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ABSTRACT

The singing voice is the oldest and most complex musi-
cal instrument. A familiar singer’s voice is easily rec-
ognizable for humans, even when hearing a song for the
first time. On the other hand, for automatic identifica-
tion this is a difficult task among sound source identi-
fication applications. The signal processing techniques
aim to extract features that are related to identity char-
acteristics. The research presented in this paper considers
32 Mel-Frequency Cepstral Coefficients in two subsets:
the low order MFCCs characterizing the vocal tract res-
onances and the high order MFCCs related to the glottal
wave shape. We explore possibilities to identify and dis-
criminate singers using the two sets. Based on the results
we can affirm that both subsets have their contribution in
defining the identity of the voice, but the high order subset
is more robust to changes in singing style.

Keywords: sound source identification, singing voice,
MFCC

1 INTRODUCTION

Considering the wide area of signals from our everyday
life, problems concerning the singing voice characteriza-
tion arise naturally after the interest on speaker and in-
strument recognition. Because of its particularities in pro-
duction and control, the singing voice falls between the
speech and musical instruments sounds, having common
characteristics with each of these, but being also very dif-
ferent from both of them. Singing is composed mostly
of sustained vowels with almost perfectly harmonic spec-
trum, resembling with the sustained sounds of musical in-
struments. In the mean time, the shape of the vocal tract
that determines the sounds is a characteristic of human ar-
ticulator system, intensely studied in speech recognition
tasks. Because singers have to sustain vowels as long as
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possible, they learn to develop a control technique over
the pronunciation of the vowels (Barnes et al., 2004), thus
putting difficulties in the use of techniques and models
from speech processing (Youngmoo, 2003).

The cepstral coefficients are a set of features reported
to be robust in some different pattern recognition tasks
concerning human voice. They are widely used in speech
recognition and also in speaker identification. Lately,
research on musical instrument identification techniques
proved the cepstral coefficients to be a useful set of fea-
tures in this task also. The human voice is very well
adapted to the ear sensitivity, most of the energy devel-
oped in speech being comprised in the lower frequency
energy spectrum, below 4 kHz. In speech recognition
tasks, usually the first 12 coefficients are retained, consid-
ering that they represent the slow variations of the spec-
trum of the signal (Rabiner and Juang, 1993), character-
izing the vocal tract shape, the spectrum of the uttered
words.

Attempts of using the same features in speaker recog-
nition had proved that also identity features are coded into
the cepstral coefficient representation of a sound. Exper-
iments conducted on different number of speakers, with
the use of neural networks in the modeling of categories
and in the identification stage showed satisfactory results
using a number of 12-14 coefficients (Seddik et al., 2004;
Fredrickson and Tarassenko, 1995; Mafra and Simoes,
2004). Cepstral coefficients were also successfully used
in instrument recognition: the use of 18 cepstral coeffi-
cients derived from a constant Q transform gives a good
discrimination rate between oboe and clarinet (Brown,
1999), and the combination with temporal features can re-
sult in good instrument classification results (Eronen and
Klapuri, 2000).

In this paper, a study of Mel-Frequency Cepstral Co-
efficients is proposed, concerning the identification of
singing voices. In speaker identification systems, the low
order coefficients were used, comprising vocal tract fre-
quency information. The singing voice has a much larger
variability than speech and much higher frequency com-
ponents, starting with pitch, that can be up until 1200 Hz
in soprano voices. The aim in this study is to determine
if it is appropriate to characterize the singing voices us-
ing higher order cepstral coefficients, that are related to
pitch and fine spectral structure rather than to the forman-
tic structure. We try to determine if the lower or the upper
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subset of MFCCs encodes more individuality-related in-
formation.

The paper is organized as it follows: first we present
a short review of the methods and processing for obtain-
ing the cepstral coefficients, in section 2. Subsection 2.2
presents some basic concepts about neural networks and
also the steps used in implementing, training and test-
ing on different subsets of data. Section 3 will describe
the study material, grouping of the data and training of
the networks, and finally section 4 will present the results
obtained for different network complexities in each case,
giving the possibility to generalize the posed problem.

2 SIGNAL PROCESSING METHODS
AND TOOLS

2.1 The Mel-Frequency Cepstral Coefficients

The cepstrum of a time domain signal s(n) is the Inverse
Fourier Transform of the log-magnitude spectrum of the
signal. The log-magnitude spectrum of a real signal is a
real and even function, thus the cepstrum is normally com-
puted via Discrete Cosine Transform which is equivalent
with the Fourier transform in case of even functions.

An important preprocessing step in the analysis of
speech signals is the pre-emphasis of high frequencies.
This is done because the amount of energy carried in the
high energy components is small compared to low fre-
quencies. For the singing voice, the high frequency com-
ponents are all the more important for the perceived qual-
ity. Preemphasis is usually done by filtering the signal
with a FIR filter whose transfer function in time domain
is:

y(n) = x(n) − ax(n − 1) (1)

where a is close to 1, with typical values around 0.95.
The processing continues with a Fourier analysis of

the windowed signal. A Hamming window of 20 ms was
considered. The Mel-frequency scaling is done by a bank
of triangular band-pass filters, nonuniformly distributed
along the frequency axis. The Mel-scale equivalent value
for frequency f expressed in Hz is:

mel(f) = 2595log10(1 +
f

700
) (2)

The MFCCs are computed by redistributing the linearly-
spaced bins of the log-magnitude FFT into Mel-spaced
bins according to eq. 2, and applying DCT on the re-
distributed spectrum. A relatively small number of co-
efficients (typically 13) provide a smoothed version of the
spectral envelope, leading to the isolation of the vocal tract
response by the simple retention of the desired amount of
information. An additional advantage in using MFCCs is
that they have a decorrelating effect on the spectral data,
maximizing the variance of the coefficients, similar to the
effect of Principal Component Analysis. This allows the
elimination of one of the preprocessing steps in the neu-
ral network training, which is the actual PCA to eliminate
data redundancy.

2.2 Feed-Forward Neural Networks

The simplest architecture of a neural network is the feed-
forward network, consisting of one or more hidden layers
through which the signal travels one way only, from the
input to output. This architecture is extensively used in
pattern recognition because of its basic task of associat-
ing inputs with outputs. Properly trained backpropagation
networks are able to generalize problems and to handle
reasonably inputs they have never seen.

For improving the generalization of the neural net-
works during training and not get to the situation of over-
fitting the data, the early stopping method was used. The
data set is divided into three subsets: a training set which
will be used in training, a validation set and a test set. The
error on the validation set is monitored during the training
process; when the network begins to overfit the data, the
error on the validation set will tend to rise, and the training
will be stopped. This leads to a much faster training of the
network, as long as we take upon the error, which will be
larger than the imposed goal.

To improve the training of a network, certain prepro-
cessing techniques can be performed. The one used in
this study is normalization of mean and standard devia-
tion of the training set so that the training and the target
sets will have zero mean and unity standard deviation. The
MFCCs are decorrelated and there is no need to check for
data redundancy with PCA. Post-training analysis is used
to check the performance of the trained networks.

3 SETTING UP THE EXPERIMENTS

3.1 The Database

The studied material consists in a number of 20 untrained
voices. For each voice, there are two common musical
phrases of medium length 3 seconds and a third different
one of medium length 4 seconds, all sampled at 44100 Hz.
The two common phrases were used as training data, and
the third one for testing. It should be noted that while the
models are constructed based on the same utterance, the
identification uses different phrases for all the subjects.
Four groups consisting of five voices were set up for ini-
tial experiments concerning identity characterization, and
one group containing 10 voices was used to test the ca-
pabilities of neural networks to model the data in case of
extending the database.

3.2 The Feature Set

The voice signals were pre-emphasized using a FIR fil-
ter as presented in eq. 1, with a = 0.95. MFCCs were
calculated using the described method, as the DCT of the
log-magnitude spectrum with 1024-point FFT. 32 MFCCs
were calculated for each frame of the signal. The coeffi-
cients were partitioned for two different situations: coeffi-
cients 1–15 that characterize the smoothed spectrum, and
coefficients 15–32 for the fine structure of the spectrum.
The two subsets represent the input for training the neu-
ral network. Neural networks were trained also with the
entire set of cepstral coefficients to check if any improve-
ment is obtained by using all the available information.
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3.3 The Neural Networks

For the groups of five voices, the neural network was cho-
sen to have one 20-neurons hidden layer. One of the five
neurons in the output layer was assigned to each voice by
giving a positive unity answer. The number of neurons
in the hidden layer was increased to 40 for modeling the
group of 10 voices. We chose a training function that uses
a variable learning rate set to 0.09 and with early stopping
method. The validation data for this task was 1/4 of the
whole training set. Initial experiments showed that neu-
rons with tan-sigmoid transfer function perform much bet-
ter in this recognition task than neurons with log-sigmoid
transfer function. The input data was normalized so that
all the coefficients have zero mean and unity variance. Us-
ing each subset of MFCCs, several networks were trained
to ensure that we obtain the best results.

4 TRAINING RESULTS AND
SIMULATIONS

For each group of five voices, a neural network was
trained with the two common phrases. The early stopping
method implies monitoring the error on the validation set
during training. At first, the error will decrease, in the
data fitting process, but in case the network starts to over-
fit the data, the error will rise and the training will return
the weights from the minimum attended error. Usually
the training stopped around 0.15 to 0.20 error, depend-
ing on the difficulty of modeling the data. The closer the
value is to 1, the better the data fit for the corresponding
voice. Based on the fit values we would expect best re-
sults in identification with the whole set of MFCCs. In
the conditions of these results, we test the network with
unknown data. The test phrase was processed through the
same steps in order to obtain the sets of MFCCs and the
coefficients were presented frame by frame as input to the
trained network. We emphasize the fact that the test data
is different for each voice, so in some cases it might re-
semble to the training data, while in others it can be very
different. Table 1 summarizes the percent of correctly la-
beled frames and the degree of data fit for one group of
five voices.

Although the correlation test shows better modeling
of classes with the entire set of coefficients, it is not al-
ways necessary to use them all. Some voices can be dis-
tinguished by using the first 15 cepstral coefficients, while
for others, the information in the upper coefficients gives
the difference. In the mean time, using all of the coeffi-
cients in the same classification does not always provide a
more reliable result.

For increasing the number of voices used in the study,
we trained a neural network with one 40-neurons hidden
layer, using a set of ten voices, in the same conditions.
Probability density estimates can be constructed based on
the response of each neuron in each frame. The positive
response neuron for one voice should have a PDE with
mean close to 1, while the rest of the neurons should
have PDEs close to 0. Figures 1-3 illustrate PDEs of
the responses of the 10 neurons for the test phrase, esti-
mated in 100 equidistant points, in one case that cannot
be solved using low order MFCCs. The positive response

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
0

1

2

3

4

5

6

7

8

9

10
PROBABILITY DENSITY ESTIMATES

Figure 1: Probability distribution estimates of neurons re-
sponses for the test phrase; modeling with MFCCs 1-15
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Figure 2: Probability distribution estimates of neurons re-
sponses for the test phrase; modeling with MFCCs 15-32
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Figure 3: Probability distribution estimates of neurons re-
sponses for the test phrase; modeling with MFCCs 1-32

neuron is represented by the ’+’ line. The generalization
of the results state that the upper order cepstral coefficients
contain at least the same quantity of information as the
lower order ones. The cepstrum decomposes the problem
in resonance-related information (low-order coefficients)
and source-related information (high-order coefficients).
As expected, both have their contribution to defining the
identity of a voice, in singing, thus the source-related co-
efficients can be used to characterize the identity of the
voice, and seem to behave well to changing the singing
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Table 1: Correlation coefficient between target and network output for the training set and identification percent on the
test phrase for one 5-categories experiment

v01 v02 v03 v04 v05
fit identif fit identif fit identif fit identif fit identif

coeff 1-15 0.69 0.46 0.67 0.79 0.63 0.60 0.60 0.81 0.62 0.47
coeff 15-32 0.68 0.53 0.59 0.63 0.65 0.64 0.61 0.64 0.56 0.47
coeff 1-32 0.78 0.50 0.78 0.80 0.78 0.74 0.79 0.84 0.79 0.54

style. Compared with the results obtained on speaker
identification, it can be argued that in speech the filter part
of the system does not have such a great variability as in
singing, that is why the use of upper coefficients was gen-
erally not considered.

5 CONCLUSIONS

This paper presented a study of Mel-frequency cepstral
coefficients in the context related to singing voice identi-
fication. The human articulator system in voicing is mod-
eled in signal processing as a system with a specific signal
- the glottal wave - as input to a linear time-invariant filter
- the vocal tract. The low order cepstral coefficients repre-
sent information about the vocal tract shape, and the high
order coefficients characterize the source signal. Both
parts contain important information about voice identity.

In the case of singing voice, the input of the system is
more invariant than the filter part. Cases difficult to handle
with low-order MFCCs can eventually be solved correctly
by using the high-order MFCCs. In this study no special
care was taken for best trained neural networks; the pur-
pose was rough and fast training for testing the selected
features. For reliable results with neural networks in case
of working with a large number of classes, parallel net-
works are used in order to achieve low complexity, fast
training and small error rates in training each network.

6 FUTURE WORK

The results of the study lead to searching for a different
way of characterizing the source in the articulator system,
independently of the vocal tract parameters. A widely
used method for estimating the glottal flow is through the
Liljencrantz-Fant model; the processing involves deter-
mination of the closed glottis period, for correct inverse
filtering. In singing and in high-pitched voices this is a
real problem, because the closed glottis period may be too
short for correct estimation of the inverse filter parame-
ters. Also, authors of such studies used the voice signal
and the simultaneous electroglottograph signal in order to
locate specific instants in the voice signal. This method is
inappropriate outside of laboratories, that is why we aim
for an equivalent method of describing the glottal wave
characteristics using information extracted only from the
signal.
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