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Gaël RICHARD
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ABSTRACT

A number of approaches for automatic audio classifica-

tion are based on hierarchical taxonomies since it is ac-

knowledged that improved performance can be thereby

obtained. In this paper, we propose a new strategy to

automatically acquire hierarchical taxonomies, using ma-

chine learning methods, which are expected to maximize

the performance of subsequent classification. It is shown

that the optimal hierarchical taxonomy of musical instru-

ments (in the sense of inter-class distances) does not fol-

low the traditional and more intuitive instrument classifi-

cation into instrument families.

Keywords: Hierarchical taxonomy, musical instrument,

clustering, probabilistic distance.

1 INTRODUCTION

Recently, hierarchical taxonomies have been profitably

used for audio classification tasks, especially musical in-

strument classification [1, 2, 3, 4] and genre classification

[5, 6, 7]. In the first place, by recurring to hierarchical

classification, it is desired to achieve better classification

performance than the so-called “flat” systems, wherein all

classes are put at the same level without any arrangement.

Furthermore, classification scalability is thereby obtained

in the sense that “coarse” classification yielding top-level

(more vague) labelling of some sound properties is made

possible.

In most studies, straightforward taxonomies were con-

sidered which were borrowed from other areas of activ-

ity. Typically, taxonomies used in instrument classifica-

tion [1, 2, 3] are highly inspired by instrument family divi-

sions derived from instrument physics and/or musicology

based categories, whereas taxonomies exploited in musi-

cal genre classification essentially originate from the mu-

sic industry.
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Such taxonomies present the advantage of being ha-

bitual and intuitive, hence enabling a certain ease of ap-

plication for any potential end-user. On the other hand,

they suffer from two major drawbacks. First, on the basis

of intuition, a high number of alternative taxonomies can

be potentially used leading to heterogeneous systems and

contradictory classifications. Second, such taxonomies

are not necessarily meant to maximize the accuracy of the

classification tasks.

Attempts to address both issues were made in previous

work. Pachet & Cazaly proposed “guiding principles” to

be used in building a music genre taxonomy [5]. The ap-

plication of Multi-Dimensional Scaling (MDS) analysis to

observe dissimilarities among musical instruments [8, 3]

can also be considered as an important step towards find-

ing “natural” organizations among sound classes. Finally,

very recently, a taxonomy of musical genres was induced

by grouping genres which were the most frequently con-

fused by a given classifier [7].

We propose an algorithm to acquire automatic tax-

onomies using unsupervised machine learning techniques

in order to obtain solutions which are expected to yield

the best classification performance. Our approach makes

use of hierarchical clustering to produce a tree data struc-

ture wherein nodes represent optimal groupings of classes

with respect to a robust probabilistic distance criterion.

We start by describing our algorithm and the related

machine learning concepts. Subsequently, we present ap-

plications of our method to the case of musical instru-

ments. Finally, we suggest some conclusions.

2 ALGORITHM DESCRIPTION

2.1 Overview

We aim to obtain a hierarchical taxonomy of some musi-

cal descriptions which are associated with target classes

(for example instruments, orchestrations or genres, etc.).

These are materialized by the leaf nodes of the taxonomy

tree representation. To this end, we organize target classes

using a hierarchical clustering algorithm. This is known to

be an optimal and natural way of arranging the data since

the most similar classes with respect to the chosen close-

ness criterion are then put in the same clusters.

Thus, the choice of the closeness criterion is critical.

We need robust distances enabling us to reduce the effect

of noisy features on the clustering performance. Also, the
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distances are required to be matched with the behavior of

the classifiers to be used. A convenient and robust means

for measuring the closeness or separability of data classes

is to use probabilistic distance measures between them, i.e

distances between their probability distributions [9]. This

is an interesting alternative to classic Euclidean distance

between feature vectors known to be inefficient for sound

source classification.

Another fundamental choice is the class descriptors.

A large number of useful attributes can be examined and

reduced using a feature selection algorithm to retain only

the attributes that are relevant for proper overall class dis-

crimination.

2.2 Clustering the target classes

We wish to group together a number of M class probabil-

ity densities pi into a number of Mc clusters Ci within L

levels of a hierarchical taxonomy. Thus we need appro-

priate probabilistic distances. Many such distances can

be considered among which we chose the Bhattacharryya

and divergence due to the resulting simplification in the

following computations. The divergence distance JD be-

tween two probability densities p1 and p2 is defined as

JD(p1, p2) =

∫

x

[p1(x)− p2(x)] log
p1(x)

p2(x)
dx. (1)

The Bhattacharryya distance is defined as

JB(p1, p2) = − log

(
∫

x

[p1(x)p2(x)]
1

2 dx

)

. (2)

While these distances admit analytical expressions

whenever the class probability densities are Gaussian,

computing such distances can be otherwise a difficult

problem since it requires performing heavy numeric in-

tegrations [10]. In fact, in the Gaussian case, the distances

can be expressed as functions of the means and covariance

matrices according to

JD(p1, p2) = 1

2
(µ1 − µ2)

T (Σ−1

1
+ Σ−1

2
)(µ1 − µ2)

+ 1

2
tr(Σ−1

1
Σ2 + Σ−1

2
Σ1 − 2ID),

JB(p1, p2) = 1

8
(µ1 − µ2)

T [ 1
2
(Σ1 + Σ2)]

−1(µ1 − µ2)

+ 1

2
log
| 12 (Σ1+Σ2)|
|Σ1|

1

2 |Σ2|
1

2

,

where (µ1,Σ1) and (µ2,Σ2) are the mean vectors and

the covariance matrices of the multivariate Gaussian den-

sities describing respectively class 1 and class 2 in R
D.

Nevertheless, it would be highly sub-optimal, in our case,

to assume that the original class observations follow Gaus-

sian distributions since we deal with data with a non-linear

structure. Fortunately, if this data is mapped from the orig-

inal space to a Reproducing Kernel Hilbert Space (RKHS)

[11], it is reasonable to assume it to be Gaussian in the

RKHS [10]. Thus, a robust estimation of the needed prob-

abilistic distances can be derived using analytical expres-

sions provided that a proper estimation of the means and

covariance matrices in the RKHS can be obtained. The

strength of such an approach resides in that there is no

need for knowing explicitly either the structure of the orig-

inal probability densities or the non linear mapping to be

used. Interested readers are referred to [10] for further

details.

We then use agglomerative hierarchical clustering [9,

12] to produce “a hierarchy of nested clusterings” based

on probabilistic distances in RKHS. The algorithm starts

with as many clusters as original data objects (M 1

c = M at

iteration 1), measuring the proximities J(pi, pj) between

all pairs of clusters and grouping together the closest pairs

into new clusters to produce M l
c new ones at iteration l,

until all vectors lie in single cluster (at iteration M ).

A convenient way to understand the result of such a

procedure is to represent it as a graph (called dendrogram)

which depicts the relations and proximities between the

obtained nested clusters (see figure 1 for an example).

The relevance of the cluster tree can be evaluated by

computing the cophenetic correlation coefficient [9]. The

closer the cophenetic coefficient to 1, the more relevantly

the cluster tree reflects the structure of the data.

Clustering is then obtained by cutting the dendrogram

at a certain level or certain value of the vertical axis. By

applying different cuts to the dendrogram we can obtain

different clusterings (having a different number of clus-

ters). The levels of the hierarchical taxonomy are to be

induced from these alternative clusterings in such a way

that the high levels are deduced from “coarse” clustering

(low number of clusters) while the low levels are deduced

from “finer” clustering (higher number of clusters).

3 TAXONOMIES OF MUSICAL
INSTRUMENTS

Various taxonomies have been proposed for musical in-

strument classification on isolated notes roughly follow-

ing the instrument families organization [1, 2, 3]. While

some declinations are common to these studies, as for

example the primary division of instruments into “sus-

tained” and “pizzicati”, other groupings are not unani-

mously shared, especially for the wind instruments.

It is worth to note that Peeters undertook a Multi-

Dimensional Scaling (MDS) analysis based on the signal

features in order to verify the consistency of the class tree

he had assumed [3]. This provided objective justification

of some of the choices made but could not be used to infer

a taxonomy.

We here present an application of our algorithm to

produce a hierarchical taxonomy of musical instruments.

This taxonomy is to be induced from real world musical

phrases and is expected to yield the organization that best

matches the classification to be performed subsequently.

3.1 Feature extraction and selection

A wide selection of more than 300 signal processing fea-

tures is considered including some of the MPEG-7 de-
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scriptors. Since these features have been extensively de-

scribed in various previous work in the field of Music In-

formation Retrieval (see [13] for example), in the follow-

ing, we merely list the attributes which we examined in

our study.

• Temporal features consist of autocorrelation coef-

ficients, features obtained from the statistical mo-

ments, zero crossing rates, and amplitude modulation

features.

• Cepstral features are mel-frequency cepstral coeffi-

cients as well as their first and second time deriva-

tives.

• Spectral features include features obtained from the

statistical moments, MPEG-7 audio spectrum flat-

ness, spectral irregularity, spectral crest, spectral

slope, spectral decrease, frequency cutoff, temporal

variation of spectrum, and octave band signal inten-

sities and their ratios providing a coarse description

of the energy distribution of sound partials [14].

• Perceptual features are also utilized, namely loud-

ness, sharpness and spread.

In order to fetch the most relevant features for opti-

mal class discrimination, we use a simple feature selection

algorithm, belonging to the family of “filter” algorithms,

which is based on Fisher’s Linear Discriminant Algorithm

(LDA) [12]. The chosen method computes the relevance

of each candidate feature using the weights estimated by

the LDA.

3.2 Experimental parameters

Nineteen instruments from all instrument families are con-

sidered. Table 1 sums up the studied instruments giving

their codes. Solo musical phrases played by each of these

instruments were excerpted from commercial recordings.

We had at least 4 different sources (different album, dif-

ferent artist) and at least 3 minutes available for each in-

strument.

All features described above were extracted on a frame

basis. Unless otherwise specified, the default frame length

is 32ms. Silence frames were detected and removed.

Instrument Code Instrument Code

alto sax As oboe Ob
bassoon Bo piano Pn
double bass-pizzicato Bs tenor sax Ts
double bass-bowed Ba soprano sax Ss
bass clarinet Cb tuba Tb
Bb clarinet Cl trombone Tm
cello Co trumpet Tr
flute Fl viola Va
French horn Fh violin Vl
classical guitar Gt

Table 1: Studied instruments and their codes.

Computing the probabilistic distances in RKHS (to be

used for clustering) requires processing the EigenValue

Decomposition of nk × nk Gram matrices [11], with nk

the number of training feature vectors of class Ck. Such

an operation is computationally expensive (O(n3

k)) since

nk is quite large. Hence, the training sets were divided

into smaller sets of 1500 observations and the desired dis-

tances were obtained by averaging the distances approxi-

mated using as many reduced sets as possible. To measure

these distances, one needs to choose a kernel function. We

used the Radial Basis Function kernel.

3.3 Results

A total of 40 features were selected by the LDA approach

from the original 304 candidates, namely:

• the 4 first mel-frequency coefficients (excluding the

zero-th coefficient);

• the spectral centroid and the spectral asymmetry;

• the 15-th amplitude MPEG-7 spectral flatness coeffi-

cient;

• the frequency cutoff;

• Octave Band Signal Intensity (OBSI) coefficients 1,

2, 3 and 6, as well as Octave Band Signal Intensity

Ratios (OBSIR) 1 to 6;

• spectral irregularity coefficient 5;

• the 4-th statistical moments measured both on the

signal temporal waveform and amplitude envelope

over 960-ms windows;

• the zero crossing rate measured over 32-ms windows

and 960-ms windows;

• the Amplitude Modulation (AM) strength in the

range 4-8Hz (tremolo) and the product of AM

strength and AM frequency in the ranges 4-8 Hz

(tremolo) and 10-40 Hz (graininess);

• relative specific loudness coefficients 1, 2, 5, 16, 18

and 21 as well as perceptual loudness and sharpness.

Based on these features, probabilistic distances in

RKHS between each pair of considered classes were com-

puted. Both the divergence and Bhattacharryya distances

were obtained and fed to the agglomerative hierarchical

clustering (described in section 2.2). A higher cophenetic

coefficient was obtained with the Bhattacharryya distance

compared to the one obtained with the divergence. Hence,

more relevant clustering was obtained with the former. Its

related dendrogram is depicted in figure 1. This can be

already considered as a primary taxonomy. However, it is

worth being processed so as to gain consistency and read-

ability.

The processing of the tree consisted in applying 4 dif-

ferent cuts to the dendrogram, each cut inducing a level

of hierarchy. The cuts were performed based on the con-

sistency coefficients [9] for each dendrogram link so as to

ignore the most inconsistent links. This resulted in the tree

depicted in figure 2.

The obtained taxonomy does not follow the organi-

zation of instruments into traditional families. In fact, al-

though some unions of the found solution are intuitive (for
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Fh Tm Bo Pn As Cl Ss Fl Tr Ob Cb Co Vl Va Ts Bs Ba Gt Tb

0.005

0.01

0.015

0.02

0.025

Figure 1: Dendrogram obtained with the Bhattacharryya

distance. Vertical axis represents cluster distances.

ClAs

Ts Bs−Ba−Gt−Tb

ObSs

Bo TrTmFh Fl

Cb PnVaVlCo

Cb−Co Vl−Va As−Cl Ss−Fl−Ob−Tr TbGt

Bs Ba

Bs−Ba

Bo−Fh−Tm Fl−Tr

Pn−Bo−Fh−Tm

Pn−As−Ss−Bo−Cl−Fh−Fl−Ob−Tm−TrCb−Co−Vl−Va

Figure 2: Obtained hierarchical taxonomy of musical in-

struments.

example, cello, violin and viola are put in the same clus-

ter) many others may be surprising.

At the top level, bowed double bass and pizzicato dou-

ble bass are grouped together with guitar and tuba, indi-

cating that the “sustained/non-sustained” property has not

been considered by our algorithm as useful for the classi-

fication. Indeed, since this property seems not to be cap-

tured by the selected features, it will not be “seen” by the

classifiers to be used, hence it is not optimal to take it

into account in the taxonomy. Additionally, the presence

of tuba in the same cluster implies that features related to

instrument register play an important role in the classifi-

cation.

Most wind instruments are grouped together except

the tuba, the bass clarinet- which is associated with cello,

violin and viola- and tenor sax, which is left alone. The

fact that our tenor sax excerpts are exclusively jazz ex-

cerpts while for all other instruments the sounds originate

from both jazz and classic music might explain this ex-

ception. Finally, also surprising is that the piano lies in

the same cluster as most wind instruments.

Going down in the hierarchy, interesting clusters are

found. Alto sax is grouped with Bb clarinet, flute with

trumpet, and bassoon with French horn and trombone.

These arrangements do not really surprise us as they re-

flect the confusions which we have often noted in our pre-

vious experiments on instrument recognition using musi-

cal phrases. It appears that the instruments that are fre-

quently confused are put by the algorithm in the same

clusters.

4 CONCLUSIONS

In this paper, we have suggested a technique for inferring

automatic taxonomies of musical descriptions expected to

maximize the performance of subsequent classification.

Our approach exploits robust probabilistic distances and

agglomerative hierarchical clustering algorithms to pro-

duce class organizations in an unsupervised fashion.

We have tested this method in the context of musical

instrument classification using signal processing features

automatically selected from a high number of state-of-the-

art features. The obtained arrangement of instruments is

substantially different from usual taxonomies following

instrument families organization. This suggests that the

latter is probably not an optimal solution for automatic

classification.

Future work will consider hierarchical classification

experiments based on the induced taxonomies. Fur-

thermore, we will attempt to address the feature selec-

tion problem in parallel to clustering so as to produce

taxonomy-context dependent features.
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