
The Sonic Visualiser: A Visualisation Platform for Semantic Descriptors from
Musical Signals

Chris Cannam, Christian Landone, Mark Sandler, Juan Pablo Bello
Centre for Digital Music, Queen Mary University of London

Mile End Road, London, UK
chris.cannam@elec.qmul.ac.uk

Abstract
Sonic Visualiser is the name for an implementation of a
system to assist study and comprehension of the contents
of audio data, particularly of musical recordings.
It is a C++ application with a Qt4 GUI that runs on
Windows, Mac, and Linux. It embodies a number of
concepts which are intended to improve interaction with
audio data and features, most notably with respect to the
representation of time-synchronous information. The
architecture of the application allows for easy integration
of third party algorithms for the extraction of low and
mid-level features from musical audio data. This paper
describes some basic principles and functionalities of
Sonic Visualiser.

Keywords: Visualisation, Musical Feature, Semantic
Descriptor.

1. Introduction
The Sonic Visualiser project originated as an integrated
framework to aid researchers at the Centre for Digital
Music at Queen Mary University of London in the
development of algorithms for the extraction of low and
mid-level features from musical audio signals.

The internal requirements called for a cross-platform
application that could enable the user to browse and edit
time-synchronous musical features overlaid and aligned to
waveform and spectrogram representations of the audio
signal under analysis. A further requirement was to allow
researchers to integrate feature extraction algorithms and
use the application as a test bed to evaluate their
performance.

Although tools for audio analysis and annotation are
readily available in the open source space, these
applications are mostly inherited from the linguistics and
speech analysis communities and enhancements have been
introduced in order to extend their usability to the music
information retrieval community.

A modified version of WaveSurfer [1] has been adopted
as the annotation client for the MUCOSA environment [2]
and various automatic feature extraction plugins have
been developed for the same application [3].

Also ad-hoc tools for the visualisation of musical
features have emerged in recent times; the CLAM
Annotator [4], for instance, natively allows the user to
browse and edit automatically extracted descriptors, as
well as to manually enter “ground truth” annotations.

Whilst both WaveSurfer and the CLAM Annotator
associate each data set to a separate canvas, the Sonic
Visualiser project was commenced in order to provide the
users with an innovative approach to the visualisation of
musical features, where each set of low and mid-level
descriptors is presented as a logical layer, in a fashion
similar to an image processing application.

The management of machine-extracted descriptors in
the Sonic Visualiser differs substantially from that
employed by the CLAM Annotator, that requires an
external executable following specific command line and
output conventions. The Sonic Visualiser, instead,
supports a specialised type of plugin named “Vamp”, that
has been developed in parallel at QMUL’s Centre for
Digital Music.

This choice was driven by the need to introduce a
common C/C++ API for the development of feature
extraction algorithms in order to speed up development
time, increase the potential for dissemination and
harmonise legacy code.

2. The Application
The Sonic Visualiser has been developed in C++ using the
open source distribution of QT4 [5] for the user interface
and is licensed under the terms of the GNU General
Public License, with the hope of promoting further and
constant community-driven enhancements.

The application uses stackable panes that can be added
or removed at the user’s request and can show a number
of different pieces of data overlaid on one another and
aligned according to time. The overlay approach assists
comparisons among extracted and annotated data, as well
as aiding understanding of the original audio data by
allowing it to be viewed in more than one form “at once”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.
© 2006 University of Victoria

layer visual
properties

layer playback and
synthesis controls

estimated beats

onset detection function

Figure 1. Waveform with beat detection function and estimated beats

waveform overview display

layers

Time scaling
control

Figure 2. Waveforms and spectrograms at different zoom levels

This facility may be used with various sorts of data,
including points in time, values on a discrete time graph,
as well as waveforms and spectra. Figure 1 shows a detail
from a pane with four layers:

1 - The pane scroll/zoom properties layer.
2 - A mono waveform.
3 - The output of a beat detection function: a series of
user-editable values shown as a curve.
4 - Estimated beats: a series of instants in time shown
by a vertical bar at each beat location

Each layer has a set of visual properties (for example
colour or plot type in layer 4); these are available in a
stack of property boxes shown to the right of figure 1. A
layer may be visually raised above the other layers by
selecting its property box from the stack.

The y axes of separate layers on the same pane do not
necessarily conform with one another; for example, there
is no meaningful common y axis between a waveform and
spectrogram on the same pane.

In contrast to the y axes, x axes of separate layers on
the same pane always align exactly by audio frame. For
example, data in a particular spectrogram window covers
the correct x extent corresponding to the source audio
frames for that window. Similarly, beats detected using a
function that operates on a particular window size are
shown using vertical lines of width corresponding to that
of the window.

In addition to the user-definable panes, an overview of
the time domain waveform under analysis is shown in an
area at the bottom of the application’s user interface
(figure 1); this is used also to display the position of the
playback cursor (vertical line) as well as the extent of the
current view (rectangular box).

2.1 Multi-resolution representation
When more than one pane is used in the Sonic Visualiser,
these are usually aligned to the same sample frame in the
middle of the pane. The user can scroll through the audio
by dragging the pane left and right with the mouse.

However, the separate panes do not have to be shown at
the same time resolution and different zoom levels can be
applied to each pane independently.

Figure 2 shows the same source in two waveform panes
and a spectrogram pane, with the top pane zoomed to a
significantly higher resolution than the second and the
third ones, this is also reflected in the waveform overview
display, where multiple rectangular outlines show the
different zoom extents (pointed out by the solid arrows in
figure 2)

The top pane covers a period of approximately one
second in time, while the second and third panes cover
approximately six seconds. The top pane is therefore

effectively a detailed view of the centre one-second of data
in the bottom panes. If the user were to scroll through the
file around this point, the two frames would scroll
together, with the top pane appearing to scroll more
rapidly than the bottom one, whilst maintaining the same
sample frame at their centre.

2.2 Annotation Layers
In its current implementation, the Sonic Visualiser also

provides the user with four different types of manual
annotation layers that can be exported to a file or used to
import and visualise comma and space separated, or MIDI
data files.

The “Time Instants Layer”, shown at the top of figure
3, allows the insertion of vertical lines at points in time
that may represent onsets or beats, while the “Time
Values Layer” (middle of fig. 3) is an editable sequence of
points in time, where each point has a value that
determines its position on the Y axis. Each point may also
have a label.

The notes layer (bottom of figure 3) consists of an
editable sequence of notes with an associated label where
each note has a start time, a duration and a value that
determines its position on the Y axis.

A text layer is also available for placing freely around
the pane informal or descriptive annotations that are not
specifically attached to other features.

The Sonic Visualiser allows entire work sessions to be
saved to file, enabling the instant recall of the audio file
under analysis, visualisation styles and settings,
annotations and data layers.

Figure 3:Editable layers

2.3 Playback of audio and features
Audio data can be played by the Sonic Visualiser and a
full set of transport commands is provided.

To aid analysis and annotation, looping and time
scaling during playback are provided. The amount of time
scaling can be varied in real time using a rotary control in
the user interface, shown in figure 2.

Features can also be “listened to” using the playback
and synthesis controls shown in figure 1; each of the data
layers displayed in the Visualiser has a set of performance
characteristics associated with it, including auralisation
method (e.g. play a particular sound each time a data
point is hit during playback), output level, and stereo pan.

It is therefore possible to compare aurally a set of
calculated or annotated features by panning them
separately or playing them with different sounds.

3. Vamp plugins
An external API is used by the Sonic Visualiser for the

automatic extraction of low and mid-level descriptors
from musical audio data.

Vamp plugins are dynamic link libraries that process
sampled audio data, returning complex multidimensional
data with labels representing semantic observations that
are automatically loaded by the Sonic Visualiser and
shown on a new layer.

The plugins receive their data block-by-block but are
not required to return output immediately on receiving the
input, therefore a Vamp plugin may be non-causal,
preferring to store up data based on its input until the end
of a processing run and then return all results at once.

The feature extractor can indicate to the host the
preferred processing block and step sizes, and may ask to
receive data in the frequency domain instead of the time
domain. The host takes the responsibility for converting
the input data using an FFT of windowed frames or,
alternatively, cache frequency-domain data when possible,
allowing the plugins to do straightforward frequency-
domain processing.

A Vamp plugin is configured once before each
processing run, and receives no further parameter changes
during use – unlike real time plugin APIs in which the
input parameters may change at any time. This also
means that fundamental properties such as the number of
values per output or the preferred processing block size
may depend on the input parameters.

The cross-platform plugin SDK is distributed under the
terms of a BSD-style license, allowing for closed-source
feature extraction modules to be used by the Sonic

Visualiser and thus permitting the safe dissemination of
musical analysis algorithms that are yet unpublished
and/or not protected by patents.

Vamp plugins are already available: implementations
of algorithms for onset detection [6] and beat tracking [7]
are available from the Centre for Digital Music website
[8] while other functionalities are available from the
Mazurka project [9].

4. Conclusions
A framework for the automatic extraction, browsing and
editing of musical feature descriptors has been presented
in this paper. The Sonic Visualiser runs on Linux,
Windows and MacOS and proposes a novel “layered”
approach to musical features visualisation. The binaries
and source code, along with the Vamp plugin SDK are
available for download from the project’s web site:
www.sonicvisualiser.org.

5. Acknowledgments
Part of this work has been done in the context of the
SIMAC IST-507142 and EASAIER EU-FP6-IST-033902
projects. The authors would like to thank Daniel Leech-
Wilkinson and Craig Sapp for their valuable suggestions.

References
[1] K. Sjölander, J. Beskow, “WaveSurfer - An Open Source

Speech Tool”, in Proceedings of the International
Conference on Spoken Language Processing, 2000.

[2] P. Herrera et al, “MUCOSA: A Music Content Semantic
Annotator”, in Proceedings of the 6th International
Conference on Music Information Retrieval, London 2005.

[3] F. Gouyon, N. Wack, S. Dixon, “An Open Source Tool for
Semi-Automatic Rhythmic Annotation”, in Proceedings of
the 7th International Conference on Digital Audio Effects,
Naples 2004

[4] X. Amatriain et al, “The CLAM annotator: A Cross-
Platform Audio Descriptors Editing Tool”, in Proceedings
of the 6th International Conference on Music Information
Retrieval, London 2005.

[5] QT4 open source edition: www.trolltech.com
[6] J.P. Bello, C. Duxbury, M.E. Davies, M.B. Sandler, “On

the use of Phase and Energy for Musical Onset Detection in
the Complex Domain”, IEEE Signal Processing Letters,
Vol 11, No. 6, pp 553-556, June 2004

[7] M.E. Davies, M.D. Plumbley, “Beat Tracking with a Two
State Model”, in Proceedings of the International
Conference on Acoustics, Speech and Signal Processing,
2005

[8] http://www.elec.qmul.ac.uk/digitalmusic/downloads/
[9] http://sv.mazurka.org.uk

	1. Introduction
	2. The Application
	2.1 Multi-resolution representation
	2.2 Annotation Layers
	2.3 Playback of audio and features

	3. Vamp plugins
	4. Conclusions
	5. Acknowledgments

