determining the metre of musical 
scores by applying autocorrelation to a temporal func-
tion consisting of impulses at each tone onset whose 
heights are weighted by the respective tone durations. A 
shortcoming of Brown's study [8] is that it fails to pro-
vide any explicit criteria for the determination of metre 
from the autocorrelation function. Frieler [9] presents a 
model based on autocorrelation of gaussified onsets for 
the determination of metre from performed MIDI files. 
Pikrakis, Antonopoulos, and Theodoridis [10] present a 
method for the extraction of music metre and tempo 
from raw polyphonic audio recordings based on self-
similarity analysis of mel-frequency cepstral coeffi-
cients. When tested with a corpus of 300 recordings, the 
method achieved a 95 % correct classification rate. 
Temperley and Sleator [11] present a preference-rule 
model of metre-finding. An overview of models of met-
rical structure is provided in [12]. 

Although there is evidence that the pitch information 
present in music may affect the perception of pulse and 
metre [13-15], most models of pulse and metre finding 
developed to date rely only on note onset times and du-
rations. Dixon and Cambouropoulos [16], however, 
proposed a multi-agent model for beat tracking that 
makes use of pitch and amplitude information. They 
found that including this information when determining 
the salience of notes significantly improved the per-
formance of their model. Vos, van Dijk, and Schomaker 
[17] applied autocorrelation to the determination of me-
tre in predominantly isochronous music. They utilized a 
method similar to that proposed in [8], except for using 
the melodic intervals between subsequent notes to rep-
resent the accent of each note.  

In a previous study [18], we applied discriminant 
function analysis to autocorrelation functions calculated 
from Brown's [8] impulse functions for classification of 
folk melodies into duple vs. triple/compound metre. 
Using two large folk song collections with a total of 
12,368 melodies, we obtained a correct classification 
rate of 92 %. Furthermore, we examined whether the 
inclusion of different melodic accent types would im-
prove the classification performance. By determining 
the components of the autocorrelation functions that 
were significant in the classification, we found that pe-
riodicity in note onset locations above the measure level 
was the most important cue for the determination of 
metre. Of the melodic accents included, Thomassen's 
[14] melodic accent provided the most reliable cues for 
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the determination of metre. The inclusion of five differ-
ent melodic accents led to a correct classification rate of 
96 %. 

The present study investigated the capability of the 
autocorrelation-based metre induction method to carry 
out a more detailed classification. More specifically, 
instead of mere classification as duple vs. triple, the 
dependent variable used in this experiment was the ac-
tual notated metre. In the analysis, special attention was 
paid to the pattern of confusion between metres. 

2 AUTOCORRELATION AND METRE 
Below, the method for constructing the autocorrelation 
function for metre induction is described. For the origi-
nal description, see [8]. Let the melody consist of N 
notes with onset times 

! 

t
i
,i = 1,2,...,N . Each note is asso-

ciated with an accent value 

! 

a
i
,i = 1,2,...,N ; in [8], 

! 

ai  
equals the duration of the respective note. The onset im-
pulse function f is a time series consisting of impulses of 
height 

! 

a
i
 located at each note onset position:  

! 

f (n) = ai" i (n),n = 0,1,2,...
i=1

N

#   (1) 

where 

! 

"
i
(n) =

1, n = t
i
/dt[ ]

0, otherwise

# 
$ 
% 

   (2) 

where dt denotes the sampling interval and [] denotes 
rounding to the nearest integer.  

Autocorrelation refers to the correlation of two copies 
of a time series that are temporally shifted with respect 
to each other. For a given amount of shift (or lag), a 
high value of autocorrelation suggests that the series 
contains a periodicity with length equalling the lag. In 
the present study, the autocorrelation function F was 
defined as 

! 

F (m) = f (n) f (n "m)
n

# f (n)
2

n

#   (3) 

where m denotes the lag in units of sampling interval; the 
denominator normalizes the function to F(0)=1 irrespec-
tive of the length of the sequence. Often, the lag corre-
sponding to the maximum of the autocorrelation function 
provides an estimate of the metre. This is the case for the 
melody depicted in Figure 1. 

 

 
Fig. 1. Excerpt from a melody, its onset impulse 
function weighted by durational accents, f, and 
the corresponding autocorrelation function, F. 
The maximum of the autocorrelation function at 
the lag of 4/8 indicates duple metre. 

Sometimes the temporal structure alone is not suffi-
cient for deducing the metre. This holds, for example, 
for isochronous and temporally highly aperiodic melo-
dies. In such cases, melodic structure may provide cues 
for the determination of metre. This is the case, for in-
stance, with the melody depicted in Figure 2. With this 
isochronous melody, the autocorrelation function ob-
tained from the duration-weighted onset impulse func-
tion fails to exhibit any peaks, thus making it impossible 
to determine the metre. Including information about 
pitch content in the onset impulse function leads, how-
ever, to an autocorrelation function with clearly dis-
cernible peaks.  

 
Fig. 2. Excerpt from an isochronous melody; a) 
onset impulse function weighted by durational 
accents, f, and the corresponding autocorrelation 
function, F, showing no discernible peaks. b) On-
set impulse function weighted by interval size, f, 
and the corresponding autocorrelation function, 
F. The maximum of the autocorrelation function 
at the lag of 12/8 indicates triple or compound 
metre. 

3 MATERIAL 
The material consisted of monophonic folk melodies 

in MIDI file format taken from two collections: the Es-
sen collection [19], consisting of mainly European folk 
melodies, and the Digital Archive of Finnish Folk Tunes 
[20], subsequently referred to as the Finnish collection. 
From each collection, melodies that consisted of a single 
notated metre were included. Moreover, for each collec-
tion only metres that contained more than 30 exemplars 
were included. Consequently, a total of 5,592 melodies 
in the Essen collection where used, representing nine 
different notated metres (2/4, 3/2, 3/4, 3/8, 4/1, 4/2, 4/4, 
6/4, 6/8). From the Finnish collection, 7,351 melodies 
were used, representing nine different notated metres 
(2/4, 3/2, 3/4, 3/8, 4/4, 5/2, 5/4, 6/4, 6/8). For each col-
lection, the number of melodies representing each no-
tated metre is shown in Table 1. 
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4 METHOD 
For each of the melodies in the two collections, we 

constructed a set of onset impulse functions weighted by 
various accent types (Eqs. 1 and 2). In each case the 
sampling interval was set to 1/16 note. The accents con-
sisted of (1) durational accent (

! 

a
i
 equals tone duration); 

(2) Thomassen's melodic accent [14]; (3) interval size in 
semitones between previous and current tone (e.g. [17]); 
(4) pivotal accent (

! 

a
i
 = 1 if melody changes direction, 

! 

a
i
 = 0 otherwise); and (5) gross contour accent (

! 

a
i
 = 1 

for ascending interval, 

! 

a
i
 = -1 for descending interval, 

! 

a
i
 = 0 otherwise). Since the note onset times alone, 

without regard to any accent structure, provide informa-
tion about metrical structure, we further included (6) 
constant accent (

! 

a
i
 = 1). The analysis was carried out 

using the MIDI Toolbox for Matlab [21]. 
For each melody, each of the onset impulse functions 

was subjected to autocorrelation. The components of the 
obtained autocorrelation functions corresponding to lags 
of 1, 2,..., 16 eighth notes were included in the subse-
quent analyses. Figure 3 depicts the onset impulse func-
tions and the respective autocorrelation functions con-
structed from a melodic excerpt using each of the accent 
types described above. 

 

 
Fig. 3.  a) Onset impulse functions constructed 
from a melodic excerpt using the six accent types 
described in the text; b) the respective autocorre-
lation functions. As can be seen, the melodic ac-
cents frequently fail to co-occur either with each 
other or with the durational accents. All the auto-
correlation functions, however, have maxima at 
lags of either 6/8 or 12/8, indicating triple or 
compound metre. 

The classification of metres was performed with Mul-
tiple Discriminant Analysis (MDA) [22], a simple yet 
efficient classification method widely used in various 
application areas. With n groups, the MDA produces n-1 
discrimination functions, each of which is a linear com-
bination of the independent variables. In the current 
classification task, the independent variables comprised 
the autocorrelation functions obtained using all the ac-
cent types and the dependent variable was the notated 
metre. In testing the classification performance, the 
leave one out cross-validation scheme [23] (i.e. k-fold 
cross-validation with k=N) was utilized. The perform-

ance was assessed by means of a confusion matrix. Fur-
thermore, for both collections the precision and recall 
values as well as the F-score were calculated for each 
metre [24]. For a given metre, precision is defined as the 
number of melodies having the metre and being cor-
rectly classified, divided by the total number of melo-
dies being classified as representing the metre. Simi-
larly, for each metre, recall is defined as the number of 
melodies being notated in the metre and being correctly 
classified, divided by the total number of melodies be-
ing notated in the metre. The F-score is defined as the 
harmonic mean of precision and recall and is regarded 
as an overall measure of classification performance. 

Overall, 83.2 % of the melodies from the Essen col-
lection and 68.0 % of those from the Finnish collection 
were correctly classified. The notably low correct classi-
fication rate for the Finnish collection can be mainly 
attributed to the fact that a large proportion (43.4 %) of 
melodies representing 4/4 metre were classified as being 
2/4 (see below). 

To obtain a more detailed view of the classification 
performance, we calculated the confusion matrices for 
the both collections. Table 1 shows the precision, recall, 
and F-values for each metre as well as the most common 
confusions between metres.  

Table 1. Classification performance for each col-
lection and metre. R = recall; P = precision; F = 
F-score; the Errors column displays the two most 
common confusion and their prevalence. 

Metre (N) R P F Errors 
Essen Collection (N =5592) 

2/4 (1285) 0.88 0.86 0.87 4/4 (10%), 3/4 (2%) 
3/2 (100) 0.65 0.92 0.76 4/4 (16%), 3/4 (11%) 
3/4 (1215) 0.77 0.90 0.83 6/4 (9%), 4/4 (7%) 
3/8 (291) 0.58 0.53 0.55 6/8 (31%), 2/4 (8%) 
4/1 (39) 0.92 0.75 0.83 4/2 (5%), 3/2 (2%) 
4/2 (173) 0.86 0.87 0.86 4/4 (6%), 4/1 (6%) 
4/4 (1598) 0.91 0.85 0.88 2/4 (6%), 3/4 (2%) 
6/4 (110) 0.73 0.43 0.54 3/4 (19%), 4/4 (8%) 
6/8 (781) 0.82 0.87 0.84 3/8 (14%), 3/4 (2%) 

Finnish Collection (N =7351) 
2/4 (3293) 0.74 0.69 0.71 4/4 (22%), 3/4 (2%) 
3/2 (74) 0.61 0.44 0.51 4/4 (20%), 2/4 (7%) 
3/4 (902) 0.77 0.86 0.81 2/4 (11%), 6/4 (7%) 
3/8 (129) 0.36 0.48 0.42 6/8 (43%), 3/4 (13%) 
4/4 (2205) 0.55 0.60 0.57 2/4 (43%), 5/2 (1%) 
5/2 (39) 0.67 0.38 0.49 4/4 (28%), 5/4 (3%) 
5/4 (413) 0.91 0.95 0.93 2/4 (8%), 3/2 (1%) 
6/4 (78) 0.49 0.32 0.39 4/4 (33%), 3/4 (12%) 
6/8 (218) 0.61 0.68 0.65 3/8 (22%), 3/4 (7%) 

 
Tabel 1 reveals that, in terms of the F-score, the most 

accurately classified metres were 4/4 and 2/4 for the 
Essen collection and 5/4 and 3/4 for the Finnish collec-
tion. Similarly, the least accurately classified metres 
were 6/4 and 3/8 for both collections. For both collec-
tions, metres 2/4 and 4/4 displayed the highest mutual 
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confusion rate, followed by metres 3/4 and 6/4. A large 
proportion of these misclassifications can probably be 
attributed to the effect of tempo on the choice of notated 
metre (cf. [25]). Take, for instance, a melody that is 
played in a fast tempo (e.g., MM>160) and notated in 
6/8 metre. If the same melody is played in a much 
slower tempo (e.g., MM<70), it could be notated in 3/8 
metre. As tempo information was not available for ei-
ther of the collections, the effect of tempo could not be 
assessed. Table 1 suggests that the most frequent confu-
sions were made within the groups of duple and tri-
ple/compound metres, whereas confusions across these 
groups were less frequent. To investigate this, we calcu-
lated the proportions of confusions within and across 
these groups for both collections and both metre groups. 
These are shown in Table 2. As can be seen, the propor-
tion of melodies misclassified across the metre groups is 
for both collections and both metre groups smaller than 
the proportion of melodies misclassified within the me-
tre group. 

Table 2. Proportion of melodies misclassified 
within and across the groups of duple and tri-
ple/compound metres. 

Essen Collection (N = 5592) 

  Predicted metre 
 Duple Triple 

Duple 0.083 0.023 
Triple 0.086 0.159 N

ot
at

ed
 

m
et

re
 

   

Finnish Collection (N = 6899) 

  Predicted metre 
 Duple Triple 

Duple 0.309 0.019 
Triple 0.133 0.178 N

ot
at

ed
 

m
et

re
 

   
 
Certain confusions imply more severe misattributions 

by the algorithm. For instance, 11.7 % of the melodies 
in the Essen collection notated in 3/4 metre were mis-
classified as representing binary metre (4/4 or 2/4), the 
corresponding figure for the Finnish collection being 
12.6 %. In general, duple metres were less frequently 
misclassified as representing triple/compound metre as 
vice versa. This asymmetry may be due to the fact that 
the MDA attempts to maximize the total correct classifi-
cation rate, as a result of which the most common me-
tres receive the best classification rates. To investigate 
this, we performed for both collections a MDA with an 
equal number of melodies representing the most com-
mon duple and triple metres. For the Essen collection 
we used all the 1215 melodies notated in 3/4 metre and 
an equal number of melodies notated in 4/4 metre, ran-
domly chosen. The leave-one-out classification yielded 
correct classification rates of 96.7% and 96.5% for the 
3/4 and 4/4 metres, respectively. Similarly, for the Fin-
nish collection we used all the 902 melodies notated in 
3/4 metre and an equal number of  melodies notated in 

2/4 metre, again randomly chosen. This yielded correct 
classification rates of 95.5% and 95.1% for the 3/4 and 
2/4 metres, respectively. There were thus no significant 
differences in the classification rates between the me-
tres, which suggests that the asymmetry in classification 
rates can be attributed the differences in group sizes and 
the characteristics of the classification algorithm used.  

To assess the relative importance of features (i.e., 
types of accent and lags) that contribute to the discrimi-
nation between metres, we examined the magnitudes of 
the standardised beta coefficients of the variables for 
each discrimination function. In particular, we took the 
mean of the absolute values of the beta weight across 
the discriminant functions to represent the relative im-
portance of each feature. The first 48 most important 
features, ordered according to the respective maximal 
beta values, are shown in the Appendix. According to 
this result, the components of the autocorrelation func-
tion derived from the durational and constant accents 
were the most significant predictors of metre for both 
collections. The next most important predictor for both 
collections was Thomassen's melodic accent [14], fol-
lowed by the interval size accent. 

To further inspect the relationships between metres, 
we performed a hierarchical cluster analysis separately 
for both collections. To this end, we calculated the dis-
tance between each metre from the confusion matrix 
according to the formula 

! 

dij = 1"
cij + c ji

cii + c jj

# 

$ 
% % 

& 

' 
( ( ,   (4) 

where 

! 

dij  denotes the distance between metres i and j, 
and 

! 

cij  the number of cases where a melody in metre i 
has been classified as being in metre j. By definition, the 
larger the proportion of melodies confused between me-
tres, 

! 

cij + c ji , to the number of melodies correctly classi-
fied for both metres, 

! 

cii + c jj , the smaller the distance

! 

dij  
between the metres.  

Figure 4 displays the dendrograms obtained from the 
clustering algorithms. In the dendrograms, the stage at 
which given metres cluster together reflects the algo-
rithm's rate of confusion between the metres. For both 
collections, the metres to first cluster together are 3/8 
and 6/8. For the Essen collection, this is followed by the 
clustering of the metres 3/4 and 6/4 as well as 2/4 and 
4/4, in this order. Also for the Finnish collection these 
pairs of metres cluster next, albeit in reverse order, that 
is, the clustering of 2/4 and 4/4 precedes that of 3/4 and 
6/4. A further similar feature between the two dendro-
grams is that the last clustering occurs between the clus-
ter formed by the metres 3/8 and 6/8 and the cluster 
formed by all the other metres. This suggests that, in 
terms of the autocorrelation functions, metres 3/8 and 
6/8 are most distinct from the other metres.  

One peculiar feature of the dendrogram for the Essen 
collection is the relatively late clustering of metres 4/1 
and 4/2 with metres 2/4 and 4/4. In particular, the for-
mer two metres cluster with metre 3/2 before clustering 
with the latter two metres. A potential explanation for 
this is the difference in the average note durations be-
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tween the metres. More specifically, the average note 
durations for metres 4/1, 4/2, and 3/2 exceed those of 
metres 2/4 and 4/4 by a factor of two. 

 

 
Fig. 4. Dendrograms obtained from the confusion 
matrix using the similarity measure of Eq. 4. The 
leftmost column displays the average note dura-
tions in quarter notes for the melodies represent-
ing each metre. 

5 CONCLUSIONS 
We studied the classification performance of the 

autocorrelation-based metre induction model, originally 
introduced in [8]. Using Multiple Discriminant Analy-
sis, we provided an explicit method for the classifica-
tion. Furthermore, we included a set of melodic accents 
that in a previous study [18] were found to improve the 
classification performance. 

The overall correct classification rate was approxi-
mately 75%. While this rate appears to be relatively low 
compared to what has been obtained in some other simi-
lar classification studies [e.g., 10], it must be noted that 
the material used in the present study consists of mono-
phonic melodies, which by their nature provide fewer 
cues for metre than polyphonic material. We would ex-
pect that human subjects, when presented with the mate-
rial used in this study, would not significantly exceed 
the correct classification rate achieved by the model. 
This hypothesis should, however, be verified with lis-
tening experiments. 

The most frequent confusions were made within the 
groups of duple and triple/compound metres, whereas 
confusions across these groups where significantly less 
frequent. For both collections, metres 2/4 and 4/4 dis-
played the highest mutual confusion rate, followed by 
metres 3/4 and 6/4. A large proportion of these misclas-
sifications can probably be attributed to inherent disam-
biguity between certain pairs of metre as well as the 
effect of tempo on the choice of notated metre. 

A finding that calls for further study was the signifi-
cant difference between the correct classification rates 
for melodies in duple and triple/compound metre. More 

specifically, melodies in duple metre were more often 
correctly classified than melodies in triple/compound 
metre. When the classification was performed with an 
equal number of melodies representing duple and tri-
ple/compound metres, this asymmetry was however 
absent, suggesting that it was originally due to the 
weighting of the classification by the frequency of oc-
currence of metres. 

Investigation of the standardised beta coefficients of 
the discriminant functions revealed that the components 
of the autocorrelation functions derived using durational 
and constant accents were the most significant predictors 
of metre. This suggests that, in conformance with the 
general view, the most important features in the predic-
tion of metre were based on note onset locations and 
note durations. Of the melodic accents included in the 
study, Thomassen's accent was found to be the next 
most important predictor, followed by the interval size 
accent. This result conforms to findings in a previous 
study by the present authors [18]. 

An apparent limitation of the method presented in 
this paper is its inability to deal with melodies that con-
tain changes of metre. For a melody that, say, starts in 
2/4 metre and changes to 3/4 metre, the algorithm gives 
unpredictable results. This is due to the fact that the al-
gorithm considers the melody as a whole. The limitation 
may be overcome by applying a windowed analysis. 

The present study utilized melodies that where repre-
sented in symbolic, temporally quantized form. The 
choice of stimuli was mainly based on the availability of 
correct (notated) metres for the melodies in the collec-
tions. In principle the method could, however, be ap-
plied to performed music in acoustical form as well, at 
least with a monophonic input. This would require algo-
rithms for onset detection [26], pitch estimation [27, 
28], beat tracking [6, 29-31], and quantization [32]. 
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APPENDIX. Most important features in the classification and their mean standardized canonical dis-
criminant function coefficients (β). Abbreviations: dur = durational accent (accent 1); mel = Thomas-
sen's melodic accent (accent 2); int = interval size accent (accent 3); piv = pivotal accent (accent 4); 
con = gross contour accent (accent 5); non = constant accent (accent 6). Numbers in the feature col-
umns refer to lag in units of one eighth note. 
 

Essen collection Finnish collection 

Rank Feature β Rank Feature β 
1 dur11 0.793 1 dur5 1.597 
2 dur7 0.692 2 dur9 1.186 
3 non4 0.664 3 dur3 1.016 
4 non7 0.652 4 dur1 0.883 
5 non5 0.588 5 dur11 0.868 
6 dur3 0.568 6 non7 0.814 
7 dur5 0.553 7 dur7 0.802 
8 non11 0.501 8 dur10 0.801 
9 dur15 0.500 9 dur15 0.800 
10 non2 0.483 10 non5 0.775 
11 dur12 0.476 11 non13 0.688 
12 dur10 0.473 12 non10 0.688 
13 non15 0.471 13 non9 0.684 
14 dur6 0.468 14 dur13 0.664 
15 non8 0.464 15 non3 0.663 
16 non3 0.441 16 non11 0.628 
17 non16 0.394 17 non1 0.625 
18 dur1 0.391 18 non6 0.549 
19 non13 0.371 19 non15 0.538 
20 dur16 0.371 20 dur2 0.531 
21 dur9 0.364 21 non12 0.509 
22 dur14 0.353 22 non14 0.470 
23 non6 0.347 23 non16 0.425 
24 dur13 0.342 24 dur14 0.410 
25 non12 0.334 25 dur4 0.376 
26 non14 0.332 26 dur6 0.368 
27 non1 0.331 27 dur16 0.360 
28 non10 0.319 28 non2 0.352 
29 dur4 0.303 29 dur12 0.315 
30 non9 0.293 30 non8 0.301 
31 dur2 0.273 31 dur8 0.242 
32 dur8 0.255 32 non4 0.225 
33 mel8 0.175 33 mel11 0.196 
34 mel4 0.129 34 mel15 0.182 
35 mel9 0.116 35 mel3 0.152 
36 mel12 0.111 36 mel6 0.135 
37 mel7 0.107 37 int4 0.124 
38 mel6 0.106 38 mel10 0.123 
39 mel3 0.097 39 int5 0.122 
40 mel15 0.086 40 int12 0.122 
41 mel16 0.083 41 int1 0.114 
42 mel11 0.075 42 mel5 0.113 
43 con2 0.072 43 int6 0.106 
44 mel5 0.069 44 mel2 0.105 
45 piv12 0.069 45 con12 0.099 
46 mel2 0.066 46 piv1 0.095 
47 piv3 0.065 47 int10 0.095 
48 int3 0.064 48 mel13 0.092 
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