

COMBINING D2K AND JGAP FOR EFFICIENT FEATURE WEIGHTING
FOR CLASSIFICATION TASKS IN MUSIC INFORMATION RETRIEVAL

Rebecca Fiebrink Cory McKay Ichiro Fujinaga
 Music Technology

McGill University
Montreal, Canada

{rebecca.fiebrink, cory.mckay}@mail.mcgill.ca, ich@music.mcgill.ca

ABSTRACT

Music classification continues to be an important com-
ponent of music information retrieval research. An un-
derutilized tool for improving the performance of classi-
fiers is feature weighting. A major reason for its unpopu-
larity, despite its benefits, is the potentially infinite cal-
culation time it requires to achieve optimal results. Ge-
netic algorithms offer potentially sub-optimal but rea-
sonable solutions at much reduced calculation time, yet
they are still quite costly. We investigate the advantages
of implementing genetic algorithms in a parallel comput-
ing environment to make feature weighting an affordable
instrument for researchers in MIR.

Keywords: Classification, Feature Weighting, Parallel
Computing, D2K.

1 INTRODUCTION
Classification is a lively area of research within music
information retrieval (MIR). Genre and composer classi-
fication systems, similarity-based music recommenda-
tion systems, and intelligent interactive accompaniment
systems are just a few of the areas where these tech-
niques are used. Unfortunately, the variety and technical
sophistication of pattern recognition techniques available
can make it difficult to choose the best approach to apply
to a particular problem.

An automated system for optimally selecting and
fine-tuning classifiers for a given problem could allow
researchers to devote their time and energies to tasks
more important than adapting and implementing classi-
fication systems themselves. The Autonomous Classifi-
cation Engine (ACE) project at McGill University is
such a tool, and it is built with the particular needs of
the MIR community foremost in mind (McKay et al.
2005). ACE experimentally compares a variety of di-
mensionality reduction techniques, classification algo-
rithms, and classifier ensembles in order to find suitable
approaches to use for a given user’s data set, feature set,

and taxonomy. The incorporation of efficient, parallel
feature weighting using genetic algorithms will contrib-
ute significantly to ACE’s power and flexibility; this
paper discusses the implementation and performance of
the feature weighting subsystem.

2 FEATURE WEIGHTING
Even though many features may be available to a classi-
fier, it is not necessarily desirable to use all of them. In
fact, the size of a classifier’s training set must generally
grow exponentially with the dimensionality of the fea-
ture space (Duda et al. 2001, 169–70). Relevant features
can be selected from the set of available features by ex-
perimentation, wherein a classifier is trained and evalu-
ated using candidate feature subsets. An exhaustive
search for the optimal subset is often infeasible, how-
ever, because the number of potential subsets grows at a
rate of Θ(2d), where d is the number of available features
(Siedlecki and Sklansky 1989).

Feature weighting attempts to further optimize a clas-
sification scheme by assigning real-valued weights to
features according to their relevancy (Punch et al.
1993). Just as in feature selection, candidate sets of fea-
ture weights can be evaluated experimentally. However,
the search space of candidate weight sets now grows
with Θ(nd), where n is the (potentially infinite) number
of allowable values for each weight (Punch et al. 1993).

One might be tempted to perform an analysis of the
final choice of feature subset or weights to obtain new
insights about a classification problem, particularly in
MIR. However, the performance of selection or weight-
ing schemes is dependent on the data set, classification
problem, and classifier in quite complex ways, and such
analysis is beyond the scope of this project.

3 GA’S AND FEATURE WEIGHTING
Genetic algorithms (GA’s) (Holland 1975) are an ap-
proach to computation inspired by biological evolution,
and they are useful in optimization problems in which
maxima are hard to find deterministically. A GA main-
tains a population of individuals that evolve according
to specific rules of selection and through operators such
as crossover and mutation. The fitness of each individ-
ual in the environment is evaluated, and selection ex-
ploits this information in favoring high-fitness individu-
als.

Permission to make digital or hard copies of all or part of this
work for personal or classroom use is granted without fee pro-
vided that copies are not made or distributed for profit or com-
mercial advantage and that copies bear this notice and the full
citation on the first page.

© 2005 Queen Mary, University of London
To accomplish feature selection or weighting for d

features using GA’s, individuals are represented as
chromosomes with d genes, where the genes are binary-

510

valued for selection and real-valued for weighting. The
fitness of each chromosome is evaluated experimentally
by training and testing a classifier using the given
weights, where better classifier performance yields
higher fitness. Siedlecki and Sklansky (1989) found that
GA’s could quickly find near-optimal solutions to fea-
ture selection for a k-NN classifier. Punch et al. (1993)
studied GA feature weighting for k-NN classifiers and
found that feature weighting outperformed feature selec-
tion alone. They also found that implementing the sys-
tem in parallel compensated for the long computation
time needed to experimentally compute chromosome
fitness. McKay (2004) has successfully applied GA’s to
feature selection and weighting in MIR classification
problems. Additionally, Minaei-Bidgoli et al. (2004)
have recently shown that GA’s are also powerful tools
for feature weighting in multiple classifier systems.

4 IMPLEMENTATION
This system includes functionality for feature weighting
using GA’s, and it allows for parallel configuration to
reduce computation time. Of foremost concern to the
design of any feature weighting system are its efficiency
and accuracy. However, several other goals must be
considered in the design of a system targeted at the di-
verse MIR community. The system should be portable
to any operating system and hardware configuration. Its
core features, including parallelism, should be accessi-
ble by any music research lab, whether it is outfitted
with high-end shared-memory clusters or simply with a
handful of workstations. The system should be scalable
to use more or fewer computing nodes for its operations,
depending on variable external demands on computing
resources. Finally, the system should be flexible to al-
low customization (e.g., changes to the GA behavior).

4.1 JGAP

We looked to the open-source community for existing
stable, robust GA software. JGAP (Rotstan and Meffert
2005) is a GA package written in Java and distributed
freely. Its design is modular, it is well documented and
easily extensible, and active developer and user commu-
nities promote continual improvements. These character-
istics support our goals of portability and flexibility.

4.2 D2K

The Data-to-Knowledge (D2K) machine learning envi-
ronment was chosen as the framework to support parallel
and distributed operations. D2K is “a visual program-
ming environment that allows for rapid prototyping and
algorithm development” (Downie 2004). It is written in
Java, so it is portable. Furthermore, it is the underlying
foundation of the new M2K system for MIR research, so
many of ACE’s users will likely already be using D2K.

D2K programs (or “itineraries”) are dynamically
scalable in that a user can specify at runtime that indi-
vidual components (or “modules”) of a D2K program

are to run in parallel, as well as designate on which re-
mote machines they should run. There are no constraints
on the hardware or operating systems of these machines,
so D2K’s parallelism is accessible to any lab with two
or more computers connected over a LAN or the inter-
net.

4.3 Implementation of the Feature Weighting System

Our feature weighting system combines a GA built on
JGAP with custom D2K modules. The GA uses chromo-
somes of length d, where d is the number of potential
features. Mutation occurs with a probability of 6.67%.
Parents and children are all evaluated for fitness, and the
top m individuals are preserved for the next generation,
where m is the desired population size. (We keep the
JGAP default settings for parameters such as mutation
rate and selection method, as the goal is not to optimize
GA weighting but rather to demonstrate its potential.)
The algorithm stops when the best individual’s fitness
does not improve over five subsequent generations.

The parallel strategy used by the system is “master-
slave parallelism” (Cantú-Paz 2000), also called “micro-
grained parallelism” by Punch et al. (1993). In a master-
slave GA, a single population is maintained on a “mas-
ter” node that handles selection, crossover, and muta-
tion. The master sends a portion of the population to
each “slave” node for parallel fitness evaluation. The
master-slave model is easy to implement, and existing
design guidelines for serial single-population models
can be directly applied (Cantú-Paz 2000).

The system uses a D2K itinerary to perform fitness
evaluation on a population. An Input module loads the
entire population and passes one chromosome at a time
to a Fitness Evaluator module. The Fitness Evaluator
assesses a chromosome’s fitness via leave-one-out
cross-validation of a k-NN classifier on the data. This
module can clone itself and run in parallel on any num-
ber of slave machines, one clone at a time per processor.
At its termination, each clone passes its chromosome
with its calculated fitness to an Output module, which
reassembles the population. Upon termination of the
itinerary, control returns to the JGAP GA for selection.

This implementation allows slaves that are operating
fastest at the time of execution to take on more of the
computational load, as they can be assigned more mod-
ule clones. This results in higher throughput than a sys-
tem that naively places equal loads on all processors.
This is of utmost importance to small labs, in which all
nodes may double as workstations and/or web servers,
and node performance can vary dramatically over the
course of a day.

The current system is quite flexible: population size,
GA behavior, the number of features, and the allowable
feature weights can all be changed easily. Currently, the
system evaluates chromosomes using a k-NN classifier
derived from Weka and reads data from Weka ARFF
files (Witten and Frank 2000), but a modular design
allows use with any other classifier system.

511

5 SYSTEM PERFORMANCE
Three basic tests were conducted to assess system per-
formance, and an additional two tests were run to further
demonstrate its usefulness on problems for which ex-
haustive feature selection is infeasible. In the first test,
the system performed feature weighting on a standard
768-instance, 8-feature data set (Pima Indian Diabetes
from the UCI Repository, Blake and Merz 1998). Five
trials were performed on each of three small populations,
and k=1 neighbor was used. The master node used a
2.8GHz Pentium 4 PC with 1.5GB RAM, and the slaves
used a 2.8GHz Pentium 4 server with 1GB RAM run-
ning Linux and a 867MHz, 512MB PowerPC running
OS X.

Table 1 shows the population size, mean number of
generations to convergence, mean hours to convergence,
and the mean and standard deviation of the percent of
instances correctly classified using leave-one-out cross-
validation. Classification of this data set without weight-
ing or selection yielded a success rate of 69.8%. An ex-
haustive search for the optimal feature subset took 0.27
hours and resulted in a success rate of 70.8%.

Table 1: Feature weighting, UCI Diabetes.

P Avg.
Gen.

Avg.
Time (h)

Avg. %
Correct

SD %
Correct

10 8.8 0.109 72.5 0.475
20 10.2 0.230 72.1 0.687
50 18.6 0.944 73.2 0.590

In this small test, classification accuracy using fea-
ture weighting compared favorably to classification us-
ing optimal feature selection and classification without
selection or weighting.

The second test examined classification time for an-
other standard data set (UCI Breast Cancer, Zwitter and
Soklic 1988), which contained 286 instances with 9 fea-
tures. Its smaller size facilitated more extensive testing
where ten tests were run on each population size: five
tests used three nodes, and five used one (the master).
The master ran on a 2.4GHz, 512MB RAM PC, and the
slaves ran on the Linux and Macintosh machines used in
Test 1. k=17 neighbors was used. Table 2 shows the
population size, mean number of generations to conver-
gence, mean and standard deviation of the percent cor-
rectly classified using leave-one-out cross-validation,
and running time for one and three processors. Exhaus-
tive search for the optimal feature subset took 0.08 hours
and yielded a classification rate of 76.9%, and classifica-
tion without selection or weighting yielded 73.4%.

Table 2: Feature weighting, UCI Breast Cancer.

Avg. Time (h) P Avg.
Gen

Avg. %
Correct

SD %
Correct 1p 3p

10 10.8 76.9 0.66 0.04 0.03
20 11.4 77.2 0.43 0.10 0.05
50 10.2 77.5 0.47 0.27 0.08

100 11.2 77.8 0.54 0.58 0.16
200 13.4 78.1 0.46 0.84 0.35
500 11.5 78.2 0.51 2.09 0.59

Test 2 shows that feature weighting can be superior to
exhaustive feature selection on this data set and com-
pares favorably even for small populations. Test 2 also
shows that classification accuracy tends to improve with
population size, a finding supported by studies on GA’s
indicating that the greater diversity of large populations
deters premature convergence and therefore tends to
produce higher-quality solutions (Cantú-Paz 2000). This
finding underscores the need for parallel systems that
can reduce the long runtime of feature weighting using
large populations.

Test 2 demonstrates a significant speedup resulting
from parallel execution. The total runtime for three
nodes is, on average, approximately one-third of that for
one node alone. This suggests that communication costs
are very low in comparison to the cost of fitness evalua-
tion. These results suggest that additional nodes would
appreciably further speed up computation, and that labs
with only a few machines can still benefit from parallel-
ism.

The third test applied feature selection to the snare
drum timbre recognition problem presented by Tindale
et al. (2004). The data set consisted of 1260 instances,
created by three players playing each of seven snare
drum strokes twenty times on three drums. Tindale’s
study included features from time-domain only and
time- and frequency-domain measurements, extracted
from the attack portion only and from 512-sample win-
dows over the whole signal. Each of the four classifica-
tion problems selected here uses a unique combination
of these feature and signal types to distinguish among
the seven strokes. Feature selection was performed once
on each problem using an initial population size of 50.
k=1 neighbor was used. Table 3 shows the classification
problem, the number of available features, the perform-
ance of Tindale’s best classifier on that problem, and the
performance of our classifier after feature selection. 10-
fold cross-validation is used for both our results and
Tindale’s. An exhaustive search for optimal feature se-
lection was also performed on the time-domain features;
this yielded 91.9% accuracy for the attack portion prob-
lem and 92.9% accuracy for the 512-sample problem,
and it took 0.7 hours to perform each search.

Table 3: Comparison of snare drum timbre classi-
fication with Tindale et al. 2004.

Problem No.
Features

Tindale et
al. %

Feature
Selection %

All, attack 57 94.9 98.5
All, 512 35 93.0 95.5

Time, attack 8 90.8 91.9
Time, 512 8 90.9 92.9

Test 3 demonstrates improvement in all four problems
over Tindale’s best classifications of snare drum timbre.
These improvements arose from just one run of a feature
selection GA with a relatively small initial population.
Additionally, the GA’s found optimal solutions for the
two 8-feature problems for which it was possible to ex-
haustively search the selection space. Based on the find-

512

ings above, it is likely that the selection on the other two
problems was near-optimal, and that using feature
weighting could result in even greater accuracy.

Finally, the system was run on two other classifica-
tion problems for which exhaustive feature selection was
infeasible. The first was the UCI vehicle recognition
problem, in which 846 instances with 18 features were
classified into 4 categories (Blake and Merz 1998). k=1
neighbor was used. Classification without selection
yielded 69.5% accuracy. Using feature selection and an
initial population of 50, the system achieved 75.5% ac-
curacy.

The second classification task, another example from
MIR, was a beat-box sound recognition problem using
1192 recorded instances, each belonging to one of five
classes of hits (Sinyor et al. 2005). The data was col-
lected from six beatboxers, and 24 potential features
were extracted using spectral and temporal measure-
ments. k=1 neighbor was used. Classification without
selection yielded 93.3% accuracy. Using feature selec-
tion and an initial population of 50, the system was able
to reach 94.7% accuracy.

6 CONCLUSIONS
We have implemented efficient and accurate feature se-
lection and weighting using JGAP and D2K in the con-
text of MIR and the ACE project. Tests show that k-NN
classification using feature weighting outperforms un-
weighted classification and can surpass classification
using exhaustive feature selection. Additionally, feature
selection alone outperforms the best published results on
snare drum timbre classification. Furthermore, the sys-
tem’s parallel implementation results in significant
speedup using as few as three nodes. These results sug-
gest that this system can be quite useful to MIR research,
especially when applied to large classification problems
for which exhaustive feature selection is infeasible.

Future work will include adding greater flexibility,
such as the ability to automatically optimize GA parame-
ters given constraints on time and computing resources.
Plans are also in place to use the existing parallel frame-
work to efficiently conduct empirical comparisons of
GA’s with other selection and weighting algorithms on a
variety of classification problems. Further testing, par-
ticularly on MIR-related problems, will continue to elu-
cidate the system’s relative strengths and limitations.

ACKNOWLEDGEMENTS
We gratefully acknowledge support from the McGill
University Max Stern Fellowship in Music, SSHRC, and
the McGill Alma Mater Fund. We also thank Adam Tin-
dale and Elliot Sinyor for sharing their data.

REFERENCES
Blake, C., and C. Merz. 1998. “UCI Repository of
machine learning databases.” <http://www.ics.uci.edu/
~mlearn/MLRepository.html> University of California,

Irvine, Department of Information and Computer
Sciences. Accessed 13 April 2005.

Cantú-Paz, E. 2000. Efficient and accurate parallel
genetic algorithms. Boston: Kluwer Academic.

Downie, J. 2004. International music information
retrieval systems evaluation laboratory (IMIRSEL):
Introducing D2K and M2K. Demo Handout at the 2004
International Conference on Music Information
Retrieval.

Duda, R., P. Hart, and D. Stork. 2001. Pattern
classification. New York: John Wiley & Sons, Inc.

Holland, J. H. 1975. Adaptation in natural and artificial
systems. Ann Arbor: University of Michigan Press.

McKay, C. 2004. Automatic genre classification of
MIDI recordings. M.A. Thesis. McGill University,
Canada.

McKay, C., R. Fiebrink, D. McEnnis, B. Li, and I.
Fujinaga. 2005. ACE: A framework for optimizing
music classification. Proceedings of the International
Conference on Music Information Retrieval.

Minaei-Bidgoli, B., G. Kortemeyer, and W. Punch.
2004. Optimizing classification ensembles via a genetic
algorithm for a web-based educational system.
Proceedings of the International Workshop on
Syntactical and Structural Pattern Recognition and
Statistical Pattern Recognition, 397–406.

Punch, W., E. Goodman, M. Pei, L. Chia-Shun, P.
Hovland, and R. Enbody. 1993. Further research on
feature selection and classification using genetic
algorithms. Proceedings of the 5th International
Conference on Genetic Algorithms, 557–64.

Rotstan, N., and K. Meffert. 2005. JGAP: The Java
genetic algorithms package. <http://jgap.
sourceforge.net/> Accessed 13 April 2005.

Siedlecki, W., and J. Sklansky. 1989. A note on genetic
algorithms for large-scale feature selection. Pattern
Recognition Letters 10 (5): 335–47.

Sinyor, E., C. McKay, R. Fiebrink, D. McEnnis, and I.
Fujinaga. 2005. Beatbox classification using ACE.
Proceedings of the International Conference on Music
Information Retrieval.

Tindale, A., A. Kapur, G. Tzanetakis, and I. Fujinaga.
2004. Retrieval of percussion gestures using timbre
classification techniques. Proceedings of the
International Conference on Music Information
Retrieval.

Witten, I., and E. Frank. 2000. Data mining: Practical
machine learning tools and techniques with Java
implementations. San Francisco: Morgan Kaufmann.

Zwitter, M., and M. Soklic. 1988. This breast cancer
domain was obtained from the University Medical
Centre, Institute of Oncology, Ljubljana, Yugoslavia.

513

