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ABSTRACT
This paper addresses the problem of identifying musi-
cal instruments in polyphonic music. Musical instrument
identification (MII) is an improtant task in music informa-
tion retrieval because MII results make it possible to au-
tomatically retrieving certain types of music (e.g., piano
sonata, string quartet). Only a few studies, however, have
dealt with MII in polyphonic music. In MII in polyphonic
music, there are three issues: feature variations caused
by sound mixtures, the pitch dependency of timbres, and
the use of musical context. For the first issue, templates
of feature vectors representing timbres are extracted from
not only isolated sounds but also sound mixtures. Be-
cause some features are not robust in the mixtures, fea-
tures are weighted according to their robustness by using
linear discriminant analysis. For the second issue, we use
an F0-dependent multivariate normal distribution, which
approximates the pitch dependency as a function of funda-
mental frequency. For the third issue, when the instrument
of each note is identified, the a priori probablity of the note
is calculated from the a posteriori probabilities of tempo-
rally neighboring notes. Experimental results showed that
recognition rates were improved from 60.8% to 85.8% for
trio music and from 65.5% to 91.1% for duo music.
Keywords: Musical instrument identification, mixed-
sound template, F0-dependent multivariate normal distri-
bution, musical context, MPEG-7

1 INTRODUCTION
The increasing quantity of musical audio signals available
in electric music distribution services and personal mu-
sic storage has made users spend a longer time on finding
musical pieces that they want. Efficient music information
retrieval (MIR) technologies are indispensable to shorten
the time to find musical pieces. In particular, automatic
description of musical content in a universal framework is
expected to become one of the most important key tech-
nologies for achieving sophisticated MIR. In fact, the ISO
recently established a new standard called MPEG-7 [1],
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which provides a universal framework for describing mul-
timedia content.

The names of musical instruments play an impor-
tant role as music descriptors because musical pieces are
sometimes characterized by what instruments are used. In
fact, the names of some music genres are based on in-
strument names, such as “piano sonata” and “string quar-
tet.” In addition, when a user wants to search for certain
types of musical pieces, such as piano solos or string quar-
tets, a retrieval system can use the description of musical
instrument names. Therefore, musical instrument iden-
tification (MII), which aims at determining what instru-
ments are used in musical pieces, has been studied in re-
cent years [2, 3, 4, 5, 6, 7, 8].

Identifying instruments in polyphonic music is more
difficult than in monophonic music. In fact, most meth-
ods of identifying monophonic sounds [3, 4, 7, 9] of-
ten fail in dealing with polyphonic music. For example,
our previous method [9], which identified an instrument
by calculating the similarities between a feature vector
of a given isolated sound and prestored feature vectors
of instrument-labeled sounds (called training data), had
difficulty dealing with polyphonic music because features
extracted from simultaneously played instruments were
different from those extracted from monophonic sounds.

To achieve highly accurate MII in polyphonic music,
it is essential to resolve three issues: feature variations
caused by sound mixtures, the pitch dependency of tim-
bres, and the use of musical context. These issues, how-
ever, have not been fully dealt with in existing studies.
Some techniques such as time-domain waveform template
matching [5], feature adaptation [6] and the missing fea-
ture theory [2] have been proposed to address the first is-
sue, but no attempts have been made to construct a tem-
plate from polyphonic music although this is expected to
contribute to improving MII. To address the second issue,
most existing studies have used multiple templates cov-
ering the entire pitch range for each instrument, but they
have not dealt with effective modeling of the pitch depen-
dency of timbres. To address the third issue, Kashino et
al. [5] introduced music stream networks and proposed a
technique of propagating the a posteriori probabilities of
musical notes in a network to one another based on the
Bayesian network. To apply musical context to identi-
fication frameworks not based on the Bayesian network,
however, we need an alternative solution.

In this paper, to address the first issue, we construct a
feature vector template (i.e., a set of training data) from
polyphonic sound mixtures. Because features tend to vary
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in similar ways during both training and identification,
this method can improve MII. Furthermore, because the
robustness of features to the mixtures can be analyzed
through their variances in the mixture-based templates,
features are weighted according to their robustness by
using linear discriminant analysis. To address the sec-
ond issue, we use a pitch-dependent timbre model, called
F0-dependent multivariate normal distribution, which we
proposed in our previous paper [9] for isolated sounds.
This model represents the pitch dependency of each fea-
ture of instrument timbres as a function of fundamental
frequency (F0) and is expected to remain effective for
polyphonic mixtures. To address the third issue, we cal-
culate the a priori probability of each note from the a pos-
teriori probabilities of its temporally neighboring notes.
This method aims at avoiding musically unnatural errors
by considering temporal continuity of melodies; for ex-
ample, if the identified instrument names of a successive
note sequence are all “flute” except for one “clarinet,” this
exception can be considered an error and corrected.

The rest of this paper is organized as follows: Sec-
tion 2 discusses the three issues involved in applying MII
to polyphonic music. Sections 3, 4 and 5 describe our so-
lutions to the three issues. Section 6 reports the results of
our experiments and Section 7 concludes the paper.

2 INSTRUMENT IDENTIFICATION IN
POLYPHONIC MUSIC

The aim of our study is to identify, when an audio sig-
nal of polyphonic music is given, which musical instru-
ments are being used to play this musical piece. In a typ-
ical framework, an MII system first detects musical notes
and then identifies the name of the instrument for each
note, because the musical audio signals handled here con-
tain many musical notes, which are often simultaneously
played. Once a musical note is detected, a feature vector
x concerning the note is extracted. Then, the a posteriori
probability given by p(ωi|x) = p(x|ωi)p(ωi)/p(x) is cal-
culated, where ωi denotes an instrument ID, p(x|ωi) and
p(ωi) are a probability density function (PDF) and the a
priori probability of the instrument ωi. Finally, the instru-
ment maximizing p(ωi|x) is determined as an MII result.

As previously mentioned, dealing with polyphonic
music is much more difficult than with monophonic mu-
sic. The main issues in dealing with polyphonic music can
be summarized as follows:

Issue 1 Feature variations caused by sound mixtures
The main difficulty of dealing with polyphonic music
lies in the fact that it is impossible to extract acous-
tical features of each instrument without blurring be-
cause of the overlapping of frequency components. If a
clear sound for each instrument could be obtained with
sound separation technology, the identification of poly-
phonic music might result in identifying monophonic
sounds. In practice, however, it is very difficult to sep-
arate a mixture of sounds without distortion occuring.
To achieve highly accurate identification, it is neces-
sary to deal with feature variations caused by the over-
lapping of frequency components.

Issue 2 Pitch dependency of timbres
The pitch dependency of timbres also makes MII dif-
ficult. In contrast to other sound sources including
human voices, musical instruments have wide pitch

Figure 1: Example of musically unnatural errors. This example
is an excerpt from results of identifying each note individually in
a piece of trio music. The marked notes are musically unnatural
errors, which can be avoided by using musical context. PF, VN,
CL and FL represent piano, violin, clarinet and flute.

ranges. For example, the pitch range of pianos cov-
ers over seven octaves. Such a wide pitch range makes
timbres quite different from pitch to pitch. It is there-
fore necessary to deal with this pitch dependency to
attain accurate MII.

Issue 3 Musical context
When identifying the instrument playing a musical
note, a system should take identification results of tem-
porally neighboring notes into consideration due to the
time continuity of melodies. Individually identifying
the instrument of each note sometimes causes musi-
cally unnatural errors as can be seen in Figure 1 (e.g.,
only one clarinet note in a melody played on a flute).
To avoid such musically unnatural errors, it is impor-
tant to exploit musical context.

We resolve these issues with the following approaches:

Solution 1 Mixed-sound template
We construct a feature vector template from poly-
phonic sound mixtures (called a mixed-sound tem-
plate). It would be effective, not only because it is
obtained from features that have already been affected
by other instruments playing simultaneously, but also
because it facilitates to weight features based on their
robustness by applying linear discriminant analysis
(LDA), which maximizes the ratio of the between-class
covariance to the with-in class covariance; features that
vary because of the overlapping of featurency compo-
nents have high variances within the class (instrument),
which are given low weights by LDA.

Solution 2 Pitch-dependent timbre model
We use a pitch-dependent timbre model, called an
F0-dependent multivariate normal distribution [9], to
solve the pitch dependency problem. It approximates
the pitch dependency of features representing the tim-
bres of musical instruments as a function of F0. Al-
though our previous experiments [9] showed the ef-
fectiveness of this method for solo musical sounds, we
have not yet confirmed it for polyphonic music.

Solution 3 Musical-context-based a priori probabilities
Our key idea in using musical context is to apply,
when calculating the a postriori probability given by
p(ωi|xk) = p(xk|ωi)p(ωi)/p(x) of a musical note nk,
the a posteriori probabilities of temporally neighboring
notes to the a priori probabilities.
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Figure 2: Overview of the process of constructing a mixed-
sound template. HSE and FE represent harmonic structure ex-
traction and feature extraction, respectively.

3 MIXED-SOUND TEMPLATE
As previously described, we construct a feature vector
template, called a mixed-sound template, from polyphonic
sound mixtures. Figure 2 has an overview of the process
of constructing the mixed-sound template. The sound of
each note used in making the template has been before-
hand labeled with the instrument name, the pitch, the on-
set time, and the duration. By using these labels, we ex-
tract the harmonic structure corresponding to each note
from the power spectrum. We then extract acoustic fea-
tures from the harmonic structure. We thus obtain a set of
many feature vectors extracted from sound mixtures.

The main issue in constructing the mixed-sound tem-
plate is to design an appropriate subset of sound mixtures
because there are an infinite number of possible combi-
nations of musical sounds. These combinations mainly
consist of note combinations, related to which harmonic
components could be affected by other sounds, and instru-
ment combinations, related to how much each frequency
component is affected (the amount depends on the instru-
ment). In particular, the former causes a serious problem
because musical instruments have wide pitch ranges.

To solve this problem, we focus on the fact that not all
combinations usually appear in music. Because the com-
plete set of combinations contains many disharmonious
ones (e.g., simultaneously playing three notes of C4, C#4
and D4) that are rarely used in music, it is not necessary to
cover all possible combinations. To obtain only combina-
tions that actually appear in music, the template is made
from (i.e., is trained on) sound mixtures performed based
on the scores of musical pieces. Note that this training
could be done on musical pieces that are not used for iden-
tification. Because our method considers only relative-
pitch relationship for feature extraction, once a note com-
bination has been trained, other transposed note combina-
tions are not generally necessary. We can thus expect that
a sufficient number of sound combinations can be trained
on a small set of musical pieces.

4 F0-DEPENDENT MULTIVARIATE
NORMAL DISTRIBUTION

The key idea behind our method is to approximate the
pitch dependency of each feature representing the tim-
bres of musical instrument sounds as a function of F0. An
F0-dependent multivariate normal distribution [9] has two
parameters: an F0-dependent mean function and an F0-
normalized covariance. The former represents the pitch
dependency of features and the latter represents the non-
pitch dependency. The reason why the mean of a distribu-
tion of tone features is approximated as a function of F0
is that tone features at different pitches have different po-

sitions (means) of distributions in the feature space. Ap-
proximating the mean of the distribution as a function of
F0 makes it possible to model how the features will vary
according to the pitch with a small set of parameters.

4.1 Parameters of F0-dependent multivariate
normal distribution

The following two parameters of the F0-dependent multi-
variate normal distribution NF0(µi(f),Σi) are estimated
for each instrument ωi.

• F0-dependent mean function µi(f)
For each element of the feature vector, the pitch de-
pendency of the distribution is approximated as a func-
tion (cubic polynomial) of F0 using the least square
method.

• F0-normalized covariance Σi

The F0-normalized covariance is calculated with the
following equation:

Σi =
1
ni

∑

x∈χi

(x − µi(fx))(x − µi(fx))′,

where χi is the set of the training data of the instrument
ωi and ni is the total number. fx denotes the F0 of the
feature vector x.

4.2 Bayes decision rule for F0-dependent
multivariate normal distribution

Once the parameters of the F0-dependent multivariate nor-
mal distribution have been estimated, the Bayes decision
rule is applied to identify the name of the instrument. The
Bayes decision rule for the F0-dependent mutltivariate
normal distribution is given by the following equation [9]:

ω̂ = argmax
ωi

{
− 1

2
D2

M
(x,µi(f))

−
1
2

log |Σi| + log p(ωi)
}
,

where D2

M
is the squared Mahalanobis distance defined by

D2

M(x,µi(f)) = (x − µi(f))′Σ−1

i (x − µi(f)).
The a priori probability p(ωi) is determined based on the
a posteriori probabilities of temporally neighboring notes
as described in the next section.

5 USING MUSICAL CONTEXT
As previously mentioned, the key idea behind using mu-
sical context is to apply, when calculating the a posteriori
probability given by p(ωi|xk) = p(xk|ωi)p(ωi)/p(x) of
a musical note nk, a posteriori probabilities of temporally
neighboring notes to the a priori probability p(ωi) of the
note nk (Figure 3). To achieve this calculation, we have
to resolve the following two issues:

Issue 1 How to find notes that are played on the same
instrument as the note nk from neighboring notes.
Because various instruments as well as that for the note
nk are played at the same time, an identification system
has to find notes that are played on the same instrument
as the note nk from notes on the various instruments.
This is not easy because it is mutually dependent on
musical instrument identification.

Issue 2 How to calculate a posteriori probabilities of
neighboring notes.
Calculating the a posteriori probabilities of temporally
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Figure 3: Basic idea for using musical con-
text. To calculate the posteriori probability of
the note nk, the a posteriori probabilities of
temporally neighboring notes of nk are used.

Figure 4: An example of judgment of whether notes are played on the same instrument
or not. The tuple “(a, b)” in the figure represents sh(nk) = a and sl(nk) = b.

neighboring notes also suffers from the mutual depen-
dency problem, that is, p(ωi|xk) is calculated from
p(ωi|xk−1) etc., while p(ωi|xk−1) is calculated from
p(ωi|xk) etc.

We resolve these issues as follows:

Solution 1 Use of musical role consistency
To solve Issue 1, we exploit musical role consistency,
which is musical heuristics that means each instrument
has a single musical role (e.g., a principal melody or
bass line) from the beginning to the end of a musi-
cal piece. Kashino et al. [5] also used musical role
consistency to generate music streams. They designed
two kinds of musical roles: the highest and lowest
notes (usually corresponding to the principal melody
and bass lines). This method, however, had prob-
lems in that it could cause ambiguity when applied
to a piece where four or more instruments are being
played simultaneously and that it could mistakenly de-
termine, when a principal melody was temporarily ab-
sent, the highest note to be a principal melody. To help
solve these problems, in this paper, we define a mu-
sical role as being based on how many simultanously
played notes there are in the higher or lower pitch
range. Let sh(nk) and sl(nk) be the maximum num-
ber of simultaneously played notes in the higher and
lower pitch ranges when the note nk is being played,
respectively. Then, the two notes, nk and nj , are con-
sidered to be played on the same instrument if and only
if sh(nk) = sh(nj) and sl(nk) = sl(nj) (Figure 4).

Solution 2 Two-pass calculation
To solve Issue 2, we pre-calculate a posteriori proba-
bilities without musical context. After this calculation,
we calculate them again using the a posteriori proba-
bilities of temporally neighboring notes.

[1st pass] Pre-calculation of a posteriori probabilities

For each note nk, the a posteriori probability p(ωi|xk)
is calculated by considering the a priori probability p(ωi)
to be a constant, because the a priori probability, which
depends on the a posteriori probabilities of temporally
neighboring notes, cannot be determined in this step.

[2nd pass] Re-calculation of a posteriori probabilities

This pass consists of three steps:

(1) Finding notes played on same instrument
Notes that satisfy {nj | sh(nk) = sh(nj) ∩ sl(nk) =
sl(nj)} are extracted from temporally neighboring
notes of nk. This extraction is performed from the
nearest notes to the farthest notes, and stops when c
notes are extracted. Let N be the set of the extracted
notes.

(2) Calculating a priori probability
The a priori probability of the note nk is calculated
based on the a posteriori probabilities of the notes ex-
tracted in the previous step. Let Znk

be a random
variable that represents the instrument for the note nk.
Then, the probability p(Znk

= ωi) that the instrument
for the note nk will be ωi is the a priori probability to
be calculated and can be expanded as follows:

p(Znk
= ωi)

= p(Znk
= ωi

∣∣ ∀nj ∈ N : Znj = ωi)

×
∏

nj∈N
p(Znj = ωi)

The first factor of the right side of this equation repre-
sents the probability that the note nk will be played on
the instrument ωi when all the extracted neighboring
notes of nk are played on ωi. Although this can be ac-
quired through statistical analysis, we use 1 − (1/2)2c

for simplicity. This is based on the heuristics that, as
more notes are used to represent a context, the context
information is more reliable. The a posteriori proba-
bility calculated in the first pass is used to calculate
p(Znj = ωi).

(3) Updating a posteriori probability
The a posteriori probability is re-calculated using the a
priori probability calculated in the previous step.

6 IMPLEMENTATION

6.1 Overview

Figure 5 has an overview of our MII system. Given an
audio signal of polyphonic music, the system first calcu-
lates a spectrogram using the short-time Fourier transform
(STFT) and then obtains the pitch, the onset time and the
duration of each note. Because our focus was solely on
evaluating the performance of MII by itself, we manually
fed correct note data into the system. Then, it identifies
the instrument of each note through four steps of feature
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Figure 5: Overview of our musical instrument identifica-
tion system.

extraction, dimensionality reduction, a posteriori proba-
bility calculation, and instrument determination.

6.2 Short-time Fourier transform

The spectrogram of the given audio signal is calculated by
STFT shifted by 10 ms (441 points at 44.1 kHz sampling)
with an 8192-point Hamming window.

6.3 Harmonic structure extraction

The harmonic structure of each note is extracted according
to the manually fed note data. Spectral peaks correspond-
ing to the first 10 harmonics are extracted from the onset
time to the offset time. Then, the frequency of the spectral
peaks are normalized so that the temporal mean of F0 is 1.

Then, the harmonic structure is trimmed because train-
ing and identification need notes with a fixed-length du-
ration. Because a template with a long duration is more
stable and robust than a template with a short one, it is
better to trim a note as long as possible. We therefore pre-
pare three templates with different durations (300, 450,
and 600 ms), and the longest within the actual duration of
each note is automatically selected and used for training
and identification. Notes shorter than 300 ms are excluded
from identification.

6.4 Feature extraction

Features that are useful for identification are extracted
from the harmonic structure of each note. From a feature
set that we previously proposed [9], we selected 43 fea-
tures (for the 600-ms template), summarized in Table 1,
that we expected to be robust with respect to sound mix-
tures. We use 37 and 31 feautres for the 450- and 300-

Table 1: Overview of 43 features
Spectral features

1 Spectral centroid
2 Relative power of fundamental component
3 – 10 Relative cumulative power from fundamental to

i-th components (i = 2, 3, · · · , 9)
11 Relative power in odd and even components
12– 20 Number of components whose duration is p%

longer than the longest duration
(p = 10, 20, · · · , 90)

Temporal features

21 Gradient of straight line approximating power
envelope

22– 30 Average differential of power envelope during
t-sec interval from onset time
(t = 0.15, 0.20, 0.25, · · · , 0.55[s])

31– 39 Ratio of power at t-sec after onset time
Modulation features

40, 41 Amplitude and Frequency of AM
42, 43 Amplitude and Frequency of FM

ms template, respectively, because some features are ex-
cluded due to limitations with note durations.

6.5 Dimensionality reduction

The dimensionality of the 43-, 37- or 31-dimensional fea-
ture space is reduced through two successive processing
steps: it is first reduced to 20 dimensions by applying PCA
with a proportion value of 99%, and then further reduced
by applying LDA. The feature space is finally reduced to a
3-dimensional space when we deal with four instruments.
Because LDA is a dimensionality reduction technique that
maximizes the ratio of the between-class covariance to the
within-class covariance, it enables us to set high weights
for robust features with respect to sound mixtures.

6.6 A posteriori probability calculation

For each note nk, the a posteriori probability p(ωi|xk)
is calculated. This is based on the two-pass method, de-
scribed in Section 5, with the F0-dependent multivariate
normal distribution, described in Section 4.

6.7 Instrument Determination

The instrument maximizing the a posteriori probability
p(ωi|xk) is determined as the result for the note nk.

7 EXPERIMENTS

7.1 Data for experiments

We used two kinds of musical audio data: isolated notes
of solo instruments, and polyphonic music. The data
on the isolated notes were excerpted from RWC-MDB-I-
2001 [10], and were used to create the audio data for the
polyphonic music, as well as to obtain the solo-sound tem-
plate. Details on the solo-instrument audio data are listed
in Table 2. All data were sampled at 44.1 kHz with 16 bits.

Both trio and duo music were used as polyphonic mu-
sic, and their audio data were generated by mixing the
audio data listed in Table 2 according to standard MIDI
files (SMFs) on a computer. The SMFs we used in the
experiments were three pieces taken from RWC-MDB-C-
2001 (Piece Nos. 13, 16 and 17) [11]. We chose three or
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Table 2: Audio data on solo instruments
Instr. Name Pitch Vari- Dynam- Articu- # of
No. Range ation ics lation data
01 Piano (PF) A0–C8 1, 2, 3 Forte, 792
15 Violin (VN) G3–E7 ′′ Mezzo Normal 576
31 Clarinet (CL) D3–F6 ′′ & only 360
33 Flute (FL) C4–C7 1, 2 Piano 221

Table 3: Experimental results
(a) (b) (c) (d) (e)

MS Templ. — —
√ √ √

F0-dpt. —
√

—
√ √

Context —
√ √

—
√

PF 83.4% 88.6% 95.1% 83.8% 91.6%
Trio VN 70.8% 86.9% 83.8% 74.6% 86.8%

No.13 CL 45.0% 34.8% 78.4% 77.3% 85.5%
FL 57.8% 60.1% 81.2% 77.2% 81.8%
PF 86.7% 95.6% 97.4% 91.2% 97.7%

Trio VN 60.7% 73.4% 84.5% 60.9% 82.9%
No.16 CL 52.9% 29.0% 89.1% 78.0% 89.8%

FL 50.1% 65.7% 79.0% 71.9% 80.9%
PF 80.0% 87.5% 87.5% 83.9% 91.1%

Trio VN 56.5% 71.0% 71.0% 66.8% 84.8%
No.17 CL 33.8% 19.4% 74.5% 66.0% 78.6%

FL 52.3% 51.1% 77.0% 75.0% 78.6%
Average 60.8% 63.6% 83.2% 75.6% 85.8%

PF 92.3% 96.9% 98.8% 91.4% 97.4%
Duo VN 71.1% 86.6% 85.1% 71.1% 90.2%

No.13 CL 58.5% 52.1% 93.6% 83.0% 93.6%
FL 56.4% 54.5% 86.1% 76.2% 91.1%
PF 93.6% 98.6% 99.0% 95.3% 98.7%

Duo VN 64.0% 74.0% 86.0% 58.9% 78.4%
No.16 CL 63.4% 37.3% 95.4% 83.7% 94.1%

FL 47.5% 61.7% 83.0% 69.5% 86.5%
PF 89.0% 94.9% 94.5% 92.3% 96.7%

Duo VN 60.3% 80.3% 74.7% 69.1% 91.9%
No.17 CL 41.8% 30.7% 92.8% 74.5% 91.5%

FL 48.5% 50.9% 77.8% 74.9% 82.6%
Average 65.5% 68.2% 88.9% 78.3% 91.1%

MS. Templ.: Mixed-sound template.
Single- and double-underlined numbers denote recognition rates
of more than 80% and 90%, respectively.

two simultaneous voices from each piece to generate trio
or duo music from these SMFs. To avoid using the same
audio data for training and testing, we used 011PFNOM,
151VNNOM, 311CLNOM, and 331FLNOM for the test data
and the rest in Table 2 for the training data.

7.2 Experimental results

Table 3 lists results of experiments conducted with the
leave-one-out cross-validation method. Using a mixed-
sound template, an F0-dependent multivariate normal dis-
tribution and musical context, we improved the recogni-
tion rate of MII from 60.8% to 85.8% for trio music and
from 65.5% to 91.1% for duo music, on average. The ob-
servations of the results can be summarized as follows:
• Effectiveness of the mixed-sound template

When we compared the case (e) with the case (b), the
recognition rate was improved by more than 20% on
average. In particular, those for CL and FL were signif-
icantly improved: from 20–65% to 78–94%.

• Effectiveness of pitch-dependent model
F0-dependent multivariate normal distribution im-
proved the recognition rates, on average, from 83.2%

to 85.8% for trio music and from 88.9% to 91.1% for
duo music. This improvement, however, only occurred
when the mixed-sound template was used.

• Effectiveness of musical context
Using musical context also improved the recognition
rates, on average, from 75.6% to 85.8% for trio music
and from 78.3% to 91.1% for duo music. This was be-
cause, in the musical pieces used in our experiments,
pitches rarely cross among the melodies of simultane-
ous voices.

8 CONCLUSION
We have described three methods that work in combi-
nation to automatically generate the description of mu-
sical instrument names for music information retrieval.
To identify the name of the musical instrument perform-
ing each note in polyphonic sound mixtures of musical
pieces, our methods solve three problems: feature varia-
tions caused by sound mixtures, the pitch dependency of
timbres, and the use of musical context. In our experi-
ments with three musical pieces including four musical
instruments, we found that our methods achieved recogni-
tion rates of 85.8% for trio music and 91.1% for duo music
on average and confirmed the robustness and effectiveness
of those methods. Future work will include to integrate
our methods with a musical note estimation method be-
cause the pitch and onset time of each note are manually
given in our experiments to reveal the performance of in-
strument identificatin.
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