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ABSTRACT 

A method that predicts the next notes is described for 
assisting musical novices to play improvisations. Melody 
prediction is one of the most difficult problems in musical 
information retrieval because composers and players may or 
may not create melodies that conform to our expectation. The 
development of a melody expectation method is thus 
important for building a system that supports musical novices 
because melody expectation is one of the most basic skills for a 
musician. Unlike most previous prediction methods, which use 
statistical learning, our method evaluates the appropriateness of 
each candidate note from the view point of musical theory. In 
particular, it uses the concept of melody stability based on the 
generative theory of tonal music (GTTM) and the tonal pitch 
space (TPS) to evaluate the appropriateness of the melody. It 
can thus predict the candidate next notes not only from the 
surface structure of the melody but also from the deeper 
structure of the melody acquired by GTTM and TPS 
analysis. Experimental results showed that the method can 
evaluate the appropriateness of the melody sufficiently well. 

1. INTRODUCTION 

We have developed a method for predicting the next notes in 
a melody that uses the generative theory of tonal music 
(GTTM) [1] and the tonal pitch space (TPS) [2]. Our 
melody prediction method helps a novice construct a 
melody or play an improvisation by displaying candidates 
for the next notes. This method is designed to be used with a 
“prediction piano” (Figure 1), which was developed to assist 
musical novices play improvisations. On the lid of this piano, 
there is a 32 × 25 full-color LED matrix that displays a 
piano roll view that scrolls down in time with the music. 

We identified two key requirements for our melody 
expectation method to make it useful to musical novices 
playing an improvisation on the expectation piano. 

1) Candidate notes are predicted and output even if the 
input melody is novel. 

2) The output is appropriate from a musical point of view. 
Two approaches were considered when developing this 

method: statistical learning and music theory. With the 
statistical learning approach, the predictions depend on the 
characteristics of the data used for learning: composer, genre, 
period, country, etc. [3, 4]. Moreover, predicting candidate 
notes for a novel melody is problematic because the system 
may not be able to find a similar melody in the learning data 
and thus may be unable to evaluate whether the notes are 
appropriate or not. With the music theory approach, the 
predictions do not depend on the characteristics of the data 
used for learning. It can thus be applied to novel melodies. 

Although many music theories have been proposed [5–
8], GTTM is the most suitable for predicting notes in a 
melody because it can be used to represent the various 
aspects of music in a single framework. Furthermore, it 
includes a concept of stability, meaning that it can be used 
to evaluate the appropriateness of the predicted notes. 

This paper is organized as follows. Section 2 briefly 
explains GTTM and the analyzers we constructed. Section 3 
explains our melody prediction method. In Section 4, we 
describe the expectation piano, and, in Section 5, we present 
some experimental results. We conclude in Section 6 with a 
summary of the main points and mention of future work. 

2. GTTM AND ANALYZERS 

The GTTM is composed of four modules, each of which 
assigns a separate structural description to a listener’s 
understanding of a piece of music. These four modules 
output a grouping structure, a metrical structure, a time-
span tree, and a prolongational tree, respectively (Figure 2). 
The time-span tree is a binary tree with a hierarchical 
structure that describes the relative structural importance 
of the notes that differentiate the essential parts of the 
melody from the ornamentation.  

There are two types of rules in GTTM, i.e., “wellformedness 
rules” and “preference rules”. Wellformedness rules are 
the necessary conditions for assigning structures and 
restrictions on the structures. When more than one 
structure satisfies the well-formedness rules, the preference 
rules indicate the superiority of one structure over another. 

Figure 2. Time-span tree, metrical structure, and 
grouping structure. 

Time-span Tree

Metrical Structure

Grouping Structure

Figure 1. Expectation Piano. 
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2.1. Problems in implementing GTTM 
In this section, we specify the problems with the GTTM 
rules in terms of computer implementation.  

2.1.1. Ambiguous concepts defining preference rules 
GTTM uses some undefined words that can cause ambiguities 
in the analysis. For example, GTTM has rules for selecting 
structures for discovering similar melodies (called 
parallelism), but does not have the definition of similarity 
itself. To solve this problem, we attempted to formalize the 
criteria for deciding whether each rule is applicable or not.  

2.1.2. Conflict between preference rules  
Conflict between rules often occurs and results in ambiguities 
in the analysis because there is no strict order for applying the 
preference rules. Figure 3 shows a simple example of a conflict 
between grouping preference rules (GPR). GPR3a (register) is 
applied between notes 3 and 4 and GPR6 (parallelism) is 
applied between notes 4 and 5. A boundary cannot be perceived 
at both 3-4 and 4-5, because GPR1 (alternative form) strongly 
prefers that note 4, by itself, cannot form a group. 

To solve this problem, we introduced adjustable 
parameters that enable us to control the strength of each rule.  

2.1.3. Lack of working algorithm 

Knowledge represented in the rule form is in general 
declarative, which is advantageous in the sense that a 
knowledge programmer does not need to take into account an 
algorithm for reasoning.  A system is required to perform 
automatic reasoning on the declaratively described knowledge. 

Unfortunately, GTTM has few descriptions of the reasoning 
and working algorithms needed to compute analysis results.   

2.2. exGTTM  
In our previous work [9], we extended the GTTM theory 
through full externalization and parameterization and devised 
a machine-executable extension of GTTM, exGTTM. The 
externalization includes introducing an algorithm for 
generating a hierarchical structure of the time-span tree in a 
mixed top-down/bottom-up manner. Such an algorithm has 
not previously been represented for GTTM. The 
parameterization includes a parameter for controlling the 
priorities of rules to avoid conflicts among them as well as 
parameters for controlling the shape of the hierarchical time-
span tree. Although it has been suggested that such parameters 
are required in GTTM, they were not explicitly presented.  
   Here, we distinguish two kinds of ambiguity in music analysis: 
one involves the musical understanding by humans, and the other 
concerns the representation of a music theory.  The former kind 
of ambiguity derives from the ambiguity of the music itself.  For 
the latter type of ambiguity, related to GTTM, either no concept 
for mechanization has been presented, or it has only been 
presented in an implicit way.  Therefore, due to the former kind 
of ambiguity, we assume there is more than one correct result.  
We avoid the latter kind of ambiguity as much as possible by 
performing full externalization and parameterization.   

2.2.1.  Full externalization and parameterization 
The significance of full externalization and parameterization 

is twofold: precise controllability and coverage of the manual 
results. Whenever we find a correct result that exGTTM 
cannot generate, we introduce new parameters and give 
them appropriate values so that it can generate the correct 
result. In this way, we repeatedly externalize and introduce 
new parameters until we can obtain all of the results that 
people consider correct. In total, we introduced 15 
parameters for grouping-structure analysis, 18 for metrical-
structure analysis, and 13 for time-span reduction (Table 1). 

 We appropriately supply lacking parameters and make 
implicit parameters explicit1.  The parameters introduced by 
exGTTM are categorized into identified, implied, and unaware.   

 A parameter in the first category is identified in GTTM 
but it is not assigned concrete values. Hence, we valuate 
such a parameter.  For example, since the resulting value 
of the GPR2a application, DGPR2a, is binary, if the rule 
holds, DGPR2a makes 1, and 0 if it does not hold. On the 
other hand, since GPR6 holds indefinitely, the resulting 
value of GPR6, DGPR6, varies continuously between 0 and 1.   

 A parameter of the second category is implied in GTTM.  
Hence, we make it explicit. For example, to resolve the 
preference rule conflict, we introduce parameters to 
express the priority for each preference rule (SGPR R, SMPR R, 
and STSRPR R in Table 1).  Since each preference rule has its 
own priority, all of the priority patterns are realized.  This 
is an example of full-parameterization.   

For the third category, we need to complement parameters that 
are not recognized in the original theory, since some of them may 
nearly lack any musicological meaning.  For example, GPR6 
in exGTTM needs to add parameters for controlling the 
properties of parallel segments, including the weights for 
pitch-oriented matching or timing-oriented matching.   

We add a comment to the domain of intermediate variables, 
denoted as D and B.  The domain of all the intermediate 
variables is constrained within the range of 0 to 1, and for this 
purpose, these variables are normalized at every computing 
stage.  Thanks to this property, exGTTM can flexibly 
combine any intermediate variables (and possibly parameters) 
and cascade as many weighted-mean calculations as 
needed. This facilitates precise controllability.  

2.2.2. Algorithm for acquiring hierarchy 

Among the issues that require working algorithms, the 
problems for acquiring hierarchical structures in the grouping- 
and metrical-structure analyses and the time-span tree 
reduction can be all regarded as constraint satisfaction 
problems (CSP). This is because only the properties to be 
satisfied for the hierarchical structures are represented in the 
form of a rule; that is, neither constraint nor order of 
generating hierarchical structures is determined in advance. 

The constraints stipulated by the GTTM rules are divided 
into two categories: local and global. The former includes 
GPR2 (proximity) and TSRPR1 (strong metrical position), 

                                                           
1  In the paper, the word ``parameter'' is used not only for 

parameters used in controlling a system externally but also for 
internal variables (intermediated variables) connecting submodules. Figure 3. Simple example of conflict between rules. 
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and the latter GPR5 (symmetry) and MPR1 (parallelism). We 
need to handle global constraints carefully when generating 
hierarchical structures. For the example of GPR5 in Figure 4, 
given a group at Layer 1, an inner boundary likely occurs 
around the center of the group, that is, either between Notes 1 
and 2 or between Notes 2 and 3.  Here, we can consider two 
cases.  In Case 1, the boundary between Notes 1 and 2 is 
selected, taking into account the effects of some other rules. 
Then in each subgroup in Layer 2, the inner boundary of the 
subgroup may occur on the left-hand side of a center note. On 
the other hand, in Case 2, the boundary between Notes 2 and 
3 is selected. Therefore, the inner boundary may occur on the 
right-hand side of a center note.  Consequently, in computing 
GPR5, the determined boundary position influences the 
identifications of remote boundaries in lower layers, and we 
have to take into account up-to-date global information every 
time. That is, a global constraint is inevitably dynamic.   
In light of the above considerations, we are developing 
algorithms for generating hierarchical structures for exGTTM 
so that nodes are generated either from the bottom-most nodes 

or the top-most node incrementally and so that every time the 
nodes at a layer are calculated, global information is re-
calculated before moving onto an adjacent layer. 

2.3. FATTA: Fully Automatic Time-span Tree Analyzer 
We implemented a time-span tree analyzer, called 
automatic time-span analyzer (ATTA), based on exGTTM. 
Although ATTA can automatically acquire a time-span 
tree, because the parameters are manually controlled, it 
takes too much time to find a set of optimal parameters. 
Therefore, we developed a method for automatically 
estimating the optimal parameters [10]. 

Two rules in GTTM [1] are not implemented in 
ATTA: GPR7 and TSRPR5.  

These rules require that information from later processes, 
such as time-span/prolongational reductions, be sent back 
to earlier processes. 

To estimate the optimal parameters automatically, we 
evaluate the structural stability of the analysis results 
derived by ATTA. We use GPR7 and TSRPR5 to 
calculate the level of stability. Figure 5 shows the 
process flow of the FATTA, which consist of the ATTA 
and a loop by the GPR7 and TSRPR5. 

 Parameters Description 

Grouping structure SGPR R (0 SGPR R 1) Strength of each grouping preference rule. The larger the value is, the stronger the rule acts.  R
 2a, 2b, 3a, 3b, 3c, 3d, 4, 5, and 6  

      (0     0.1) Standard deviation of a Gaussian distribution, the average of which is the boundary by GPR5. The 
larger the value is, the wider its skirt becomes. 

Wm     (0   Wm  1) Balance between temporal similarity of attack points and that of pitch difference in GPR6. The larger 
the value is, the more the system estimates the pitch difference.  

Wl      (0   Wl  1) Weight for the length of parallel phrases. The larger the values is, the more the length of parallel 
phrases is prioritized in GPR6.  

Ws      (0   Ws  1) Balance determining whether the note i becomes the ending note of a group or the beginning note of 
the following group in GPR6. The larger the value is, the more the note tends to be the ending note. 

TGPR4   (0  TGPR4 1) Threshold at which the effects of GPR2,3 are considered to be salient in GPR4. The smaller the value 
is, the more probably GPR4 is applied. 

Tlow         (0  Tlow 1) Threshold in the lower-level boundary. The smaller the value is, the more salient the boundary becomes. 

Metrical structure SMPR R(0 SMPR R 1) Strength of each metrical preference rule. The larger the value is, the stronger the rule acts. 
R 1,2,3,4,5a, 5b, 5c, 5d, 5e, and 10) 

Wm     (0   Wm  1) Balance between temporal similarity of attack points and that of pitch difference in MPR1. The larger 
the value is, the more the system estimates the pitch difference. 

Wl      (0   Wl  1) Weight for the length of parallel phrases. The larger the value is, the more the length of parallel 
phrases is prioritized in MPR1. 

Ws      (0   Ws  1) Balance determining whether the note i becomes the ending note of a group or the beginning note of 
the following group in MPR1. The larger the value is, the more the note tends to be the ending note. 

TMPR R(0  TMPR R 1) Value of the threshold that decides whether each rule is applicable. R  4, 5a, 5b, 5c  

Time-span tree STSRPR R(0 STSRPR R 1) Strength of each rule. The larger the value is, the stronger the rule acts.  
R  {1, 2, 3, 4, 5a, 5b,5c, 5d, 5e, and 10} 

Wm     (0   Wm  1) The balance between the temporal similarity of attack points and that of the pitch difference in 
TSRPR4. The larger the value is, the more the system estimates the pitch difference. 

Wl      (0   Wl  1) The weight for the length of parallel phrases. The larger the values is, the more the length of parallel 
phrases is estimated in TSRPR4. 

Ws      (0   Ws  1) The balance determines whether the note i becomes the ending note of a group or the beginning note of 
the following group in TSRPR4. The larger the value is, the more the note tends to be the ending note. 

   

Layer 1

Layer 2

Boundary around the center

Group

Subgroup

Case 1: Boundary between Notes 1 & 2 selected

Note 1     2   3

Layer 2

Case 2: Boundary between Notes 2 & 3 selected

Subgroup

Figure 4. Simple example of conflict between rules. 

GPR7 (time-span and prolongational stability): prefer a 
grouping structure that results in a more stable time-
span and/or prolongational reductions. 
 
TSRPR5 (metrical stability) In choosing the head of 
time-span T, prefer a choice that results in a more 
stable choice of metrical structure. 

Table 1. Adjustable parameters of the exGTTM and ATTA. 
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2.3.1. Implementation of GPR7 with Tonal Pitch Space  
GPR7 is applied to the loop between the time-

span/prolongational reduction and grouping structure 
analysis. This rule leads to a preference for a grouping 
structure that results in a more stable time-span and/or 
prolongational reductions. The holding level of GPR7, 
which varies continuously between 0 and 1, is defined as 

i

i
GPR

i

iisip

D
2

2

7 )(size

)(size))(),((distance

,
                               

(1)
 

  
where i indicates the head of the time-span, which has 
primary and secondary branches, denoted by p(i) and s(i), 
respectively. Distance (x, y) indicates the distance between 
notes x and y in the tonality of the piece, which are defined 
using Lerdahl’s tonal pitch space [2]. We normalized the 
distance from 0 to 1. The size(i) indicates the length of the 
time-span with head i. When calculating DGPR7, we use the 
square of size(i) for the weighting for empirical reasons. 

In the tonal pitch space, the distance between chord x 
= C1/R1 and chord y = C2/R2 is defined as follows: 

kjiyx )( ,                                                 (2)  
where i is region distance, j is chord distance, and k is basic 
space difference.  The region distance is the smallest 
number of steps along the regional circle of fifth between 
R1 and R2. The chord distance is the smallest number of 
steps along the chordal circle of fifth between the roots of 
C1 and C2 within each region. The basic space distance is a 
specially weighted to define each chord and region. Note 
that pitch class only has a meaning in terms the elements of 
the sets that define chords and regions, and chords are 
always understood as functioning within some region.   

2.3.2. Implementation of TSRPR5  
TSRPR5 is applied to the loop between the time-span 

reduction and metrical structure analyzer and results in a 
more stable metrical structure when choosing the head of 
a time-span. The holding level of TSRPR5, which varies 
continuously between 0 and 1, is defined as 
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where dot(x) indicates the  number of metrical dots of note x. 

2.3.3. Optimization of adjustable parameters  
The set of optimal ATTA parameters is obtained by 

maximizing the average of DGPR7 (0 ≤ DGPR7 ≤ 1) and 
DTSRPR5 (0 ≤ DTSRPR5 ≤1). The parameters and default 
values are Srules = 0.5, Trules = 0.5, Ws = 0.5, Wr = 0.5, Wl 
= 0.5, and σ = 0.05. Because there are 46 parameters, a 
great amount of time is needed to calculate all parameter 
combinations. To minimize the calculation time, we 
constructed an algorithm that does the following: 

(1) Maximize average of DGPR7 and DTSRPR5 by changing 
a parameter from its minimum to its maximum value. 

(2) Repeat (1) for all parameters. 
(3) Iterate (1) and (2) as long as the average of DGPR7 and 

DTSRPR5 is higher than after the previous iteration. 

3. MELODY EXPECTATION METHOD  

Our melody expectation method predicts candidate notes 
by using the level of stability of the time-span tree defined 
in FATTA. Our position is that we cannot always specify a 
single expected, following tone; and thus, we developed an
expectation piano that simply suggests multiple candidates
among stable pitch events with higher stability. The 
functions of FATTA are restricted as follows; FATTA 
only treats monophonic western tonal music. Thus, our 
expectation method can predict only monophonic musical 
structures of western tonal music.  

3.1. Expectation Method based on FATTA  
The main advantage of our melody expectation method is that, 
the stability of a melody is calculated by analyzing the whole 
melody from the beginning note to the expected note, not from 
only the local melody(a few notes previous to a relevant note) ; 
previous melody expectation methods based on music theory 
(eg. Steve Larson's theory of musical forces [8]) derive the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Adjustable parameters for 
grouping structure analyzer

Adjustable parameters for 
metrical structure analyzer

Adjustable parameters for 
time-span tree analyzer

Applying TSRPR5
DTSRPR5

Applying GPR7 DGPR 7

Level of time-span tree stability

noitazimitponoitazimitponoitazimitpo

ATTA

FATTA
Feedback loop 

Figure 5. Processing flow of fully automatic time-span tree analyzer (FATTA). 110



ISMIR 2008 – Session 1b – Melody  
 

Figure 6. Level of stability over time. 
Time 

Level of  
stability 
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expected note from the local melody. Music tends to be more 
interesting when it does not match the listener’s expectations, 
such as a delayed note, and this may result in tension and 
relaxation. A composer can deliberately construct such music, 
which can make it difficult to predict the next notes in the 
melody with accuracy. For example, an ornamentation note is 
often inserted before the expected note. In such cases, our 
method can predict candidate notes fairly well because 
FATTA can evaluate the stability of the entire structure of the 
time-span trees, which includes branches connected to 
essential notes and leaves connected to ornament notes. 

3.2. Real-time Extension for FATTA  
To be able to predict notes on the basis of GTTM, FATTA 
must run in real time. However, FATTA needs several 
minutes to finish the analysis, so running in real time is 
difficult. Therefore, we extended the algorithm to enable real-
time operation. First, to speed up the iteration described in 2.2, 
we use the set of optimal parameter values for the last melody, 
which is one note shorter than the present melody, as the 
initial parameter set. Second, to reduce the time used by 
ATTA, we introduce a window for analysis. The size of the 
window is the longest group length within 16 measures of the 
present position. This length can be acquired through 
preprocessing using the grouping structure analyzer in ATTA. 
If there is no grouping boundary in 16 measures from the 
present position, we use 16 measures as the window size. 

3.3. Calculation Level of Stability of Melodies by FATTA  
Our method evaluates the appropriateness of each 
candidate melody to occur after the present one by 
calculating its stability.  We use the average of DGPR7 and 
DTSRPR5 as the level of stability acquired by FATTA. 

Figure 6 shows the calculated level of stability from the 
primary note to the present note. The level of stability can 
be calculated after the third note because GTTM analysis 
needs at least four notes.  
 
 
 
 
 
 
 
In the score, the primary note is a tonic of the region, and the tail 
note is also a tonic of the region. This means that the levels of 
stability indicate a large value at the tail of the melody and a 
smaller value in the middle of the melody. Therefore, the higher 
the level of stability, the relatively closer the tonic of the region. 
The region of the melody and chord progression were estimated 
in the implementation of GPR7 by applying the tonal pitch space.  

4. EXPECTATION PIANO  

Our expectation piano assists novices with musical 
improvisation by displaying the predicted notes on the piano 
lid. When the novice finds it hard to continue playing the 
melody, she/he can continue the improvisation by playing a 
note displayed on the lid, without impairing tonality. 

4.1. Overview 
The processing flow of the prediction piano is as follows. 

First, the MIDI signals for the music played on the piano are 
sent to a computer. The signals are quantized, and a 
MusicXML version of the performed melody is created. A 
learning-based quantization method [11] is used to eliminate 
the deviation in onset times, which are then aligned to the 
normalized positions. The predicted notes are acquired by 
inputting the MusicXML into FATTA. Finally, the 
predicted notes are displayed on the piano lid. 

4.2. LED Scrolling Piano Roll  
The predicted notes are displayed in piano roll format within 
the range of view of the keyboard. The roll scrolls down at a 
constant speed. Below the piano lid, which is made of 
semitransparent acrylic resin, there is a 32 × 25 full-color 
LED matrix for displaying the scrolling piano roll. The 32 
represents two measures when the resolution is a sixteenth 
note, and 25 is the number of keys on the keyboard. The 
color of each LED in the matrix is determined under the 
assumption that the onset of the next note will start at the 
corresponding position on the piano roll and by calculating 
the level of stability. When the level of stability is high, the 
LEDs show yellow, when it is low, they show black, and 
when it is neither, they show red. There is also a 32 × 20 
blue LED matrix that displays the bar lines of the piano roll. 

4.3. Construction 
The piano is 953 mm long and 710 mm wide and resembles a 
grand piano. It contains a MIDI keyboard, the LED display, a 
microcomputer, a power supply, and four speakers. The LED 
display is 630 mm long and 390 mm wide. The colors of the 
LEDs are controlled by MAX6972 which is 16-output 12-bit 
pulse-width-modulation (PWM) LED drivers. There is a 5-mm 
gap between the LEDs and piano lid to protect the acrylic resin 
lid from the heat of the LEDs. A half-mirror sheet is bonded to 
the back side of the acrylic resin so that the lights of the LEDs 
show on the surface of the piano lid rather than 5 mm below it. 
The LED drivers are controlled using a microcomputer connected 
to the computer with a network cable. The computer sends the 
data for the LED colors by using the user datagram protocol. 

5. EXPERIMENTAL RESULTS 

It is difficult to compare the performance of our system with 
those of previous systems, which are mostly based on statistical 
learning, because the approaches taken are completely different. 
Our method, which is based on music theory, evaluates the 
appropriateness of the notes from a musical point of view. 
Therefore, we first quantitatively evaluate each step in our 
method and then describe an example result.  

5.1. Evaluation of FATTA 
 We evaluated the performance of FATTA using an F-
measure given by the weighted harmonic mean of precision P 
(proportion of selected groupings/dots/heads that are correct) 
and recall R (proportion of correct groupings/dots/heads that 
are identified). In calculating the F-measure of the grouping 
analyzer and time-span tree analyzer, we did not consider the 
possibility that a low-level error is propagated up to a higher 
level—we simply counted wrong answers without regard to 
the differences in grouping or time-span levels.  

This evaluation required preparation of accurate data 
for the grouping structure, metrical structure, and time-
span tree. We collected 100 pieces of 8-barlength, 
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monophonic, classical music and asked people with 
expertise in musicology to analyze them manually with 
faithful regard to the GTTM. These manually produced 
results were cross-checked by three other experts. 

The grouping, metrical, and time-span tree structures 
change depending on the parameter settings. To evaluate the 
baseline performance of the ATTA, we used Srules = 0.5, Trules 
= 0.5, Ws= 0.5, Wr = 0.5, Wl = 0.5, and  = 0.05. The range 
of Trules, Ws, Wr, and Wl was 0 to 1.0, and the resolution was 
0.1. The range of  was 0 to 0.1, and the resolution was 0.01. 

 After the set of parameters was optimized using FATTA, 
the average F-measure was 0.48, 0.89, and 0.49, respectively, 
for grouping, metrical, and time-span tree structures, all 
better than the baseline performance of ATTA (Table 2).  

5.2. Evaluation of region estimation by TPS 
 The tonal pitch space is used by FATTA to estimate the 
region and chord progression. We evaluated the performance 
of the region estimation by using the same 100 musical 
pieces. The TPS correctly estimated the regions for 96 pieces. 

5.3. Example of Melody Expectation  
Figure 7 shows the results for Haydn’s andante. The graph 
below the musical staff indicates the level of melody 
stability, corresponding each above note. The number under 
each note indicates the level of stability for selecting a pitch 
of 25 possible ones. Stability of a pitch event is calculated 
from the partial melody between its beginning and the 
relevant event, and not by the sole event. As a result, the F# 
in measure 7 does not have the lowest stability, and that of C 
in measure 5 is lower than that of G in the previous measure, 
even in C major. Although this may contradict intuition, the 
calculated result is faithful to our algorithm. At the end of 
the 4th and 8th measures, the level of stability is high. This 
is because a dominant chord’s note that wants resolve to a 
tonic chord’s note occurs. In contrast, at the beginning of 
the 5th measure, the level of stability is relatively low. 
This is because a tonic chord’s root note at the beginning 
of the 5th measure occurs, and various progressions can 
follow the root note. These results show that our prediction 
method works well from a musical point of view.  
 
 
 
 
 
 
 
 

6. CONCLUSION 

We devised a melody expectation method that predicts 
candidate notes on the basis of the generative theory of 
tonal music (GTTM) and the tonal pitch space (TPS). It is 
designed to be used with an expectation piano, which 
displays the predicted notes on its lid, thereby supporting 
musical novices in playing improvisations. We experimentally 
evaluated our method and got the following results.  
(1) The performance of the fully automatic time-span tree 

analyzer (FATTA) outperformed the baseline F-measure 
of the automatic time-span tree analyzer (ATTA).  

(2) Region estimation by using a tonal pitch space (TPS) 
worked sufficiently well for predicting the melody.  

(3) Our expectation method works well from a musical 
point of view. 

We plan to evaluate the ability of our expectation piano to 
assist musical novices play improvisations with this method.  
We have not included the prolongational reduction in 
FATTA, because the search space of prolongational tree 
would explosively expand and this large search space 
would make it hard to acquire a solution within a practical 
time. Development of an efficient algorithm for the 
prolongational reduction would be one of our future tasks. 
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Melodies Grouping  Metrical  Time-Span  

Baseline FATTA Baseline FATTA Baseline FATTA 

1. Grande Valse Brillante 

2. Moments Musicaux 

3. TrukishMarch 

4. Anitras Tanz 

5. Valse du Petit Chien 

0.21 
0.24 

0.67 

0.29 
0.04 

: 

0.32 
0.60 

0.67 

0.71 
0.28 

: 

0.88 
0.95 

0.91 

0.82 
0.87 

: 

0.88 
1.00 

0.96 

0.82 
0.95 

: 

0.37 
0.58 

0.68 

0.55 
0.17 

: 

0.41 
0.74 

0.80 

0.52 
0.57 

: 

Total (100 melodies) 0.46 0.48 0.84 0.89 0.44 0.49 

       

Level of  
stability 

0 Time 

1.0 

Figure 7. Example of melody expectation. 

2 2 4 8 7 4 4 2 4 8 4 7 4 5 5 6 4 3 5 4 5 3 4 3 

Table 2. F-measure for baseline and FATTA. 
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