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ABSTRACT

The emergence of the Internet as today’s primary medium

of music distribution has brought about demands for fast

and reliable ways to organize, access, and discover music

online. To date, many applications designed to perform

such tasks have risen to popularity; each relies on a spe-

cific form of music metadata to help consumers discover

songs and artists that appeal to their tastes. Very few of

these applications, however, analyze the signal waveforms

of songs directly. This low-level representation can provide

dimensions of information that are inaccessible by metadata

alone. To address this issue, we have implemented signal-

based measures of musical similarity that have been opti-

mized based on their correlations with human judgments.

Furthermore, multiple recommendation engines relying on

these measures have been implemented. These systems rec-

ommend songs to volunteers based on other songs they find

appealing. Blind experiments have been conducted in which

volunteers rate the systems’ recommendations along with

recommendations of leading online music discovery tools

(Allmusic which uses genre labels, Pandora which uses mu-

sicological analysis, and Last.fm which uses collaborative

filtering), random baseline recommendations, and personal

recommendations by the first author. This paper shows that

the signal-based engines perform about as well as popular,

commercial, state-of-the-art systems.

1 INTRODUCTION

The nature of online music distribution today is character-

ized by massive catalogs of music unbounded by physical

constraints. As pointed out in [1], current technology has

offered music listeners “massive, unprecedented choice in

terms of what they could hear”. The number of songs avail-

able on-line is in the billions, and many millions of users

are continuing to flock from traditional means of obtaining

music (e.g., CD stores) to online alternatives [11].

With such a vast amount of music available on the Inter-

net, end users need tools for conveniently discovering mu-

sic previously unknown to them (whether recently released

or decades old). In the context of electronic music distribu-

tion, it is the goal of today’s online discovery tools to au-

tomatically recommend music to human listeners. This is

no simple task; a program must have an automated way of

computing whether or not one song is, in some sense, simi-

lar to some other set of songs (i.e., to songs that are already

liked by the user to whom the program is recommending

new music). In accordance with this goal, we have designed

and implemented three systems that use signal-based music

similarity measures to recommend songs to users.

In this paper, we first discuss existing methods of au-

tomatic music recommendation, including a discussion of

commercial, state-of-the-art systems that use them, in Sec-

tion 2. Next, we discuss techniques for automatically com-

puting signal-based music similarity, including a description

of our own similarity measures, in Section 3; the optimiza-

tion of the measures is discussed in Section 4. In Section 5,

we discuss how these similarity measures have been used

to design and implement three automatic, signal based mu-

sic recommendation engines. Section 6 describes experi-

ments in which volunteers have rated the recommendations

of these systems, along with those of the popular systems

described in Section 2, a baseline system, and human rec-

ommendations. We evaluate the results of these experiments

in Section 7. We then state some general conclusions in Sec-

tion 8.

2 STRATEGIES FOR AUTOMATIC MUSIC
RECOMMENDATION

Three possible strategies of automatic music recommenda-

tion involve expert opinions, collaborative filtering, and mu-

sicological analysis. Recommendation by expert opinion of-

ten relies on the application of genre labels to songs and

artists. The wide variety of music genre labels has arisen

through a multifaceted interplay of cultures, artists, music

journalists, and market forces to make up the complex hi-

erarchies that are in use today [16]. Currently, the largest

database of music that is organized by genre is Allmusic 1 ,

1 http://www.allmusic.com/
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where professional editors compose brief descriptions of pop-

ular musical artists, often including a list of similar artists

[6]. In the context of automatic music recommendation, re-

cent research has effectively pointed out significant deficien-

cies of the traditional genre labeling methodology. For one,

as discussed in [16], there is no general agreement in the

music community as to what kind of music item genre clas-

sification should be consistently applied: a single song, an

album, or an artist. Second, as discussed in [14], there is

no a general agreement on a single taxonomy between the

most widely-used music databases on the Internet. Lastly,

it is noted in [16] that the criteria for defining music genres

have, for countless years, been inconsistent; some labels are

geographically defined, some are defined by a precise set

of musical techniques, while others arise from the lexical

whims of influential music journalists.

Given these inconsistencies, musicological analysis aims

to determine music similarity in a way that transcends con-

ventional genre labels, focusing primarily on music theo-

retic description of the vocal and instrumental qualities of

songs. This technique was spearheaded by the Music Genome

Project (MGP) in 2000, whose research culminated in the

music discovery website/tool Pandora 2 [10]. The automatic

recommendation algorithm behind Pandora involves com-

parisons of very particular descriptions of songs. The de-

scription process involves analysis of songs by a team of

professional music analysts, each song being represented by

about 150 “genes,” where each gene describes a musicolog-

ical quality of the song. Perhaps the most apparent draw-

back of musicological analysis — especially in the context

of Pandora — is that while the recommendation process is

automated, the description aspect is not. It is this aspect that

contributes to the relatively slow rate at which new content

is added to the Pandora database.

Also designed within the context of online music discov-

ery, collaborative filtering works according to the principle

that if songs or artists you like occur commonly in other

users’ playlists, then you will probably also like the other

songs or artists that occur in those playlists. According to

[8], “if your collection and somebody else’s are 80% alike,

it’s a safe bet you would like the other 20%”. One of the

most popular on-line recommendation engine to use collab-

orative filtering is Last.fm 3 , which boasts 15 million active

users and 350 million songs played every month [12]. One

problem with collaborative filtering systems is that they tend

to highlight popular, mainstream artists. As noted in [8],

Last.fm “rarely surprises you: It delivers conventional wis-

dom on hyperdrive, and it always seems to go for the most

obvious, common-sense picks.” In other words, collabora-

tive filtering is not helpful for discovering lesser known mu-

sic which a user might highly appreciate.

The past several years have seen considerable progress in

2 http://www.pandora.com/
3 http://www.last.fm/

the development of mathematical methods to quantify mu-

sical characteristics of song waveforms based on the con-

tent of their frequency spectra. In particular, these methods

have enabled the extraction of features of a song’s waveform

that are correlated with the song’s pitch, rhythmic, and tim-

bral content. Timbre can be said to be the most important

of these three elements when subjectively assessing musical

similarity between a pair of songs; indeed, it may even be

said that the global timbral similarity between two pieces of

music is a reasonable — and often sufficient — estimate of

their overall musical similarity [4].

These research efforts have also gone on to evaluate and

test several different timbre-based music similarity measures

applied to a number of signal-based music information re-

trieval tasks, including supervised and unsupervised classi-

fication of entire music databases and the segmentation and

summarization of individual songs [16]. Following the lead

of these efforts, we have applied signal-based measures of

music similarity to the task of automatic recommendation

of music. An automatic recommendation engine built on

a signal-based music similarity measure would possess the

advantages that current online music discovery tools merely

trade off. It would boast the ability to describe and compare

pieces of music based purely on their musical qualities, and

would also facilitate the rapid addition of new content to a

music database that does not require human intervention.

3 COMPUTING MUSIC SIMILARITY

Our signal based recommendation engines rely on the abil-

ity to automatically compute the similarity of two songs.

First, the relevant information about each song — features

— is computationally derived from its waveform data. Sec-

ond, a compact representation of the song is obtained by

modeling the distribution of its feature data using mixture

and clustering algorithms. Third, a metric for comparing

mixture models of songs is used to estimate the similarity

between the feature distributions of two different songs. In

effect, the timbral similarity between the two songs is math-

ematically computed.

As a whole, this music similarity measure framework

allows a user to present a song query to the signal-based

recommendation engine and receive a set of song recom-

mendations (i.e., similar songs) drawn from a target music

database. The similarities of the recommended songs to the

query song are determined via signal processing alone, with-

out human intervention. In this section, a general overview

is given of the three similarity measures examined in this pa-

per. Our implementations of these measures are based partly

on those proposed in [9, 15, 17].

The music feature dataset extracted by the measures’ anal-

ysis front-ends are the Mel-frequency cepstral coefficients

(MFCC’s). These perceptually-motivated features capture

the “spectral shape” — and effectively, the timbral quality
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— of a music signal within a small frame of the waveform

[18, 6]. In the literature, the MFCC feature set has already

shown effective performance for various audio classification

experiments [6, 18, 13, 3].

3.1 K-Means Clustering with Earth Mover’s Distance

The first similarity measure used in our work was origi-

nally proposed by Logan and Salomon in their work in [13].

In this architecture, K-means clustering of a target song’s

feature vectors is performed during the statistical model-

ing stage, with each data cluster being subsequently fit with

a Gaussian component to form a Gaussian Mixture Model

(GMM). Also in line with what was proposed in [13], the

distance metric stage of the first similarity measure incor-

porates the Earth Mover’s Distance (EMD). The EMD ex-

pands the Kullback-Leibler divergence — a distance met-

ric for comparing individual probability distributions — to

the comparison of mixtures of distributions (in this case,

GMM). For the remainder of the paper, this similarity mea-

sure combining K-means training of GMM’s with the Earth

Mover’s Distance for GMM comparison is referred to by the

shorthand term KM+EMD.

3.2 Expectation-Maximization with Monte Carlo Sam-
pling

The second similarity measure that we have relied on uses

the Expectation-Maximization (EM) algorithm to train the

parameters of each GMM component. Aucouturier and Pa-

chet introduced and refined the use of EM to model music

feature distributions in [2, 3, 4]. This method makes use of

vectors sampled directly from the GMM’s of the two songs

to be compared; the sampling is performed computationally

via random number generation. This sampling process cor-

responds roughly to recreating a song from its timbre model

[4], and is known as Monte Carlo Sampling (MCS). Using

MCS in conjunction with GMM training via Expectation-

Maximization is in line with what was originally proposed

by Aucouturier and Pachet in [2, 3, 4]. For the remainder of

the paper, the similarity measure based on this approach is

referred to as EM+MCS.

3.3 Average Feature Vector with Euclidean Distance

In the early work of Tzanetakis and Cook [18], a simple way

is presented to construct an averaged vector representation

of a song’s MFCC’s. They propose that low-order statistics

such as mean and variance should be calculated over seg-

ments called texture windows that are more meaningful per-

ceptually. With respect to human auditory perception, the

length of a so-called texture window roughly corresponds to

the minimum duration of time required to identify a partic-

ular sound or music “texture” that corresponds to its overall

timbral character. This has led us to test a simpler similarity

measure which does not involve the training of a GMM. For

each song, a single “average feature vector” is constructed

from means and variances taken across the texture windows

of the song’s waveform. The song’s representative vector

may then be compared to that of another song by taking the

Euclidean distance between them. The similarity measure

based on this approach is referred to as AV+EUC.

4 PARAMETER OPTIMIZATION

In order to use any of the similarity measures discussed

in Section 3, the values of several parameters must be se-

lected. Perhaps most importantly are the dimensionality of

the MFCC vectors (N) and the number of Gaussian com-

ponents in a GMM (M). The parameter M is not applicable

when using AV+EUC as a similarity measure. Other param-

eters include the sampling frequency of the song waveforms

(fs), the frame length (Nf ), and for the case of EM+MCS,

the distance sample rate (NDSR). It has been hypothesized

in [4] that these later three parameters are independent of

N and M, and we have decided to use the values that were

obtained in [4] and [5]; namely, fs = 44,100 Hz (44.1 kHz),

Nf = 1,102 samples (corresponding to a frame duration of

25 ms), and NDSR = 2,000.

In order to optimize the first two parameters, two authors

of this paper have subjectively evaluated the similarity of

200 song pairs that were randomly selected from a corpus

containing approximately 10,000 songs spanning 40 differ-

ent genres. Each author has rated each pair of songs using a

one to four scale explained in Table 1; half ratings (e.g., 2.5)

were also allowed. For the similarity measures KM+EMD

and EM+MCS, N was varied from 5 to 25 in steps of 5, and

M was varied from 5 to 30 in steps of 5. For the similarity

measure AV+EUC, N was taken from the set {3, 4, 5, 8, 10,

15, 20, 23, 30, 40, 50}.
Two-fold cross validation has been used to evaluate each

parameter configuration. The 200 song pairs are randomly

divided into two disjoint subsets with 100 song pairs each.

Similarity measures are computed for the each of the first

100 song pairs; these pairs are then sorted according to their

similarities and grouped into ten bins with ten song pairs

each. Each bin is then labeled with an average rating, ac-

cording to the authors, of the ten songs in the bin, rounded

to the nearest 0.5. Next, similarity measures are computed

for the other 100 song pairs, and each is assigned a rating

according to the bin from the first 100 song pairs into which

the current song pair would fall. These automatically as-

signed ratings for the second subset of 100 songs are used

to compute the average computer-to-human correlation for

the current parameter configuration. The entire process is

then repeated, swapping the two subsets of 100 songs, and

the two correlations computed for each parameter configu-

ration are averaged together. Correlation has been used as

defined in [7].
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Rating Meaning Description

4 “Extremely Similar”
If a person likes one of the songs,

it would be rare they wouldn’t like the other.

3 “Similar”
If a person likes one of the songs,

it’s fairly likely they would like the other.

2 “Not Similar”
Liking the first song does not increase or

decrease the chances of liking the other.

1 “Totally Different”
It is highly unlikely that a person

would like both songs at the same time.

Table 1: Subjective scale for rating music similarity.

The optimal values of N and M for KM+EMD were N=20

and M=15 leading to a computer-to-human correlation of

0.496. The optimal values of N and M for EM+MCS were

N=5 and M=25 leading to a computer-to-human correlation

of 0.547. The optimal value of N for AV+EUC was 4 lead-

ing to a computer-to-human correlation of 0.484. Accord-

ing to [7], these numbers represent medium to large correla-

tions. Note that the correlation between the two authors was

0.613, a large correlation, and since it is unlikely that an au-

tomatic similarity measure would outperform humans, this

could be considered a reasonable upper bound on the achiev-

able correlations. For the remainder of the paper, the opti-

mized configurations of the three approaches are referred to

as KM+EMD(20,15), EM+MCS(5,25) and AV+EUC(4).

5 SIGNAL-BASED MUSIC RECOMMENDATION

Three self-sufficient music recommendation engines have

been implemented, each incorporating one of the three opti-

mized music similarity measures. The same corpus of 10,000

songs mentioned in Section 4 serves as the source from which

each engine draws its recommendations. Each engine ac-

cepts a single music query from a user in the form of a dig-

ital file. The song’s MFCC features are then extracted, and

a representative mixture model or vector is computed from

the feature distribution.

To begin the recommendation process, the distance be-

tween the query song model and the model of each song

in the target music corpus is computed, resulting in a total

of approximately 10,000 distances generated for the query.

Since the corpus is organized by album, the songs in each

album are then arranged in order of least to greatest dis-

tance from the query song (i.e., “most timbrally similar” to

“least timbrally similar”). The most similar song is then

chosen from each album; in this way, we are not allowing

two recommendations from the same album. The represen-

tative songs from each album are sorted in order of least

to greatest distance from the query, and three songs are se-

lected at random from the top 2% of songs in the sorted list.

During this process, any song selection bearing the same

artist as one of the previous selections is discarded, and ran-

dom selection is repeated as necessary. The final three song

selections are considered to be the recommendations based

on the query song.

The authors found it justified to present the user with only

one song from each artist according to the reasonable as-

sumption that most artists’ songs are, generally speaking,

timbrally and stylistically consistent. In the case that many

of an artist’s songs are computed to be extremely close to a

query song, the respective artist would be overrepresented in

the resulting recommendations. It suffices to assign the role

of “gateway song” to the closest song from such an artist

to introduce a user to the artist and their discography, and it

gives other possibly relevant songs the chance to find a place

in the recommendation set.

6 EXPERIMENTAL DESIGN

We have conducted experiments to compare our recommen-

dation engines to today’s leading online music discovery

tools (i.e., Pandora, Last.fm, and Allmusic). 15 volunteers

not involved with the research were recruited, and each vol-

unteer was requested to submit one song based on which

three recommendations would be generated by every sys-

tem. Each volunteer was instructed to verify that Pandora.com,

Last.fm, and Allmusic.com all recognize the title and artist

of their chosen song prior to submission. The 15 submitted

songs were well distributed in terms of their Allmusic genre

classification — one belonged to the Proto-Punk genre, one

to Hip-Hop, one to Hard Rock, one to MPB (Música Popu-

lar Brasileira), one to Jazz, one to Alternative Rock, one to

Indie Pop, two to Punk Rock, two to Classical, and three to

Rock-n-Roll.
To generate recommendations from Pandora, the title of

the volunteer’s song was submitted to the Pandora website,

and the first three songs returned were used (unless any sin-

gle artist happened to be repeated, in which case the lat-

ter song by the artist would be skipped and the next song

by a new artist was used in its place). To generate recom-

mendations from Last.fm, which uses artists as opposed to

songs to generate suggestions, the artist of the volunteer’s

song was submitted and the first three recommended songs

(also excluding songs from identical artists) were used. To

generate recommendations from Allmusic, three songs were

randomly chosen from the same narrow genre as the volun-

teer’s submission (not allowing duplicate artists). As a base-

line, we also created a simple engine that randomly chooses

three songs from the entire corpus (not allowing duplicate

artists). As an upper bound, the first author of this paper

suggested three personal recommendations.

The three systems described in Section 5, the three on-

line discover tools, the baseline system, and the first author

each generated three recommendations based on every sub-

mitted song, so 24 total recommendations were generated

for each volunteer. These recommendations were returned

to the volunteer in a randomized order, without indicating

which recommendation was produced by which method; in
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the rare instance that multiple engines would choose the

same song, that song would only be included in the list once.

Each volunteer was then asked to rate each recommendation

on a one to five scale explained in Table 2; half ratings were

also allowed.

Rating Description

5 “A top-notch recommendation”

4 “A good recommendation”

3 “An OK recommendation”

2 “Not a good recommendation”

1 “A very bad recommendation”

Table 2: Subjective scale for rating recommendations.

7 RESULTS AND EVALUATION

Ultimately, 13 of the 15 volunteers submitted their subjec-

tive ratings of the recommendations for their query song.

For each volunteer, the performance of each of the eight rec-

ommendation engines have been assessed by computing the

average of the ratings given to the three songs recommended

by that particular engine. These averages have also been

used to determine the rank (from first to eighth place) of

each engine; engines which tied were assigned equal ranks.

To evaluate the performance of all eight recommendation

methods across the entire set of volunteers, the ratings and

rankings assigned by all volunteers for each method have

been averaged; the results are shown in Figure 1 and Fig-

ure 2.

Figure 1: Average ratings for all music recommendation

engines, computed across the entire set of volunteers.

It can be seen from Figures 1 and 2 that all of the software-

based recommendation engines significantly outperform the

baseline random recommender (which received the lowest

average rating and worst average rank value), but none per-

Figure 2: Average rankings of all music recommendation

engines, computed across the entire set of volunteers.

form quite as well as the human recommender (who re-

ceived the highest average rating and best average rank).

According to average ratings, the order of automatic recom-

mendation engines, from best to worst, is Pandora, Last.fm,

EM+MCS(5, 25), AV+EUC(4), KM+EMD(20,15), and All-

music. According to average ranks, the order, from best to

worst, is EM+MCS(5, 25), Pandora, Last.fm, AV+EUC(4),

KM+EMD(20,15), and Allmusic.

The red bars in Figure 1 represent 95% confidence inter-

vals, assuming normal distrubutions for ratings. Note that

the confidence interval for random recommendations has no

overlap with that of any other approach; the closest gap is

of size approximately 0.4. With the exception of Pandora

compared to Allmusic, the confidence intervals of the au-

tomatic recommendation engines all overlap, and even for

the one exception, the confidence intervals miss each other

by only a few hundredths of a point. The top three auto-

mated systems - Pandora, Last.fm, and EM+MCS(5, 25) -

have confidence intervals that partially overlap with that of

the human recommender.

It is not surprising that the two professional online mu-

sic tools - Pandora and Last.fm - are rated the highest by

the 13 volunteers. Note, however, that our signal based rec-

ommendation engines trail closely behind, and in particular,

EM+MCS(5,25) achieves an average rating only 6% lower

than that of Pandora and 2.5% lower than that of Last.fm.

In fact, based on average rank, EM+MCS(5,25) performs

the best of all the automated systems, indicating that al-

though its average rating is not as high, it beats the profes-

sional systems more often than it loses to them. Among the

three signal-based recommendation engines, it is not sur-

prising that EM+MCS(5,25) performs the best. The mer-

its of a music similarity measure that utilizes expectation-

maximization and Monte Carlo sampling have already been

established in the literature [2, 3, 4].
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8 CONCLUSIONS

This paper has shown that a signal-based recommendation

engine can perform comparably to popular, state-of-the-art

commercial music discovery applications when subjected to

human evaluation. This fact further highlights the impor-

tant role that timbre plays in subjective judgment of music

similarity; a timbre similarity measure that relies on signal

analysis alone appears to be approximately as robust a mu-

sical descriptor as musicological analysis or collaborative

filtering, and moreso than conventional genre taxonomies.

The results also show that music recommendations given

by a fellow human do not satisfy the sensibilities of a music

consumer all of the time. Accurately predicting a person’s

musical tastes is highly dependent on several cultural, soci-

ological, and psychoacoustic factors. Nevertheless, it may

be seen that, acting independently, each recommendation

engine — whether signal-based or not — produces signif-

icantly more accurate recommendations than a baseline ran-

dom recommender. We can thus say that the particular as-

pects of music highlighted by each recommendation method

are all integral parts of whatever holistic sense of music sim-

ilarity a person may be said to possess.

Sun Microsystems’ Paul Lamere, who is one of the lead-

ing researchers in music information retrieval, has dubbed

the ideal music discovery engine the “celestial jukebox” [8].

It may be posited this ideal hypothetical engine would be

one that somehow combines all the similarity measurement

techniques evaluated in this paper, and others as well. Given

the positive results discussed in this paper, there is little

doubt in the minds of the authors that signal-based music

similarity measures will be a sine qua non feature of the ce-

lestial jukebox of the future.
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