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ABSTRACT

This paper describes a multi-pitch analysis method using
specmurt analysiswith iterative estimation of the quasi-
optimal common harmonic structure function. Specmurt
analysis (Sagayama et al., 2004) is based upon the idea
that superimposed harmonic structure pattern can be ex-
pressed as a convolution of two components, a funda-
mental frequency distribution and a ‘common harmonic
structure’ function if each underlying tone component has
similar harmonic structure pattern. As proved in our pre-
vious work (Sagayama et al., 2004) inappropriate com-
mon structure function leads to inaccurate analysis results.
The iterative algorithm proposed in this paper automati-
cally chooses a proper structure, which results in finding
concurrent multiple fundamental frequencies and reduces
the dependency on heuristically chosen initial common
harmonic structure. The experimental evaluation showed
promising results.

Keywords: audio feature extraction, specmurt analysis,
visualization of the fundamental frequency.

1 INTRODUCTION

In audio feature extraction, the fundamental frequency
is one of the useful features characterizing music struc-
ture. Accurately extracted fundamental frequencies can
be translated into a musical score by applying some re-
cently developed rhythm recognition techniques as post-
processing. What makes it difficult to extract funda-
mental frequencies from multi-pitch signals is the exis-
tence of harmonics. In general, harmonic structure pat-
terns differ among instruments or fundamental frequen-
cies, and also vary along time. Top-down approaches us-
ing Graphical models such as Bayesian networks and Hid-
den Markov Models (HMM) for detecting pitch class of
note event (for music transcription use) were recently pro-
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posed by Kashino et al. (1995), Raphael (2002), Cemgil
et al. (2003). Feder and Weinstein (1988), Goto (2004),
Godsill and Davy (2002) and Kameoka et al. (2005) pro-
posed parametric harmonic structure pattern models, that
allow flexible estimation. Such parametric models have
strong advantages especially for the purpose of precisely
analyzing real-world audio signals. Meanwhile, we have
proposedspecmurt analysis, another simple, yet efficient
approach to multi-pitch audio signals(Sagayama et al.,
2004).

In this method, acommonharmonic structure is as-
sumed and fundamental frequency distribution is obtained
by deconvolution of the power spectrum in log-frequency
domain by the common harmonic structure. This is a new
method in that fundamental frequency distribution can be
obtained as an analytic solution, but at the same time it
has the drawback that the accuracy of the calculated fun-
damental frequency depends on the initial envelope of the
common harmonic structure.

This paper proposes an adaptive estimation of the
common harmonic structure pattern for each frame which
maximizes the resolution between significant fundamen-
tals and other unnecessary components in specmurt anal-
ysis through iterative non-linear mapping.

The rest of the paper is organized as follows. After
reviewingspecmurt analysisin section 2, we discuss the
algorithm for quasi-optimizing the harmonic structure in
section 3 followed by evaluation of the accuracy of the
method in section 4 and conclusion in section 5.

2 SPECMURT ANALYSIS

Harmonic signals such as single tones in music contain an
energy component of fundamental frequency,f1, as well
as multiple overtones whose frequencies are integral num-
ber multiples,nf1, n = 2, 3, 4, . . ., of the fundamental
frequency. In linear frequency scalef , the distance be-
tween fundamental frequency and then-th harmonic fre-
quency is(n − 1)f1 and depends on the fundamental fre-
quency. In logarithmic frequency (log-frequency) scale
x = log f , on the other hand, the harmonic frequencies
are located log2,log3, . . ., logn away from the funda-
mental log-frequency,x1 = log f1; the relative positions
remain constant no matter how the fundamental frequency
fluctuates and is an overall parallel shift depending on the
degree of fluctuation (see Fig. 1).
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We now define acommonharmonic structure pattern,
h(x), as a function of log-frequency,x, choosing the ori-
gin x = 0 at the fundamental frequency, andh(0) = 1.
We assume that the relative powers at harmonic frequen-
cies are constant and independent of the fundamental fre-
quency. Ifh(x) is shifted by∆x to the direction in which
x increases, this pattern represents the harmonic structure
pattern whose fundamental frequency is∆x. Therefore, if
power spectrum is additive1, the multi-pitch power spec-
trum,v(x), is represented by the convolution of the com-
mon harmonic structure,h(x), and the power distribution
function,u(x), representing the power of the fundamental
frequency component at log-frequencyx, i.e.,

v(x) = h(x) ∗ u(x) . (1)

Conversely, if a multi-pitch spectrum̃v(x) is observed, we
can calculate the distribution of fundamental frequencies,
u(x), by deconvolution:

u(x) = h(x)−1 ∗ ṽ(x) . (2)

According to the convolution theorem, convolution be-
comes multiplication in the frequency domain by Fourier
transform. Suppose thatU(y), H(y) and Ṽ (y) are the
inverse Fourier-transformed function ofu(x), h(x) and
ṽ(x), respectively.U(y) is obtained by dividing̃V (y) by
H(y):

U(y) =
Ṽ (y)
H(y)

, (3)

wherey means Fourier transformed log-frequency. There-
fore, we can calculateu(x) as the Fourier transform of
U(y):

u(x) = F [U(y) ] (4)

In this way, we can estimate the fundamental fre-
quency distribution from the multi-pitch spectrum. We
call this method “specmurt analysis” (Sagayama et al.,
2004).

The illustration of this process is briefly shown in Fig.
2, 3. The process is done over every short-time analy-
sis frame and thus we finally have a time series of funda-
mental frequency components, i.e., a piano-roll-like visual
representation, with a small amount of computation.

In short-time analysis, spectrum does not look like
an impulse (Dirac’s delta-function) sequence, but has
some broadening coming from the influence of window-
function, etc. . .. When we use specmurt method, it is nec-
essary to even up the width of broadening of the spectrum
at every (log) frequency. This problem is solved by us-
ing wavelet transform and constant-Q filter in calculating
v(x).

We created the word “specmurt” for the Fourier trans-
form of linear-scaled spectrum along log-frequency axis
by reversing the last four letters in “spectrum” following

1Strictly speaking, this assumption is true only in the expec-
tation sense. The power of the sum of sinusoids of identical
frequency is not always equal to the sum of the powers of the
sinusoids, but depends on the phases of the sinusoids.
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Figure 1: Linear- and log-scaled harmonic structures
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Figure 3: Outline ofspecmurt analysisfor multi-pitch sig-
nals

the terminology ofcepstrumwhich was created by revers-
ing the first four letters of “spectrum”and represents the
Fourier transform of log-scaled spectrum with linear fre-
quency. It should be noted that spectrum logarithmically
scaled both in frequency and in magnitude is identical to
Bode diagram often used in the automatic control theory.
Its Fourier transform has no specific name, while it is es-
sentially similar to mel-scaled frequency cepstrum coeffi-
cients (MFCC) and is very often used in the feature anal-
ysis in speech recognition.

3 OPTIMIZATION OF HARMONIC
STRUCTURE PATTERN

3.1 The Role of Common Harmonic Structure

The common harmonic structure pattern, which is de-
scribed in Section 2, is based on the assumption that the
pattern is constant regardless of the sound source, but ac-
tually the harmonic structure pattern depends on the sound
source and the fundamental frequency. In addition, there
is a quite low possibility that the default harmonic struc-
ture pattern corresponds with the optimal harmonic struc-
ture pattern of the sound source, and it is unrealistic to
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Figure 4: Power spectrum (linear scale) of multi-pitch au-
dio signal of violin’s C4 and E4 with log-scaled frequency.
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(a)u(x) with f−1.5 chosen forh(x)
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(b)u(x) with f−0.5 chosen forh(x)

Figure 5: Estimated fundamental frequency distribution,
u(x), obtained by specmurt analysis. Figs. (a) and (b)
chosef−1.5 and f−0.5, respectively, along linear fre-
quencyf as the envelope of the common harmonic struc-
tureh(x).

change the default pattern little by little until finding the
optimal pattern.

Fig. 4 shows the multi-pitch spectrum obtained by
adding the real audio signal of violin’s C4 and E4. Hori-
zontal axis is in log-frequency domain. The fundamental
frequency distributionu(x), calculated fromv(x) of Fig.
4, is shown in Fig. 5. In case of (a), the envelope of the
common harmonic structure patternh(x) is assumed to be
f−1.5 ( then-th harmonic component has a power ratio of
1/

√
n3 relative to the fundamental frequency component)

and in the case of (b) it is assumed to bef−0.5. In Fig. 5
(a), the first harmonic overtone still has a large power be-
causef−1.5 envelope has small effect for the attenuation
of harmonic overtones. On the other hand, in Fig. 5(b),
though the second harmonic overtone is relatively reduced
in power, there arise heavily fluctuating power and many
unwanted components as well as negative components in
the entire range of frequency.

β u(x)

u(x)

f (u(x))

Identity mapping

Figure 6: Concept of mapping fromu(x) to ū(x)

For the purpose of solving this problem, we propose
an adaptive estimation algorithm. This algorithm consists
of two steps and generates quasi-optimalh(x) through it-
erations. First, in Section 3.2 (step I), we renewu(x) cal-
culated by specmurt analysis to a more preferable (or more
accurate ) distribution̄u(x), and in Section 3.3 (step II) we
parameterizeh(x) in h̄(x,Θ) and estimateΘ to optimize
h̄(x,Θ). This estimated harmonic structure patternh̄(x)
is quasi-optimal, and we can generate a more accurate fun-
damental frequency distributionu(x) by applyingh̄(x) to
specmurt analysis. The following describes these steps in
detail.

3.2 Step I: Non-Linear Mapping of Fundamental
Frequency Distribution

It is difficult to distinguish definitely between true fun-
damental frequency components and unwanted frequency
components inu(x) obtained through specmurt analysis.
In consideration of this problem, we introduce a non-
linear mapping function to update fundamental frequency
distribution, which has a fuzziness parameterα, and a
threshold magnitude parameterβ. β means the value un-
der which frequency components are assumed to be un-
wanted, andα represents the degree of fuzziness of the
boundary (α > 0).

As an example of this function, we propose a mapping
based on the sigmoid function as follows:

ū(x) =
u(x)

1 + exp{−α(u(x) − β)}
(5)

This mapping returns almost the same value when
u(x) is significantly larger thanβ, and a much smaller
value whenu(x) is smaller than or nearβ. Fig. 6 shows
a sketch of mapping fromu(x) to ū(x). ū(x) is 50% of
u(x) whenu(x) = β, and for other values ofu(x), the
suppression effect of this mapping depends onα. When
α is small, the suppression effect is small and suppres-
sion range is wide. Ifα is large enough, the mapping is
similar to a threshold model. In addition, ifβ is a large
negative value, this mapping is approximately equal to the
identity mapping. Fig. 7 shows four typical mappings of
u(x) to ū(x) and Fig. 8 shows the experimental results
of applying mappings in Fig. 7 to fundamental frequency
distribution of Fig. 5 (a) (f−1.5 envelope).
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(c)α = 15, β = 0.5
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Figure 7: Four typical mapping fromu(x) to ū(x).
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(a)α = 15000, β = −10000
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(b)α = 15000, β = 0
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(c)α = 15, β = 0.5
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Figure 8: Sigmoid-mapped fundamental frequency distribution of Fig. 5(a).

By using this mapping, the components ofu(x) that
have small or negative power are brought close to zero,
and the middle power components are still left place for
remaining as major fundamental frequency components,
unlike a simple threshold mapping.

3.3 Step II: Optimization of the Common Harmonic
Structure Pattern

ū(x) generated in step I is more accurate thanu(x) in that
the unwanted components are suppressed, therefore a sup-
posed function̄h(x), which is generated by deconvolution
of observed multi-pitch spectrum̃v(x) with ū(x), will be
closer to the actual harmonic structure pattern.

We now definēh(x,Θ), a function parameterized by
Θn, which is the amplitude ratio of then-th harmonic
overtone relative to fundamental frequency (shown in Fig.
9). Thush̄(x,Θ) is described as follows:

h̄(x,Θ) = Θ0δ(x − Ωo) + · · · + ΘNδ(x − ΩN )

=
N∑

n=0

Θnδ(x − Ωn) (6)

whereΩn is thex-coordinate of then-th harmonic over-
tone on log-frequency scale, and soΘ0 = 1 andΩ0 = 0.
Then an ideal multi-pitch spectrum̄v(x), generated by
convolution ofh̄(x,Θ) and ū(x) calculated in step I, is
also parameterized byΘ, and we write itv̄(x,Θ). Ac-
tually, v̄(x,Θ) cannot be completely matched observed
spectrumṽ(x), hence we want to know the parameter
Θ̄ = {Θ̄1, · · · , Θ̄N} that minimizes the integral square
error betweeñv(x) andv̄(x,Θ). The integral square error
is

∫ ∞

−∞
{ṽ(x) − v̄(x,Θ)}2 dx , (7)

which is rewritten in discrete calculation by:

I−1∑

i=0

{
ṽ(xi) − v̄(xi,Θ)

}2

(8)

whereI indicates the number of log-frequency samples.
Differentiating eq.8 partially inΘ and making it equal to
zero, the equation below is obtained:

∂

∂Θ

I−1∑

i=0

{
N∑

n=0

Θnu(xi − Ωn)

}2

= 2
∂

∂Θ

I−1∑

i=0

ṽ(xi)

{
N∑

n=0

Θnu(xi − Ωn)

}
(9)

Hence, we obtain the following system of linear equa-
tions:




A1,1 · · · A1,n · · · A1,N

...
...

...
An,1 · · · An,n · · · An,N

...
...

...
AN,1 · · · AN,n · · · AN,N







Θ1

...
Θn

...
ΘN




=




B1

...
Bn

...
BN




,

(10)
where

Aj,k =
I−1∑

i=0

u(xi − Ωj)u(xi − Ωk) , (11)

Bj =
I−1∑

i=0

{
ṽ(xi) − u(xi)

}
u(xi − Ωj) . (12)

Now we can work out the system by calculating the
inverse of the matrix on the left side, for example with the
use of LU decomposition. Then updatingh(x) using the
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Figure 9: Parameterized harmonic structure pattern
h̄(x,Θ)
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(a) Starting fromf−1.5 for h(x)
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(b) Starting fromf−0.5 for h(x)

Figure 10: Improved fundamental frequency distribution
of Fig. 5 after 5 iterations (α = 15, β = 0.5) starting from
Fig. 5(a) and (b), respectively.

optimal parameter̄Θ and applying it to specmurt analysis,
we obtain the fundamental frequency distribution again.
We get back to step I, and iterate.

3.4 Results of Iteration on a Certain Frame

Fig. 10 shows the fundamental frequency distributions
which are generated from the distribution of Fig. 5(a) and
(b) through 5 iterations of proposed algorithm. In both
distribution C4 and E4 are properly emphasized and un-
wanted components are strongly suppressed.

4 EXPERIMENTAL EVALUATION

4.1 Visualization

Another aspect of specmurt analysis is that the fundamen-
tal frequency distribution resulting from the process can
be easily visualized. That is, unlike the estimation of var-
ious parameters, the result is much comprehensible for
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Figure 11: 3D-view of fundamental frequency distribution
of data8 (piano) obtained by specmurt analysis through 5
iterations (α = 15, β = 0.5).

users. An example is shown in Fig. 11. The figure is gen-
erated from theu(x) of data8 in Table 2 after 5 iterations
whereα =15 andβ = 0.5, In this figure, time-frequency-
intensity space is considered. Note that intensity does not
mean whether a frequency is fundamental or not, but gives
a hint about the possibility that a frequency is fundamen-
tal. By looking at this figure the user can understand the
distribution intuitively and if estimation error occurs, for
example of the tone at a certain pitch actually sounds but
specmurt analysis drop it out, they can look for the next
candidate easily.

The 2-dimensional views of the fundamental fre-
quency distribution are shown in Fig. 12 – 15. Fig. 12 dis-
plays the contrast density of the power spectrum at each
short frame. Fig. 14 shows the fundamental frequency
distributionu(x) without using iteration and Fig. 15 with
5 iterations. Looking at Fig. 12, one can see that there are
a lot of overtones, but in Fig. 14 many of overtones dis-
appear or strongly attenuated, and In Fig. 15 much more
overtones are attenuated. By means of iterative estima-
tion, Fig. 15 comes closer to Fig. 13, the correct funda-
mental frequency distribution.

Here, let us have a closer look on two segments of the
Fig. 15, which are between the frame approximately 470
–560 and approximately 1200 – 1300. In the first seg-
ment, a double-F0 error is made in estimation. However,
double-F0 is also much stronger in Fig. 12. That is to
say, the harmonic structure in this segment has a kind of
missing fundamental feature, and specmurt analysis can-
not estimate it correctly in this case in principle. In the
second segment, the fundamental frequency near sample
number 300 disappears, while in Fig. 14 it exists. This
is because the frequency at 300 is the fourth harmonic of
the frequency at 100 whose amplitude is largest in these
frames. As estimation is iterated, the harmonic structure
of the lower and stronger fundamental frequency takes in
the harmonic structure of the higher and weaker funda-
mental frequency and it seems to be optimal. These are
weak points of specmurt analysis and we need to examine
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Figure 12: Observed spectrogram of data8 (piano)
where overlapping harmonics make it difficult to fol-
low multiple fundamentals. (Used as input to specmurt
analysis)
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Figure 13: Handcrafted MIDI reference of funda-
mental frequency time pattern (piano-roll display) for
data8, each red line indicating a single note event acti-
vation.

Figure 14: Fundamental frequency of data8 obtained
through specmurt analysis with a fixed common har-
monic structure.

Figure 15: Estimated fundamental frequency of data8
obtained through specmurt analysis with adaptive es-
timation of common harmonic structure after 5 itera-
tions.

the issues.

4.2 Preparation

In this section, we applied the specmurt analysis with it-
erative algorithm to several music signals to obtain their
fundamental frequency distributions and evaluate their ac-
curacy. Specmurt analysis is not a method to estimate
discrete parameters or states but, so to speak, to empha-
size the (continuous) fundamental frequency distribution.
Therefore, there is no obvious criterion for evaluation of
the accuracy, but as one strategy, we considered a certain
frequency as being in “ON” state if the amplitude was
over a certain threshold intensity. To evaluate the accu-
racy, we first divided the fundamental frequency distribu-
tion at each time and frequency into two states (“ON” and
“OFF”) by comparing the peak of distribution with the
threshold. After that we compared the obtained two-state
table with correct two-state table and calculated the accu-
racy.

To compare two tables, we used DP matching algo-
rithm for each note number. Matching perfectly in all note
numbers the accuracy was 100%. If there werei dele-
tion andj insertion errors, the accuracy was defined as
100 ∗ (N − i− j)/N , whereN is the number of “ON” in

Table 1: Experimental conditions for specmurt analysis.

analysis sampling rate 16kHz (monaural)
frame shift 16 ms

wavelet function Gabor function
γ 50

frequency resolution 12 cent
frequency bandwidth 60 – 7626.95 Hz

h(x) number of harmonics 8
sigmoid mapping α = 15, β = 0.5

number of iterations 5

the reference table.
The strategy to determine threshold amplitude was as

follows. First, counting the positive amplitude ofu(x) at
every time and frequency and making an amplitude his-
togram, we chose as a threshold candidate the amplitude
such thatx percent largest amplitudes where higher than
it. In other words, this threshold turned only thex per-
cent largest amplitudes into “ON” state. This time, we
adopted largest 8 threshold amplitudes, orx is 1, 2, . . .,
8. Note that this strategy is temporary and arbitrary, and
other policies can be employed.
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Figure 16: Multi-pitch accuracy of specmurt analysis evaluated over 8 music pieces with errorbars showing the range
between the highest and the lowest accuracies. (a) Results with no iteration. (b) Results with 5 iterations.

4.3 Evaluation of Effectiveness of Adaptive
Estimation

In this experiment, we used 8 pieces of real music perfor-
mance data excerpted from RWC music database (listed
in Table 2). 23s long WAV files were used in specmurt
analysis and MIDI files were used to make correct “ON”
table. The power spectrum in log-frequency domainṽ(x)
was calculated using Gabor wavelet transform. Other ex-
periment conditions are shown in Table 1. We calculated
the accuracy on both conditions that iteration algorithm is
not applied and that it is applied 5 times while changing
the initial envelope ofh(x) among four types fromf−0.5

to f−2.0.
The results are shown in Fig. 16. In Fig. 16(a) iter-

ation algorithm was not used, and in Fig. 16(b) used 5
times. The height of a box means the average of the ac-
curacy values of 8 thresholds. The bottom of an errorbar
means the minimum value among the 8 accuracy values
and the top means the maximum value.

When no iterative estimation was used, the accuracy
was dependent on the initial envelope of the harmonic
structure and, especially in case off−0.5 initial envelope,
the accuracy was rather low. On the other hand, in Fig.
16(b), the dependency on the initial envelope disappears

and all of the accuracy values were as high as or higher
than the maximum accuracy value of Fig. 16(a).

4.4 Evaluation of Sigmoid Mapping Parameter

In this experiment, we evaluated the accuracy depending
on different sigmoid parameters,α andβ. As shown in
Fig. 7, we selected four typical mappings. In addition,
we prepared 12 types of mapping, by changing the value
of β. The initial envelope ofh(x) wasf−1.5, and other
experiment conditions and used music database were the
same as in the previous experiment. But unlike the previ-
ous experiment, because the average accuracy and whole
tendency show little difference, we decided to use in the
evaluation the maximum accuracy of 8 data obtained by
changing the threshold from 1% to 8%.

The results are shown in Table 3. In each field, we
show the maximum accuracy for each data and set of pa-
rameters.

There were small differences between the results, but
the accuracy tended to be higher when using the type (c) of
sigmoid mapping. It would be unwise to conclude that this
tendency is general, but one can think that if you choose
type (c) as the sigmoid mapping, the accuracy will not be
small. This needs to be analyzed in more details.
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Table 2: List of The Experimental Data Excerpted from RWC Music Database

Symbol Title (Genre) Catalog number Composer/Player Instruments
data1 Crescent Serenade (Jazz) RWC-MDB-J-2001 No. 9 S. Yamamoto Guitar
data2 For Two (Jazz) RWC-MDB-J-2001 No. 7 H. Chubachi Guitar
data3 Jive (Jazz) RWC-MDB-J-2001 No. 1 M. Nakamura Piano
data4 Lounge Away (Jazz) RWC-MDB-J-2001 No. 8 S. Yamamoto Guitar
data5 For Two (Jazz) RWC-MDB-J-2001 No. 2 M. Nakamura Piano
data6 Jive (Jazz) RWC-MDB-J-2001 No. 6 H. Chubachi Guitar
data7 Three Gimnopedies no. 1 (Classic)RWC-MDB-C-2001 No. 35 E. Satie Piano
data8 Nocturne no.2, op.9-2(Classic) RWC-MDB-C-2001 No. 30 F. F. Chopin Piano

Table 3: Maximum accuracy for each sigmoid parameter

α β data1 data2 data3 data4 data5 data6 data7 data8
15000 -10000 90.2% 78.9% 73.8% 74.1% 49.0% 77.5% 70.8% 65.0%
15000 0 88.6% 76.5% 71.3% 73.9% 47.3% 73.3% 66.5% 62.0%

15 0.2 87.9% 79.1% 72.9% 76.1% 49.1% 76.3% 68.6% 65.2%
15 0.3 88.3% 79.7% 73.6% 74.3% 49.4% 77.5% 69.3% 65.6%
15 0.4 88.6% 80.9% 74.1% 74.8% 49.4% 78.6% 72.1% 67.2%
15 0.5 87.9% 80.7% 74.3% 73.5% 50.9% 78.9% 72.2% 68.2%
15 0.6 88.1% 79.3% 75.4% 75.6% 48.8% 78.4% 71.9% 66.6%

15000 0.2 87.5% 78.8% 73.4% 75.3% 49.1% 75.4% 67.8% 64.6%
15000 0.3 88.1% 79.6% 73.3% 75.4% 49.3% 76.2% 71.2% 65.4%
15000 0.4 88.5% 79.5% 73.9% 75.7% 49.3% 77.4% 71.4% 67.1%
15000 0.5 88.8% 80.4% 74.5% 74.8% 49.2% 78.2% 72.0% 67.0%
15000 0.6 87.9% 80.3% 74.1% 73.4% 50.0% 78.7% 71.5% 68.6%

5 CONCLUSION AND FUTURE WORK

In this paper, we proposed a method of iterative estimation
of quasi-optimal harmonic structure pattern in specmurt
analysis. We have discussed the two steps of the algo-
rithm and the analytical calculation of the quasi-optimal
harmonic structure. This method gives a more accurate
fundamental distribution which depends less on the initial
common harmonic structure pattern. In addition, we could
visualize the fundamental frequency distribution. Spec-
murt analysis is a user-friendly method and the proposed
iteration algorithm makes specmurt analysis more accu-
rate and robust.

There is, however, still a room for improving the
method. In step I of the iteration, there is no mathematical
guarantee that the mapping fromu(x) to ū(x) takesu(x)
closer to optimum (and this is why we say “quasi” opti-
mizing). This mapping strategy is based on the assump-
tion that the power of fundamental frequency components
should not take negative or low values. Though this rarely
harms the convergence of iterative estimation of harmonic
structure pattern (actually observed in a few frames out of
over 1000 frames), we wish to solve the optimality and
stability problems of the iterative estimation.
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