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ABSTRACT 
Finding the best matching database target to a melodic 
query has been of great interest in the music IR world. 
The string alignment paradigm works well for this 
task when comparing a monophonic query to a 
database of monophonic pieces. However, most tonal 
music is polyphonic, with multiple concurrent musical 
lines. Such pieces are not adequately represented as 
strings. Moreover, users often represent polyphonic 
pieces in their queries by skipping from one part (the 
soprano) to another (the bass). Current string 
matching approaches are not designed to handle this 
situation. This paper outlines approaches to extending 
string alignment that allow measuring similarity 
between a monophonic query and a polyphonic piece. 
These approaches are compared using synthetic 
queries on a database of Bach pieces. Results indicate 
that when a monophonic query is drawn from multiple 
parts in the target, a method which explicitly takes the 
multi-part structure of a piece into account 
significantly outperforms the one that does not. 

1. INTRODUCTION 
Finding the best matching database target to a melodic 
query has been a subject of great recent interest in the 
music IR world [1-4]. Query-by-humming (QBH) 
systems [2, 3, 5-10] are, perhaps, the most common 
application of current techniques to find the best 
match for a query melody. QBH systems let users 
pose queries to a database by singing or humming. 
Figure 1 shows a system diagram outlining a typical 
QBH system. Here, a sung query is transcribed into a 
string. Targets are indexed by one or more melodic 
sequences. A similarity ranker compares the 
transcribed query to the targets in the database and 
returns a ranked similarity list. 

Both query and target are typically represented as 
a sequence of symbols drawn from a finite alphabet. 
Such sequences are commonly called strings. The 
dominant melodic query matching techniques 
investigated in the literature have been n-grams, edit-
distance based string matching, and Markov models. 
 

  
Figure 1. A typical Query-by-humming (QBH) system. 

Pickens [11] found n-grams superior to language 
models, however results from n-grams were only 
good when the full contents of a piece in the database 
were passed in as a query. Downie and Nelson [12] 
performed a systematic investigation of the best 
length n-gram to use, given queries and targets 
encoded as sequences of pitch intervals. Uitenbogerd 
and Zobel [13] compared two kinds of n-gram 
measures to local string alignment with a fixed match 
score. Local string alignment was found to beat the 
performance of n-gram based matching. Other 
researchers have investigated stochastic methods for 
music retrieval, particularly Markov models [2, 10, 
14] and probabilistic string matchers [9]. 

With Markov models, a monophonic query is 
treated as an observation sequence and a theme is 
judged similar to the query if the associated Markov 
model has a high likelihood of generating the query. 
Markov models described in the literature are 
currently based on monophonic melodic themes.   

Existing probabilistic string matchers compare 
monophonic query strings with monophonic database 
targets, but take into account possible user error 
through the use of a match score matrix. This matrix 
determines the edit distance between a query element 
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and a target element by encoding the probability that 
a particular substitution would be made, based on 
prior training examples. 

Pardo and Birmingham [9] and Dannenberg, et al. 
[15] found no statistically significant difference 
between the precision and recall of systems based on 
probabilistic string matching and those based on 
Markov models, while the string matchers 
consistently performed on the order of 100 times 
faster on real-world queries.  

Given the speed advantage of string matching over 
Markov models and the performance advantage of 
string matching over n-gram based techniques, this 
paper concentrates on extending probabilistic string-
matching techniques to a new category of problem: 
alignment of monophonic queries to polyphonic 
targets. 

2. MULTIPLE ALIGNMENT 
PROBLEM 

Standard string matching [16-19] measures the 
distance between two strings, S1 and S2, as the number 
of edit operations required to turn S1 into S2, given a 
fixed set of allowable operations.  A typical set of edit 
operations would include deletion of a string element, 
insertion of an element, and matching between an 
element of S1 and an element of S2. Given a query 
string and a set of target strings drawn from a 
database, the closest target is the one with the lowest 
cost transformation into the query. 

This paradigm works well when comparing a 
monophonic query to a database of monophonic 
pieces, as the query and the targets are all 
appropriately represented as strings. However, most 
tonal music is polyphonic, with multiple concurrent 
musical lines. Such pieces are not adequately 
represented by individual strings. The Bach chorale 
in Figure 2 is a typical example of polyphonic music. 

 
Figure 2. To God On High All Glory Be – Melody: N. 

Decius, Arrangement: J. S. Bach, measures 1 through 4 

Existing string matching methods can be used to 
compare a monophonic queries to a polyphonic 
database by keying each polyphonic piece (hereafter 
referred to as a score) with a collection of 
monophonic parts, corresponding to the individual 
parts (such as the bass line and vocal line) in the 
written score. This is illustrated in Figure 1. The 
query can then be matched against each individual 
part in the song. The edit distance score for the best-
matching part is then used as the similarity estimate 
for the entire song. 

This approach works well as long as the user sings 
a query drawn only from a single track in the song. 

However, users often represent polyphonic pieces in 
their queries by skipping from one part to another. It 
is not unusual, for example, for a person imitating a 
rock song to sing a portion of the bass line, 
interspersed with portions of the melody. 

 
Figure 3. Query based on To God On High All Glory Be 

Consider the query expressed as written notation 
in Figure 3. This query corresponds to the sequence 
of linked boxes in Figure 2.  Current string matching 
approaches are not designed to handle such a query. 

Recently, researchers have explored methods to 
measure the similarity between polyphonic pieces 
using n-grams [7]. This work has inspired us to look 
at approaches to measuring polyphonic similarity 
using edit-distance based string matching algorithms. 
We now describe these approaches. 

3. DEFINITION OF TERMS 
Figure 4 shows the same passage as Figure 2 in piano-
roll style notation. Here, each note is indicated by a 
horizontal line. The length of the line indicates the 
duration of the note. The horizontal placement 
indicates the onset time. The vertical placement 
indicates pitch. The pitch class for each note is 
indicated by a letter at the onset of the note.  
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Figure 4. To God On High All Glory Be in piano roll 
notation 

A musical score, in its most generic form, is a 
collection of parts, such as the Soprano and Bass 
parts in Figure 2.  Each part is a collection of notes. 
The organization of a song as a collection of one or 
more (possibly polyphonic) parts mirrors that of the 
standard MIDI Type 1 file [20], in which songs are 
organized into (possibly polyphonic) tracks. A MIDI 
Type 0 file contains only a single track.  

We define a note ni by an ordered 3-tuple (si,ei,pi) 
where si is the start time of the note, ei is the time at 
which the note ends and pi is the pitch of the note. 
For example consider the two-part musical score 
represented as piano-roll in Figure 5. In the figure, 
notes in part P1 begin with a circle. Notes in part P2 
begin with a diamond. Start times are defined by the 
order of note onsets. Thus, a start time of 3 indicates 
the third note onset. The pitch is encoded as MIDI 
pitch number and listed above the note.  

The score and its two parts can be expressed as 
follows: 
S = {P1, P2} 
P1 ={(1,3,38), (2,3,36), (4,6,38), (6,8,38)}  
P2={(1,2,24), (1,3,22), (3,5,22), (6,7,24)} 
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The division of notes into parts is something that is 
routinely available in musical scores encoded as 
Finale, Sibelius, and MIDI files. Parts captures basic 
underlying musical structure and we would like our 
matching algorithms to be sensitive to this 
information. In the absence of part information, the 
score can be thought of to be consisting of just one 
part with all the notes belonging to that single part. 

 
Figure 5. A simple score in piano roll notation 

We classify a score into three categories: 
monophonic, homophonic and polyphonic. A score is 
monophonic if no new note in the score begins until 
the current note has finished sounding. In a 
monophonic score S, there is a total ordering of 
notes. For every pair of notes ni=(si,ei,pi) and     
nj=(sj,ej,pj) in S,  si≠sj, ei≠ej and if si<sj then ei<sj.  

In homophonic music, notes may sound 
simultaneously, but they must start and end at the 
same time. For every pair of overlapping notes (i.e. 
concurrently sounding notes) ni=(si,ei,pi) and      
nj=(sj,ej,pj) in a homophonic score, it must hold that  
si=sj, and ei=ej.  

If a score is neither monophonic, nor homophonic, 
it is polyphonic. In this case, there are at least two 
notes in the score that sound concurrently but either 
do not end or do no start concurrently, violating the 
constraints for both monophonic and homophonic 
scores. The Bach score in Figure 2 is polyphonic. 

4. FINDING TARGETS IN A 
DATABASE 

We are interested in finding relevant targets in a 
database in response to a user query.  

A query, Q, is a monophonic, one part score. We 
define a database, D, as set of scores {S1,…,Sr}. We 
will consider separately the cases when the scores in 
the database are monophonic, homophonic or 
polyphonic.  

Given a database of scores, D, and a query, Q, we 
assume there is a target set T⊆D that corresponds to 
the query. This is the set of scores that the user would 
like to access using the query. For the purpose of this 
paper, we assume that T consists of a single correct 
score and that this score is the one which is most 
similar to the query. The question then becomes one 
of defining a similarity function whose value is 
maximized for the target. 

An order may be imposed on the scores in D by 
measuring the similarity between each score S∈D 
and the query Q and then ordering the set by 
similarity. We now define several versions of a 

similarity function σ(S,Q) based on the idea of edit-
cost. 

4.1 Monophonic Alignment 

The typical problem formulation in the query by 
humming literature assumes the query and all scores 
are monophonic. If one assumes monophonic scores 
consist of a single part, one can represent the scores as 
strings over a suitably defined alphabet and employ 
standard string matching techniques [9, 21]. 

Given two strings, S=s1s2…sn and Q=q1q2…qm, 
drawn from alphabet ∑, string matchers find the best 
alignment between string S and string Q by finding 
the highest-reward alignment of S to Q in terms of 
edit operations. (insertion, deletion or matching of 
characters). The highest-reward is a measure of the 
similarity between the two strings. 

Central to string matching algorithms is the 
development of a match score function, µ(x, y), that 
gives a numerical value corresponding  to goodness 
of the match between two characters, x and y, drawn 
from the alphabet ∑. 

Recent work in the music IR community [19, 21] 
has used the log-odds approach to determining the 
match score. Such a match score function is shown in 
Equation 1.  

 







=

)|,(
)|,(log),(

chanceyxP
matchyxPyxµ  (1) 

This function returns a negative value when the 
probability of a meaningful match is below that of a 
random co-occurrence. Similarly, the value is 
positive when a meaningful match is more likely than 
random chance.  

Developing good estimates of the probabilities 
required for this function can be a challenge and is 
task-dependent. For an example of how this may be 
done see [9]. 

The best alignment of S to Q can be found in  
O(mn) time Here, m and n correspond to the length 
of the query and the score. This is done by applying 
dynamic programming. This has been used for over 
30 years to align gene sequences based on a common 
ancestor [18].  We now describe a local edit-distance 
variant. 

Construct a matrix M, of size n+1 by m+1, which 
is indexed from 0,0 to n,m. Element Mi,j contains the 
score of the best alignment between the initial 
segment s1 through si of S and the initial segment q1 
through qj of Q. 

Initialize M as described in Equation 2 and 
Equation 3. 

0
0

,0 =
≤≤ mj

jM    (2) 

0
0

0, =
≤≤ ni
iM   (3) 

We define the recurrence relation for M in 
Equation 4. 
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Here, the “-“ character is a blank, which is added 
to the alphabet of both query and score. Matching to 
a blank can be thought of as skipping the element 
matched to the blank. The match score function value 
for matching a blank is set to the penalty for skipping 
the element matched to the blank. Skipping an 
element of the query assumes the query inserted an 
extra element that was not in the score. Skipping an 
element of the score assumes that the query deleted 
that element of the score. 

The similarity of the best alignment of S to Q is 
then defined as the highest valued element of M. 

)(max),( ,, jiji
MQS =σ   (5) 

4.2 Maximum Single-part Similarity 

It is often the case that a user wishes to find a musical 
piece consisting of multiple parts, querying the 
database with a monophonic query. Given a multi-part 
score, as in Figure 2, the easiest way to measure 
similarity to the query is to use the similarity of its 
maximally similar part. This is shown in Equation 6.  

)),((max),( QPQS
SP

σσ
∈∀

=  (6) 

This approach is simple to add to any existing 
similarity measure. The time complexity of this 
algorithm is O(tr), where t is the time required to 
calculate similarity for a single part and r is the 
number of parts. When applied to the monophonic 
alignment similarity measure from Section 4.1, the 
time complexity is O(mnr). Here, we assume that the 
length of the score is the length of the longest part. 

4.2 Homophonic Alignment 

It is not unusual, for a query to be composed of 
sections derived from multiple parts in the desired 
score. The optimal alignment of such a query travels 
from part to part in the score. For example, a person 
may sing a bass line, interspersed with portions of the 
soprano.  Maximum single-part similarity does not 
capture this situation and may fail to produce the 
highest score for the correct target.  

As a first step to handling a query whose optimal 
alignment travels from part to part, we consider the 
case of a homophonic score. We can extend the 
dynamic programming algorithm of Section 4.1 as 
follows. Instead of each symbol si in the string 
representation of the score representing a single note 
n, let it represent a note concurrency. We define a 
note concurrency, C, as a set of notes that share the 
same onset and end time.  Each homophonic score in 
the database may, thus, be represented a sequence of 
note concurrencies, S=C1C2…Cl. 

To compare the query to the score with alignment 
algorithm in Equation 4, one must replace the match 
score function between two notes, µ(x, y), with a 
match score function, µΗ(x, C), for scoring a note n 
and a note concurrency C . Equation 7 defines this. 

)),((max),( αµµ
α

nCn
CH ∈∀

=         (7) 

Here, the similarity of the concurrency to the note 
is determined by the similarity of its most similar 
note. As with the method from Section 4.1, the 
similarity score of the best alignment of S to Q is the 
highest valued element of M. 

 By moving the maximization into the match score 
function (as opposed to simply selecting the value for 
the most-similar part), we increase the similarity 
between a query that travels from part to part and the 
correct score.  

The time complexity of the match score function 
in Equation 7 depends on the number of notes in the 
concurrency, c, and is O(c). If the size of the score, n, 
is the number of concurrencies in the score and we 
take c to be the size of the largest concurrency in the 
score, then the time complexity is O(mnc).   

This alignment method may also be combined with 
the method from Section 4.2. The resulting method 
allows comparison of a monophonic query to a score 
with multiple homophonic parts. 

4.4 Polyphonic Alignment 

Homophonic alignment, while an improvement over 
combining maximum single-part similarity with 
monophonic alignment, has two weaknesses. It does 
not account for polyphonic scores, where notes begin 
and end independently, nor does it capture the concept 
of a part.  We would like the flexibility to impose a 
penalty on the match for skipping between parts. This 
lets us preferentially favor an alignment that continues 
on the same part over one which skips to a new part, 
while still allowing such skips to take place. We start 
the description of the polyphonic alignment algorithm 
by first treating the simpler homophonic case. 

Let S be a multi-part homophonic score with r 
parts P1,…,Pr where each part has the same number 
of note concurrencies. Note that this may require 
insertion of some silent note concurrencies, i.e. note 
concurrencies which only contain pitch 0. Let 
Pi=pi1…pin where pij is the jth concurrency of Pi. Let 
Q=q1q2…qm be the query sequence where qk is the kth 
note of Q. For a sequence A=a1a2…al, we will use 
A[i..j] to represent the substring aiai+1… aj. 

We extend the dynamic programming algorithm 
for homophonic single-part alignment by introducing 
a function γ(a,b) which returns the cost for changing 
from Pa to Pb. Let Sj denote a length j prefix of S 
which is the set of parts P1[1..j], P2[1..j],…, Pr[1..j] 
and Qj denote the length j prefix of Q which is 
Q[1..j].  

Next we describe the recurrence which uses γ(a,b) 
to score alignment of a monophonic query with a 
multiple-part homophonic scores. Instead of a two 
dimensional table as in Section 4.1, we will construct 
a three dimensional table where the third dimension 
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corresponds to the different parts in the multi-part 
score.  

Construct a (m+1)× (n+1)× r matrix L, indexed 
from 0,0,1 to m,n,r. Here, Li,j,k is the score of the 
optimal local alignment score of Qi and Sj such that 
pkj is present in the alignment. 

Initialize L as described in Equation 8 and 
Equation 9. 

0
1,0
,,0 =

≤≤≤≤ rknj
kjL    (8) 

0
1,0
,0, =

≤≤≤≤ rkmi
kiL   (9) 

We define the recurrence relation for L in 
Equation 10. 
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The similarity score of the best alignment of S to 
Q is then the highest value element of L. 

)(max),( ,,,, kjikji
LQS =σ   (11) 

In polyphonic scores, we have to deal with the 
added complication that notes may begin and end 
independently. Thus, it may be possible to skip 
between parts in the middle of a sounding note, at the 
point where a note in another part begins. This 
happens throughout the Bach example in Figure 2, 
starting with the very first beat. To account for this 
we break down the notes into notebits.  

A currently-sounding note, n, us sokut ubti twi 
bitebuts at the point where another note begins or 
ends. It is, perhaps, easiest to see this in Figure 5. 
Here, vertical lines are placed at every note onset and 
ending. These lines subdivide the notes in the score 
into notebits. For example, the first note in part P1 is 
divided into two notebits. The first of these 
corresponds to the onset of the note. The second is a 
continuation of the note as a note in the other part 
enters. 

In our notation, a note n is decomposed into a 
sequence of notebits, n=b1,b2,…,bk. Each  notebit is a 
4-tuple (s,e,p,o) where s is the start time of the 
notebit, e is the end time, p is the pitch and o is a 
Boolean value that defines whether the notebit 
corresponds to the onset of the note. The field o of a 
notebit is true only if it is an onset notebit. The first 
note in part P1 is n=(1,3,38). This is decomposed as  
n = b1,b2 = (1,2,38,true), (2,3,38,false). 

Up to this point, we have not defined silence in a 
score.  We do so by allowing notes with pitch 0, 
defining 0 to mean “silence.” This allows us to divide 
a part into a sequence of consecutive notes, some of 
which may be silence Each note in a part may be 
further decomposed into notebits.   

Given a score composed of monophonic parts, all 
parts will have the same number of notebits, since the 
number of notebits in any part is determined by the 
number of independent note onsets and endings in the 
entire piece (including all parts). Our algorithm 
depends on all parts containing the same number of 
notebits, as it implicitly uses order in the sequences 
as its encoding of relative time. Therefore, the ith 
notebit in part Pj is coincident with the ith notebit in 
part Pk, for all j and k.  

Given a score with polyphonic parts, we break 
each part into monophonic subparts, such that each 
subpart has no overlapping notebits and all notebits 
from the same note belong to the same subpart. Note 
that each part gets divided into z subparts, where z is 
the maximum number of simultaneously sounding 
notes in the part. In Figure 5, z=2 for both parts. For 
the example in Figure 5, the decomposition of notes 
into notebits yields the following (here, we substitute 
t for true and f for false). 

P11={(1,2,38,t), (2,3,38,f), (3,4,0,t), (4,5,38,t), 
(5,6,38,f),  (6,7,38,t), (7,8,38,f)};  
P12={(1,2,0,t), (2,3,36,t), (3,4,0,t), (4,5,0,f), (5,6,0,f), 
(6,7,0,f), (7,8,0,f)}; 
P21={(1,2,24,t), (2,3,0,t), (3,4,0,f), (4,5,0,f), (5,6,0,f), 
(6,7,24,t), (7,8,0,t)}; and  
P22={(1,2,22,t), (2,322,f), (3,4,22,t), (4,5,22,f), 
(5,6,0,t), (6,7,0,f), (7,8,0,f)}. 

Notice that the in the notebit representation, 
polyphonic scores look very similar to the 
homophonic scores with N parts, where N is the total 
number of subparts in the score (for our running 
example, N=4). Therefore we can create a convenient 
representation of the score in terms of set of N strings 
S1,…,SN where Si=si1…sin and sij is the jth notebit in 
subpart Si. Let pij be the pitch corresponding to the 
notebit  sij and let oij represent its corresponding 
boolean onset field. We set up the dynamic 
programming table for polyphonic alignment in a 
similar fashion and use the following recurrence 
where the change-track penalty for two subparts 
derived from the same original part is set to be 0. 
This is expressed in Equation 12. 
if  okj= false, kjikji LL ,1,,, −= ,  

if okj = true, 
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For all the alignment algorithms described in this 
paper, we need to fill up a dynamic programming 
table. Computing each entry in the table takes O(1) 
time for monophonic case and O(N) time for the 
polyphonic case. So the total time taken is the 
product of time taken per entry and the total number 
of entries. Therefore monophonic alignment takes 
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O(mn) time and the polyphonic alignment takes 
O(mnN2) time, where m is limited by the number of 
notes in the query, n is limited by the number of 
notes in the score, and N is the number of subparts in 
the score. 

We have described a series of alignment 
algorithms, culminating in the polyphonic alignment 
algorithm in Equation 12. This algorithm is the most 
general method we have described, allowing for 
alignment of a monophonic query that skips from part 
to part of an arbitrary polyphonic score. In Section 5, 
we measure the performance improvement this 
algorithm provides over the maximum single-part 
similarity measure in Section 4.2. 

5. EXPERIMENTAL SECTION 
In order to estimate the potential performance gain for 
finding the appropriate polyphonic, multi-part target 
in a database in response to a part-skipping 
monophonic query, we constructed a small corpus of 
Bach Chorales and a set of synthetic queries that skip 
from part-to-part. We then compared the performance 
of a similarity measure based on the polyphonic 
alignment algorithm from Section 4.4 with the 
maximum single-part similarity measure from Section 
4.2. This experiment is described in this section. 

As our database, we chose 300 Bach four-part 
chorale harmonizations, encoded as MIDI files.  
These are typical sopranto-alto-tenor-bass vocal 
arrangements, and a small subset of them are 
alternate harmonizations of the same melody. The 
midi files are available at 
http://www.jsbchorales.net/. The complete list of 
chorales selected for this study is available at 
the    http://www.cs.northwestern.edu/~pardo/research
web page. 

While three hundred chorales makes for a small 
corpus, the point of the experiment is not to measure 
absolute performance of a single method, but rather 
relative performance improvement. For this reason, 
we felt a smaller database, composed of known 
pieces with full scores was a better choice.   

We are interested in creating algorithms that allow 
for effective comparison of monophonic queries to 
polyphonic, multi-part scores. For this experiment, 
we were interested in measuring the relative 
performance of these methods as a query is 
increasingly likely to skip between parts. In order to 
control this likelihood we constructed synthetic 
queries, based on targets in the corpus. 

Given a target score in the database, T, a query 
was constructed by selecting a subsequence of notes 
from T whose length was randomly selected (with an 
equal probability distribution) from the range [5,25]. 
This length range was based on the range of typical 
query lengths for sung queries[9]. The initial note 
was selected from a randomly-chosen part (given an 
equal probability distribution) in the target. The start 
position in the selected part was also chosen 
randomly, so that a query might begin anywhere 
within the piece. Once started, the query was 
constructed by adding consecutive notes from the 
score. The part of each additional note in the query 

was selected based on a fixed probability of changing 
parts. If the probability of changing parts was set to 0, 
then all notes in the query would be selected from the 
same part. If the probability of changing part were 
0.25, then there would be a 25% chance that each 
additional note in the query would be drawn from a 
different part than the previously selected note. Given 
a change in part from the current to the next note in 
the query, the new part was selected at random. The 
query in Figure 2 and Figure 3 is an example query 
drawn from the score with a probability of changing 
notes of 0.25.  

5.1 The Experiment 

The maximum single-part similarity algorithm from 
Section 4.2 forms a simple baseline performance 
measure, as it implicitly assumes the query is drawn 
from a single, monophonic part. Let c be the 
probability that a query skips from part to part. As c 
increases, the similarity measure based on the 
maximal single-part similarity should become 
increasingly ineffective. Conversely, the polyphonic 
alignment method from section 4.4 should be 
unaffected by an increased amount of skipping from 
part to part. Accordingly, we compared these two 
methods for determining the similarity of a query to 
each score in the database. 

To construct the query set, we selected 150 targets 
at random from the database. For each target, we 
constructed five queries, one with c = 0, one with c = 
0.25, one with c = 0.5, one with c = 0.75, and one 
with c = 1.0. This created a total of 750 queries. We 
then ranked the similarity of every target in the 
database to each query, recording the rank of the 
correct target (hereafter called “right rank”). 
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Figure 6. Mean rank of correct target as a function of c 

Figure 6 shows the mean right rank as a function 
of c. Each point indicates the mean value for 150 
synthetic queries. The number by each point gives the 
mean value for that point. Since there are 300 scores 
in the database, random performance would result in 
a mean right rank of 150. Perfect performance would 
result in a mean right rank of 1.  

As the figure shows, neither method performed 
perfectly, even when the probability of changing 
parts in a query is 0.  This is due to two factors: first, 
several of the targets are alternate harmonizations of 
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the same melody; second, a short query (on the order 
of 5 notes) may match multiple items in the database, 
if it is based on a common melodic pattern. This is 
the case for a number of the queries. 

As the probability of changing parts increases, 
however, the difference between the performances of 
the algorithms becomes clear. The performance of the 
maximum single-part similarity measure quickly 
degrades as the queries increasingly skip between 
parts, while the polyphonic alignment algorithm’s 
performance remains essentially constant, with its 
mean varying within a narrow range.  
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Figure 7. Performance of ranking methods when c = 0.5 

Figure 7 gives more detail. The figure shows a 
histogram of the distribution of right ranks for both 
algorithms in the case where c, the probability of 
changing parts at each note, is 0.5. The distribution 
returned by the polyphonic alignment algorithm 
much tighter, with the vast majority of the 150 
queries returning a right rank of 1. Only a third of the 
queries do so for the maximum single-part similarity 
method, and the tail of right ranks extends out to the 
value 100.  

6. CONCLUSIONS 
Finding the best matching database target to a melodic 
query has been of great interest in the music IR world. 
Standard string alignment algorithms work well for 
this task when comparing a monophonic query to a 
database of monophonic pieces. However, most tonal 
music is polyphonic, with multiple concurrent musical 
lines. Such pieces are not adequately represented as 
strings. Moreover, users often represent polyphonic 
pieces in their queries by skipping from part to part. 
We described a series of algorithms designed to 
compare the similarity of a monophonic melodic 
sequence to a homophonic or polyphonic piece of 
music, culminating in the polyphonic alignment 
algorithm in Equation 12. This algorithm is the most 
general method we described, allowing for alignment 
of a monophonic query to an arbitrary polyphonic 
score. 

We compared the polyphonic approach to the 
maximum single-part similarity method for matching 
a polyphonic score to a monophonic query. Results 
using synthetic queries on the Bach database indicate 
that the polyphonic method significantly outperforms 

the maximum single-part method when a monophonic 
query is drawn from multiple parts in the target. This 
suggests that the performance of music information-
retrieval systems, such as query-by-humming 
systems, can be improved through the use of a 
polyphonic-alignment algorithm. 
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