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ABSTRACT 
This paper proposes an algorithm for studying spectral 
contents of pitched sounds in real-world recordings. We 
assume that the 2nd-order difference, w.r.t. partial index, 
of a pitched sound is bounded by some small positive 
value, rather than equal to 0 in a perfect harmonic case. 
Given a spectrum and a fundamental frequency f0, the 
algorithm searches the spectrum for partials that can be 
associated with f0 by dynamic programming. In section 
3 a background-foreground model is plugged into the 
algorithm to make it work with reverberant background, 
such as in a piano recording. In section 4 we illustrate an 
application of the algorithm in which a multipitch 
scoring machine, which involves special processing for 
close or shared partials, is coupled with a tree searching 
method for polyphonic transcription task. Results are 
evaluated on the traditional note level, as well as on a 
partial-based sub-note level. 
 
Keywords: sinusoids, spectral harmonic model, 
dynamic programming, polyphonic music transcription.  

1 INTRODUCTION 
Real-world tonal sounds from acoustical instruments 
depart more or less from the perfect harmonic model, in 
which partial frequencies are multiples of a fundamental 
frequency (f0) [1]. Partial frequencies are crucial for 
estimating other spectral parameters [2] that can be basic 
to higher-level MIR tasks. Often it is desirable to find 
out individual partial frequencies rather than assuming 
perfect harmonicity. In this paper we propose a method 
that finds partials from the signal. Given the power 
spectrum and an estimate of f0, it searches for partials 
that can be associated with f0 under assumptions weaker 
than the perfect harmonic model. It neither requires the 
input sound to be noise free, nor asks partials from 
different events to be well separated. It’s also robust 
with missing or weak partials. However, interfering 
partials are given a summary amplitude only. Section 4 
gives an example on how we can make use of this 
amplitude. 

2 THE PARTIAL SEARCHING 
ALGORITHM 

Partials of most tonal sounds can be viewed as nearly 
harmonic. Departure of true partial frequencies from 
multiples of f0 is known as inharmonicity. We denote 
the frequency of the pth partial as kp(f0), a function of 
fundamental f0 and partial index p. In particular, the 
fundamental frequency is k1(f0)1. Since inharmonicity is 
something highly dependent on individual instruments, a 
parametric a priori modeling similar to [3] will be hard 
when we don’t have enough knowledge on the 
instrument involved. Here we take a posterior approach, 
in which partial frequencies are estimated from the 
signal, while only weak assumptions are imposed on 
how the partials distribute. 

Rather than considering the difference between kp(f0) 
and pk1(f0), as does [4], we focus on the intervals 
between consecutive partials. Define the 1st- and 2nd-
order differences of partial frequencies with respect to p  
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In perfect harmonic case, we have ∆kp(f0)=k1(f0) and 
therefore ∆2kp(f0)=0 for all p≥1. With real-world signals, 
we assume that 

ppkp upl ∀⋅<∆<⋅   ,f0)()f0(f0)( 2 δδ  (3)  
where )( plδ <0 and )( puδ >0 take small absolute values. 
We also assume that inharmonicity grows larger for 
higher partials, so |δl(p)| and |δu(p)| are allowed to 
increase with p. What assumption (3) does is hard-
limiting the error of a 1st-order linear prediction of 
partial frequencies. It’s trivial to extend (3) to a higher 
order by taking into account differences of ∆2kp(f0). We 
use 1st-order only. 

Partial searching starts from the discrete sound 
spectrum x=(xk)k=1,2,…, typically obtained by DFT, and a 
given fundamental f0. The sound may have multiple 
pitches, either from the same instrument or not. 
Constraints (1)~(3) help to prevent well separated 
partials from disturbing each other. The output of partial 
searching are partial frequencies kp(f0), p=1, 2, …, as 

                                                           
1 f0 is not quantitatively defined in this article, while k1(f0) is its 

quantitative model.  
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well as amplitudes ap(f0), p=1, 2, …. In the case one 
single partial being shared by multiple pitches, ap(f0) is a 
summary amplitude of that partial. For simplicity we 
omit “(f0)” from these notations in what follows. 

The searching process is one of optimization. We 
denote any candidate partial frequency sequence ψ as 
k[ψ]=(kp[ψ])p=1,2,…, subject to constraints (1)~(3). Given 
a k[ψ], a reference spectrum h[ψ]=(hk[ψ])k=1,2,… is 
constructed as 
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where w(k) is the amplitude spectrum of the window 
function used for the DFT, and ∑=

p
pcC 21  a 

normalizing factor. In practice (cp)p=1,2,… is selected so 

that cp≥0 and∑
∞

=1p
pc <∞. The number of partials being 

considered can be roughly decided by f0 and the 
sampling rate. Notice that while ])ψ[( pk kw  is discrete, 
w(k) takes a continuous domain. h[ψ] approximates the 
amplitude spectrum of a signal whose partials fall at k[ψ] 
and amplitudes are given as (cp/C)p=1,2,…. We define our 
objective function as the inner product of the data 
spectrum x and the reference spectrum h[ψ]: 
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The searching algorithm tries to find an optimal ψ that 
maximizes this inner product: 

><= ]ψ[,maxargψ
ψ

hx)   (6) 

The term <x, w(kp[ψ])> in (5) sets up a frequency-
domain matched filter to detect the pth partial locally. We 
put special focus on local spectral peaks, i.e. maxima of 
<x, w(kp[ψ])>. This is done by introducing another 
constraint on kp: 

set" discrete predefined a from selected isor 

 ,)( maxizeslocally either  " >< pkp kx,wk
       (7) 

The “either” condition requires a partial to fall on a 
spectral peak. However, when no peak is located in the 
searching interval, typically with missing or masked 
partials, we artificially add some candidates so that the 
search can continue. A plausible suggestion is to place a 
kp candidate at 2kp-1-kp-2, which is its 1st-order predicted 
position. Adding more candidates may slightly improve 
the result, at the cost of more computation. 

Constraint (7) confines candidates for each partial to 
a discrete set. In this case the optimization can be 
formulated as a route finding problem: here route refers 
to a sequence of (index, frequency) pairs {(p, kp)}p=1,2,…, 
and each pair contributes a mileage of >< )(, pp kwxc , 
determined solely by kp. A route starts from p=1, and 

terminates where p is big enough so that the tail sum 
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pth partial kp must be selected from a set determined by 
kp-1 and kp-2 through the constraints. Finding the optimal 
ψ̂  is equivalent to finding the longest route with these 
settings. 

Figure 1 gives an illustration on how the constraints 
work. Each circle in the graph stands for a spectral 
peak, with kpn denoting the nth peak found for the pth 
partial. Circles are connected by arrows to form a route. 
A light-coloured line pair from a circle gives the 
feasible range to find the next partial when the last 
partial comes by the arrow in the same line style. E.g. 
the solid line pair from k21 encloses the range to search 
for a next partial after k12→k21, and the dotted line pair 
from k21 encloses the range to search for the next partial 
after k11→k21. Of the four peaks found for partial 3, k32 
falls in both ranges; and k33 falls in the successor range 
of k12→k22 only. This means route k12→k22 may lead to 
both k32 and k33, while route k11→k21 may only lead to 
k32. As for route k12→k21, although it also reaches k21, it 
finds no matched peak for partial 3. However, it is 
extended to a temporary lodge at k3A, from which it may 
continue with further peaks in higher partials, such as 
k41. Route k11→k21 joining k12→k22 at k32 does not imply 
that they have become one immediately. However, if a 
spectral peak at the next partial, say k42, falls in the 
intersection of feasible successor ranges of k21→k32 and 
k22→k32, then routes k21→k32→k42 and k22→k32→k42 are 
bound as one in future searching for higher partials. 

We solve the constrained optimization by dynamic 
programming (DP). However, we can not apply DP 
directly on (p, kp), as the candidate set for (p+1)th partial 
depends on both kp and kp-1, while the standard DP 
recursion allows only 1-step dependency to derive the 
(p+1)-step optima from p-step optima. To fix this 
problem we tie (p-1, kp-1) and (p, kp) together to form an 
extended partial (p, kp, ∆kp). We define the optimal 
partial route length as 
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This is interpreted as the maximal length of all routes 
that terminate at (p, kp, ∆kp). From another point of view, 
an extended partial is a connection between consecutive 
partials, corresponding to an arrow in Figure 1. Since the 
inward connection at a peak is enough to determine the 
outward connection candidates, 1-step dependency is 
satisfied and DP is directly applicable with connections. 
The complete algorithm is given as follows: 

Algorithm 1: harmonic partial finding 
A1.1° Set the root node p=0, k0=0, ∆k0=f0, S0(k0, ∆k0)=0. 
A1.2° For p=1, 2, …, do A1.3°~1.5° until the stop condition is 

met, i.e. p is large enough. 
A1.3° For each node (p-1, kp-1, ∆kp-1) in the last iteration, 
      A1.3a° calculate the feasible interval of its successor 

partial frequency as (kp-1+∆kp-1+δl(p)f0, kp-1 +∆kp-1+ 
δu(p)f0); 

      A1.3b° do a maximum search of >< )( pk kx,w  regarding 
kp on that interval, call the found maxima kp,1, kp,2, …; 

      A1.3c° define the feasible successor set of (p-1, kp-1, ∆kp-1) 
as {(p, kp,1, kp,1- kp-1), (p, kp,2, kp,2- kp-1), (p, kp,3, kp,3- kp-

1),… }, or in the case no maximum is found in (3b), as 
{(p, kp-1+∆kp-1, ∆kp-1)}. 

A1.4° Collect all feasible successors generated in 3° together 
and re-label them as (p, kp,l, ∆kp,l), l=1, 2, 3,…; these are 
node candidates for partial p. 

A1.5° For each new feasible node (p, kp,l, ∆kp,l), calculate the 
optimal partial route length 
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      where the maximum is taken over all its predecessors with 
the same kp-1 but different ∆kp-1’s. Denote the ∆kp-1 which 
maximizes (8) as ∆-kp(p, kp,l, ∆kp,l). 

A1.6° For the final iteration p=P, find l̂ as the l that 
maximizes SP(kP,l, ∆kP,l); set kp= lP

k ˆ,
, ∆kp=∆ lP

k ˆ,
,  

∆-kp= ∆-kp(p, 
lP

k ˆ,
, ∆

lP
k ˆ,

). 

A1.7° For p=P-1, P-2, …, 1,  calculate kp= kp+1-∆kp, ∆kp=      
∆-kp+1, ∆-kp= ∆-kp(p, kp , ∆kp).■ 

The algorithm searches for k1(f0) in a vicinity of the 
given f0, which copes with accuracy problems of the 
given fundamental rather than with inharmonicity. The 
choice of δl(1) and δu(1) therefore differs from that for 
higher partials. One can force k1(f0) at f0 by setting 
δl(1)= δu(1)=0, which is equivalent to starting searching 
at p=2 from root (1, f0, f0). 

The amplitude of the pth partial ap can be estimated as 
2)(, wkwxa pp ><≅        (9) 

where ∑
∈

=
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kww 22  is a positive constant. Compare (9) 

with (8), it’s apparent that 
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Equation (10) shows how partial amplitude estimation 
can be integrated into the partial searching algorithm. 

For a stationary sound source with constant partial 
frequencies, one may wish to use spectra calculated from 

multiple frames for better estimation. Let the spectra be 
x1, x2, …, we rewrite the objective function as 
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where bn, n=1, 2, …, are weights assigned to the frames. 
Equation (11) implies that we use ∑

n
nn xb instead of x 

for partial searching.  
Input data x appears in the algorithm only in the form 

of inner product <x, wk(kp)>. This means if <x, wk(kp)> is 
available as input, we don’t have to know x. We’ll show 
how we can make use of this property later. 

3 REVERBERANT BACKGROUND: A 
PIANO EXAMPLE 

The partial searching algorithm is tested on a piano 
recording of Bach’s Prelude in C, BWV 846a, in which 
the instrument is supposed to be well-tuned on a perfect 
well-tempered scale with A4 at 440Hz. The recording is 
of high quality, yet extra sounds like pedalling and 
singing are heard. The piece is partially monophonic in 
that only one note is played at a time (except the last 
chord). However, a note may last a long period and 
overlap the coming-up ones, which creates polyphony. 

Like many other polyphonic analyzers, our system 
prefers a sparser input with fewer concurrent sounds. In 
common sense, a mixture of two sounds is no sparser 
than any of the two. For a piano recording, we try to 
reduce polyphony by breaking the sound into a 
foreground part and a background part in a note-by-note 
manner. The most recent note is modeled as the 
foreground, and sustaining previous notes are modeled 
as the background. Given a note onset where a new note 
(i.e. the foreground) starts, we denote the spectrum 
before and after the onset as x- and x+ respectively. x- is 
interpreted as the summary spectrum of all previous 
notes immediately before the new note, while x+ is a 
combination of the new note, whose spectrum we denote 
as y, with those notes carried over from x-, whose 
spectrum after the onset we denote as x~ . We make three 
further assumptions: 

1) for any bin index k, 
0≤ kx~ ≤x-k,   yk≥0      (12) 

2) for any bin index k, 
222 ~
kkk yxx +=+   (13) 

3) y is made up of partial spectra, each in the form of 
apwk(kp): 

0   ,)( >= ∑ p
p

pkpk akway     (14) 

By (12) we assume that the power of a sustaining note 
does not increase. By (13) we assume that energy is 
preserved in every bin. (14) is a common assumption in 
sinusoidal models. Apparently these are approximations 
only, and their solution (ap, kp)p=1,2,… can be non-existing 
or non-unique. We get around the existence problem by 
allowing a spectral error r in assumption 2. We combine 
(12)~(14) and rewrite with the error term: 
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We minimize the residue r=(rk)k=1,2,… by its Euclidian 
norm. If r=0, it indicates non-unique solutions. One way 
to deal with the uniqueness problem is to use an 
additional objective function. We choose to maximize 
λ=(λk) k=1,2,… by its Euclidian norm on the constraint r=0, 
which implies maximal removal of the background. 
With fixed (kp)p=1,2,…, by minimizing r (and maximizing 
λ when r=0) we get a=(ap)p=1,2,…. We write 
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where inter-partial spectral leakage has been assumed 
ignorable. Equation (16) explicitly evaluates <y, wk(kp)>, 
which enables partial searching on the foreground signal 
y using Algorithm 1.  

In our test we measure partial frequencies of every 
note, using multiple frames starting from the onset. The 
ideal f0, e.g. A4=440Hz, is used to start partial 
searching. The means µp(f0) and standard deviations 
σp(f0) of partial frequencies are calculated for notes that 
appear at least 9 times. We have no ground truth on the 
exact partial frequencies. However, by assuming partial 
frequencies being constant for a given key, we can study 
how reliable the searching is using σp(f0). In general the 
envelope of σp(f0) increases slowly with p, until after 
some point the increase becomes dramatic. Figure 2 
depicts σp(f0) against kp for C4, #F4 and A4, both axes 
are measured in DFT bins (1bin=10.77Hz). While minor 
σp(f0) may be credited to local noises, large ones 
generally imply searching failure.  

We set 1 bin as the threshold for judging whether a 
partial is reliably measured, and define p’(f0) as the 
maximal P that satisfies σp(f0)<1, ∀p≤P. Results are 
given in Table 1. Frequencies are given in bins. The first 
10 partials are successfully captured most of the time. 
More than 99% of total energy is enclosed in the first 
p’(f0) partials. 

Table 1 Evaluating partial frequency measurement 
Pitch p’(f0) kp’(f0) Pitch p’(f0) kp’(f0) 
G2 22 204.01 E4 10 313.68 
D3 24 340.16 F4 8 264.29 
F3 16 265.72 #F4 12 430.22 
G3 15 280.69 G4 12 457.17 
A3 17 362.35 A4 10 425.48 
B3 12 281.42 B4 5 232.07 
C4 16 405.62 C5 3 147.05 
D4 17 490.79 D5 8 454.57 
E4 10 313.68    

It’s also interesting to look at how partial frequencies 
depart from perfect harmonic model. We collect ∆2kp 
and the difference between kp and pk1 in Table 2. Results 
are given for the first 12 partials of keys A3, C4 and G4. 
All frequencies are given in bins. For all three keys ∆2kp 

are always positive and increasing in the long trend, 
which supports the positive adaptation of δu(p) with p. 
kp-pk1 gives a hint on how much will be lost when using 
a perfect harmonic model. With most popular window 
functions (Hann, Hamming, Kaiser, etc), a frequency 
error above 1 bin usually implies a big error in amplitude 
estimation, and an error above 2 bins usually means that 
the partial is lost. 

Table 2 Evaluating inharmonicity 
A3 C4 G4 p ∆2kp kp-pk1 ∆2kp kp-pk1 ∆2kp kp-pk1 

2 0.059 0.06 0.033 0.03 0.152 0.15 
3 0.019 0.14 0.030 0.10 0.005 0.31 
4 0.037 0.25 0.079 0.24 0.264 0.73 
5 0.049 0.42 0.068 0.45 0.208 1.36 
6 0.087 0.67 0.082 0.74 0.407 2.39 
7 0.138 1.06 0.247 1.28 0.409 3.84 
8 0.122 1.57 0.087 1.91 0.380 5.66 
9 0.069 2.16 0.188 2.72 0.584 8.07 

10 0.110 2.84 0.302 3.84 0.723 11.2 
11 0.107 3.63 0.110 5.06 0.535 14.9 
12 0.342 4.77 0.246 6.53 0.560 19.1 

4 APPLICATION FOR POLYPHONIC 
MUSIC TRANSCRIPTION 

By transcription we mainly mean pitch or multipitch 
identification. The partial searching algorithm associates 
spectral peaks, either perfectly or nearly harmonic, to a 
hypothesis f0. The results on frequencies and amplitudes 
compose an informative point to start pitch estimation. 
In [5] we have shown how a partially monophonic piece 
can be effectively transcribed using the partial searching 
algorithm only. However, as the algorithm is designed 
for single pitch, it’s not directly applicable for 
transcribing polyphonic music. Instead, we start from its 
outputs for polyphonic transcription .  

Before we proceed with multipitch estimation, it’s 
helpful to remove those unlikely pitches from further 
consideration. To do this, we require at least one of the 
first three partials to appear as a spectral peak with 
amplitude above a threshold th. A pitch candidate is 

Figure 2 Standard deviation of partial frequencies 
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removed if no peaks are located in step A1.3b° for its 
first three partials, or if the amplitudes of located peaks 
all fall below th. This trimming can be integrated into 
the partial searching Algorithm 1. 

We build a scoring machine in the form S(ψ, x+, x-), 
where ψ is a hypothesis pitch set, x+ and x- are spectra 
before and after the onset. The larger S(ψ, x+, x-), the 
more likely ψ being the solution.  The score is calculated 
as the sum of individual contributions of all partials of ψ. 
The pth partial of the nth pitch with amplitude ap 
contributes cpα(ap) to the score, where cp>0, p=1,2,…, 
are partial weights, and α(•) is a nondecreasing function. 
We let cp decrease slowly with small p’s for which the 
partial searching results are more valid, and approach 
zero when p is large. α(•) is designed as 

α(ap)=
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for controlling the magnitude of individual 
contributions, where Floor(k) is a floor level at spectral 
channel k, and A is a relatively large constant. A→∞ 
implies a linear α(•).  

However, if a partial is shared by multiple pitches, or 
if certain partials of multiple pitches are very close, the 
frequencies tend to be less valid and the amplitudes are 
summary amplitudes of all partials involved. When 
calculating the score, we make sure that a shared partial 
is summed only once, and very close partials go through 
a masking process before subjected to α(•), as follows. 

Suppose we have n partials with close frequencies k1, 
k2, …, kn, their summary amplitudes given by a1, a2, …, 
an. Let one partial located at kl have a true amplitude bl, 
i.e. it contribute blwk(kl) to the spectrum x. Accordingly, 
it contributes an amount of 2)(),( wkwkwb mll ><  to 
the summary amplitude am. We can write 
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where rw(k) is determined solely by the window function 
w. The summary amplitude am is modeled as the sum of 
the contributions of all n partials, i.e. 

∑ −≅
l

lmwlm kkrba )( , m=1,2,…,n            (19) 

We derive a masking process from (19), in which the 
largest partial, say kl, is chosen as the masker; then for 
any m≠l, am is decreased by alrw(km-kl)-amrw

2(km-kl), or 
set to 0 if it’s smaller than that amount. This masking 
may go on with the 2nd largest partial, etc. For our task, 
we mask with the largest partial only.  

Multipitch searching works in an iterative way: given 
the mN best N-pitch solutions 

N,,2,1
N}ψ{ mmm L= , it searches 

for mN+1 best (N+1)-pitch candidates by adding a new 
pitch to an N-pitch one. We start by testing all single 
pitches, find the best m1; then test all pitch pairs that 
contain one of the m1 best pitches, find the best m2; then 

test all 3-pitch sets that contain one of the m2 best pitch 
pairs, etc. The complete process is given as follows. 

Algorithm 2: multipitch searching 
A2.0° Given x+, x-, (mN) N=1,2,…. 
A2.1° Derive trimmed pitch candidate set P using Algorithm 

1, recording all frequencies and amplitudes; set 
Ψ1={{k1m}| m=1,2,…,m1}, where k11, k12, … are the best 
m1 pitches; 

A2.2° For N=1, 2, …, do A2.3°~2.5° until ΨN= Ø or N meets 
a preset upper bound; 

A2.3° Set ΨN+1= Ø;  
A2.4° For m=1, 2, …, mN,  
      A2.4a° for all k∈P \ Nψm , do A2.4b°~2.4f°; 

      A2.4b° if S( Nψm +{k}) has been calculated once, skip 
A2.4c°~2.4f°; 

      A2.4c° calculate score S( Nψm +{k}, x+, x-); 

      A2.4d° if S( Nψm +{k}, x+, x-) < S( Nψm , x+, x-), skip 
A2.4e°~2.4f°; 

      A2.4e° if the size of ΨN+1 is smaller than mN+1, insert 
Nψm +{k} into ΨN+1, skip A2.4f°; 

      A2.4f° denote the element in ΨN+1 with the smallest score 
as 1N

~ψ +
m ; if S( Nψm +{k}, x+, x-) > S( 1N

~ψ +
m , x+, x-), then 

replace 1N
~ψ +
m from ΨN+1 with Nψm +{k}; 

A2.5° If  |ΨN+1|<mN+1, set mN+1=|ΨN+1|; 
A2.6° Output results. ■ 

A2.4b° is a step to stop multiple calculations on the 
same multipitch. Algorithm 2 can be summarized as 
growing a tree: each branch from a node adds a pitch, 
meanwhile brings an increase in the score. A limit mN is 
imposed on the number of nodes on level N so that only 
those predominant branches grow on.  

Algorithm 2 outputs a set sequence (ΨN)N=1,2,…, 
where ΨN contains mN best N-pitch candidates. If the 
number of concurrent notes is known as n, we can select 
the best element in Ψn as the result. Finding this 
number, however, is not trivial. A naïve way is to 
compare the scores. In favour of less notes, we start 
from N=1 and allow N to increase as long as the best 
score increases by more than some preset level. We also 
look at the total amplitude of all partials, which 
measures how much of the amplitude spectrum has been 
resolved.  

We run our test on a recording of Bach’s Fugue in C, 
BWV 846b, of high quality with the real-world noises 
like pedalling and singing. The piece is a 4-part fugue. 
A maximum of 4 keys are played at a time. Altogether 
736 notes are played in 406 note groups (by note group 
we mean notes played at the same time), forming 20 4-
pitch chords, 79 3-pitch chords, 112 2-pitch chords, as 
well as 195 single notes. We assume that the note onsets 
are known. For onset detection and verification using 
the partial searching Algorithm 1, one may refer to [5, 
6]. At each onset, we calculate the background and 
foreground spectra x- and x+. 72 keys from A1 to #G7 
are considered as note candidates.  
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Evaluation is done both note-wise and note-group-
wise. A note is correctly identified (abbr. CI) if the 
detected pitch coincide with the labelled one. Note-wise 
errors are classified into harmonic and non-harmonic 
ones. Harmonic errors include harmonic replacement 
(HR) in which a pitch is replaced by another harmonic1 
pitch, harmonic insertion (HI) in which a spurious pitch, 
harmonic to a CI pitch, is found, and harmonic missing 
(HM) in which a labelled pitch, harmonic to a CI pitch, 
is not found. Non-harmonic errors are insertion (I) and 
missing (M) errors excluded from harmonic ones. Note-
wise errors of the same type within a note group are 
counted as one note-group-wise error of that type. A 
note group is CI if it has no errors. 

Before presenting the more conventional note-level 
evaluation, we do a sub-note level evaluation of the 
error types, in which we count percentages of missing 
and inserted partials, rather than those of notes. Results 
are given in Table3 separately for the 5 error types and 
for groups of 1, 2, 3 and 4 (column N) notes. For 
example, 11.1/27.8 in the top left says that with all HR 
type errors in single-pitch groups, 11.1% of all partials 
of the replaced notes are not found in the identified 
notes, and 27.8% partials of the replacing notes are not 
found in the labelled notes. For all HI errors, only 
2.01% partials of inserted notes are truly spurious, while 
for non-harmonic insertion the ratio is 83.8%. For note 
missing types, corresponding ratios are 25.4% compared 
to 62.5%. These support our classification of error 
types: on partial level, harmonic errors do less harm 
than non-harmonic ones. 

Table 3 Partial-level evaluation for notes 

Table 4a lists the note-group-wise results. Numbers 
of errors of each type are given separately for groups of 
1, 2, 3 or 4 notes. Since a group may have multiple 
errors, the total number of CI and errors may exceed the 
number of note groups. 

Table 4b lists the note-wise results. Numbers of 
errors of each type are given separately in Table 4b for 
note groups with 1, 2, 3 or 4 pitches. In this table the 
equality total=CI+HR+HM+M holds. 

Table 4a Note-level evaluation for note groups 
N total CI HR HI HM I M 
1 195 108 12 44 0 49 0 
2 112 45 32 29 4 21 5 
3 79 15 33 20 13 13 12 
4 20 1 13 2 8 2 3 

1~4 406 169 90 95 25 85 20 

                                                           
1 We call two pitches harmonic if one is a rough multiple of the other. 
This includes both harmonic and subharmonic cases in the strict sense. 

Table 4b Note-level evaluation for notes 
N total CI HR HI HM I M 
1 195 183 12 64 0 64 0 
2 224 182 33 37 4 22 5 
3 237 173 39 20 13 14 12 
4 80 50 17 2 9 2 4 

1~4 736 588 101 123 26 102 21 

A note group identification rate of 42% is obtained 
at 22% HR, 24% HI, 6.2% HM and 21% non-harmonic 
insertion errors. A note identification rate of 80% is 
obtained at 14% HR, 17% HI, 3.5% HM and 14% non-
harmonic insertion errors. In both cases insertions are 
several times more than missing errors, implying the 
result may be improved a bit by adjusting the threshold.  

5 CONCLUSION 
In this paper we propose a partial searching algorithm 
based on 1st-order frequency prediction using a revised 
dynamic programming method. Results show that the 
algorithm is able to correctly locate partials of a piano 
recording when perfect harmonic model would probably 
fail. We also give a tree-searching method for multipitch 
identification, using the partial searching algorithm at 
front end. We evaluate the transcriber with a piano 
recording both on note level and on sub-note level. In 
the latter case we propose to measure how harmful an 
error is in polyphonic transcription by counting partials. 
Results support our classification of transcription errors 
into harmonic and non-harmonic ones. 
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N HR(I/M, %) HI(%) HM(%) I(%) M(%) 
1 11.1 / 27.8 1.39 - 88.0 - 
2 0 / 37.7 2.03 50 80.4 70 
3 1.99 / 31.6 4.17 15.4 72.0 65.8 
4 4.31 / 25.4 0 28.9 70.8 43.3 

1~4 2.81 / 32.1 2.01 25.4 83.8 62.5 
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