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Abstract
A novel technique to estimate the predominant key in a mu-
sical excerpt is proposed. The key space is modelled by a
24-state Hidden Markov Model (HMM), where each state
represents one of the 24 major and minor keys, and each
observation represents a chord transition, or pair of consec-
utive chords. The use of chord transitions as the observa-
tions models a greater temporal dependency between con-
secutive chords than would observations of single chords.
The key transition and chord emission probabilities are ini-
tialised using the results of perceptual tests in order to reflect
the human expectation of harmonic relationships. HMM pa-
rameters are then trained on a per-song basis using hand-
annotated chord symbols, before the model for each song
is decoded to give the likelihood of each key at each time
frame. Examples of the algorithm as a segmentation tech-
nique are given, and its capability to estimate the overall key
of a song is evaluated using a data set of 110 Beatles songs,
of which 91% were correctly classified. An extension to in-
clude operation from audio data instead of chord symbols
is planned, which will enable application to general music
retrieval purposes.
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1. Introduction
The main key of a musical work, and the sequence of keys
through which the music passes, are fundamental to music
analysis. The home key serves as an anchor: the chord se-
quences in the music may lie within the home key, or may
contain notes that are not part of the home key and therefore
pull away from the anchor, suggesting other keys. It is the
interplay between keys that gives harmonic interest to the
music.
This paper describes a novel technique for estimating the

key of a musical recording from chord symbols on both a
frame-by-frame and a per-track basis. An estimate of the
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overall key of a track can be directly applied to music re-
trieval systems, as can a harmonic structure analysis derived
from a frame-by-frame key estimate.
Our approach makes use of perceptual tests carried out

by Krumhansl, described in [1], and outlined in Box 1. She
uses the results in a key-finding algorithm ([1], Chapter 4),
for which she used the probe tone profiles (see Box 1). The
durations of each of the twelve possible pitches in the ex-
cerpt were summed to give a tone profile of the music. The
correlations between the profile of the music and the twelve
key profiles was then calculated, and the key with the high-
est correlation was taken to be correct. Performance was ex-
cellent on Bach, but the algorithm was less well able to cope
with the extra chromaticisms of Shostakovich and Chopin.
Krumhansl’s approach to key finding requires the music

to be represented in symbolic form with note pitches and
durations explicitly specified. Pauws [2] enables calcula-
tions from audio data by calculating a 12-bin chromagram
for each frame, giving an energy measure for each of the
12 pitch classes. The chroma values were then used in the
correlation calculations, in place of the profile of the music
that Krumhansl derived from pitch durations. Gómez and
Herrera [3] suggest a similar approach, but modify the probe
tone profiles to emphasise pitches in the tonic, dominant and
subdominant chords, and to take into account harmonics of
pitches that will appear in the audio signal. Both papers
suggest that analysis of the temporal structure of the music
could improve accuracy.
HiddenMarkovModels (HMMs) incorporate a degree of

temporal dependency, and have been used to estimate tonal-
ity. Chai and Vercoe [4] estimate key changes in a musical
excerpt using chromagram data as the observations for two
HMMs. In the first model, each state represents a key pair
(major and its relative minor); in the second, each state rep-
resents a mode (major or minor), and decoding both models
gives both the root and the mode of the key. No training was
carried out on the HMM parameters, and no preference was
given to any key. They found that varying the probability of
staying in the same key gave a trade-off between the preci-
sion of the keys extracted, and the recall and key accuracy.
Burgoyne and Saul [5] train a Dirichlet-based HMM on

a pitch class profile (similar to a 12-bin chromagram) for
each audio frame. Only the observation probabilities are



trained; the key transition probabilities are set according to
a measure of relatedness derived from music theory. Their
technique has been successful for extracting single chords,
but in order to accurately extract the key a need for a more
advanced harmonic model is identified.
Other related work includes that of Sheh and Ellis [6] and

Bello and Pickens [7], who use HMMs to extract chord in-
formation from audio, and Temperley’s Bayesian approach
to symbolic key-finding, available at [8].
The algorithms described in this section have all suc-

cessfully used prior musical knowledge to aid extraction of
harmonic information, but all base their analysis on single
chords. This paper introduces further temporal dependency
into the task of key-finding by training an HMM on chord
transitions rather than single chords, as well as making use
of listening test results for initialisation, in order to represent
expected relationships between chords and keys.
Section 2 introduces the model and explains the initiali-

sation, training and decoding, Section 3 gives example anal-
yses of two songs, Section 4 explains the overall key-finding
method and gives the results, which are discussed in Section
5, and Section 6 concludes the paper.

2. Model of Key Space
The music-theoretic notion that a sounded chord sequence
can strongly imply an underlying key, or allude to more than
one key, fits well into the HMM structure, which consists of
a set of underlying, unobservable states that emit observable
data. Analysis of the observable data (chords) can give the
most likely sequence of underlying states (keys), or the like-
lihood of each state at each time frame (relative importance
of all keys over time). For an introduction to HMMs, to-
gether with a description of standard techniques for training
and decoding, see [9] and [10]. For an introduction to music
theory see [11] and [12].
So, we model tonality using a discrete HMM. Figure 1

shows a simplified diagram of the model. Only 3 keys are
shown in the figure for clarity, but the 24 possible major
and minor keys are included in the actual calculations. Each
state represents a key, and the model is fully connected so
that any key can move to any other key, or stay the same. At
each time step the key generates an observable chord transi-
tion, for example C major to A minor.
It was decided that a pair of consecutive chords should be

used for each observation, instead of a single chord, in order
to extend the temporal dependency across a greater number
of frames. The two chords that make up each chord tran-
sition can be any major, minor, augmented or diminished
triad, or no chord, which occurs during silence or entirely
percussive sections. More complex chords have been ex-
cluded from the model since chords that are not based on
triads are very rare in theWestern music repertoire for which
this analysis is intended, and it was considered that the se-
quence of underlying triads, excluding extensions, is suffi-

BOX 1: PERCEPTUAL TESTS (KRUMHANSL)
More details of the following tests are given in [1], and
numerical results are also given in the Appendix.

Probe tone profiles
Ten listeners were asked to judge how well each semi-
tone fit within a given major or minor key context, on a
scale of 1 (very good) to 7 (very bad). Average ratings
were then calculated to represent the importance of each
probe tone within a major and minor key context, giving
a probe tone profile for each key.

Correlations between key profiles
The correlation between each pair of probe tone profiles
was calculated to give a measure of how closely each
pair of keys is related. The results are given in Table 2
in the Appendix.

Chord transition ratings
The chord transition rating test was used to give numer-
ical values to how well a chord transition, or pair of
chords, fits within a given key context. Listeners were
asked to judge the fit on a scale of 1 to 7, and the mean
rating was calculated. Ratings were given for all possi-
ble diatonic chord transitions within a major key, except-
ing the case where no transition is made, e.g. dominant-
dominant or tonic-tonic. Table 3 in the Appendix shows
the ratings.

Single chord ratings
For the single chord rating test listeners were asked to
judge how well single chords fit within a key, using the
same scale of 0 to 7. This test included all major, minor
and diminished triads in both major and minor keys, and
the average ratings are shown in Table 4 in the Appendix.

cient to define the key. All inversions of the same chord are
treated identically, which means that the choice of bass note
does not affect the estimated key.

2.1. Initialisation
There are three HMM parameters that require initialisation.

2.1.1. Initial state probabilities
The initial state probabilities reflect any prior information
that we may have about the most likely key, before any of
the music has been heard. However, there is no reason to
prefer any key above any other, so the initial probabilities
for all states are set equally, to 1

24
.

2.1.2. State Transition Probabilities
The initial transition matrix should express how likely it is
that when in a particular key, the music moves to another



Figure 1. Simplefied diagram of the harmonic model.

key at the next time step. Intuitively it is most likely that
the music will stay in the same key, and if it does change
key it is most likely to move to one that is closely related
and contains many of the same chords. The initial key tran-
sition matrix was created using the key profile correlations
in Table 2 in the Appendix, which give numerical values to
our intuitions. The values were circularly shifted to give the
transition probabilities for keys other than C major and C
minor; an operation that assumes G is to G major as C is to
C major, etc.. The values were all made positive by adding
1, then they were normalised to sum to 1 for each key. This
gave the final 24 × 24 transition matrix.

2.1.3. Observation Probabilities
The initial observation probabilities should reflect the hu-
man expectation of the key(s) implied by a certain chord
transition. We are assuming that there is a strong correlation
between the key implied by a chord transition, and the like-
lihood of the transition occurring in that key. This assump-
tion is supported by Krumhansl [1] p. 195, and by finding
the correlation between the chord transition ratings and the
corresponding number of transitions present in our test data.
Correlations of 0.39 for major keys and 0.22 for minor keys
were found, both highly significant given the respective 40
and 154 degrees of freedom.
So, the chord transition B major to E major strongly im-

plies the key of E major, since it forms a perfect cadence,
so the probability of state E major emitting B-E will be very
high. However, both chords are also contained in the key
of B major, so the probability of state B major emitting B-E
will be almost as high. Neither chord is contained in B! ma-
jor, so the probability of state B!major emitting B-E will be
very low.
The ratings for chord transitions within a key, given in

Table 3 in the Appendix, were used to provide numerical
values for the emission matrix. These only cover the dia-
tonic chords of major keys, but the model includes all ma-
jor, minor, augmented and diminished triads as well as the

possibility of there being no chord, so some additional nu-
merical values were required.
The pre-normalised probabilities for staying on the same

chord, for diatonic chords, were taken from the ratings of
individual chords within a key, given in Table 4 in the
Appendix, and artificially boosted because repeated chords
on either a frame-by-frame or beat-by-beat level are very
likely. The approximate optimal increase was experimen-
tally found to be 2. For example, the pre-normalised figure
for emitting a transition from A minor to A minor in the key
of C major was 3.62 + 2 = 5.62. Pre-normalised values
for transitions involving one or more non-diatonic chord are
set uniformly low, to 1. For minor keys the ratings for ma-
jor keys corresponding to the same scale degrees were used.
The emission matrix was then normalised so that the obser-
vation probabilities summed to 1 for each key. The final
emission matrix, then, had dimensions (48 + 1)2 × 24 =
2401× 24, since there are 48 possible chords and the possi-
bility of no chord to form the chord transitions, in 24 possi-
ble keys.

2.2. Training
The expectation maximisation (E-M) algorithm, described
in [9], was used to learn the HMM parameters for each in-
dividual song. If the observation probabilities, which model
the relationship of each chord transition to each key, were
subject to training, we could no longer be certain that the
hidden states represent keys. To verify this, experiments
were conducted with various combinations of HMM param-
eters trained.
The training data was a sequence of chord transitions, so

for a chord sequence Dm-Bdim-C the first chord transition
would be Dm-Bdim, and the second Bdim-C. For each key,
each chord transition was given a numerical index from 1 to
2401. These were circularly shifted to give the values for
other keys, with the exception of transitions involving a no
chord, which has the same function in every key and so was
kept at the end of the sequence.

2.3. Decoding
The Viterbi algorithm was used to find the most likely se-
quence of keys, and standard HMM decoding [9] was used
to calculate the posterior state probabilities, giving the like-
lihood of being in any key at each time frame.

3. Sample Segmentation Results
The algorithm was tested on hand annotations of the start
and end times of every chord in all of the first 8 Beatles
albums, provided by Harte (see [13], [14]). Only simple
triads were used: triad extensions were ignored, and non-
triadic chords were mapped to the closest triad type accord-
ing to their correlation with 4 chord templates, for major,
minor, augmented and diminished chords. To simulate the
kind of signal that would be obtained from audio data, with



a view to future extension of the algorithm to work from au-
dio, the chord sequence was sampled at equal time intervals
of 100ms, such that sample times that fell between a chord
start and end time were given the corresponding chord label,
and any others were labelled N, for no chord.
Figures 2 and 3 show some examples of the results. The

upper plots show the posterior state probabilities, and the
lower plots show the most likely key sequence for the whole
song. Ground truth for the key changes in the Beatles’ songs
is not available to our knowledge, but the figures show that
the algorithm is capable of extracting meaningful structure.
In I’ll Cry Instead (see Figure 2, bottom) the two bridge pas-
sages in D major, at 42 s to 52 s and 72 s to 82 s, have been
clearly separated. Similarly, in I’m Happy Just to Dance
With You (see Figure 3, bottom) the choruses (C"minor) and
verses (E major) have been extracted. The Beatles modified
the final chorus such that the chords forming the transition
back to E major are heard sooner than in previous choruses,
then interrupted with C" minor again. This transition ap-
pears as a short E major section at about 103 to 105 s. This
demonstrates one of the weaknesses of our approach, that al-
though the chords were most closely related to E major, the
key of E major was not firmly established. It is expected that
this type of error would occur less frequently if the chords’
position relative to the musical phrases were taken into ac-
count.
Inspection of the upper plots of Figures 2 and 3 reveals

further structure that is not apparent in the hard key clas-
sification. For example, in the first E major section of I’m
Happy Just to Dance With You, two consecutive verses are
played. The hard classification of key shown in the lower
plot cannot show the repetition, but the same period in the
upper plot shows a pattern in the posterior state probabilities
of approximately 16 s in duration that is repeated once.
Investigation of the algorithm as a musical structure ex-

traction technique will be the subject of further research.

4. Evaluation Technique
In order to produce a quantitative evaluation of the key anal-
ysis algorithm, an experiment to test its ability to extract the
overall key of a song was devised. A subjectively-assessed
ground truth is available at [15], which gives a musicologi-
cal analysis of the Beatles’ songs. To determine the overall
key, the output matrix containing the likelihood of each key
at each time frame, such as those in the upper plots of Fig-
ures 2 and 3, was summed across the time domain, giving
an overall likelihood for each key. The key with the largest
likelihood value was taken to be the key of the song.
It should be noted that the ground truth often mentioned

more than one key, in which case the first was taken to be
the most important. Also several of the songs are modal,
and do not directly fit this model of major and minor keys.
Lydian and Mixolydian modes were treated as major, and
Dorian and Aeolian as minor.
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Figure 2. Probabilities of each key (top), and most likely key
(bottom) for each frame for the Beatles I’ll Cry Instead. Black
indicates a high probability.
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Figure 3. Probabilities of each key (top), and most likely key
(bottom) for each frame for the Beatles I’m Happy Just to
Dance With You. Black indicates a high probability.

Table 1 shows the percentage of correctly assigned over-
all keys for the 110 songs in the first 8 Beatles albums, with
different HMM parameters trained.
Figure 4 shows the confusion matrix for the case where

the transition and prior probabilities were trained, but the
observation probabilities were not. Only the incorrect esti-
mates are shown in the figure.

5. Discussion
The results in Table 1 verify the proposition that fixing the
emission probabilities gives the most accurate representa-
tion of the song, since allowing adjustment alters the mean-
ing of the hidden states. Training the prior state probabilities
had little effect on the number of songs correctly classified.
This is most likely due to the step where the key probabili-
ties across the whole song were summed: the prior probabil-



Table 1. Percentage of songs correctly classified with varying
training.

Probabilities subject to training Percent
Prior Transition Emission correct
yes yes yes 27

yes yes no 91

yes no yes 18

yes no no 87

no yes yes 28

no yes no 91

no no yes 18

no no no 87

Expected value for random choice of key 4

Figure 4. Confusion matrix for the case where prior and tran-
sition probabilities were trained. Only the incorrect estimates
are shown. Minor keys follow their parallel major along the
horizontal axis.

ities will only affect the first few frames and will therefore
have limited effect on the overall key estimation. The suit-
ability of the perception-based initialisation was confirmed
by the case with no training, where 87% of songs were cor-
rectly classified. Training the transition probabilities for
each song gave the optimum result of 91% of songs cor-
rectly classified.
The 91% accuracy for finding the overall key of Beatles

songs is very encouraging. Closer inspection of the ground
truth and confusion matrix reveal that all of the incorrect
estimates can be explained, and none is unreasonably far
from the ground truth.
Three of the modal songs were incorrectly classified: two

Mixolydian songs were mistaken for the major key on their
fourth degree, due to their flattened 7th, and one song with
Dorian inflexions was mistaken for the major key on its 7th
degree, due to its flattened 3rd and 7th. These errors are
comparable to errors between relative major andminor keys.
One song in A major was mistaken for its dominant, E

major. However, the chords that make up the song are B,
E, A and D majors, which imply both keys equally when
there is no context. One song in A major was mistaken for

its subdominant, explained by the particular stress on the
flattened 7th degree of the scale, used here to give a blues
feel rather than a move to the subdominant key. These two
cases would benefit from longer temporal dependencies in
the model, based on phrase lengths, since it is usually the
chord or cadence at the end of a phrase that defines the key.
The remaining five incorrect key estimates are for songs

where more than one key is mentioned in the ground truth
for the home key, and it is one of these alternative keys that
has been selected by the algorithm.

6. Conclusion
An HMM initialised with results of listening tests has
proved very successful for key estimation from chord sym-
bols, and shown potential as a musical structure extraction
technique. Working from chord symbols is intended as a
means of testing the harmonic model without the problems
associated with audio analysis. However, for most infor-
mation retrieval purposes it is necessary to work with audio
data to eliminate the painstaking task of hand annotation,
so it is planned to extend the model to include audio-to-
chord functionality. The 91% accuracy reported here will
almost certainly not hold when working with audio, but we
will have an understanding of how the audio-to-chord and
chord-to-key errors differ. A more detailed exploration of
segmentation possibilities is also planned.
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Appendix: Perceptual test results
Table 2. Krumhansl’s correlations between key profiles (see
[1], p. 38).

C Major C Minor
C major 1.000 0.511
C!/D" major −0.500 −0.158
D major 0.040 −0.402
D!/E" major −0.105 0.651
E major −0.185 −0.508
F major 0.591 0.241
F!/G" major −0.683 −0.369
G major 0.591 0.215
G!/A" major −0.185 0.536
A major −0.105 −0.654
A!/B" major 0.040 0.237
B major −0.500 −0.298
C minor 0.511 1.000
C!/D" minor −0.298 −0.394
D minor 0.237 −0.160
D!/E" minor −0.654 0.055
E minor 0.536 −0.003
F minor 0.215 0.339
F!/G" minor −0.369 −0.673
G minor 0.241 0.339
G!/A" minor −0.508 −0.003
A minor 0.651 0.055
A!/B" minor −0.402 −0.160
B minor −0.158 −0.394

Table 3. Krumhansl’s chord transition ratings (see [1], p. 193).

First Second Chord
Chord I ii iii IV V vi vii Ave
I 5.10 4.78 5.91 5.94 5.26 4.57 5.26
ii 5.69 4.00 4.76 6.10 4.97 5.41 5.16
iii 5.38 4.47 4.63 5.03 4.60 4.47 4.76
IV 5.94 5.00 4.22 6.00 4.35 4.79 5.05
V 6.19 4.79 4.47 5.51 5.19 4.85 5.17
vi 5.04 5.44 4.72 5.07 5.56 4.50 5.06
vii 5.85 4.16 4.16 4.53 5.16 4.19 4.68
Ave 5.68 4.83 4.39 5.07 5.63 4.76 4.76

Table 4. Krumhansl’s harmonic hierarchy ratings for major,
minor and diminished chords (see [1], p. 171).

Context
Chord C Major C Minor
C Major 6.66 5.30
C!/D" Major 4.71 4.11
DMajor 4.60 3.83
D!/E"Major 4.31 4.14
E Major 4.64 3.99
F Major 5.59 4.41
F!/G" Major 4.36 3.92
GMajor 5.33 4.38
G!/A" Major 5.01 4.45
AMajor 4.64 3.69
A!/B" Major 4.73 4.22
B Major 4.67 3.85
C Minor 3.75 5.90
C!/D" Minor 2.59 3.08
DMinor 3.12 3.25
D!/E"Minor 2.18 3.50
E Minor 2.76 3.33
F Minor 3.19 4.60
F!/G" Minor 2.13 2.98
GMinor 2.68 3.48
G!/A" Minor 2.61 3.53
AMinor 3.62 3.78
A!/B" Minor 2.56 3.13
B Minor 2.76 3.14
C Dim 3.27 3.93
C!/D" Dim 2.70 2.84
DMinor 2.59 3.43
D!/E" Dim 2.79 3.42
E Dim 2.64 3.51
F Dim 2.54 3.41
F!/G" Dim 3.25 3.91
G Dim 2.58 3.16
G!/A" Dim 2.36 3.17
A Dim 3.35 4.10
A!/B" Dim 2.38 3.10
B Dim 2.64 3.18


