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ABSTRACT

Automatic note onset detection is particularly difficult in
orchestral music (and polyphonic music in general). Ma-
chine learning offers one promising approach, but it is lim-
ited by the availability of labeled training data. Score-to-
audio alignment, however, offers an economical way to
locate onsets in recorded audio, and score data is freely
available for many orchestral works in the form of stan-
dard MIDI files. Thus, large amounts of training data can
be generated quickly, but it is limited by the accuracy of
the alignment, which in turn is ultimately related to the
problem of onset detection. Semi-supervised or bootstrap-
ping techniques can be used to iteratively refine both onset
detection functions and the data used to train the func-
tions. We show that this approach can be used to improve
and adapt a general purpose onset detection algorithm for
use with orchestral music.

1 INTRODUCTION

Finding the beginning of notes, or note onsets, in mu-
sic audio is a problem that is widely studied. By find-
ing note onsets, we can segment continuous music into
discrete note events, benefiting tempo estimation, beat
finding, automatic music transcription, and other analysis
tasks. These in turn are often used as components in sys-
tems for music indexing and retrieval, music fingerprint-
ing, and music similarity. Thus onset detection is a fun-
damental task for music information retrieval. However,
because of the variability within and between musical in-
struments, finding note onsets is not trivial. In polyphonic
pieces, note onsets may be difficult to separate from other
notes, and in large ensembles such as an orchestra, masses
of note onsets can be difficult to handle.

Our focus is on massively polyphonic music, e.g. or-
chestra music. One reason previous work has focused on
monophonic and polyphonic piano music is the availabil-
ity of test data. Hand labeling music onsets is tedious
work, and it would be very expensive to label all note on-
sets in large polyphonic works. For example, Beethoven’s
Symphony no. 5 in C minor, first movement, has more
than 10,000 notes and over 2,000 separate onset times over
a duration of about 435s. If we assume labeling one note
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takes 1 minute (quite optimistic in our experience), then
more than 30 hours will be needed to label one movement.

To solve this dilemma, audio-to-score alignment is used
to estimate note onsets automatically. Typically, score
alignment is performed with chroma features, which sum-
marize 50 to 250ms windows of audio, but this does not
provide the high time resolution one would like for on-
set labeling. For example, it is not unusual to see an av-
erage inter-onset time of 200ms in a polyphonic work.
Therefore, we use a semi-supervised learning method to
enhance the performance of the audio-to-score alignment,
leading to improved onset detector training [6]. Thus, the
task of acquiring training data is simply to locate corre-
sponding audio and MIDI files and run a relatively fast
alignment algorithm. Vastly increased numbers of train-
ing examples improve functions for onset detection.

We compare the results of our trained onset detector to
a high-quality, open-source onset detector, Aubio (http://
aubio.piem.org). To measure only improvements due to
semi-supervised training, we used exactly the same fea-
tures as Aubio, and we also used the Aubio peak-picking
algorithm for our system. We also tried adding new fea-
tures, hoping that machine learning would be able to take
advantage of the additional information.

After the related work section that follows, we explain
the techniques used by our onset detection system. Sec-
tion 4 presents an evaluation. Our findings are discussed
in Section 5, which is followed by a concluding section.

2 RELATED WORK

Current practice in note onset detection can be separated
into two general approaches: 1. Apply a detection func-
tion, often based on change in spectrum and overall power;
then use a temporal peak-picking algorithm to find local
maxima in output from the detection function [2, 4, 1, 3].
2. Using a variety of features, apply machine-learning
techniques to build a note onset classifier.

Kapanci and Pfeffer [8] use a Hierarchical Model and
support vector machine to estimate whether an onset is
within a span of time. Marolt, et al., and Lacoste and Eck
[10, 9] use Neural Network approaches for onset detec-
tion. Dannenberg and Hu [6] used semi-supervised (or
bootstrap) learning with Neural Networks for monophonic
and piano music onset detection.

Many of the research systems using machine-learning



Figure 1. Semi-supervised learning of an onset detector.

techniques are trained on the data of the Music Informa-
tion Retrieval Evaluation eXchange (MIREX), which con-
sists of 30 solo drum, 30 solo monophonic pitched instru-
ment, 10 solo polyphonic pitched instrument, and 15 com-
plex (much less complex than orchestra works) pieces.
The total length of all sets is 14 minutes. This dataset
is small for training a polyphonic music onset detector.

3 TECHNIQUES

Our approach acquires training data using score alignment
to match symbolic (MIDI) data to recordings of acoustic
music performances [11]. (See Figure 1.) The MIDI data
contains the onsets while the alignment tells us where to
find these onsets in the audio recordings. Onset labels are
used as training data for a Support Vector Machine, and
the output is used to further refine the alignment data. This
bootstrapping process is iterated until it converges. The
final onset detector is treated with adaptive thresholding
and peak picking to estimate note onset locations. These
steps are covered in more detail below.

3.1 Audio-to-Score Alignment

Audio-to-score alignment uses chroma vector features [12]
and dynamic programming to align audio to note data from
a standard MIDI file [5]. The chroma vector captures in-
formation about harmony and melody during a short time
interval, typically 50 to 250ms.

Alignment is performed by constructing a distance ma-
trix S where Si,j is the Euclidean distance between audio
chroma vector i and MIDI chroma vector j. Then, dy-
namic programming is used to find a path from S0,0 to
SN,M that minimizes the sum of distances traversed by
the path. This path is then smoothed to form a continuous
mapping between audio and MIDI. Each note onset time
in the MIDI data can now be mapped to a corresponding
time in the audio.

3.2 Acoustic Features

Feature selection is important for note onset detection.
The main features used in our models are those of Aubio.
These are Energy of the Frame, High Frequency Content,
Spectral Flux, Phase Deviation, Kullback Leibler Diver-
gence, Modified KL, and Complex Domain (see [2, 3] and
http://aubio.piem.org for details.)

For some tests, we extended or modified the Aubio fea-
ture set with:

• Higher order differences: many features already in-
clude some measure of change, such as spectral flux.
We added first- through fourth-order differences be-
tween features, expanding 7 features to 35 features
per frame.

• Larger frame: Aubio uses a default window size of
1024 and a hop size of 512. We trained another on-
set detector by adjusting the window size to 16384
with a hop size of 2048 in order to capture change
over longer time scales.

• Chroma Flux: We added a measure of change in the
chroma vector, hoping to capture changes in melody
and harmony, especially in string ensembles where
slow onsets might not exhibit typical onset features.

3.3 Semi-supervised learning

From score alignment, we obtain a large set of labeled
training data, but the labels are based on rather large win-
dows, and the chroma vector features are chosen more for
gross alignment than for precise onset detection. A boot-
strapping technique improves the labels while simultane-
ously learning a good onset detector [6].

We use a Support Vector Machine (SVM) classifier with
Radial Basis Function (RBF) kernels. Two parameters
need to be determined before using RBF kernels: C and γ.
It is not known beforehand which C and γ are best for the
classification problem, but the difference in classification
accuracy between a good pair of (C, γ) and a bad one can
be huge. Therefore, parameter searching should be done
before training the whole model.

We used the LIBSVM library (http://www.csie.ntu.edu
.tw/ cjlin/libsvm/) for the implementation of SVMs in our
learning. Before training on the whole dataset, we ran-
domly choose several independent subsets from the whole
dataset, and then apply grid-search onC and γ using cross-
validation. Then, we train classifiers on the whole dataset
using the best parameter pairs and choose the one with the
best performance.

The training set is initialized using features from mu-
sic audio. The onset time of the kth onset of the aligned
score is denoted by Tk. A frame is labeled 1 (onset) if its
time matches some onset time Tk, and 0 (no onset) oth-
erwise. The SVM is trained on this data, producing an
onset detector whose per-frame output is interpreted as a
probability (from 0 to 1) of an onset in the frame.



Music Title Onset
frames

Beethoven, Sym. #5 Op. 67, 1st mvt. 2377
Bach, Brandenburg #5, BWV 1050, 1st mvt. 4511
Chopin, Pn. Concerto #1, Op. 11, 2nd mvt. 3146
Haydn, Sym. #94, 1st mvt. 4465
Mozart, Vn. Concerto #5, K. 219, 1st mvt. 3504
Mozart, Pn. Sonata K. 331, 1st mvt. 2349
Mozart, Sym. #40, K. 550, 1st mvt. 2076
Mozart, Cl. Quintet, K. 581, 1st mvt. 2579
Bach, Passacaglia & Fugue, BWV 582 3375
Tchaikovsky, Sym. #6, Op. 67, 1st mvt. 1638

Table 1. Training data.

The training data is then relabeled as follows: First,
a per-frame probability density P (i) is estimated by ini-
tializing each P (i) to a small constant. Then, for each
onset time Tk, as predicted by the score alignment, add a
Gaussian window with mean Tk and standard deviation of
about 100ms to P . Compute f(i) = P (i) × O(i) where
O(i) is the output of the trained onset detector (so far),
and f(i) represents onset probability after considering the
prior knowledge P and the probability based on features
O(i). Finally, for each onset time Tk, find the largest
frame value f(i) within a window W1 and (re)label it as
1; all other frames are labeled 0. The W1 window size is
defined as follows:

W1(i) = [max((Tk + Tk−1)/2, Tk −W ),
min((Tk + Tk+1)/2, Tk +W )]

(1)

where W is 250ms. Retrain the SVM classifier with the
new labels until the recall on a set of hand-labeled on-
sets stops increasing. The whole learning process usually
takes 8 to 10 iterations.

The resulting onset detector is good, but returns many
false positives. The detector can be further improved by
applying a peak-picking algorithm to its output. We use
the same peak-picking algorithm as in Aubio to simplify
comparisons. It works by comparing the onset detection
function output to an adaptive threshold, then searching
for local maxima when the threshold is crossed.

4 EVALUATION AND RESULTS

We chose ten polyphonic music pieces as the training data,
listed in Table 1. All pieces come from the RWC Music
Database [7]. The whole length of the dataset is more than
90 minutes. There are 76,028 notes, with 30,020 distinct
onset times separated by at least one frame period. In the
training set, there are 30,020 instances labeled as positive;
all the rest are negative.

The testing set consists of 18,521 notes, with 3,225
distinct onset times, taken from Johann II Strauss’s Blue
Danube. As a reference, we compared our note-onset
detector performance to that of Aubio. Figure 2 plots

Figure 2. Performance comparison using Precision-
Recall curves. Aubio: hand-tuned onset detector, SVM:
trained onset detection function using Aubio features,
Long Frame: same as SVM except larger window size,
+Chroma: same as SVM, but chroma flux feature is added,
+Higher Order: same as SVM, but higher-order differ-
ence features are added, MIDI: trained on audio synthe-
sized from MIDI files, NoBootstrap: trained on 100 hand-
labeled onsets, no semi-supervised learning.

Precision-Recall curves for various configurations, which
differ only in the features used. The best F-measures
(F = 2PR/(P+R), where P is precision andR is recall)
are Aubio: 0.38, SVM: 0.47, Long Frame: 0.32, +Chroma:
0.44, +Higher Order: 0.44, MIDI: 0.40, NoBootstrap:
0.03 (these labels are defined and also used in Figure 2).
Except for the Long Frame features, the onset detectors
trained with semi-supervised learning out-performed the
Aubio onset detector. Interestingly, the original Aubio
feature set worked better than any of our alternatives.

To give some idea of computation time, a typical run
labels 564s of audio containing 3225 onsets. The total
computation time is 433s, of which 30s is spent calculat-
ing Aubio features, 385s for SVM classification, and 18s
for peak picking. It takes about 70 hours to train the SVM
classifier on a 2.4GHz Intel P4 system, including the 8 to
10 bootstrapping iterations.

5 DISCUSSION

In this study, machine learning outperformed a hand-tuned
detection system on our test data, indicating that our semi-
supervised learning approach is successful. At first, we
thought that Aubio would not perform particularly well
on orchestral music and that we would obtain significant
improvements by introducing new features. We thought
of machine learning as an efficient way to explore various
new features. Our data suggests that finding new features
or tuning them to orchestral music may not be so sim-
ple. None of the features we added offered significant im-
provement to the original feature set we took from Aubio.
The improvement must be attributed to the improved clas-
sifier function.

Whether improvements come from new features or re-
fining the onset prediction function, the bottom line is that



our improvements are a direct result of machine learning,
and any machine learning approach depends upon large
amounts of training data. Our semi-supervised learning
approach offers a working solution to this problem. We
did not perform an extensive comparison of our onset de-
tector to Aubio across a wide selection of music. Our only
claim is that semi-supervised learning can automatically
adapt an onset detector to a class of music (in this case
massively polyphonic orchestral music) with good results.

To further study the contributions of semi-supervised
learning, we trained using SVM with a small set of 100
hand-labeled onsets and with a large set of onsets from
synthesized MIDI files (see Figure 2). We also tried train-
ing on the score-alignment data without bootstrapping.
The results show it is important to have both a large data
set and actual acoustic data.

Our test data contains thousands of points that seem
typical of orchestral music onset detection, but all of these
come from one performance that was held out from train-
ing. Further testing has begun to confirm these initial re-
sults, and a full cross-validation study is in progress.

Analysis of our audio-to-score alignment using a ran-
dom sample of 100 hand-labeled onsets reveals that there
are significant alignment problems in some cases. Further
work is needed to identify the sources of these problems,
which could include errors in MIDI files and limitations
of our alignment algorithm. When alignment errors are
more than about 100ms, the onset labels might as well
be random because the average interval between onsets
in our entire dataset is about 200ms. That we are able
to show good performance in spite of the fact that many
of our training data points are effectively random is actu-
ally a strong endorsement of our approach. It seems likely
that the bootstrapping process is “searching” for real on-
sets in the neighborhoods of erroneously labeled frames,
minimizing the damage of the bad data. Our test data is
based solely upon score alignment without further refine-
ment using bootstrapping techniques. We are working to
characterize and improve the quality of the test data.

6 SUMMARY AND CONCLUSIONS

Onset detection in polyphonic music and particularly or-
chestral music is difficult. We explored the use of machine
learning to improve onset detection functions. To solve
the problem of training data, we use a semi-supervised
learning technique combined with score alignment. The
result of alignment is an estimate of the onset time of ev-
ery note in the MIDI file, and these estimates are improved
by iteratively applying our onset detector and then retrain-
ing on the new data.

Our resulting onset detection function shows a signifi-
cant improvement over a hand-tuned onset detector using
the same features. Our onset detector is trained on poly-
phonic music that is mostly from orchestra performances.
While this is an interesting problem in itself, future work
might explore whether it is better to specialize onset de-
tectors for different types of music or to pool all available

training data and create one general-purpose onset detec-
tor. Either way, semi-supervised learning is a promising
approach to gathering large amounts of training data, lead-
ing to significant improvements in onset detection.
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