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ABSTRACT

Melody identification is an important task in folk song
variation research. In this paper we develop methods and
tools that support researchers in finding melodies in a
database that belong to the same variant group as a set of
given melodies. The basic approach is to derive from the
pitches of the known variants per onset a weighted pitch
distribution, which quantifies pitch stability. We allow for
partial matching and AND and OR queries.

Technically we do so by defining a distance measure
between weighted pitch distribution sequences. It is based
on two applications of the Earth Mover’s Distance, which
is a distribution distance. We set up a distance framework
and discuss musically meaningful parameterizations for
two tasks: a) Study the inner-group distances between the
group as a whole and single members of the group. b) Use
the group’s weighted pitch distribution sequence to query
for variant melodies.

The first experimental results seem very promising:
a) The inner-group distances correlate to expert assigned
subgroups. b) For variant retrieval our method works bet-
ter than last year’s MIREX winner.

1 INTRODUCTION

In folk song variation research, collection items are as-
sociated with each other and grouped by different meth-
ods. These include text analysis, meta-information anal-
ysis and score-analysis. In the WITCHCRAFT project
(What Is Topical in Cultural Heritage: Content-based Re-
trieval Among Folksong Tunes) we try to aid this process
with computational methods based on the musical content.

Our initial approach was to use a melody query in –
ranked melodies out (short: M2M, Melody to Melody)
search engine, based on a transportation distance (EMD)
in the real valued onset-pitch domain. The actual M2M
system, described in [7], proved to be the most effec-
tive retrieval system in the 2006 MIREX competition.
We hoped that the result list would inspire folk song re-
searchers by presenting items of the collection in new,
similarity driven orderings. However, the users were
rather disturbed by the amount of false positives (items
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on top of the ranking list that should not be there), so we
tried to find more informed ways to query the database.

An important task in folksong research is the grouping
of related melodies, generally because they might derive
from a common melodic ancestor. To do so, one employs
features that are stable accross sets of melodies. How-
ever, already in 1951, Bronson [1] pointed out, that finding
and describing these stable aspects can be musicologically
quite challenging. He proposes to use punch cards and a
sorting machine to quantify stability and to describe the
relationships between variants.

In a similar approach [2] we have developed computer
aided methods and tools to study pitch and harmonic sta-
bility. In the current paper we follow up on this approach
by making use of the by-products of such kind of studies,
namely sets of (manually) aligned melodies: we formally
develop the idea to query a database for unclassified vari-
ants with a group of known melodic variants (short: G2M,
Group to Melody).

In this paper we assume that a set of melodic variants or
variant phrases is aligned with respect to the temporal axis
and that musically reasonable transformations of the ma-
terial have been applied. The latter includes translations
to a common key, selection of suitable bars and reduction
to a particular metrical level, as done in a semi-automatic
way in [2]. For a given onset time we thus get the pitches
and rests that occur in any of the melodies. By querying
with sequences of pitch sets, we abstract from the individ-
ual variations that resulted in the different melodies but
still maintain stable pitch requirements.

In section 2 we first set up a mathematical and com-
putational framework and define the mapping of musical
notes to mathematical values. In section 3 we discuss mu-
sically reasonable parameterizations of the framework and
in section 4 we conduct and evaluate computational exper-
iments with selected parameterizations and compare the
results with previous approaches.

2 THE COMPUTATIONAL FRAMEWORK

This research builds on the Earth Mover’s Distance
(EMD), whose musical application was studied in [7]. It is
also an important building block in Typke’s M2M search
engine, which we used in our first approach to folk song
variation retrieval. However, instead of combining the on-



set and pitch dimensions into one Euclidean ground dis-
tance, as done in Typke’s contour matching, we compute
the EMD on the onset and pitch dimensions separately.

In section 2.1 we introduce the reader into the parame-
ters of the EMD. In the following sections we define mu-
sically and task specific values.

2.1 The Earth Mover’s Distance

The EMD is a geometrically motivated transportation dis-
tance, which defines a distance between node distribu-
tions (weighted node sets) where a ground distance is
given. To apply it we must identify two sets of nodes
and node weights, which for later usage we call query
set Q = {(qj , wqj

)} and candidate set P = {(pi, wpi
)}:

Between the query nodes qj and the candidate nodes pi
we draw edges for which we have to define a reasonable
ground distance dij . (See section 2.2.)

The EMD then computes an edge-flow F = [fij ] with
fij being the weight flow between between pi and qj that
minimizes the overall cost

WORK(P,Q) =
m∑
i=1

n∑
j=1

dijfij , (1)

with the constraint that either all weight flows from P to
Q or vice versa. To get a distance, this work is divided by
the total weight flow:

EMD(P,Q) =
WORK(P,Q)∑m
i=1

∑n
j=1 fij

. (2)

When the two distributions have unequal weight, the
EMD might nonetheless be zero. Therefore, the EMD has
the property to allow for partial matches. For mathemati-
cal and computational details see [6].

2.2 The EMD for Pitch Distribution Sequences

For musical distance modelling we make use of the EMD
twice and later reason about the parameters. But first we
define the term pitch distance in a way that includes also
distances between notes and rests.

Let P be the combined set of all possible pitches given
in some representation and rests. To simplify the formu-
lation in the following we call any element of P a pitch,
even if it is a rest. We assume that there is a ground dis-
tance dp between all the elements in P , e.g. the MIDI-
pitch difference and a penalty distance dr between rests
and non-rests. Let furthermore be dt a distance in musical
time, e.g. in quarter notes or seconds.

A pitch distribution is a set WP = {(w̃i, pi)} of
weighted pitches (same onset time). We define the dis-
tance dwp between two pitch distributions as the EMD be-
tween the weighted pitches with the ground distance dp.

A weighted pitch distribution sequence is a sequence
WPDS = {(ŵj ,WPj , tj)} of externally weighted (ŵj)
pitch distributions (WPj) given per onset (tj). We de-
fine the distance dwpds between two WPDS as their

EMD. We therefore combine the pitch distribution dis-
tance dwp and the time distance dt into a ground dis-
tance dtwp = dwp ⊕ dt. Here ⊕ can be freely de-
fined: we may scale the single distances and compute the
Euclidean (

√
(αdwp)2 + (βdt)2) or manhattan distance

(αdwp + βdt). (See section 4.3 for α and β choices.)

2.3 From Weighted Melodies to Pitch Distribution Se-
quences

In this section we describe how we can turn a set of
melodies M = {(Mk)} into a weighted pitch distribu-
tion sequence. We additionally assume that the melodies
are given weights W = {(Wk)}, which affect the abso-
lute and relative weights of the pitches in the pitch dis-
tributions. We will use W to formulate different types of
queries (AND vs. OR, see section 3.1) and to manually re-
fine a query by putting different emphasis on more stable
core variants than on peripheral variants of a query group.
(We do not make use of different Wk in this paper.)

Figure 1. Creating common onsets for a set of melodies:
Long notes in melodies m1 and m2 are split wherever an
onset occurs.

To get to collective pitch distributions, we compute the
set of all time positions at which a note-on or note-off
event occurs. (See figure 1.) For the time span ∆tj be-
tween adjacent time positions we compute a pitch distri-
bution containing the pitches of the melodies at that po-
sition. 1 We construct the pitch distribution weights w̃i
by summing the weights Wk that each melody Mk con-
tributes to a particular pitch i. The external weight ŵj
equals the time span ∆tj . (See section 3.1.)

A special case is the construction of a weighted pitch
distribution sequence from a single melody. Here each
note turns into a pitch distribution that contains just the
note’s pitch with weight w̃ = 1 and the external weight of
the pitch distribution ŵj equals the duration of that note.

2.4 Inner Group Distances

As an application of a concrete distance measure between
a group of melodies and a single melody, we can apply this
measure to single members of the group and the group as
a whole. If the distances of the melodies to the group are
small, then we have a quite narrow query. If on the other

1 Note that by doing this for each position where an event occurs in
any of the melodies, we get shifts in the weight configuration depending
on the set of all events. The M2M search engine does not do this but al-
lows to split long notes during preprocessing, which also leads to slightly
different results. We omit to investigate these issues in section 4.5 be-
cause we generally project all query notes to the eighth notes metrical
level.



hand the distances are quite big, then we either want to
look for rather distant variations, or the group is ill defined
in terms of the distance measure. (See section 4.4 for an
example.)

To check if a group member belongs to the core of a
group or to its outskirts, we can either directly compute
the distance between the member and the whole group or
remove the member from the group before computing the
distance. If we want to get the melody that is most char-
acteristic for the group, we can take the melody with the
minimum distance to the whole group. We can also re-
peatedly remove the member that lies at most at the out-
skirts until we are left with only melodies that have the
same distance to the group.

In any case it would be useful to present to the user of
a search engine the resulting group-internal ranking list,
enabling him to understand the working of the distance
measure and allowing him to modify the query melody
group, e.g. by removing all group melodies above a dis-
tance threshold.

3 INSTANCIATIONS OF THE COMPUTATIONAL
FRAMEWORK

In this section we discuss free parameters within the com-
putational framework in ways that make musical sense
and help to solve particular tasks.

3.1 Weights

In our application we have the special situation that
we match pitch distributions that stem from the query
melodies with single pitches of a variant candidate melody
from the database. Without loss of generality we turn a
pitch into a one element pitch distribution with weight
w̃ = 1, as described in section 2.3. Given this normal-
ization, how should the query melodies contribute weight
to the pitch distribution?

If we set the pitch weights w̃i ≥ 1, we make sure in
the first application of the EMD that the candidate pitch
is matched with the closest pitch. This is like an OR-
query. If we let the w̃i sum up to 1, we match all pitches at
the same time, thus an AND-query. In addition we might
weight the different query melodies by their importance
for the melody group. (See Wk in section 2.3.)

The WPDS weights ŵj are more restricted: Since we
typically want to match the same amount of musical time
(or small multiples thereof), ŵj should be proportional to
the inter-onset-intervals of the WPDS events. This way a
half note in the query can match two quarter notes in the
candidate melody.

3.2 Pitch Distances

At the core of the algorithm are pitch distance calcula-
tions.

For the MIDI pitch to MIDI pitch distance we want to
discuss the following setups: 1) dp1 is the absolute dif-
ference of the pitch values. 2) dp2 is 0 if the pitches are

the same and 1 otherwise. 3) dp3 is the octave invariant
MIDI pitch distance (which has 6 semitones as its max-
imum value). Expressing dp as the distance within the
musical scale would be another option, which we do not
discuss here.

We expect that option dp1 coupled with an AND-query
returns lower distances for candidates that have the same
contour as the average melody. dp2 counts the pitches that
mismatch and thus realizes a boolean notion of absolute
pitch stability. dp3 ignores octave variations that result
from a too small voice range of the singer whose perfor-
mance was recorded in the transcription. However it does
not catch smaller steps that the singer eventually made to
return to his or her favorite pitch region.

3.3 Scaling Pitch versus Time

In how we combine dwp and dt into dtwp, we define the
time window used for pitch matching. If we put more
emphasis on dwp, then we match candidate melodies that
have similar pitch material with respect to a rather large
temporal segment. We thus consider e.g. pitch sequence
(A B C D) similar to (A C B D).

If we put more emphasis on dt, then we match only
temporally very close pitches. Variations like turning half
notes into two quarter notes or changing from 4/4 to 6/8
measure will not be matched so easily.

In the original M2M search engine setup, we used
pitches given in MIDI-pitch and time given in seconds
or quarter notes. There multiplying the time distance
with a factor of β = 4 and taking the Euclidean distance√

(αdwp)2 + (βdt)2 did a good job for contour similarity
searches. This value might be slightly too large when we
compute OR-queries on pitches, because we take the min-
imum distance, which is generally smaller than the pitch
to pitch distance in the M2M setup.

3.4 A Simple Example

Figure 2 and table 1 illustrate the effects of α and β for the
OR-queries in a very simple case. Time is given in quarter
notes and pitches in semitones. Each quarter note’s weight
is 1 and all note duration must flow from the upper melody
to the chords, with both chords to be completely matched
with duration 2.

Figure 2. Matching the pitch distribution from the accent
notes of 3 melodies (lower staff) with a single melody (up-
per staff). Purely by chance the query melodies form ma-
jor chords. All w̃i are 1 and the ŵj are proportional to the
duration of the notes (OR-query). Different α and β can
result in different matches for upper notes F and C.



The G flows in any case to the C major chord and the A
to the F major chord. The rest depends on the onset scal-
ing factor: If it is large then F prefers a ‘close mismatch’
both in time and pich and matches with the remaining du-
ration of the C major chord. Note C matches perfectly. If
the pitch scaling factor is high, then F matches with the F
from the F major chord and the C satisfies the remaining
duration of the C major chord. (See table 1.)

Distance g f c a
dwp(ceg, x) hq:0 1 hq:0 2
dwp(cfa, x) 2 hq:0 0 hq:0
dt(1, x) hq:0 1 2 3
dt(2, x) 1 hq:0 1 2
dt(3, x) 2 1 hq:0 1
dt(4, x) 3 2 1 hq:0
d1m1(1, x) hq:0 h:2 2 5
d1m1(2, x) 1 q:1 1 4
d1m1(3, x) 4 1 hq:0 h:1
d1m1(4, x) 5 2 1 q:0
d4m1(1, x) hq:0 5 h:2 11
d4m1(2, x) 1 4 q:1 10
d4m1(3, x) 10 hq:1 0 h:1
d4m1(4, x) 11 2 1 q:0

Table 1. Distances between the melody notes and the
chords. dαmβ(n, x) denotes Manhatten distance, with
pitch distance factor α and time distance factor β between
chord at onset position n and the melody tone given in
the column header. Minimum WORK is achieved when
choosing the marked entries to create a complete match. A
h or q in front of a distance value marks inexpensive edges
that the EMD chooses to move weight from the melody to
the chords. Marker h is valid for the case that we put the
half-note chord weight completely onto the strong beats.
Marker q is valid for the case that we split each chord into
two chords with quarter-note duration.

3.5 Optional Transformations

As usual when computing distances between musical
items, we have to consider additional requirements and
whether we can implement them with the parameters of
the framework or with additional transformations. Octave
invariance could be implemented by adjusting dp or by
projecting all notes to the same octave before applying
any of the pitch dependent distances. Transposition in-
variance can be achieved in a brute force manner if the
number of considered transpositions is reasonable limited,
e.g. when sticking to the set of MIDI pitches. Then we
simply transpose the candidate melody as often as neces-
sary and compute the minimum over the distances of the
transposed candidate and the query group. In a similar
manner we can handle onset translations when we want to
find the best partial match of a query pattern within a can-
didate melody. (See [4] for a more explained description
of how to implement this efficiently.)

Another option is to abstract from or extend the candi-
date melody and/or the query melodies. By splitting large
notes into smaller notes to a common grid, as done in the
q-case of table 1, we emphasize less the exact onset of
notes but more its duration, resulting in an equivalence
class of queries or melodies that all project to the same
grid-values. We can also replace metrically or otherwise
less important notes with rests or previously occuring im-
portant notes. Thereby we make sure that the less impor-
tant mismatches do not count as much as the important
ones. (See [2] for examples on this issue.)

4 EXPERIMENTS

In this section we make use of the computational frame-
work and the parameterization discussions from the pre-
vious section to set up and conduct experiments. We first
describe a musicological task and a computational goal.
Then we analyse an example data set and derive a rea-
sonable parameterization of the computational framework
for this case. We calculate the inner group distances (see
section 2.4) and query the database.

4.1 The Task and Goal

We want to develop a tool for folk song researchers for the
purpose of variation research. Folk song researchers want
to know which melodies of a collection stem from each
other. To find genetically related items the researchers
may first group musically related melodies and then check
by means of other information sources, like historical
records or geographic information, whether inheritance is
plausible.

We translate the first part of this research process into
a computational task: for a given group of musically re-
lated melodies we want to retrieve and present melodies
from a database that are good additional candidate mem-
bers for that group. Since musicologists (sub-)consciously
consider a large, not fully described set of musical fea-
tures when comparing and classifying melodies, we state
a more modest goal: we want to find melodies that follow
the notion of stable notes as described in [2] and by this
criterion are good group member candidates.

4.2 Example

Figure 3 shows the beginnings of six melodies from the
database, which were properly aligned to study the differ-
ences between these rather similar melodies. When we
follow the lyrics further, we see that variants 1, 3 and
5 (OGL41101m, OGL36012m, OGL33006m) start each
odd verse with the same text, like the first verse in bars
1–2 and continue in the even verses differently.

Musically we can identify a core subgroup consisting
of items 1, 3, 5 and maybe 4. In this subgroup each
verse starts quite similar in its first bar and shows more
differences in the second bar. Also we note that metri-
cally strong notes are typically more stable accross vari-
ants (see [2] for more evidence on this statement). The



remaining two melodies share fewer pitches with the core
group but are metrically, harmonically and textually very
similar. But from just the pitch stability point of view we
might want to exclude these melodies from the group.

4.3 Chosen Parameterizations

In a pre-experiment we compute the inner-group distances
as described in section 2.4. We express musical time in
quarter notes and pitches in MIDI pitch numbers. We de-
fine the distance between a MIDI pitch and a rest as 1 and
define the distance between MIDI pitches as the absolute
difference dp1 .

To compare results, we project all melodies to the 8th-
note metrical level and thus abstract from mainly textu-
ally motivated rhythmic variations. (See [5], file Moeder-
Aligned.pdf.) For the weighting between pitch and time
dimensions we choose α and β (see section 2.2) from
{0, 1, 4}. For β = 1 the results are most intuitive (see
section 3.4). 4 allows us to compare our search results
with those of our previous M2M search engine.

In section 4.4 we compare the different inner-group
distance results for different α and β values. For each
setting we compute 4 distances: a) With or without the
candidate included in the query group. b) Using AND- or
OR scheme pitch weights. (For results see [5], file Re-
sultsMIDIPitchDistance.)

4.4 Inner-Group Distances

In this section we discuss the results for different distance
measures and α and β values. We use the following ter-
minology: When a melody scores high, its distance to the
group is rather low and we call it a good match. When a
pitch does not match it means that no other member of the
group has the same pitch at that onset position.

Setting α = 0 and β >= 0 ignores pitch. Because of
the splitting of notes according to the 8th-note grid dura-
tion, there are no rhythmical differences, so the results are
not meaningful (all zero).

Figure 3. Beginnings of six manually aligned melodies
from the collection Onder de Groene Linde. [3] The lyrics
correspond to the staves. Please see the remaining bars at
[5], file MoederLargeOGLFirst.pdf.

For α > 0 and β = 0 we actually compare
pitch histograms for the entire melodies. OGL36012m
and OGL41101m score high in OR-queries, while
OGL35003m is rather distant, probably because of un-
matched (D,E,F#)-phrases in the beginning of odd
verses. In AND-queries, OGL33006 performs best, which
means, it is most average in pitch.

For α = 1 and β = 1 OGL36012m scores best
in OR-queries and can be called the most representa-
tive melody. OGL41101m is closest to the average pitch
contour. OGL28602m is most distant in both cases,
which corresponds nicely with an expert’s decision to
put OGL28602m into a different subgroup than the other
melodies.

For α = 1 and β = 4 we penalize pitch distances much
more. As a result in AND- and OR-queries, OGL37102m
is more distant than OGL28602m, which might result
from unmatched pitches in the end of bar 1 and begin-
ning of bar 3, which are 7 semitones apart from the other
melodies. We think that this is overweighted or should
be corrected with a pitch distance measure that takes the
harmonic context into account.

For α = 4 and β = 1 pitch differences are
weighted high, but we allow to match with neighbor
pitches. OGL33006m and OGL36012m are close to
the group in OR-queries, additionally OGL41101m again
scores best in AND-queries. Worst are OGL35003m and
OGL28602m, where the former scores over the latter in
OR-queries and vice versa in AND-queries, again proba-
bly because of the unmatched (D,E,F#)-phrases.

4.5 Finding Other Candidates

In this section we compare the performance of the group-
distance approach with our previous setup, which allowed
a M2M query. In a recently established ‘ground truth’
by our expert, there is a so called melody norm 2 Moeder
which includes our group members and additional items
from the database. By constructing ranking lists, we eval-
uate qualitatively, how useful our method is in showing
these items in top positions (small rank numbers).

In a short experiment with the database we restrict
ourselves to OR-queries with the following setup: α =
1, β = 1, dp = dp1 . We do not perform transpositions and
time stretching, because the general guideline of the tran-
scriptions of this database was to transcribe it in tonality
G (any mode).

Our test collection contains 144 3 Dutch folk songs
from [3], and 68 unrelated additional popular ring tone
melodies. The database contains both complete MIDI files
and each of the verses of the folk songs separately, be-
cause we look also for melodies that match just in one
verse with the query. These kind of partial matches are
supported by the EMD. In total there are 212 melodies

2 Within the Meertens Institute the concept of melody norm is used
to group historically or ‘genetically’ related melodies. If there is not
enough historical evidence, such as in this case, then melodies may be
attached to a melody norm on the basis of convincing melodic similarity.

3 Three more than used in other ISMIR 2007 publications.



broken into 804 items. Independent from our system our
expert assigned 13 melodies to the melody norm Moeder,
including the 6 query melodies. She created a subgroup
‘1’ with 11 of the melodies and put the remaining two
melodies (OGL28602 and OGL33112) into subgroup ‘2’.
Our query results (see [5], files MoederRanksShort and
MoederResults) are very promising:

The first 8 items found in the ranking list, including
the 6 query melodies, are actual members of the melody
norm. The next members are found on ranks 10, 14 and
15. OGL33112, which is part of subgroup 2, is found at
rank 22 (of 212). We did not find OGL25309 at the top
of the ranking list. It is also part of the melody norm but
notated in quarter notes instead of eighth notes.

We compare this findings with the result of a single
M2M query with OGL36012m as the best representative
of the query group. Here besides OGL25309 we miss 3
items (including OGL33112) in the top ranks. So our
G2M appears to work much better than M2M. (See [5],
files OGL36012mRanksShort and OGL36012mResults
and figure 4.)

Figure 4. Number of found melodies by category (query
item, melody norm item or false hit) counted up to a
given rank, shown for M2M and G2M separately (on
different scales). Only the first hit of an item is con-
sidered in the ranking list. Only melody norm items
that are not part of the query group are included in the
melody norm category. M2M: 6 melody norm melodies
are not found among the first 20 ranks (melodies at
ranks 195 and 200 are not shown). G2M: 2 melody
norm melodies are not found among the first 20 ranks
(melody at rank 87 is not shown). The complete data
can be found at [5], files MoederResultCategoryCount and
OGL36012mResultCategoryCount.

5 CONCLUSION AND FUTURE WORK

We have implemented and tested the method G2M for
finding in a database (unclassified) variants, given a group
of melodies that are known variants of each other. In our
evaluation we found with this method a more complete set
of true positives and smaller number of disturbing false
positives in the top of a ranking list than with our previous
search method M2M, with which Typke won the MIREX
2006 Symbolic Similarity Contest. The results are partic-
ularly very promising, because we got there only by rea-
soning about the free parameters and without manual or
automatic fine-tuning.

For the future, a more thorough quantitative evaluation
of different cases and different parameterization options
remains to be done. We will also compare the group-query
results with the ranking that we get with a linear combi-
nation of the distances between any member of the group
and the candidates. We expect that the former works bet-
ter with harmonically stable aspects while the latter works
better when contour is important in the variant group. To
further improve on harmonic generalization from pitches,
we consider to apply automatic harmonic analysis. [2]

From the user interface point of view we will study,
whether a sort of relevance feedback approach is possible
to support the incremental interactive shaping of variant
groups. There may be an initial M2M query, for which
a ranked list is returned. In this list, the user indicates
good hits, which we (semi-)automatically align and use as
a G2M query, with new group candidates. Finally, we will
elaborate a query formulation and refinement process and
allow users to express pitch and timing wildcards.
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