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ABSTRACT

This paper proposes “harmonic-temporal structured clus-
tering (HTC) method”, that allows simultaneous estima-
tion of pitch, intensity, onset, duration, etc., of each under-
lying source in multi-stream audio signal, which we ex-
pect to be an effective feature extraction for MIR systems.
STC decomposes the energy patterns diffused in time-
frequency space, i.e., a time series of power spectrum, into
distinct clusters such that each of them is originated from
a single sound stream. It becomes clear that the problem
is equivalent to geometrically approximating the observed
time series of power spectrum by superimposed harmonic-
temporal structured models (HTMs), whose parameters
are directly associated with the specific acoustic charac-
teristics. The update equations in DA(Deterministic An-
nealing)EM algorithm for the optimal parameter conver-
gence are derived by formulating the model with Gaussian
kernel representation. The experiment showed promising
results, and verified the potential of the proposed method.

Keywords: audio feature extraction, multi-pitch estima-
tion, harmonic-temporal structured clustering.

1 INTRODUCTION

Automatic audio feature extraction of music signals has
been taken as one of the most important topics in recent
music processing area, towards developing music infor-
mation retrieval (MIR) systems. This paper describes a
new approach of extracting audio features, e.g., pitch, on-
set, duration, intensity, timbre and so forth of underlying
note events, simultaneously from input multi-stream mu-
sic signal, based upon bottom-up deterministic model pa-
rameter optimization methodology.

Developing reliable multi-pitch analysis algorithm for
accurately obtaining these features is of primary impor-
tance. Contrary to this requirement, the standard level
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of the numerous conventional methods for multi-pitch
analysis has been considered to be far from a practi-
cal use. However, the recent pioneering ideas, e.g.,
graphical model based (Kashino et al., 1995), filter-
bank based (Klapuri et al., 2000), Kalman filtering based
(Nishi et al., 1996; Abe and Ando, 2000), multi-agent
based (Nakatani, 2002) and parametric signal and spec-
trum modelings based approaches (Feder and Weinstein,
1988; Chazan et al., 1993; Godsill and Davy, 2002; Goto,
2004; Kameoka et al., 2005) brought remarkable progress.
While multi-pitch analysis is, in general, a typical ill-
posed problem of extracting necessary information lying
beneath an ambiguous observation, most of these meth-
ods made the problem solvable basically by dealing with
frequency and time dimensions separately: first extract
instantaneous pitch likelihoods of concurrent sources at
each short-time segment and then interpolate/extrapolate
them to build up most likely overall continuous tempo-
ral pitch structures of multiple audio streams. In auditory
scene analysis (ASA), these two processes in human au-
dition are generally called ‘segregation’ and ‘integration’,
respectively.

In contrast to the common strategy based on sequential
integration of instantaneous pitch likelihoods extracted via
segregation process, whose performance depends criti-
cally on how precisely the segregation process works, this
paper aims to offer yet another framework based on si-
multaneous estimation of geometric structures in both fre-
quency and time directions of power spectra of underlying
sound sources.

2 GENERAL FORMULATION

Consider time series of observed power spectrumW(x, t),
wherex andt are log-frequency and time, whose domain
of definition is

D = {x, t ∈ R | Ω0≤x≤Ω1, T0≤t≤T1}. (1)

The problem we are dealing with is to decompose this
observed pattern intoK number of sequential spectral
streams, i.e., clusters, such that each is originated from
a single distinct source activation. This problem is, obvi-
ously, an unsupervised categorization of the energy den-
sity W(x, t) at each coordinate(x, t), and is hardly a
straightforward issue.
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The observed energy densityW(x, t) at each coordi-
nate(x, t) is not always completely originated from a sin-
gle source but rather superposed by energy patterns gen-
erated from different sources that are located close to each
others inxt plane, making it totally ambiguous. Thus, we
shall assume that each energy densityW(x, t) has fuzzy
membership, i.e., the membership degreem(k; x, t), in k-
th cluster. Approximately assuming that observed power
spectral densities are the sum of actual power densities of
underlying sources, which is not precisely true but accept-
able in expectation sense (where phase differences take
uniformly random values),m(k; x, t) satisfies

∑

∀k

m(k; x, t) = 1, ∀k, 0 ≤ m(k; x, t) ≤ 1. (2)

Therefore, m(k; x, t)W(x, t) denotes the decomposed
spectral density of thek-th source, i.e.,k-th cluster. Let
us defineqk(x, t;Θ) as a function modeling latent dis-
tinct spectral stream density ofk-th active source (in mu-
sic, corresponds to a single note event), governed by pa-
rameter vectorΘ, where the class of the sources men-
tioned here, in general, includes not only harmonic sig-
nals but even white or pink noises or any others, as far
as those properties can be well modeled inqk(x, t;Θ)
with a mathematical representation. Now the function
qk(x, t;Θ) is what we are to estimate and ‘goodness’ of
the partitioned clusterm(k; x, t)W(x, t) can be measured
by a quasi-distance ofm(k; x, t)W(x, t) andqk(x, t;Θ):

∫∫

D

m(k; x, t)W(x, t)︸ ︷︷ ︸
density of clusterk

log
m(k; x, t)W(x, t)

qk(x, t;Θ)
dxdt (3)

Though defining some other forms for the quasi-distance
is certainly possible such likeL2 norm, the intention
of giving this specific form shown above will become
clear in the following descriptions. It is obvious that as
qk(x, t;Θ) andm(k; x, t)W(x, t) become closer, Eq. 3
approaches zero. Hence a global cost function of the clus-
tering to minimize w.r.t.Θ is given as

J=
∑

∀k

∫∫

D

m(k; x, t)W(x,t) log
m(k; x, t)W(x,t)

qk(x, t;Θ)
dxdt (4)

subjected to
∫∫

D

W(x, t)dxdt =
∑

∀k

∫∫

D

qk(x, t;Θ)dxdt = W (5)

(to let J be non-negative, cf., Jensen’s inequality) where it
can be further rewritten as

J = −I(Θ) − λ

(∑

∀k

m(k; x, t) − 1

)

+
∑

∀k

∫∫

D

m(k; x, t)W(x, t) logm(k; x, t)W(x, t)dxdt

I(Θ)≡
∑

∀k

∫∫

D

m(k; x, t)W(x, t) logqk(x, t;Θ)dxdt (6)

whereλ is a Lagrange multiplier. Although minimizing
J w.r.t. bothΘ andm(k; x, t) rarely has an analytic so-
lution, it can be monotonically decreased by alternately

optimizingΘ andm(k; x, t), similar to the basic iterative
clustering algorithm such as thek-means algorithm. Par-
tial derivative of the integrand inJ w.r.t. m(k; x, t) is

W(x, t)

(
1 + log

m(k; x, t)

qk(x, t;Θ)

)
− λ (7)

such that setting it zero gives

m(k; x, t) = qk(x, t;Θ) exp

(
λ

W(x, t)
− 1

)
. (8)

From Eqs. 2 and 8, we get

λ = W(x, t)

(
1 − log

∑

∀k

qk(x, t;Θ)

)
(9)

such that substituting Eq. 9 in Eq. 8, we finally have the
optimal membership degree under fixedΘ, given as

m̂(k; x, t) =
qk(x, t;Θ)∑

∀k

qk(x, t; Θ)
. (10)

Substituting Eq. 10 in 4, it becomes exactly the same form
as the KL(Kullback-Leibler) divergence betweenW(x, t)
and the sum ofqk(x, t;Θ) for all k, i.e.,

Jmk= bmk
=

∫∫

D

W(x, t) log
W(x, t)∑

∀k

qk(x, t;Θ)
dxdt (11)

such that this clustering can also be understood as a
model-based geometric optimal approximation. Another
interesting interpretation of this result is that by regarding
k as missing data and replacingqk(x, t;Θ) with com-
plete data pdfp(k, x, t|Θ), it proves the convergence of
EM(Expectation-Maximization) algorithm from another
viewpoint without applying any probability laws. The cor-
respondence to the EM algorithm becomes much clearer
by comparing Eqs. 6 and 10 withQ function, given by

Q(Θ, Θ̃) =

∑

∀k

∫∫

D

missing data pdf︷ ︸︸ ︷
p(k|x, t, Θ)

observed pdf︷ ︸︸ ︷
W(x, t) log

complete data pdf︷ ︸︸ ︷
p(k, x, t|Θ̃) dxdt

p(k|x, t, Θ) =
p(k, x, t|Θ)

p(x, t|Θ)
=

p(k, x, t|Θ)∑

∀k

p(k, x, t|Θ)

wherek, x, t ∈ Ω (probabilistic variable) and∫∫

D

W(x, t)dxdt = 1,
∑

∀k

∫∫

D

p(k, x, t|Θ)dxdt = 1.

Under fixed membership degreem(k; x, t), on the other
hand, parameterΘ can be updated by

Θ̂ = argmin
Θ

J = argmax
Θ

I(Θ)

(
= argmaxfΘ Q(Θ, Θ̃)

)
(12)

according to the specific form ofqk(x, t;Θ), which will
be formulated in the next section. We call the methodol-
ogy for multi-pitch analysis based on this general formu-
lation ‘spectro-temporal structured clustering (STC)’.
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Figure 1:k-th harmonic-temporal structured model (HTM)qk(x, t;Θ) (Eq. 17)
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Figure 2: Cutting plane ofqk(x, t; Θ) at timet (Eq. 15)
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Figure 3: Power envelope functionUkn(t) (Eq. 19)

3 HTC FORMULATION

3.1 MODEL REPRESENTATION

In this section, a mathematical form ofqk(x, t;Θ) is de-
scribed. Now let us focus only on harmonic signal, that
has pitch or fundamental frequency (F0), through the rest
of this paper, given that music audio feature extraction is
indeed what we are practically aiming for. Let us call the
model particularly limited to harmonic signals ‘harmonic-
temporal structured model (HTM)’. Suppose the funda-
mental log-frequency trajectory during a single source ac-
tivation is expressed with a polynomial

µk(t) = µk0 + µk1t + µk2t2 + · · · (13)

(imagine vibrato or glissando), a cutting plane of
qk(x, t;Θ) at particular timet shall form a pure harmonic
structure of fundamental log-frequencyµk(t) (see Fig. 2).

Frequency and power of each partial in harmonic
structure yield continuous curves along time. Given fun-
damental log-frequency trajectoryµk(t) in k-th HTM,
frequency trajectory of then-th partial isµk(t) + logn.
Now if each partial distribution is approximated by a
Gaussian function, which is a quite convincing modeling
especially when spectra are obtained by Gabor wavelet
transform, and suppose power envelope curve ofn-th par-
tial is denoted byUkn(t) (presumed to be a function that
is normalizable sinceqk(x, t;Θ) has to satisfy Eq. 5),

∀k,∀n,

∫1
−1Ukn(t)dt = 1, (14)

the power density of then-th partial ink-th HTM is ex-
pressed as a multiplication:

Ukn(t)× vkn√
2πσk

e
−

(x−µk(t)−log n)2

2σk
2

︸ ︷︷ ︸
weighted Gaussian centered atx=µk(t)+logn

(
n=1,· · ·,N)

(15)

whereσk denotes the width of every partial distribution

andvkn is the relative power ofn-th partial, that satisfies

∀k,
∑

∀n

vkn = 1. (16)

Therefore, the power density ofk-th HTM, i.e.,
qk(x, t;Θ), as a whole (see Fig. 1) becomes

qk(x, t;Θ) = wk

∑

∀n

vknUkn(t)√
2πσk

e
−

(x−µk(t)−log n)2

2σk
2 (17)

where wk indicates the intensity of thek-th source.
Further, superposition ofK number of spectral streams,
i.e., overall density of the model for given observation
W(x, t), shall be expressed as a sum of HTMs,

L(x, t;Θ) =
∑

∀k

qk(x, t;Θ)
(
k=1,· · ·, K)

(18)

Since developing general algorithm for music audio
feature extraction that appropriately works even if any in-
struments are used is a completely ‘blind’ problem, it is
perhaps wise not to limit the class of the power envelope
function Ukn(t) to a model valid only for a particular
physical sound production mechanism. Thus, the general
modeling ofUkn(t) is one of the core parts of this work.

Ukn(t) is supposed to be continuous, non-negative,
converging to zero at both ends of the time axis, adapt-
able to any observed curves and elastic in time direction.
Furthermore, to accomplish Eq. 12 and to satisfy Eq. 14,
it should be differentiable and infinite integrable. Find-
ing non-linear function satisfying these requirements at
the same time is hardly simple, however, we came up to
formulating it with an original Gaussian kernel function,
which is given as

Ukn(t)=

Y−1∑

y=0

ukny√
2πφkn

exp

(
−

(t − τk − yφkn)2

2φkn
2

)
(19)

where τk is the center of the forefront Gaussian, that
should be treated as an onset time estimate,ukny is the
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Table 1: The feature parameters that can possibly be useful for MIR systems
denotation physical meanings
�k(t) pitch trajectory duringk-th source activation (0-order polynomial would be a reasonable way to use)
wk intensity ofk-th active source
vkn relative energy ofn-th partial stream (perhaps useful as a timbre feature)
ukny decisive element characterizing the shape of power envelope curve ofn-th partial stream
�k onset time ofk-th source activation
Y�k duration ofk-th source activation

weight parameter multiplied to each kernel, allowing the
function to be adaptable to various shapes (whenφkn →0
and Y → ∞, this function becomes principally trans-
formable to fit any non-negative functions), that satisfies

∀k,∀n,
∑

∀y

ukny = 1 (20)

The remarkable originality in this function is that theY
number of Gaussian kernels are centered with the equal in-
terval of their common standard deviation parameterφkn

(see Fig. 3). It may be quite unfamiliar to find the stan-
dard deviation parameterφkn also within the numerator
inside the exponential of Gaussian. This specific feature
makesUkn(t) a linear elastic function allowing various
durations of note events and never lets each kernel be iso-
lated, so thatUkn(t) is always ensured to be a smooth
envelope.

The parameters of the HTM to estimate, that can be
essentially useful as acoustic features available for MIR
systems, are listed in Table 3.1. One may realize that most
of the parameters in HTM directly reflect decisive features
characterizing music performances.

3.2 KERNEL SUBCLUSTERING

As the HTM is specified as a kernel function represen-
tation, solving Eq. 12 can be mathematically simplified
by further breaking down each cluster into{n, y}-labeled
subclusters, associated with the kernel functions.

qk(x, t;Θ) can be simply broken down into a sum of
{k, n, y}-labeled kernel densitySkny(x, t;Θ),

qk(x, t;Θ) = wk

∑

∀n

{
vkn√
2πσk

e
−

(x−µk(t)−log n)2

2σ2
k

︸ ︷︷ ︸
=Hkn(x,t)( ∑

∀y

ukny√
2πφkn

e
−

(t−τk−yφkn)2

2φ2
kn

︸ ︷︷ ︸
=Ekny(t)

)}

=
∑

∀n

∑

∀y

wkHkn(x, t)Ekny(t)︸ ︷︷ ︸
=Skny(x,t;Θ)

(21)

Introducing m(n, y;k, x, t), membership degree of the
k-th partitioned clusterm(k; x, t)W(x, t) in the {n, y}-
labeled subcluster, that satisfies

∀k,
∑

∀n

∑

∀y

m(n, y; k, x, t) = 1, 0≤m(n, y;k, x, t)≤1,

we have the inequality

Jk ≡
∫∫

D

m(k; x, t)W(x, t) log
m(k; x, t)W(x, t)∑

∀n,∀y

Skny(x, t;Θ)
dxdt

≤ J̃k ≡
∑

∀n,∀y

∫∫

D

m(k; x, t)m(n, y;k, x, t)W(x, t)

log
m(k; x, t)m(n, y;k, x, t)W(x, t)

Skny(x, t;Θ)
dxdt(22)

where the equality holds when

m(n, y;k, x, t) =
Skny(x, t;Θ)∑

∀n

∑

∀y

Skny(x, t;Θ)
(23)

(the proof will be omitted since it can be easily proved
by following the same derivation as in section 2). Us-
ing Eq. 23 as a subcluster membership degree, one can
make J̃ =

∑
∀k J̃k equivalent to the global cost function

J=
∑
∀k Jk and minimizing̃J obviously offers absolutely

better prospect for yielding the solution to Eq. 12 than di-
rectly solving Eq. 12. Accordingly, the parameter update
equation shall be derived by

Θ̂ = argmin
Θ

J

⇔ argmax
Θ

∑

∀k

∑

∀n,∀y

∫∫

D

≡m(k,n,y;x,t)︷ ︸︸ ︷
m(k; x, t)m(n, y;k, x, t) W(x, t)

logSkny(x, t;Θ) dxdt(24)

4 INTERPRETATION AS MAP

4.1 PRIOR DISTRIBUTION ASSUMPTION

SupposeW(x, t) is an observed pdf andL(x, t;Θ) =∑
∀k qk(x, t;Θ) is a parameter conditional pdf (i.e.,

model likelihood density) in Eq. 11, one can also interpret
our ultimate objective as being equivalent to maximizing
expectation of the log-likelihood (what is generally called
as maximum likelihood problem), i.e.,

Θ̂ML = argmin
Θ

Jmk=bwk

⇔ argmax
Θ

〈
logL(x, t;Θ)

〉

W(x,t)

(25)

w.r.t. Θ, where〈·〉Ω refers to as an expectation. Inter-
preting in this way, it is natural to expand our problem to
MAP(Maximum A Posteriori) estimation by introducing

118



prior distributionsp(Θ) on the parameters, so that from
the Bayes theorem, optimal parameters under prior con-
straints to estimate could be found by maximizing the ex-
pectation of the logarithmic posterior probability, given by

Θ̂MAP = argmax
Θ

〈
logL(x, t;Θ) + logp(Θ)

〉

W(x,t)

(26)

Prior distribution assumption often plays a big role in
contributing to prevent model estimates from overfitting.
For example, we do not of course wish for a model of
octave errored pitch estimate that corresponds to subhar-
monics of the true pitch, where in this kind of situation,
the model tends to be estimated as an ‘abnormal’ timbre
(such that all partial components except particular ones
are zero). This can be, however, avoided by assuming
prior distribution onvkn so as to prevent the model from
‘abnormal’ timbre estimates. For another example, we do
not indeed want several models to build a power enve-
lope curve that is supposed to be originated from a single
source activation (otherwise it would be estimated as sev-
eral onset times). This situation could also be reduced by
assuming prior distribution onukny.

We apply the prior distribution proposed by Goto
(2004), which is explicitly given by:





p(vk) ≡ 1

Zv
exp

(
− dv

∑

∀n

v̄n log
v̄n

vkn

)

p(ukn) ≡ 1

Zu
exp

(
− du

∑

∀y

ūy log
ūy

ukny

) (27)

∑

∀n

v̄n = 1,
∑

∀y

ūy = 1 (28)

where r̄n and c̄y are the most preferred ‘expected’ val-
ues of vkn and ukny, dr and dc are contribution de-
grees of the priors andZr andZc are normalization fac-
tors. Bothp(rk) andp(ckn) take maximum value when
vkn = r̄n and ukny = c̄y for all n and y. When
dr anddc are zero,p(rk) andp(ckn) become uniform
(noninformative-prior) distributions. The advantage of us-
ing this particular form is in a considerable simplification
of calculating Lagrange multipliers in maximizing Eq. 24
without affecting its substance. Note that Dirichlet distri-
bution is also practically applicable.

Given thatγw, γk
r andγkn

c are Lagrange multipliers
for wk, vkn andukny, thus what we are to solve to derive
the update equation ofΘ under prior constraint is

Θ̂MAP = argmax
Θ

∑

∀k

(( ∑

∀n

∑

∀y

∫∫

D

m(k, n, y; x, t)

W(x, t) logSkny(x, t;Θ)dxdt

)

−dv

∑

∀n

v̄n log
v̄n

vkn
− du

∑

∀n

∑

∀y

ūy log
ūy

ukny

−γ(k)
v

( ∑

∀n

vkn − 1

)
−

∑

∀n

γ(kn)
u

( ∑

∀y

ukny − 1

))

−γw

( ∑

∀k

wk − 1

)
(29)

4.2 DAEM ALGORITHM (Ueda and Nakano, 1998)

One of the crucial problems in any traditional iterative pa-
rameter estmation algorithms is that, the more models be-
come complex, the more likely they cause the estimates
to be trapped into local minima/maxima. There have been
many efforts for such difficulty over decades in wide re-
search area. For instance, Deterministic Annealing EM
(DAEM) algorithm proposed by Ueda and Nakano (1998)
is known to be one of the effective approaches offering
stable convergence to global maximum/minimum.

So far we have shown that the iterative procedure
of updatingm(k, n, y; x, t) = m(k; x, t)m(n, y; k, x, t)
andΘ guarantees the convergence ofΘ to a stationary
point. From Eqs. 10 and 23, the subcluster membership
m(k, n, y; x, t) should be updated to

m̂(k, n, y; x, t) = m̂(k; x, t)m(n, y;k, x, t)

=
Skny(x, t;Θ)∑

∀k

∑

∀n

∑

∀y

Skny(x, t;Θ)
(30)

whenΘ is completely fixed and thenΘ should be updated
using Eq. 29. Although this deterministic procedure is
expected to give appropriate convergence ofΘ when the
initial point is chosen to be close to the global minimum,
but may often fail if it is not. Ueda and Nakano (1998)
considered that such common problem in EM algorithm is
mainly due to the fact that the membership degree (miss-
ing data posterior density function) given by Eq. 30 is
often unreliable at early stage of the iteration. They re-
formulated EM algorithm to improve its drawback, from
the viewpoint of the statistical mechanics analogy. In
place ofm̂(k, n, y; x, t), they gave the membership de-
greef̂(k, n, y; x, t) parameterized byβ as

f̂(k, n, y; x, t, β) =
Skny(x, t;Θ)β

∑

∀k

∑

∀n

∑

∀y

Skny(x, t;Θ)β
. (31)

Since in general cases, initial points are of course not al-
ways near the global solution, every cluster should share
W(x, t) almost evenly by settingβ ≈ 0 (where it con-
tributes to smoothingJ, that is perhaps often multimodal,
i.e., ‘spiky’) in the early stage of the iteration and as the
iteration proceeds, Eq. 31 should approach the original
one (Eq. 30) by settingβ = 1 to accomplish the primary
objective. To achieve this, they newly added aβ-loop in
addition to the traditional EM loop. DAEM-based HTM
optimization is implemented as following:

————————————————————

1. Set β ← βmin (0 < βmin < 1)

2. Set Θ(0), i ← 0

3. Iterate EM-steps until con-
vergence:

E-step: Substitute Θ(i) to
Eq.31

M-step: Θ(i+1) ← Eq.29

Set i ← i + 1.
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4. Increase β.
5. If β < 1, repeat from step 3;

otherwise stop.

————————————————————

5 PARAMETER UPDATE EQUATIONS

For the purpose of reducing the dimension of the feature
to extract, let us roughly assume that all pitch trajectories
are parallel to the time axis (0-order polynomial), i.e.,

µk(t) ≈ µk0 (32)

and each partial stream in a HTM has similar power en-
velope (only a single power envelope function is assumed
in a single HTM so that the indexn in Ukn(t) shall be
excluded). Since our objective here is not to strictly ana-
lyze precise music expressions, these assumptions would
not be fatal flaws in practical situation. From Eq. 21, log-
arithmic kernel density logSkny(x, t;Θ) is given by

logSkny(x, t;Θ) = log
wkvknuky

2πσkφk

−
(x − µk0 − logn)2

2σ2
k

−
(t − τk − yφk)2

2φ2
k

(33)

so that solving Eq. 29, the update equation of each param-
eter at M-step is derived as follows:

`kny(x, t;β) ≡ f̂(k, n, y; x, t, β)W(x, t)
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Table 4: Experimental Conditions
frequency Sampling rate 16 kHz
analysis frame shift 16 ms

frequency resolution 12.0 cent
frequency range 60–3000 Hz

HTC initial # of HTMs 20
# of partials:N 6
# of kernels inUk(t): Y 10
βmin 0.5

r̄n 0.6547× n−2

dr, dc 0.04
time range of analyzing segment 80 frames (1.28 s)
# of analyzing segments 21 (total time:24 s)

PreFEst-core pitch resolution 20 cent
(Goto, 2004) # of partials 8

# of tone models 200
standard deviation of Gaussian 3.0

r̄n 0.6547× n−2

d̄ (prior contribution factor) 3.0

6 EXPERIMENTAL EVALUATION

6.1 CONDITIONS

To verify the potential performance of the proposed
method as an audio feature extraction application, we
tested it on a set of real performance music data excerpted
from RWC music database (see table 2 for the list of
the experimental data). Time series of power spectrum
was analyzed using Gabor wavelet transform with frame
shift of 16 ms for input digital signals of16 kHz sam-
pling rate. The lower bound of the frequency range and
the frequency resolution were60 Hz and12 cent, respec-
tively. The initial parameters of(µk0, τk|k = 1, · · · , K)
for DAEM algorithm were automatically determined by
picking20 largest peaks in the observed spectral time pat-
tern of80 consecutive frames. After the parameters con-
verged, the total number of note events were estimated
by intensity thresholding, i.e., every HTM whosewk es-
timate becomes smaller than the threshold was truncated.
See table 4 for the detailed conditions.

6.2 CALCULATING ACCURACY

Using the supplementary hand-labeled reference MIDI
data, associated with each test data, the comprehensive
accuracy of pitch, onset time and duration estimates was
automatically calculated by the following procedure.

1. Truncate HTMs with intensity thresholding onwk

estimate.

2. Quantize pitch estimateµk0, onset time estimateτk

and duration estimateYφk to the closest note, frame
and number of frames in each remaining HTM and
then create a framewise binary series each for128
number of notes, where1 and0 indicate ‘note activa-
tion’ and ‘silence’ at each frame, respectively.

3. Convert the hand-labeled reference MIDI data to a
reference framewise binary series each for128 num-
ber of notes similarly where1 and0 indicate ‘note
activation’ and ‘silence’.

4. Add up the accumulated costs, computed by Dy-
namic Programming (DP) matching between the two
binary series, of128 notes. Since the onset and off-
set times of respective note events in the real perfor-
mance data and the reference MIDI data are not per-
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Table 2: List of The Experimental Data Excerpted from RWC Music Database

Symbol Title (Genre) Catalog number Composer/Player Instruments # of frames
data(1) Crescent Serenade (Jazz) RWC-MDB-J-2001 No. 9 S. Yamamoto Guitar 4427
data(2) For Two (Jazz) RWC-MDB-J-2001 No. 7 H. Chubachi Guitar 6555
data(3) Jive (Jazz) RWC-MDB-J-2001 No. 1 M. Nakamura Piano 5179
data(4) Lounge Away (Jazz) RWC-MDB-J-2001 No. 8 S. Yamamoto Guitar 9583
data(5) For Two (Jazz) RWC-MDB-J-2001 No. 2 M. Nakamura Piano 9091
data(6) Jive (Jazz) RWC-MDB-J-2001 No. 6 H. Chubachi Guitar 3690
data(7) Three Gimnopedies no. 1 (Classic) RWC-MDB-C-2001 No. 35 E. Satie Piano 6571
data(8) Nocturne no.2, op.9-2(Classic) RWC-MDB-C-2001 No. 30 F. F. Chopin Piano 7258

Table 3: Accuracy results of PreFEst-core (Goto, 2004) and HTC. Columns (A)∼(J) and (K)∼(R) show the accuracies with different thresholds for PreFEst-core and
HTC, respectively: (A)2.0×108, (B)2.5×108, (C)5.0×108, (D)7.5×108, (E)10×108, (F)15×108, (G)17.5×108, (H)20×108, (I)25×108, (J)27.5×108,
(K)7.5×109, (L)1.0×1010, (M)2.0×1010, (N)3.0×1010, (O)4.0×1010, (P)5.0×1010, (Q)6.0×1010, (R)7.0×1010.

Accuracy(%)
PreFEst-coreGoto (2004) HTC

(A) (B) (C) (D) (E) (F) (G) (H) (I) (J) (K) (L) (M) (N) (O) (P) (Q) (R)
data(1) 56.6 62.49 75.9 81.6 83.3 84.6 83.0 81.5 78.4 75.8 69.5 74.8 83.9 84.8 88.2 88.8 88.7 85.1
data(2) 68.7 69.6 66.3 59.0 53.7 36.3 32.4 30.3 26.8 26.5 84.3 88.2 90.6 82.5 75.7 72.3 67.9 61.9
data(3) -20.8 -7.3 31.7 47.8 56.9 65.1 69.5 71.9 75.5 71.8 68.8 70.0 77.6 80.0 80.2 77.4 73.3 73.4
data(4) 55.1 56.8 60.7 63.3 63.1 63.6 64.1 62.3 60.6 60.2 82.6 83.0 83.8 82.4 82.8 82.0 81.5 76.5
data(5) 50.7 53.2 61.0 60.0 58.8 59.3 57.6 58.0 57.5 49.7 76.3 79.3 79.4 81.7 77.6 76.2 76.5 72.8
data(6) -7.2 6.6 37.9 51.1 57.7 65.9 65.6 66.7 66.3 65.7 77.5 79.6 81.7 82.7 84.4 82.3 81.4 80.7
data(7) 51.6 54.1 62.7 52.4 47.0 45.9 42.7 41.1 42.2 42.7 72.1 69.9 70.3 68.3 66.9 63.1 61.5 62.0
data(8) 20.8 22.9 36.6 42.5 38.5 39.1 38.8 37.7 32.7 30.6 73.7 75.9 75.6 72.2 67.6 61.1 48.9 46.7

fectly aligned, time warping technique was somehow
required.

5. The accumulated cost divided by the total number
of frames of note activation in128 sets of reference
binary series gives the error rate. The accuracy rate
is simply given by subtracting the error rate from1.

Accuracy(%) =
A − (

accumulated cost︷ ︸︸ ︷
Ins+ Del )

A
× 100

A : total frame # of ‘note activation’

Ins : # of insertion errors

Del : # of deletion errors

Note that this calculation counts a substitution error as du-
plicated errors (one deletion and one insertion errors), so
that the accuracy can possibly take negative values.

6.3 RESULTS

We chose1‘PreFEst-core’(Goto, 2004) for a comparison,
as it is recently accepted as one of the most success-
ful methods developed for multi-pitch analysis. Since
PreFEst-core extracts the most dominant pitch trajectory
from multi-pitch signals and does not include a specific
procedure of estimating the number of sources, we in-
cluded intensity thresholding similarly for pitch candidate
truncation. A typical example of the estimated binary se-
ries extracted via step 2 mentioned in 6.2 on particular
test data is shown in Fig.5 together with the hand-labeled
reference MIDI data. The optimized model and the cor-
responding observed spectral time pattern are shown with
3D and grayscale displays in Fig.4.

1Note that we have only implemented the ‘PreFEst-core’,
i.e., a framewise pitch likelihood estimation, for the evaluation
and not included the ‘PreFEst-back-end’, i.e., multi-agent based
pitch tracking algorithm.
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Figure 5: Estimates ofµk0, τk, Yφk(top) and the refer-
ence MIDI data displayed in piano-roll form (bottom).

In thresholding, there is a trade-off between the num-
ber of insertion and deletion errors according to the thresh-
old degree. Therefore, to properly validate the perfor-
mance of the proposed method, we considered that the
maximal accuracy among all the thresholds that were
tested, which might show the limit of a potential capabil-
ity, should be a criterion for comparison. Accuracy results
of PreFEst-core and HTC with different degrees of trun-
cation thresholding are shown in table 3. The number in
bold-faced type is the best accuracy in each data among all
the thresholds, which we are only concerned with. Com-
paring these accuracies between PreFEst-core and HTC,
HTC significantly outperforms PreFEst-core, from which
its potential is clearly verified.
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(a) Observed spectral time pattern

(c) spectrogram of the observation

(b) The optimized HTMs on (a)

(d) A grayscale display of the optimized model

Figure 4: 3D and grayscale diplays of the given spectrum and the parameter-optimized model

7 CONCLUSION

We established a new framework for multi-pitch analysis
based upon two dimensional geometric modeling and es-
timation of the distinct spectral streams localized in time-
frequency ‘scene’, and investigated possibilities for an ap-
plication of audio feature extraction available for MIR.

The method described in this paper still has many in-
teresting issues to consider, e.g., estimation of the number
of note events without relying on heuristic thresholding,
further precise modeling by introducing higher order co-
efficients in pitch trajectory polynomial and inharmonicity
factor parameter and others for sound segregation or noise
reduction applications.
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