
ISMIR 2008 – Session 1a – Harmony

A MUSIC DATABASE AND QUERY SYSTEM FOR

RECOMBINANT COMPOSITION

James B. Maxwell Arne Eigenfeldt

School for the Contemporary Arts
Simon Fraser University, Burnaby, B.C.

jbmaxwel@sfu.ca

School for the Contemporary Arts
Simon Fraser University, Burnaby, B.C.

arne_e@sfu.ca

ABSTRACT

We propose a design and implementation for a music
information database and query system, the MusicDB,
which can be used for Music Information Retrieval (MIR).
The MusicDB is implemented as a Java package, and is
loaded in MaxMSP using the mxj external. The MusicDB
contains a music analysis module, capable of extracting
musical information from standard MIDI files, and a
search engine. The search engine accepts queries in the
form of a simple six-part syntax, and can return a variety
of different types of musical information, drawing on the
encoded knowledge of musical form stored in the
database.

1. INTRODUCTION

Inspired by the analysis techniques developed by David
Cope for his work in the field of algorithmic composition
by “music recombinance”, the MusicDB [11] was
originally designed as an analysis and data-retrieval back-
end for an interactive music composition system. One of
the primary motivations behind the design of this system
was to allow the user to create original musical works,
drawing on the musical language exemplified by their
existing works, but maintaining as much flexibility as
possible. We were drawn to Cope’s notion of music
recombinance because of its proven capacity to replicate
musical style, which we felt would allow the user to easily
incorporate the software into their existing compositional
practice, and provide the greatest continuity between new
works composed with the system and existing works.
However, since the principle of paraphrasing which
underlies the notion of “strict” recombinance can be
somewhat of a limitation on originality, we felt it was
important to develop a system that could promote musical
continuity without relying exclusively on verbatim
quotations of musical fragments for its base materials.

As the music recombinance approach to composition is
clearly “data-driven” [6], the fundamental design of the
MusicDB is well suited for use in the field of MIR. The
software was designed to parse, analyse, and store
information from symbolic musical representations—

specifically, from standard MIDI files of ‘scored’ musical
works—in a way which acknowledges similarities across
multiple source works, but which also retains a formal
‘map’ of the original structure of each individual work.
Single MIDI files of works are analysed by the software,
and the analysis output is saved in the form of proprietary
“.speac” data files. These files can then be loaded into a
“session”, consisting of an arbitrary number of analysed
works. The database built during a session represents the
compilation all of the analysed musical material into a
single data structure, making it possible for the system to
reveal inter-relationships between the elements of a
potentially large body of analysed works.

1.1. Organization by Hierarchy

The MusicDB uses Cope’s “SPEAC analysis” system to
build a hierarchical analysis of each source work. A more
detailed description of SPEAC is given later in the paper,
and can also be found in numerous publications [3, 4, 5,
6]. This hierarchical analysis builds a tree-like structure
for the representation of the musical form, in which the
formal development of the music is segmented according
to continuous changes observed over a variety of analysis
parameters. In the MusicDB, this type of analysis is
applied to each individual work, and is also used as an
organizational system for the final session database. The
end result is a data structure that associates the content of
all the analysed works according to their overall pattern of
formal development, regardless of their unique surface
details. That is, the introductory, developmental, and
concluding formal sections of all the stored works will be
grouped together, regardless of the specific style or
characteristics of each individual work. This allows the
user to look at the formal contour of works, and find
formal correlations between works, regardless of
superficial and/or perceptual differences in musical
content.

1.2. MusicDB Objectives

The MusicDB differs from Cope’s work in that we have
sought to develop a component for data analysis, storage,
and recall, to be used as a tool by algorithmic composition

75

ISMIR 2008 – Session 1a – Harmony

system designers. In particular, we have designed the
MusicDB to accept input searches, and provide output
data, at varying degrees of musical abstraction. While the
system can provide complete, verbatim quotations of
musical fragments from the analysed source works, it is
not limited to such quotations. It can also be queried for
more abstract representations, like melodic contour [12],
chroma [13], kinesis [6], periodicity [10], and so on, thus
offering the possibility of using musical knowledge
provided by example works as a formal guideline for
composition systems which are not otherwise based in
music recombinance. In this sense, the MusicDB could be
used strictly as a music analysis tool, or as a parameter
control module for an agent-based [1, 7, 8], or fuzzy logic-
based, system [2]—i.e., if such a system took kinesis
(general activity level) and harmonic tension as
parameters, such parameters could be provided by the
MusicDB in a way which modelled the formal
development exhibited by the analysed works.

2. IMPLEMENTATION

2.1. Music Analysis

The MusicDB breaks music apart using a hierarchical
structuring of objects, which describe the score both
vertically and horizontally. Beginning at the lowest level
in the horizontal hierarchy, there are Events, Chords, and
VoiceSegments. The vertical view of the score is
described primarily by Group objects (though Chords
obviously imply a vertical aspect as well), and at the top
of the hierarchy both horizontal and vertical elements of
the score are combined into a composite object called a
Phrase (see Figure 1).

Figure 1. Music descriptors used by the MusicDB

An Event is a singular musical sound, occurring at a
specific point in time1. Chords are two or more events,
which occur at the same onset time (ED)2, and a
VoiceSegment is a horizontal sequence of Events and/or
Chords, confined to a single MIDI channel. The decision
to keep the voices in polyphonic parts together, where such
parts are confined to a single MIDI channel, was a
consequence of our desire to preserve, wherever possible,
any special characteristics of idiomatic instrumental
writing present in the source music. In the current
implementation, VoiceSegments are confined to durations
of 3 to 8 Chords or Events.

Groups constitute vertical ‘slices’ of the score, marked
by static harmonic structures. In the MusicDB, the
smallest Group duration is 1/8th-note. If the harmony
remains static, Groups will extend for the entire duration
of that harmony, and will always be lengthened in 1/8th-
note increments. Groups are identified by an entryPitch

vector, which is a sorted set of all pitches in the Group's
harmonic structure.

Phrases are the largest component objects in the
MusicDB, and are generally made from a combination of
VoiceSegments and Groups. As the name suggests, a
Phrase is a complete, semantically integrated, segment of
music. Phrases are determined as sequences of Groups3,
and also hold references to all VoiceSegments found to
intersect their Group sequence.

Cope’s technique of SPEAC analysis [6] provides a
segmentation of symbolic, or ‘scored’ music4, based on
the relative tensions of Groups. Groups are given a tension
score derived from a set of analysis parameters, and are
then assigned SPEAC ‘labels’ (Statement, Preparation,
Extension, Antecedent, Consequent) based on their
relative scores. A new segment, or Phrase, is created at
each A to C label transition. The same process is then
applied to the segmentation of the entire sequence of
“foreground” Phrases, thus deriving a sequence of
“background” Phrases (see Figure 4) and so on. The
resulting SPEAC hierarchy provides a clear formal
topography for the analysed work, giving the MusicDB
access to the musical materials therein at the level of
individual Groups, Phrases (and their component
VoiceSegments), or sequences of Phrases (i.e., ‘sections’),
and also as a complete formal ‘tree.’ The hierarchical
nature of SPEAC analysis is exploited by the MusicDB's
search engine, which will be discussed later.

1 The event’s time is taken directly from the MIDI file, and is defined as
the event’s location in MIDI ticks (i.e., “timestamp”).
2 We use the concept of Entry Delay (ED), to identify the onset time of
an event, calculated as the time passed since the previous event's onset.
3 Phrases can also be made from sequences of other Phrases, as will be
shown later in the paper.
4 The SPEAC system is well-suited to the analysis of symbolic
representations of music, not to audio recordings.

76

ISMIR 2008 – Session 1a – Harmony

The MusicDB performs horizontal segmentation of
Groups into Phrases (and Phrases into background
Phrases) following the above SPEAC method, however,
unlike in Cope, the MusicDB also uses a SPEAC-like
system for segmenting sequences of events and/or chords
on a single MIDI channel to form VoiceSegments. For
this purpose, in addition to Cope’s analysis parameters of
rhythmic tension, duration tension, and “approach
tension” (melodic interval tension), we’ve added measures
for dynamic stress and pitch symmetry. Dynamic stress is
simply a scaling of the current MIDI velocity value
against the running mean velocity, in order to draw
attention to strongly accented events. Pitch symmetry is a
scaled interval measurement, which returns the absolute
value of the current interval divided by 12. The intention
is to show the “leapiness” of the melodic line, where low
values indicate step-wise movement or repetitions, and
values closer to 1.0 indicate leaps (intervals greater than
an octave are set to 1.0).

2.2. Data Structure

The three primary objects used in the MusicDB's data
structure—VoiceSegments, Groups, and Phrases—are
tightly linked by object referencing. VoiceSegments hold
a reference to the Phrase in which they originally appeared
(their “root” Phrase), and also hold references to the
sequence of Groups found to occur over their musical
duration. Further, each VoiceSegment stores references to
its “preceding” and “target” (following) VoiceSegment. In
a similar manner, Groups hold a reference to their root
Phrase, references to preceding and target Groups, and a
list of VoiceSegments found to be playing during the
vertical ‘slice’ from which the Group was taken. Phrases
store references to all VoiceSegments active during their
total duration, and the sequence of either Groups (in the
case of “foreground” Phrases), or Phrases (in the case of
“background” Phrases) from which they are made.
Phrases also store references to their parent Phrases,
where appropriate. This proliferation of references makes
it computationally trivial to locate and extract a great deal
of information about the musical form of a piece, given
even the smallest aspect of its content. For example, it
would be possible, using an iterative search process, to
extract an entire instrumental part from a single musical
work in the database, given only a short sequence of
pitches, rhythmic values (EDs), chords, etc., as input. It is
this interconnectivity by object referencing that is
exploited by the MusicDB during the search process. As a
convenience, all of the above objects also store the name
of the source work in which they originally appeared, and
VoiceSegments additionally store the instrument name

assigned to the MIDI channel from which the
VoiceSegment was derived.1

We would like to draw attention to the manner in which
pitch-related searches are carried out in the MusicDB. For
search processes involving specific pitch content—Pitch
Lists and Chords—we have adopted Cope’s scale of
harmonic tension, rather than using Euclidean distance, or
some other linear distance metric, as a measure for what
we call “pitch distance.” Cope assigns float values to each
of the intervals within one octave, as follows [6]:

 Interval Value

0 0.0
1 1.0
2 0.8
3 0.225
4 0.2
5 0.55
6 0.65
7 0.1
8 0.275
9 0.25
10 0.7
11 0.9

All intervals greater than one octave are constrained to

pitch-classes before their tension value is calculated. This
sequence of values is based on the relative consonance of
intervals within the octave, roughly following the
harmonic series. It should not be viewed as a set of strictly
‘tonal’ relationships, though tonality generally follows a
similar pattern, but rather as a measure of the degree to
which a new note could be substituted for a given note, in
an existing musical setting. It should be clear, therefore,
that this is a metric chosen to apply to a broad range of
compositional situations, but which would not be
appropriate for most serial procedures, or for set theoretic
analysis. Our application of the above harmonic tension
scale as a pitch distance metric has the positive effect of
relating searched items by a more acoustically founded
notion of distance2 than would be reflected by a linear
distance measure. For example, using the above scale to
find a match for the Pitch List {60, 62, 67} would return
the list {67, 69, 60} as a “closer” match than the list {61,
64, 66}, in spite of the fact that the numeric values are
clearly more distant, and the melodic contour is not the
same. Assuming that this searched Pitch List was
extracted from a supporting harmonic context, such a
result would likely offer a more suitable alternative than
would be provided by a linear distance metric. A search

1 The instrument name is taken from the “name” metadata item in the
MIDI file.
2 Again, we would like to stress the fact that we sought to find a solution
for a wide number of cases, and we are aware that serial and set theoretic
compositional approaches will benefit less from the use of this distance
metric.

77

ISMIR 2008 – Session 1a – Harmony

for Pitch Contour, on the other hand, would use Euclidean
distance to compare the Pitch Lists, and would thus have
the opposite result.

2.3. Query System

Data is extracted from the MusicDB using a six-part query
syntax (see Figure 2).

Figure 2. Format of a search query

Searches are carried out on VoiceSegment, Group, and
Phrase objects, which hold the following fields1:

• VoiceSegment: Pitch List, Melodic Interval List,
Pitch Contour, Chroma, ED List, ED Contour,
Kinesis, Periodicity

• Group: Harmonic Interval List, Harmonic Tension,
Harmonic Motive

• Phrase: Harmonic Tension, Kinesis, Periodicity,
Chroma, Pitch Grid

The search Type can be chosen from a number of
options:

1) PitchList: an ordered list of pitch values

2) MelodicIntervalList: an ordered list of interval
values (signed integers)

3) PitchContour: a series of indices giving the relative
“height” of each unique pitch in a Pitch List

4) Chroma: a 12-member vector indicating the
occurrence-rate of pitch classes

5) EDList: an ordered list of ED values

6) EDContour: contour applied to an ED List

7) Kinesis: the general activity level (0. to 1.)

8) Periodicity: the rhythmic regularity of an ED list
(0. to 1.)

9) Chord: an ascending list of pitches

10) HarmonicIntervalList: the intervals between
adjacent pitches in a chord (i.e., a major triad is
[0, 4, 3])

11) HarmonicTension: the interval tension of a given
Chord2 (0. to 1.)

The search Data is a vector of float values, used to
represent the search Type.

1 All objects also hold a field for their Statistical Representation.
2 The precise weighting of interval values used to calculate Harmonic
Tension is taken from Cope [9].

The return Agenda (Figure 3) indicates the formal
'motivation' for the search. There are three options:
Preceding, Current, and Following. A setting of Current will
cause the search to return the requested field (indicated by
the return Type) from the object containing the match,
while Preceding and Following will return the same field
from the preceding or following object, respectively.
Beyond returning the matched field itself, the flexibility of
the Agenda system makes it possible to extrapolate formal
‘causes’ and ‘effects’ relating to the searched data.

Figure 3. Search Agenda

The return Context indicates the immediate musical
context of the object holding the requested field. There are
three options: Element, Accompaniment, and Setting. A return
Context of Element will return only the requested field
from the matched object. The Setting option will attempt to
provide data for a complete Phrase (i.e., a musical
“setting”) and will thus return the requested field from all
objects referenced by the root Phrase holding the matched
object3. If the requested field is held by a Group object,
the Group sequence of that object’s root Phrase will be
returned4. For fields held by Groups the Accompaniment
option is handled identically to Setting, but for fields held
by VoiceSegments, Accompaniment removes the
VoiceSegment in which the match was found, returning
only the fields from the ‘accompanying’ VoiceSegments.

Return Types include all of the Search Types, with the
addition of three more: PitchGrid, HarmonicMotive, and
StatisticalRepresentation. A PitchGrid is a 128-member vector
indicating the rate of occurrence for each available pitch.
A HarmonicMotive is a sequence of Chords (these correspond
to the entryPitch vectors used to identify Groups5), and a
StatisticalRepresentation is a vector of statistical analysis
values, used internally by the database to measure the
similarity between instances of a given class
(VoiceSegment, Group, or Phrase).

The final argument, Scope (Figures 4 and 5), controls
the way in which searches are constrained by the formal
structure of the database. A setting of Static (Figure 4) will

3 This is the case whenever the requested field belongs to a
VoiceSegment or Group. If it belongs to a Phrase, the Phrase itself
provides the return.
4 The result is equivalent to a “Harmonic Motive”.
5 This is different from the Chord object, used by the VoiceSegment class
for storing simultaneous pitch events. The term “chord” is used here to fit
easily into musical parlance.

78

ISMIR 2008 – Session 1a – Harmony

search the entire database, beginning at the top of the
SPEAC hierarchy, and working its way through the tree.
A setting of Progressive (Figure 5) will limit the scope of
the search to a particular branch of the tree1, and thus to a
certain ‘section’ of the encoded musical form. With each
completed Progressive search, the focus of the search ‘steps
forward’, moving through the formal plan of the database.
Static scoping can be useful for finding the best possible
match for a desired search, while Progressive scoping
would generally by used to move through a large-scale
musical form.

Figure 4. Static scoping of SPEAC hierarchy2

Figure 5. Progressive scoping of SPEAC hierarchy

Figure 6 demonstrates the way in which the MusicDB
would handle searches with an input type of PitchList. It
will be noticed that the actual data used for the return is
always extracted in relation to the match found for the
searched type. In the example, because PitchList is a field
of the VoiceSegment object, the search for a best
matching PitchList is carried out on VoiceSegments. From
there, different return types (Chord, Contour, EDList) can be
called, in relation to the VoiceSegment holding the match.
In this case, the Contour and ED List are both stored by
the VoiceSegment itself, whereas the Chord is stored by a
Group, which is referenced by the VoiceSegment.

1 The branch chosen is dependent upon the last leaf to return a search. In
the Figure 4 hierarchy, A0-1 would be followed by E0-2.
2 This representation shows the tree-like pattern provided by SPEAC
analysis. The label given to each node indicates the Phrase’s formal
function [9].

Figure 6. The system of references used to extract
information from a given query

2.4. User Experience

Because input and output types are not required to match,
the system offers great flexibility in the manner in which
data is found and extracted. Take the following query as
an example:

“PitchList 60 64 70 61 Current Accompaniment

PitchContour Progressive”

This query would return all the Pitch Contours which
accompanied the VoiceSegment that best matched the
input Pitch List {60, 64, 70, 61}, given the current Scope,
and would step ‘forward’ in the database once the search
was returned. On the other hand, a query such as:

“PitchList 60 64 70 61 Following Element

HarmonicMotive Static”

would search the entire database (due to the Static scoping)
and return the harmonic sequence used by the Phrase
following the VoiceSegment with the best matching Pitch
List. Figure 7 shows a basic MaxMSP patch for querying
the MusicDB.

Figure 7. The MusicDB in MaxMSP. The second outlet
reports the return data, the fourth return type, and outlets 1
and 3 provide Group count and voice number

79

ISMIR 2008 – Session 1a – Harmony

Composite searches are also possible, by entering
multiple search queries before sending out the result.
When queries are concatenated in this way, each query
serves to narrow the scope of the search for the following
query.

3. FUTURE DIRECTIONS

The MusicDB has been designed as a component for a
larger system with the working title “ManuScore.” This
system will be a music notation-based application for
interactive composition using principles of music
recombinance. We will be working to extend the
MusicDB itself by including the capacity for adding new
material to the stored database dynamically, during the
composition process. The other area we are working to
develop concerns the discrimination of “quantized” versus
“performed” rhythm. In particular, we are interested in
refining the system in such a way as to make it more
sensitive to the differences between quantized and
performed rhythm, so that it may be given the capacity to
apply a performed quality to otherwise quantized music,
or to match the performance quality of fragments from
two or more source works. One way we have thought to
do this is by storing an event’s ED as a pair of values,
rather than a single value. The first value would indicate
the quantized rhythmic position, and the second would
indicate the offset of the performed rhythmic position
from the quantized position. Analysis could be carried out
using the quantized values, as in the current
implementation, and the offsets could be used to
reconstruct the rhythmic quality of the original
performance. We are also considering the idea of
integrating search categories more directly related to set
theoretical analysis—perhaps a return type of “Set
Similarity”, for example—which could offer more
flexibility in searching for materials based on specific
pitch content.

Further, in order to introduce a more legitimate form of
musical inference to the ManuScore system1, we are also
currently investigating the integration of Hierarchical
Temporal Memory networks, modelled after those
proposed by Jeff Hawkins, Dileep George, and Bobby
Jaros at Numenta Inc. [9]. It is our feeling that the
structural organization of the MusicDB could provide a
useful pre-processing step in building the data
representations used to train HTM networks, and could
also provide category information for supervised training
of the HTMs.

1 Strictly speaking, the MusicDB is incapable of inference, being limited
only to retrieving explicitly requested information from the data stored
during analysis.

4. REFERENCES

[1] Assayag, G., Bloch, G., Chemellier, M., Cont, A.,
Dubnov, S. “OMax Brothers: a Dynamic Topology of
Agents for Improvisation Learning”, Workshop on
Audio and Music Computing for Multimedia, ACM
Multimedia 2006, Santa Barbara, 2006.

[2] Cadiz, R. “Fuzzy logic in the arts: applications in
audiovisual composition and sound synthesis”, Fuzzy

Information Processing Society, Ann Arbor,
Michigan, 2005.

[3] Cope, D. New Directions in Music, W. C. Brown,
Dubuqe, Iowa, 1984.

[4] Cope, D. Virtual Music, MIT Press, Cambridge, MA,
2001.

[5] Cope, D. “Computer Analysis of Musical Allusions”,
Computer Music Journal, 27/1, 2003.

[6] Cope, D. Computer Models of Musical Creativity,
MIT Press, Cambridge, MA, 2005.

[7] Dahlstedt, P., McBurney, P. “Musical Agents”
Leonardo, 39 (5): 469-470, 2006.

[8] Eigenfeldt, A. “Drum Circle: Intelligent Agents in
Max/MSP”, Proceedings of the International
Computer Music Conference, Copenhagen,
Denmark, 2007.

[9] George, D. and Jaros, B. “The HTM Learning
Algorithms”, Numenta, Inc., Menlo Park, CA, 2007.

[10] Lerdahl, F. and Jackendoff, R. “On the Theory of
Grouping and Meter”, The Musical Quarterly, 67/4,
1981.

[11] Maxwell, J., Eigenfeldt, A. “The MusicDB: A Music
Database Query System for Recombinance-based
Composition in Max/MSP” Proceedings of the
International Computer Music Conference, Belfast,
Ireland, 2008.

[12] Morris, R. “New Directions in the Theory and
Analysis of Musical Contour”, Music Theory

Spectrum, 15/2, 1993.

[13] Roederer, Juan G. Introduction to the Physics and

Psychophysics of Music, Springer, New York, NY,
1973.

80

