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ABSTRACT

The enormous growth of digital music databases has led to

a comparable growth in the need for methods that help users

organize and access such information. One area in partic-

ular that has seen much recent research activity is the use

of automated techniques to describe audio content and to

allow for its identification, browsing and retrieval. Con-

ventional approaches to music content description rely on

features characterizing the shape of the signal spectrum in

relatively short-term frames. In the context of Automatic

Speech Recognition (ASR), Hermansky [7] described an in-

teresting alternative to short-term spectrum features, the TRAP-

TANDEM approach which uses long-term band-limited fea-

tures trained in a supervised fashion. We adapt this idea

to the specific case of music signals and propose a generic

system for the description of temporal patterns. The same

system with different settings is able to extract features de-

scribing either timbre or rhythmic content. The quality of

the generated features is demonstrated in a set of music re-

trieval experiments and compared to other state-of-the-art

models.

1 INTRODUCTION

As discussed in [2], most state-of-the-art algorithms dedi-

cated to the high-level description of music signals rely on

the same basic architecture with different algorithm variants

and parameters, i.e. short-term audio features extraction fol-

lowed by some supervised or unsupervised machine learn-

ing algorithm. The most successful approaches rely on fea-

tures describing the shape of short-term spectral frames of

audio signal. Spectral shape is indeed known to be corre-

lated with the perceived timbre of sounds as confirmed by

recent experiments in isolated instrument recognition (see

notably [8]). As a matter of fact, short-term spectral en-

velopes have dominated similar research fields for years,

like e.g. ASR. These short-term spectral envelopes are typi-

cally transformed in accordance with some constraining prop-

erties of human hearing such as the nonlinear (critical-band

like) frequency resolution (Bark, Mel), the compressive non-

linearity between acoustic stimulus and its percept (loga-

rithm) or the decreasing sensitivity of hearing at lower fre-

quencies (equal-loudness curves). Moreover, these modified

spectral frames are typically projected on spectral basis that

decorrelate the feature space (cepstrum).

In both speech and music signals, the smallest unit of in-

formation, i.e. phonemes on the one hand and notes on the

other hand (not only pitched notes but also hits of percussive

instruments or whatever that produces sounds), spread on

longer time intervals than the usual short-term audio frame.

Indeed, typical ASR/MIR (Music Information Retrieval) sys-

tems considers slices of audio signals of length 20 to 50 ms

(slightly longer when accurate pitch estimates are needed

in the lower frequencies). On the contrary, phonemes were

demonstrated to spread at least over the interval 200-300ms

[26]. As a matter of fact, the minimum discriminable in-

ter onset interval (IOI) is estimated to lie within the range

50-100ms (i.e. two sounds separated by less than the min-

imum IOI will be perceived as one) so that it is likely that

at least 50-100ms of information is needed by a human lis-

tener to interpret the incoming sound. Studies on rhythm

perception show that the rate of information in music sig-

nals is even less. Experiments [16] have indicated that pulse

sensation cease to exist outside of the period range of 200-

2000ms which is known as the region of pulse sensation
while the most natural foot-tapping period is approximately

500-600ms. Given these observations, it is reasonable to

think that it is probably more perceptually relevant to model

audio signals with a longer context than the usual 20-50ms

spectrum frames. To preserve information related to the

short-term dynamics of sounds and to keep sufficient time-

resolution when detecting e.g. musical note onsets, a trade-

off consists in building a model of the sequence of short-

term feature vectors over a longer time-scale. This process

is sometimes referred to as temporal feature integration [14].

The simplest approach consists in computing simple statis-

tics of feature vectors (means and variances) over texture-
windows. This has been shown [25] to significantly improve

music genres classification accuracy when using windows

of approximately 1.0 second as opposed to the direct use of

short-term frames. However, simple statistics discard dy-

namical changes of short-term features while the dynamics

of sound and notably the attack time and the fluctuations
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of the spectral envelope over time have proved to be of a

great importance in the perception of individual instrument

notes (see [11]). Meng [14] modeled the evolution of fea-

tures over a texture window with an auto-regressive (AR)

model and got improved genre classification results than

with simple statistics. McKinney and Breebart [12] com-

puted a periodogram for each short-term feature dimension

over a frame corresponding to roughly 768ms. Each peri-

odogram was then summarized by its power in 4 predefined

frequency bands using a fixed filter bank. This approach

was pursued by Arenas-Garcia et al. [1] who trained the

filter-bank in a supervised fashion to optimally suit a partic-

ular music organization task. Rauber et al. [20] used crit-

ical band energies periodograms with a much longer con-

text, i.e. 6 seconds. This longer context was considered to

model rhythmic patterns and the range 0-10Hz was consid-

ered as higher values are beyond what humans can perceive

as rhythm (see again the region of pulse sensation). These

approaches to temporal feature integration model the dy-

namics of each feature independently. Though Meng [14]

describes a general multivariate autoregressive model that

does take into account correlations between feature trajec-

tories, for the sake of simplicity he experiments in practice

with a diagonal multivariate autoregressive model, i.e. an

AR model of each feature dimension. Pohle et al. [19] use

independent component analysis on short sequences of crit-

ical band energies and obtain time-frequency 2D filters that

are reminiscent of cortical receptive fields [4]. Though this

approach seems more appropriate to take into account cor-

relations between feature trajectories, it is at best of similar

quality as short-term features in genre classification experi-

ments.

As a matter of fact, the use of long-term features has

been investigated more in depth in the context ASR, notably

by Hermansky [7]. These features are extracted in 2 steps.

Firstly, rather long-term TempoRAL Patterns (TRAPs) of

band-limited (1-3 Bark) spectral energies are considered.

Though, a context of 200-300ms seems needed for ASR,

an even longer time interval of 1 second is considered so

that information about slowly varying noise can be removed

from the data (i.e. mean/standard deviation normalization).

Hermansky [7] argues that, consistently with color separa-

tion in vision, it seems likely that the frequency selectiv-

ity of the hearing system is used for separating the reliable

(high SNR) part of the signals from the unreliable ones, so

that it seems reasonable to use independent frequency lo-

calized processors. Consequently, each band-limited TRAP

is processed individually by a specifically trained system to

build as much knowledge as possible into the feature extrac-

tion module to minimize the complexity of the subsequent

stochastically trained models. The second step, referred to

as the TANDEM part, consists in training a system aiming at

the combination of frequency-localized evidence into a set

of robust features that can be used in conventional HMM-

based ASR systems.

To our knowledge, there’s been only one application of

these TRAP-TANDEM features to music signals in the con-

text of drum transcription [17]. In this paper, we further in-

vestigate some possible applications of the TRAP-TANDEM

approach in the context of music information retrieval. More

specifically, we describe in section 2 our own implemen-

tation of the TRAP-TANDEM feature extraction module,

which slightly differs from the original method. As a matter

of fact, we propose two different implementations to focus

on two different aspects of music signals, namely timbre and

rhythm. In section 3, we evaluate the validity of these fea-

tures for music information retrieval in a set of music clus-

tering experiments. Section 4 reaches conclusion.

2 MUSICAL TRAP-TANDEM FEATURES

The first step of the processing consists in converting the au-

dio signal into some time-frequency representation. In prac-

tice, we use the typical short-term Fourier transform (STFT)

with Hann windowing of the short-term audio frames. The

resulting short-term spectra are projected onto the Mel scale

to simulate human critical bands of hearing [13]. The per-

ceptual relevance of this time-frequency representation is

further improved by exploiting masking properties of the

human ear (see [22]) and frequency response of the outer

and middle ear (see [23]). The loudness in Sone of the spec-

tra is finally evaluated according to [3].

These short-term spectra will be later used to build tim-

bre related TRAPs. Rhythmic TRAPs are based on a slightly

different representation. More specifically, each critical band

of the time-frequency plane is smoothed with a kernel, which

width is taken in the range of the minimum IOI so that

rhythmically irrelevant details of the band envelopes will

be smoothed while the peaks corresponding to two differ-

ent note onsets will not be merged. The first order deriva-

tive of each smoothed critical band is then taken to empha-

size sudden changes. Critical bands are finally combined as

suggested by Scheirer [21] who demonstrated that the per-

ceived rhythmic content of many types of musical excerpts

was mainly contained in 4 to 6 larger critical bands.

To reduce further processing, we deploy a note onset de-

tection algorithm and we will only compute one TRAP fea-

ture vector per onsets instead of using a constant and faster

rate of feature extraction. By synchronizing the analysis on

detected onsets, an important factor of variability of the data

is strongly reduced, i.e. the data is made translation invari-

ant, and consequently, we can expect that the task of learn-

ing relevant features will be simplified. The differentiated

signals computed for rhythm description are used as a basis

to detect note onsets. The signals are first half-wave rectified

and peaks are detected by using an adaptive threshold to ac-

count for possible loudness changes over the course of the

musical piece. Peaks are first combined over the different
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Figure 1. From audio signal to critical band spectra and

onset positions.

bands and those closer than the minimum IOI are merged

together. Figure 1 illustrates the processing chain that goes

from the audio signal to both critical band spectra and onset

positions.

The data from each critical band and differentiated criti-

cal band surrounding each onset is then parameterized with

the cosine transform, which has the good property of pro-

ducing decorrelated signals. The cosine transform is simple

to deploy since it does not need any training phase, plus

it has the interesting property that it closely resembles the

Principal Component Analysis (PCA) of such critical band

signals [7]. The cosine transform also allows for a signifi-

cant reduction of the dimensionality of the input data. The

range of modulation frequencies of the cosines is carefully

selected. For timbre description, modulations between 4 and

up to 100 Hz can be considered. The lower limit of 4 Hz is

set in accordance with the smallest perceivable sound unit

discussed in section 1. The higher limit is in the range of

modulations contributing to perceptual roughness, which is

generally thought to be a primary component of musical dis-

sonance [24]. As a matter of fact, the percept of roughness

is considered to correlate with temporal envelope modula-

tions in the range of about 20-150 Hz and maximal at 70

Hz. For rhythm description, lower frequencies are consid-

ered. Modulations between 1 and 4 Hz are interesting since

they are of the order of typical beat rates, i.e. 60 to 240

Beats Per Minute (BPM).

In the original TRAP approach, for each critical band

some algorithm, typically a non-linear feedforward multi-

layer perceptron (MLP), is trained to estimate posterior prob-

abilities of the classes under consideration. In ASR, the

targets are phonemes and there exist plenty of annotated

datasets. Ideally, we would like to have instrument annota-

tions to translate the TRAP idea to the case of music signals.

Figure 2. The TRAP-TANDEM feature extraction process-

ing chain.

Unfortunately, no such dataset exists for real-world poly-

phonic music and as a matter of fact, the annotation problem

would become even more complex since we’re considering

mixture of instruments. For the time being, we left aside the

use of critical band MLPs.

The TANDEM part of the system is in charge of combin-

ing evidence from the different frequency bands into a sin-

gle estimate. A MLP is typically trained to combined these

band limited features into a set of class posterior probabili-

ties. Again, we lack appropriate annotated datasets. As an

alternative, we use music genres annotations that are much

cheaper to obtain, using e.g. some online music guide such

as the AllMusic guide 1 . The merging MLP is fed with

the concatenation of all band limited features, which are

whitened with PCA to make them decorrelated. The MLP is

trained to associate acoustic evidence with 50-dimensional

binary vectors for which each dimension corresponds to a

particular music genres. Notice that one song may be char-

acterised by multiple genres. Once properly trained, the out-

puts of the MLP are decorrelated by PCA and can be used

as a feature vector describing the different genres in which

the acoustic data has been observed. Figure 2 illustrates the

processing chain that goes from the critical band or differ-

entiated critical band spectra to the final TRAP-TANDEM

like features.

3 EVALUATIONS

The TRAP-TANDEM features describe the timbre and rhyth-

mic context of a note onset. They may need to be aggregated

into a song-level model in e.g. song retrieval applications.

One application scenario consists in retrieving sets of songs

1 http://www.allmusic.com
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similar to some query song according to some similarity

measure between song-level models. Though listening tests

have proved to be a valid evaluation method of such music

retrieval systems due to the consistency of judgements ob-

served over different listeners [15], they are very demanding

in terms of time and human resources. Previous works have

shown that evaluations based on genre data correspond to

evaluations based on similarity ratings gathered in listening

tests [15]. Consequently, we will base our evaluation of the

descriptive quality of our features on some genre annotated

data. However, since we are more interested in music re-

trieval than automatic genre labelling, we will use measures

of the ranking quality of the system rather than classification

accuracy.

3.1 Timbre TRAP-TANDEM evaluation

To evaluate the timbre TRAP-TANDEM features, we have

gathered a set of 210 songs annotated with genre and styles

from the AllMusic guide. The quality of the labels was

cross-checked by systematic listening tests. Each selected

song is performed by a different artist to avoid the album ef-
fect [9] in the evaluation. Moreover, the songs selected were

not previously used while training the TRAP-TANDEM fea-

ture extractor. Six main genre clusters of songs are consid-

ered and each genre cluster is composed of a set of smaller

style clusters with 10 songs per style. The Rock cluster

is composed of the Grunge, British-Invasion, Punk-Blues,

Glam-Rock, New-Wave, Folk-Rock sub-clusters. The Jazz
cluster is composed of the Soul-Jazz, Swing, Hard-Bop, Free-
Jazz sub-clusters. The Hip-Hop cluster is composed of the

West-Coast, East-Coast, Turntablism, Old-School sub-clusters.

The Electronica cluster is composed of the House, Trip-
Hop, Drum’n’Bass sub-clusters. The last two clusters, Soul
and Adult Contemporary, are both divided into two sub-

clusters according to the gender of the lead singer.

We will measure how well the timbre TRAP-TANDEM

features are able to recover this organisation in terms of

genre/style clusters. In practice, we summarize the distri-

bution of TRAP-TANDEM feature vectors over each song

by a simple average. Though more complex models, like

e.g. HMM, could be deployed, our goal is to demonstrate

the descriptive quality of the TRAP-TANDEM features so

that we leave more complex song-level modelling strate-

gies to future work. Two songs can then be compared by

evaluating the cosine similarity of their average song-level

TRAP-TANDEM vectors. The similarity between each pair

of songs of the dataset is computed and the quality of the

system is assessed by comparing the labels of a song and its

nearest neighbours. More specifically, the precision at 1, 2

and 3 are computed for each query and averaged over the

dataset. The precision at n is a quality measure commonly

used to evaluate information retrieval systems. It accounts

1 1

Table 1. Timbre TRAP-TANDEM features.
Prec. at 1 Prec. at 2 Prec. at 3

Genre 72.86 71.90 69.84

Style 50.00 43.10 39.37

Table 2. Full Gaussian of MFCCs.
Prec. at 1 Prec. at 2 Prec. at 3

Genre 65.24 57.62 54.13

Style 35.71 30.00 25.87

for the quality of ranking, i.e. it is high if the most relevant

hits are in the top documents returned for a query. It is mea-

sured by computing the precision at different cut-off points

(for example, if the top 10 documents are all relevant to the

query and the next ten are all nonrelevant, we have 100%

precision at a cut off of 10 documents but a 50% precision

at a cut off of 20 documents).

To ease the comparison of our approach with the state-of-

the-art, we have implemented one of the most popular tim-

bre similarity measure based on spectral shape features. It

simply consists of a Mel-Frequency Cepstrum Coefficients

(MFCCs) frame-based parameterization of the audio signal

(20 coefficients including the energy coefficient). These

features are aggregated over the song as a Gaussian with

full covariance matrix and compared using the symmetric

version of the Kullback-Leibler (KL) divergence. This ap-

proach has been originally introduced by Mandel and El-

lis [10] and was used in the winning algorithm of the 1st

Annual Music Information Retrieval Evaluation exchange

(MIREX 2005) 2 artist identification contest and ranked 3rd

on 13 at the MIREX 2005 music genres classification con-

test while being almost 3 times faster than the first two win-

ning algorithms. It can be considered as a simplified, yet

competitive, implementation of Aucouturier’s timbre model

[2].

Tables 1 and 2 summarize the average precision at 1, 2

and 3 for both models. Results are given for both genres

and styles targets, i.e. in the first case precision increases

if the nearest neighbours are of the same genre, and in the

second case precision increases if the nearest neighbours are

of the same style.

It is clear from this experiment that the TRAP-TANDEM

features are more reliable than the short-term spectral shape

features in a music retrieval context. It is worth noticing that

MFCCs with a simple average and cosine similarity leads

to poorer results than MFCCs with mean, full covariance

matrix and KL divergence, while for the TRAP-TANDEM

features, the use of a KL-based distance function leads to

slightly inferior results than the simpler cosine similarity.

2 http://www.music-ir.org/mirex2005/index.php/Main Page
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Table 3. Rhythm TRAP-TANDEM features.

Prec. at 1 Prec. at 2 Prec. at 3

Style 79.37 77.01 76.36

Table 4. 10-fold 1-NN classification accuracy.

Accuracy

Rhythm TRAP-TANDEM features

(without annotated tempo)

79.49

Gouyon & Dixon (without anno-

tated tempo

67.60

Gouyon & Dixon (with annotated

tempo)

82.10

Peeters (with annotated tempo) 90.40

Dixon et al. (with annotated tempo

and semi-automated beat tracking)

96.00

This suggests that it is possible to have better retrieval re-

sults with a simpler—and especially faster—similarity func-

tion. Indeed, even if we’re considering here 50-dimensional

TRAP-TANDEM vectors against 20-dimensional MFCC vec-

tors, the cosine similarity remains much faster than the sym-

metric KL of two full Gaussians since the later requires

some matrix multiplications. This advantage becomes cru-

cial when dealing with industrial databases with millions of

songs.

3.2 Rhythm TRAP-TANDEM evaluation

We will evaluate the descriptive power of the rhythm TRAP-

TANDEM features in a similar fashion. Rhythm TRAP-

TANDEM features are averaged over each song and two

songs are compared with the cosine similarity. We used

here a well known dataset that contains 698 pieces of ball-

room dance music divided into 8 sub-styles having differ-

ent rhythmic characteristics, namely Cha Cha Cha, Jive,

Quickstep, Rumba, Samba, Tango, Viennese Waltz and

Waltz. It is interesting to notice that the TRAP-TANDEM

system for rhythm was trained with the same 50 genres tar-

gets as the system for timbre, and that these genres are far

from being as restricted as Jive or Cha Cha Cha. Table 3

summarizes the results obtained.

To ease the comparison with state-of-the-art algorithms,

we also computed the classification accuracy on a 10-fold

cross validation experiment with a 1-Nearest Neighbour clas-

sifier since various authors have reported results on this dataset

using this particular evaluation procedure (see table 4). Gouyon

and Dixon [6] reports up to 82.10% accuracy using a set of

rhythmic features including the manually annotated tempo.

The accuracy drops to 67.60% when using the tempo auto-

matically extracted by their algorithm. Peeters [18] reaches

up to 90.40% using spectral rhythm patterns normalised by

the manually annotated tempo. While these two algorithms

extract features from some periodicity representation of the

audio signal, Dixon et al. [5] characterise the amplitude

envelope of musical patterns, synchronised on musical bar

positions and normalised to a reference tempo. They ob-

tain an impressive 96.00% accuracy, but they also make use

of the annotated tempo and a semi-automated beat track-

ing algorithm. On the contrary, our approach is fully au-

tomatic and reaches 79.49% classification accuracy. More-

over the results obtained by Dixon et al. with tempo nor-

malised/bar synchronised temporal patterns suggest that the

TRAP-TANDEM rhythmic features could become even more

effective if synchronised on higher level musical events (mu-

sical bar positions instead of note onsets) and if made in-

dependent of the tempo. However, though on this particu-

lar dataset, a tempo normalisation may be needed since the

clusters exhibit clearly defined rhythmic patterns with vari-

able tempi, a tempo normalisation may not be so crucial for

a general purpose music similarity engine since slow/fast
songs should probably be similar to other slow/fast songs

independently from the rhythmical pattern they’re built on,

i.e. the percept of speed would be more important than the

perception of a particular rhythmical pattern.

4 CONCLUSION

We have presented a new set of features for music content

description based on the work by Hermansky [7] in the con-

text of ASR. The original approach has been adapted to the

specific case of music signals and two different implemen-

tations based on the same architecture have been proposed

to describe two apparently dissimilar dimensions of music,

namely timbre and rhythmic patterns. Instead of using a

relatively simple low-level characterization of the audio sig-

nal (like e.g. MFCCs), the TRAP-TANDEM approach is

a complex feature extraction module that encodes tempo-

ral patterns and as much prior knowledge as possible. The

distribution of TRAP-TANDEM features over a song can be

described with simple models that can be used together with

fast similarity measures. First experimental results confirm

that the TRAP-TANDEM approach is competitive against

state-of-the-art algorithms. Future work will focus on ex-

perimenting at a larger scale to confirm—or infirm—the de-

scriptive quality of the TRAP-TANDEM features.
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