
ISMIR 2008 – Session 4a – Data Exchange, Archiving and Evaluation

USING XQUERY ON MUSICXML DATABASES FOR MUSICOLOGICAL
ANALYSIS

Joachim Ganseman, Paul Scheunders
IBBT - Visionlab

Dept. of Physics, University of Antwerp
Universiteitsplein 1, building N

B-2610 Wilrijk (Antwerp), Belgium
{joachim.ganseman, paul.scheunders}@ua.ac.be

Wim D’haes
Mu Technologies NV
Singelbeekstraat 121

B-3500 Hasselt, Belgium
support@mu-technologies.com

ABSTRACT

MusicXML is a fairly recent XML-based file format for mu-

sic scores, now supported by many score and audio editing

software applications. Several online score library projects

exist or are emerging, some of them using MusicXML as

main format. When storing a large set of XML-encoded

scores in an XML database, XQuery can be used to re-

trieve information from this database. We present some

small practical examples of such large scale analysis, using

the Wikifonia lead sheet database and the eXist XQuery en-

gine. This shows the feasibility of automated musicological

analysis on digital score libraries using the latest software

tools. Bottom line: it’s easy.

1 INTRODUCTION

MusicXML is an open file format developed by Recordare

LLC [1]. Its development started around the year 2000 [2].

Some design decisions on the format are well explained in

[3].

In 2002 a paper was presented on the XML conference

[4] explaining how XQuery can be used to search for struc-

tures in a MusicXML document, but since then it has been

very quiet on the front. In a 2007 poster, Viglianti [5] points

out the possibilities of using XQuery for musicological anal-

ysis. Unfortunately, his text contains some errors - the most

important one being the remark that XQuery would not sup-

port arrays. XQuery definitely does support arrays, it is

even proved to be a Turing complete language [6]. There-

fore has the same expressive power as languages like C++

or Java, and any computable function can be performed us-

ing XQuery.

In the meantime, XQuery 1.0 has made it to a W3C rec-

ommendation [7]. Galax [8] strives to be a reference im-

plementation. eXist [9], Sedna [10], and Oracle’s Berkeley

DB XML [11] are native XML database management sys-

tems incorporating their own XQuery engines. All of those

are open source and free. Both standards and software have

thus matured.

Digital score libraries already exist, emanating from re-

search (e.g. KernScores [12], based on HumDrum [13]) or

the open source community (e.g. Mutopia [14], using Lily-

pond [15]). The Wikifonia project [16] uses MusicXML. It

is a wiki-style collaborative environment for publishing lead

sheets - i.e. reduced scores where arrangement details have

been removed and only melody, lyrics and chord progres-

sion information is available. Wikifonia is at the moment

of writing still relatively small. We worked with a database

downloaded on April 1st 2008, which contained just over

200 songs.

To do automated musicological analysis, the HumDrum

toolkit [13] is probably the most widely used today. It is

very powerful, but it has its drawbacks. It works with in-

put and output in its own plain text (ASCII) file format.

Formatting output, converting to and from other formats,

dynamically generating queries etc., require the creation of

dedicated software or advanced scripts. To use it effectively,

HumDrum requires a good deal of knowledge of UNIX style

scripting, which is even more difficult to use on Windows

platforms. On the other hand, XML formats are so generic

that a huge set of software tools already exist to manipu-

late XML data in almost any way imaginable. Knowing that

XQuery is Turing complete, we can state that it is theoret-

ically possible to translate the whole HumDrum toolkit to

XQuery.

There is not much software around that is capable of

doing pattern analysis on MusicXML files: MelodicMatch

[17] is at the moment of writing probably the most complete

one. THoTH [18] also has some limited selection and ex-

traction functionality based on the contents of a MusicXML

file. Both software packages are closed source. Neverthe-

less, this kind of functionality is very desirable in music

score software. For example, in regular PDF files, we are

433

ISMIR 2008 – Session 4a – Data Exchange, Archiving and Evaluation

not impressed any more by functionality that allows us to

search for a text pattern, highlighting all occurrences in the

text itself. But in score editors, searching for a music pattern

and highlighting the results in the score, is a functionality

that is only noticeable by its absence.

In this paper we give some practical examples that illus-

trate how XQuery can be used to easily and quickly search

large collections of MusicXML scores for interesting data,

and return the results formatted in any way desired. We

will point out some interesting directions for future projects.

By showing that only a few proven, stable, off-the-shelf

software components are needed for advanced score analy-

sis, we think that advanced search and information retrieval

functionality can be incorporated in music score software

very quickly.

2 USED TECHNOLOGIES

It is not our goal to provide an in-depth tutorial on Mu-

sicXML [1], XPath [19] or XQuery [7]. Numerous excellent

books or online tutorials can be found on those subjects, and

the websites of the respective projects contain valuable in-

formation. Nevertheless, to understand the examples in this

paper, a small introduction is given in the next paragraphs.

MusicXML can encode scores in 2 ways: part-wise or

time-wise. In a part-wise score, the file is roughly struc-

tured as follows: a score contains a number of parts, a part

contains a number of measures, and a measure contains a

number of notes. For a time-wise score, measure and part

are switched in the hierarchy. An XSLT file (eXtensible

Stylesheet Language Transformation) can be used to convert

between the 2 formats, with a notable exception: multimet-

ric music - where different parts have different time signa-

tures - can only be properly encoded in part-wise scores. In

practice, most MusicXML files today are part-wise encoded,

and for the rest of this paper, we will assume part-wise file

structure. Example files of MusicXML documents can be

found on Recordare’s website [1].

XPath is a language for retrieving information from an

XML document. It is relatively easy to understand, and is

used by XQuery to traverse XML documents. A complete

reference of the latest W3C recommendation, version 2.0,

can be found online [19]. Next to the document traversal

functionality, XPath contains a wide range of operators for

union and intersection, comparison, arithmetic, etc. A list of

about 100 built-in functions completes the XPath language.

Important to note is that an XPath query preserves document

order.

XQuery extends XPath, making it more suitable for larger

queries than XPath is. The most important extension is the

so-called FLWOR (pronounce ’flower’) construct - acronym

for ’for, let, where, order by, return’ - describing the typ-

ical form of an XQuery query. This is roughly analogous

to the ’select, from, where’ structure used in SQL (Struc-

tured Query Language). Results of XQuery FLWORs can

be returned in any desired XML format, including XHTML,

allowing immediate inclusion in a dynamic webpage. A sec-

ond extension is the possibility to define functions yourself,

functions which may be recursive, making XQuery Turing

complete. Last but not least, (: comments look like this :).

eXist [9] is an open source XML database management

system, written in Java. It implements XPath 2.0, XQuery

1.0, and some other minor standards, recommendations and

drafts. Several HTTP interfaces are provided, eXist can be

easily deployed to run a whole database-driven website. In

this paper, we used the latest stable release at the moment of

writing, which is 1.2.0-rev7233. There was no specific rea-

son to choose eXist over alternatives. It is a small project,

easily set up on all kinds of platforms, with a very fast and

complete XQuery engine and a simple graphical user in-

terface. For a few queries to succeed, we needed to adapt

the standard settings of eXist first: the maximum result size

needed to be increased in the configuration file, and the max-

imum heap size of the Java virtual machine needed to be in-

creased in the startup batch file.

3 QUERYING WIKIFONIA

In the next examples, we show some simple queries to re-

trieve basic information from the database. They can even-

tually be wrapped in a function to be used in more complex

queries afterwards. To save the bandwidth of Wikifonia and

speed up processing, we made a local copy of the database

and worked from there. Wikifonia is at the moment of writ-

ing just a file repository, offering easy access to individual

files with URLs that can be generated automatically. Iter-

ating over all online documents and saving the results to a

local database was done on April 1st, 2008, using the query

in Listing 1, actually just a file dump.

Listing 1. Downloading the database. The URL of each

document is composed using the concat() function that is

built into XPath.
<wfdb> {
f o r $ i i n (0 t o 1000)

l e t $s := c o n c a t (” h t t p : / / s t a t i c . w i k i f o n i a . o rg / ” ,

$ i , ” / musicxml . xml ”)

r e t u r n doc ($s)

} </wfdb>

434

ISMIR 2008 – Session 4a – Data Exchange, Archiving and Evaluation

A better approach when working with large databases,

is using ’collections’, storing each file separately into the

database. However, database manipulation functions are not

part of the XQuery standard and can differ depending on the

XQuery engine used. To keep things as uniform and clear as

possible, we will keep working on a single file here, which

we will call ’wfdb.xml’, that contains all songs. Since the

database is relatively small, this is not problematic here: the

file is only about 30 MB large and contains approximately

750000 lines of text.

3.1 Database contents and statistics

The number of note elements (this also includes rests, grace

notes and cue notes) in the each song can be counted using

the query in Listing 2. The largest song contains 1764 notes

and the smallest only 5. Wrapping that code in the built-

in sum() function and adapting it slightly informs us of a

total of 50846 <note> tags in the database. Only the tag

name needs to be adapted in the query to return the count

of any tag in a MusicXML file, parts of a file, or the whole

database.

Listing 2. Count the number of notes in each song. Element

and attribute constructors are used in the return clause for

mark-up.
f o r $ i i n doc (” wfdb . xml ”) / / s c o r e−p a r t w i s e

l e t $ j := c o u n t ($ i / / n o t e)

o r d e r by $ j d e s c e n d i n g

r e t u r n e l e m e n t {” song ”}{ a t t r i b u t e {” t i t l e ”}
{ $ i / / movement− t i t l e / t e x t () } ,

a t t r i b u t e {” note−c o u n t ”}{ $ j }}

Next, we can retrieve songs that meet certain criteria. The

query in Listing 3 finds the song with the least number of

notes and prints all notes that occur in that song. At the same

time, it demonstrates the ability of XQuery to use nested

queries. The query in Listing 4 returns a list of titles of

those songs that have no rests in them.

Listing 3. Get the song with the least number of notes
f o r $ i i n doc (” wfdb . xml ”) / / s c o r e−p a r t w i s e

l e t $ j := $ i / / movement− t i t l e [c o u n t ($ i / / n o t e) eq

min (f o r $x i n doc (” wfdb . xml ”) / / s c o r e−p a r t w i s e

r e t u r n c o u n t ($x / / n o t e)

)]

r e t u r n $ j / . . / / n o t e

Listing 4. Get the titles of songs with no rests
f o r $ i i n doc (” wfdb . xml ”) / / s c o r e−p a r t w i s e

r e t u r n $ i [c o u n t ($ i / / r e s t) eq 0] / / movement− t i t l e

A music database will most likely contain some redun-

dancies. The same song can be present in different edi-

tions, covered by other musicians, or there can be reduc-

tions for other instruments in separate files. These are just

a few of the possibilities that cause the same song to be in-

cluded in the database multiple times. Executing the query

in Listing 5 checks only the titles, revealing that there are

3 songs called ”Summertime” stored in the database and 9

other songs stored 2 times - as shown in Listing 6. Similarly,

the query in Listing 7 allows us to find composers that have

several compositions in the database. We found 12 ”Tra-

ditional” songs in the database, 6 by Duke Ellington, 4 by

A.L. Webber, etc.

Listing 5. Get the songtitles that are stored more than once

in the database.
f o r $ i i n d i s t i n c t −v a l u e s (doc (” wfdb . xml ”) / /

movement− t i t l e / t e x t ())

l e t $c := c o u n t (doc (” wfdb . xml ”) / / movement− t i t l e

[t e x t () = $ i])

o r d e r by $c d e s c e n d i n g , $ i

r e t u r n (e l e m e n t {” song ”}{ a t t r i b u t e {” c o u n t ”}
{$c } , $ i }) [$c g t 1]

Listing 6. Part of the results of the query in Listing 5
<song c o u n t =”3”>Summertime </ song>
<song c o u n t =”2”> Bern ie ’ s Tune </ song>
<song c o u n t =”2”>Cherokee </ song>
<song c o u n t =”2”>Could I t Be Magic </ song>
<song c o u n t =”2”>Everybody H u r t s c o n t i n u e d </ song>

Listing 7. Sort authors that have more than 1 song in the

database. The lower-case() function was used to iron out

inconsistencies in capital letter usage.
l e t $ m u l t i s e t := doc (” wfdb . xml ”) / / c r e a t o r

[@type=” composer ”] / lower−c a s e (t e x t ())

l e t $ s e t := d i s t i n c t −v a l u e s ($ m u l t i s e t)

f o r $ i i n $ s e t

l e t $c := c o u n t (index−of ($ m u l t i s e t , $ i))

o r d e r by $c d e s c e n d i n g , $ i

r e t u r n (e l e m e n t {” a u t h o r ”}{ a t t r i b u t e {” c o u n t ”}
{$c } , $ i }) [$c g t 1]

Eventually, we want to go looking for musically signifi-

cant information. Using the same techniques as used above,

Listing 8 returns the titles of all songs that are written in

c minor. A more complex variant of this query, searching

through all chords in a piece, is of special interest to people

who are learning the guitar and only know a limited number

of chords. They could then search for songs that only con-

tain this limited set of chords, and thus find music they can

already play completely despite a limited knowledge.

Listing 8. Find titles of all songs in c minor.
l e t $ f := ”−3”

l e t $m := ” minor ”

f o r $ i i n doc (” wfdb . xml ”) / / key

435

ISMIR 2008 – Session 4a – Data Exchange, Archiving and Evaluation

[f i f t h s / t e x t () eq $ f] [mode / t e x t () eq $m]

r e t u r n $ i / a n c e s t o r−or−s e l f : : s c o r e−p a r t w i s e / /

movement− t i t l e

3.2 Database statistics

Using the built-in aggregation and arithmetic functions, one

can generate very detailed statistics of the database contents.

A first rudimentary example is presented in Listing 9. It

iterates over the nominators and denominators of the time

signatures that are present in the database, and generates

all possible time signatures out of them. For each of these

time signatures is calculated how many times it occurs in the

database. This is converted to a percentage value and the re-

sults are ordered by that value. To keep the example simple,

Listing 9 does not contain code to keep non-occurring time

signatures from being generated. Instead, at the end the re-

sults having a count of 0 are removed from the list using the

selection [$c gt 0]. A part of the results is presented

in Listing 10. Note that time signatures can change in the

middle of a song. Due to the query requesting all time sig-

natures in the database wherever they occur, these time sig-

nature changes are also taken into account here.

Listing 9. Database statistics on time signatures.
l e t $ t := c o u n t (doc (” wfdb . xml ”) / / t ime)

f o r $ i i n d i s t i n c t −v a l u e s (doc (” wfdb . xml ”) / / b e a t s)

f o r $ j i n d i s t i n c t −v a l u e s (doc (” wfdb . xml ”) / /

bea t−t y p e)

l e t $c := c o u n t (doc (” wfdb . xml ”) / / t ime

[b e a t s eq $ i] [bea t−t y p e eq $ j])

l e t $p := $c d i v $ t ∗ 100

o r d e r by $p d e s c e n d i n g

r e t u r n e l e m e n t {” t ime ”} {
a t t r i b u t e {” b e a t s ”}{ $ i } ,

a t t r i b u t e {” bea t−t y p e ”}{ $ j } ,

e l e m e n t {” c o u n t ”}{ $c } ,

e l e m e n t {” p e r c e n t a g e ”}{$p}
} [$c g t 0]

Listing 10. Results of the query in Listing 9
<t ime b e a t s =”4” bea t−t y p e =”4”>

<count >238</ count>
<p e r c e n t a g e >49.6868475991649269 < / p e r c e n t a g e >

</ t ime>
<t ime b e a t s =”2” bea t−t y p e =”4”>

<count >98</ count>
<p e r c e n t a g e >20.4592901878914405 < / p e r c e n t a g e >

</ t ime>
<t ime b e a t s =”3” bea t−t y p e =”4”>

<count >88</ count>
<p e r c e n t a g e >18.37160751565762 </ p e r c e n t a g e >

</ t ime>

The same can be done for key signatures. In the code

in Listing 11, all key signatures from 7 flats to 7 sharps are

generated and both minor and major mode are considered.

The first part of the result of this query is presented in List-

ing 12. Here too, note that key signatures can change in the

middle of a song, and those key alterations are also present

in the results. With some extra code this can be avoided if

desired.

Listing 11. Database statistics on key signatures.
l e t $ t := c o u n t (doc (” wfdb . xml ”) / / key)

f o r $ i i n (−7 t o 7)

f o r $ j i n (” minor ” , ” major ”)

l e t $c := c o u n t (doc (” wfdb . xml ”) / / key

[f i f t h s eq s t r i n g ($ i)] [mode eq $ j])

l e t $p := $c d i v $ t ∗ 100

o r d e r by $p d e s c e n d i n g

r e t u r n e l e m e n t {” key ”} {
a t t r i b u t e {” f i f t h s ”}{ $ i } ,

a t t r i b u t e {”mode”}{ $ j } ,

e l e m e n t {” c o u n t ”}{ $c } ,

e l e m e n t {” p e r c e n t a g e ”}{$p}
} [$c g t 0]

Listing 12. Results of the query in Listing 11
<key f i f t h s =”0” mode=” major”>

<count >64</ count>
<p e r c e n t a g e >21.3333333333333333 < / p e r c e n t a g e >

</key>
<key f i f t h s =”−1” mode=” major”>

<count >39</ count>
<p e r c e n t a g e >13</ p e r c e n t a g e >

</key>
<key f i f t h s =”−3” mode=” major”>

<count >34</ count>
<p e r c e n t a g e >11.3333333333333333 < / p e r c e n t a g e >

</key>

A last query which is quite complex, is shown in Listing

13. It requests all lyrics of each song, sorts them by verse

number, puts the syllables together if necessary so that they

form words and sentences, and outputs them into what can

be called a ’lyric library’. It can handle the special case that

when there is only 1 verse present, it does not need to be

numbered explicitly in MusicXML. Lyrics are only printed

if there are any.

Listing 13. Extracting lyrics from each song and compiling

them into a library.
< l i b r a r y > {
f o r $ i i n doc (” wfdb . xml ”) / / s c o r e−p a r t w i s e

l e t $ t i t := $ i / / movement− t i t l e / t e x t ()

l e t $ a u t := $ i / / c r e a t o r [@type=” composer ”] / t e x t ()

r e t u r n

<song>{ a t t r i b u t e {” t i t l e ”}{ $ t i t }}
{ a t t r i b u t e {” composer ”}{ $ a u t }}

{
l e t $ l y r := $ i / / l y r i c

l e t $nrv := i f (empty ($ l y r / @number)) t h e n 1

e l s e xs : i n t e g e r (max ($ l y r / @number))

f o r $cu r i n (1 t o $nrv)

l e t $ve r := $ l y r [i f ($nrv g t 1) t h e n

436

ISMIR 2008 – Session 4a – Data Exchange, Archiving and Evaluation

@number = $cu r e l s e t r u e ()] / t e x t

l e t $s := s t r i n g −j o i n (

f o r $ s y l i n $ve r r e t u r n c o n c a t ($ s y l / t e x t () ,

i f ($ s y l / . . / s y l l a b i c = (’ begin ’ , ’ middle ’))

t h e n ’ ’ e l s e ’ ’) , ’ ’)

r e t u r n

< l y r i c >{ a t t r i b u t e {” v e r s e ”}{ $cu r }}{ $s}
</ l y r i c > [n o t (empty ($ l y r))]

} </ song>
} </ l i b r a r y >

3.3 Querying musical structure

Finding all occurrences of a single rhythmic or melodic mo-

tive, or a chord sequence, is a basic task when making a

music theoretical analysis of a piece of music. In the next

example, we work on the score of the ’Blue Danube’ (’An

der schönen blauen Donau’), the well-known waltz by Jo-

hann Strauss jr. The code in Listing 14 extracts all occur-

rences of the rhythmic pattern consisting of three notes of

the same length followed by a note that is 3 times as long as

the previous ones. This allows not only to find the pattern

of 3 quarters followed by a dotted half note, but also faster

or slower occurrences of the same rhythm - the comparison

is based on relative duration values. This specific code ex-

ample requires that all notes appear next to each other and

in the same voice. The returned value indicates the position

where the motive can be found. By simply removing the se-

lection of a specific song, we can search the whole database

for the specified motive.

Listing 14. Finding a rhytmic motive in a single song.
l e t $bd := doc (” wfdb . xml ”) / / s c o r e−p a r t w i s e

[movement− t i t l e = ’ Blue Danube ’]

l e t $ n o t e s := $bd / / n o t e

f o r $ i i n (0 t o c o u n t ($ n o t e s))

l e t $s := s u b s e q u e n c e ($n o te s , $ i , 4)

(: now s e l e c t t h o s e s u b s e q u e n c e s wi th t h e

l a s t n o t e d u r a t i o n b e i n g 3 t i m e s t h a t o f

t h e p r e v i o u s ones :)

l e t $ d u r s := $s / d u r a t i o n

l e t $ v o i c := d i s t i n c t −v a l u e s ($s / v o i c e)

where c o u n t ($s / r e s t) = 0

and c o u n t ($ v o i c) = (0 , 1)

(: ’= ’ computes an i n t e r s e c t i o n ,

whereas ’ eq ’ compares s i n g l e v a l u e s :)

and $ d u r s [1] / t e x t () eq $ d u r s [2] / t e x t ()

and $ d u r s [2] / t e x t () eq $ d u r s [3] / t e x t ()

and number ($ d u r s [4]) eq number ($ d u r s [1]) ∗ 3

r e t u r n

<motive>
<measure−s t a r t >{$s [1] / . . / @number / s t r i n g () }

</measure−s t a r t >
<note−s t a r t >{index−of ($s [1] / . . / no te , $s [1]) }

</ no te−s t a r t >
</ mot ive>

In [4] an XQuery function is presented that calculates

MIDI pitch values of notes. The where clause in Listing

14 can be replaced by the code in Listing 15 which uses

the aforementioned function. This example searches for the

melodic motive of a large triad, followed by repetition of

the last note. The triad can begin at any pitch, since only the

intervals are taken into account.

Listing 15. Code Excerpt: Finding a melodic motive.
l e t $ p i t s := $s / p i t c h (: a l l p i t c h v a l u e s :)

where c o u n t ($s / r e s t) = 0 (: no r e s t s :)

and c o u n t ($ v o i c) = (0 , 1)

and c o u n t ($ p i t s) = 4

and MidiNote ($ p i t s [1]) +4 eq MidiNote ($ p i t s [2])

and MidiNote ($ p i t s [2]) +3 eq MidiNote ($ p i t s [3])

and MidiNote ($ p i t s [3]) eq MidiNote ($ p i t s [4])

In [5] is pointed out that the generation of permutations

of a sequence is of importance in certain music analysis

tasks. A function can be written to generate all permuta-

tions of a sequence: XQuery allows defining recursive func-

tions. But since permutation generation has a time com-

plexity of order O(n!), this is only usable on a very small

scale. Also, when considering all possible permutations of

a chord, transpositions need to be eliminated: this can be

accomplished by calculating pitch values modulo 12.

4 FUTURE WORK

Musicological analysis is much more than just finding mo-

tives. The creation of an XQuery function database, a ’tool-

box’ for often used analysis tasks is one of the several practi-

cal projects that could (and, we think, needs) be undertaken

to further automate large-scale analysis. An example of a

practical tool that can be made available to the public is a

web interface on top of the code presented here. This is not

difficult to accomplish, since most XML database systems

can be run as database back-end.

Of special interest are also regular expressions, the main

power of the HumDrum toolkit [13]. The standard UNIX

tools that it uses provide advanced regular expression pro-

cessing on plain text files, but implementing this function-

ality in Xquery for XML files might be tricky - though it is

theoretically possible.

Beyond merely statistical and structural analysis lies the

domain of data mining. Here we try to isolate those patterns

in the database that occur often, without having to define

a specific pattern first. The Apriori algorithm [20] used to

mine association rules in transactional databases has been

translated to XQuery by Wan and Dobbie [21], and could

be applied to a MusicXML database to search for structures

that often appear together.

437

ISMIR 2008 – Session 4a – Data Exchange, Archiving and Evaluation

5 CONCLUSION

In this work we have shown the feasibility of using XQuery

to mine a repository of music scores. We gave several ex-

amples of simple queries that can be run on a MusicXML

database. They can form the basis for more complex queries.

The strength of the XQuery language, the scalability of XML

databases, the growing software support for the MusicXML

format, combined with an increasing availability of digital

scores, enable powerful musicological analysis with only a

few lines of code. Awareness of the possibilities is an impor-

tant factor in getting these XML-based technologies further

developed. They allow musicologists, musicians, and the

occasional music hobbyist to extract more significant infor-

mation from an ever growing set of available scores in a very

accessible way.

6 REFERENCES

[1] Recordare LLC, “MusicXML definition, version 2.0,”

Available at http://www.recordare.com/xml.html, ac-

cessed April 1, 2008.

[2] Michael Good, “Representing music using XML,” in

Proc. 1st International Symposium on Music Informa-
tion Retrieval (ISMIR 2000), Plymouth, Massachusetts,

USA, Oct. 23-25 2000.

[3] Michael Good, “Lessons from the adoption of Mu-

sicXML as an interchange standard,” in Proc. XML
2006 Conference, Boston, Massachusetts, USA, Dec. 5-

7 2006.

[4] Michael Good, “MusicXML in practice: issues in trans-

lation and analysis,” in Proc. 1st International Confer-
ence on Musical Applications Using XML (MAX 2002),
Milan, Italy, Sept. 19-20 2002, pp. 47–54.

[5] Raffaele Viglianti, “MusicXML: An XML based ap-

proach to automatic musicological analysis,” in Confer-
ence Abstracts of the Digital Humanities 2007 confer-
ence, Urbana-Champaign, Illinois, USA, Jun. 4-8 2007,

pp. 235–237.

[6] Stephan Kepser, “A simple proof for the turing-

completeness of XSLT and XQuery.,” in Proceedings
of the Extreme Markup Languages 2004 Conference,

Montréal, Quebec, Canada, Aug. 2-6 2004.

[7] World Wide Web Consortium (W3C), “XQuery

1.0: An XML Query Language - W3C Rec-

ommendation 23 January 2007,” Available at

http://www.w3.org/TR/xquery/, accessed April 1,

2008.

[8] The Galax Team, “Galax,” Available at

http://www.galaxquery.org/, accessed April 1, 2008.

[9] Wolfgang Meier and contributors, “eXist - open

source native XML database,” Available at

http://exist.sourceforge.net/, accessed April 1, 2008.

[10] Modis Team, “Sedna,” Available at

http://www.modis.ispras.ru/sedna, accessed March

31, 2008.

[11] Oracle Corporation, “Oracle Berke-

ley DB XML,” Available at

http://www.oracle.com/technology/products/berkeley-

db/xml/index.html, accessed June 19, 2008.

[12] Craig Stuart Sapp, “Online database of scores in the

Humdrum file format,” in Proc. 6th International Con-
ference on Music Information Retrieval (ISMIR 2005),
London, UK, Sept. 11-15 2005, pp. 664–665.

[13] David Huron, “Music information processing using the

Humdrum toolkit: Concepts, examples, and lessons,”

Computer Music Journal, vol. 26, no. 2, pp. 11–26,

2002.

[14] Chris Sawer and David Chan, “Mutopia,” Available at

http://www.mutopiaproject.org/, accessed April 1, 2008.

[15] Han-Wen Nienhuys, Jan Nieuwenhuizen, and contribu-

tors, “GNU Lilypond,” Available at http://lilypond.org/,

accessed April 1, 2008.

[16] Wikifonia Foundation, “Wikifonia,” Available at

http://www.wikifonia.org/, accessed April 1, 2008.

[17] Philip Wheatland, “MelodicMatch music analysis soft-

ware,” Available at http://www.melodicmatch.com/, ac-

cessed June 19, 2008.

[18] Steve Carter, “THoTH,” Available at

http://www.frogstoryrecords.com/dev/thoth, accessed

June 19, 2008.

[19] World Wide Web Consortium (W3C), “XML Path Lan-

guage (XPath) 2.0 - W3C Recommendation 23 January

2007,” Available at http://www.w3.org/TR/xpath20/, ac-

cessed April 1, 2008.

[20] R. Agrawal and R. Srikant, “Fast algorithms for mining

association rules in large databases,” in Proc. 20th Inter-
national Conference on Very Large Data Bases, Santi-

ago, Chile, Sept. 12-15 1994, pp. 487–499.

[21] Jacky W. W. Wan and Gillian Dobbie, “Extracting as-

sociation rules from XML documents using XQuery,”

in Proc. 5th ACM international workshop on Web infor-
mation and data management, New Orleans, Louisiana,

USA, Nov. 7-8 2003, pp. 94–97.

438

