
POLYPHONIC MUSICAL SEQUENCE ALIGNMENT FOR DATABASE SEARCH

Bryan Pardo and Manan Sanghi
Computer Science Department

Northwestern University
1890 Maple Ave., Evanston, IL, USA
pardo,manan@northwestern.edu

ABSTRACT
Finding the best matching database target to a melodic
query has been of great interest in the music IR world.
The string alignment paradigm works well for this
task when comparing a monophonic query to a
database of monophonic pieces. However, most tonal
music is polyphonic, with multiple concurrent musical
lines. Such pieces are not adequately represented as
strings. Moreover, users often represent polyphonic
pieces in their queries by skipping from one part (the
soprano) to another (the bass). Current string
matching approaches are not designed to handle this
situation. This paper outlines approaches to extending
string alignment that allow measuring similarity
between a monophonic query and a polyphonic piece.
These approaches are compared using synthetic
queries on a database of Bach pieces. Results indicate
that when a monophonic query is drawn from multiple
parts in the target, a method which explicitly takes the
multi-part structure of a piece into account
significantly outperforms the one that does not.

1. INTRODUCTION
Finding the best matching database target to a melodic
query has been a subject of great recent interest in the
music IR world [1-4]. Query-by-humming (QBH)
systems [2, 3, 5-10] are, perhaps, the most common
application of current techniques to find the best
match for a query melody. QBH systems let users
pose queries to a database by singing or humming.
Figure 1 shows a system diagram outlining a typical
QBH system. Here, a sung query is transcribed into a
string. Targets are indexed by one or more melodic
sequences. A similarity ranker compares the
transcribed query to the targets in the database and
returns a ranked similarity list.

Both query and target are typically represented as
a sequence of symbols drawn from a finite alphabet.
Such sequences are commonly called strings. The
dominant melodic query matching techniques
investigated in the literature have been n-grams, edit-
distance based string matching, and Markov models.

Figure 1. A typical Query-by-humming (QBH) system.

Pickens [11] found n-grams superior to language
models, however results from n-grams were only
good when the full contents of a piece in the database
were passed in as a query. Downie and Nelson [12]
performed a systematic investigation of the best
length n-gram to use, given queries and targets
encoded as sequences of pitch intervals. Uitenbogerd
and Zobel [13] compared two kinds of n-gram
measures to local string alignment with a fixed match
score. Local string alignment was found to beat the
performance of n-gram based matching. Other
researchers have investigated stochastic methods for
music retrieval, particularly Markov models [2, 10,
14] and probabilistic string matchers [9].

With Markov models, a monophonic query is
treated as an observation sequence and a theme is
judged similar to the query if the associated Markov
model has a high likelihood of generating the query.
Markov models described in the literature are
currently based on monophonic melodic themes.

Existing probabilistic string matchers compare
monophonic query strings with monophonic database
targets, but take into account possible user error
through the use of a match score matrix. This matrix
determines the edit distance between a query element

Similarity
Ranker

Sgt. Pepper’s

Yesterday

Ranked List

Sung Query

Transcription

Database

Parts Targets

5

1 2 3 4 5 6 7 8 94
4
4
5
5
5
5
5

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or
com-mercial advantage and that copies bear this notice and the
full citation on the first page.

© 2005 Queen Mary, University of London

215

and a target element by encoding the probability that
a particular substitution would be made, based on
prior training examples.

Pardo and Birmingham [9] and Dannenberg, et al.
[15] found no statistically significant difference
between the precision and recall of systems based on
probabilistic string matching and those based on
Markov models, while the string matchers
consistently performed on the order of 100 times
faster on real-world queries.

Given the speed advantage of string matching over
Markov models and the performance advantage of
string matching over n-gram based techniques, this
paper concentrates on extending probabilistic string-
matching techniques to a new category of problem:
alignment of monophonic queries to polyphonic
targets.

2. MULTIPLE ALIGNMENT
PROBLEM

Standard string matching [16-19] measures the
distance between two strings, S1 and S2, as the number
of edit operations required to turn S1 into S2, given a
fixed set of allowable operations. A typical set of edit
operations would include deletion of a string element,
insertion of an element, and matching between an
element of S1 and an element of S2. Given a query
string and a set of target strings drawn from a
database, the closest target is the one with the lowest
cost transformation into the query.

This paradigm works well when comparing a
monophonic query to a database of monophonic
pieces, as the query and the targets are all
appropriately represented as strings. However, most
tonal music is polyphonic, with multiple concurrent
musical lines. Such pieces are not adequately
represented by individual strings. The Bach chorale
in Figure 2 is a typical example of polyphonic music.

Figure 2. To God On High All Glory Be – Melody: N.

Decius, Arrangement: J. S. Bach, measures 1 through 4

Existing string matching methods can be used to
compare a monophonic queries to a polyphonic
database by keying each polyphonic piece (hereafter
referred to as a score) with a collection of
monophonic parts, corresponding to the individual
parts (such as the bass line and vocal line) in the
written score. This is illustrated in Figure 1. The
query can then be matched against each individual
part in the song. The edit distance score for the best-
matching part is then used as the similarity estimate
for the entire song.

This approach works well as long as the user sings
a query drawn only from a single track in the song.

However, users often represent polyphonic pieces in
their queries by skipping from one part to another. It
is not unusual, for example, for a person imitating a
rock song to sing a portion of the bass line,
interspersed with portions of the melody.

Figure 3. Query based on To God On High All Glory Be

Consider the query expressed as written notation
in Figure 3. This query corresponds to the sequence
of linked boxes in Figure 2. Current string matching
approaches are not designed to handle such a query.

Recently, researchers have explored methods to
measure the similarity between polyphonic pieces
using n-grams [7]. This work has inspired us to look
at approaches to measuring polyphonic similarity
using edit-distance based string matching algorithms.
We now describe these approaches.

3. DEFINITION OF TERMS
Figure 4 shows the same passage as Figure 2 in piano-
roll style notation. Here, each note is indicated by a
horizontal line. The length of the line indicates the
duration of the note. The horizontal placement
indicates the onset time. The vertical placement
indicates pitch. The pitch class for each note is
indicated by a letter at the onset of the note.

C4

40

60

80

G
DB

G

A

C

B
G
D
G F#

C
GE

E G

D

F#

A
D

B

C

E
C

A

F#
D

B
GE

E

F#
B

D

A
E
C

C

B

Eb

F#
B

B
E

GE
AF#

B

DB
G

E
C

AF#
D

F#

B C
GE

E

B

D

A

C

F#
D

A

C
GG
D

B

E
C

C

B
F#
D
A
D

G
DB

G

G
DB

G

A

C

Figure 4. To God On High All Glory Be in piano roll
notation

A musical score, in its most generic form, is a
collection of parts, such as the Soprano and Bass
parts in Figure 2. Each part is a collection of notes.
The organization of a song as a collection of one or
more (possibly polyphonic) parts mirrors that of the
standard MIDI Type 1 file [20], in which songs are
organized into (possibly polyphonic) tracks. A MIDI
Type 0 file contains only a single track.

We define a note ni by an ordered 3-tuple (si,ei,pi)
where si is the start time of the note, ei is the time at
which the note ends and pi is the pitch of the note.
For example consider the two-part musical score
represented as piano-roll in Figure 5. In the figure,
notes in part P1 begin with a circle. Notes in part P2
begin with a diamond. Start times are defined by the
order of note onsets. Thus, a start time of 3 indicates
the third note onset. The pitch is encoded as MIDI
pitch number and listed above the note.

The score and its two parts can be expressed as
follows:
S = {P1, P2}
P1 ={(1,3,38), (2,3,36), (4,6,38), (6,8,38)}
P2={(1,2,24), (1,3,22), (3,5,22), (6,7,24)}

216

The division of notes into parts is something that is
routinely available in musical scores encoded as
Finale, Sibelius, and MIDI files. Parts captures basic
underlying musical structure and we would like our
matching algorithms to be sensitive to this
information. In the absence of part information, the
score can be thought of to be consisting of just one
part with all the notes belonging to that single part.

Figure 5. A simple score in piano roll notation

We classify a score into three categories:
monophonic, homophonic and polyphonic. A score is
monophonic if no new note in the score begins until
the current note has finished sounding. In a
monophonic score S, there is a total ordering of
notes. For every pair of notes ni=(si,ei,pi) and
nj=(sj,ej,pj) in S, si≠sj, ei≠ej and if si<sj then ei<sj.

In homophonic music, notes may sound
simultaneously, but they must start and end at the
same time. For every pair of overlapping notes (i.e.
concurrently sounding notes) ni=(si,ei,pi) and
nj=(sj,ej,pj) in a homophonic score, it must hold that
si=sj, and ei=ej.

If a score is neither monophonic, nor homophonic,
it is polyphonic. In this case, there are at least two
notes in the score that sound concurrently but either
do not end or do no start concurrently, violating the
constraints for both monophonic and homophonic
scores. The Bach score in Figure 2 is polyphonic.

4. FINDING TARGETS IN A
DATABASE

We are interested in finding relevant targets in a
database in response to a user query.

A query, Q, is a monophonic, one part score. We
define a database, D, as set of scores {S1,…,Sr}. We
will consider separately the cases when the scores in
the database are monophonic, homophonic or
polyphonic.

Given a database of scores, D, and a query, Q, we
assume there is a target set T⊆D that corresponds to
the query. This is the set of scores that the user would
like to access using the query. For the purpose of this
paper, we assume that T consists of a single correct
score and that this score is the one which is most
similar to the query. The question then becomes one
of defining a similarity function whose value is
maximized for the target.

An order may be imposed on the scores in D by
measuring the similarity between each score S∈D
and the query Q and then ordering the set by
similarity. We now define several versions of a

similarity function σ(S,Q) based on the idea of edit-
cost.

4.1 Monophonic Alignment

The typical problem formulation in the query by
humming literature assumes the query and all scores
are monophonic. If one assumes monophonic scores
consist of a single part, one can represent the scores as
strings over a suitably defined alphabet and employ
standard string matching techniques [9, 21].

Given two strings, S=s1s2…sn and Q=q1q2…qm,
drawn from alphabet ∑, string matchers find the best
alignment between string S and string Q by finding
the highest-reward alignment of S to Q in terms of
edit operations. (insertion, deletion or matching of
characters). The highest-reward is a measure of the
similarity between the two strings.

Central to string matching algorithms is the
development of a match score function, µ(x, y), that
gives a numerical value corresponding to goodness
of the match between two characters, x and y, drawn
from the alphabet ∑.

Recent work in the music IR community [19, 21]
has used the log-odds approach to determining the
match score. Such a match score function is shown in
Equation 1.

 







=

)|,(
)|,(log),(

chanceyxP
matchyxPyxµ (1)

This function returns a negative value when the
probability of a meaningful match is below that of a
random co-occurrence. Similarly, the value is
positive when a meaningful match is more likely than
random chance.

Developing good estimates of the probabilities
required for this function can be a challenge and is
task-dependent. For an example of how this may be
done see [9].

The best alignment of S to Q can be found in
O(mn) time Here, m and n correspond to the length
of the query and the score. This is done by applying
dynamic programming. This has been used for over
30 years to align gene sequences based on a common
ancestor [18]. We now describe a local edit-distance
variant.

Construct a matrix M, of size n+1 by m+1, which
is indexed from 0,0 to n,m. Element Mi,j contains the
score of the best alignment between the initial
segment s1 through si of S and the initial segment q1
through qj of Q.

Initialize M as described in Equation 2 and
Equation 3.

0
0

,0 =
≤≤ mj

jM (2)

0
0

0, =
≤≤ ni
iM (3)

We define the recurrence relation for M in
Equation 4.

24 24

22 22

36

38 38 38

217











+
−+

−+
=

−−

−

−

),(
),(
),(

 0

max

1,1

1,

,1
,

jiji

iji

jji
ji

qsM
sM

qM
M

µ
µ
µ

 (4)

Here, the “-“ character is a blank, which is added
to the alphabet of both query and score. Matching to
a blank can be thought of as skipping the element
matched to the blank. The match score function value
for matching a blank is set to the penalty for skipping
the element matched to the blank. Skipping an
element of the query assumes the query inserted an
extra element that was not in the score. Skipping an
element of the score assumes that the query deleted
that element of the score.

The similarity of the best alignment of S to Q is
then defined as the highest valued element of M.

)(max),(,, jiji
MQS =σ (5)

4.2 Maximum Single-part Similarity

It is often the case that a user wishes to find a musical
piece consisting of multiple parts, querying the
database with a monophonic query. Given a multi-part
score, as in Figure 2, the easiest way to measure
similarity to the query is to use the similarity of its
maximally similar part. This is shown in Equation 6.

)),((max),(QPQS
SP

σσ
∈∀

= (6)

This approach is simple to add to any existing
similarity measure. The time complexity of this
algorithm is O(tr), where t is the time required to
calculate similarity for a single part and r is the
number of parts. When applied to the monophonic
alignment similarity measure from Section 4.1, the
time complexity is O(mnr). Here, we assume that the
length of the score is the length of the longest part.

4.2 Homophonic Alignment

It is not unusual, for a query to be composed of
sections derived from multiple parts in the desired
score. The optimal alignment of such a query travels
from part to part in the score. For example, a person
may sing a bass line, interspersed with portions of the
soprano. Maximum single-part similarity does not
capture this situation and may fail to produce the
highest score for the correct target.

As a first step to handling a query whose optimal
alignment travels from part to part, we consider the
case of a homophonic score. We can extend the
dynamic programming algorithm of Section 4.1 as
follows. Instead of each symbol si in the string
representation of the score representing a single note
n, let it represent a note concurrency. We define a
note concurrency, C, as a set of notes that share the
same onset and end time. Each homophonic score in
the database may, thus, be represented a sequence of
note concurrencies, S=C1C2…Cl.

To compare the query to the score with alignment
algorithm in Equation 4, one must replace the match
score function between two notes, µ(x, y), with a
match score function, µΗ(x, C), for scoring a note n
and a note concurrency C . Equation 7 defines this.

)),((max),(αµµ
α

nCn
CH ∈∀

= (7)

Here, the similarity of the concurrency to the note
is determined by the similarity of its most similar
note. As with the method from Section 4.1, the
similarity score of the best alignment of S to Q is the
highest valued element of M.

 By moving the maximization into the match score
function (as opposed to simply selecting the value for
the most-similar part), we increase the similarity
between a query that travels from part to part and the
correct score.

The time complexity of the match score function
in Equation 7 depends on the number of notes in the
concurrency, c, and is O(c). If the size of the score, n,
is the number of concurrencies in the score and we
take c to be the size of the largest concurrency in the
score, then the time complexity is O(mnc).

This alignment method may also be combined with
the method from Section 4.2. The resulting method
allows comparison of a monophonic query to a score
with multiple homophonic parts.

4.4 Polyphonic Alignment

Homophonic alignment, while an improvement over
combining maximum single-part similarity with
monophonic alignment, has two weaknesses. It does
not account for polyphonic scores, where notes begin
and end independently, nor does it capture the concept
of a part. We would like the flexibility to impose a
penalty on the match for skipping between parts. This
lets us preferentially favor an alignment that continues
on the same part over one which skips to a new part,
while still allowing such skips to take place. We start
the description of the polyphonic alignment algorithm
by first treating the simpler homophonic case.

Let S be a multi-part homophonic score with r
parts P1,…,Pr where each part has the same number
of note concurrencies. Note that this may require
insertion of some silent note concurrencies, i.e. note
concurrencies which only contain pitch 0. Let
Pi=pi1…pin where pij is the jth concurrency of Pi. Let
Q=q1q2…qm be the query sequence where qk is the kth
note of Q. For a sequence A=a1a2…al, we will use
A[i..j] to represent the substring aiai+1… aj.

We extend the dynamic programming algorithm
for homophonic single-part alignment by introducing
a function γ(a,b) which returns the cost for changing
from Pa to Pb. Let Sj denote a length j prefix of S
which is the set of parts P1[1..j], P2[1..j],…, Pr[1..j]
and Qj denote the length j prefix of Q which is
Q[1..j].

Next we describe the recurrence which uses γ(a,b)
to score alignment of a monophonic query with a
multiple-part homophonic scores. Instead of a two
dimensional table as in Section 4.1, we will construct
a three dimensional table where the third dimension

218

corresponds to the different parts in the multi-part
score.

Construct a (m+1)× (n+1)× r matrix L, indexed
from 0,0,1 to m,n,r. Here, Li,j,k is the score of the
optimal local alignment score of Qi and Sj such that
pkj is present in the alignment.

Initialize L as described in Equation 8 and
Equation 9.

0
1,0
,,0 =

≤≤≤≤ rknj
kjL (8)

0
1,0
,0, =

≤≤≤≤ rkmi
kiL (9)

We define the recurrence relation for L in
Equation 10.
















≠∀++
≠∀+−+

+
−+

−+

=

−−

−

−−

−

−

0

),(),(
),(),(

),(
),(

),(

max

,1,1

,1,

,1,1

,1,

,,1

,,

klklpqL
klklpL

pqL
pL

qL

L

j

j

j

j

kilji

klji

kikji

kkji

ikji

kji

γδ
γδ

δ
δ
δ

(10)

The similarity score of the best alignment of S to
Q is then the highest value element of L.

)(max),(,,,, kjikji
LQS =σ (11)

In polyphonic scores, we have to deal with the
added complication that notes may begin and end
independently. Thus, it may be possible to skip
between parts in the middle of a sounding note, at the
point where a note in another part begins. This
happens throughout the Bach example in Figure 2,
starting with the very first beat. To account for this
we break down the notes into notebits.

A currently-sounding note, n, us sokut ubti twi
bitebuts at the point where another note begins or
ends. It is, perhaps, easiest to see this in Figure 5.
Here, vertical lines are placed at every note onset and
ending. These lines subdivide the notes in the score
into notebits. For example, the first note in part P1 is
divided into two notebits. The first of these
corresponds to the onset of the note. The second is a
continuation of the note as a note in the other part
enters.

In our notation, a note n is decomposed into a
sequence of notebits, n=b1,b2,…,bk. Each notebit is a
4-tuple (s,e,p,o) where s is the start time of the
notebit, e is the end time, p is the pitch and o is a
Boolean value that defines whether the notebit
corresponds to the onset of the note. The field o of a
notebit is true only if it is an onset notebit. The first
note in part P1 is n=(1,3,38). This is decomposed as
n = b1,b2 = (1,2,38,true), (2,3,38,false).

Up to this point, we have not defined silence in a
score. We do so by allowing notes with pitch 0,
defining 0 to mean “silence.” This allows us to divide
a part into a sequence of consecutive notes, some of
which may be silence Each note in a part may be
further decomposed into notebits.

Given a score composed of monophonic parts, all
parts will have the same number of notebits, since the
number of notebits in any part is determined by the
number of independent note onsets and endings in the
entire piece (including all parts). Our algorithm
depends on all parts containing the same number of
notebits, as it implicitly uses order in the sequences
as its encoding of relative time. Therefore, the ith
notebit in part Pj is coincident with the ith notebit in
part Pk, for all j and k.

Given a score with polyphonic parts, we break
each part into monophonic subparts, such that each
subpart has no overlapping notebits and all notebits
from the same note belong to the same subpart. Note
that each part gets divided into z subparts, where z is
the maximum number of simultaneously sounding
notes in the part. In Figure 5, z=2 for both parts. For
the example in Figure 5, the decomposition of notes
into notebits yields the following (here, we substitute
t for true and f for false).

P11={(1,2,38,t), (2,3,38,f), (3,4,0,t), (4,5,38,t),
(5,6,38,f), (6,7,38,t), (7,8,38,f)};
P12={(1,2,0,t), (2,3,36,t), (3,4,0,t), (4,5,0,f), (5,6,0,f),
(6,7,0,f), (7,8,0,f)};
P21={(1,2,24,t), (2,3,0,t), (3,4,0,f), (4,5,0,f), (5,6,0,f),
(6,7,24,t), (7,8,0,t)}; and
P22={(1,2,22,t), (2,322,f), (3,4,22,t), (4,5,22,f),
(5,6,0,t), (6,7,0,f), (7,8,0,f)}.

Notice that the in the notebit representation,
polyphonic scores look very similar to the
homophonic scores with N parts, where N is the total
number of subparts in the score (for our running
example, N=4). Therefore we can create a convenient
representation of the score in terms of set of N strings
S1,…,SN where Si=si1…sin and sij is the jth notebit in
subpart Si. Let pij be the pitch corresponding to the
notebit sij and let oij represent its corresponding
boolean onset field. We set up the dynamic
programming table for polyphonic alignment in a
similar fashion and use the following recurrence
where the change-track penalty for two subparts
derived from the same original part is set to be 0.
This is expressed in Equation 12.
if okj= false, kjikji LL ,1,,, −= ,

if okj = true,
















≠∀++
≠∀+−+

+
−+

−+

=

−−

−

−−

−

−

0

),(),(
),(),(

),(
),(

),(

max

,1,1

,1,

,1,1

,1,

,,1

,,

klklpqL
klklpL

pqL
pL

qL

L

j

j

j

j

kilji

klji

kikji

kkji

ikji

kji

γδ
γδ

δ
δ
δ

(12)

For all the alignment algorithms described in this
paper, we need to fill up a dynamic programming
table. Computing each entry in the table takes O(1)
time for monophonic case and O(N) time for the
polyphonic case. So the total time taken is the
product of time taken per entry and the total number
of entries. Therefore monophonic alignment takes

219

O(mn) time and the polyphonic alignment takes
O(mnN2) time, where m is limited by the number of
notes in the query, n is limited by the number of
notes in the score, and N is the number of subparts in
the score.

We have described a series of alignment
algorithms, culminating in the polyphonic alignment
algorithm in Equation 12. This algorithm is the most
general method we have described, allowing for
alignment of a monophonic query that skips from part
to part of an arbitrary polyphonic score. In Section 5,
we measure the performance improvement this
algorithm provides over the maximum single-part
similarity measure in Section 4.2.

5. EXPERIMENTAL SECTION
In order to estimate the potential performance gain for
finding the appropriate polyphonic, multi-part target
in a database in response to a part-skipping
monophonic query, we constructed a small corpus of
Bach Chorales and a set of synthetic queries that skip
from part-to-part. We then compared the performance
of a similarity measure based on the polyphonic
alignment algorithm from Section 4.4 with the
maximum single-part similarity measure from Section
4.2. This experiment is described in this section.

As our database, we chose 300 Bach four-part
chorale harmonizations, encoded as MIDI files.
These are typical sopranto-alto-tenor-bass vocal
arrangements, and a small subset of them are
alternate harmonizations of the same melody. The
midi files are available at
http://www.jsbchorales.net/. The complete list of
chorales selected for this study is available at
the http://www.cs.northwestern.edu/~pardo/research
web page.

While three hundred chorales makes for a small
corpus, the point of the experiment is not to measure
absolute performance of a single method, but rather
relative performance improvement. For this reason,
we felt a smaller database, composed of known
pieces with full scores was a better choice.

We are interested in creating algorithms that allow
for effective comparison of monophonic queries to
polyphonic, multi-part scores. For this experiment,
we were interested in measuring the relative
performance of these methods as a query is
increasingly likely to skip between parts. In order to
control this likelihood we constructed synthetic
queries, based on targets in the corpus.

Given a target score in the database, T, a query
was constructed by selecting a subsequence of notes
from T whose length was randomly selected (with an
equal probability distribution) from the range [5,25].
This length range was based on the range of typical
query lengths for sung queries[9]. The initial note
was selected from a randomly-chosen part (given an
equal probability distribution) in the target. The start
position in the selected part was also chosen
randomly, so that a query might begin anywhere
within the piece. Once started, the query was
constructed by adding consecutive notes from the
score. The part of each additional note in the query

was selected based on a fixed probability of changing
parts. If the probability of changing parts was set to 0,
then all notes in the query would be selected from the
same part. If the probability of changing part were
0.25, then there would be a 25% chance that each
additional note in the query would be drawn from a
different part than the previously selected note. Given
a change in part from the current to the next note in
the query, the new part was selected at random. The
query in Figure 2 and Figure 3 is an example query
drawn from the score with a probability of changing
notes of 0.25.

5.1 The Experiment

The maximum single-part similarity algorithm from
Section 4.2 forms a simple baseline performance
measure, as it implicitly assumes the query is drawn
from a single, monophonic part. Let c be the
probability that a query skips from part to part. As c
increases, the similarity measure based on the
maximal single-part similarity should become
increasingly ineffective. Conversely, the polyphonic
alignment method from section 4.4 should be
unaffected by an increased amount of skipping from
part to part. Accordingly, we compared these two
methods for determining the similarity of a query to
each score in the database.

To construct the query set, we selected 150 targets
at random from the database. For each target, we
constructed five queries, one with c = 0, one with c =
0.25, one with c = 0.5, one with c = 0.75, and one
with c = 1.0. This created a total of 750 queries. We
then ranked the similarity of every target in the
database to each query, recording the rank of the
correct target (hereafter called “right rank”).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

Per-note probability of changing parts in query

M
ea

n
ra

nk
 o

f c
or

re
ct

 ta
rg

et

Maximum single-part similarity
Polyphonic alignment

4.5

8.7

18.9

23.7

2.5 1.6 1.4
1.3

1.7

1.3

Figure 6. Mean rank of correct target as a function of c

Figure 6 shows the mean right rank as a function
of c. Each point indicates the mean value for 150
synthetic queries. The number by each point gives the
mean value for that point. Since there are 300 scores
in the database, random performance would result in
a mean right rank of 150. Perfect performance would
result in a mean right rank of 1.

As the figure shows, neither method performed
perfectly, even when the probability of changing
parts in a query is 0. This is due to two factors: first,
several of the targets are alternate harmonizations of

220

the same melody; second, a short query (on the order
of 5 notes) may match multiple items in the database,
if it is based on a common melodic pattern. This is
the case for a number of the queries.

As the probability of changing parts increases,
however, the difference between the performances of
the algorithms becomes clear. The performance of the
maximum single-part similarity measure quickly
degrades as the queries increasingly skip between
parts, while the polyphonic alignment algorithm’s
performance remains essentially constant, with its
mean varying within a narrow range.

0 10 20 30 40 50 60 70 80 90 100
0

50

100

N
um

be
r o

f q
ue

rie
s

Polyphonic alignment

0 10 20 30 40 50 60 70 80 90 100
0

50

100

N
um

be
r o

f q
ue

rie
s

Maximum single-part similarity

Rank of correct target (right rank)

Figure 7. Performance of ranking methods when c = 0.5

Figure 7 gives more detail. The figure shows a
histogram of the distribution of right ranks for both
algorithms in the case where c, the probability of
changing parts at each note, is 0.5. The distribution
returned by the polyphonic alignment algorithm
much tighter, with the vast majority of the 150
queries returning a right rank of 1. Only a third of the
queries do so for the maximum single-part similarity
method, and the tail of right ranks extends out to the
value 100.

6. CONCLUSIONS
Finding the best matching database target to a melodic
query has been of great interest in the music IR world.
Standard string alignment algorithms work well for
this task when comparing a monophonic query to a
database of monophonic pieces. However, most tonal
music is polyphonic, with multiple concurrent musical
lines. Such pieces are not adequately represented as
strings. Moreover, users often represent polyphonic
pieces in their queries by skipping from part to part.
We described a series of algorithms designed to
compare the similarity of a monophonic melodic
sequence to a homophonic or polyphonic piece of
music, culminating in the polyphonic alignment
algorithm in Equation 12. This algorithm is the most
general method we described, allowing for alignment
of a monophonic query to an arbitrary polyphonic
score.

We compared the polyphonic approach to the
maximum single-part similarity method for matching
a polyphonic score to a monophonic query. Results
using synthetic queries on the Bach database indicate
that the polyphonic method significantly outperforms

the maximum single-part method when a monophonic
query is drawn from multiple parts in the target. This
suggests that the performance of music information-
retrieval systems, such as query-by-humming
systems, can be improved through the use of a
polyphonic-alignment algorithm.

REFERENCES
[1] Mazzoni, D. and R. Dannenberg. Melody

Matching Directly From Audio. in ISMIR. 2001.
Bloomington, IN.

[2] Meek, C. and W.P. Birmingham. Johnny Can't
Sing: A Comprehensive Error Model for Sung
Music Queries. in ISMIR 2002. 2002. Paris,
France.

[3] Hoos, H., K. Rentz, and M. Gorg. GUIDO/MIR -
an Experimental Musical Information Retrieval
System based on GUIDO Music Notation. in
International Symposium on Music Information
Retrieval. 2001. Bloomington, IN.

[4] Song, J., S.Y. Bae, and K. Yoon. Mid-Level
Music Melody representation of Polyphonic
Audio for Query-by-Humming System. in ISMIR
2002. 2002. Paris, France.

[5] McNab, R.J., L.A. Smith, and e. al. Towards the
digital music library: tune retrieval from acoustic
input. in Digital Libraries. 1996.

[6] Clausen, M., R. Englebrecht, and e. al. Proms: A
web-based tool for searching in polyphonic
music. in The International Symposium on Music
Information Retrieval. 2002.

[7] Doraisamy, S. and S. Ruger. A Comparative and
Fault-tolerance Study of the Use of N-grams with
Polyphonic Music. in ISMIR 2002. 2002. Paris,
France.

[8] Clarisse, L.P., et al. An Auditory Model Based
Transcriber of Singing Sequences. in ISMIR
2002. 2002. Paris, France.

[9] Pardo, B., W.P. Birmingham, and J. Shifrin,
Name that Tune: A Pilot Study in Finding a
Melody from a Sung Query. Journal of the
American Society for Information Science and
Technology, 2004. 55(4): p. 283-300.

[10] Birmingham, W.P., et al. Musart: Music Retrieval
Via Aural Queries. in ISMIR 2001. 2001.
Bloomington, IN.

[11] Pickens, J. A Comparison of Language Modeling
and Probabilistic Text Information Retrieval. in
International Symposium on Music Information
Retrieval. 2000. Plymouth, Massachusetts.

[12] Downie, S. and M. Nelson. Evaluation of a
Simple and Effective Music Information
Retrieval Method. in 23rd Annual International
ACM SIGIR Conference on Research and
Development in Information Retrieval. 2000.
Athens, Greece.

[13] Uitdenbogerd, A. and J. Zobel. Melodic
Matching Techniques for Large Music Databases.

221

in Seventh ACM International Conference on
Multimedia. 1999. Orlando, FL.

[14] Durey, A.S. and M. Clements. Melody Spotting
Using Hidden Markov Models. in International
Symposium on Music Information Retrieval.
2001. Bloomington, IN.

[15] Dannenberg, R., et al. The MUSART testbed for
query-by-humming evaluation. in ISMIR 2003,
4th International Conference on Music
Information Retrieval. 2003. Baltimore,
Maryland.

[16] Gotoh, O., An improved algorithm for matching
biological sequences. Journal of Molecular
Biology, 1982. 162: p. 705-708.

[17] Gusfield, D., Algorithms on Strings, Trees, and
Sequences. 1997, New York, NY: The Press
Syndicate of the University of Cambridge.

[18] Needleman, S.B. and C.D. Wunsch, A general
method applicable to the search for similarities in
the amino acid sequence of two proteins. Journal
of Molecular Biology, 1970. 48: p. 443-453.

[19] Pardo, B. and W.P. Birmingham. Following a
musical performance from a partially specified
score. in Multimedia Technology Applications
Conference. 2001. Irvine, CA.

[20] MIDI-Manufacturers-Association, The Complete
MIDI 1.0 Detailed Specification. 1996, Los
Angeles, CA: The MIDI Manufacturers
Association.

[21] Hu, N., R. Dannenberg, and A. Lewis. A
Probabilistic Model of Melodic Similarity. in
International Computer Music Conference
(ICMC). 2002. Goteborg, Sweden: The
International Computer Music Association.

222

