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ABSTRACT

This paper presents a technique of disambiguation for chord

recognition based on a-priori knowledge of probabilities of

chord voicings in the specific musical medium. The main

motivating example is guitar chord recognition, where the

physical layout and structure of the instrument, along with

human physical and temporal constraints, make certain chord

voicings and chord sequences more likely than others. Pitch

classes are first extracted using the Pitch Class Profile (PCP)

technique, and chords are then recognized using Artificial

Neural Networks. The chord information is then analyzed

using an array of voicing vectors (VV) indicating likelihood

for chord voicings based on constraints of the instrument.

Chord sequence analysis is used to reinforce accuracy of in-

dividual chord estimations. The specific notes of the chord

are then inferred by combining the chord information and

the best estimated voicing of the chord.

1 INTRODUCTION

Automatic chord recognition has been receiving increasing

attention in the musical information retrieval community,

and many systems have been proposed to address this prob-

lem, the majority of which combine signal processing at the

low level and machine learning methods at the high level.

The goal of a chord recognition system may also be low-

level (identify the chord structure at a specific point in the

music) or high level (given the chord progression, predict

the next chord in a sequence).

1.1 Background

Sheh and Ellis [6] claim that by making a direct analogy

between the sequences of discrete, non-overlapping chord

symbols used to describe a piece of music and word se-

quence used to describe speech, much of the speech recog-

nition framework in which hidden Markov Models are pop-

ular can be used with minimal modification. To represent

the features of a chord, they use Pitch Class Profile (PCP)

vectors (discussed in Section 1.2) to emphasize the tonal

content of the signal, and they show that PCP vectors outper-

formed cepstral coefficients which are widely used in speech

recognition. To recognize the sequence, hidden Markov Mod-

els (HMMs) directly analogous to sub-word models in a

speech recognizer are used, and trained by the Expectation

Maximization algorithm. Bello and Pickens [1] propose a

method for semantically describing harmonic content di-

rectly from music signals. Their system yields the Major

and Minor triads of a song as a function of beats. They

also use PCP as the feature vectors and HMMs as the classi-

fier. They incorporate musical knowledge in initializing the

HMM parameters before training, and in the training pro-

cess. Lee and Slaney [5] build a separate hidden Markov

model for each key of the 24 Major/Minor keys. When

the feature vectors of a musical piece are presented to the

24 models, the model that has the highest possibility rep-

resents the key to that musical piece. The Viterbi algo-

rithm is then used to calculate the sequence of the hidden

states, i.e. the chord sequence. They adopt a 6-dimensional

feature vector called the Tonal Centroid [4] to detect har-

monic changes in musical audio. Gagnon et al [2] pro-

pose an Automatic Neural Network based pre-classification

approach to allow a focused search in the chord recogni-

tion stage. The specific case of the 6-string standard gui-

tar is considered. The feature vectors they use are calcu-

lated from the Barkhausen Critical Bands Frequency Dis-

tribution. They report an overall performance of 94.96%

accuracy, however, a fatal drawback of their method is that

both the training and test samples are synthetic chords con-

sisting of 12 harmonic sinusoids for each note, lacking the

noise and the variation caused by the vibration of the strings

where partials might not be in the exact multiple of their fun-

damental frequencies. Yoshioka et al [7] point out that there

exists mutual dependency between chord boundary detec-

tion and chord symbol identification: it’s difficult to detect

the chord boundaries correctly prior to knowing the chord;

and it’s also difficult to identify the chord name before the

chord boundary is determined. To solve this mutual de-

pendency problem, they propose a method that recognizes

chord boundaries and chord symbols concurrently. PCP vec-

tor is used to represent the feature. When a new beat time

is examined (Goto’s[3] method is used to obtain the beat

times), the hypotheses (possible chord sequence cadidate)

are updated.
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1.2 Pitch Class Profile (PCP) Vector

A musical note can be characterized as having a global pitch,

identified with a note name and an octave (e.g. C4) or a pitch

color or pitch class, identified only by the note name inde-

pendent of octave. The pitch class profile (PCP) technique

detects the color of a chord based on the relative content of

pitch classes. PCP begins from a frequency representation,

for example the Fourier transform, then maps the frequency

components into the 12 pitch classes. After the frequency

components have been calculated, we get the corresponding

notes of each frequency component and find its correspond-

ing pitch class.

2 CHORD ANALYSIS

Our approach deviates from the approaches presented in Sec-

tion 1 in several key areas. The use of voicing constraints

(described below) is the primary difference, but our low-

level analysis is also somewhat different from current work.

First, current techniques will often combine PCP with Hid-

den Markov Models. Our aproach analyzes the PCP vector

using Neural Networks, using a viterbi algorithm to model

chord sequences in time. Second, current techniques nor-

mally use window sizes on the order of 1024 samples (23.22

ms). Our technique uses comparatively large window sizes

(22050 samples, 500ms). Unlike Gagnon, Larouche and

Lefebvre [2], who use synthetic chords to train the network,

we use real recordings of chords played on a guitar. Al-

though the constraints and system development are based

on guitar music, similar constraints (with different values)

may be determined for other ensemble music.

2.1 Large Window Segmentation

Guitar music varies widely, but common popular guitar mu-

sic maintains a tempo of 80–120 beats per minute. Because

chord changes typically happen on the beat or on beat frac-

tions, the time between chord onsets is typically 600–750

ms. Segmenting guitar chords is not a difficult problem,

since the onset energy is large compared to the release en-

ergy of the previous chord, but experimentation has shown

that 500ms frames provide sufficient accuracy when applied

to guitar chords for a number of reasons. First, if a chord

change happens near a frame boundary, the chord will be

correctly detected because the majority of the frame is a sin-

gle pitch class profile. If the chord change happens in the

middle of the frame, the chord will be incorrectly identified

because contributions from the previous chord will contam-

inate the reading. However, if sufficient overlap between

frames is employed (e.g. 75%), then only one in four chord

readings will be inaccurate, and the chord sequence recti-

fier (see Section 2.3) will take care of the erroneous mea-

sure: based on the confidence level of chord recognition and

changes in analyzed feature vectors from one frame to the

next, the rectifier will select the second-most-likely chord if

it fits better with the sequence.

The advantages of the large window size are the accu-

racy of the pitch class profile analysis, and, combined with

the chord sequence rectifier, outweigh the drawbacks of in-

correct analysis when a chord boundary is in the middle of

a frame. The disadvantage of such a large window is that it

makes real-time processing impossible. At best, the system

will be able to provide a result half a second after a note is

played. Offline processing speed will not be affected, how-

ever, and will be comparable to other frame sizes. In our

experience, real-time guitar chord detection is not a prob-

lem for which there are many real-world applications.

2.2 PCP with Neural Networks

We have employed an Artificial Neural Network to analyze

and characterize the pitch class profile vector and detect the

corresponding chord. A network was first constructed to

recognize seven common chords for music in the keys of C

and G, for which the target chord classes are [C, Dm, Em, F,
G, Am, D]). These chords were chosen as common chords

for “easy” guitar songs. The network architecture was set

up in the following manner: 1 12-cell input layer, 2 10-cell

hidden layers, and 1 7-cell output layer. With the encourag-

ing results from this initial problem (described in Section 4),

the vocabulary of the system was expanded to Major (I, III,

V), Minor (I, iii, V) and Seventh (I, III, V, vii) chords in the

seven natural-root(�) keys (C, D, E, F, G, A, B), totaling 21

chords. Full results are presented in Section 4.

A full set of 36 chords (Major, Minor and Seventh for all

12 keys) was not implemented, and we did not include fur-

ther chord patterns (Sixths, Ninths etc.). Although the ex-

pansion from seven chords to 21 chords gives us confidence

that our system scales well, additional chords and chord pat-

terns will require further scrutiny. With the multitude of

complex and colorful chords available, it is unclear whether

it is possible to have a “complete” chord recognition system

which uses specific chords as recognition targets, however a

limit of 4-note chords would provide a reasonably complete

and functional system.

2.3 Chord Sequence Rectification

Isolated chord recognition does not take into account the

correlation between subsequent chords in a sequence. Given

a recognized chord, the likelihood of a subsequent frame

having the same chord is increased. Based on such informa-

tion, we can create a sequence rectifier which corrects some

of the isolated recognition errors in a sequence of chords.

For each frame, the neural network gives a rank list of the

possible chord candidates. From there, we estimate the chord

transition possibilities for each scale pair of Major and rel-
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ative Minor through a large musical database. The Neural

Network classification result is provided in the S matrix of

size N × T , where N is the size of the chord dictionary and

T is the number of frames. Each column gives the chord

candidates with ranking values for each frame. The first row

of the matrix contains the highest-ranking individual candi-

dates, which, in our experience, are mostly correct identi-

fications by the neural network. Based on the chords thus

recognized, we calculate the most likely key for the piece.

For the estimated key we develop the chord transition proba-

bility matrix A of size N×N . Finally, we calculate the best

sequence fom S and A using the Viterbi Algorithm, which

may result in a small number of chord estimations being re-

vised to the second or third row result of S.

2.4 Voicing Constraints

Many chord recognition systems assume a generic chord

structure with any note combination as a potential match,

or assume a chord “chromaticity,” assuming all chords of

a specific root and color are the same chord, as described

above. For example, a system allowing any chord combina-

tion would identify [C-E-G] as a C Major triad, but would

identify a unique C Major triad depending on whether the

first note was middle C (C4)or C above middle C (C5). On

the other hand, a system using chromaticity would identify

[C4-E4-G4] as identical to [E4-G4-C5], the first voicing 1

of a C Major triad. Allowing any combination of notes pro-

vides too many similar categories which are difficult to dis-

ambiguate, and allowing a single category for all versions

of a chord does not provide complete information. What is

necessary, then, is a compromise which takes into account

statistical, musical, and physical constraints for chords.

The goal of our system is to constrain the available chords

to the common voicings available to a specific instrument or

set of instruments. The experiments that follow concentrate

on guitar chords, but the technique would be equally appli-

cable to any instrument or ensemble where there are specific

constraints on each note-production component. As an ex-

ample, consider a SATB choir, with standard typical note

ranges, e.g. Soprano from C4 to C6. Key, musical context,

voice constraints and compositional practice means that cer-

tain voicings may be more common. It is common compo-

sitional practice, for example, to have the Bass singing the

root (I), Tenor singing the fifth (V), Alto singing the major

third (III) and Soprano doubling the root (I).

This a-priori knowledge can be combined with statisti-

cal likelihood based on measurement to create a bayesian-

type analysis resulting in greater classification accuracy us-

ing fewer classification categories. A similar analysis can be

performed on any well-constrained ensemble, for example a

string quartet, and on any single instrument with multiple

1 A voicing is a chord form where the root is somewhere other than the

lowest note of the chord

variable sound sources, for example a guitar. At first, the

Piano does not seem to benefit from this method, since any

combination of notes is possible, and likelihoods are ini-

tially equal. However, if one considers musical expectation

or human physiology (hand-span, for example), then similar

voicing constraints may be applied.

One can argue that knowledge of the ensemble may not

be reasonable a priori information—will we really know if

the music is being played by a wind ensemble or a choir?

The assumption of a specific ensemble is a limiting factor,

but is not unreasonable: timbre analysis methods can be ap-

plied to detect whether or not the music is being played by

an ensemble known to the system, and if not, PCP com-

bined with Neural Networks can provide a reasonable chord

approximation without voicing or specific note information.

For a chord played by a standard 6-string guitar, we are

interested in two features: what chord is it and what voicing

of that chord is it 2 . The PCP vector describes the chro-

maticity of a chord, hence it does not give any information

on specific pitches present in the chord. Given knowledge

of the relationships between the guitar strings, however, the

voicings can be inferred based the voicing vectors (VV) in

a certain category. VVs are produced by studying and ana-

lyzing the physical, musical and statistical constraints on an

ensemble. The process was performed manually for the gui-

tar chord recognition system but could be automated based

on large annotated musical databases.

Thus the problem can be divided into two steps: deter-

mine the category of the chord, then determine the voicing.

Chord category is determined using the PCP vector com-

bined with Artificial Neural Networks, as described above.

Chord voicings are determined by matching harmonic par-

tials in the original waveform to a set of context-sensitive

templates.

3 GUITAR CHORD RECOGNITION SYSTEM

The general chord recognition ideas presented above have

been implemented here for guitar chords. Figure 1 provides

a flowchart for the system. The feature extractor provides

two feature vectors: a PCP vector which is fed to the input

layer of the neural net, and an voicing vector which is fed to

the voicing detector.

Table 1 gives an example of the set of chord voicing ar-

rays and the way they are used for analysis. The fundamen-

tal frequency (f0) of the root note is presented along with

the f0 for higher strings as multiples of the root f0.

The Guitar has a note range from E2 (82.41Hz, open low

string) to C6 (1046.5Hz, 20th fret on the highest string).

Guitar chords that is above the 10th fret (D) are rare, thus

we can restrict the chord position to be lower than the 10th

2 Although different voicings are available on guitar, a reasonable as-

sumption is that they are augmented with a root bass on the lowest string

35



ISMIR 2008 – Session 1a – Harmony

Figure 1. Flowchart for the chord recognition system.

fret, that is, the highest note would be 10th fret on the top

string, i.e. D5, with a frequency of 587.3Hz. Thus if we

only consider the frequency components lower than 600Hz,

the effect of the high harmonic partials would be eliminated.

Each chord entry in Table 1 provides both the frequen-

cies and first harmonics of each note. “Standard” chords

such as Major, Minor and Seventh, contain notes for which

f0 is equal to the frequency of harmonic partials of lower

notes, providing consonance and a sense of harmonic rela-

tionship. This is often be seen as a liability, since complete

harmonic series are obscured by overlap from harmonically

related notes, but our system takes advantage of this by ob-

serving that a specific pattern of harmonic partials equates

directly to a specific chord voicing. Table 1 shows this by

detailing the pattern of string frequencies and first harmonic

partials. First harmonic partials above G6 are ignored since

they will not interact with higher notes. Harmonic partials

above 600Hz are ignored, since there is no possibility to

overlap the fundamental frequency of higher notes (as de-

scribed above). These are indicated by the symbol “ø”. In

this way, we construct a pattern of components that are ex-

pected to be present in a specific chord as played on the

guitar. A string that is not played in the chord is indicated

by “–”. Boxes and underlines are detailed below. Table 2

shows the same information for voicings of a single chord

in three different positions, showing how these chords can

be disambiguated.

Chord S1 S2 S3 S4 S5 S6

f0 (Hz) H1 H2 H3 H4 H5 H6

F 1 1.5 2 2.52 3 4

87.31 2 3 4 ø ø ø

Fm 1 1.5 2 2.38 3 4

87.31 2 3 4 ø ø ø

F7 1 1.5 1.78 2.52 3 4

87.31 2 3 3.56 ø ø ø

G 1 1.26 1.5 2 2.52 4

98 2 2.52 3 4 ø ø

Gm 1 1.19 1.5 2 3 4

98 2 2.38 3 4 ø ø

G7 1 1.26 1.5 2 2.52 3.56

98 2 2.52 ø ø ø ø

A – 1 1.5 2 2.52 3

110 – 2 3 ø ø ø

Am – 1 1.5 2 2.38 3

110 – 2 3 ø ø ø

A7 – 1 1.5 1.78 2.52 3

110 – 2 3 ø ø ø

C – 1 1.26 1.5 2 2.52

130.8 – 2 2.52 ø ø ø

Cm – 1 1.19 1.5 2 –

130.8 – 2 ø ø ø –

C7 – 1 1.26 1.78 2 2.52

130.8 – 2 2.52 ø ø ø

D – – 1 1.5 2 2.52

146.8 – – 2 ø ø ø

Dm – – 1 1.5 2 2.38

146.8 – – 2 ø ø ø

D7 – – 1 1.5 1.78 2.52

146.8 – – 2 ø ø ø

Table 1. Chord pattern array, including three forms of five

of the natural-root chords in their first positions. S1–S6 are

the relative f0 of the notes from the lowest to highest string,

and H1–H6 are the first harmonic partial of those notes. See

text for further explanation of boxes and symbols.

Chord S1 S2 S3 S4 S5 S6

f0 (Hz) H1 H2 H3 H4 H5 H6

G 1 1.26 1.5 2 2.52 4

98 2 2.52 3 4 ø ø

G(3) 1 1.5 2 2.52 3 4

98 2 3 4 ø ø ø

G(10) – 1 1.5 2 2.52 3

196.0 – 2 3 ø ø ø

Table 2. Voicing array for the Gmaj chords played on dif-

ferent positions on the guitar.
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3.1 Harmonic Coefficients and Exceptions

It can be seen from Table 1 that there are three main cate-

gories of chords on the guitar, based on the frequency of the

second note in the chord. The patterns for the three cate-

gories are: (1.5), where the second note is (V): F, Fm, F7,
E, Em, E7, A, Am, A7, B, Bm, D, Dm, D7; (1.26), where the

second note is (III): B7, C7, G, G7; and (1.19), where the

second note is (iii): Cm, Gm.

Thus, from the first coefficient (the ratio of the first har-

monic peak to the second) we can identify which group a

certain chord belongs to. After identifying the group, we

can use other coefficients to distinguish the particular chord.

In some situations (e.g., F and E; A and B ), the coefficients

are identical for all notes in the chord, thus they cannot be

distinguished in this manner. Here, the chord result will be

disambiguated based on the result of the Neural Network

and the f0 analysis of the root note. Usually, all first har-

monic partials line up with f0 of higher notes in the chord.

When the first harmonic falls between f0 of higher notes in

the chord, they are indicated by boxed coefficients.

Underlined coefficients correspond to values which may

be used in the unique identification of chords. In these cases,

there are common notes within a generic chord pattern, for

example the root (1) and the fifth (1.5). String frequen-

cies corresponding to the Minor Third (1.19, 2.38) and Mi-

nor Seventh (2.78) are the single unique identifiers between

chord categories in many cases.

4 RESULTS

Chord detection errors do not all have the same level of

“severity”. A C chord may be recognized as an Am chord

(the relative Minor), since many of the harmonic partials are

the same and they share two notes. In many musical situa-

tions, although the Am chord is incorrect, it will not produce

dissonance if played with a C chord. Mistaking an C chord

for a Cm chord, however, is a significant problem. Although

the chords again differ only by one note, the note in question

is more harmonically relevant and differs in more harmonic

partials. Further, it establishes the mode of the scale being

used, and, if played at the same time as the opposing mode,

will produce dissonance.

4.1 Chord Pickout

Chord Pickout 3 is a popular off-the-shelf chord recognition

system. Although the algorithm used in the Chord Pick-
out system is not described in detail by the authors, it is

reasonable to compare with our system since Chord Pick-

out is a commercial system with good reviews. We applied

the same recordings to both systems and identified the ac-

curacy of each system. We were more forgiving with the

3 http://www.chordpickout.com

analysis for Chord Pickout in order to better detail the types

of errors that were made. If Chord Pickout was able to

identify the root of the chord, ignoring Major, Minor or

Seventh, it is described as “correct root.” If the chord and

the chord type are both correct, it is described as “correct

chord.” Errors between correct root and correct chord in-

cluded Major→Minor, Major→Seventh, and Minor→Major.

For our system, all chord errors regardless of severity, are

considered incorrect. The complete results for 6 trials are

presented in Table 3.

4.2 Independent accuracy trials

To detect the overall accuracy of our system, independent

of a comparison with another system, we presented a set

of 40 chords of each type to the system and evaluated its

recognition accuracy. Two systems were trained for specific

subsets of chord detection.

The first system was trained to detect chords in the a sin-

gle key only assuming key recognition has already taken

place. Seven chord varieties are available as classification

targets, and the system performed well, producing 96.8%

accuracy over all trials. Misclassifications were normally

toward adjacent chords in the scale.

The second system was trained to recognized Major, Mi-

nor and Seventh chords of all seven natural-root keys, result-

ing in 21 chord classification targets. This system produced

good results: 89% for Major versus Minor, and 75% accu-

racy for Major versus Seventh chords. Table 4 provides a

confusion matrix between single-instance classification of

Major and Seventh chords, which had the lower recogni-

tion rate. There are two reasons for this: in some cases

the first three notes (and correspondingly the first three har-

monic partials detected) are the same between a chord and

its corresponding Seventh; and in some cases the first har-

monic of the root note does not line up with an octave and

thus contributes to the confusion of the algorithm. Recogni-

tion accuracy is highest when only the first two notes are the

same (as in C and G chords). Recognition accuracy is low in

the case of F7,when the root is not doubled, and the pattern

can be confused with both the corresponding Major chord

and the adjacent Seventh chord. Recognition accuracy is

also low in the case of G7, where the difference between the

Major and the Seventh is in the third octave, at 3.56 times the

fundamental of the chord. In this case, the Seventh chord is

frequently mistaken for the Major chord, which can be con-

sidered a less “severe” error since the Seventh chord is not

musically dissonant with the Major chord.

A more severe case is with D7, which contains only 4

sounded strings, one of which produces a harmonic that

does not correspond to a higher played string. From Ta-

ble 1, we can see that the string frequency pattern for D7 is

[1, 1.5, 1.78, 2.25], and the first harmonic partial of the root

note inserts a 2 into the sequence, producing [1, 1.5, 1.78,
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Voicing Constraints Chord Pickout

Trial Frames Correct Rate Correct Root Rate Correct Chord Rate

1 24 23 95.8% 20 83.3% 1 5.0%

2 46 44 95.6% 30 65.2% 12 26.1%

3 59 54 91.5% 38 64.4% 7 11.9%

4 50 49 98.0% 31 62.0% 30 60.0%

5 65 51 78.4% 51 78.4% 21 32.3%

Table 3. Comparison of our system to Chord Pickout, an off-the-shelf chord recognition system.

Chord Rate C C7 D D7 E E7 F F7 G G7 A A7

C 40/40 40

C7 35/40 35 2 2 1

D 40/40 40

D7 13/40 1 13 1 3 20 2

E 40/40 40

E7 37/40 37 3

F 38/40 1 1 38

F7 5/40 3 16 16 5

G 40/40 40

G7 17/40 2 21 17

A 30/40 1 8 30 1

A7 25/40 5 2 8 25

Table 4. Confusion Matrix for Major and Seventh chords of natural-root keys. Overall accuracy is 75%.

2, 2.25]. This is very similar to the sequence for F7, which

is why the patterns are confused. It would be beneficial, in

this case, to increase the weight ascribed to the fundamen-

tal frequency when the number of strings played is small.

Unfortunately, detecting the number of sounded strings in a

chord is a difficult task. Instead, f0 disambiguation can be

applied when a chord with fewer strings is one of the top

candidates from the table, since that information is known.

5 CONCLUSIONS

A chord detection system is presented which makes use of

voicing constraints to increase accuracy of chord and chord

sequence identification. Although the system is developed

for guitar chords specifically, similar analysis could be per-

formed to apply these techniques to other constrained en-

sembles such as choirs or string, wind, or brass ensembles,

where specific chords are more likely to appear in a particu-

lar voicing given the constraints of the group.
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