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ABSTRACT 

The creation of huge databases coming from both resto-
ration of existing analogue archives and new content is 
demanding fast and more and more reliable tools for 
content analysis and description, to be used for searches, 
content queries and interactive access. In that context, 
musical genres are crucial descriptors since they have 
been widely used for years to organize music cata-
logues, libraries and shops. Despite their use musical 
genres remain poorly defined concepts which make of 
the automatic classification problem a non-trivial task. 
Most automatic genre classification models rely on the 
same pattern recognition architecture: extracting fea-
tures from chunks of audio signal and classifying fea-
tures independently. In this paper, we focus instead on 
the low-level temporal relationships between chunks 
when classifying audio signals in terms of genre; in 
other words, we investigate means to model short-term 
time structures from context information in music seg-
ments to consolidate classification consistency by reduc-
ing ambiguities. A detailed comparative analysis of five 
different time modelling schemes is provided and classi-
fication results are reported for a database of 1400 songs 
evenly distributed over 7 genres. 
 
Keywords: musical genres, content analysis and index-
ing, machine learning, features extraction.  

1 INTRODUCTION 

Musical genres are the main top-level descriptors used 
by music dealers and librarians to organize their music 
collections. Though they may represent a simplification 
of one artist’s musical discourse, they are of a great in-
terest as summaries of some shared characteristics in 
music pieces. 

With Electronic Music Distribution (EMD), music 
catalogues tend to become huge; in that context, associ-
ating a genre to a musical piece is crucial to help users in 
finding what they are looking for. In fact, the amount of 

digital music data urges for new means of automatic 
annotation since manual labeling would be too time-
consuming. 

At the same time, even if terms such as jazz, rock or 
pop are widely used, they remain poorly defined con-
cepts so that the problem of automatic genre classifica-
tion becomes a non-trivial task. 

In this paper, we assume that genre taxonomy is 
given and we focus only on the ways to uniquely and 
automatically associate a song to a genre. More specifi-
cally, to improve results so far reported in literature spe-
cial attention will be paid on different approaches to 
model the inner temporal structure of music; these ap-
proaches will be described and compared, and their im-
pact on classification results will be evaluated. In this 
sense, the paper analyzes five different machine-
learning algorithms that “encode” more or less explicitly 
relationships between successive audio chunks. These 
relationships represent an attempt to identify some tem-
poral structural patterns inside music excerpts; even if 
these patterns are hidden and not appearing at the sur-
face as a set of clear rules, nevertheless they emerge 
from music during machine training processes and allow 
obtaining robust results on rather general and non con-
strained data base. 

The paper is organized as follows: section 2 will 
briefly review the state of the art in genre classification. 
Section 3 will describe the extraction of features charac-
terizing the audio signal. Section 4 will present the clas-
sification schemes evaluated in this work while section 
5 will be devoted to the discussion of results obtained on 
a database of 1400 songs evenly distributed over 7 gen-
res. The last section will reach some conclusions. 

2 RELATED WORK 

Though unsupervised clustering of music collections 
based on similarity measures is gaining more and more 
interest in the music information retrieval community 
(see [1] and [2]), most works related to classification of 
music titles into genres are based on supervised tech-
niques. These methods suppose that a taxonomy of gen-
res is given and they try to map a database of songs into 
it by machine learning algorithms. 

Soltau et al. [3] have compared a Hidden Markov 
Model to one new classification architecture, the ETM-
NN (Explicit Time Modelling with Neural Networks) in 
a classification experiment involving 360 songs distrib-
uted over 4 genres. 

Tzanetakis and Cook [4] and Li et al. [5] have 
worked on a database of 1000 songs over 10 genres and 
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have compared the use of different audio features (tim-
bral features, rhythmic features, pitch features, wavelet 
features) and different classifier (Support Vector Ma-
chines, Gaussian Mixtures, Linear Discriminant Analy-
sis, K-nearest neighbours) on time-independent chunks. 

Burred and Lerch [6] have proposed a hierarchical 
classification scheme evaluated on a database of 850 
songs over 17 classes (including some speech classes 
and background noise),  

West and Cox [7] have used a Maximal Classifica-
tion Binary Tree along with Linear Discriminant Analy-
sis to classify a set of 900 songs into 6 genres. 

Dixon et al. [8] extracted the main rhythmical pattern 
of a song and classify it according to features derived 
from the pattern, the tempo plus other timbral features. 
They evaluate their system on a database of 698 files in 
8 subgenres of Standard and Latin ballroom dance mu-
sic. 

3 FEATURE EXTRACTION 

The first step of analysis systems consists of extracting 
some features from the audio data to manipulate more 
meaningful information and to reduce the further proc-
essing of the classification task. 

In this paper we focus on classification strategies tak-
ing into account as far as possible the time structure of a 
musical piece. Consequently, we select a fixed set of 
low-level features to characterize analyzed audio signals 
and to allow for direct comparison between classification 
schemes. However, it is clear that some particular fea-
tures are more discriminative when trying to isolate one 
particular genre from another. As a matter of fact, fea-
ture selection techniques should be systematically used 
when trying to build a robust classifier. 

3.1 Segmentation into analysis frames 

The audio content used in our experiments is sampled at 
44100 Hz and converted to a mono signal. The resulting 
signal is then analyzed through sliding windows of 20 
ms overlapped by 50%. Each analysis frame is multi-
plied by a hamming-window and zero-padded to a power 
of two. 

3.2 Timbre features 

Mel-frequency Cepstral Coefficients (MFCC) are then 
computed from the analysis frames. Each analysis frame 
is parameterized with 6 MFCCs. MFCCs have proved to 
be successful in speech recognition applications and 
have since then been widely used in music genre classi-
fication ([3],[4],[6],[7]). They are a good choice in our 
case, as we did not try yet to select the features charac-
terizing optimally a given genre. 

3.3 Rhythmic features 

In [9], Klapuri et al. introduce a beat, measure bars 
and tempo tracker for audio signals. It induces tempo 
from a so-called periodicity function, which summarizes 

the strength of different periodicities in the region of 
pulse sensation. Simple statistical descriptors including 
mean, standard deviation, skewness, kurtosis and maxi-
mum of the periodicity function are computed from this 
periodicity function to describe its shape, which charac-
terizes the strength of the different periodicities and 
their relations. 

3.4 Texture window 

Both our timbre and rhythmic features may be computed 
at the analysis frame rate (i.e. every 10 ms). Yet the 
information contained at this time scale is not sufficient 
and too many variations occur. A solution is to average 
features at the frame rate over texture windows so that 
greater portions of the signal are considered. 

In the following experiments, we compare three types 
of window – one vector per 30 seconds, one vector per 1 
second and a more musical modelling: one vector cen-
tred on each beat averaging frames over the local beat 
period (with beats and beat rate extracted through the 
system proposed in [9]). 

Mean, standard deviation, skewness and mean of the 
absolute value of each timbre feature are computed over 
the size of the considered window. Periodicity function 
is averaged over the considered window and its mean, 
standard deviation, skewness and maximum are evalu-
ated. A vector of 28 features thus characterizes each 
texture window. 

4 CLASSIFICATION SCHEMES 

Once audio signals are parameterized in terms of feature 
vectors, the genre classification problem is reduced to a 
typical pattern classification task. Our goal being to as-
sociate an audio signal to a class of an a-priori defined 
set, we use a supervised approach. 

In most reviewed papers in literature, genre classifi-
cation is obtained by statically analysing an excerpt fea-
ture vector or subdividing the excerpt into chunks, 
which are considered as time-uncorrelated. However, in 
similar problems like e.g. speech recognition and natural 
language analysis, temporal relationships from one pho-
neme or word to the following provide important hooks 
to improve recognition and obtain more robust results. 

Moving from a similar approach, special attention is 
paid in this paper to ways to represent temporal progres-
sion and contextual information in the classification 
process. Five classification schemes are evaluated with 
that purpose in mind: a Support Vector Machine (SVM), 
Support Vector Machines with delayed inputs, a recur-
rent neural network (the Elman network), an Explicit 
Time Modelling Neural Network (ETM-NN), and a 
Hidden Markov Model (HMM). 

4.1 Support Vector Machines 

The underlying idea of SVM classification [10] is to 
project data in a high dimensional space in which it is 
easier to separate into classes. A simple linear discrimi-
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nant function which maximizes the margin between 
classes is then found in that high-dimension space. 

Though SVMs have proved to be very efficient for 
classification tasks, they are not able to handle temporal 
sequences. As a matter of fact, they can only classify 
statically one vector into a given class. 

A first solution to consider temporal evolution of mu-
sical signals is to consider texture windows shifted 
along time. The features associated to each texture win-
dow are classified independently and a majority vote is 
used to decide the class of the complete excerpt (as done 
in [4], [5], [6] and others in literature). 

Three SVM classifiers with radial basis kernels were 
built. Multi-class classification is achieved by using 
error-correcting codes [11]. One classifier is trained 
with 30 seconds windows (it is referred to as SVM-30s). 
Another one is trained with 1 second windows (SVM-
1s) and the last one with windows centred on beats with 
length the beat rate (SVM-beats). The feature vector 
associated with a window is classified independently 
and the final decision for a song is taken as the most 
represented class in the song. SVM-30s actually stands 
for the case where a single feature vector is used for the 
complete song as we have been working with excerpts 
of 30 seconds. 

4.2 Support Vector Machines with delayed inputs 

As it was already said, SVMs (as well as neural net-
works and a number of other machine learning algo-
rithms) can only process static patterns. 

A solution to handle temporal sequences is to build a 
spatial representation out of it and to use it as input of 
the classifier. By using a tapped delay line, one can pre-
sent to the classifier a sequence of feature vectors. 

Notice however that this scheme suffers from a num-
ber of weaknesses: 

1. the delay must be large enough to contain a signifi-
cant sequence: this implies that the number of pa-
rameters of the classifier will be larger and thus a 
very large number of examples is needed for the 
training. 

2. the classifier is not invariant to time-shifting i.e. a 
very large number of examples is needed for every 
output class and every position in the delay line. 

3. the classifier is sensitive to time-variation i.e. it re-
quires the delays to precisely match the input time 
intervals (this may be corrected by having feature 
vectors synchronized to the beats of the musical 
signal). 

Experiments were conducted using a delay line of 3 
feature vectors so that each pattern presented to the 
SVM is the concatenation of 3 feature vectors corre-
sponding to 3 adjacent texture windows. We denote by 
SVM-delay-1s the SVM trained with feature vectors 
corresponding to 1 second texture windows and by 
SVM-delay-beats the SVM with texture windows cor-
responding to beats with length equal to the beat rate.  

4.3 Recurrent neural networks 

The most widely used artificial neural network is the 
multi-layer perceptron. Neural networks suffer from the 
same weakness as SVMs, i.e. they can only process 
static patterns (SVMs have proved however to be more 
suited to classification tasks than neural networks). 

Neural networks may be used in the same manner as 
the previously presented SVMs (with texture windows 
and with delayed inputs). An alternative is to use a recur-
rent or partially recurrent network (i.e. all or some of the 
layers of the network have their output connected to their 
input). More specifically, we evaluate the performance 
of the Elman network [12], which is typically a two-
layer network with feedback from the first layer output 
to the first layer input. The feedback connections allow 
taking the close past into account when classifying a new 
feature vector. 

We use fully connected networks with 100 neurons. 
Two cases are considered: ELM-1s refers to the Elman 
network fed with vectors corresponding to 1 second 
windows while ELM-beats refers to the Elman network 
with vectors corresponding to windows centred on beats 
with length equal to the beat rate. The final decision for 
the complete song is obtained by integrating over time 
each output and selecting the maximal integrated output 
as the correct class. 

4.4 Explicit Time Modelling with Neural Networks 

Soltau et al [3] have introduced in the context of recogni-
tion of music genres an original method for explicit time 
modelling of temporal structure of music. This new ar-
chitecture is referred to as ETM-NN (Explicit Time 
Modelling with Neural Networks). 

In this architecture, a multi-layer perceptron is trained 
to recognize given input feature vectors that are 0.4 sec-
onds long. The main idea is to use the hidden layer of the 
perceptron and not its output, which is supposed to give 
the genre. As a matter of fact, it is known that the first 
half of a feed-forward network performs a specific non-
linear transformation of the input data into a space in 
which the discrimination should be simpler. 

The activation of these hidden neurons corresponds to 
the use of a compact representation of the input feature 
vector. Each hidden neuron can be understood as an ab-
stract musical event – not necessarily related to an actual 
musical meaning. An abstract event ei occurs if the hid-
den unit i has the highest activation of all hidden units. 

The sequence of abstract events over time is then ana-
lysed to build one single feature. More specifically, the 
number of events ei (unigram), the number of pairs ei ej 
(bigram) and the number of triplets ei ej ek (trigram) are 
evaluated as well as the event durations, the mean, the 
maximum and the variance of event activations. All of 
these features, normalized over the length of the se-
quence are combined into a single vector which is given 
to another neural network; this latter implements the 
final decision about the genre of the musical piece.  

We consider two cases: ETMNN-1s with evaluation 
of abstract events for each 1 second windows and 
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ETMNN-beats with evaluation of abstract events for 
each beat. All the considered neural networks have a 
single hidden layer with a number of neurons equal to 
the number of genres considered. 

4.5 Hidden Markov models 

Hidden Markov models have been extensively used in 
speech recognition [13] because of their capacity to 
handle time series data. HMMs may be understood as a 
doubly embedded stochastic process: one process is not 
observable (hidden) and can only be observed through 
another stochastic process (observable) that produces 
the time set of observations. 

A HMM is defined by its number of states, the transi-
tion probability between its states, the initial state distri-
bution and the observation symbol probability distribu-
tion. 

One HMM was trained per musical genre using mix-
tures of 3 Gaussians to model the state probability den-
sities. Each HMM has 4 states and an ergodic transition 
model. Other topologies have been briefly explored but 
some additional work would be needed to find the best 
topology depending on the genre. 

Here again were consider two cases: HMM-1s for 
the sequence of 1 second windows and HMM-beats for 
the sequence of windows centred on beats. 

5 EXPERIMENTAL RESULTS 

Experimentations were run to compare the performances 
of the five main classification schemes and the type of 
bag of frames. 

5.1 Dataset 

The dataset used contain 1400 songs over 7 genres 
(i.e. 200 songs per genre). For each song, 30 seconds 
after the initial 30 seconds were used. The used genres 
are: Blues, Classical, Electronica, Jazz, R&B/Soul, Rap 
and Rock. Songs were assigned a genre label according 
to the AllMusic1 guide. 

5.2 Experiment setup 

The reported results are obtained by 10-cross validation. 
Namely, for each classification scheme, experiments are 
run 50 times: each time is characterized by a different 
random split of the database (90 % of training data and 
10 % of testing data). Reported results give the average 
of the 50 runs. 

5.3 Results 

Table 1 shows the accuracy of the different classifica-
tion schemes. Recognition rates are given in percentage 
for the 7 genres and for the complete set (the best result 
among all classifiers for specific genres are in bold). 

As a comparison, it should be remembered that the 
accuracy of random guess on this dataset is 14%. 

                                                             
1 http://www.allmusic.com 

Moreover the human performance for genre classifica-
tion has been studied in [14]: college students were able 
to classify songs correctly in 70% of the cases after lis-
tening to 3 seconds of the songs (on a database where 
chance would give 10%). This result should not be un-
derstood as an upper boundary to automatic classifica-
tion accuracy but rather as an expected accuracy. 

5.4 Analysis of the different classifiers 

The SVM with delayed inputs and texture windows syn-
chronised on beats gives the best overall results (69.98% 
of correct classification). Yet some methods show sig-
nificantly better results on some specific genres. As a 
matter of fact, likewise some features are more suitable 
than others when classifying into a given set of subgen-
res, some classification schemes may be more suited to 
a particular genre. Let us discuss more in depth the pros 
and cons of each classification scheme. 

5.4.1 Results of SVMs 

Support vector machines are known to give excellent 
results in many classification tasks including musical 
genre classification (SVMs are successfully used in [5]).  

It is interesting to notice how in our experiments the 
size of the texture window influences the results. In the 
case of Electronica, Jazz and R&B/Soul, better results 
are obtained when considering a window of all frames 
rather than smaller chunks of data. It may be understood 
in the case of Electronica as smaller chunks may be lo-
cally misclassified because of the use of samples from 
other genres (mostly jazz, soul and funk). 

The use of beat-synchronised texture windows im-
proves results only for Rock when used with SVMs. 
This may be explained of course by the fact that beats 
are not extracted perfectly. Another reason is that the 
faster the detected tempo, the smaller is the texture win-
dow. This may be harmful as Tzanetakis and Cook re-
port in [4]: when the window is too small, the classifica-
tion accuracy drops. 

5.4.2 Results of SVMs with delayed inputs 

SVMs with delayed inputs give the best classification 
results. The inherent weaknesses of such architecture 
(see section 4.2) are probably overcome by the large 
amount of data used in our experiments (200 songs per 
genre). 

The fact that SVMs with delayed inputs beat simple 
SVMs in the genre classification task is an interesting 
result: it confirms the importance of time structure in 
musical genre understanding. Indeed SVMs with de-
layed inputs encode a simple (non-explicit) representa-
tion of time structure by considering adjacent texture 
windows (with a delay of 3 windows, unigrams, bigrams 
and trigrams are encoded). 

However the training time of such a model is consid-
erably larger than the training of a SVM with single 
texture windows. 
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 Blues Classical Electronica Jazz R&B/Soul Rap Rock All genres 

SVM-30s 72.12 89.89 49.43 67.42 54.02 70.32 62.18 66.48 

SVM-1s 78.07 91.76 38.90 61.51 43.31 79.03 66.95 65.65 

SVM-beats 76.48 90.77 29.92 60.25 39.19 77.20 69.36 63.31 

SVM-delay-1s 84.95 92.33 52.35 65.49 51.01 75.43 64.27 69.40 

SVM-delay-beats 86.74 89.50 45.58 71.50 52.75 76.29 67.52 69.98 

ELM-1s 66.90 89.56 30.60 56.99 41.25 70.92 61.30 59.65 

ELM-beats 66.77 87.92 33.18 60.13 39.33 72.25 64.34 60.56 

ETMNN-1s 69.18 90.12 30.42 57.67 41.76 71.23 62.20 60.37 

ETMNN-beats 68.95 89.60 32.15 61.18 39.78 73.02 64.79 61.35 

HMM-1s 66.41 91.53 27.60 58.99 36.93 84.72 72.56 62.68 

HMM-beats 61.54 92.98 30.37 64.08 33.56 82.91 74.65 62.87 

Table 1. Recognition rate for the different genres and classifiers 

 

5.4.3 Results of Elman networks 

Elman networks give the worst overall results. Yet their 
modelling of time structure, though it may be too simple, 
is comparable to the modelling of networks with delayed 
inputs. 

Indeed, each texture window is classified according 
to its feature vector plus a feedback of the previous state 
of the hidden units of the network. In the recurrence, the 
hidden units are decreased by a multiplicative constant, 
which determines the memory depth of the network. 
Thus the network models some local structure by taking 
into account adjacent windows with a decaying integra-
tion factor; this is similar to the case of networks with 
delayed inputs, considering that this time there is no 
integration factor and the memory depth is fixed by the 
size of the delay. 

In other words, neural networks with delayed inputs 
may be compared to Finite Impulse Response filters 
while recurrent networks may be compared to Infinite 
Impulse Response filters: the two architectures are able 
to model the same problems as long as their parameters 
are properly estimated. Recurrent networks may indeed 
be as efficient as networks or SVMs with delayed in-
puts. Yet a general weakness of systems with feedback 
loops is their tendency to become instable and this also 
applies to recurrent networks. 

As a matter of fact, because of possible instability 
problems, Elman networks are particularly tricky to 
train properly. In our experiments, Elman networks 
were sometimes overspecialized for certain classes 
while being weak for other classes (though on average it 
is not noticeable in the presented results). 

5.4.4 Results of ETMNNs 

The results obtained with ETMNNs are a little disap-
pointing compared to those reported by Soltau et al. [3]: 
he reports that his architecture significantly outperforms 
HMMs while this does not occur in our case. 

In fact, our implementation of the ETMNN differs 
slightly from the one initially proposed by Soltau: we 
use the same feature vectors as in our previous experi-
ments (vectors of dimension 28) while he uses vectors 
composed of the concatenation of the first 5 cepstral 
coefficients of 10 adjacent frames of 50 ms (vectors of 
dimension 50). In any case, our results in terms of 
ETMNN and HMM performances are sometimes diffi-
cult to compare to those reported by Soltau as he used a 
database of 360 songs over 4 genres (rock, pop, techno 
and classical) while we used a database of 1400 songs 
over 7 genres.  

In any case, the ETMNN architecture is not so differ-
ent from the HMM architecture. As a matter of fact, the 
first network is selecting an abstract event in the termi-
nology of the ETMNN: such event correspond to an 
HMM state.(notice by the way, that neural networks can 
be used to model the probability densities of the HMM 
states).  Moreover the use of events’ unigrams and bi-
grams correspond to the connections between states in a 
standard HMM. To model trigrams, one has to consider 
second order relations between states of an HMM which 
is usually not the case with HMMs (in most HMMs set-
tings, the so-called first-order Markovian assumption is 
supposed, i.e. the probability of being in a state depends 
solely on the previous state). 

5.4.5 Results of HMMs 

HMMs are more suited to model time sequences than 
any other experimented model. Yet they are outper-
formed by SVMs for the overall performance. As a mat-
ter of fact, a number of hypotheses, which make it pos-
sible to optimize these models, limit their generality and 
are at the root of some of their weaknesses. 

HMMs have indeed a low discriminative power be-
cause they are usually trained with a maximum likeli-
hood criterion rather than with an optimal maximum a-
posteriori criterion. In other words, during the training, 
the likelihood that the model of a genre did produce an 
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observation is maximised but the likelihood of the other 
models is not minimized. A number of alternative solu-
tions for the training of HMMs have been proposed to 
ensure them a better discrimination power [15]. 

Moreover, in our experiments we have modelled the 
emission probability of the different states by mixtures 
of three Gaussians. This implies a strong assumption on 
the distribution of the emission probability. This as-
sumption may be relaxed by modelling emission prob-
abilities with neural networks (see [16]). 

6 CONCLUSION 

We have compared 5 different methods taking low-
level, short-term time relationships into account to clas-
sify audio excerpts into musical genres. SVMs with de-
layed inputs proved to give the best results with a simple 
modelling of time structures. However, we do not claim 
overall that SVMs perform better than other classifiers 
such as multi-layer perceptrons or linear discriminant 
analysis: instead, the main outcome is that a simple 
model (using context and synchronisation on musical 
rhythm) somehow improves musical genre classification 
results in many cases. 

Reported results may now be greatly improved by 
considering hierarchical classification techniques to 
model the underlying genre taxonomy. Feature selection 
at each node of the hierarchy would allow optimization 
of the classification task to a specific set of genres. 
Since some classification algorithms seem more suitable 
to some particular genres, one could also consider using 
different classifiers for each node of the hierarchy or 
using multiple classifiers and combining their results 
like in architectures based on a mixture of experts. 
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