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Abstract

The deviation of the tuning frequency from the standard tun-

ing frequency 440 Hz is evaluated for a database of classical

music. It is discussed if and under what circumstances such

a deviation may affect the robustness of pitch-based systems

for musical content analysis.
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1. Introduction

Pitch extraction from musical audio signals is an important

task in the field of musical content analysis of monophonic

as well as polyphonic input data. It is a required processing

step for automatic transcription, melody finding, harmony

and key detection and other algorithms for audio content

analysis.

For these applications, various approaches to fundamen-

tal frequency detection have been proposed, but the mapping

of frequencies to pitches is frequently regarded to be trivial,

assuming the mid frequencies of the pitches to be tuned with

reference to a standardized tuning frequency of 440 Hz for

the pitch A4.

On the other hand, there exist a few publications that ad-

dress the issue of possible deviations of the real tuning fre-

quency from 440 Hz and propose algorithms for the auto-

matic detection of this tuning frequency (see section 4.1).

This raises the question if an automatic tuning frequency

detection could possibly improve the pitch tracking results

or if its influence is negligible. To verify the hypothesis that

it might improve the results, a pre-test with a simple auto-

matic key detection has been executed on a small database

(65 tracks) of key labeled jazz recordings. The correct clas-

sification rate increased from 70.8% at a fixed tuning fre-

quency of 440 Hz to 76.9% with adaptive tuning frequency

estimation as described below. Although this result is statis-

tically not significant due to the small test database, it indi-

cates that pitch-based analysis systems may benefit from an

automatic detection of tuning frequency.
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2. Tuning Frequency

The concert pitch or standard (musical) pitch is used for tun-

ing one or more musical instruments and is defined to be the

pitch A4. Its frequency, the tuning frequency, is standard-

ized internationally to 440 Hz [1], but the exact frequency

used by musicians can vary due to various reasons, e.g. the

usage of historic instruments or timbre preferences, etc.

Over time, the variation of the tuning frequency de-

creased. Briner [2] mentions some typical frequency ranges

for the tuning frequency from the past three centuries, dis-

played in Table 1 as deviation from 440 Hz:

Table 1. Typical Deviation of the tuning frequency from 440 Hz

over three centuries.

Year lower deviation upper deviation

∼ 1750 −50 Hz +30 Hz

∼ 1850 −20 Hz +20 Hz

∼ 1950 −5 Hz +10 Hz

Nowadays, while for the majority of electronic music

productions the default tuning frequency of 440 Hz can be

assumed, the tuning frequencies of orchestras may show de-

viations from 440 Hz. For example, the Chicago Symphony

Orchestra and the New York Philharmonic tune at 442 Hz,

while the Berlin and Vienna Philharmonic orchestras have

a tuning frequency of 443 Hz 1 . At least in the case of

both European orchestras, the tuning frequency was higher

in previous decades. The frequencies 442 Hz and 443 Hz

correspond to deviations from the standard tuning frequency

of 7.85 cent and 11.76 cent, respectively. Such deviations

may also occur in other music styles, especially when acous-

tic instruments are used.

Besides this intended shift of the tuning frequency, there

may be unintended variations over the time of a concert or a

recording session. For example, the tuning frequency could

be slowly decreasing, as it can be sometimes recognized

with choirs without accompaniment; contrarily, a rising in-

volvement of the musicians during the concert could lead to

an increasing tuning frequency. In the case of professional

musicians, the maximum variation can probably be assumed

to be three to five cent.

1 personal communication with the orchestra’s archivists, March and

April 2006



3. Other Frequency Deviations

In the context of pitch analysis, there are also other possi-

ble reasons for detection inaccuracies that may add together

with deviations of the tuning frequency. Partly, these are

under control of the developer like the system’s frequency

detection accuracy. On other deviations, the developer has

no or only limited influence.

3.1. Deviation of harmonics from equal tempered scale

In several applications, e.g. when creating a simple pitch

chroma [3], the “pitch detection” is not only based on the

detected fundamental frequency, but on all spectral maxima.

In this case, the deviation of harmonics from the equal tem-

pered scale (the scale they are mapped to) has to be taken

into account. Table 2 shows mean and maximum deviation

of the harmonic series from the closest equal tempered pitch

frequency with respect to the number of harmonics. The

fundamental is in tune with the scale.

Table 2. Deviation of harmonics from equal tempered scale

#Harm max. deviation mean abs deviation

3 2.0 cent 0.7 cent

5 14.7 cent 3.1 cent

7 31.2 cent 7.0 cent

While a maximum deviation of 31.2 cent sounds alarm-

ing, its influence should not be overrated since the seventh

harmonic usually has a small level compared to the level of

lower harmonics, dependent on the instrument playing.

Furthermore, the deviation does not matter in many cases

at all, since many systems for frequency tracking take the

harmonic structure into account.

3.2. Deviation due to non-equal temperament

In the equal tempered scale, the frequency ratios of all in-

tervals are multiples of
12
√

2. In an analysis context, equal

temperament is usually assumed, which is the only possible

assumption since the key of the piece is in most cases un-

known. However, a musician not restricted to the equal tem-

pered scale by his or her instrument or accompaniment will

most likely perform on a non-equal tempered scale, since

the equal tempered scale is only a mathematical construct

to make interval ratios independent from position and key.

For example, two string instruments playing a fifth will most

likely play a perfect fifth rather than an equal tempered one,

just because it sounds more “natural”.

The Pythagorean temperament (PT) and the Meantone

temperament (MT) are used as examples to illustrate devia-

tions from the equal tempered scale. Basically, PT is con-

structed with perfect fifths, while MT is constructed with

perfect thirds. Table 3 shows the maximum deviations of

the PT and MT scale from the equal tempered scale in cent

with an A4 tuning frequency of 440 Hz for different keys.

Table 3. Max. deviation of PT and MT from equal tempered

scale

Key max. deviation (PT) max. deviation (MT)

C 9.8 cent 17.1 cent

D 5.9 cent 10.3 cent

E 9.8 cent 17.1 cent

F 11.7 cent 20.5 cent

G 7.8 cent 13.7 cent

A 7.8 cent 13.7 cent

B 11.7 cent 20.5 cent

4. Evaluation of Real World Signals

The mentioned deviations are within an assumed tolerance

range of ±50 cent, but they can add together. To be able

to draw conclusions if an algorithms performance may be

influenced by an incorrect tuning frequency assumption, the

amount of tuning frequency deviation in real world signals

has to be investigated. To get results for a large amount of

test files, this analysis has to be done in an automated way.

4.1. Automatic Tuning Frequency Detection

The following systems have been proposed to find the best

tuning frequency match automatically:

Scheirer [4] used a set of narrow bandpass filters with

their mid frequencies at particular bands that have been

handpicked to match pitches from the analyzed score. These

filters are swept over a small frequency range. The estimated

tuning frequency is then determined by the frequency of the

maximum filter output sum.

Dixon [5] proposed to use a peak detection algorithm in

the FFT domain, calculating the instantaneous frequency of

the detected peaks, and adapting the equal tempered refer-

ence frequencies iteratively until the distance between de-

tected and reference frequencies is minimal. The adaptation

amount is calcucated by the lowpass filtered geometric mean

of previous and current reference frequency estimate.

Zhu et al. [6] computed a constant Q transform (CQT)

with the frequency spacing of 10 cent over a range of 7 oc-

taves. The detected peaks in the CQT spectrum are grouped

based on the modulus distance against the concert pitch. If

the maximum energy of the resulting 10-dimensional vector

is above a certain energy threshold, it is used for later pro-

cessing. For the results of all processing blocks (if not dis-

carded), a 10-dimensional so-called tuning pitch histogram

is computed, and the tuning frequency is chosen correspond-

ing to the bin with the maximal count.

Using a CQT with 33 cent frequency spacing, Harte and

Sandler [7] estimate the exact peak positions by interpola-

tion. A histogram of the peak positions based on the mod-

ulus distance against the concert pitch is computed over the

length of the audio file, and the tuning frequency is set ac-

cording to its maximum.
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Figure 1. Adaptation of tuning frequency from initial setting

of 440 Hz to target 452 Hz

In the context of single-voiced input signals, Ryynänen

[8] added the modulus distance of detected base frequencies

to a 10-dimensional histogram that is lowpass-filtered over

time. Then, a ‘histogram mass centre’ is computed and the

tuning frequency is adjusted according to this mass centre.

4.2. Algorithm used

The method for the automatic detection of the tuning fre-

quency used in this paper is described below. A previous

version of this algorithm has been published in [9].

4.2.1. Description

The input audio samples are processed by a filter bank of

steep resonance filters. In the range of 2 octaves around A4,

there are 24 groups of filters in (equal tempered) halftone

distance, with each group consisting of 3 filters. The mid

frequencies of each group are spaced with 12 cent and the

mid frequency of the centered filter is selected based on the

current tuning frequency assumption. All filters have con-

stant Q. The filter output energy per processing block of

length 20 ms is then grouped based on the modulus distance

against the concert pitch, resulting in a 3-dimensional vector

E for each block n.

The symmetry of the distribution of the three accumu-

lated energies gives an estimate on the deviation from the

current tuning frequency compared to the assumption. If the

distribution is symmetric, e.g. E(0, n) equals E(2, n), the

assumption was correct. In the other case, all filter mid fre-

quencies are adjusted with the objective to symmetrize the

energy distribution in the following processing blocks. The

RPROP-algorithm [10] is used as adaptation rule because it

allows fast and robust adaptation without the requirement of

specifically controlling the adaption step size. The adaption

rule for the adjustment of the assumed tuning frequency fA4

of the following processing block n + 1 is:

fA4(n + 1) =

(

1 + η · sign

(

E(2, n) − E(0, n)

))

· fA4(n) (1)

with η being scaled up if sign returns the same result

as for the previous block, and scaled down otherwise. To

ensure high accuracy, η is initialized with a small value.
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Figure 2. Distribution of results for the MIDI-generated test

set tuned at 446 Hz

Figure 1 shows the adaptation from the initial tuning fre-

quency 440 Hz to the real frequency 452 Hz. Adaptation is

parametrized for accuracy rather than speed in this case, so

it takes the algorithm more than 3s to converge to the target

frequency.

While this approach allows real-time processing and per-

manent adaptation to possibly varying tuning frequencies,

in the current context the overall tuning frequency is com-

puted by finding the maximum count in a histogram contain-

ing the estimates of all processing blocks. The histogram

classes are spaced by one Hertz; while this is not completely

consistent since, on the pitch scale, the width of the classes

decreases slightly with increasing tuning frequency, it nev-

ertheless was chosen considering that on the one hand the

deviations are small compared to the expected accuracy, on

the other hand these class labels are the most transparent for

the user when interpreting the result.

4.2.2. Evaluation

To verify the algorithm’s accuracy, a test with a small

database of 29 input files generated from MIDI content was

performed. The files were generated with equal tempera-

ment and pitched to a tuning frequency of 446 Hz and were

significantly longer than 10s.

Figure 2 shows the result for this test set. The result

is correct in a range of ±1 Hz around the reference. Co-

incidently, this range roughly corresponds to the just no-

ticeable frequency difference humans are able to recognize

(2 − 4 cent) [11].

The algorithm is expected to give slightly less accurate

results when alternative temperaments are used.

4.3. Analysis

Processing a small database of 60 pop and 12 classical

pieces, Zhu et al. [6] found that the majority of pieces

are tuned to the standard tuning frequency ±10 cent, while

three pieces of this database had about 50 cent deviation

from the standard tuning frequency.

Here, a larger database consisting of classical music is

evaluated to allow quantitative statements about tuning fre-

quency deviations.
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Figure 3. Distribution of results for the complete data base

4.3.1. Test sequences

The test database is a private collection of classical mu-

sic, where the term classical is interpreted as “non-popular”

music. It consists of about 300 CDs with overall 3336

tracks, and has an overall playing time of approximately

291 hours. It includes various instrumentations and ensem-

ble sizes from solo chamber music to oratorio and integrates

music from different eras of the western music history with a

focus on the classic and romantic periods. The signals have

CD-quality and the average track length is around 314s.

4.3.2. Results

Figure 3 shows the distribution of the detected tuning fre-

quency per track for the whole database. While the maxi-

mum of the detected tuning frequencies can be found at fre-

quency 440 Hz; the maximum itself consists of about 21%

of the test database. The result’s mean value is at frequency

442.38 Hz with a standard deviation of 2.75 Hz. 95% of the

results are in the range from 439− 448 Hz and only 50% of

the results have tuning frequencies between 440 − 443 Hz.

The percentage of files below 439 Hz is about 3.3%.

When the results are sorted into classes roughly corre-

sponding to the date of composition, there are no signifi-

cant differences from the overall result, although the maxi-

mum of three classes can be found at higher frequencies than

440 Hz. It is basically not surprising that the result is sim-

ilar between the classes, since many of the recordings were

made at the end of the twentieth century with contemporary

instruments. In further evaluations, it might be interesting

to see if there are differences between classes if sorted by

instrumentation and/or recording date.

The workload produced by the software is, scaled to a

x86 CPU frequency of 1 GHz, about 6%.

5. Conclusions

While the maximum of the distribution of tuning frequen-

cies for the test database is indeed at the standard tuning

frequency 440 Hz, the results indicate a relatively wide fre-

quency interval of tuning frequencies from 439 − 448 Hz,

corresponding to a deviation from the standard tuning fre-

quency of −3.9 cent to 31.2 cent.

Such a deviation is well within a detection range of

±50 cent per pitch; however, in addition to other de-

viations that cannot be influenced by the developer like

temperament-based pitch frequency deviations, it may lead

to (avoidable) pitch detection errors.

Thus, at least in the context of classical music, the ro-

bustness of pitch-based systems for music content analysis

could most likely be improved by the usage of an automatic

tuning frequency detection. Probably, similar results can be

found for other musical genres that are played with acoustic

instruments.

For result verification, the used software for automatic

tuning frequency estimation is available online as a FEAPI

plugin [12] at http://www.zplane.de/FEAPI.
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