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ABSTRACT 

We propose a design and implementation for a music 
information database and query system, the MusicDB, 
which can be used for Music Information Retrieval (MIR). 
The MusicDB is implemented as a Java package, and is 
loaded in MaxMSP using the mxj external. The MusicDB 
contains a music analysis module, capable of extracting 
musical information from standard MIDI files, and a 
search engine. The search engine accepts queries in the 
form of a simple six-part syntax, and can return a variety 
of different types of musical information, drawing on the 
encoded knowledge of musical form stored in the 
database. 

1. INTRODUCTION 

Inspired by the analysis techniques developed by David 
Cope for his work in the field of algorithmic composition 
by “music recombinance”, the MusicDB [11] was 
originally designed as an analysis and data-retrieval back-
end for an interactive music composition system. One of 
the primary motivations behind the design of this system 
was to allow the user to create original musical works, 
drawing on the musical language exemplified by their 
existing works, but maintaining as much flexibility as 
possible. We were drawn to Cope’s notion of music 
recombinance because of its proven capacity to replicate 
musical style, which we felt would allow the user to easily 
incorporate the software into their existing compositional 
practice, and provide the greatest continuity between new 
works composed with the system and existing works. 
However, since the principle of paraphrasing which 
underlies the notion of “strict” recombinance can be 
somewhat of a limitation on originality, we felt it was 
important to develop a system that could promote musical 
continuity without relying exclusively on verbatim 
quotations of musical fragments for its base materials. 

As the music recombinance approach to composition is 
clearly “data-driven” [6], the fundamental design of the 
MusicDB is well suited for use in the field of MIR. The 
software was designed to parse, analyse, and store 
information from symbolic musical representations—

specifically, from standard MIDI files of ‘scored’ musical 
works—in a way which acknowledges similarities across 
multiple source works, but which also retains a formal 
‘map’ of the original structure of each individual work. 
Single MIDI files of works are analysed by the software, 
and the analysis output is saved in the form of proprietary 
“.speac” data files. These files can then be loaded into a 
“session”, consisting of an arbitrary number of analysed 
works. The database built during a session represents the 
compilation all of the analysed musical material into a 
single data structure, making it possible for the system to 
reveal inter-relationships between the elements of a 
potentially large body of analysed works. 

 

1.1. Organization by Hierarchy 

The MusicDB uses Cope’s “SPEAC analysis” system to 
build a hierarchical analysis of each source work. A more 
detailed description of SPEAC is given later in the paper, 
and can also be found in numerous publications [3, 4, 5, 
6]. This hierarchical analysis builds a tree-like structure 
for the representation of the musical form, in which the 
formal development of the music is segmented according 
to continuous changes observed over a variety of analysis 
parameters. In the MusicDB, this type of analysis is 
applied to each individual work, and is also used as an 
organizational system for the final session database. The 
end result is a data structure that associates the content of 
all the analysed works according to their overall pattern of 
formal development, regardless of their unique surface 
details. That is, the introductory, developmental, and 
concluding formal sections of all the stored works will be 
grouped together, regardless of the specific style or 
characteristics of each individual work. This allows the 
user to look at the formal contour of works, and find 
formal correlations between works, regardless of 
superficial and/or perceptual differences in musical 
content. 

 

1.2. MusicDB Objectives 

The MusicDB differs from Cope’s work in that we have 
sought to develop a component for data analysis, storage, 
and recall, to be used as a tool by algorithmic composition 
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system designers. In particular, we have designed the 
MusicDB to accept input searches, and provide output 
data, at varying degrees of musical abstraction. While the 
system can provide complete, verbatim quotations of 
musical fragments from the analysed source works, it is 
not limited to such quotations. It can also be queried for 
more abstract representations, like melodic contour [12], 
chroma [13], kinesis [6], periodicity [10], and so on, thus 
offering the possibility of using musical knowledge 
provided by example works as a formal guideline for 
composition systems which are not otherwise based in 
music recombinance. In this sense, the MusicDB could be 
used strictly as a music analysis tool, or as a parameter 
control module for an agent-based [1, 7, 8], or fuzzy logic-
based, system [2]—i.e., if such a system took kinesis 
(general activity level) and harmonic tension as 
parameters, such parameters could be provided by the 
MusicDB in a way which modelled the formal 
development exhibited by the analysed works. 

 

2. IMPLEMENTATION 

2.1. Music Analysis 

The MusicDB breaks music apart using a hierarchical 
structuring of objects, which describe the score both 
vertically and horizontally. Beginning at the lowest level 
in the horizontal hierarchy, there are Events, Chords, and 
VoiceSegments. The vertical view of the score is 
described primarily by Group objects (though Chords 
obviously imply a vertical aspect as well), and at the top 
of the hierarchy both horizontal and vertical elements of 
the score are combined into a composite object called a 
Phrase (see Figure 1).  

 

Figure 1. Music descriptors used by the MusicDB 

 

An Event is a singular musical sound, occurring at a 
specific point in time1. Chords are two or more events, 
which occur at the same onset time (ED)2, and a 
VoiceSegment is a horizontal sequence of Events and/or 
Chords, confined to a single MIDI channel. The decision 
to keep the voices in polyphonic parts together, where such 
parts are confined to a single MIDI channel, was a 
consequence of our desire to preserve, wherever possible, 
any special characteristics of idiomatic instrumental 
writing present in the source music. In the current 
implementation, VoiceSegments are confined to durations 
of 3 to 8 Chords or Events. 

Groups constitute vertical ‘slices’ of the score, marked 
by static harmonic structures. In the MusicDB, the 
smallest Group duration is 1/8th-note. If the harmony 
remains static, Groups will extend for the entire duration 
of that harmony, and will always be lengthened in 1/8th-
note increments. Groups are identified by an entryPitch 

vector, which is a sorted set of all pitches in the Group's 
harmonic structure.  

Phrases are the largest component objects in the 
MusicDB, and are generally made from a combination of 
VoiceSegments and Groups. As the name suggests, a 
Phrase is a complete, semantically integrated, segment of 
music. Phrases are determined as sequences of Groups3, 
and also hold references to all VoiceSegments found to 
intersect their Group sequence.  

Cope’s technique of SPEAC analysis [6] provides a 
segmentation of symbolic, or ‘scored’ music4, based on 
the relative tensions of Groups. Groups are given a tension 
score derived from a set of analysis parameters, and are 
then assigned SPEAC ‘labels’ (Statement, Preparation, 
Extension, Antecedent, Consequent) based on their 
relative scores. A new segment, or Phrase, is created at 
each A to C label transition. The same process is then 
applied to the segmentation of the entire sequence of 
“foreground” Phrases, thus deriving a sequence of 
“background” Phrases (see Figure 4) and so on. The 
resulting SPEAC hierarchy provides a clear formal 
topography for the analysed work, giving the MusicDB 
access to the musical materials therein at the level of 
individual Groups, Phrases (and their component 
VoiceSegments), or sequences of Phrases (i.e., ‘sections’), 
and also as a complete formal ‘tree.’ The hierarchical 
nature of SPEAC analysis is exploited by the MusicDB's 
search engine, which will be discussed later. 

                                                             
1 The event’s time is taken directly from the MIDI file, and is defined as 
the event’s location in MIDI ticks (i.e., “timestamp”). 
2 We use the concept of Entry Delay (ED), to identify the onset time of 
an event, calculated as the time passed since the previous event's onset. 
3 Phrases can also be made from sequences of other Phrases, as will be 
shown later in the paper. 
4 The SPEAC system is well-suited to the analysis of symbolic 
representations of music, not to audio recordings. 
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The MusicDB performs horizontal segmentation of 
Groups into Phrases (and Phrases into background 
Phrases) following the above SPEAC method, however, 
unlike in Cope, the MusicDB also uses a SPEAC-like 
system for segmenting sequences of events and/or chords 
on a single MIDI channel to form VoiceSegments. For 
this purpose, in addition to Cope’s analysis parameters of 
rhythmic tension, duration tension, and “approach 
tension” (melodic interval tension), we’ve added measures 
for dynamic stress and pitch symmetry. Dynamic stress is 
simply a scaling of the current MIDI velocity value 
against the running mean velocity, in order to draw 
attention to strongly accented events. Pitch symmetry is a 
scaled interval measurement, which returns the absolute 
value of the current interval divided by 12. The intention 
is to show the “leapiness” of the melodic line, where low 
values indicate step-wise movement or repetitions, and 
values closer to 1.0 indicate leaps (intervals greater than 
an octave are set to 1.0).  

 

2.2. Data Structure 

The three primary objects used in the MusicDB's data 
structure—VoiceSegments, Groups, and Phrases—are 
tightly linked by object referencing. VoiceSegments hold 
a reference to the Phrase in which they originally appeared 
(their “root” Phrase), and also hold references to the 
sequence of Groups found to occur over their musical 
duration. Further, each VoiceSegment stores references to 
its “preceding” and “target” (following) VoiceSegment. In 
a similar manner, Groups hold a reference to their root 
Phrase, references to preceding and target Groups, and a 
list of VoiceSegments found to be playing during the 
vertical ‘slice’ from which the Group was taken. Phrases 
store references to all VoiceSegments active during their 
total duration, and the sequence of either Groups (in the 
case of “foreground” Phrases), or Phrases (in the case of 
“background” Phrases) from which they are made. 
Phrases also store references to their parent Phrases, 
where appropriate. This proliferation of references makes 
it computationally trivial to locate and extract a great deal 
of information about the musical form of a piece, given 
even the smallest aspect of its content. For example, it 
would be possible, using an iterative search process, to 
extract an entire instrumental part from a single musical 
work in the database, given only a short sequence of 
pitches, rhythmic values (EDs), chords, etc., as input. It is 
this interconnectivity by object referencing that is 
exploited by the MusicDB during the search process. As a 
convenience, all of the above objects also store the name 
of the source work in which they originally appeared, and 
VoiceSegments additionally store the instrument name 

assigned to the MIDI channel from which the 
VoiceSegment was derived.1 

We would like to draw attention to the manner in which 
pitch-related searches are carried out in the MusicDB. For 
search processes involving specific pitch content—Pitch 
Lists and Chords—we have adopted Cope’s scale of 
harmonic tension, rather than using Euclidean distance, or 
some other linear distance metric, as a measure for what 
we call “pitch distance.” Cope assigns float values to each 
of the intervals within one octave, as follows [6]: 

 
        Interval     Value 

0 0.0 
1 1.0 
2 0.8 
3 0.225 
4 0.2 
5 0.55 
6 0.65 
7 0.1 
8 0.275 
9 0.25 
10 0.7 
11 0.9 

 
All intervals greater than one octave are constrained to 

pitch-classes before their tension value is calculated. This 
sequence of values is based on the relative consonance of 
intervals within the octave, roughly following the 
harmonic series. It should not be viewed as a set of strictly 
‘tonal’ relationships, though tonality generally follows a 
similar pattern, but rather as a measure of the degree to 
which a new note could be substituted for a given note, in 
an existing musical setting. It should be clear, therefore, 
that this is a metric chosen to apply to a broad range of 
compositional situations, but which would not be 
appropriate for most serial procedures, or for set theoretic 
analysis. Our application of the above harmonic tension 
scale as a pitch distance metric has the positive effect of 
relating searched items by a more acoustically founded 
notion of distance2 than would be reflected by a linear 
distance measure. For example, using the above scale to 
find a match for the Pitch List {60, 62, 67} would return 
the list {67, 69, 60} as a “closer” match than the list {61, 
64, 66}, in spite of the fact that the numeric values are 
clearly more distant, and the melodic contour is not the 
same. Assuming that this searched Pitch List was 
extracted from a supporting harmonic context, such a 
result would likely offer a more suitable alternative than 
would be provided by a linear distance metric. A search 

                                                             
1 The instrument name is taken from the “name” metadata item in the 
MIDI file. 
2 Again, we would like to stress the fact that we sought to find a solution 
for a wide number of cases, and we are aware that serial and set theoretic 
compositional approaches will benefit less from the use of this distance 
metric. 
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for Pitch Contour, on the other hand, would use Euclidean 
distance to compare the Pitch Lists, and would thus have 
the opposite result. 

 

2.3. Query System 

Data is extracted from the MusicDB using a six-part query 
syntax (see Figure 2). 

 
 

Figure 2. Format of a search query 

Searches are carried out on VoiceSegment, Group, and 
Phrase objects, which hold the following fields1: 

• VoiceSegment: Pitch List, Melodic Interval List, 
Pitch Contour, Chroma, ED List, ED Contour, 
Kinesis, Periodicity 

• Group: Harmonic Interval List, Harmonic Tension, 
Harmonic Motive 

• Phrase: Harmonic Tension, Kinesis, Periodicity, 
Chroma, Pitch Grid 

The search Type can be chosen from a number of 
options: 

1) PitchList: an ordered list of pitch values 

2) MelodicIntervalList: an ordered list of interval 
values (signed integers) 

3) PitchContour: a series of indices giving the relative 
“height” of each unique pitch in a Pitch List 

4) Chroma: a 12-member vector indicating the 
occurrence-rate of pitch classes 

5) EDList: an ordered list of ED values 

6) EDContour: contour applied to an ED List 

7) Kinesis: the general activity level (0. to 1.) 

8) Periodicity: the rhythmic regularity of an ED list 
(0. to 1.) 

9) Chord: an ascending list of pitches 

10) HarmonicIntervalList: the intervals between 
adjacent pitches in a chord (i.e., a major triad is 
[0, 4, 3]) 

11) HarmonicTension: the interval tension of a given 
Chord2 (0. to 1.) 

The search Data is a vector of float values, used to 
represent the search Type.  

                                                             
1 All objects also hold a field for their Statistical Representation. 
2 The precise weighting of interval values used to calculate Harmonic 
Tension is taken from Cope [9].  

The return Agenda (Figure 3) indicates the formal 
'motivation' for the search. There are three options: 
Preceding, Current, and Following. A setting of Current will 
cause the search to return the requested field (indicated by 
the return Type) from the object containing the match, 
while Preceding and Following will return the same field 
from the preceding or following object, respectively. 
Beyond returning the matched field itself, the flexibility of 
the Agenda system makes it possible to extrapolate formal 
‘causes’ and ‘effects’ relating to the searched data.  

        

Figure 3. Search Agenda 

The return Context indicates the immediate musical 
context of the object holding the requested field. There are 
three options: Element, Accompaniment, and Setting. A return 
Context of Element will return only the requested field 
from the matched object. The Setting option will attempt to 
provide data for a complete Phrase (i.e., a musical 
“setting”) and will thus return the requested field from all 
objects referenced by the root Phrase holding the matched 
object3. If the requested field is held by a Group object, 
the Group sequence of that object’s root Phrase will be 
returned4. For fields held by Groups the Accompaniment 
option is handled identically to Setting, but for fields held 
by VoiceSegments, Accompaniment removes the 
VoiceSegment in which the match was found, returning 
only the fields from the ‘accompanying’ VoiceSegments. 

Return Types include all of the Search Types, with the 
addition of three more: PitchGrid, HarmonicMotive, and 
StatisticalRepresentation. A PitchGrid is a 128-member vector 
indicating the rate of occurrence for each available pitch. 
A HarmonicMotive is a sequence of Chords (these correspond 
to the entryPitch vectors used to identify Groups5), and a 
StatisticalRepresentation is a vector of statistical analysis 
values, used internally by the database to measure the 
similarity between instances of a given class 
(VoiceSegment, Group, or Phrase).  

The final argument, Scope (Figures 4 and 5), controls 
the way in which searches are constrained by the formal 
structure of the database. A setting of Static (Figure 4) will 

                                                             
3 This is the case whenever the requested field belongs to a 
VoiceSegment or Group. If it belongs to a Phrase, the Phrase itself 
provides the return. 
4 The result is equivalent to a “Harmonic Motive”. 
5 This is different from the Chord object, used by the VoiceSegment class 
for storing simultaneous pitch events. The term “chord” is used here to fit 
easily into musical parlance. 
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search the entire database, beginning at the top of the 
SPEAC hierarchy, and working its way through the tree. 
A setting of Progressive (Figure 5) will limit the scope of 
the search to a particular branch of the tree1, and thus to a 
certain ‘section’ of the encoded musical form. With each 
completed Progressive search, the focus of the search ‘steps 
forward’, moving through the formal plan of the database. 
Static scoping can be useful for finding the best possible 
match for a desired search, while Progressive scoping 
would generally by used to move through a large-scale 
musical form. 
 

 
Figure 4. Static scoping of SPEAC hierarchy2 
 

 

Figure 5. Progressive scoping of SPEAC hierarchy 

 

Figure 6 demonstrates the way in which the MusicDB 
would handle searches with an input type of PitchList. It 
will be noticed that the actual data used for the return is 
always extracted in relation to the match found for the 
searched type. In the example, because PitchList is a field 
of the VoiceSegment object, the search for a best 
matching PitchList is carried out on VoiceSegments. From 
there, different return types (Chord, Contour, EDList) can be 
called, in relation to the VoiceSegment holding the match. 
In this case, the Contour and ED List are both stored by 
the VoiceSegment itself, whereas the Chord is stored by a 
Group, which is referenced by the VoiceSegment.  

                                                             
1 The branch chosen is dependent upon the last leaf to return a search. In 
the Figure 4 hierarchy, A0-1 would be followed by E0-2. 
2 This representation shows the tree-like pattern provided by SPEAC 
analysis. The label given to each node indicates the Phrase’s formal 
function [9]. 

       

Figure 6.  The system of references used to extract 
information from a given query 

2.4. User Experience 

Because input and output types are not required to match, 
the system offers great flexibility in the manner in which 
data is found and extracted. Take the following query as 
an example: 

“PitchList 60 64 70 61 Current Accompaniment 

PitchContour Progressive”  

This query would return all the Pitch Contours which 
accompanied the VoiceSegment that best matched the 
input Pitch List {60, 64, 70, 61}, given the current Scope, 
and would step ‘forward’ in the database once the search 
was returned. On the other hand, a query such as: 

“PitchList 60 64 70 61 Following Element 

HarmonicMotive Static” 

would search the entire database (due to the Static scoping) 
and return the harmonic sequence used by the Phrase 
following the VoiceSegment with the best matching Pitch 
List. Figure 7 shows a basic MaxMSP patch for querying 
the MusicDB. 

 

 

Figure 7. The MusicDB in MaxMSP. The second outlet 
reports the return data, the fourth return type, and outlets 1 
and 3 provide Group count and voice number 
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Composite searches are also possible, by entering 
multiple search queries before sending out the result. 
When queries are concatenated in this way, each query 
serves to narrow the scope of the search for the following 
query. 

3. FUTURE DIRECTIONS 

The MusicDB has been designed as a component for a 
larger system with the working title “ManuScore.” This 
system will be a music notation-based application for 
interactive composition using principles of music 
recombinance. We will be working to extend the 
MusicDB itself by including the capacity for adding new 
material to the stored database dynamically, during the 
composition process. The other area we are working to 
develop concerns the discrimination of “quantized” versus 
“performed” rhythm. In particular, we are interested in 
refining the system in such a way as to make it more 
sensitive to the differences between quantized and 
performed rhythm, so that it may be given the capacity to 
apply a performed quality to otherwise quantized music, 
or to match the performance quality of fragments from 
two or more source works. One way we have thought to 
do this is by storing an event’s ED as a pair of values, 
rather than a single value. The first value would indicate 
the quantized rhythmic position, and the second would 
indicate the offset of the performed rhythmic position 
from the quantized position. Analysis could be carried out 
using the quantized values, as in the current 
implementation, and the offsets could be used to 
reconstruct the rhythmic quality of the original 
performance. We are also considering the idea of 
integrating search categories more directly related to set 
theoretical analysis—perhaps a return type of “Set 
Similarity”, for example—which could offer more 
flexibility in searching for materials based on specific 
pitch content.  

Further, in order to introduce a more legitimate form of 
musical inference to the ManuScore system1, we are also 
currently investigating the integration of Hierarchical 
Temporal Memory networks, modelled after those 
proposed by Jeff Hawkins, Dileep George, and Bobby 
Jaros at Numenta Inc. [9]. It is our feeling that the 
structural organization of the MusicDB could provide a 
useful pre-processing step in building the data 
representations used to train HTM networks, and could 
also provide category information for supervised training 
of the HTMs.  

                                                             
1 Strictly speaking, the MusicDB is incapable of inference, being limited 
only to retrieving explicitly requested information from the data stored 
during analysis. 
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