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Nicola Orio, Antonio Rodà . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 543
Modeling Harmonic Similarity Using a Generative Grammar of Tonal Harmony

W. Bas de Haas, Martin Rohrmeier, Remco C. Veltkamp, Frans Wiering . . . . . . . . . . . . . 549
Symbolic and Structrual Representation of Melodic Expression

Christopher Raphael . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 555
Use of Hidden Markov Models and Factored Language Models for Automatic Chord Recognition

Maksim Khadkevich, Maurizio Omologo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 561
Auditory Spectral Summarisation for Audio Signals with Musical Applications

Sam Ferguson, Densil Cabrera . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 567
Cover Song Retrieval: A Comparative Study of System Component Choices

Cynthia C. S. Liem, Alan Hanjalic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Poster Session 4 579
Augmenting Text-Based Music Retrieval with Audio Similarity

Peter Knees, Tim Pohle, Markus Schedl, Dominik Schnitzer, Klaus Seyerlehner, Gerhard Widmer 579
Improving Accuracy of Polyphonic Music-to-Score Alignment

Bernhard Niedermayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585
Formalizing Invariances for Content-Based Music Retrieval

Kjell Lemström, Geraint A. Wiggins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 591
Calculating Similarity of Folk Song Variants with Melody-Based Features

Ciril Bohak, Matija Marolt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
Automatic Generation of Lead Sheets from Polyphonic Music Signals
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General Chairs’ Preface 

 
We would like to welcome all participants to Kobe, Japan for the 10th International Society for Music In-

formation Retrieval Conference (ISMIR 2009). ISMIR has grown continuously and rapidly in the past 10 
years. Starting off as the International Symposium on Music Information Retrieval in Plymouth, USA (2000) 
and in Bloomington, USA (2001), it was renamed the International Conference on Music Information Retriev-
al in Paris, France (2002). Since then, six successful conferences have been held in Baltimore, USA (2003), 
Barcelona, Spain (2004), London, UK (2005), Victoria, Canada (2006), Vienna, Austria (2007), and Philadel-
phia, USA (2008). Until now, the nine previous conferences have been held in either American or European 
countries. We are proud to host the first ISMIR in Asia, and are pleased to be able to commemorate the 10th 
anniversary conference in the international history of ISMIR. Furthermore, ISMIR 2009 is the first conference 
to take place after the official birth of the “International Society for Music Information Retrieval” (ISMIR) on 
4 July 2008. Starting this year, our annual conference is called the International Society for Music Information 
Retrieval Conference (also, ISMIR). 

The motto of ISMIR 2009 is “Celebrating the 10th Anniversary: Increasing Diversity and Toward the Fu-
ture.” With the recent rapid growth of ISMIR conferences and the expansion of the music information retriev-
al (MIR) community, MIR participants may no longer consider MIR strictly as “music information retrieval,” 
but rather consider more broadly as “music information research.” Correspondingly, MIR also draws consi-
derable attention from other research and application fields. ISMIR therefore aims to open new horizons for 
the exchange and discussion of ideas, issues, results, and perspectives for people of diverse backgrounds. Re-
searchers, developers, educators, librarians, students, and professional users from academia, industry, enter-
tainment, and education all benefit from the diversity of ISMIR. Looking toward the future, such diversity will 
certainly be increased further. 

The conference will take place at the Kobe International Conference Center in Kobe, Japan on 26–30 Oc-
tober 2009 (Monday through Friday). The packed conference program starts on Monday with four tutorials 
providing in-depth coverage of timely, hot topics such as large-scale data on the Web, the Social Web, music 
discovery based on visualization, and the Semantic Web. As in previous years, the program continues with 
scientific presentations during three full days and a half day. This year the conference features two keynote 
presentations. The first keynote, Ten Years of ISMIR: Reflections on Challenges and Opportunities, by J. Ste-
phen Downie, Donald Byrd, and Tim Crawford on Tuesday morning will introduce the 10-year history of 
ISMIR and provide thoughtful discussions for the future, which will be a great opening for this 10th anniver-
sary. The second keynote, Wind Instrument-Playing Humanoid Robots, by Atsuo Takanishi on Thursday 
morning will introduce humanoid robots that can perform musical instruments, which will reflect Japan’s 
strength in and fascination with the robotic entertainment and industry. The conference this year will also fea-
ture an industrial panel discussion by practitioners from companies using MIR techniques, such as The Echo 
Nest, Microsoft Corporation, Last.fm, Barcelona Music and Audio Technologies (BMAT), Gracenote, KDDI 
R&D Laboratories, NTT Communication Science Laboratories, and Yahoo! Research. 
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 Gold sponsor Silver sponsor Bronze sponsor 

Donation 500,000JPY or 5,000USD 300,000JPY or 3,000USD 100,000JPY or 1,000USD

Exhibition space Exhibition space during demonstration session 

Logo on conference banner Large and prominent Medium Small 

Logo on conference program Half page Quarter page Eighth page 

Logo on printed proceedings Large and separated Medium and separated Small 

Complimentary registrations Two One None 

We shall also carry on two fine traditions of previous ISMIR conferences. For five consecutive years, panel 
and poster sessions for the annual Music Information Retrieval Evaluation eXchange (MIREX) have taken 
place. This year these events will take place on Wednesday afternoon. Ever since the Audio Description Con-
test (ADC) in Barcelona in 2004 followed by MIREXs, they serve as the standard community-based frame-
work for the formal evaluation of algorithms and techniques related to MIR. For the second consecutive year, 
a late-breaking/demo session without peer review will be held on Friday morning to present preliminary re-
sults and ideas and to demonstrate MIR applications. 

There will be several new planned activities in addition to being the first Asian ISMIR and society-based 
conference. The first Annual General Meeting of the International Society for Music Information Retrieval 
will be held on Thursday afternoon before the banquet. The ISMIR Board of Directors will be elected during 
this meeting. In addition, the first Workshop on the Future of MIR (f(MIR)) will be held as a special session 
on Friday morning. This session was proposed and organized only by students and its goal is to discuss what 
MIR research might be like in 10, 20, or even 50 years. Four oral and two poster presentations were selected 
through a separate student-run review process independently of the regular ISMIR peer-review process. 

This is also the first time that the conference sponsorship program was officially designed at three different 
levels indicated in the table above. A special word of thanks goes to seven corporate sponsors: Sun Microsys-
tems and Gracenote (Gold sponsors), Yamaha Corporation (Silver sponsor), and KDDI R&D Laboratories, 
Sony Corporation, KORG Inc., and ProQuest (Bronze sponsors). A part of Sun Microsystems’ sponsorship is 
used for the “Sun Microsystems Student Travel Award” to assist students with travel to ISMIR 2009. The 
General Chairs of ISMIR 2008, Dan Ellis and Youngmoo Kim, have also donated funds from ISMIR 2008 to 
significantly increase travel support for students through the “Drexel-ISMIR Student Travel Award.” In addi-
tion, we gratefully acknowledge financial support from Tsutomu Nakauchi Foundation and “Portopia ’81 
Memorial Fund” of Kobe Convention & Visitors Association, and service support from the “MEET IN KOBE 
21st Century” program. 

We would like to thank everyone who contributed to the planning, preparation, and administration of 
ISMIR 2009, including the members of the Conference Committee and the ISMIR Steering Committee, and, 
of course, the conference participants and presenters. We hope that ISMIR 2009 will be a fruitful and memor-
able meeting and we wish you a very pleasant stay in Japan. Let’s celebrate the 10th anniversary together! 

 
Masataka Goto and Ichiro Fujinaga  

General Chairs, ISMIR 2009 
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Program Chairs’ Preface 
 
We are proud to present the proceedings of ISMIR 2009, the 10th International Society for Music Informa-

tion Retrieval Conference which will take place in Kobe, Japan. It was with a great sense of responsibility that 
we accepted to chair the program of this conference. Our goal was to continue building on the strong record of 
previous ISMIR conferences and support the vibrant interdisciplinary community of researchers and practi-
tioners in the field of Music Information Retrieval (MIR). This was not an easy task as we received a large 
number of high quality submissions and had to make some difficult decisions assisted by the hard work of the 
Program Committee (PC) members and the reviewers. 

Before starting the reviewing process we had extensive discussions with previous Program chairs and 
committee members as well as ISMIR participants to learn from their experience and receive suggestions and 
feedback. Based on their input we decided to have a thorough double-blind reviewing process as well as pro-
vide the authors with a chance to respond to the reviewer comments and suggestions. We retained the empha-
sis on cross-disciplinary and inter-disciplinary research and did our best to ensure that the final program ap-
peals to the widest possible portion of the community. All papers published in the proceedings have uniform 
status and have up to 6 pages. The mode of presentation (oral or poster) was decided after the accept/reject 
decisions were made based on the topic and broad appeal of the work rather than being an indication of quality.  
Because of the double-blind review process we did not impose any authorship limitations. However we did 
take into account the identity of authors for the oral presentation decisions in order to have a well-balanced 
public forum for scholars to stand before an international audience to present their ideas. 

ISMIR 2009 received a total of 212 submissions from 29 different countries out of which 123 were ac-
cepted. 38 were selected for oral presentation and 85 for poster presentation. The table at the top of the next 
page shows some statistics of the ISMIR conferences up to this year. The table has been produced by adding 
the ISMIR 2009 data to the table from last year. In 2007, 127 submissions were accepted out of 217 submis-
sions (acceptance rate of 58%), in 2008, 105 out of 175 (acceptance rate 60%) and in 2009, 123 out of 212 
(acceptance rate 58%). The 22-member Program Committee and the two Program Chairs coordinated the re-
viewing efforts of 214 reviewers. Before paper assignments, both reviewers and PC members were invited to 
indicate their preferences for papers to review. These preferences directly informed the paper assignment 
process, thus ensuring knowledgeable reviews and assessor confidence. The double-blind reviewing required 
more effort in resolving conflicts of interest which were handled through a combination of automatic detection 
as well as input from the PC members. Each submission received at least three reviews and a meta-review by 
a PC member. Moreover, the authors were given the opportunity to respond to the reviews in the so-called 
“rebuttal” phase. Their comments were taken into considerations during a final discussion phase between the 
PC members and reviewers. The final decisions were made by the Program Chairs take into account primarily 
the recommendation of the PC members and the reviewers as well as relevance to the conference, in-
ter-disciplinary nature and balance of the overall program. 

To encourage and recognize excellence in Music Information Retrieval research we decided to give out a 
best paper award (for which all accepted submissions were considered) and a best student paper award (for 
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Year 

 

Location 

Presentations Total 

Papers

Total 

Pages

Total 

Authors

Unique 

Authors

Pages / 

Paper 

Authors / 

Paper 

U. Authors 

/ Paper Oral Posters 

2000 Plymouth 19 16 35 155 68 63 4.4 1.9 1.8 
2001 Indiana 25 16 41 222 100 86 5.4 2.4 2.1 
2002 Paris 35 22 57 300 129 117 5.3 2.3 2.1 
2003 Baltimore 26 24 50 209 132 111 4.2 2.6 2.2 
2004 Barcelona 61 44 105 582 252 214 5.5 2.4 2.0 
2005 London 57 57 114 697 316 233 6.1 2.8 2.0 
2006 Victoria 59 36 95 397 246 198 4.2 2.6 2.1 
2007 Vienna 62 65 127 486 361 267 3.8 2.8 2.1 
2008 Philadelphia 24 105 105 630 296 253 6.0 2.8 2.4 

2009 Kobe 38 85 123 729 375 292 5.9 3.0 2.4 

which only accepted submissions with student authors were considered). Based on the reviewer scores five 
candidate papers were selected for the best paper award and four papers were selected for the best student pa-
per award. PC members as well as the Program Chairs ranked the candidates for each category and the results 
were tabulated to select the final winner. We are pleased to announce that Musical Instrument Recognition in 
Polyphonic Audio Using Source-Filter Model for Sound Separation by Toni Heittola, Anssi Klapuri and Tuo-
mas Virtanen is the winner of the best paper award and Easy as CBA: A Simple Probabilistic Model for Tag-
ging Music by Matthew Hoffman, David Blei and Perry Cook is the winner of the best student paper award. 

We both spent many hours agonizing over decisions, reading reviews and discussions and frequently read-
ing the entire submission in order to ensure a diverse, balanced, high-quality program. Unfortunately many 
good submissions had to be excluded but we were encouraged by some of the authors of rejected submissions 
who thanked us for the thorough feedback they received. Finally, we sincerely ask that the authors who did not 
have their submissions accepted this year consider attending ISMIR and submitting in the future. The contin-
uing participation of the ISMIR community will ensure that the tradition of high-quality, inter-disciplinary 
research continues in forthcoming ISMIR conferences. 

To complement the peer-reviewed program, ISMIR 2009 also includes a late-breaking/demo session to 
showcase preliminary research and technical demonstrations. The 24 submissions received in the form of ab-
stracts are published on the conference website and will be presented as posters on the last day of the confe-
rence. 

 
Keiji Hirata and George Tzanetakis 

Program Chairs, ISMIR 2009 
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Keynote Talk 1 
 

Ten Years of ISMIR:  

Reflections on Challenges and Opportunities 
 
J. Stephen Downie (University of Illinois at Urbana-Champaign, USA) 
Donald Byrd (Indiana University at Bloomington, USA) 
Tim Crawford (Goldsmiths College, University of London, UK) 
 
Biographies 

J. Stephen Downie is an Associate Professor at the Graduate School of Library and Information Science, 
University of Illinois at Urbana-Champaign (UIUC). He is Director of the International Music Information 
Retrieval Systems Evaluation Laboratory (IMIRSEL). He is Principal Investigator on the Networked Envi-
ronment for Music Analysis project (NEMA). He has been very active in the establishment of the Music In-
formation Retrieval (MIR) community through his ongoing work with the International Symposium on Music 
Information Retrieval (ISMIR) conferences as a member of the ISMIR steering committee. He holds a BA 
(Music Theory and Composition) along with a Master’s and a PhD in Library and Information Science, all 
earned at the University of Western Ontario, London, Canada. 

 
Donald Byrd studied music composition at Indiana University in the late 1960’s, and then became interested 

in computers and their potential to help musicians. After spending a number of years as a programmer and 
consultant at the University’s academic computing support services, he received a PhD in Computer Science 
with a dissertation on music notation by computer. Since then, He has worked extensively both in industry and 
academia. He was one of the principal sound designers and sound-design software developers for the Kurz-
weil 250, arguably the first synthesizer to reproduce sounds of acoustic instruments convincingly. He was also 
the principal designer of the influential music-notation program Nightingale. His academic background in-
cludes research on music notation by computer (at Princeton University); work on information retrieval in text, 
especially visualization and human/computer interaction aspects (at the University of Massachusetts); and 
work on music information retrieval, digital music libraries, and optical music recognition (at the University 
of Massachusetts and Indiana University). Most recently, he has been working on the “General Temporal 
Workbench,” a timeline-based system for visualizing, exploring, creating, and “playing” temporal phenomena: 
a system general enough for use on any timescale from fractions of an attosecond to billions of years. He is 
currently senior scientist and adjunct associate professor in the School of Informatics at IU. 

 
Tim Crawford is a member of the Intelligent Sound and Music Systems group in the Computing Depart-

ment at Goldsmiths College, University of London. He worked for 15 years as a professional musician before 

11



Keynote Talks

turning to academic research. He is active as a musicologist, being internationally recognized as a leading au-
thority on the history and music of the European lute, and is currently Editor of the Complete Works of the 
lutenist Silvius Leopold Weiss (1687-1750). Otherwise he is mostly engaged in the application of computa-
tional methods to music-related research. He managed the UK effort for the original OMRAS project (Online 
Music Recognition and Searching, 1999-2003), which was the precursor of the currently-running OMRAS2 
project on which he currently works. He also conceived, led and managed ECOLM (Electronic Corpus of Lute 
Music, 1999-2006), and is currently Principal Investigator of the Purcell Plus project which is investigating 
the application of eScience in musicology and the longer-term methodological implications of technology for 
the discipline. He is one of the founders of ISMIR and frequent contributor as author or organizer and has re-
cently jointly edited one of a series of books on “Humanities Computing: Modern Methods for Musicology: 
Prospects, Proposals and Realities,” ISBN 978-0-7546-7302-6 (Farnham: Ashgate 2009), in which several 
ISMIR authors are represented. 
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TEN YEARS OF ISMIR:  
REFLECTIONS ON CHALLENGES AND OPPORTUNITIES 

J. Stephen Downie Donald Byrd Tim Crawford 
University of Illinois  
at Urbana-Champaign 

jdownie@illinois.edu 

Indiana University  
at Bloomington 

donbyrd@indiana.edu 

Goldsmiths College 
University of London 

t.crawford@gold.ac.uk

ABSTRACT 

The International Symposium on Music Information Re-
trieval (ISMIR) was born on 13 August 1999. This paper 
expresses the opinions of three of ISMIR’s founders as 
they reflect upon what has happened during its first dec-
ade. The paper provides the background context for the 
events that led to the establishment of ISMIR. We high-
light the first ISMIR, held in Plymouth, MA in October 
of 2000, and use it to elucidate key trends that have in-
fluenced subsequent ISMIRs. Indicators of growth and 
success drawn from ISMIR publication data are pre-
sented. The role that the Music Information Retrieval 
Evaluation eXchange (MIREX) has played at ISMIR is 
examined. The factors contributing to ISMIR's growth 
and success are also enumerated. The paper concludes 
with a set of challenges and opportunities that the newly 
formed International Society for Music Information Re-
trieval should embrace to ensure the future vitality of the 
conference series and the ISMIR community. 

1. ORIGINS OF ISMIR 

In mid-August 1999, Byrd and Downie were at the Ra-
disson Hotel Berkeley Marina conference center in 
Berkeley, California: Byrd for the ACM (Association for 
Computing Machinery) Digital Library Conference 
(DL ’99), Downie for the ACM SIGIR conference, 
which immediately followed DL ’99. We had not met 
before, but our paths had been converging for some time, 
and in retrospect, it is hardly surprising that something 
special came out of our face-to-face encounter. Crawford 
was in England at the time, but he and Byrd had been 
collaborating since the early 1990s. Crawford and Byrd 
had recently received word that their “Online Music 
Recognition and Searching” (OMRAS) project [1] 
would be jointly funded by the Joint Information Sys-
tems Committee (JISC) of the UK and the National 
Science Foundation (NSF) of the USA. Steve Griffin, 

the project’s NSF program officer, had already sug-
gested to Byrd and Crawford independently that a music-
IR workshop be organized in conjunction with OMRAS. 
Furthermore, Crawford was organizing another work-
shop on music IR, as part of the “Digital Resources for 
the Humanities” conference to be held in London in Sep-
tember 1999. Finally, Downie, with the assistance of 
David Huron (Ohio State University) and Craig Nevill-
Manning (then of Rutgers University), had organized 
“The Exploratory Workshop on Music Information Re-
trieval” at SIGIR ’99.1 Before going to Berkeley, Down-
ie was already thinking of a larger-scale follow-up event 
as this was an explicit goal of his SIGIR workshop. One 
of the workshop presenters, Michael Fingerhut of 
IRCAM, would later play a pivotal role in the success of 
ISMIR through his establishment and maintenance of 
vital community resources (see Section 3.2). 

With the encouragement of Bruce Croft (University of 
Massachusetts, Amherst)—a very well-known researcher 
in the text IR world, and Byrd’s boss at the time—
Downie and Byrd decided on the spot to join forces to 
plan a larger-scale event instead of a workshop in the 
normal sense, and they came up with the name “Interna-
tional Symposium on Music Information Retrieval.” 

Most of the above has been described in print before 
[2]. Previously unreported, however, are some informal 
meetings convened in Berkeley, which variously in-
cluded Byrd, Downie, Nevill-Manning, David Bain-
bridge (University of Waikato), Matthew Dovey (Univer-
sity of Oxford), and Massimo Melucci (University of Pa-
dua). It is interesting that Byrd’s notes of these meetings 
show a heavy emphasis on music in symbolic form over 
audio, and quite a bit of discussion of TREC2-like evalu-
ations of music-IR systems.

1.1 What’s in a Name?: Evolution of “ISMIR” 

The ISMIR acronym, decided upon during the August 
1999 meetings, was carefully crafted. First, both Byrd 
and Downie wanted to strongly encourage the participa-
tion of researchers from around the world, so Interna-
tional was chosen without hesitation. Second, the word 
symposium has its roots in the Greek verb, sympotein, 

 

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. 

© 2009 International Society for Music Information Retrieval  

 
1 See http://nema.lis.uiuc.edu/sigir99_mir_wshop.pdf. 
2 The Text Retrieval Conference upon which MIREX is based. 
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which means “to drink together.” 1  As many know, 
Downie is particularly fond of symposia. Besides its so-
cial connotations, the term Symposium was agreed upon 
as it indicated a certain academic middle-ground between 
a workshop and a full-fledged conference. Before long, 
however, some participants noted that they were having 
difficulties obtaining travel funding to attend “a mere 
symposium,” and in 2002 ISMIR became the “Interna-
tional Conference on Music Information Retrieval.” Over 
the years, ISMIR organizers explored affiliation oppor-
tunities with such organizations as the Association for 
Computing Machinery (ACM), the Institute of Electrical 
and Electronics Engineers (IEEE), and the International 
Computer Music Association (ICMA); none worked out. 
Undeterred, Ichiro Fujinaga of McGill University led the 
way to formally establishing ISMIR as an independent 
society. On 4 July 2008, the “International Society for 
Music Information Retrieval” was officially born. By the 
time ISMIR 2009 in Kobe concludes, the music-IR com-
munity will have elected its first roster of ISMIR execu-
tive officers and held its first Annual General Meeting.  

2. ISMIR 2000 AT PLYMOUTH, MA:  
LANDING OF THE MUSIC-IR PILGRIMS 

In accordance with the events of 1999 described above, 
ISMIR 20002 was held in Plymouth, Massachusetts (the 
site of the Pilgrims’ 1620 arrival in the New World) from 
23 to 25 October 2000. Byrd was general chair and 
Downie was program chair. The other organizing com-
mittee members were Crawford, Croft, and Nevill-
Manning. In addition, Jeremy Pickens, then a PhD stu-
dent working on the OMRAS project, became, by virtue 
of his good nature, the local organizer—i.e., audio-visual 
person and general helper—during the conference. 

In terms of statistics, 88 people attended ISMIR 2000: 
not bad at all for a first conference in the field, and about 
twice the attendance at the first computer-music confe-
rence (which Byrd had attended in 1974). Furthermore, 
attendance was already very international: 29 attendees 
(33%) came from 11 countries outside the United States. 
ISIMIR 2000 was very heavy on invited papers, of which 
there were nine. An additional 33 papers were submitted; 
10 were accepted as papers, 16 as posters. 

2.1 ISMIR 2000: Highlights and Commentary 

• Marvin Minsky delivered the keynote address. His talk 
was uniquely creative and pointed out several connec-
tions that are still relevant, e.g., to artificial intelligence, 
improvisation vs. written-out music, and even to his in-
stitution, MIT. 
• Beth Logan gave one of the first papers formally ex-
amining the implications of using Mel Frequency Cep-
stral Coefficients (MFCC) for music; this created a fair 
amount of controversy. We wish we had a penny for 
each MFCC calculated since 2000! 
• There were two papers on music digital library applica-
tions: Jon Dunn spoke on the “Variations” system; Da-
vid Bainbridge talked about the “New Zealand Digital 
Music Library.” Downie, as a library science professor, 
notes with some sadness that the digital library theme 
has not gained much traction in subsequent ISMIRs. 
• Byrd, Crawford, and Steve Larson led a “Lecture, Re-
cital, Discussion, and Survey” session on music similari-
ty. Centered on Mozart’s piano piece Variations on Ah! 
Vous dirai-je, maman (the melody English speakers call 
“Twinkle, Twinkle, Little Star”), Larson played the 
piece, and attendees filled out survey forms to say how 
similar they felt each of the selected variations was to 
the theme. This session led to our choosing three meas-
ures from the Mozart variations for the ISMIR logo 
(Figure 1). The “similarity problem” remains a huge 
challenge, not least because of the difficulty of establish-
ing “ground-truth” in this subjective area. 

 
Figure 1. The Mozart-based official ISMIR logo.  
 
• Mary Levering of the U.S. Patent and Trademark Of-
fice talked about “Intellectual Property Rights in Musi-
cal Works.” This is a problem that continues to plague 
many music-related activities, including music-IR re-
search. 
• George Tzanetakis and Perry Cook gave a paper on au-
dio-IR tools. Tzanetakis’s MARSYAS is now one of the 
most widely used music-IR toolkits. 
• Jonathan Foote gave a paper on recognizing pieces of 
orchestral music regardless of performance differences. 
Foote’s approach looked solely at low-level (though 
long-term) audio features. Numerous music-IR papers 
since 2000 ignore musical knowledge and instead em-
ploy low-level features that seem to work; this paper fo-
reshadows the trend. 

Many of the intellectual themes, challenges, and oppor-
tunities that would resonate throughout subsequent con-
venings of ISMIR were already evident in Plymouth. To 
illustrate this, a selection of ISMIR 2000 highlights with 
editorial comments follows:     
 

                                                           • There were papers on musicology applications, tran-
scription from audio, retrieval from audio, Optical Mu-

1 See http://en.wikipedia.org/wiki/Symposium. 
2 See http://ismir2000.ismir.net/. 
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sic Recognition (OMR), language modeling, and XML 
representation of music notation. All of these except lan-
guage modeling have been the subjects of numerous 
ISMIR papers since. 
• Eric Allamanche of Fraunhofer gave an informal demo 
of an audio fingerprinting application designed to identi-
fy broadcast music in real time. Similar systems are now 
widely available in the commercial sphere. 
• The creators of MusicXML and MEI each gave posters 
on early versions of their representations. Since 2000 
MusicXML has become the most popular XML form for 
music content, but MEI has recently been the subject of 
development for specific applications, particularly in the 
musicological domain. 
• Suzanne Lodato of the Andrew W. Mellon Foundation 
took an active role in the plenary planning and discus-
sions sessions of the symposium. The Mellon Founda-
tion would go on to provide critical funding to prepare 
for, establish, and run MIREX. 

Of the 19 full papers presented, six were mostly or en-
tirely on audio; nine mostly or entirely on music in sym-
bolic form (including metadata); and four about equally 
on audio and symbolic music. As is obvious to anyone 
who has attended the last five or six ISMIRs, the predo-
minance of symbolic music (reflecting the backgrounds 
of the original organizers) has not persisted; we will say 
more about this later.  

Despite the inexperience of the organizers and the no-
velty of the subject area, ISMIR 2000 was universally 
regarded as a resounding success.  

3. SUCCESS AND GROWTH OF ISMIR: 2000–2009 

The ongoing success and growth of ISMIR since 2000 is 
both remarkable and encouraging. The vitality of the 
community is readily apparent from even the most cur-
sory examination of the statistics. For example, Table 1 
presents the number of published items (both posters and 
papers), number of pages published, and the number of 
unique authors represented in the proceedings of each 
ISMIR from 2000 to 2009. The table shows a 251% in-
crease in the number of published items per year, from 
35 to 123. The number of pages went up even more: 155 
to 729 is a 370% increase. 

The number of unique authors represented also grew 
tremendously, by 363% from 2000 (63) to 2009 (292). 
On average, 183 unique authors made contributions to 
each of the 10 ISMIRs under consideration. For us, the 
growth in the number of unique authors is the best statis-
tic of the set, since it indicates that ISMIR has attracted 
the most important asset of any conference: active, en-
gaged and publishing researchers. 

Mailing list statistics also confirm ISMIR’s success. 
The music-ir@ircam.fr list, established in October 2000, 
is the ISMIR community’s primary communications me-

chanism. This list, as of 22 August 2009, has 1190 regis-
tered subscriptions. It has broadcast nearly 3000 messag-
es for an average of 28 per month. These are strong num-
bers for such a specialized research area as music IR.  

YEAR LOCATION ITEMS PAGES UNIQUE 
 AUTHORS 

2000 Plymouth, MA 35 155 63

2001 Bloomington, IN 41 222 86

2002 Paris, FR 57 300 117

2003 Baltimore, MD 50 209 111

2004 Barcelona, ES 105 582 214

2005 London, UK 114 697 233

2006 Victoria, BC 95 397 198

2007 Vienna, AT 127 486 267

2008 Philadelphia, PA 105 630 253

2009 Kobe, JP 123 729 292

TOTALS ---- 852 4407 ---- 

Table 1. ISMIR publication and author data 2000–
2009.  1

tself as a permanent 
fi ure in time for ISMIR 2005 [7].

2005 2006 2007 2008

3.1 The Audio Description Contest and MIREX 

As mentioned in Section 1, the formal evaluation of mu-
sic-IR systems has been part of the ISMIR “wish list” 
since its inception. However, notwithstanding strong 
community interest, it was surprisingly difficult to insti-
tute a formal evaluation framework along the lines of 
TREC. There were many challenges to overcome, the 
greatest of which was the lack of high-quality test collec-
tion and ground-truth data caused primarily by the very 
restrictive intellectual property regimes governing music 
[4]. After a series of exploratory workshops led by 
Downie and funded by Mellon and NSF [5], the organiz-
ers of ISMIR 2004 in Barcelona were able to put togeth-
er the “Audio Description Contest” (ADC) [6]. Many 
valuable lessons were learned in the running of ADC and 
these were subsequently incorporated into MIREX. After 
receiving substantial long-term funding from both Mel-
lon and NSF, MIREX established i

xt  

 
Number of Task 
(and Subtask) “Sets”  10 13 12 18
Number of Individuals 82 50 73 84
Number of Countries 19 14 15 19
Number of Runs 86 92 122 169

Ta

the key descriptive data for MIREX between 2005 and 

                                                          

ble 2. MIREX descriptive data 2005–2008 [8]. 

Like the publication data examined previously, the 
MIREX data are quite encouraging. Table 2 summarizes 

 
1 2000–2008 data sourced from the Preface of the ISMIR 2008 proceed-
ings [3]. 
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2008. A fuller explication of the MIREX data can be 
found in [4, 8]. 

The number of task and subtask sets grew by 80% 
from 2005 (10) to 2008 (18). This growth can be attri-
buted to growing interest in MIREX and the donation of 
new high-quality data sets from community members.  

In keeping with ISMIR’s international mission, the 
number of countries represented was a strong, but flat, 19 
for both 2005 and 2008 with an average of 17 per year. 
Most of these numbers come from European countries 
with Japan, China, and Taiwan also represented. Like-
wise, the number of individual participants has not ap-
preciably increased between 2005 (82) and 2008 (84). 
We do note the lack of growth in the country and partici-
pant numbers as something that needs addressing. 

The most heartening MIREX statistic concerns the 
number of individual runs performed: this went from 86 
to 169, an increase of 96%. Note that the increase is 
greater than the increases in both participants and tasks: 
participants are more likely now to submit multiple varia-
tions on their algorithms. This fact suggests to us that 
MIREX has been successful in its message that MIREX 
exists as an exploratory mechanism designed to try out 
new ideas and not a “contest” to be won or lost.  

In total, MIREX has run 469 algorithms. It is interest-
ing to note the distribution of runs over areas of interest: 

• 129 (28%) can be categorized as “train-test” machine-
learning classification experiments (e.g., Audio Genre 
Classification, Audio Mood Classification, etc.). 
• 139 (30%) can be categorized as “search” experiments 
(e.g., Audio Cover Song Identification, Audio Music 
Similarity, etc.) 
• 201 (43%) can be categorized as “low-level” feature 
experiments (e.g., Audio Onset Detection, Audio Beat 
Tracking, etc.) 

We must also note that, of the 22 unique task sets run 
over 2005 to 2008, only three (14%) have dealt exclu-
sively with symbolic music data (i.e., Symbolic Genre 
Classification, Symbolic Key Finding, and Symbolic Me-
lodic Similarity). Not one of these symbolic tasks was 
run in 2008 and not one proposed for MIREX 2009. 16 
task sets (73%) have been exclusively audio-based (e.g., 
Audio Tempo Extraction, Audio Key Finding, etc.), and 
three tasks have involved a combination of audio and 
symbolic data (i.e., Query-by-Singing/Humming, Query-
by-Tapping, and Score Following). As these data show, 
MIREX has been quite successful in growing evaluation 
activity in the audio domain, but not at all successful in 
helping the symbolic sub-community to flourish: this is 
perhaps MIREX’s most serious weakness.  

3.2 Success and Growth Factors 

Many factors have contributed to the success and growth 
of ISMIR over the years. These factors are both external 

and internal to ISMIR. Like many things in life, ISMIR 
has been successful through a combination of good tim-
ing, thoughtfulness, and hard work. 

From the beginning, ISMIR’s timing was good; it has 
benefitted from several important external opportunities 
and trends that developed in parallel. These develop-
ments have provided ISMIR with a larger body of re-
searchers and research themes to draw upon than we 
could have anticipated, especially in the audio domain. 
We believe these external factors include: 
• The success of the audio compression research com-
munity in developing techniques specifically designed 
for, and tested against, music. It was this success and the 
subsequent acceptance of these approaches that afforded 
the opportunity to create, share, and store large collec-
tions of music audio.  
• The explosive growth in the availability of audio files, 
mostly MP3’s, via the Internet. This growth resulted to a 
great extent from the audio-compression research de-
scribed above, but in turn it created a demand for better 
search and retrieval mechanisms. Napster, for example, 
was established in 1999. 
• The work of such standards bodies as the MPEG-7 
group that brought together important industry players 
with leading academic research groups. The MPEG-7 
first working draft came out in December 1999.1 
• The success of such search engines as Google, Yahoo, 
etc., that encouraged researchers to seek fame and for-
tune in the music domain. The great “dot.com bubble” 
of 1998–2001 was contemporaneous with ISMIR’s early 
development.  

The internal factors that have contributed to ISMIR’s 
success are founded upon the thoughtful actions, good-
will, and hard work of community members acting either 
as individuals, in small groups, or collectively. These fac-
tors include: 
• The establishment of the communication resources 
housed at IRCAM. The music-ir@ircam.fr mailing list, 
the hosting of the conference websites, and the archiving 
of the collected ISMIR proceedings are resources with-
out which ISMIR might not exist today. Each of these 
has contributed inestimably to the openness, continuity, 
and intellectual life of the ISMIR community. We ap-
plaud Michael Fingerhut for his continued service. 
• The diversity of backgrounds and disciplines 
represented on the ISMIR Steering Committee (SC). The 
SC has worked hard over the years to ensure that the 
broadest possible range of research interests is present at 
each ISMIR. Ichiro Fujinaga has been the SC’s coordi-
nator for years, and he is especially commended for his 
ability to guide the SC through its deliberations. 
• The great fortune ISMIR has had in the quality of the 
chairs and program committee (PC) members for each 

                                                           
1See http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm. 
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conference. We have nothing but praise for the ISMIR 
PC teams; each ISMIR has been organized and run with 
enthusiasm, integrity, and efficiency. 
• The implicit policy of inclusiveness that has pervaded 
the conference programming ethos of each ISMIR. Un-
like other technology-related conference series, ISMIR 
has not measured its intrinsic value through high rejec-
tion rates. In fact, the ISMIR PCs are to be applauded 
for finding mechanisms like expanded poster presenta-
tion opportunities to allow for the maximum level of 
participation yet maintaining academic research quality 
through strong peer-reviewing. We believe that it is pre-
cisely this policy of inclusiveness that has allowed for 
the all-important growth in unique author participation 
noted in Section 3. The ISMIR community as a whole is 
also to be praised for its consistent efforts to make the 
peer-review process simultaneously as fair, open-
minded, and rigorous as possible.  
• The ongoing PC and general community support for 
ADC and MIREX. This support has contributed to 
ISMIR by fostering a sense of common purpose and ex-
ploration among researchers in many of ISMIR’s sub-
fields. MIREX has also helped to set standards in many 
sub-fields for what constitutes proper evaluation. Finally, 
MIREX has provided an extra opportunity for participa-
tion in ISMIR for those researchers whose work could 
not be included in the official proceedings. We must ac-
knowledge here the extra-special efforts made by Kris 
West, M. Cameron Jones, Andreas F. Ehmann, and Mert 
Bay in making MIREX run well. 

4. CHALLENGES AND OPPORTUNITIES 

In its first 10 years, ISMIR has grown into a vibrant and 
enthusiastic research community. We now need to turn 
our attention to making ISMIR’s next 10 years, its “teen” 
years, even more rewarding and successful. Like a tee-
nager, ISMIR will undoubtedly stop growing in size at 
some point; this is only natural. But if ISMIR—both as a 
conference series and as a society—is to have a success-
ful “adulthood,” it will need to address some challenges 
that it has not fully engaged with before. It must recast 
these challenges as opportunities and engage them with 
its growing maturity and its youthful vigor. Five of the 
most important challenges are: 
1. ISMIR needs to more actively encourage the participa-
tion of potential users of music-IR systems. Notwith-
standing the laudable efforts made by the ISMIR Steering 
Committee, ISMIR has tended to focus much less on the 
potential users of music-IR technology than on its devel-
opers. These users might include, for example, perform-
ing musicians, film-makers, musicologists, music libra-
rians, sound archivists, music educators, and music en-
thusiasts of all types. The knowledge acquired by inte-
racting with users like these can only improve the quality 

of the community’s research output. It will also go a long 
way to helping ISMIR researchers create truly useful mu-
sic-IR systems. 
2. ISMIR research projects must dig deeper into the mu-
sic itself. Notwithstanding some recent—and hearten-
ing—developments in such areas as, for example, chord 
detection, cover song detection, and structural analysis, 
etc., a large amount of ISMIR research effort, especially 
in timbre-based audio matching, has gone into attempts to 
enhance a few basic features and matching algorithms. 
However, it seems likely that there is a point beyond 
which improved matching performance using any single 
feature cannot be achieved [9]. On the other hand, the 
incorporation of multiple features in what might be 
thought of as “hybrid” matching tends to be more suc-
cessful. But such combining of features needs to be done 
in a way that is understood and principled, and much 
more research needs to be done in understanding what 
such combinations actually represent in musical terms. 
The integration of symbolic music data to create hybrid 
audio + symbolic music-IR systems could help in this re-
gard. 
3. Time has come for ISMIR to expand its musical hori-
zons. The vast majority of ISMIR’s collective music-IR 
research has been conducted on Western popular musics 
of the late-20th and early-21st centuries. This is a serious 
problem because there is an enormous amount of music 
in existence that is utterly different from these corpora. 
There is no reason to assume algorithms that work super-
bly for the Beach Boys will do anything useful with Tu-
van throat singing, musique concrète, or Indian Raga.  
4. ISMIR must rebalance the portfolio of music informa-
tion types with which it engages. Music information is 
inherently multifaceted. Each of its manifestations—
audio, symbolic, and metadata—contributes different but 
equally important features to the experience of music. We 
celebrate the accomplishments of ISMIR’s audio re-
searchers but, as noted before, research exploiting the 
symbolic aspects of music information has not thrived 
under ISMIR. We are thrilled to see, however, the grow-
ing body of work that strives to unite social metadata and 
audio information. Rather than “pushing down” on the 
audio side of ISMIR research, we challenge ISMIR to 
make special efforts to “pull up” symbolic and metadata 
research to create a more productive, synergistic, and 
harmonious balance among the three.  
5. ISMIR must encourage the development and deploy-
ment of full-featured, multifaceted, robust, and scalable 
music-IR systems with helpful user-interfaces. During 
ISMIR’s first decade, we have seen a great deal of effort 
expended on the development of the various sub-
components of music-IR systems. Unfortunately, we 
have not yet seen much in the way of a successful inte-
gration of these sub-systems into real-world-useable re-
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sources. This state of affairs cannot be sustained for the 
next decade as the community needs these full-featured 
systems to exist in order to inspire the development of the 
next generation of refinements and improvements. In the 
text IR world, and starting in the 1960s, such systems as 
“SMART,” 1  “Managing Gigabytes,” 2  and “Terrier,” 3  
have fulfilled this important, if not imperative, role.  

4.1 The Grand Challenge 

We see our “complete system” challenge as “The Grand 
Challenge” for ISMIR’s second decade. By embracing 
this challenge, the preceding ones will necessarily have 
to be engaged. We do recognize, however, that meeting 
this “Grand Challenge” will not be easy. We believe 
there will be difficulties because academic researchers 
traditionally have obtained little academic credit for 
comprehensive system development. Future ISMIR pro-
gram committees need to find a mechanism through 
which the developers of such systems can acquire full 
academic credit for accomplishments. One possibility is 
to have ISMIR create a rigorous set of peer-reviewing 
criteria specifically designed to handle this type of work. 
Along these lines, the demonstration of complete systems 
should receive the same status now afforded to paper 
presentations. Special awards should also be considered. 

5. CLOSING REMARKS 

As we noted in the beginning of this paper, the founders 
of ISMIR, because of their backgrounds, had conceived 
of music IR as an intersection of music and symbolic IR 
techniques. As early as ISMIR 2000, it became readily 
apparent that this conception was much, much too limit-
ing. ISMIR research papers now cover a wide range of 
activities and recent “Calls for Papers” have reflected this 
broadening of scope explicitly. We now challenge the 
ISMIR community to consider whether the term “music 
IR” has outlived its usefulness. Is it possible that “infor-
mation retrieval” is too narrow a concept to fully encap-
sulate what ISMIR researchers actually do? Byrd has 
proposed several times making the “R” in “ISMIR” stand 
for “Research” instead of “Retrieval” which could better 
describe the breadth of the organization without losing 
ISMIR’s name recognition. A related idea is to refer to 
“music informatics” instead of “music information.”  

We will leave these questions open in the hope that 
they will inspire some healthy, self-reflective, debate 
about the future of ISMIR. It will be through such reflec-
tions that ISMIR will continue to be vibrant, energetic, 
and successful well past its second decade. 

                                                           
1 See http://en.wikipedia.org/wiki/SMART_Information_Retrieval_System. 
2 See http://www.cs.mu.oz.au/mg/. 
3 See http://ir.dcs.gla.ac.uk/terrier/. 
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Wind Instrument-Playing Humanoid Robots 
 
Atsuo Takanishi (Waseda University, Japan) 
 
Abstract 

Even though the market size is still small at this moment, applied fields of robots are gradually spreading 
from the manufacturing industry to others in recent years. One can now easily expect that applications of ro-
bots will expand into the first and the third industrial fields as one of the important components to support our 
society in the 21st century. There are also strong anticipations in Japan that robots for the personal use will 
coexist with humans and provide support such as assistance for housework and care for the aged and the 
physically handicapped, since Japan is one of the fastest aging societies in the world. Consequently, humanoid 
robots and/or animaloid robots have been treated as subjects of robotics researches in Japan such as a research 
tool for human/animal science, an entertainment/mental-commit robot or an assistant/agent for humans in the 
human living environment. Over the last couple of years, some manufactures including famous global compa-
nies started to develop prototypes or even to sell mass-produced robots for the purposes mentioned above, 
such as HONDA, TOYOTA, Mitsubishi Heavy, TMSUK, etc. On the other hand, Waseda University, where 
the author belongs to, has been one of the leading research sites on humanoid robot research since the late Prof. 
Ichiro Kato and his colleagues started the WABOT (WAseda roBOT) Projects and developed the historical 
humanoid robots that were WABOT-1 and WABOT-2 in the early 70s and 80s respectively. One of the most 
important aspects of our research philosophy is as follows: By constructing anthropomorphic/humanoid robots 
that function and behave like a human, we are attempting to develop the design method of humanoid robots to 
coexist with humans naturally and symbiotically, as well as to scientifically build not only the physical model 
of a human but also its mental model from the engineering view point. Based upon the philosophy, I and my 
colleagues have been developing the flute-playing humanoid robots as WF (Waseda Flutist) series as well as 
the bipedal walking robots WABIAN series, the emotion expression robots WE series and the talking robots 
WT series, etc. Especially, the purpose of the flute playing robot research is to build the model of the human 
flute play and to clarify the model from the engineering viewpoint by reproducing the human-like flute play 
using a humanoid robot having the human-like respiratory organs for the flute play. By using the robot, we 
will be able to experimentally confirm the model of the human flute play quantitatively. The flute-playing ro-
bot/model is useful for the flute-playing beginners to show how to use/move the organs or it will be used for 
the evaluation of the flute instrument production in the industry. We also started the development of saxo-
phone-playing humanoid robots recently. In my keynote talk, I will introduce the research philosophy of my 
humanoid robots in general by showing examples, the technical aspects of the wind instrument playing hu-
manoid robots, and the other humanoid robots related to music. 
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Biography 
Atsuo Takanishi is a Professor of the Department of Modern Mechanical Engineering, Waseda University 

and a concurrent Professor and one of the core members of the HRI (Humanoid Robotics Institute), Waseda 
University. He received the B.S.E. degree in 1980, the M.S.E. degree in 1982 and the Ph.D. degree in 1988, all 
in Mechanical Engineering from Waseda University. 

His current researches are related to Humanoid Robots and its applications in medicine and well-being, 
such as the biped walking robots for modeling human biped walking as WABIAN (WAseda BIpedal humA-
Noid) series, the biped locomotors for carrying handicapped or elders as WL (Waseda Leg) series, the masti-
cation robots WJ (Waseda Jaw) series to mechanically simulate human mastication for clarifying the hypo-
theses in dentistry, the jaw opening-closing trainer robots WY (Waseda Yamanashi) series for patients having 
difficulties in jaw opening or closing, the flute-playing robots as WF (Waseda Flutist) series and the saxo-
phone-playing robots WS (Waseda Saxophonist) series to quantitatively analyze human flute/saxophone play-
ing by collaborating with a professional flutists/saxophonists, and the anthropomorphic talking robots WT 
(Waseda Talker) series which mechanically speak Japanese vowels and consonant sounds, and the other ro-
bots/systems related to his research area. His interest in humanoid robots has extended to the emotion of hu-
man that he started to develop the emotion expression humanoid robots WE (Waseda Eye) series and 
KOBIAN/HABIAN which emotionally behave like a human based upon the “Equations of Emotion.” His 
humanoid robot WABIAN-2R was exhibited in the 2005 World Exposition in Aichi, Japan to demonstrate the 
knee extended walking using the human-like pelvis and seven DOF leg mechanisms. The emotion expression 
humanoid KOBIAN is developed based on WABIAN-2R. The latest model WL-16 carries humans and vir-
tually any heavy load weighing up to 80 kg. This project is aiming at developing a practical personal vehicle 
which supports the society of Japan rapidly becoming an aging society. He recently developed suture/ligature 
evaluation system WKS series which shows surgeon trainees the quantitative scores of their suture/ligature 
skills. This system is commercially available from a medical model and training simulator company, Kyoto 
Kagaku Co. Ltd., in Japan. He is also developing the airway management robot for anesthetist/paramedic 
trainees collaborating with the company. Refer to www.takanishi.mech.waseda.ac.jp for more details. 

He is a member of Robotics Society of Japan (a board member in 1992 and 1993), Japanese Society of 
Biomechanisms, Japanese Society of Mechanical Engineers, Japanese Society of Instrument and Control En-
gineers and Society of Mastication Systems (a major board member from 1996 to current), IEEE and other 
medicine and dentistry related societies in Japan. 

He received the Best Paper Award from Robotic Society Japan (RSJ) two times in 1998 and in 2005, the 
Finalist of Best Paper Award two times in the IEEE International Conference on Robotics and Automation 
(ICRA) in 1999 and in 2006, the Best of Asia Award from BusinessWeek Magazine in 2001, the Distinguished 
Research Activity Award in Robotics and Mechatronics from Japan Society of Mechanical Engineers (JSME) 
in 2003, the Best Paper Award – Application in IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS) in 2004, the Excellent Research Award in 2005 from the Japan Society for Artificial Intelli-
gence (JSAI), the Industrial Application Division Promotion Award in 2005 from the Society of Instrument 
and Control Engineers (SICE), the Best Paper Award in 2006 from JSME, the Best Conference Paper Award 
in IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) in 2009, etc. 
Website: http://www.takanishi.mech.waseda.ac.jp 
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Industrial Panel Discussion 

Organizer 
 Paul Lamere (The Echo Nest, USA) 

Panelists 
 Tom Butcher (Microsoft Corporation, USA)  
 Norman Casagrande (Last.fm, UK) 
 Òscar Celma (Barcelona Music and Audio Technologies, Spain) 
 Markus Cremer (Gracenote, USA) 
 Keiichiro Hoashi (KDDI R&D Laboratories, Japan) 
 Kunio Kashino (NTT Communication Science Laboratories, Japan) 
 Malcolm Slaney (Yahoo! Research, USA) 
 
Abstract 

In this panel practitioners from industry will discuss how their companies are currently using music infor-
mation retrieval (MIR) techniques to solve problems for their customers. Panelists will also discuss emerging 
areas of MIR research that are particularly relevant for commercial applications. Audience members will have 
the opportunity to ask questions of the panelists. 
 

Biographies 
Paul Lamere is the Director of Developer Community at The Echo Nest, a research-focused music intelli-

gence startup that provides music information services to developers and partners through a data mining and 
machine listening platform. He is especially interested in hybrid music recommenders and using visualizations 
to aid music discovery. 

 
Tom Butcher joined Microsoft in 2006 to build large-scale web services for computing and delivering me-

dia experiences. His interests include digital media, artificial intelligence, the Internet, and various intersec-
tions thereof. Currently, He is a senior engineer in the Zune group at Microsoft creating data-driven media 
experiences, which include automatic playlist generation, social discovery, recommendations, and more. Prior 
to joining Zune, his work encompassed automatic tagging, indexing, and recommendations at MSN Video. An 
avid music enthusiast, he records electronic music in his spurious free time using the moniker Codebase. 

 
Norman Casagrande joined Last.fm in 2006 as the head of music research. Since then he has been working 

on a wide range of problems, including collaborative filtering for user/item similarity and recommendation, 
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dealing with scalability, dynamic playlist generation, users insight, audio and semantic analysis, fingerprint, 
spam fighting, and many other related topics. 

 
Òscar Celma is the Chief Innovation Officer at Barcelona Music and Audio Technologies (BMAT), a 

spin-off of the Music Technology Group (MTG). BMAT offers solutions for music discovery and recommen-
dation, musical edutainment, and music copyright detection. In 2008, he obtained his PhD in Computer 
Science and Digital Communication, in the Pompeu Fabra University (Barcelona, Spain). He worked in the 
MTG from 2000 until 2008 as a Researcher and Project Manager. In 2006, he received the 2nd prize in the 
International Semantic Web Challenge for the system named “Foafing the Music,” a personalized music rec-
ommendation and discovery application. 

 
Markus Cremer joined Fraunhofer Institute for Integrated Circuits (IIS) in 1996 after graduating from Frie-

drich-Alexander University in Erlangen, Germany, where he contributed to the design of embedded audio co-
dec architectures and digital radio broadcast systems. In 2000, he co-founded the department Metadata at the 
Fraunhofer Institute for Digital Media Technology in Ilmenau, Germany. Since 2005, he has been directing 
Gracenote’s Media Technology Lab in Emeryville, California. He is a member of IEEE, ACM, and AES, re-
spectively. 

 
Keiichiro Hoashi joined KDDI R&D Laboratories in 1997. His main research interest is in the area of con-

tent-based multimedia information analysis and retrieval, namely music, images, and video. Currently, he is 
working to implement multimedia content analysis technologies in practical applications and services. He is 
also working on research projects in data mining, and recommender systems. He was a lecturer at Waseda 
University from 2002 and 2005, and has received his Dr. Eng. degree from Waseda University in 2007. 

 
Kunio Kashino is Distinguished Technical Member, Supervisor, leading Media-search Research Team at 

NTT Communication Science Laboratories, and Visiting Professor at National Institute of Informatics (NII), 
Japan. His team has been working on audio and video analysis, search, retrieval, and recognition algorithms. 
Its activities include development of basic theories as well as their commercial applications such as Internet 
content monitoring. He received his PhD from University of Tokyo for his work on “music scene analysis” in 
1995. 

 
Malcolm Slaney is a principal scientist at Yahoo! Research Laboratory. He received his PhD from Purdue 

University for his work on computed imaging. He is a coauthor, with A. C. Kak, of the IEEE book “Principles 
of Computerized Tomographic Imaging.” This book was recently republished by SIAM in their “Classics in 
Applied Mathematics” series. He is coeditor, with Steven Greenberg, of the book “Computational Models of 
Auditory Function.” Before Yahoo!, he has worked at Bell Laboratory, Schlumberger Palo Alto Research, Ap-
ple Computer, Interval Research, and IBM’s Almaden Research Center. He is also a (consulting) Professor at 
Stanford’s CCRMA where he organizes and teaches the Hearing Seminar. His research interests include audi-
tory modeling and perception, multimedia analysis and synthesis, compressed-domain processing, music si-
milarity and audio search, and machine learning. For the last several years he has lead the auditory group at 
the Telluride Neuromorphic Workshop. 
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Tutorial 1 
 

MIR at the Scale of the Web 
Malcolm Slaney (Yahoo! Research, USA) 
Michael Casey (Dartmouth College and University of London, UK) 
 

Abstract 
In the last couple of years we have received access to music databases with millions of songs. This massive 

change in the amount of data available to researchers is changing the face of MIR. In many domains, speech 
recognition is most notable, people have observed that the best way to improve their algorithm’s performance 
is to add more data. Starting with hidden-Markov models (HMMs) and support-vector machines, people have 
applied ever greater amounts of data to their problems and been rewarded with new levels of performance. 
What are the algorithms and ideas that are necessary to work with such large databases? How do we define the 
scope of a problem, and how do we apply modern clusters of processors to these problems? What does it take 
to collect, manage, and deliver solutions with millions of songs and terabytes of data? 

In this tutorial we will talk about a range of algorithms and tools that make it easy/easier to scale our work 
to Internet-sized collections of music. The field is just developing so this tutorial will talk about a range of 
techniques that are in use today. Millions of songs fit into a small number of terabytes, which is just a few 
hundred dollars of disk space. This tutorial will give attendees the tools they need to make use of this data. 
This tutorial will give attendees an overview and pointers to the tools that will allow them to scale their work 
to modern datasets. The tutorial will discuss the theoretical and practical problem with large data, applications 
where large amounts of data are important to consider, types of algorithms that are practical with such large 
datasets, and examples of implementation techniques that make these algorithms practical. The tutorial will be 
illustrated with many real-world examples and results. 

 

Biographies 
Malcolm Slaney is a principal scientist at Yahoo! Research. He received his PhD from Purdue University 

for his work on computed imaging. There he has been working on music- and image-retrieval algorithms in 
databases with billions of items. He has given successful tutorials at ICASSP 1996 and 2009 on “Applications 
of Psychoacoustics to Signal Processing” and on “Multimedia Information Retrieval” at SIGIR and ICASSP. 

 
Michael Casey is Professor of Music and director of the graduate program in Digital Music at Dartmouth 

College, USA, and Professor of Computer Science at Goldsmiths, University of London, UK. He received his 
PhD from the MIT Media Laboratory in 1998 in the fields of statistical audio. His recent activities include 
forming the OMRAS2 (Online Music Recognition and Searching) group at Goldsmiths. 
  

23



Tutorials

Tutorial 2 

 

Mining the Social Web for Music-Related Data: 
A Hands-on Tutorial 
Claudio Baccigalupo (Spanish Council for Scientific Research, Spain) 
Benjamin Fields (University of London, UK) 
 

Abstract 
The social web is a useful resource for those conducting research in music informatics. Yet there exists no 

“standard” way to integrate web-based data with other more common signal-based music informatics methods. 
In this tutorial we go through the entire process of retrieving and leveraging data from the social web for MIR 
tasks. This is done through the use of hands-on examples intended to introduce the larger ISMIR community 
to web-mining techniques. 

The intended audience is formed of people who are familiar with other MIR techniques (principally 
content-based) and who can benefit from knowledge available on the web to improve their algorithms and 
evaluation processes. The tutorial presents a series of short snippets of code to rapidly retrieve musical 
information from the web in the form of genre-labeled audio excerpts, tags, lyrics, social experiences, acoustic 
analyses or similarity measures for millions of songs. 
Tutorial Website: http://ismir2009.benfields.net 
 

Biographies 
Claudio Baccigalupo is a PhD candidate at the Artificial Intelligence Research Institute (IIIA-CSIC), with 

the thesis discussion expected in November 2009. He holds a 5-year degree in Computer Technology with top 
marks and distinction. His research focuses on recommender systems in a musical context: he investigated 
how to extract musical knowledge from the analysis of playlists and how to customize radio channels for 
groups of listeners. 

 
Benjamin Fields is a PhD candidate with the Intelligent Sound and Music Systems (ISMS) research group 

at the Department of Computing, Goldsmiths, University of London, with his dissertation submission 
anticipated in late spring 2010. His current research centers on applications to understand and exploit the 
semantic gap between the social relationships of artists and the acoustic similarity of works these artists 
produce.   
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Tutorial 3 

 

Using Visualizations for Music Discovery 
Justin Donaldson (Indiana University, USA) 
Paul Lamere (The Echo Nest, USA) 
 
Abstract 

As the world of online music grows, tools for helping people find new and interesting music in these 
extremely large collections become increasingly important. In this tutorial we look at one such tool that can be 
used to help people explore large music collections: information visualization. We survey the state-of-the-art 
in visualization for music discovery in commercial and research systems. Using numerous examples, we 
explore different algorithms and techniques that can be used to visualize large and complex music spaces, 
focusing on the advantages and the disadvantages of the various techniques. We investigate user factors that 
affect the usefulness of visualization and we suggest possible areas of exploration for future research. 

 

Biographies 
Justin Donaldson is a PhD candidate at Indiana University School of Informatics, as well as a regular 

research intern at Strands, Inc. Justin is interested with the analyses and visualizations of social sources of data, 
such as those that are generated from playlists, blogs, and bookmarks. 

 
Paul Lamere is the Director of Developer Community at The Echo Nest, a research-focused music 

intelligence startup that provides music information services to developers and partners through a data mining 
and machine listening platform. Paul is especially interested in hybrid music recommenders and using 
visualizations to aid music discovery. 
  

25



Tutorials

Tutorial 4 

 

Share and Share Alike, You Can Say Anything 
about Music in the Web of Data 
Kurt Jacobson (University of London, UK)  
Yves Raimond (BBC, UK) 
György Fazekas (University of London, UK) 
Michael Smethurst (BBC, UK) 
 

Abstract 
Linked Data provides a powerful framework for the expression and re-use of structured data. Recent efforts 

have brought this powerful framework to bear on the field of music informatics. This tutorial will provide an 
introduction to Linked Data concepts and how and why they should be used in the context of music-related 
studies. Using practical examples we will explore what data sets are already available and how they can be 
used to answer questions about music. We will also explore how signal processing tools and results can be 
described as structured data. Finally, we will demonstrate tools and best practice for researchers who wish to 
publish their own data sets on the Semantic Web in a Linked Data fashion. 
Tutorial Website: http://ismir2009.dbtune.org 

 

Biographies 
Kurt Jacobson is a PhD candidate at the Centre for Digital Music. As assistant administrator of DBTune.org 

he has worked to create Semantic Web services for music including a service publishing structured data about 
music artists on MySpace and musicological data about classical music composers. 

 
Yves Raimond is a Software Engineer at BBC Audio & Music interactive, after completing a PhD at the 

Centre for Digital Music, Queen Mary, University of London. He is one of the editors of the Music Ontology 
specification, and the creator and head administrator of the DBTune.org service. He is now working 
on http://www.bbc.co.uk/programmes, publishing a wide range of structured data about BBC programs. 

 
György Fazekas is a PhD candidate at the Centre for Digital Music. His main research interest includes the 

development of semantic audio technologies and their application to creative music production. He is working 
on ontology-based information management for audio applications. 

 
Michael Smethurst is an Information Architect at BBC Audio & Music. He is currently working on BBC 

Programs, BBC Music, and BBC Events, publishing and interlinking data in a number of overlapping domains. 
He writes on the BBC Radio Labs blog about Linked Data and web publishing. 
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INTEGRATING MUSICOLOGY’S HETEROGENEOUS DATA 
SOURCES FOR BETTER EXPLORATION 

David Bretherton, Daniel Alexander Smith, mc schraefel,  
Richard Polfreman, Mark Everist, Jeanice Brooks, and Joe Lambert 

University of Southampton, Southampton, UK, SO17 1BJ 
D.Bretherton@soton.ac.uk; {ds, mc}@ecs.soton.ac.uk;  

{R.Polfreman, M.Everist, L.J.Brooks}@soton.ac.uk; jl2@ecs.soton.ac.uk 

ABSTRACT 

Musicologists have to consult an extraordinarily hetero-
geneous body of primary and secondary sources during 
all stages of their research. Many of these sources are 
now available online, but the historical dispersal of mate-
rial across libraries and archives has now been replaced 
by segregation of data and metadata into a plethora of 
online repositories. This segregation hinders the intelli-
gent manipulation of metadata, and means that extracting 
large tranches of basic factual information or running 
multi-part search queries is still enormously and need-
lessly time consuming. To counter this barrier to re-
search, the “musicSpace” project is experimenting with 
integrating access to many of musicology’s leading data 
sources via a modern faceted browsing interface that util-
ises Semantic Web and Web2.0 technologies such as 
RDF and AJAX. This will make previously intractable 
search queries tractable, enable musicologists to use their 
time more efficiently, and aid the discovery of potentially 
significant information that users did not think to look 
for. This paper outlines our work to date.  

1. INTRODUCTION 

A significant barrier to the research endeavours of musi-
cologists is the sheer volume of potentially relevant in-
formation that has accumulated over centuries. Research-
ers once faced the daunting prospect of manually scour-
ing through seemingly endless primary and secondary 
sources in order to answer the basic whats, wheres and 
whens of musicology, particularly when making lists of 
people or repertoire according to specific criteria. Many 
of the sources needed to address these queries are becom-
ing available online. Yet the dramatic increase in the 
online availability of data, the variety of data subjects, 
the growing number of data providers, and, moreover, the 

inability of current mainstream search tools to manipulate 
the associated metadata in useful ways, means that ex-
tracting large tranches of basic factual information (e.g. 
manuscripts once owned by “a,” opera roles performed 
by “b”) or running multi-part search queries (e.g. com-
posers from place “c” that were active during decade “d”) 
is still enormously and needlessly time consuming.  

Accordingly, the “musicSpace” project 
<http://www.mspace.fm/projects/musicspace> is exploit-
ing Semantic Web [1] and Web2.0 technologies to de-
velop an experimental innovative search interface that 
integrates access to some of musicology’s largest and 
most significant online data and metadata repositories, 
including the British Library Music Collections cata-
logue, the British Library Sound Archive catalogue, Ce-
cilia, Copac, Grove Music Online, Naxos Music Library, 
RILM, and RISM UK and Ireland. We anticipate that in-
tegrating heterogeneous metadata sources into one ex-
ploratory search user interface will allow our users to 
spend their research time more efficiently, make previ-
ously intractable search queries tractable, and ultimately 
open up new avenues for musicological study.  

musicSpace is exploring and developing numerous 
methods for enhancing and generating additional meta-
data from our data partners’ particularly heterogeneous 
data sets, and a primary focus is the development of web-
based UIs and the longitudinal analysis of their effects on 
musicological scholarship and human-computer interac-
tion. This distinguishes our work from that of  
previous notable projects concerned with music data 
source integration, such as Variations2 
<http://variations2.indiana.edu> and EASAIER 
<http://www.easaier.org> [2, 3]. The “mSpace” frame-
work and interaction layer of musicSpace has been de-
signed and evaluated [4, 5] specifically to support multi-
ple browsing and exploratory search tactics that go be-
yond common keyword search. Our user interface gives 
the provenance of all records, and is designed not only to 
help musicologists discover relevant resources, but also 
to enable them to go from musicSpace to those resources 
in their original context in a single click. Beyond these 
core features, there are numerous support services based 
on related usability research to assist with collecting,  

 

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. 
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Figure 1. The musicSpace interface in use.  

 
organising, exporting, and sharing information relevant 
to a particular query. It should also be noted that as mu-
sicSpace is a Web2.0 application, a web browser is all 
that is required to access the interface, a screenshot of 
which is given in Figure 1.  

In this paper we give an overview of our work so far 
and outline the findings of our initial trial of the music-
Space browser interface. To begin, we review the motiva-
tion for our approach to supporting musicological knowl-
edge building. 

2. MOTIVATION: BARRIERS TO EFFICIENCY 

2.1 Database Heterogeneity 

The digitisation of musicology’s central resources has 
revolutionised the research process, yet dispersal of mate-
rial across numerous libraries and archives has now been 
replaced by segregation of data into a plethora of discrete 
and disparate online database resources. These are usu-
ally segregated according to media type (text, image, au-
dio, video), date of publication, subject, language, and/or 
copyright holder. Yet typical musicological research cuts 
across these artificial divisions, meaning that musicolo-
gists are routinely forced to consult an extraordinarily 
heterogeneous body of online data repositories. In short, 
a significant amount of valuable research time is ex-
pended in establishing basic factual information, not 
 

 
 
because the data is unavailable, but because a lack of da-
tabase integration requires extensive manual collation of 
discovered data. This problem of heterogeneity is exacer-
bated by the fact that search interfaces to data providers’ 
content remain almost universally rooted in the now 
somewhat dated ‘textbox-based’ search paradigm. Not 
only does the current situation mean that users’ research 
time is used inefficiently, but it also means that large, 
complex data queries are essentially intractable.  

These barriers can be a major disadvantage at any 
stage of the research process. For example, a musicolo-
gist trying to mould an inchoate thought about Monte-
verdi’s madrigals into a well-formed research question 
would need to execute the same keyword searches sev-
eral times each because there are several relevant data 
sources. Similarly, because of the segregation of data into 
disparate, discreet databases and the limitations of cur-
rently deployed search interfaces, real-world multi-part 
queries such as “which scribes have created manuscripts 
of Monteverdi’s works, and which other composers’ 
works have they inscribed?” or “which singers have re-
corded the operas that Mozart composed during the 
1780s, what other operatic roles have they taken, and 
where can I get hold of their recordings?” have to be 
broken down into their component parts, queried sepa-
rately using multiple data sources, and finally collated, all 
of which can take hours or even days.  

Recently, a number of academic publishers, including 
Oxford University Press (with Oxford Music Online 
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<http://www.oxfordmusiconline.com>) and Alexander 
Street Press (with Alexander Street Press Music Online 
<http://muco.alexanderstreet.com>), have recognised the 
benefits of integrating their musicological data sources 
[6, 7]. However, because their portals only provide ac-
cess to their own data repositories, and because their in-
terfaces rely on existing textbox-based search technol-
ogy, their work only takes us partway towards overcom-
ing the barriers to research highlighted above; there re-
mains a pressing need for further integration of data 
sources and better interaction support for more diverse 
search paradigms.  

2.2 “Intractable” Queries 

The musicSpace team includes musicologists who spe-
cialise in four pilot research areas: Monteverdi re-
cordings, Schubert’s songs, nineteenth-century opera 
buffa, and twentieth-century electroacoustic music. At 
the start of the project we asked our musicologists for ex-
amples of queries that they considered intractable (or, 
more specifically, not readily tractable) using the current 
search interfaces of our data providers, such that they had 
largely given up on a particular line of enquiry, and 
which they hoped that musicSpace would be able to fa-
cilitate. The list of queries suggested included:  

A. Which scribes have created manuscripts of a 
composer’s works, and which other composers’ 
works have they inscribed?  

B. Which performers have recorded Monteverdi’s 
madrigals, and what else did they record in the 
same years?  

C. Which poets have had their poems set as songs 
by Schubert, which other song composers have 
also set them, and where can I get recordings of 
these settings?  

D. Which singers have sung the role of Malatesta in 
Don Pasquale, and what else have they sung?  

E. Which comic operas were composed in the nine-
teenth century and premiered in the twentieth?  

F. Which electroacoustic works were published 
within five years of their premier?  

It will be noted that all the above queries have multiple 
parts, and, therefore, if one were to use current search 
interfaces, one would have to break them down into their 
component queries and manually collate the results. 
There are several further obstacles to tractability. Queries 
B, C, D and F call (in particular) for several data sources 
to be consulted (for Queries B and D, for example, one 
would want to consult both the Naxos Music Library and 
the British Library Sound Archive catalogue), and so data 
source integration would clearly be beneficial in these 
cases. In addition, increased metadata granularity is a 
necessary prerequisite for the tractability of Queries A, C, 
D and F (for example, in Query A one would rely on 
metadata in RISM, yet although it is possible to use 
RISM’s interface to search by “Person,” it is not possible 
to further restrict this  to “Composer” or “Scribe”). Fi-
nally, in addressing Queries C, E and F one would neces-

sarily wish to consult the works lists in Grove Music 
Online. However, because these works lists are not 
marked up semantically, a system to generate relevant 
metadata from the raw data is needed (this particular is-
sue is currently being addressed by musicSpace, and will 
be reported on at a later date).  

3. EXPERIMENTAL SOLUTIONS: APPARENT 
INTEGRATION 

There is at least one seemingly obvious solution to the 
above query dilemmas: enable integrated real-time query-
ing over all the available metadata, and enable people to 
use that metadata to guide their queries. The associated 
issues for this solution also imply that all data that could 
be construed as useful, even if buried in the database re-
cords, is extracted in some way, and that, similarly, there 
is an interaction approach that will enable this metadata 
to be explored effectively to formulate the kinds of rich 
compound queries described above.  

To this end, we have taken a dual approach to address-
ing this exploration problem: designing back-end services 
to integrate (and, where necessary, surface) available 
(meta)data for exploratory search; and providing a front-
end interface to support rich exploratory search interac-
tion. We discuss these components below.  

3.1 Multi-Source Integration  

Despite advances in the development of protocols for 
shareable metadata in the form of the Open Archives Ini-
tiative <http://www.openarchives.org> [8], federated 
search [9], and, more recently, the application of Seman-
tic Web technologies to the domain of music [10, 11], 
only a very small number of musicSpace’s data partners 
offer such systems for the harvesting of metadata. This is 
typically either because funds are presently unavailable to 
meet the costs of implementing such systems, or, in the 
case of some data providers, because metadata is consid-
ered to be as much of an intellectual property asset as 
data content itself. Hence our data partners’ data sets are 
currently provided to us manually.  

We have thus taken a purpose-driven approach to uni-
fying the metadata from our data partners, which is sup-
plied adhering to a number of different schemas and seri-
alisations (MARCXML, MODS XML, custom MARC, 
and source-specific XML). In order to unify these 
sources for the purposes of cross-source exploration, we 
have created static mappings from the schemas used by 
each data provider to a two-level hierarchy based on 
metadata type. The upper level of the hierarchy includes, 
for example, “Person” and “Score,” while the sub-level 
respectively adds granularity to “Composer” and “Manu-
script Score” (among other possibilities). In some cases 
we were able to directly map a record field to our type 
hierarchy, while in other cases some light syntactic 
and/or semantic analysis was performed on the source 
data. For example, some sources denote a person with 
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their name, followed by their role in that record, e.g. “J. 
S. Bach (composer).” In this case we extract the name 
and role as two individual related facts to allow us to as-
sociate “J. S. Bach” as “Composer” in the record, rather 
than simply “J. S. Bach (composer)” as “Person.” This 
pre-processing of the metadata adds granularity to the 
source data and allows richer filtering and exploration 
through the browsing interface. We developed a tool to 
map the imported data to an RDF representation of our 
type hierarchy. By using RDF for the integrated set of 
data, we can make use of the many benefits of Semantic 
Web technologies, one of which is the facility to create 
multiple files of RDF at different times and using differ-
ent tools, assert them into a single graph of a knowledge 
base, and query all of the asserted files as a whole.  

One of the challenges in aligning heterogeneous data 
sources is that of entity co-reference. It is rare that data 
providers share identifiers for entities, and as such, we 
have to perform co-reference mapping ourselves. For the 
musicological data we are aligning in musicSpace, a 
straightforward string matching system is appropriate to 
match entities across sources; we use Alignment API 
[12], which uses Wordnet. To ensure greater confidence 
in these matches, we have developed a semi-automated 
system that enables musicologists to check the mappings 
and inform the system of any changes that need correct-
ing. Whenever a mapping is automatically performed, 
our system adds the mapping to a gazetteer, documenting 
the two strings that were matched along with a small 
amount of contextual metadata from both records to aid 
understanding. The gazetteer is then ordered by confi-
dence, so that a musicologist – with reference to the Li-
brary of Congress Authorities website 
<http://authorities.loc.gov> – can check over the low-
confidence mappings carefully, update the gazetteer (ei-
ther to remove the mapping, alter it, or provide a re-
placement), and inform the co-reference software of the 
changes. By using this approach we can be sure that the 
data sources are aligned properly, and that any updates 
from our data partners will re-use the manually corrected 
gazetteers.  

Because of the legacy issues that many of our data 
partners have to contend with, there are inevitably short-
comings and inconsistencies in their database structures, 
schemas, and records. But by using gazetteers in the 
string matching process, adding contextual metadata, and 
increasing granularity as records are imported, we are 
able to negate any such data quality issues. In addition, 
our approach means that we do not have to maintain cop-
ies of our data partners’ databases for ourselves; rather, 
we provide a user interface service that provides a single 
point of entry to our data partners’ repositories.  

3.2 User Interface  

Data sources integrated into musicSpace are explored via 
a customised version of the “mSpace” faceted browser 

[4, 5], which provides a scalable web-based faceted 
browsing interface for large-scale data sets and utilises 
the AJAX client-server query mechanism to improve re-
sponse times. Faceted browsing is an alternative com-
plementary search paradigm to keyword searching, the 
latter currently being the most commonly deployed form 
of large-scale data exploration. The faceted interface cus-
tomisation used by musicSpace presents columns that list 
attributes from a number of facets of the data, such as 
“Date,” “Musical Work,” “Composer,” and “Genre,” al-
lowing the user to make selections in these facets in order 
to filter down results. The interface is reactive, in that the 
lists of facets are updated every time a selection is made, 
so that subsequent choices are limited to those that would 
yield results. 
 

 
 
Figure 2. Scribes associated with the composer “Monte-
verdi, Claudio.”  
 

 
 
Figure 3. Composers associated with the scribe “Immyns, 
John.”  
 

The faceted and reactive nature of the interface en-
ables complex queries to be addressed. Let us consider 
the query “which scribes have created manuscripts of 
Monteverdi’s works, and which other composers’ works 
have they inscribed?” In Figure 2, the musicSpace inter-
face is showing three facets: “Composer,” “Copy-
ist/Scribe,” and “Manuscript Score.” The selection “Mon-
teverdi, Claudio” in “Composer” has been made, as well 
as “Immyns, John” in “Copyist/Scribe,” and the interface 
has filtered the results in “Manuscript Score” to a single 
record that matches these selections: “Giovinetta pianta, 
La.” Following from this interaction, in Figure 3 the user 
has dragged the column “Copyist/Scribe” leftwards, so 
that the selection “Immyns, John” now filters on the 
“Composer” column, as well as the “Manuscript Score” 
column, so that the user can see works by other compos-
ers that had John Immyns as the scribe. 
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3.3 Saving, Exporting, and Sharing Findings  

Each interaction with the musicSpace interface generates 
a specific URL that, when re-entered into a web browser 
at a later stage, will return users to exactly that same 
point in the data exploration process. Thus users can 
pause and resume their research at any time by using the 
bookmarking feature common to all web browsers, and, 
moreover, they can save, share, and disseminate their 
findings with colleagues, students, and the wider internet 
by using Web2.0 services such as del.icio.us, Facebook 
and StumbleUpon, all of which can be accessed by click-
ing the appropriate icon in the musicSpace interface. Ex-
porting of findings via email is also supported. In addi-
tion, musicSpace has the facility to allow users to access 
and export metadata as RDF (using the Music Ontology 
<http://musicontology.com> [11] as a data model), but 
licensing restrictions with our data partners currently pre-
vent us from doing so for all data sets.  

4. EVALUATION 

Since the mSpace UI has been evaluated for exploratory 
search usability in a variety of contexts, our main focus 
in testing the musicSpace application is its impact on re-
search: how well is it supporting the kinds of queries mu-
sicologists want it to enable? And, likewise, what new 
kinds of research questions, as yet unanticipated, may it 
enable? Towards answering these questions, we have re-
cently completed an early pilot study. We describe our 
findings below. While these are early stage tests, our in-
tention in outlining our findings here is to have knowl-
edge of our approach and preliminary results available 
within the Music IR community in order to enhance en-
gagement with the project.  

4.1 First Phase  

A version of the musicSpace interface was released inter-
nally to a team of six musicologists for an initial period 
of testing and evaluation on 29 April 2009, and their 
feedback was very encouraging. Although this initial re-
lease did not integrate our full spread of data sources, 
testers nevertheless reported significant improvements 
with search speed and ease:  

• “All the information showed up very quickly, 
and it was easy to find material. It was really 
good to have different kinds of material in the 
same place.”  

• “[musicSpace offers] a speedier way to research 
crossed search pathways.”  

•  “Excellent interface – very simple to under-
stand.”  

Testers were also impressed with the way that music-
Space’s faceted interface allowed for browsing around a 
subject and for instantaneous paradigmatic shifts in 
search focus:  

• “I would recommend musicSpace for its ability 
to manipulate queries in order to get results that 

you wouldn’t otherwise be able to get [without 
starting over].”  

• “I liked the ability to explore around a topic 
once I’d identified something of interest.”  

• “The ability to switch columns around and add 
new columns was most useful.”  

Aside from these early hoped-for indications that mu-
sicSpace will provide a quicker and more flexible way to 
explore a variety of musicological data sources, testers 
also reported that increased search data granularity (as 
compared to that of our data partners’ search interfaces) 
was a substantial benefit. For example, a number of test-
ers were pleased by musicSpace’s facility to browse by 
opera character: 

• “[Without using musicSpace] it would not be at 
all easy to do a character search. You would 
have to use printed reference books like Pipers 
Enzyklopädie des Musiktheaters [13], but even 
this does not have an index of characters, so 
you’d have to look at the entry for each opera 
and draw up character lists by hand. You would 
also have to know what you were looking for 
before you started out!”  

• “I used musicSpace to explore how many operas 
have a character named Alceste. This informa-
tion simply isn’t get-at-able using other search 
interfaces – you’d have to sort through the in-
formation on your own.”  

There was similar enthusiasm for musicSpace’s ability 
to browse by scribe and the former owner of manuscripts.  

4.2 Future Phases  

Over the coming months there will be incremental re-
leases of musicSpace, each expanding the data set, refin-
ing our data mappings, and polishing the UI. This process 
will culminate in a broader public release towards the end 
of 2009, which will enable us to assess its real-world ef-
ficacy as a research tool.  

5. CONCLUSION 

Early results from our testing of musicSpace’s ability to 
enable rapid and effective exploratory search across het-
erogeneous musicological sources are promising. Our 
testers clearly appreciated the speed gains of integrating 
data sources; in fact the only recurring negative com-
ments from testers during our initial period of evaluation 
concerned their desire to see still more data repositories 
integrated into musicSpace. In addition to data source in-
tegration, both increased data granularity and the flexibil-
ity of faceted browsing were found to be very beneficial. 
These three features enabled testers to explore data in a 
way that had not previously been possible, and a number 
of intractable queries were indeed made tractable.  

In his keynote address to this conference in 2005, 
Nicholas Cook predicted that “working with larger data 
sets will open up new areas of musicology” [14]. But if 
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Cook’s prediction is to be realised, then increasing the 
size and number of data sets that musicologists work with 
both demands and allows for better systems to integrate 
those data sets, and also for far more sophisticated sys-
tems for manipulating data. To this end, our research 
demonstrates a potentially powerful approach for helping 
musicologists to deal intelligently and productively with 
large and heterogeneous data sets. We believe that mu-
sicSpace will allow musicologists to find the information 
they need more easily, and to discover information that 
they did not think to look for. In so doing, it may also en-
courage additional speculative – but potentially fruitful – 
searches, thus enabling the discovery of new knowledge.  
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ABSTRACT

There exist many methods for deriving music similarity as-
sociations and additional variations are likely to be seen
in the future. In this work we introduce the Similarity
Ontology for describing associations between items. Us-
ing a combination of RDF/OWL and N3, our ontology al-
lows for transparency and provenance tracking in a dis-
tributed and open system. We describe a similarity ecosys-
tem where agents assert and aggregate similarity statements
on the Web of Data allowing a client application to make
queries for recommendation, playlisting, or other tasks. In
this ecosystem any number of similarity derivation meth-
ods can exist side-by-side, specifying similarity relation-
ships as well as the processes used to derive these state-
ments. The data consumer can then select which similarity
statements to trust based on knowledge of the similarity
derivation processes or a list of trusted assertion agents.

1. INTRODUCTION

The process of music recommendation in a general sense
involves drawing associations between music-related items
- i.e. artist a is similar to artist b so recommend b if the user
expresses interest in artist a. We believe that similarity is
the underlying “currency” for recommendation. This real-
ization drives our interest in developing a formal model for
similarity.

Similarity is a difficult concept. The exact nature of
similarity has been discussed extensively in cognition [26,
28], philosophy [22, 14], and computer science [27, 17].
In the field of music information retrieval we have been
less concerned with the nature of similarity and more con-
cerned with finding ways of calculating it [18, 20, 5]. This
pragmatic approach has led to a wealth of methods for de-
riving music similarity statements from audio analysis and
contextual metadata.

But if we want to develop a generalized model for mu-
sic similarity, it becomes more complicated. As Wittgen-
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stein puts it in his seminal work Philosophical Investiga-
tions “Some things share a complicated network of simi-
larities overlapping and criss-crossing: sometimes overall
similarities, sometimes similarities of detail.” Music would
definitely be such a thing. Discussing a pair of songs, we
can have a dizzying array of similarity options: the au-
dio could have timbral similarity, rhythmic similarity, or
melodic similarity; the contexts of the songs could make
them similar in terms of lyrical content, cultural meaning,
or shared listenership; or an authoritative source such as a
music critic or website could judge the songs to be simi-
lar without providing any additional justification. Further
complicating matters, similarity is subjective - what one
individual or agent considers similar another may not.

Because similarity can be so nebulous and contentious
we purpose a model for expressing similarity that foregoes
hierarchical classifications and instead focuses on prove-
nance and transparency. Instead of focusing on how a par-
ticular similarity statement is related to another similarity
statement, we focus on who made the similarity statement
and why.

Our approach is based on the Resource Description Frame-
work (RDF) [4, 9] and the Web Ontology Language [3].
While these technologies provide an impressive amount of
expressiveness and form the foundation of the Semantic
Web, we augment their expressiveness with N3 [7]. The
facilities for quoting formulae provided by N3 allows us
to use the N3-Tr framework [23] for defining similarity
derivation workflows.

In Section 2 we develop our model in the form of a Web
ontology, briefly discussing some of the supporting tech-
nologies and previous work. In Section 3 we describe our
vision of a similarity ecosystem where a number of agents
aggregate and publish similarity statements in the Web of
Data while music applications query these statements for
recommendation or playlist generation. In Section 4 we
provide a cursory evaluation of our ontology. In Section 5
we review some related work and finally provide some
conclusions and directions for future work in Section 6.

2. AN ONTOLOGY FOR SIMILARITY

Because of its decentralized nature, wide deployment base,
and robust technological underpinnings we use the RDF/OWL
framework [4, 3, 9] for defining our Similarity Ontology.
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This allows us to use the concepts, practices, and resources
of Linked Data [8]. In the Linked Data paradigm, every
resource and concept is given a Unique Resource Identi-
fier (URI). These URIs can be dereferenced using HTTP
to provide additional information and links to other rele-
vant URIs.

2.1 Previous Ontologies

RDF [4] allows us to express information in the form of
triples: subject, predicate, object statements. Generally
the subject will be an instance of a class concept while the
predicate will be an instance of a property. The object will
also be an instance of a class concept but not necessarily
the same class as the subject. Classes and properties are
defined in an ontology document using the Web Ontology
Language (OWL) [3] or the RDF Schema (RDFS) [9] or a
combination of both. These technologies together enable
what is commonly referred to as the Semantic Web or Web
of Data.

These concepts have been successfully applied to the
domain of music with the Music Ontology [24, 23]. The
Music Ontology allows us to express a wide variety of
music-related information as structured data in a decen-
tralized fashion. It has been adopted by the Linked Data
community and is used extensively throughout the Web of
Data as a means of describing tracks, artists, performances,
and related data.

The Music Ontology provides a basic facility for deal-
ing with music similarity. The mo:similar_to prop-
erty allows one to assert a similarity relationship between
two items. However, this property relation does not pro-
vide any further information - How was the similarity de-
rived? Who derived it? How similar are the two items?

2.2 Association as a Concept

Instead of treating similarity or, to use a broader term,
association as a property, we treat association as a class
concept. This allows us to reify the association in or-
der to provide additional information about it. We in-
troduce the class sim:Association and a sub-class
sim:Similarity as the key concepts in our ontology.
A simple similarity example is presented in the following
listing 1 :

:track01 a mo:Track .
:track02 a mo:Track .
:me a foaf:Person .
:mySimilarity a sim:Similarity ;

sim:element :track01 ;
sim:element :track02 ;
sim:weight "0.90" ;
foaf:maker :me .

We introduce the namespace sim to refer to our Similar-
ity Ontology. First we define two tracks using the cor-

1 We use N3 [6] in all our code listings. Each block corresponds to
a set of statements (subject, predicate, object) about one subject. Web
identifiers are either between angle brackets or in a prefix:name notation
(with the namespaces defined at the end of the paper). Universally quan-
tified variables start with ?. Existentially quantified variables start with
:. Curly brackets denote a literal resource corresponding to a particular

RDF graph. The keyword a correspond to the identifier rdf:type. The
keyword => correspond to the identifier log:implies.

responding Music Ontology concept mo:Track. The
identifiers of these tracks can give entry points to addi-
tional information in other data sets (i.e. linking to db-
pedia.org 2 URIs or Musicbrainz 3 identifiers). We define
:mySimilarity to actually make the similarity state-
ment. The sim:element property is used to refer to the
tracks involved in this similarity and the foaf:maker
property refers to the agent which asserted this similarity.
Also note we can assign a numerical weight value to the
similarity using the sim:weight property.

Now we have a method for asserting a similarity state-
ment and reifying that statement to some extent. However,
in the above example we only know who is making the
similarity statement, we do not know how or why.

2.3 Provenance and Transparency

We introduce the sim:AssocationMethod concept to
identify the process used to derive a similarity statement.
This enables some interesting functionality when consum-
ing the associations data - a consumer application can elect
to include only similarity statements that are tied to a par-
ticular sim:AssocationMethod. This is discussed fur-
ther in section 3.1. For now let us consider the following
N3 listing:

:timbreSimilarityStatement
a sim:Similarity ;
sim:element :track01 ;
sim:element :track02 ;
sim:weight "0.9" ;
sim:method :timbreBasedSimilarity .

:timbreBasedSimilarity
a sim:AssociationMethod ;
foaf:maker :me ;
sim:description :algorithm .

:algorithm = {
{ { ?signal1 mo:published_as ?track01 .

?signal1 sig:mfcc ?mfcc1 .
?mfcc1 sig:gaussian ?model1 }

ctr:cc
{ ?signal2 mo:published_as ?track02 .

?signal2 sig:mfcc ?mfcc2 .
?mfcc2 sig:gaussian ?model2 } .

(?model1 ?model2) sig:emd ?div .
?div math:lessThan 0.2 } =>
{ _:timbreSimilarityStatement

a sim:Similarity ;
sim:element ?track01 ;
sim:element ?track02 }

}

Here :timbreBasedSimilarity is the entity that de-
scribes our process for deriving similarity statements. Note
that this entity is only described by three triples - its class
type, a property for the creator and the description.

N3 extends the semantics and syntax of RDF in a use-
ful and intuitive way. It allows for the existence of RDF
graphs (a set of triple statements) as quoted formulæ. We
can then make statements about the entire RDF graph pro-
viding metadata about that graph. In this way N3 is sim-
ilar to Named Graphs [10], the main difference being that
N3 considers RDF graphs as literals (their identity is their
value), whereas Named Graphs consider graphs as entities
named by a web identifier.

2 http://dbpedia.org
3 http://musicbrainz.org/
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In the above example, when we follow the sim:description
property we see an RDF graph :algorithm denoted by
the { and } characters. This RDF graph provides a dis-
closure of the algorithm used in the similarity derivation
process. In this case, MFCCs are extracted and Gaussian
mixture models are created concurrently for the two sig-
nals, and an earth mover’s distance is calculated between
models. Depending on that distance, we output a similar-
ity statement. If more details are needed about a particular
computational step, e.g. if we want to gather more infor-
mation about the MFCC extraction step, we can look-up
the corresponding web identifier, in this case sig:mfcc.

The algorithm is specified using the N3-Tr framework
which uses transaction logic and N3 to describe signal pro-
cessing workflows. Additional details on N3-Tr are avail-
able in [23].

Here, the N3-Tr formulæ describe the workflow sup-
porting the similarity statement. We could forego the use
of the sim:AssociationMethod concept and use the
log:supports built-in predicate 4 in the N3 framework.
However, as we will discuss in section 3.1, binding similar-
ity workflows to the sim:AssociationMethod con-
cept allows us to make simple, useful queries (i.e.“show
me all similarity derivation methods available in the sys-
tem”).

Finally, note that we bind the foaf:maker property
to the association method rather than directly to the asso-
ciation itself. As in the above example we can make our
association method transparent, or we can provide a min-
imum amount of information when dealing with a “black
box” similarity derivation processes. In either case it is
a matter of best practice to create an association method,
even if we do not desire full transparency because this al-
lows data consumers to make simple queries.

As indicated in Figure 2.3, our framework also supports
the grounding of similarity statements directly through the
property sim:grounding. This property associates a
similarity statement with the instantiated N3-Tr formulæ
which enabled its derivation. In the above example, we
would link our timbre similarity statement directly to a spe-
cific workflow with references to the calculated values at
each step.

3. A SIMILARITY ECOSYSTEM

The data model provided by the Similarity Ontology al-
lows for lots of flexibility in specifying similarity state-
ments. This flexibility is balanced by the built-in mecha-
nisms for provenance tracking. By following the method
property in a similarity statement we know who made the
statement and why. When consuming similarity data, we
select statements by deciding which agents and algorithms
to trust. While it is entirely possible to make a similarity
statement within this framework completely anonymously,
such statements are likely to be ignored by data consumers.
Instead the statements from trusted agents or transparent
algorithmic processes are likely to be selected by data con-

4 see http://www.w3.org/DesignIssues/N3Logic

Figure 1. Using the Similarity Ontology. As additional
properties are bound to our association and association
method statements, we achieve greater transparency.

sumers. In a music recommendation application, this al-
lows for more transparent recommendations - providing
the end user with the source or process used to make the
recommendation. Intuition as well as recommender system
research suggest users are more likely to trust transparent
recommendation processes [11].

Beyond the specification of the Similarity Ontology, we
envision a broader ecosystem where autonomous, semi-
autonomous, and human agents operate in parallel, making
similarity statements about music tracks and artists while
providing provenance and justification for these statements.
A simple diagram illustrating how this ecosystem might be
structured is provided in Figure 2.

An enabled client music application publishes the end
user’s listening habits to the Web of Data. Similarity agents
operate on the Web of Data and publish their own mu-
sic similarity statements - perhaps consuming the listening
habits of end users as well as other data. These statements
refer to specific URIs for each track and artist. Similarly,
the client music application links the content in the user’s
personal collection to URIs using methods such as those
detailed in [25]. This avoids ambiguity - we can be sure
that the similarity statements are referring to the specific
resource in which we are interested. The similarity state-
ments made by various agents are aggregated into one or
more data stores for querying. The client music applica-
tion, perhaps responding to a user request, can query the
data store for similarity statements from trusted agents in-
volving the target resource (i.e a track or artist). The query
returns similarity information that can be used for content
recommendations or playlist generation.

3.1 Similarity Queries

Queries in this similarity ecosystem would be made using
the SPARQL query language [1]. The SPARQL specifica-
tion is a W3C recommendation and the preferred method
for querying RDF graphs. As mentioned before, the de-
sign of the Similarity Ontology allows for the construction
of simple queries to retrieve similarity information. The
following query retrieves artists similar to a target artist as
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Figure 2. The music similarity ecosystem. Similarity agents operate on structured data to create similarity statements. Such
statements are aggregated in a data store and queried by a client music application to provide recommendations, playlists,
and other functionality.

stated by a specific trusted method:

SELECT ?artists WHERE {
?statement sim:method <http://trusted.method/uri> .
?statement sim:element <http://target.artist/uri> .
?statement sim:element ?artists . }

Notice we only have to include a triple pattern for our tar-
get resource, a triple pattern for our trusted agent, and a
triple pattern to select the similar artists. Of course this is
a very simple example and in real-world applications we
include additional optional patterns and conjunctions for a
more expressive query.

In an initialization step, an application could query avail-
able data sources to determine exactly what association
methods and asserting agents are available. The applica-
tion would use the following query:

SELECT DISTINCT ?method WHERE{
?method a sim:AssociationMethod . }

The application could then filter through the results and,
perhaps with some input from the end-user, decide which
similarity agents to trust.

3.2 Similarity and Recommendation

While we hold that similarity is the basis of recommenda-
tion, we also acknowledge that similarity and recommen-
dation are not identical. By no means does the ecosystem
proposed here solve the problems of recommender sys-
tems - rather it provides a new distributed cross-domain
platform on which future recommender systems might be
built.

While an item-to-item recommendation system fits
quite naturally into this similarity ecosystem, we can also
imagine a collaborative filtering-style user-item recom-
mendation system. Each user in the system is treated
as an sim:AssocationMethod instance. Each user’s
method makes a set of statements asserting that the tracks

found in that user’s personal collection are similar to each
other. Then an additional sim:AssocationMethod
instance is used to match users with each other based on
the contents of their respective music libraries. Finally, for
a given user, the recommendations for that user are an ag-
gregation of the similarity statements derived from the as-
sociation methods bound to the most similar users.

Also note that the similarity ecosystem fosters hybrid
recommendation approaches. Because the similarity state-
ments are made using common semantics and syntax, we
can easily combine and compare these statements to derive
recommendations or new similarity statements.

4. ONTOLOGY EVALUATION

While our Similarity Ontology is very flexible and poten-
tially very expressive, there is one import limit to its ex-
pressiveness - there is no mechanism for expressing dis-
similarity. This is an intentional design decision that fol-
lows from the open world assumption - we cannot know
all instantiations of similarity, and what we consider dis-
similar, another agent may consider similar.

As a cursory evaluation of our Similarity Ontology we
present several real-world similarity scenarios and show
how our ontology can accommodate these examples.

4.1 Directed Similarity

As often noted in psychology and cognition [28], similarity
is not always symmetric. For example in the domain of
music we may wish to express an influence relationship
or we may simply have a similarity derivation algorithm
that is non-symmetric. This leads to a directed similarity
relationship. To accommodate such scenarios we introduce
sim:subject and sim:object as sub-properties of
the sim:element property. This allows us to specify a
directed similarity statement where the subject is similar
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to the object, accepting that the reverse is not necessarily
true.

4.2 Contextual Similarity

Because music is a complex construct deeply ingrained in
culture and society, we often want to make music similar-
ity statements that relate to the context of musical works
rather than the content of the musical works themselves.
Let us consider an example from popular rap music. In the
mid to late 1980s a series of songs were released disputing
the place of origin of the musical genre hip hop launching
a multi-faceted feud that became colloquially referred to
as The Bridge Wars 5 . By simply creating an association
method that asserts similarities between artists and tracks
related to this feud we can accommodate this scenario.

4.3 Personal Associations

The emotional affect of music can be highly personal. A
set of associations between music artists or tracks might
be unique for one particular individual. Consider the fol-
lowing statement, “When a first year student at college, I
dated a girl who listened to Bob Marley and David Bowie”
- while this association between David Bowie and Bob
Marley might hold weight for the narrator, it is likely that
few other individuals would share this association. How-
ever, the narrator, for any number of reasons, may wish
to express this association anyway. This is entirely possi-
ble in our ontological framework. The narrator can sim-
ply create an sim:AssociationMethod that asserts
similarity statements based on the musical taste of his ex-
girlfriend.

5. RELATED WORK

Semantic Web technologies have been applied to music
recommendation in previous works [12, 21] although, to
the best knowledge of the authors, the present work is the
first effort to develop a comprehensive framework for ex-
pressing music similarity on the Web of Data.

The Sim-Dl framework provides a basis for deriving
similarities from semantic information within a description
logic paradigm, although no formal syntax for expressing
similarity results is provided [15]. Similarly, the iSPARQL
framework extends SPARQL to include customized simi-
larity functions [16] but fails to provide a formal method
of expressing the resulting similarities.

Although the N3-Tr framework provides a clean and ex-
tensible syntax for describing similarity derivation work-
flows, alternative frameworks can be used as well. The
Proof Markup Language provides a flexible means for jus-
tifying the results of a Semantic Web query [13].

The vast body of work on music similarity and music
recommendation [18, 5, 20, 11] provides a set of templates
for designing music similarity agents that might operate in
our purposed ecosystem.

5 http://en.wikipedia.org/wiki/The_Bridge_Wars

Knowledge management systems for music-related data
such as Pachet’s work [19] and more specifically the ontol-
ogy engineering of Raimond [24, 23] and Abdallah et. al
[2] provide the basis for the similarity ecosystem. Without
the Music Ontology framework for describing music meta-
data and the technology and infrastructure provided by the
Linked Data community - including Muscibrainz URIs for
songs and artists and data publishing guidelines - the Sim-
ilarity Ontology would be unusable.

6. CONCLUSIONS AND FUTURE WORK

We have presented an ontological framework for describ-
ing similarity statements on the Web of Data. This on-
tology is extremely flexible and capable of expressing a
similarity between any set of resources. This expressive-
ness is balanced by transparency and provenance, allowing
the data consumer to decide what similarity statements to
trust. We have shown hows this framework could exist as
the foundation for a broader music similarity ecosystem
where autonomous, semi-autonomous, and human agents
publish a wealth of similarity statements which are com-
bined, consumed, and re-used based on provenance, trust,
and application appropriateness.

We have suggested how similarity algorithms can be
made transparent. We have adopted the N3-Tr syntax for
describing similarity derivation workflows. In future work
we plan to extend this syntax and the supporting ontolo-
gies to better enable the publication of similarity derivation
workflows. Furthermore we hope to develop a series of
recommendations for best practice when publishing such
workflows to maximize their usefulness and query-ability.

We also plan to adopt a method of digitally signing sim-
ilarity statements in our ecosystem using terms available in
the WOT RDF vocabulary 6 . This would allow agents to
sign similarity statements using Public Key Cryptography
to avoid “spam” similarity statements.

While our Similarity Ontology was designed with mu-
sic similarity in mind, it is by no means limited to the do-
main of music. As we have shown, the framework is both
flexible and extensible. We leave it to future work to ex-
plore how this framework might be applied in different do-
mains and across domains.

7. NAMESPACES

The following namespaces are used throughout this work:

@prefix mo: <http://purl.org/ontology/mo/>.
@prefix sim: <http://purl.org/ontology/similarity/>.
@prefix foaf: <http://xmlns.com/foaf/0.1/>.
@prefix math: <http://www.w3.org/2000/10/swap/math#>.
@prefix log: <http://www.w3.org/2000/10/swap/log#>.
@prefix sig: <http://purl.org/ontology/signal/>.
@prefix ctr: <http://purl.org/ontology/ctr/>.
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ABSTRACT 

Musical documents, that is, documents whose primary 
content is printed music, introduce interesting design 
challenges for presentation in an online environment. 
Considerations for the unique properties of printed 
msic, as well as users’ expected levels of comfort with 
these materials, present opportunities for developing a 
viewer specifically tailored to displaying musical 
documents. This paper outlines five design 
considerations for a music document viewer, drawing 
examples from existing digital music libraries. We then 
present our work towards incorporating these 
considerations in a new digital music library system 
currently under development. 

1. INTRODUCTION 

In 2008, the Swiss working group for the Répertoire 
International des Sources Musicales (RISM) project 
began work towards digitizing its national music 
collection. These digitized scores would be incorporated 
into an online catalogue of works, and would allow 
users of this system to view these items online. One 
crucial element for the success of this project was the 
implementation of software that presented these 
documents using musically consistent techniques. 

The presentation of printed musical materials in an 
online environment poses interesting design challenges. 
Music and text documents have superficial 
similarities—they are written or printed on paper and 
bound in books—but they also differ significantly in 
their intended use, complexity of notation and stylistic 
considerations for presentation on the page. 

When displaying music documents in an online 
environment these differences should be taken into 
account. Beyond putting the scanned content online, 
there needs to be consideration for how to show the 
material to users. As we will demonstrate in our 

literature review, the presentation of content can have a 
significant impact on a user’s ability to navigate and 
comprehend the content itself. Next, we will propose 
five design considerations, formulated as requirements 
for implementation in a document viewer for a digital 
music library. Accompanying these design 
considerations we will show specific examples of how 
these have been implemented in existing digital library 
systems. Finally, we conclude with a brief discussion of 
our implementation of these design considerations, as 
well as commentary on possible directions for future 
work. 

2. BACKGROUND 

In his 1984 dissertation, Byrd [1] describes printed 
music—specifically, conventional music notation 
(CMN) —as a “modified coordinate system” that 
encapsulates semantic, syntactic, and graphic 
complexity occurring in four dimensions (pitch, time, 
loudness, and timbre). Accompanying the complexity of 
the music itself are practical considerations that play an 
integral role in the interpretation of the materials, such 
as page layouts, line justifications, and convenient page-
turns. While these considerations are not part of the 
musical content, they are part of the total information 
content of the score. Put another way, while there is no 
one correct way to present the printed music, there are 
many wrong ways to present it that can lead to mis-
interpretation of the music itself. The dimensionality 
and complexity of printed music, Byrd states, exceeds 
the complexity of printed text and is central to 
understanding the problems that exist with 
computerized analysis of these materials.  
 The delivery of information in online environments 
is an area of research that has received quite a bit of 
attention. In particular, Thong et al. [2] show that “[in] 
the context of digital libraries, it not only matters what 
we put on the screen, but how.” They continue: “[the] 
way that information is arranged on the screen can 
influence the users’ interaction with digital libraries 
beyond the effect of the information content.” 
 Additional research has conclusively identified the 
affective relationship between the aesthetic perception 
of the materials and its effect on cognition and learning. 
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Kurosu and Kashimura [3] found that “[users] may be 
strongly affected by the aesthetic aspect of the interface 
even when they try to evaluate the interface in its 
functional aspects.” Building on these findings, 
Tractinsky et al. [4] performed a study of automated 
teller machines and found “strong correlation between 
users’ perception of an interface aesthetics and their 
perception of the usability of the entire system.” They 
postulated that factors of aesthetics and usability can 
play a significant role in the overall satisfaction derived 
from an interface. 
 These studies’ results are congruent with other 
work in the affective nature of human-computer 
interaction. When suggesting that “attractive things 
work better,” Norman [5] (building on studies by Ashby 
et al. [6]) suggests that aesthetic interfaces can lead to a 
greater overall satisfaction in an interaction, which in 
turn can have significant effects on understanding the 
content. Increases in tension or anxiety, caused by 
unpleasant experiences with a system can negatively 
affect cognition of the material, leading not just to an 
unpleasant interaction, but also a decrease in the users’ 
ability to understand the material itself. 
 While most usability research for digital libraries 
has focused specifically on textual materials, there has 
been work done on the evaluation of digital music 
library interfaces. Byrd and Crawford [7] touch on the 
topic of user interfaces for music information retrieval, 
simply stating that they are “hard.” Byrd and Isaacson 
[8] address problems of music representation in a digital 
music library; however, they deal specifically with 
issues of notation layout, and not with interactions with 
digitized print materials. 
 The VARIATIONS project at Indiana University 
has conducted a number of usability studies on their 
system. Fuhman et al. [9] observed that non-musically 
trained users of their system took longer to complete 
musically-oriented tasks than musically-trained users, 
and gave a lower overall subjective rating to interfaces 
designed for displaying musical content. One possible 
explanation for this might be that musically-trained 
users have learned specific techniques for interacting 
with musical materials that are not shared by users who 
are unfamiliar with this content. 
 Finally, the SyncPlayer software [10] has received 
quite a bit of attention as a system that provides an 
easy-to-use interface for navigating score and audio 
representations of music. While this software presents 
an interesting interface for viewing and navigating 
complex scores, it was not included because it has not 
been used in a large-scale, public digital music library 
implementation. 

3. DESIGN CONSIDERATIONS 

As part of the design process for the document viewer, 
we identified five key considerations for designing an 
interface specifically for displaying printed music. 
These were formulated to encapsulate both the musical 
considerations of the documents, as well as some 
behavioural considerations of our target audience—
musicologists and music researchers. For each 
consideration, we examined a number of existing 
systems used for displaying digital documents, musical 
or otherwise. By looking at these systems we were able 
to understand the current state of the art for displaying 
musical items, as well as discover interesting techniques 
to incorporate into our own implementation. 

 For a list of all the systems mentioned here, please 
refer to Table 1. 

3.1 Preserve Document Integrity 
 One of the most common methods for presenting pages 
in a digital library is as a series of images on separate 
web pages, with navigation elements such as ‘next’ and 
‘previous’ links, drop-down menus or hyperlinked page 
numbers as the primary means of navigating through 
the item. This method of document display suggests an 
‘image gallery’ metaphor, rather than representing the 

American Memory Project-Sheet:  
Music from the Civil War Era 

http://memory.loc.gov/ammem/cwmhtml/cwmhome.html 
British Library “Turning the Pages” Project 

http://portico.bl.uk/onlinegallery/ttp/ttpbooks.html 
Chopin Early Editions 

http://chopin.lib.uchicago.edu 
Digital Image Archive of Medieval Music 

http://www.diamm.ac.uk 
Google Books 

http://books.google.com 
Inventions of Note Sheet Music Collection 

http://libraries.mit.edu/music/sheetmusic 
Juilliard Manuscript Collection 

http://www.juilliardmanuscriptcollection.org 
Lester S. Levy Sheet Music Collection 

http://levysheetmusic.mse.jhu.edu 
Neue Mozart Ausgabe 

http://dme.mozarteum.at  
Schubert Manusckripte 

http://www.univie.ac.at/wwtf/schubert 
Sibley Music Library 

http://urresearch.rochester.edu/handle/1802/291 
VARIATIONS Score Prototype 

http://www.dlib.indiana.edu/variations/scores 
World Digital Library 

http://wdl.org 

Table 1. Digital Music Libraries Examined 
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Figure 1. Google Books interface. The inner frame scrolls, 
with item metadata presented in the sidebar.  

 Figure 2. Side-by-side presentation of items in NMA. 
Musical material is presented on the left, and a critical report 
is on the right. 

cohesive original document as a single entity. To 
preserve this cohesiveness, one of our design goals was 
to implement a display metaphor that preserved the 
original document integrity. Google Books, the Neue 
Mozart Ausgabe (NMA), and the VARIATIONS 
prototype viewer provide interesting examples of this 
functionality. These systems present the items as a 
single, scrollable entity embedded within a frame on the 
web page. This allows users to scroll very quickly 
through the item without having to click ‘next’ and 
‘back’ links and wait for the page to reload. 

A different technique was employed by the 
University of Illinois collection and the British 
Library’s “Turning the Pages” project. These presented 
their documents using a book metaphor where users 
could use the mouse to ‘turn’ the pages. As a navigation 
system this was largely a novelty and presented some 
usability challenges for turning one page or many pages 
simultaneously. However, these systems excelled at 
presenting an accurate picture of the original page and 
book layout, an especially important consideration for 
musical materials. 

3.2 Allow Side-by-side Comparison of Items 
Musical documents can be divided into multiple 
physical items, with each item containing a portion of 
the complete musical work. Choir part books and 
orchestral instrument parts are common examples, but 
this can also extend to opera scores and libretti, early 
and later editions of a work, theory treatises and 
criticisms, adaptations, reductions, or various other 
modifications. It is not uncommon for scholars to need 
to consult multiple volumes for a single score. 

Two systems, the Digital Image Archive of 
Medieval Music (DIAMM) and the NMA, had the 
facility for displaying multiple items, but neither of 
them allowed multiple musical items to be displayed 
simultaneously. DIAMM displayed corresponding 
scans from entries in a printed RISM catalogue that was 

digitized, while the NMA displayed scans from a 
published critical report on that piece of music (see 
Figure 2).  

3.3 Provide Multiple Page Resolutions 

When studying older manuscripts or printed works, the 
ability to view small details on a page, such as faint 
pencil markings or smudged note heads, can provide 
valuable information to the scholar. High-resolution 
images provides users with the ability to ‘zoom in’ on 
these markings, while lower resolution ones would 
allow them to move quickly through an entire document 
without having to navigate large pages. 

Most of the systems examined provide more than 
one size of image. Typically, they would provide three 
page image sizes: a ‘thumbnail’ view for quick 
selection and browsing, a ‘browser-safe’ view for fitting 
in a browser, and a ‘high resolution’ view for 
downloading, printing, or further detailed study.  

In two cases, DIAMM and the World Digital 
Library (WDL) provided methods for smoothly 
zooming in and out from the page images. In the case of 
DIAMM, they used an Adobe Flash-based viewer 
called “Zoomify,” typically used for viewing high-
resolution landscape photographs, while the WDL used 
a technology developed by Microsoft for their 
Photosynth viewer (see Figure 3). 

3.4. Optimize Page Loading 

Showing multiple high-resolution document pages 
presents significant challenges for network and 
browsing speeds. Furthermore, we know that our target 
user base often works in environments such as small 
libraries, monasteries, churches, or in rural locations, 
where bandwidth can be at a premium. To address these 
issues, one of our design goals was to only display the  
pages and areas of the page that the user was currently 
viewing. This would preclude the need to download an 
entire document of high-resolution page images if they 
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only wished to consult a single page. 
As mentioned previously, Google Books uses an 

optimization technique that loads page images on 
demand. The Illinois Flip Book (beta) system seem to 
offer this as well, but at high zoom levels it required the 
user to download the whole high-resolution page image, 
slowing down the interaction. 

The viewing system for the Schubert Manuskripte 
library used a segmentation system to display single 
high-resolution scans of a single page. Each page image 
was broken into smaller image tiles that could be 
downloaded in parallel, theoretically speeding up the 
interaction. However, it seemed to use real-time image 
manipulation (e.g., re-sizing and rotating) on the server 
side, meaning that any speed optimization gained in 
parallel download was lost while the user waited for the 
server to recalculate the image. 

3.5. Present Item and Metadata Simultaneously 

The catalogue record of a document often contains 
more information than is immediately available in the 
item itself or can serve to correct erroneous or outdated 
information on the item. For example, some 
compositions have been commonly attributed to the 
wrong composer, or their catalogue of works may have 
updated numbers. Although this seems like a small 
interface consideration, many implementations we 
examined would open images in the current or new 
window, replacing or obscuring the metadata and 
causing users to constantly flip between two browser 
windows or use the ‘back’ and ‘forward’ browser 
buttons to switch between item and item record. 

The reasons for this separation are varied. Some 
systems, e.g., Harvard, DIAMM, the University of 
Illinois, and Juilliard, used document presentation 
software separate from its catalogue to display the 
actual item. Other systems, such as the American 
Memory Project and the Levy Sheet Music Collection, 

separated the catalogue records and the navigation of 
the pages in the item on different web pages. Still 
others, such as the Sibley Music Library and the 
Inventions of Note collection, simply provided their 
items as PDFs to download. 

The Chopin collection offered a “tab” for switching 
between the score and the bibliographic interface, 
(Figures 4 and 5) but switching between the two did not 
maintain the users’ position in the score, reverting them 
to the view of the title page. Google Books and the 
VARIATIONS prototype feature a sidebar with some 
cataloguing information present, but the full catalogue 
entry was on a separate page. 

Figure 4. Bibliographic Description Tab in the Chopin Early 
Editions. 

Figure 5. View Score tab in the Chopin Early Editions. 

4. CURRENT WORK 

While each design consideration we studied in our 
research can be found in several systems that we 
evaluated, our goal was to provide a system that would 
implement all of them. This viewer uses a number of 
technologies adopted from our examination of the 
existing solutions. Figure 6 shows a screenshot of our 
document viewer. 

The unified document display methods found in the 
Google Books and VARIATIONS systems has been 
adopted. It has been enhanced to allow users to scroll 
both vertically and horizontally through an item, based 

Figure 3. Zooming in on a manuscript in the World Digital 
Library 
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on the page orientation of the item (vertical scrolling for 
items in portrait orientation, horizontal for items in 
landscape orientation).  

For musical works with many physical items, panels 
in the viewer allow users to view one to four items 
simultaneously. These panels are synchronized so that 
the location in a score is maintained across all panels as 
the user scrolls through one panel. The synchronization 
is currently limited to movement or section indexing 
that has to be provided by hand by the cataloger. 

In order to provide multiple page resolution while 
keeping page loading optimized at high and very high 
resolutions (600 dpi or higher), the system uses a tiling 
mechanism that separate the images into small tiles, 
enabling it to serve only the displayed part of the 
document. By restricting the download to only the tiles 
that are needed by the user, we avoid the need to 
download the entire high-resolution image to view only 
a specific portion of an image. When combined with the 
unified document approach, this means that users can 
very quickly scroll through a document and zoom in on 
a specific page or set of pages without having to 
download the entire item. 

Figure 6. The Swiss RISM digital music document viewer. 
Three separate documents are displayed in panels in the 
middle of the page and can be scrolled vertically or 
horizontally. Document metadata appears in the lower-left 
panel. 

Finally, the simultaneous presentation of metadata 
was incorporated into the interface by employing a 
sidebar similar to the VARIATIONS prototype. This 
panel can be hidden and shown dynamically, allowing 
users to concentrate on viewing the item but giving 
them easy access to the full catalogue record without 
having to navigate to another page.  

4.1. Technical aspects 

Ruby-on-Rails and MySQL provide the data storage on 
the server side. The client interface uses the ExtJS 

Javascript Framework [11].  
For multiple page resolutions and optimized page 

loading, the system uses the IIP Image Server [12] tiling 
system. The image server separates large, high-
resolution images into separate 256×256 pixel tiles and 
serves them on-demand. 

Javascript Object Notation (JSON) is used as a 
communication language between the database, tile 
server, and user interface. Client and server 
communication is performed asynchronously. From a 
user’s perspective, this means that there are very few 
page refreshes and performance approaches that of a 
native application instead a website.  

To create new documents in this system, the images 
representing the page images are placed in a ZIP file 
and uploaded through the interface. These are then 
unzipped on the server side and processed using the 
VIPS image processing software [13] to create a 
pyramid TIFF [14] file that contains a sequence of 
images at increasingly coarse resolutions, representing 
zoom levels for these images (see Figure 7).  

Figure 7. Pyramid TIFFs contain multiple resolutions of an 
image in a single file. 

When a user requests a document through their web 
browser, the interface translates this into a request for 
the images and zoom level of the pages currently visible 
in the viewer. The images are then served to the client 
as separate tiles and re-assembled as a page image in 
the interface. This is repeated for each page so users can 
scroll through an entire document at very high 
resolutions without waiting for the whole document to 
download.  

The software and display techniques presented here 
will be incorporated into a modular digital library 
system currently under development. Each component 
of this system uses open-source software, and we will 
be releasing this system under an open-source MIT 
license, freely available for implementation in existing 
digital library systems. 
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5. FUTURE WORK 

The design considerations proposed here have not been 
verified by user testing. As part of our ongoing work on 
this software, we plan to study the impact of these 
design considerations on our target audience in real-
world usage situations.  

As part of the ongoing Swiss RISM project, the 
viewer interface will be integrated into the catalogue of 
Swiss musical works available online [15] as the 
documents are digitized. 

6. CONCLUSION 

This paper introduces our work towards a viewer for 
digital music documents, taking into account the unique 
properties of printed music and the expectations of 
users who use these systems. We also expect that 
having an architecture designed specifically for music 
documents will be of great benefit in the long run as it 
should facilitate the integration of other information 
research technologies specific to music, such as 
content-based synchronization or online optical music 
recognition. 
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ABSTRACT

We can see many and strong links between music and hu-
man body movement in musical performance, in dance,
and in the variety of movements that people make in lis-
tening situations. There is evidence that sensations of hu-
man body movement are integral to music as such, and
that sensations of movement are efficient carriers of infor-
mation about style, genre, expression, and emotions. The
challenge now in MIR is to develop means for the extrac-
tion and representation of movement-inducing cues from
musical sound, as well as to develop possibilities for using
body movement as input to search and navigation inter-
faces in MIR.

1. INTRODUCTION

There are strong links between music and body movement:
Performers produce sound through movements, and listen-
ers very often move to music, as can be seen in dance
and innumerable everyday listening situations. The links
between music and body movement have been discussed
since antiquity, but it is mostly in the last decade that we
have seen more systematic research efforts on this topic
within fields such as music technology, music performance,
and music cognition [1–3]. Despite this rapidly growing
research in various music-related fields, the idea of body
movement as an integral and ubiquitous part of both per-
formance and perception of music seems so far not to have
had many consequences for music analysis, music theory,
and music information retrieval. Based on a quick survey
of papers from recent ISMIR conferences as well as on
the overview in [4], the papers that directly or indirectly
are concerned with body movement seem limited to a few
on query by humming and tapping, as well as some on
beat tracking and tempo induction. Also, a cross-check on
Google Scholar showed that out of 4670 hits on MIR, 3730
included “audio”, 1990 “MIDI”, while only 21 included
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“body movement”. 1 It seems fair then to conclude that
body movement has not been an important topic in MIR
contexts.

Based on our own and various international colleagues’
work of the past decade, we believe that body movement
is not just something that incidentally co-occurs with mu-
sic, but that body movement is integral to music as a phe-
nomenon. We would go so far as to claim that our expe-
rience of music is based on the combination of sound and
movement sensations, hence that music is a fundamentally
embodied phenomenon [5,6]. With such an understanding
of music, it also becomes clear that sensations of music-
related body movements are in fact highly salient features
of music, and should be considered alongside various sonic
features, e.g. pitch, melody, harmony, and timbre. Explor-
ing music-related body movement then becomes an urgent
task also in relation to MIR, and in this paper we shall try
to give an overview of the kinds of body movement that
could be of interest in MIR and how they can be studied.
Finally, we shall present some suggestions for how body
movements could be used in interfaces for the search and
retrieval of music information.

2. MUSIC-RELATED MOVEMENT

It seems that listeners associate different kinds of body
movement with the music they hear, or merely imagine.
Here it can be useful to start by making the general distinc-
tion between sound-producing and sound-accompanying
movements. Although this distinction may not always be
so clear-cut, sound-producing movements are those that
contribute to the production of musical sound, and sound-
accompanying movements are those that are made in re-
sponse to the sound being heard [3].

Sound-producing movements may further be divided into
excitatory movements such as hitting, bowing, blowing,
and modulatory movements such as those for making a vi-
brato or various timbral nuances. Associated with sound-
producing movements we also have various types of sound-
facilitating, expressive, and communicative movements, mean-
ing movements that are not strictly speaking sound-producing
but still play an important role in music performance. Sound-
accompanying movements, on the other hand, are all kinds
of movements that people may make to music such as in

1 Search conducted 21 April 2009 using Google Scholar in English,
and with a syntax of “Music Information Retrieval” + “. . . ”.
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dancing, marching/walking, swaying, and gesticulating.
In practice, we may often see these different movement

types occur together: it is possible to make movements that
partly reflect the sound-production, partly are more inde-
pendent of the sound-production, e.g. mimicking a solo
drum passage with the hands at the same time as swaying
the whole body to the meter of the music. We may also
see performers making movements that are partly neces-
sary for producing sound, and partly more theatrical for the
benefit of the audience, e.g. lifting the hand high up before
striking a chord on a guitar. This means that music-related
movements may be multi-functional in that they serve sev-
eral different purposes at the same time.

We believe that musical sound itself also conveys salient
movement images that are related to listeners’ sensations
of effort (tense, relaxed, fast, slow, etc.) as well as to
kinematics or geometry of musical instruments (register,
up/down, position, posture, etc. in relation to instruments).
Studies of so-called ‘air-instrument’ performance such as
‘air guitar’, ‘air drums’, and ‘air piano’ suggest that even
listeners with little or no formal musical training are able
to have images of sound-producing movements that re-
produce both the effort and the kinematics of the imag-
ined sound-production actions, i.e. they manage to follow
the spatiotemporal unfolding of instrumental performance
quite well as if they were actually playing the music them-
selves [7].

As for various kinds of sound-accompanying movement
afforded by musical sound, a study of ‘free dance’ to mu-
sic 2 shows that professional dancers tend to agree when it
comes to the sensation of effort or energy in dance move-
ments, although there are variations in the kinematics (ge-
ometry) of the movements [8, 9]. Furthermore, studies
of ‘sound-tracing’ show that listeners with variable lev-
els of musical training (ranging from none to professional
level training) also seem to spontaneously associate var-
ious shapes with the musical sound that they hear [10].
In these studies, listeners were asked to draw on a digi-
tal tablet the shape they associated with a sound fragment
immediately after they had heard the fragment. Figure 1
shows the sound-tracings of 9 participants to a sound taken
from the contemporary western music repertoire. This sound
consists of a high-pitched attack on a triangle, followed by
a downward glissando on strings, and ending up with a
drum roll [11]. The excerpt is rather unconventional with
regards to melodic, harmonic, and timbral features, but as
we can see from the images of the sound-tracings, there
still seems to be some level of consensus between the nine
listeners as to the movement shape that was afforded by the
sound.

3. GLOBAL-LOCAL

It does not seem farfetched to suggest that listeners’ music-
related movements often match well the overall motion
and emotion features of the musical sound, e.g. calm mu-
sic tends to induce calm movements, agitated music tends

2 The only instruction given was to make spontaneous movement to
the musical excerpts upon first hearing.

Figure 1. Sound-tracings by nine listeners of the sound
fragment built up of an initial triangle attack, a downward
glide in the strings and a final drum roll (spectrogram at
the bottom) [11].

to induce agitated movements, accentuated music tends to
induce jerky movements, etc. The details of the move-
ments may vary, however, something that may be seen both
from qualitative annotations [8], as well as from quantita-
tive data. An example of the latter may be seen in how
thequantity of motion seems to correlate quite well with
the dynamics of the waveform of the sound [7]. Similarly,
motiongrams 3 are useful for displaying movement from
video material. Figure 2 shows an example of how a mo-
tiongram of the hand movements of a pianist can be used
together with the spectrogram of the resultant sound to
study relationships between movement features and sonic
features in a 20 seconds excerpt from the last movement of
Beethoven’s Tempest Sonata.

Visual representations such as motiongrams and spec-
trograms make it possible to move between global and more
local perspectives, i.e. facilitates the correlation of music-
related movement at different timescales with correspond-
ing sonic features at different timescales. Here it could
be useful to identify three different timescale levels when
studying sound and movement in music:

Sub-chunk level: the level of perceiving continuous sound
(pitch, timbre, and intensity) and movement (loca-
tion, force, etc.).

Chunk level: sound fragments and actions that are per-
ceived holistically and that may allow for the percep-
tion of rhythmical, textural, and melodic patterns, as
well as tonal/modal and harmonic features, and im-
portantly, also expressive features.

3 A motiongram is a visual representation of movement in a video,
created by spatially reducing frame-differenced video images, see [9] for
details
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Figure 2. Motiongram of hand movement (top) and spectrogram (bottom) of the corresponding sound in a 20 seconds
excerpt (first 30 measures) from the last movement of Beethoven’s Tempest Sonata performed by François-René Duchable
[12]. Notice the correlation between hand movements and the sound, as well as the sway in the upper body.

Supra-chunk level: several chunks are concatenated into
larger-scale entities such as whole sections, tunes,
movements, and even whole works.

We believe that the chunk-level, in the range of approxi-
mately 0.5 to 5 seconds, may be seen as the most important
for identification of musical style, mode of performance, as
well as emotive features. As suggested by Pierre Schaef-
fer’s work on sonic objects several decades ago [13,14] and
recently by work on more traditional western music [15],
the chunk level seems to be more important than larger
scale levels in music. Interestingly, and probably not ac-
cidentally, the temporal size of basic action units fits well
with that of sonic objects, as well as with various other
constraints on attention and memory, see [16] for a sum-
mary.

From what emerges of the sound-movement correspon-
dences mentioned above, we think it is plausible to think
of gestural-sonic objects in music [17]. This means multi-
modal units that combine sound and movement so that in
addition to various sonic features we also have movement
features such as proprioceptive, haptic, and visual images
of trajectories and postures. This also means that there
are movement-related schemata and constraints at work in
gestural-sonic objects, i.e. various biomechanical and neu-
rocognitive constraints such as limits to speed of move-
ment, need for rests, etc., as well as the phenomena of
phase transition and of coarticulation. Phase transitions
mean that the speed of movement will lead to different

groupings, e.g. speeding up will at some tempo threshold
lead to fusion of pulses into a higher order pulse, slowing
down will at some tempo threshold lead to fission of pulses
into subdivision pulses. Coarticulation means that other-
wise distinct sounds and movements will be hierarchically
subsumed and contextually smeared so as to produce new
emergent sensations, e.g. otherwise singular tone-events
and movements fuse into superordinate phrases and move-
ment shapes. Coarticulation seems to be one of the most
important elements in the formation of chunks, and fur-
thermore, concerns both the generation and the perception
of musical sound [16].

Gestural-sonic images may be flexible, both with re-
spect to resolution or acuity of detail, and with respect to
generality by the principle of so-called motor equivalence.
Motor equivalence means that motor images of singular
actions may be generalized so as to encompass different
versions of the action, allowing transfers and at the same
time preserve basic cognitive schemata across variations.
An example this is how the general category of ‘hitting’
is applicable to all percussion instrument actions, with or
without mallets, as well as to all keyboard and struck string
instruments.

4. TYPOMORPHOLOGY OF GESTURAL-SONIC
OBJECTS

With chunk-level gestural-sonic objects as the basic local
focus, we can differentiate various types as well as var-
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ious features of such objects. Following the pioneering
work of Pierre Schaeffer [13,14], we can proceed in a top-
down manner starting with depicting the global features
of sonic objects and proceed on to successively finer dif-
ferentiations of features. The main principle for Schaef-
fer was the subjective images of sonic objects, and where
establishing correlations between these subjective images
and the acoustic substrate of the sonic objects was seen
as a long-term goal. It is also important to keep in mind
that the ambition of Schaeffer was a universally applicable
theory, equally valid for sonic objects in electroacoustic,
instrumental, or vocal music, and applicable across differ-
ent genres and musical cultures. Hence, such an approach
could be seen as very much in accordance with a more
open-ended, universal approach to MIR.

For a start, Schaeffer suggested three main classes of
sounds based on their mode of production:

Impulsive: sounds that have a percussion like quality with
a sudden onset followed by a decay, i.e. a discontin-
uous transfer of energy such as in hitting or kicking.

Sustained: a continuous transfer of energy so that the sound
would be more or less stable throughout its duration
such as in bowing, stroking, or blowing.

Iterative: sounds produced by a rapid series of impulses
such as in a drum roll or in a tremolo.

It is the energy envelope of the sound that reflects the
underlying assumed mode of sound-production, hence, that
these sonic object types are transducers of movement infor-
mation. This movement information can also be applied
to pitch-related information with the following three main
types:

Pitched: a more or less clearly perceptible and stable pitch
throughout the duration of the sonic object.

Non-pitched: inharmonic or variably noise-dominated sounds
with ambiguous or unclear pitch.

Variable: sensation of pitch that varies throughout the sonic
objects, e.g. by glissando or vibrato.

Schaeffer combined these three pitch-related types with
the three dynamic envelope types mentioned above into a
3 x 3 matrix of basic sonic objects in what he called the ty-
pology. The typology of sonic objects was a first and rough
categorization to be followed by a more detailed depiction
of features in what was called the morphology of the sonic
objects. The morphology is basically concerned with the
‘internal’ features of the sonic objects such as its various
pitch-related, dynamic, and/or timbral evolutions and fluc-
tuations in the course of time. Two of the most prominent
features of the morphology are the following:

Grain: fast fluctuations within the sound such as in the
‘grainy’ sound of a deep bassoon tone or in a flute
flatterzunge.

Motion: slower fluctuations within the sound such as in
slow ostinato or other textural movements. 4

These features can be thought of as dimensions of sonic
objects, and may also be further differentiated, e.g. the
speed and amplitude of the grain fluctuations may be thought
of as sub-dimensions, and variations in speed and ampli-
tude may be thought of as further sub-dimensions to these
dimensions. The exploration of thresholds for different
feature values in relation to sound categories is then made
possible, something that is useful for trying to determine
categorical thresholds for salient features of sonic objects,
hence for sonic features in general in a MIR context.

The typology and the morphology of sonic objects can
be combined into an analytic system that for short is called
the typomorphology of sonic objects. The general strategy
here is then that of first attaching metaphorical labels to
perceptually relevant (or salient) features of the musical
sound, and then proceeding to differentiate various sub-
features.

In summary, we believe that most (if not all) features
of musical sound may be correlated to some kind of body
movement. This is actually the main point of motor the-
ory and embodied cognition, namely that we perceive by
correlating whatever we hear (or see) to mental images of
movement [6, 7].

5. SUGGESTIONS FOR IMPLEMENTATIONS

Given the abovementioned documentation of links between
sound and body movement, the challenge now is to inte-
grate our knowledge of such sound–movement links in au-
dio analysis so that this can be useful in a MIR context.

Several of the features mentioned above can readily be
found in audio using traditional analysis techniques. For
example, the typological features can be correlated to the
amplitude envelope of a sound signal and/or to the pitch
contour or fluctuations in the spectral centroid. Details in
the morphology, on the other hand, require more studies
to be effectively implemented in a machine-based system.
While it could be possible to implement this based on anal-
ysis of the sound alone, we believe that it may be worth-
while to also look at the movement of performers as well
as listeners when they experience music.

As an example, consider the sensation of an undulating
or even circular motion that we would assume many lis-
teners would experience in the example illustrated with the
motiongram in Figure 2. Although we may find consider-
able variation in the style of playing this piece, one source
of such an undulating motion could be found in the sound-
producing actions of the pianist. To an expert musician it
might be natural or even obvious to predict from the score
that pianists would tend to make this kind of undulating
movements, yet it is an element that we believe could be
captured and included in MIR as a feature of the music.

Figure 3 shows a graph of the movements of the wrists
and elbows of a pianist performing the first 8 measures
(with the upbeat figure) of the same piece as in Figure 2.

4 ‘Motion’ is sometimes also rendered as ‘gait’ or ‘allure’ in English.
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The graph is based on recordings with an infrared motion
capture system and shows the markers’ displacement along
the keyboard (i.e. the horizontal plane). This is of course
a crude simplification of the richness of the performance,
yet we believe it does convey the salient feature of the un-
dulating motion of this piece.

!

!

!

Figure 3. Trajectories of the wrists and elbows of a pianist
performing the first 8 measures (and the upbeat measure)
of the same Beethoven example as in Figure 2. The marked
onset points are recorded from MIDI output from the digi-
tal piano used in the study.

Moving towards the analysis of body movement in a
MIR context necessitates techniques to represent, store and
navigate such movement data. We are here thinking about
representations of data in many different forms, e.g.:

• Continuous data from various types of motion cap-
ture systems.

• Graphical representations of movement, both static
and animated.

• Analyzed movement and gesture data in a structured
and symbolic form.

• Various verbal movement metaphors.

Although there exist formats and standards that handle
these types of data in other fields than music, we believe
it is necessary to develop solutions that are specific to mu-
sical applications [18]. One of the most important parts
here is to handle synchronisation between movement data,
audio, video, MIDI, etc. We are not aware of any solu-
tions that handle this issue in its full complexity, so for that
reason we are currently developing the Gesture Descrip-
tion Interchange Format 5 (GDIF) as a system for stream-
ing and storing motion capture data [19]. Equally impor-
tant here is to work out a set of movement descriptors, and
sound–movement descriptors, that are useful in a MIR con-
text.

Also, considering that a substantial amount of music is
readily available as audiovisual material (e.g. music videos
of various kinds), this could be exploited if there were
more readily available methods for analyzing both audio
and video, and most importantly, for analyzing the rela-
tionships between features extracted from audio and video.

5 http://www.gdif.org

This could then take into account the cross-modal interac-
tions happening in our perception of audiovisual material,
as documented in e.g. [20].

Finally, including an embodied perspective in MIR re-
search could also open for new applications of search and
retrieval of music through body movement. Using various
types of motion capture techniques, ranging from camera-
based to sensor-based systems, users could explore a large
music collection through body movement. While this could
certainly be done in low-dimensional features spaces, we
believe that systems that manage to connect complex body
movements to complex sound features will open for new
and exciting ways of exploring the multidimensionality of
musical sound, e.g. as implemented in software for con-
catenative synthesis [21]. Considering the positive results
of the studies of air-performance and sound-tracing as men-
tioned above, this is something that both novices and ex-
perts should be able to do without a too high learning thresh-
old.

It could be useful to regard music-related body move-
ment as a link between otherwise separate elements in west-
ern musical thought: the acoustic signal, symbolic nota-
tion, and higher level aesthetic and semiotic significations
of music. This is because music-related body movement
may encompass all these elements at once: On one side
the continuous body movement relates to the continuous
acoustic signal, with sound-producing movements incor-
porating the tone events of notational symbols, and with
various types of expressive features in the movement touch-
ing on aesthetic and semiotic elements. On the other side,
music-related body movement contain valuable informa-
tion of the musical experience that is not present in the
audio itself, but which is often available in video material
accompanying the sound.

6. CONCLUSIONS

Although we still have a long way to go in exploring music-
related body movement and its relationship to musical sound,
it seems that we already have reasonable grounds for claim-
ing that sensations of body movement are essential in mu-
sical experience. Actually, we would even claim that sen-
sations of body movement are one of the most salient fea-
tures of musical style and genre, and could for this reason
alone be an important element in the development of MIR.
When we rather optimistically believe that music-related
body movement has great (and mostly untapped) poten-
tial for MIR, we are also acutely aware of great challenges
here, challenges that may be summarized as follows:

• Development of signal processing methods for ex-
tracting movement-inducing cues from audio.

• Development of video processing methods for ex-
tracting features of music-related body movement.

• Development of taxonomies and formats for han-
dling such multimodal features in MIR systems.
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• Development of solutions for using body movement
in searching, retrieval, and navigation in audio or au-
diovisual music files.

On the way to this, we need to continue working on
what movement sensations listeners have to music, painstak-
ingly building up our knowledge of subjective movement
sensations and correlating these with lower-level signal-
based features of musical sound.
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ABSTRACT

The performance of music usually involves a great deal of
interpretation by the musician. In classical music, final ri-
tardandi are emblematic for the expressive aspect of music
performance. In this paper we investigate to what degree
individual performance style has an effect on the form of
final ritardandi. To this end we look at interonset-interval
deviations from a performance norm. We define a criterion
for filtering out deviations that are likely to be due to mea-
surement error. Using a machine-learning classifier, we
evaluate an automatic pairwise pianist identification task
as an initial assessment of the suitability of the filtered data
for characterizing the individual playing style of pianists.
The results indicate that in spite of an extremely reduced
data representation, pianists can often be identified with
accuracy significantly above baseline.

1. INTRODUCTION AND RELATED WORK

The performance of music usually involves a great deal
of interpretation by the musician. This is particularly true
of piano music from the romantic period, where perfor-
mances are characterized by large fluctuations of tempo
and dynamics. The expressive interpretation of the music
by the musician is crucial for listeners to understand emo-
tional and structural aspects of the music (such as voice
and phrase structure) [1–3]. In addition to these functional
aspects of expressive music performance, there is undeni-
ably an aspect of personal style. Skilled musicians tend
to develop an individual way of performing, by means of
which they give the music a unique aesthetic quality (a no-
table example of this is the legendary pianist Glenn Gould).
Although the main focus in music performance research
has been on functional aspects of expression, some stud-
ies also deal with individual performance style. Through
analysis of listeners ratings on performances, Repp char-
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acterized pianists in terms of factors that were mapped to
adjective pairs [4]. In [5], a principal component analysis
of timing curves revealed a small set of significant com-
ponents that seem to represent performance strategies that
performers combine in their performances. Furthermore, a
machine learning approach to performer identification has
been proposed by Stamatatos and Widmer [6], where per-
formers are characterized by a set of features relating to
score-related patterns in timing, dynamics and articulation.
Saunders et al. [7] represent patterns in timing and dynam-
ics jointly as strings of characters, and use string-kernel
classifiers to identify performers.

It is generally acknowledged in music performance re-
search that, although widely used, the mechanical perfor-
mance (implying constant tempo throughout a piece or mu-
sical part) is not an adequate performance norm for study-
ing expressive timing, as it is not the way we generally
believe the music should sound. As an alternative, models
of expressive timing could be used, as argued in [8]. How-
ever, only few models exist that model expressive timing
in general [9, 10]. Because of the complexity and hetero-
geneity of expressive timing, most models only describe
specific phenomena, such as the timing of grace notes [11],
or the final ritardando [12, 13].

This paper addresses systematic differences in the per-
formance of final ritardandi by different pianists. In a pre-
vious study [14] on the performance of final ritardandi, a
kinetic model [13] was fitted to a set of performances. Al-
though in some cases systematic differences were found
between pianists, in general the model parameters (describ-
ing the curvature and depth of the ritardando) tend to reflect
primarily aspects of the piece, rather than the individual
style of the pianist. Given this result, a possible approach
to study performer-specific timing in ritardandi would be
by subtracting the fitted model from the modeled timing
data and looking performer-specific patterns in the residu-
als. A problem with this approach is that the kinetic model
is arguably too simple, since it models tempo as a function
of score time only, and is ignorant of any structural as-
pects of the music, which also have an effect of the tempo
curve [15]. As a result of this, residuals in the data with
respect to the fitted model are likely to contain patterns re-
lated to piece-specific aspects like rhythmic grouping.
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In this study, in order to minimize the amount of piece-
specific information present in the residuals, we compute
the average performance per piece and subtract it from
each performance of that piece. In addition to this, we
filter the residual data based on an estimation of its sig-
nificance. This estimation is obtained from an analysis of
data annotation divergences for a subset of the data. The
resulting data contain the deviations from the common way
of playing the ritardandi that are unlikely to be due to mea-
surement errors.

Our long-term goal is to develop a thorough and sensi-
ble way of interpreting deviations of performance data with
respect to some performance norm, be it either a model, or
as in this study, a norm derived from the data. To obtain
a first impression of the potential of characterizing artists
by this method of analyzing the data, we defined a pair-
wise pianist identification task (as in [6]). Using a data
set consisting of performances of ritardandi in Chopin’s
Nocturnes by a number of famous pianists, we show that
pianists can be identified based on regularities in the way
they deviate from the performance norm.

In section 2, we describe the acquisition and content of
the data set. Section 3 documents the data processing pro-
cedure. Results of the pianist classification task are pre-
sented and discussed in section 4, and conclusions and fu-
ture work in section 5.

2. DATA

The data used here consists in measurements of timing
data of musical performances taken from commercial CD
recordings of Chopin’s Nocturnes. The contents of the
data set are specified in table 1. We have chosen Chopin’s
Nocturnes since they exemplify classical piano music from
the romantic period, a genre which is characterized by the
prominent role of expressive interpretation in terms of tempo
and dynamics. Furthermore, the music is part of a well-
known repertoire, performed by many pianists, facilitating
large scale studies.

Tempo in music is usually estimated from the interon-
set intervals of successive events. A problematic aspect of
this is that when a musical passage contains few events, the
obtained tempo information is sparse, and possibly unreli-
able, thus not very suitable for studying tempo. Therefore,
through inspection of the score, we selected those Noc-
turnes whose final passages have a relatively high note den-
sity, and are more or less homogeneous in terms of rhythm.
In two cases (Op. 9 nr. 3 and Op. 48 nr. 1), the final pas-
sage consists of two clearly separated parts, both of which
are performed individually with a ritardando. These ritar-
dandi are treated separately (see table 1). In one case (Op.
27 nr. 1), the best-suited passage is at the end of the first
part, rather than at the end (so strictly speaking, it is not a
final ritardando).

The data were obtained in a semi-automated manner,
using a software tool [16] for automatic transcription of
the audio recordings. From the transcriptions generated in
this way, the segments corresponding to the final ritardandi
were extracted and corrected manually by the authors, us-

ing Sonic Visualizer, a software tool for audio annotation
and analysis [17].

3. METHOD

As mentioned in section 1, the expressive timing data is
expected to have a strong component that is determined
by piece-specific aspects like rhythmical structure and har-
mony. In order to focus on pianist-specific aspects of tim-
ing, it is helpful to remove this component. In this section,
we first describe how the IOI data are represented. We then
propose a filter on the data based on an estimate of the mea-
surement error of IOI values. Finally, we describe a pianist
identification task as an assessment of the suitability of the
filtered data for characterizing the individual playing style
of pianists.

3.1 Calculation of deviations from the performance
norm

The performance norm used here is the average perfor-
mance per piece. That is, for a piece k, Let M be the
number of pianists, andNk be the number of measured IOI
times in piece k. We use vk,i to denote the vector of theNk

IOI values of pianist i in piece k. Correspondingly, uk,i is
the IOI vector of pianist i for piece k, centered around zero
(v̄k,i being the mean of all IOI’s in vk,i):

uk,i = vk,i − v̄k,i (1)

The performance norm ak for piece k is defined as the
average over pianists per IOI value:

ak(j) =
1
M

M∑
i=1

uk,i(j) (2)

where ak(j) is the j-th IOI value of the average perfor-
mance of piece k.

Figure 1 shows the performance norms obtained in this
way. Note that most performance norms show a two stage
ritardando, in which a gradual slowing down is followed
by a stronger decrease in tempo, a general trend that is also
observed in [12]. The plots show furthermore that in addi-
tion to a global slowing down, finer grained timing struc-
ture is present in some pieces.

3.2 Estimation of measurement error

An inherent problem of empirical data analysis is the pres-
ence of measurement errors. As described above, the tim-
ing data from which the tempo curves are generated is ob-
tained by measurement of beat times from audio files. The
data is manually corrected, but even manually the exact
time of some note onsets is hard to identify, especially
when the pianist plays very softly while using the sus-
tain pedal. Therefore, it is relevant to investigate to which
degree different beat time annotations of the same perfor-
mance differ from each other. This gives us an idea of the
size of the measurement error, and allows us to distinguish
significant deviations from the performance norm from the
non-significant deviations.

52



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

Pianist Year Op.9 nr.3 rit1 Op.9 nr.3 rit2 Op.15 nr.1 Op.15 nr.2 Op.27 nr.1 Op.27 nr.2 Op.48 nr.1 rit1 Op.48 nr.1 rit2
Argerich 1965 X
Arrau 1978 X X X X X X X X
Ashkenazy 1985 X X X X X X X X
Barenboim 1981 X X X X X X X X
Biret 1991 X X X X X X X X
Engerer 1993 X X X X X X X X
Falvai 1997 X X X X X X X X
Harasiewicz 1961 X X X X X X X X
Hewitt 2003 X X X X X X X X
Horowitz 1957 X X
Kissin 1993 X X
Kollar 2007 X X X X X X X
Leonskaja 1992 X X X X X X X X
Maisenberg 1995 X
Mertanen 2001 X X X X X X
Mertanen 2002 X X
Mertanen 2003 X X
Ohlsson 1979 X X X X X X X X
Perahia 1994 X
Pires 1996 X X X X X X X X
Pollini 2005 X X X X X X X X
Richter 1968 X
Rubinstein 1937 X X X X X X X X
Rubinstein 1965 X X X X X X X X
Tsong 1978 X X X X X X X X
Vasary 1966 X X X X X X X
Woodward 2006 X X X X X X X X
d´Ascoli 2005 X X X X X X X X

Table 1. Performances used in this study. The symbol “X” denotes the presence of the corresponding combination of
pianist/piece in the data set. The additions “rit1” and “rit2” refer to two distinct ritardandi within the same piece

op9_3_rit1 op9_3_rit2

op15_1 op15_2

op27_1 op27_2

op48_1_rit1 op48_1_rit2

Figure 1. The average performance per ritardando. Both
score time (horizontal axis) and tempo (vertical axis) are
normalized

To this end, a subset of the data containing seven perfor-
mances of various performers and different pieces has been

annotated twice, by two different persons. 1 This set in to-
tal contains 304 time points to be measured. For each beat
a pair of annotated beat times was available after annota-
tion by both annotators, from which the absolute pairwise
differences were calculated.

Figure 2 shows a scatter plot of absolute pairwise dif-
ferences of measured IOI time versus the beat duration. 2

Note that beat durations have been calculated from note in-
teronset times that were sometimes at a substantially faster
pace than the beat. Hence, a beat duration of, say, 14 sec-
onds does not imply that two measured points are actually
14 seconds apart. It can be observed from the plot that at
slower tempos, there is more agreement between annota-
tors about the onset times of notes. This is likely to be
either because the slower parts tend to be played in a more
articulate way, or simply because of the lower note density,
which makes it easier to determine note onsets precisely.

The line in figure 2 shows the function that we use as
a criterion to either accept or reject a particular IOI data
point for further analysis. More specifically, the function
specifies how far a data point must be away from the per-
formance norm in order to be considered as a significant
deviation. Conversely, we consider deviations of points
closer to the norm too likely caused by measurement er-
rors. The criterion is rather simple, and defines .2 seconds
as an absolute minimum for deviations, with an increas-
ing threshold for measurements at higher tempos (shorter
beat durations), to accommodate for the increasing mea-
surement differences observed in the data. The constants
in the the function have been chosen manually, ensuring

1 Because of the size of the data set, and the effort that manual correc-
tion implies, it was not feasible to annotate the complete data set multiple
times

2 by beat we mean score unit duration, rather than a perceived pulse
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Figure 2. Scatter plot of absolute beat time annotation dif-
ferences versus beat duration, between two annotators

that a substantial amount of the measurement deviations
in the scatter plot (> 95%) are excluded by the criterion.
This approach can admittedly be improved. Ideally, taking
into account the significance of deviations from the perfor-
mance norm should be done by a weighting of data points
that is inversely proportional to the likelihood of being due
to measurement errors.

With the current criterion we filter the data by keeping
only those data points that satisfy the inequality:

uk,i(j) > 0.09 + exp [−2.5(ak(j) + v̄k,i) + 1.0] (3)

The set of data points after filtering is displayed for two
pianists in figure 3. The left plot shows the significant
deviations from the performance norm over all ritardandi
performed by Falvai. The right plot shows those of Leon-
skaja. In order to compare the ritardandi from different
pieces (with differing length and different number of mea-
sured IOI’s), time has been normalized per piece. Note that
a large part of Falvai’s IOI deviations has been filtered out
based on their size. This means that Falvai’s ritardandi are
are mostly in agreement with the performance norm. In-
terestingly, the endings of Falvai’s ritardandi deviate in a
very consistent way by being slightly faster than the norm
until the last few notes, which tend to be delayed more than
normal. Leonskaja’s IOI deviations are more diverse and
appear to be more piece dependent. A more in-depth inves-
tigation seems worthwhile here, but is beyond the scope of
this article.

3.3 Evaluation of the data: automatic identification of
pianists

In order to verify whether the residual timing data after
subtracting the norm and filtering with the measurement
error criterion in general carry information about the per-
forming pianist, we have designed a small experiment. In
this experiment we summarize the residual timing data by
four attributes and apply a multilayer perceptron [18] (a

standard machine learning algorithm, as available in the
Weka toolbox for data mining and machine learning) to
perform binary classification for all pairs of pianists in the
data set. 3 The training instances (ritardandi of a particular
piece performed by a particular pianist) containing varying
numbers of IOI deviation values, each associated with a
normalized score time value, describing where the IOI de-
viation occurs in the ritardando (0 denoting the beginning
of the ritardando, and 1 the end). In order to use these data
for automatic classification, they must be converted to data
instances with a fixed number of attribute-value pairs. We
choose an extremely simple approach, in which we repre-
sent a set of IOI deviation / score time pairs by the mean
and standard deviation of the IOI values and the mean and
standard deviations of the normalized time values. Thus,
we effectively model the data by describing the size and
location of the area where IOI deviation values tend to oc-
cur in the plots of figure 3.

4. RESULTS AND DISCUSSION

The pairwise pianist classification task is executed as fol-
lows: for each possible pair of pianists, the ritardandi of
both pianists are pooled to form the data set for evaluating
the classifier. The training set in most cases contains 16
instances, one for each of the eight pieces, for each of the
two pianists. The pianists from whom less than 6 perfor-
mances were contained in the data set were not included in
the test. The data set was used to evaluate the multilayer
perceptron using 10-fold cross-validation. This was done
for all 171 combinations of 19 pianists. The results are
compared to a baseline algorithm that predicts the mode of
the target concept, the pianist, in the training data.

The classification results on the test data are summa-
rized in tables 2 and 3. Table 2 shows the proportion of
pairwise identification tasks where the multilayer percep-
tron classified above, at, and, below baseline classification,
respectively. The top row presents the results for the con-
dition where the IOI deviation data has been filtered us-
ing the measurement error criterion, as explained in sub-
section 3.2. The bottom row correspond to the condition
where no such filtering was applied.

The measurement error filtering clearly leads to an im-
provement of classification accuracy. With filtering, the
percentage of pianist identification tasks that are executed
with an accuracy that is significantly (α = .05) above base-
line accuracy, is 32%. Although this percentage does not
seem very high, it must be considered that the amount of
information available to the classifier is very small. Firstly,
the ritardandi are only short fragments of the complete per-
formances. Secondly, the training sets within a 10-fold
cross-validation never contain more than seven ritardandi
of a single pianist. Lastly, the IOI deviation information
available has been summarized very coarsely, by a mean
and standard deviation of the values in the time and IOI
dimension. This result implies that larger deviations from

3 For some pianists less than six performances were available; Those
pianists have not been included in the experiment.
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Figure 3. Deviations from the performance norm after applying the measurement error criterion; Left: Falvai; Right:
Leonskaja

the performance norm by individual pianists are at least to
some degree pianist specific, and not just piece specific.

We wish to emphasize that by no means we claim that
the specific form of the measurement error criterion we
proposed in subsection 3.2 is crucial for the success of of
pianist identification. Other filtering criteria might work
equally well or better. Note however that there is a trade
off between avoiding the disturbing effect of measurement
errors on the one hand, and a reduction of available data
on the other. A more elegant approach to canceling the
effect of measurement errors would be to use a weighting
criterion rather than a filtering criterion.

Without filtering, accuracy is even significantly below
the baseline in 19% of the cases. The fact that under this
condition accuracy does not often surpass the baseline is
not surprising, since the unfiltered data contains all avail-
able IOI deviation values, equally distributed over time. A
consequence of this that mean and standard deviation of
the normalized times associated to the IOI data are con-
stant. This reduces the available information so much that
it is unrealistic to expect above baseline accuracy. That the
prediction accuracy is significantly below baseline is more
surprising. Given that the performance norm is subtracted
from the original timing data per piece, a strong interfer-
ence of the piece with the pianist identification is not to be
expected. A possible explanation for this result could be
that there are multiple distinct performance strategies. Ob-
viously, the average performance as a performance norm
is not adequate for this situation, where multiple perfor-
mance norms are present. If two pianists choose a similar
strategy, their residual IOI values after subtracting the av-
erage performance may still be more similar to each other
than to their own IOI values in a different piece.

Table 3 shows the average identification accuracy over
all identification-tasks that involve a specific pianist. High
accuracy could indicate that a pianist plays both consis-
tently, and distinctively. By playing consistently we mean
that particular IOI deviations tend to occur at the similar

Procedure < baseline baseline > baseline
with filtering 0 (0%) 116 (68%) 55 (32%)
without filtering 33 (19%) 131 (76%) 7 (4%)

Table 2. Number of 10-fold cross-validated pairwise pi-
anist classification tasks with results over, at, and below
baseline results, respectively (α = .05)

positions in the ritardando, as observed in the case of Fal-
vai, in figure 3 (see also [19] for a discussion of performer
consistency). Playing distinctively means that no other pi-
anist has similar IOI deviations at similar positions. Con-
versely, a low identification accuracy could point to either
a varied way of performing ritardandi of different pieces,
or playing ritardandi in particular pieces in a way that is
similar to the way (some) other pianists play them, or both.

5. CONCLUSIONS AND FUTURE WORK

Ritardandi in musical performances are good examples of
the expressive interpretation of the score by the pianist.
We have investigated the possibility of automatically iden-
tifying pianists by the way they perform ritardandi. More
specifically, we have reported an initial experiment in which
we use IOI deviations from a performance norm (the aver-
age performance) to distinguish pairs of pianists. Further-
more, we have introduced a simple filtering criterion that
is intended to remove parts of the data that are likely to be
due to measurement errors. Although more sophisticated
methods for dealing with measurement error can certainly
be developed, the filtering method improved the accuracy
of pianist identification substantially.

Continued work should include the development of a
more gradual way to deal with the significance of IOI devi-
ations, rather than an all-or-nothing filtering method. Also,
better models of expressive timing and tempo are needed
to serve as a performance norm. In this work we have em-
ployed the average performance as a substitute norm, but it
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Pianist avg. % correct
Leonskaja 65.31
Pollini 64.83
Vasary 63.50
Ohlsson 62.28
Mertanen 62.06
Barenboim 61.69
Falvai 57.42
Engerer 54.33
Hewitt 53.50
Woodward 53.47
Biret 51.47
Pires 51.03
Tsong 50.17
Harasiewicz 49.78
Kollar 49.33
d´Ascoli 48.06
Ashkenazy 47.69
Rubinstein 45.83
Arrau 43.53

Table 3. Average identification accuracy per pianist on test
data

is obvious that a norm should be independent of the data.
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ABSTRACT 

This paper presents analyses of peer-reviewed papers and 

posters published in the past nine years of ISMIR pro-

ceedings: examining publication and authorship practices, 

topics and titles of research, as well as the citation pat-

terns among the ISMIR proceedings. The main objective 

is to provide an overview of the progress made over the 

past nine years in the ISMIR community and to obtain 

some insights into where the community should be head-

ing in the coming years. Overall, the ISMIR community 

has grown considerably over the past nine years, both in 

the number of papers and posters published each year, as 

well as the number of authors contributing. Furthermore, 

the amount of collaboration among authors, as reflected 

in co-authorship, has increased. Main areas of research 

are revealed by an analysis of most commonly used title 

terms. Also, major authors and research groups are identi-

fied by analyzing the co-authorship and citation patterns 

in ISMIR proceedings.  

1. INTRODUCTION 

This year, 2009, marks the tenth iteration of the Interna-

tional Symposium on Music Information Retrieval confe-

rence series (ISMIR). ISMIR was organized with the 

hope that the “resulting information interchange will ena-

ble scholars to move more quickly towards viable solu-

tions to many problems” [1] in the field of Music Infor-

mation Retrieval (MIR). 

Futrelle & Downie [2] defined MIR as “a rapidly 

growing interdisciplinary research area encompassing 

computer science and information retrieval, musicology 

and music theory, audio engineering and digital signal 

processing, cognitive science, library science, publishing, 

and law. Its agenda, roughly, is to develop ways of man-

aging collections of musical material for preservation, 

access, research, and other uses”. Necessarily, MIR spans 

both audio and symbolic representations of music [3], but 

also includes musical metadata, usage data, and other ex-

tra-musical information [4], including user-studies and 

human-computer interaction studies of music systems. To 

date, most research in MIR has been content-based [5]. 

In 2000, MIR was still a fairly new field with a great 

deal of potential that was gaining the interest of research-

ers from many different domains. Although ISMIR 

started as a small-scale symposium, it has grown im-

mensely over the past nine years as more people have 

recognized the importance of MIR research and have 

been drawn in to the field. The community has grown to 

the point of establishing the International Society for Mu-

sic Information Retrieval, which will help orient, organ-

ize, and disseminate the community‟s future research. 

We performed various informetric analyses on the 

ISMIR proceedings from 2000 to 2008 in order to dis-

cover how the patterns of publications have changed over 

the past nine years. Through these analyses, we hope to 

obtain insights into what the ISMIR community has and 

has not been able to accomplish and which directions it 

could be heading towards in the coming years. 

In the following, we provide descriptive statistics 

showing the change in the number of publications and 

authorship patterns over the past nine years. We also pro-

vide the results of our analysis of the title terms, looking 

at the most commonly used single terms as well as bi-

grams. In addition, we performed analyses on the citation 

patterns among the publications and authors who have 

published in the ISMIR proceedings.  

2. GROWTH OF THE ISMIR COMMUNITY 

The first ISMIR conference had just 10 refereed papers 

and 16 posters representing 55 authors, with several other 

scholars presenting invited talks. To date, 881 authors 

have contributed peer-reviewed papers and posters to the 

ISMIR proceedings, not to mention the numerous partici-

pants in the annual Music Information Retrieval Evalua-

tion eXchange (MIREX), conference workshops, demon-

strations, tutorials, and invited talks. The rapid growth in 

participation has been paralleled by a similar increase in 

the number of papers and posters accepted to ISMIR. In 

total, over 700 peer-reviewed papers and posters have 

been published, comprising a substantial literature on a 

breadth of topics ranging from signal-processing tech-

niques to user studies of MIR systems. 
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2.1 Change in the Number of Publications per Year 

The number of publications in ISMIR proceedings has 

been steadily increasing over the past nine years. Exact 

numbers are presented in Table 1 along with the number 

of unique authors published in each year.  

 

Year 00 01 02 03 04 05 06 07 08 

Papers 10 21 31 23 60 59 59 62 105 

Posters 16 16 22 24 44 57 28 65 - 

Total 26 37 53 47 104 116 87 127 105 

Unique 

Authors 
55 74 113 108 213 232 185 267 262 

Table 1. The number of publications and unique authors 

per year. 

We can better observe the changes in the proportion of 

papers and posters for each year, as well as the changes in 

the number of authors. The number of publications al-

most doubled in 2004, jumping from 47 in 2003 to 104. 

In 2008, there was a change in the submission format and 

all paper submissions were to have accompanying posters 

as well. Looking at the number of authors, we can see 

that there were two sharp increases in 2002 and 2004, and 

a major drop in 2006. However, the overall number of 

authors represented at the conference each year has gen-

erally grown over the past nine years.  

Figure 1 shows the authorship trends within the ISMIR 

proceedings, tracking the proportion of papers with one, 

two, three, four, and five-or-more authors. As can be 

seen, the number of single-authored papers has decreased 

year-over-year. The number of papers with two co-

authors peaked in 2002, and has steadily declined since. 

However, the number of papers with three authors has 

steadily increased year-over-year. The average number of 

co-authors on papers and posters published each year has 

increased over the past nine years, from an average of 

2.27 authors per publication in 2000 to 2.93 authors per 

publication in 2008. Clearly ISMIR is becoming a much 

more collaborative community as the number of authors 

per paper increases, and the proportion of single, and 

double-authored papers diminishes in favor of papers 

with three or more authors. 

 

Figure 1. Co-authorship trends tracking the percen-

tage of papers with 1, 2, 3, 4, and 5+ authors from 

2000 to 2008. 

2.2 Co-authorship Analysis 

We performed an analysis to identify the patterns of co-

authorship among all the authors who published in 

ISMIR proceedings and determine which authors appear 

as the central hubs in the co-authorship graph. Figure 2 
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Figure 2. Co-authorship network among ISMIR authors who have published two or more articles. The 22 authors 

with the largest co-authorship networks have been highlighted. 
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was generated by using Pajek which is a social network-

ing analysis and visualization tool [6]. In this figure, only 

the authors who published 2 or more papers/posters are 

included in order to simplify the network. 

Several main clusters of people can be visually identi-

fied in the figure showing the close connections among 

some authors. The top 22 authors with the largest number 

of distinct co-authors (12+) are labeled in the figure. Of-

ten these authors represent an active research group such 

as National Institute of Advanced Industrial Science and 

Technology (AIST) headed by M. Goto in Japan, The In-

ternational Music Information Retrieval Systems Evalua-

tion Laboratory (IMIRSEL) headed by J. S. Downie in 

Illinois, Distributed Digital Music Archives and Libraries 

headed by I. Fujinaga in Canada, the Center for Digital 

Music headed by Mark Sandler in London, and so on. 

What is evident from these analyses is the growing 

role of research labs in the ISMIR community, and how 

they engender collaboration and increase participation in 

research. Many European labs and research groups are 

tightly interconnected, and are difficult to distinguish one 

from the other based on the co-authorship patterns. Fur-

thermore, not all evidence of collaboration is represented 

in the co-authorship network; for example, the IMIRSEL 

lab appears relatively isolated, despite their central role in 

organizing MIREX. Large, intercontinental, multi-

institutional grant projects, such as the Networked Envi-

ronment for Music Analysis (NEMA) project [7], may 

start to change the shape of collaboration within the 

ISMIR community. 

3. RESEARCH TOPICS IN ISMIR 

The topics explored in the first ISMIR conference laid 

the foundation for the future growth and evolution of the 

field. While ISMIR has grown, it has remained true to the 

original vision laid out in the early conference programs. 

In this section, we present an analysis of terms extracted 

from the titles and abstracts of ISMIR papers. Only title 

and abstract terms were used as these represent concise 

summaries of the papers‟ content. 

3.1 The Most Commonly Used Title Terms 

In order to get an idea as to which research areas have 

been of interest over the past nine years, we analyzed the 

title terms of all peer-reviewed papers and posters in the 

ISMIR proceedings. All the terms from the titles of the 

papers and posters were extracted. The words were 

stemmed using a Perl-based implementation of the Porter 

stemming algorithm [8], and stop-words were removed 

using a combination of a standard list of common-usage 

English-language words, with the stop-word “music”, as 

this term appears in almost all titles in the ISMIR pro-

ceedings. Table 2 shows the top terms that appeared in 

the publication titles for each year. New terms entering 

the top-ranked lists are highlighted in bold-face. 

From the table, we can observe that the most often 

used title terms were relatively similar for each year; 

however, it is possible to identify certain trends. For in-

stance, there was a strong interest in query by sing-

ing/humming systems in 2002 and 2003 shown by the 

title term query (“queri”) appearing only in the lists of 

these two years. Research interest in musical genres in-

creased in 2005 and 2006, and interest in music similarity 

research peaked in 2006. Interest in classification and 

modeling has been consistent over the past nine years. 

Additionally, the consistently high rank of the term “au-

dio” suggests that ISMIR researchers have been focused 

primarily on audio rather than symbolic representations. 

What is also evident from the title terms, is how close-

ly the field has stuck to the original framing of MIR as 

represented in the 2000 ISMIR program. The core con-

cepts have remained prevalent throughout the past dec-

2000 2001 2002 2003 2004 2005 2006 2007 2008 

Retriev Retriev Retriev Retriev Audio Audio Audio Audio Audio 

Inform Inform Audio Automat Retriev Retriev Similar Retriev Featur 

Model System Inform Model Automat Classif Classif Similar Retriev 

System Audio Queri Similar System Featur Model Model Model 

Audio Approach System Database Classif Inform Genr System Analysi 

Classif Model Automat Audio Polyphon Model Automat Recognit Automat 

Polyphon Analysi Model Inform Pattern Polyphon Feature Polyphon Song 

Segment Similar Polyphon Queri Inform Extract Approach Featur Inform 

Instrument Match Similar System Extract Similar Perform Analysi Similar 

Techniqu MIR Analysi Classif Featur Algorithm Retriev Classif Chord 

Languag Spot Content  Sound Genr Evalu Automat Content 

  Pattern  Tempo  Key Approach  

  Voic     Evalu  

       Transcript  

       Algorithm  

 

Table 2. Top 10 ranked title terms of each year (w/ ties); new terms are highlighted in bold-face font. 
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ade, yet have accommodated expansion into new areas. 

3.2 Title and Abstract Bi-grams 

Single-term-concepts present a limited view of research 

concepts and topics, especially after subtle differences in 

terms are merged by stemming (e.g., „using‟ and „users‟ 

have the same stem, „us‟, yet carry different connotations 

in usage). Furthermore, the limited text available in titles, 

only provides a glimpse at the complexity of concepts 

and ideas being researched and published. In order to get 

at more specific concepts which have taken the interest of 

ISMIR researchers, we extracted stemmed bi-grams (i.e., 

2-word phrases) from the titles and abstracts of all papers 

and posters. Initially, we examined the bi-grams on a 

year-by-year basis, much as we did for single term 

concepts. However, as expected, the number of bi-grams 

exceeds the number of uni-grams, and the frequency with 

which any one bi-gram occurs is much lower. No 

meaningful or interesting patterns arose in the yearly 

analysis; however, when considered in aggregate, there is 

stronger evidence of dominant research topics within the 

field. Table 3 shows the top 20 most commonly used bi-

grams in ISMIR proceedings over the last nine years.  

 

Bi-gram (stemmed) Count 

inform_retriev 25 

content_base 24 

genr_classif 14 

web_base 9 

hidden_markov 9 

queri_hum 9 

polyphon_audio 8 

real_time 7 

system_base 7 

optic_recognit 7 

audio_featur 7 

ground_truth 7 

base_similar 6 

featur_extract 6 

playlist_gener 6 

audio_fingerprint 6 

sing_voic 6 

retriev_system 6 

automat_transcript 5 

melod_similar 5 

similar_measur 5 

automat_genr 5 

Table 3. Top 20 most commonly used bi-grams from 

titles and abstracts, reflecting the main research foci, me-

thods, and approaches of the ISMIR community. 

The most common bi-gram is “information retrieval”, 

followed by “content based”, “genre classification”, and 

so on. Beyond these, we can see the prevalence of the 

web, and web-based systems, which has paralleled the 

emergence of “web 2.0” and greater access to music and 

music systems online within the commercial sector. Al-

though the frequencies of occurrence of some individual 

concepts are low, overall we find the topics represented 

by the bi-gram analysis to be fairly representative of the 

major research interests in the field: such as “music simi-

larity”, “feature extraction”, and so on. 

4. CITATION PATTERNS  

Moving beyond terms and bi-grams as representations of 

research interests, the papers themselves published in the 

ISMIR proceedings serve as representations of research 

topics and areas, and references to them serve as a way of 

highlighting the prevailing research interests of the com-

munity. Weinstock [9] outlines 15 motivations for why 

academics cite each other in scholarly writing including 

paying homage to pioneers, giving credit for related work, 

and so on. We examined the references lists of all peer-

reviewed ISMIR papers and posters, and looked for refer-

ences to other peer-reviewed ISMIR papers and posters. 

We did not consider references to demos, invited talks, 

tutorials, MIREX abstracts, or workshop papers. We also 

did not attempt to measure references to publications out-

side the ISMIR proceedings, nor did we attempt to gauge 

the number of citations to ISMIR papers from outside.  

First, we shall outline and describe the general citation 

behavior of the ISMIR community. Figure 3 shows the 

frequency distribution of publications by the number of 

references to other ISMIR publications they contain. 

Most ISMIR papers and posters (nearly 50%) do not ref-

erence any other ISMIR publications. The average num-

ber of ISMIR references per paper/poster was 1.278 with 

the standard deviation of 2.05 and the maximum of 27. 

 

Figure 3. Number of ISMIR references in ISMIR papers   

The reasons for low internal referencing within the 

ISMIR community may be due to the fact that some au-

thors preferentially cite journals, books, and theses which 

are extensions of, or refinements of ideas initially pub-

lished in ISMIR over the ISMIR publications. Other 

possible explanations include the fact that ISMIR pro-

ceedings are not indexed in commonly used digital li-

brary portals, such as the ACM Digital Library or Cite-

Seer, and are inconsistently indexed by Google Scholar. 

The fantastic resource on http://www.ismir.net/, which 

has been developed and maintained by Michael Finger-

hut, contains a near-complete set of the full-text versions 

of all papers and posters published in the ISMIR proceed-
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ings; however, it lacks full-text search capabilities itself, 

and the site does not provide complete, standardized me-

tadata records which may improve the visibility of ISMIR 

papers in search engines, and digital library portals.  
 

Author/Title # Refs 

Goto, M., et al. (2002). RWC Music Database: Popu-

lar, Classical and Jazz Music Databases 
21 

Bello, J. & Pickens, J. (2005). A Robust Mid-Level 

Representation for Harmonic Content in Music Sig-

nals 

13 

Tzanetakis, G., Essl, G. & Cook, P. (2001). Automatic 

Musical Genre Classification of Audio Signals 
13 

Aucouturier, J. & Pachet, F. (2002). Music Similarity 

Measures: What’s the use? 
13 

Sheh, A. & Ellis, D. (2003). Chord segmentation and 

recognition using EM-trained hidden markov models 
12 

Pampalk, E., Dixon, S. & Widmer, G. (2003). Explor-

ing music collections by browsing different views 
11 

Paulus, J. & Kalpuri, A. (2002). Measuring the simi-

larity of Rhythmic Patterns 
11 

Goto, M., et al. (2003). RWC Music Database: Music 

genre database and musical instrument sound data-

base 

10 

Clausen, M., et al. (2000). PROMS: A Web-based 

Tool for Searching in Polyphonic Music 
9 

Ellis, D., et al. (2002). The Quest for Ground Truth in 

Musical Artist Similarity 
8 

Logan, B. (2000). Mel Frequency Cepstral Coeffi-

cients for Music Modeling 
8 

Birmingham, W., et al. (2001). MUSART: Music Re-

trieval Via Aural Queries 
8 

Logan, B. (2004). Music Recommendation from Song 

Sets 
8 

Abdallah, S. & Plumbley, M. (2004). Polyphonic 

transcription by non-negative sparse coding of power 

spectra 

7 

Foote, J., Cooper, M. & Nam, U. (2002). Audio Re-

trieval by Rhythmic Similarity 
7 

Mazzoni, D. & Dannenberg, R. (2001). Melody 

Matching Directly from Audio 
7 

Vinet, H., Herrera-Boyer, P. & Pachet, F. (2002). The 

CUIDADO Project 
7 

Soulez, F., Rodet, X. & Scharwz, D. (2003). Improv-

ing polyphonic and poly-instrumental music to score 

alignment 

7 

Whitman, B. & Ellis, D. (2004). Automatic Record 

Reviews 
7 

Whitman, B. & Smaragdis, P. (2002). Combining 

Musical and Cultural Features for Intelligent Style 

Detection 

7 

Table 4. Top cited papers and posters (excluding self-

citation). 

Working with the references we were able to extract, 

we filtered self-citations, which we defined as a reference 

to a paper in which an author of the citing paper is an au-

thor on the referenced paper. Table 4 shows the top cited 

papers and posters in the ISMIR proceedings, ranked by 

the number of references we were able to find to each. 

Among the top cited papers and posters, there is a di-

versity of topics and publications, from which we may 

infer a range of motivations. The most cited publication 

in the ISMIR proceedings is Goto, et al.‟s 2002 poster 

introducing the RWC database, garnering 21 references. 

Following Weinstock‟s taxonomy of citer motivation, the 

referencing of a data set is most like motivation three: 

identifying methodology, equipment, etc. The lack of 

standardized data sets with ground truth is a recurring 

problem in the MIR community and the RWC database 

has served as a valuable resource for MIR researchers, as 

it acts as a de facto standardized collection on which to 

build and evaluate systems. In fact, the presence of Goto, 

et al., 2003, and Ellis, et al., 2002 on this list reiterate the 

importance of standardized data sets with ground truth 

within MIR research. 

There are several other methodological references, in-

cluding references to Logan (2000), Tzanetakis, et al. 

(2001), Sheh & Ellis (2003), Goto, et al. (2003). There 

are also elements of “paying homage” in the references to 

several papers, especially the seminal work of Beth Lo-

gan, who introduced MFCCs to the MIR community.  
 

Author 

Ref. 

Count 

Co-author 

Count 

Paper/Poster 

Count 
Goto, M 43 24 21 

Ellis, D P W 41 12 12 

Hashiguchi, H 34 5 3 

Nishimura, T 34 5 3 

Oka, R 34 5 3 

Widmer, G 34 11 19 

Dannenberg, R B 29 15 10 

Logan, B 29 4 5 

Whitman, B 28 6 5 

Downie, J S 26 15 25 

Pampalk, E 26 11 12 

Tzanetakis, G 24 27 15 

Birmingham, W P 23 11 7 

Pachet, F 22 12 13 

Dixon, S 22 9 9 

Meek, C 22 10 5 

Pickens, J 21 7 6 

Pauws, S 19 6 8 

Cook, P 19 7 6 

Fujinaga, I 19 31 28 

Table 5. Top 20 cited authors (excluding self references). 

Without a more in-depth analysis of the individual 

contexts surrounding each citation, it is difficult to tease 

out the precise motivations for all the references. Regard-

less, the most referenced works comprise a diversity of 

topics and areas which span the breadth of research with-

in MIR, including references to signal-processing algo-

rithms and methods as well as techniques for handling 

symbolic representations of music. There are papers cov-

ering music transcription, and rhythm analysis, as well as 

high-level tasks such as genre-classification, search and 

recommendation algorithms, and approaches to under-

standing audio similarity. 

Table 5 shows the top 20 cited authors excluding self 

references. The second column shows the count of co-

authors each of these authors have in ISMIR proceedings 

and the third column shows the count of papers/posters 

each author published. The most heavily cited author was 
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Masataka Goto with 43 references by other ISMIR au-

thors. Among these top-cited authors, we can see there 

are those who have many references, in part because they 

have published many papers (e.g., Goto; Widmer), and 

there are authors who are highly cited, but have only a 

few publications (e.g., Logan; Whitman). There is, how-

ever, no correlation (r=0.021) between reference count 

and paper count, indicating that the referencing of authors 

is not merely a product of their productivity within the 

community. It is worth noting that among the top-cited 

authors, there is a strong correlation between the number 

of co-authors an author has, and the number of papers 

he/she has written (r=0.815). This correlation is not that 

surprising given our findings from section 2 where we 

discussed the trend towards collaboration and co-

authorship among ISMIR authors. 

5. CONCLUSION 

The ISMIR community has grown significantly, and 

through the contributions of nearly 900 researchers, the 

field of Music Information Retrieval has been well-

defined and established. The community is a tightly-knit 

one, with a high-degree of collaboration and co-

authorship, focused around a core set of research topics 

and areas.  

The main insights of our analyses can be summarized 

as follows:  

1) The ISMIR community is becoming more colla-

borative as shown by increasing co-authorship; 

2) The role of research labs is growing in the ISMIR 

community as they promote collaboration and in-

creased participation in research; 

3) The focus of research has mainly been on audio so 

far as revealed by the most commonly used title 

and abstract terms; 

4) The most cited works in the ISMIR proceedings 

comprise a variety of topics, but primarily point to 

datasets, techniques, and methods; 

In their early ISMIR paper discussing the interdiscipli-

nary communities and research issues, Futrelle and 

Downie [2] lists several key research areas in MIR. 

Among these, our analyses show that areas such as fea-

ture detection and classification/machine learning have 

been the major topics represented to date in the ISMIR 

proceedings, whereas topics such as user studies, metada-

ta, work on symbolic representations, and epistemolo-

gy/ontology have not been as well represented as others. 

Our advice for the sustained, future growth of the ISMIR 

community is to encourage greater activity in these areas, 

as they are relatively uncrowded, open topics of research 

in which great advances can be made. 

We would like to continue our informetric analysis of 

MIR research, and there are several aspects that can be 

further analyzed to obtain a broader picture of MIR. One 

area in which we could improve our understanding of the 

domain, is to include external sources and references in 

our citation analysis, and track the number of ISMIR ref-

erences found in other related journals and proceedings, 

references that are not from ISMIR proceedings and so 

on. Additionally, we explored several clustering analyses 

in researching this paper, and none provided immediately 

compelling results. We would like to continue to explore 

how papers, authors, and research topics cluster based on 

semantic similarity, co-authorship patterns, citation pat-

terns, and bibliographic coupling. 
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ABSTRACT

In this paper, we analyze the proceedings of the past In-
ternational Symposia on Music Information Retrieval (IS-
MIR). We extract meaningful term sets from the accepted
submissions and apply term weighting and Web-based fil-
tering techniques to distill information about the topics cov-
ered by the papers. This enables us to visualize and inter-
pret the change of hot ISMIR topics in the course of time.
Furthermore, the performed analysis allows for assessing
the cumulative ISMIR proceedings by semantic content
(rather than by literal text search). To illustrate this, we
introduce two prototype applications that are publicly ac-
cessible online 1 . The first allows the user to search for
ISMIR publications by selecting subsets of ISMIR topics.
The second provides interactive visual access to the joint
content of ISMIR publications in the form of a tag cloud –
the ISMIR Cloud.

1. INTRODUCTION AND MOTIVATION

Music information retrieval and extraction has been a fast
growing field of research during the past decade. Cer-
tainly the most important forum for this multidisciplinary
field is the International Symposium on Music Informa-
tion Retrieval (ISMIR) [11]. In 2009, ISMIR celebrates
its 10th anniversary. Thus, we think it is time to look back
and investigate which general topics and research problems
were most important in MIR during the past decade. To
this end, we analyzed the digital ISMIR proceedings [11]
available online. Not only have we captured the princi-
pal topics reflected by previous, accepted ISMIR papers
by means of text-based content extraction and analysis, but
we have also investigated how these topics changed over
time. Since MIR is a highly dynamic field of research, we

1 http://www.cp.jku.at/projects/ISMIR-cloud/
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gained interesting insights, which will be detailed in the
following. We further visualized the corpus of ISMIR doc-
uments via clusters of topics described by sets of terms.
To this end, we employed two approaches based on Non-
Negative Matrix Factorization (NMF) and Principal Com-
ponents Analysis (PCA). Two prototype applications are
provided as a proof-of-concept. The first is a Web appli-
cation for browsing the cumulative online ISMIR proceed-
ings theme-wise. The second is an offline OpenGL appli-
cation that visualizes the ISMIR Cloud in three dimensions,
and allows for real-time interaction such as spatial naviga-
tion and text-based search for tags.

The remainder of the paper is organized as follows. Sec-
tion 2. gives an overview of related work on text informa-
tion extraction and retrieval, topic-based clustering, and vi-
sualization. Section 3. describes the features we extracted
from the ISMIR corpus. In Section 4., we present our ap-
proaches to visualize and browse the papers. Finally, Sec-
tion 5. draws conclusions and points out directions for fu-
ture work.

2. RELATED WORK

Related work mainly falls into the two fields of text mining,
more precisely, text-based information extraction/retrieval
and clustering and visualizing high-dimensional data. In
line with the dedication of this paper to the MIR commu-
nity, we will focus on work carried out in the context of
music information research.

In the context of MIR, extracting terms from texts, more
precisely, from Web documents, in order to tag a music
artist has first been addressed in [28], where Whitman and
Lawrence extract different term sets (e.g., noun phrases
and adjectives) from artist-related Web pages. Based on
term occurrences, individual term profiles are created for
each artist. The authors then use the overlap between the
term profiles of two artists as an estimate for their similar-
ity. A quite similar approach is presented in [13]. Knees et
al. however do not use specific term sets, but create a term
list directly from the retrieved Web pages. Subsequently,
a term selection technique is applied to filter out less im-
portant terms. Hereafter, the TF·IDF measure, e.g., [31],
is used to weight the remaining words and subsequently
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create a weighted term profile for each artist. Knees et
al. propose their approach for artist-to-genre classification
and similarity measurement.
A text-based music retrieval system that builds upon meth-
ods for term extraction from Web pages, term weighting,
audio feature extraction, and similarity measurement is pre-
sented in [15]. In this paper, the authors relate audio fea-
tures extracted from a given music collection with terms
extracted from Web pages that contain part of the meta-
data present in the music collection. These terms are then
weighted using an adapted version of the TF·IDF measure
and joined with the audio features to build a feature vector
for each track, which serves as a track descriptor. This
approach allows for searching music collections via de-
scriptive natural language terms, e.g., by issuing queries
like “guitar riff” or “metal band with front woman”. Other
work related to MIR that makes use of text mining tech-
niques includes [10], where a POS tagger is used to search
last.fm [17] tags for adjectives that describe the mood of
a song. In [3] the machine learning algorithm AdaBoost
is used to learn relations between acoustic features and
last.fm tags.
As for general work on text-based information extraction
and retrieval, different methods for term selection and term
weighting have been analyzed with respect to their perfor-
mance in text categorization, cf. [2, 16, 30], in text-based
retrieval, cf. [24], and in clustering, cf. [6]. A comprehen-
sive evaluation of term weighting techniques and similarity
measures for information retrieval purposes is presented in
[31]. In their extensive evaluation of various formulations
of TF, IDF, and similarity measures, Zobel and Moffat con-
clude that no single combination outperforms the others
consistently. In fact, the performance of any combination
was found to be highly dependent on the domain and query
set it had been applied to. Text-based IE from the Web usu-
ally relies on identifying or learning specific patterns that
contain the information to be extracted. Already in [7],
the use of static rules to determine hyponyms in text cor-
pora was proposed. [4] presents a system that complements
generic text patterns with domain-specific rules found by
pattern extraction via search engines and subsequent se-
lection of high-quality extraction rules. [1] proposes an ap-
proach that solely relies on Google’s page counts for spe-
cific patterns to determine instances of a given concept.

As for clustering and visualizing high-dimensional fea-
ture data in the context of MIR, in [21] Non-Negative Ma-
trix Factorization (NMF) [18] was employed to determine
clusters of concepts based on tags describing music artists,
which were extracted from last.fm. Using NMF on features
gained from a term weighting approach in order to cluster
documents was already proposed in [29].
Another data projection and visualization technique is Prin-
cipal Components Analysis (PCA) [8, 12]. PCA consists
in a a linear projection of high-dimensional data onto a
small set of orthogonal dimensions with minimal loss in
variance. The relative distances between data points in the
high-dimensional space are preserved as good as possible
in the low-dimensional projection. Reducing the dimen-

sionality of the feature space to two or three thus allows
for the visualization of possible low-dimensional structure
in the original high-dimensional data space.

A precedent of interactive visualization of scientific in-
formation flows (such as citation patterns across disciplines
and journals, and temporal evolution of citation indices) is
provided by [22,27]. A notable difference of this approach
is that the information being visualized is obtained from
bibliometric data (journal citation reports) rather than data
obtained through automatic content extraction from publi-
cations.

3. DATA ACQUISITION AND FEATURE
EXTRACTION

Text-based information extraction and retrieval commonly
relies on the bag of words model, which can be traced
back at least to [19]. According to this model, a document
is represented as an unordered set of its words, ignoring
structure and grammar rules. Words can be generalized to
terms, where a term may be a single word or a sequence
of n words (n-grams), or correspond to some grammatical
structure, e.g., a noun phrase. Using such a bag of words
representation, each term t describing a particular docu-
ment d is commonly assigned a weight wt,d that estimates
the importance of t in d. Each document can then be de-
scribed by a feature vector that aggregates the single term
weights. When considering a whole corpus of documents,
each document can be thought of as a representation of its
feature vector in a feature space or vector space whose di-
mensions correspond to the particular term weights. This
so-called vector space model is a fundamental model in in-
formation retrieval and was originally described in [25].
For the term weighting function wt,d, in modern informa-
tion retrieval, typically some variant of TF·IDF scores is
used. The TF term gives more weight to terms that appear
many times in a document, whereas the IDF term ensures
that less weight is given to terms that appear in many docu-
ments. More details on term weighting via TF·IDF can be
found in [32]. The TF·IDF function assigns a weight wt,d

to a particular term t and document d. Calculating wt,d

for all terms remaining after having performed term selec-
tion on the terms extracted from the corpus thus yields a
representation of d as a term weight vector in the feature
space.

Following these basic principles of text-based informa-
tion retrieval, we performed feature extraction as follows.
First, we retrieved the PDF files of the accepted ISMIR
submissions from the online repository [11]. This yielded
effectively 719 documents. Subsequently, we converted
the PDF files to standard text files. To this end, the GNU/-
Linux tools pdftotext from xpdf-utils and iconv from libc6
were used. Minor problems encountered in the transcrip-
tion process, such as occasional truncation of words, were
addressed by prefix/suffix filtering as detailed later. Next,
we employed the part-of-speech (POS) tagger Geniatag-
ger [26] to extract all noun phrases from the corpus since
we believe that these are most important to describe the
content of ISMIR papers. As the output of the POS tagger
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contained a lot of noise, we subsequently applied some ad-
hoc filters: We discarded all terms containing non-alphabetic
characters and retained only trigrams, bigrams, and uni-
grams. This yielded approximately 70,000 terms.
Since we aimed at emphasizing terms important to MIR,
we performed term selection via Web-based filtering of
terms that tend to be important in a general context. Such
terms thus tend to be rather unimportant in the context
of MIR and also not very discriminative for the corpus
of ISMIR papers. For this purpose, we queried the Web
search engine exalead [5] for the extracted n-grams as ex-
act phrase and retrieved the returned page-count-values.
We then discarded all terms whose TF in the ISMIR cor-
pus was lower than their page-count-value. To alleviate the
problem of truncated words after PDF-to-text-conversion,
we removed any n-gram v that was a prefix/suffix of an-
other n-gram w (of equal n) and whose minimal TF among
the single words occurring in v was lower than the minimal
TF among the single words occurring in w, assuming that
truncated words typically have a low TF.
This approach finally yielded a term list of approximately
12,500 terms. We extracted, for each of these terms, its
absolute TF count per ISMIR document and its global DF
count in the corpus. Weighting each TF value with the
(logarithmic) IDF obtained from the ISMIR corpus accord-
ing to Formula 1 provided a TF·IDF vector representation
of each ISMIR document. In Equation 1, n is the total
number of documents in the corpus, tft,d is the number of
occurrences of term t in d, and dft is the number of docu-
ments in the whole corpus in which t occurs at least once.
Concatenating the TF·IDF representation of all documents
yields a term-document matrix.

wt,d =
{

tft,d · log n
dft

if tft,d > 0
0 otherwise

(1)

4. VISUALIZING ISMIR

Determining and illustrating the most important concepts
tackled by ISMIR papers over time, we used Non-Negative
Matrix Factorization (NMF) and Principal Components Anal-
ysis (PCA) as elaborated in the following.

4.1 Finding Concepts by Non-Negative Matrix Factor-
ization

Topic detection on the TF·IDF vectors, calculated as de-
scribed in the previous section, was performed as proposed,
for example, in [9, 18, 21, 29]. For NMF calculation, the
cost function is the square of the Euclidean distance, and
update takes place by the standard multiplicative update
rules. Initialization is done randomly. NMF aims to find
an approximate decomposition (into matrices W and H)
with non-negativity constraints, cf. Equation 2, where V is
the n ×m matrix of the 12,500-dimensional TF·IDF vec-
tors and m = 719 documents.

V ≈ WH (2)

Matrix W is interpreted as containing the amount each of
the n terms is associated with each of r concepts, and H
as containing the amount each document is associated with
each of the r concepts.

4.2 Changes of ISMIR Topics over Time

The association between concepts and documents that re-
sults from NMF over the term-document matrix, allows us
to make an association between concepts and years (by
summing the activation of concepts in the documents of
each year). Figure 1 shows the evolution of r = 22 con-
cepts over time, with the overall height representing the
number of relevant publications in the year. The legend
shows the three top-weighted terms for each concept. The
concepts have been ordered vertically according to their
growth/decline over time, the most growing concepts be-
ing on top. To this end, we performed linear regression
over the development of concept weights during the con-
sidered time span.

Several interesting observations can be made. Firstly,
note that the concepts seem to be of different categories.
Whereas some concepts clearly represent topics (e.g., genre
classification, onset detection, rhythm description, or fin-
gerprinting), others seem to represent methods that can be
used to solve different types of problems (such as matrix
factorization or dynamic time-warping).

Secondly, even if the presence of most concepts is rather
stable over the years, there are some notable changes over
time. Some of the changes that the analysis reveals are not
very surprising, such as the fact that semantic audio an-
notation performed via collaborative tagging (such as em-
ployed by last.fm) or Web mining, was virtually absent as
a research topic in the first ISMIR conferences. By 2008,
it has gained the largest share. Other changes are less obvi-
ous. For example, the share of query-by-humming/singing
in ISMIR 2002 papers was considerably higher than it was
in later years. Furthermore, genre classification seems to
have boomed briefly at ISMIR 2005. This might be related
to the MIREX 2005 genre classification contest.

4.3 A Web-Interface to Concept-based search of IS-
MIR publications

The concepts found by NMF can also be used to create an
interface for searching ISMIR papers associated with par-
ticular concepts. The simplest form of such an interface
is a selection screen that lets the user select one or more
of the r concepts of interest. The user selection is trans-
formed into a vector of length r, with all entries set to zero
except these that correspond to selected concepts, which
are set to one. This vector is used as a query vector, and
compared to each of the documents’ concept vectors by
cosine similarity [23]. The outcome is then presented to
the user as a list of suggested documents ranked accord-
ing to their similarity to the query vector. More elaborate
approaches would include search refinement (e.g., by rel-
evance feedback), or query term expansion based on the
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Figure 1. Evolution of the main ISMIR topics over the years.

concept vectors. We have implemented a small prototype
application for document retrieval as a web service.

4.4 ISMIRviewer: Navigating the ISMIR Cloud

To visualize the semantic content of of the joint ISMIR
publications, we pursue the idea of the tag cloud. In this
subsection, we describe how we construct the tag cloud
containing the terms extracted from the documents, and
present the ISMIRviewer, an application for interactively
navigating this tag cloud.

The term-document matrix that contains the IDF-weighted
term frequency of each term in each of the 719 documents
can be seen as specifying each term as a point in a 719-
dimensional Euclidean space. In general, the more fre-
quently two terms occur in the same subset of documents,
the closer they will be in this space. This high-dimensional
space, however, cannot be used directly for visualizing the
relationships among terms. Moreover, if multiple docu-
ments contain the same terms with similar frequencies, there
will be redundancies in the corresponding dimensions. In
this case, the dimensionality of the feature space can be
reduced without losing information about the distance be-
tween the terms and their relative location. PCA is a tech-
nique for such a dimensionality reduction, in which the
data is projected on a set of orthogonal dimensions that
have been rotated to maximize the variance along each di-
mension. The dimensions are ordered according to the data
variance they hold. In this way, a subset of dimensions
of any size can be chosen with maximal data variance.
The principal components are obtained by computing the
eigenvalues of the covariance matrix of the data, cf. [12].

Since we aim at providing a spatial visualization, the
number of dimensions is obviously limited to three. How-
ever, we found that projecting the data from 719 to three
dimensions directly was not useful in this case as the first
three principal components accounted only for 12% of the
variance in the data (90% being reached when using 347
dimensions). When visualized, the terms are very con-
densed in space, where the variance is highly dominated
by a few common terms like “music” and “audio”. Using
the logarithms of term frequencies alleviated this problem
slightly, but not satisfyingly.

Instead, we have opted for a two-stage approach to data
reduction. The first stage applies NMF, as described in
subsection 4.1. It yields a small set of basis vectors, which
are formally activation patterns over documents, and tend
to represent musically meaningful concepts. Each term t
has an activation value for each concept c, denoting how
relevant t is to c. Experimentation with NMF using dif-
ferent numbers of concepts shows that an NMF reduction
to twenty concepts include most recognizable subfields of
MIR without introducing many unrecognizable concepts 2 .
Given these twenty concepts, terms are filtered to include
only the 100 most activated terms for each of the concepts.

As a second stage, we perform dimensionality reduction
to three dimensions through PCA on the subset of terms
and the activations over the twenty concepts that were ob-
tained in the first stage. The resulting space is less densely
populated and the terms it contains tend to be more MIR-
relevant.

For interactive inspection of the constructed tag cloud,

2 As judged informally by the authors
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Figure 2. Screenshot of the ISMIRviewer showing the
onset-detection neighborhood of the ISMIR Cloud.

we have developed the ISMIRviewer, that allows the user
to freely rotate the space and zoom in on regions using the
mouse. Furthermore, subsets of the cloud can be selected
by text search. As the user types, the matching tags light
up. For each matching tag, neighboring tags are displayed,
while remote and non-matching tags are dimmed. For the
given selection of tags, five publications are shown in the
corner of the screen that have been determined to be the
most relevant for that term. Instead of determining doc-
ument relevance through TF·IDF, the term is mapped to
the documents via the concepts found by NMF. This effec-
tively realizes a document search by query expansion.

In this way, the user can search for MIR-related top-
ics, methods, or author names, and obtain relevant pub-
lications. Figure 2 shows a screenshot of the application.
The displayed terms are the result of searching for the term
onset-detection. The neighborhood of the search term (small
black font) contains related concepts, e.g., period, bpm,
techniques used (e.g. autocorrelation), and authors who
have published on onset detection, such as Klapuri and
Dixon.

5. CONCLUSIONS

In this paper, we analyzed the proceedings of the past IS-
MIR conferences, extracted terms from the documents, and
employed text and Web mining techniques to distill a set
of n-grams we believe to be important to describe the field
of music information retrieval. Using a TF·IDF weighting
function, we described each document by means of its term
weights. We then applied clustering techniques to reveal
the most important concepts covered by the ISMIR papers.
Furthermore, a year-wise analysis of the publications re-
vealed interesting changes of topics addressed in ISMIR
over the years. For example, in ISMIR 2002, query-by-
humming was a major topic, that has received considerably
less attention in later years. Furthermore, genre classifica-
tion had a particularly large share in ISMIR 2005.

Moreover, we presented two prototype applications that
provide access to the semantic content of the past ISMIR

publications. The first one is a Web-based retrieval system
to search the corpus of ISMIR proceedings via the con-
cepts found by NMF. The second one, which we call IS-
MIRViewer, provides an interactive tag cloud visualization
to reveal the relationships between MIR related terms. It
employs a focus and context technique to show subsets of
the tag cloud in response to user-entered text queries, and
provides the ISMIR publications that are most relevant to
the text queries.

The applications are presented as a proof-of-concept,
their user-interfaces leave room for improvement. Fur-
ther work to be done includes investigating other cluster-
ing techniques, e.g., Aligned Self-Organizing Maps [20] or
Music Description Maps [14].
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ABSTRACT

A performance of a piece of music heavily depends on

the musician’s or conductor’s individual vision and per-

sonal interpretation of the given musical score. As ba-

sis for the analysis of artistic idiosyncrasies, one requires

accurate annotations that reveal the exact timing and in-

tensity of the various note events occurring in the perfor-

mances. In the case of audio recordings, this annotation is

often done manually, which is prohibitive in view of large

music collections. In this paper, we present a fully auto-

matic approach for extracting temporal information from

a music recording using score-audio synchronization tech-

niques. This information is given in the form of a tempo

curve that reveals the relative tempo difference between an

actual performance and some reference representation of

the underlying musical piece. As shown by our experi-

ments on harmony-based Western music, our approach al-

lows for capturing the overall tempo flow and for certain

classes of music even finer expressive tempo nuances.

1. INTRODUCTION

Musicians give a piece of music their personal touch by

continuously varying tempo, dynamics, and articulation.

Instead of playing mechanically they speed up at some

places and slow down at others in order to shape a piece

of music. Similarly, they continuously change the sound

intensity and stress certain notes. The automated analysis

of different interpretations, also referred to as performance

analysis, has become an active research field [1–4]. Here,

one goal is to find commonalities between different inter-

pretations, which allow for the derivation of general perfor-

mance rules. A kind of orthogonal goal is to capture what

is characteristic for the style of a particular musician. Be-

fore one can analyze a specific performance, one requires

the information about when and how the notes of the un-

derlying piece of music are actually played. Therefore, as

the first step of performance analysis, one has to annotate

the performance by means of suitable attributes that make
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explicit the exact timing and intensity of the various note

events. The extraction of such performance attributes con-

stitutes a challenging problem, in particular for the case of

audio recordings.

Many researchers manually annotate the audio mate-

rial by marking salient data points in the audio stream.

Using novel music analysis interfaces such as the Sonic

Visualiser [5], experienced annotators can locate note on-

sets very accurately even in complex audio material [2, 3].

However, being very labor-intensive, such a manual pro-

cess is prohibitive in view of large audio collections. An-

other way to generate accurate annotations is to use a

computer-monitored player piano. Equipped with optical

sensors and electromechanical devices, such pianos allow

for recording the key movements along with the acoustic

audio data, from which one directly obtains the desired

note onset information [3, 4]. The advantage of this ap-

proach is that it produces precise annotations, where the

symbolic note onsets perfectly align with the physical on-

set times. The obvious disadvantage is that special-purpose

hardware is needed during the recording of the piece.

In particular, conventional audio material taken from CD

recordings cannot be annotated in this way. Therefore,

the most preferable method is to automatically extract the

necessary performance aspects directly from a given audio

recording. Here, automated approaches such as beat track-

ing [6, 8] and onset detection [9] are used to estimate the

precise timings of note events within the recording. Even

though great research efforts have been directed towards

such tasks, the results are still unsatisfactory, in particu-

lar for music with weak onsets and strongly varying beat

patterns. In practice, semi-automatic approaches are often

used, where one first roughly computes beat timings using

beat tracking software, which are then adjusted manually

to yield precise beat onsets.

In this paper, we present a novel approach towards

extracting temporal performance attributes from music

recordings in a fully automated fashion. We exploit the

fact that for many pieces there exists a kind of “neutral”

representation in the form of a musical score (or MIDI file)

that explicitly provides the musical onset and pitch infor-

mation of all occurring note events. Using music synchro-

nization techniques, we temporally align these note events

with their corresponding physical occurrences in the mu-

sic recording. As our main contribution, we describe vari-

ous algorithms for deriving tempo curves from these align-
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Figure 1. First measure of Beethoven’s Pathétique Sonata
Op. 13. The MIDI-audio alignment is indicated by the arrows.

ments which reveal the relative tempo differences between

the actual performance and the neutral reference represen-

tation. We have evaluated the quality of the automatically

extracted tempo curves on harmony-based Western music

of various genres. Besides a manual inspection of a rep-

resentative selection of real music performances, we have

also conducted a quantitative evaluation on synthetic audio

material generated from randomly warped MIDI files. Our

experiments indicate that our automated methods yield ac-

curate estimations of the overall tempo flow and, for cer-

tain classes of music such as piano music, of even finer

expressive tempo nuances.

The remainder of this paper is organized as follows.

After reviewing some basics on music synchronization

(Sect. 2), we introduce various algorithms for extracting

tempo curves from expressive music recordings (Sect. 3).

Our experiments are described in Sect. 4, and prospects on

future work are sketched in Sect. 5. Further related work

is discussed in the respective sections.

2. MUSIC SYNCHRONIZATION

The largest part of Western music is based on the equal-

tempered scale and can be represented in the form of musi-

cal scores, which contain high-level note information such

as onset time, pitch, and duration. In the following, we as-

sume that a score is given in the form of a “neutral” MIDI

file, where the notes are played with a constant tempo in

a purely mechanical way. We refer to this MIDI file as

reference representation of the underlying piece of mu-

sic. On the other hand, we assume that the performance

to be analyzed is given in the form of an audio recording.

In a first step, we use conventional music synchronization

techniques to temporally align the note events with their

corresponding physical occurrences in the audio record-

ing [10, 11]. The synchronization result can be regarded

as an automated annotation of the audio recording with the

note events given by the MIDI file, see Fig. 1.

Most synchronization algorithms rely on some variant

of dynamic time warping (DTW) and can be summarized

as follows. First, the MIDI file and the audio recording
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Figure 2. Left: Cost matrix and cost-minimizing alignment
path for the Beethoven example shown in Fig. 1. The reference
representation (MIDI) corresponds to the horizontal and the per-
formance (audio) to the vertical axis. Right: Original (black)
and onset-rectified alignment path (red). The MIDI note onset
positions are indicated by the blue vertical lines.

to be aligned are converted into feature sequences, say

X := (x1, x2, . . . , xN ) and Y := (y1, y2, . . . , yM ), re-

spectively. Then, an N × M cost matrix C is built up

by evaluating a local cost measure c for each pair of fea-

tures, i. e., C((n,m)) = c(xn, ym) for n ∈ [1 : N ] :=
{1, 2, . . . , N} and m ∈ [1 : M ]. Each tuple p = (n,m)
is called a cell of the matrix. A (global) alignment path

is a sequence (p1, . . . , pL) of length L with pℓ ∈ [1 :
N ] × [1 : M ] for ℓ ∈ [1 : L] satisfying p1 = (1, 1),
pL = (N,M) and pℓ+1 − pℓ ∈ Σ for ℓ ∈ [1 : L − 1].
Here, Σ = {(1, 0), (0, 1), (1, 1)} denotes the set of admis-

sible step sizes. The cost of a path (p1, . . . , pL) is defined

as
∑L

ℓ=1 C(pℓ). A cost-minimizing alignment path, which

constitutes the final synchronization result, can be com-

puted via dynamic programming from C, see Fig. 2. For

a detailed account on DTW and music synchronization we

refer to [11].

Based on this general strategy, we employ a synchro-

nization algorithm based on high-resolution audio features

as described in [12]. This approach, which combines the

high temporal accuracy of onset features with the robust-

ness of chroma features, generally yields robust music

alignments of high temporal accuracy. In the following,

we use a feature resolution of 50 Hz with each feature vec-

tor corresponding to 20 milliseconds of MIDI or audio. For

details, we refer to [12].

3. COMPUTATION OF TEMPO CURVES

The feeling of pulse and rhythm is one of the central com-

ponents of music and closely relates to what one gener-

ally refers to as tempo. In order to define some notion of

tempo, one requires a proper reference to measure against.

For example, Western music is often structured in terms of

measures and beats, which allows for organizing and sec-

tioning musical events over time. Based on a fixed time

signature, one can then define the tempo as the number of

beats per minute (BPM). Obviously, this definition requires

a regular and steady musical beat or pulse over a certain

period in time. Also, the very process of measurement is

not as well-defined as one may think. Which musical enti-

ties (e. g., note onsets) characterize a pulse? How precisely

can these entities be measured before getting drowned in

noise? How many pulses or beats are needed to obtain a
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meaningful tempo estimation? With these questions, we

want to indicate that the notion of tempo is far from be-

ing well-defined. Different representations of timing and

tempo are presented in [7].

In this paper, we assume that we have a reference repre-

sentation of a piece of music in the form of a MIDI file gen-

erated from a score using a fixed global tempo (measured

in BPM). Assuming that the time signature of the piece is

known, one can recover measure and beat positions from

MIDI time positions. Given a specific performance in the

form of an audio recording, we first compute a MIDI-audio

alignment path as described in Sect. 2. From this path we

derive a tempo curve that describes for each time position

within the MIDI reference (given in seconds or measures)

the tempo of the performance (given as a multiplicative

factor of the reference tempo or in BPM). Fig. 4 and Fig. 5

show some tempo curves for various performances.

Intuitively, the value of the tempo curve at a certain ref-

erence position corresponds to the slope of the alignment

path at that position. However, due to discretization and

alignment errors, one needs numerically robust procedures

to extract the tempo information by using average values

over suitable time windows. In the following, we describe

three different approaches for computing tempo curves us-

ing a fixed window size (Sect. 3.1), an adaptive window

size (Sect. 3.2), and a combined approach (Sect. 3.3).

3.1 Fixed Window Size

Recall from Sect. 2 that the alignment path p =
(p1, . . . , pL) between the MIDI reference and the perfor-

mance is computed on the basis of the feature sequences

X = (x1, . . . , xN ) and Y = (y1, . . . , yM ). Note that one

can recover beat and measure positions from the indices

n ∈ [1 : N ] of the reference feature sequence, since the

MIDI representation has constant tempo and the feature

rate is assumed to be constant.

To compute the tempo of the performance at a specific

reference position n ∈ [1 : N ], we basically proceed as

follows. First, we choose a neighborhood of n given by

indices n1 and n2 with n1 ≤ n ≤ n2. Using the alignment

path, we compute the indices m1 and m2 aligned with n1

and n2, respectively. Then, the tempo at n is defined as

quotient n2−n1+1
m2−m1+1 . The main parameter to be chosen in

this procedure is the size of the neighborhood. Further-

more, there are some technical details to be dealt with.

Firstly, the boundary cases at the beginning and end of the

reference need special care. To avoid boundary problems,

we extend the alignment path p to the left and right by set-

ting pℓ := (ℓ, ℓ) for ℓ < 1 and pℓ := (N+ℓ−L,M+ℓ−L)
for ℓ > L. Secondly, the indices m1 and m2 are in general

not uniquely determined. Generally, an alignment path p
may assign more than one index m ∈ [1 : M ] to a given

index n ∈ [1 : N ]. To enforce uniqueness, we chose the

minimal index over all possible indices. More precisely,

we define a function ϕp : Z → [1 : M ] by setting

ϕp(n) := min{m ∈ [1 : M ] | ∃ℓ ∈ Z : pℓ = (n,m)}.

We now give the technical details of the sketched pro-
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Figure 3. Ground truth tempo curve (step function) and various
computed tempo curves. (a) τ

FW
w

using a fixed window size with
small w (left) and large w (right). (b) τ

AW
v

using an adaptive
window size with small v (left) and large v (right).

cedure for the case that the neighborhoods are of a fixed

window (FW) size w ∈ N. The resulting tempo curve is

denoted by τFW
w : [1 : N ] → R≥0. For a given alignment

path p and an index n ∈ [1 : N ], we define

n1 := n−
⌊

w−1
2

⌋

and n2 := n +
⌈

w−1
2

⌉

. (1)

Then w = n2−n1 +1 and the tempo at reference position

n is defined by

τFW
w (n) =

w

ϕp(n2)− ϕp(n1) + 1
. (2)

The tempo curve τFW
w crucially depends on the window

size w. Using a small window allows for capturing sudden

tempo changes. However, in this case the tempo curve be-

comes sensible to inaccuracies in the alignment path and

synchronization errors. In contrast, using a larger window

smooths out possible inaccuracies, while limiting the abil-

ity to accurately pick up local phenomena. This effect is

also illustrated by Fig. 3 (a), where the performance is syn-

thesized from a temporally warped MIDI reference. We

continue this discussion in Sect. 4.

3.2 Adaptive Window Size

Using a window of fixed size does not account for specific

musical properties of the piece of music. We now intro-

duce an approach using an adaptive window size, which

is based on the assumption that note onsets are the main

source for inducing tempo information. Intuitively, in pas-

sages where notes are played in quick succession one may

obtain an accurate tempo estimation even when using only

a small time window. In contrast, in passages where only

few notes are played one needs a much larger window to

obtain a meaningful tempo estimation.

We now formalize this idea. We assume that the note

onsets of the MIDI reference are given in terms of fea-

ture indices. Furthermore, for notes with the same on-

set position we only list one of these indices. Let O =
{o1, . . . , oK} ⊆ [1 : N ] be the set of onset positions with

1 ≤ o1 < o2 < . . . < oK ≤ N . The distance between

two neighboring onset positions is referred to as inter on-

set interval (IOI). Now, when computing the tempo curve

at position n ∈ [1 : N ], the neighborhood of n is specified

not in terms of a fixed number w of feature indices but in
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terms of a fixed number v ∈ N of IOIs. This defines an

onset-dependent adaptive window (AW). More precisely,

let τAW
v : [1 : N ] → R≥0 denote the tempo function to

be computed. To avoid boundary problems, we extended

the set O to the left and right by setting ok := o1 + k − 1
for k < 1 and ok := oK + k − K for k > K. First,

we compute τAW
v for all indices n that correspond to onset

positions. To this end, let n = ok. Then we define

k1 := k −
⌊

v−1
2

⌋

and k2 := k +
⌈

v−1
2

⌉

.

Setting n1 := ok1
and n2 := ok2

, the tempo at reference

position n = ok is defined as

τAW
v (n) :=

n2 − n1 + 1

ϕp(n2)− ϕp(n1) + 1
. (3)

Note that, opposed to (2), the window size n2 − n1 + 1 is

no longer fixed but depends on the sizes of the neighbor-

ing IOIs around the position n = ok. Finally, τAW
v (n) is

defined by a simple linear interpolation for the remaining

indices n ∈ [1 : N ] \ O. Similar to the case of a fixed

window size, the tempo curve τAW
v crucially depends on

the number v of IOIs, see Fig. 3 (b). The properties of the

various tempo curves are discussed in detail in Sect. 4.

3.3 Combined Strategy

So far, we have introduced two different approaches us-

ing on the one hand a fixed window size and on the other

hand an onset-dependent adaptive window size for com-

puting average slopes of the alignment path. Combining

ideas from both approaches, we now present a third strat-

egy, where we first rectify the alignment path using onset

information and then apply the FW-approach on the recti-

fied path for computing the tempo curve. As in Sect. 3.2,

let O = {o1, . . . , oK} ⊆ [1 : N ] be the set of on-

sets. By possibly extending this set, we may assume that

o1 = 1 and oK = N . Now, within each IOI given

by two neighboring onsets n1 := ok and n2 := ok+1,

k ∈ [1 : K−1], we modify the alignment path p as follows.

Let ℓ1, ℓ2 ∈ [1 : L] be the indices with pℓ1 = (n1, ϕp(n1))
and pℓ2 = (n2, ϕp(n2)), respectively. While keeping the

cells pℓ1 and pℓ2 , we replace the cells pℓ1 + 1, . . . , pℓ2 − 1
by cells obtained from a suitably sampled linear function

having the slope n2−n1+1
ϕp(n2)−ϕp(n1)+1 . Here, in the sampling,

we ensure that the step size condition given by Σ is ful-

filled, see Sect. 2. The resulting rectification is illustrated

by Fig. 2 (right). Using the rectified alignment path, we

then compute the tempo curve using a fixed window size

w ∈ N as described in Sect. 3.1. The resulting tempo

curve is denoted by τFWR
w . This third approach, as our ex-

periments show, generally yields more robust and accurate

tempo estimations than the other two approaches.

4. EXPERIMENTS

In this section, we first discuss some representative exam-

ples and then report on a systematic evaluation based on

temporally warped music. In the following, we specify
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Figure 4. Tempo curves of four different interpretations played
by different pianists of the first ten measures (slow introductory
theme marked Grave) of Beethoven’s Pathétique Sonata Op. 13.
(a) Score of measures 4 and 5. (b) Tempo curves τ

FWR
w

for w ∝

3 seconds. (c) Tempo curves τ
AW
v

for v = 10 IOIs.

the window size w in terms of seconds instead of sam-

ples. For example, by writing w ∝ 3 seconds, we mean

that w ∈ N is a window size with respect to the feature

rate corresponding to 3 seconds of the underlying audio.

In our first example, we consider Beethoven’s

Pathétique Sonata Op. 13. The first ten measures corre-

spond to the slow introductory theme marked Grave. For

these measure, Fig. 4 (b) shows the tempo curves τFWR
w

for four different performances using the combined strat-

egy with a window size w ∝ 3 seconds. From these curves,

one can read off global and local tempo characteristics. For

example, the curves reveal the various tempi chosen by the

pianists, ranging from roughly 20 to 30 BPM. One of the

pianists (red curve) significantly speeds up after measure

5, whereas the other pianists use a more balanced tempo

throughout the introduction. It is striking that all four pi-

anists significantly slow down in measure 8, then acceler-

ate in measure 9, before slowing down again in measure

10. Musically, the last slow-down corresponds to the fer-

mata at the end of measure 10, which concludes the Grave.

Similarly, the curves indicate a ritardando in all four per-

formances towards the end of measure 4. In this passages,

there is a run of 64th notes with a closing nonuplet, see

Fig. 4 (a). Using a fixed window size, the ritardando effect

is smoothed out to a large extent, see Fig. 4 (b). How-

ever, having many consecutive note onsets within a short

passage, the ritardando becomes much more visible when

using tempo curves with an onset-dependent adaptive win-

dow size. This is illustrated by Fig. 4 (c), which shows the

four tempo curves τAW
v with v = 10 IOIs.

As a second example, we consider the Schubert Lied

Der Lindenbaum (D. 911 No. 5). The first seven measures

(piano introduction) are shown in Fig. 5 (a). Using the

combined strategy with a window size w ∝ 3 seconds,

we computed tempo curves for 13 different interpretations,

see Fig. 5 (b). As shown by the curves, all interpretations

exhibit an accelerando in the first few measures followed
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Figure 5. Tempo curves of 13 different performances of the
beginning of the Schubert song Der Lindenbaum. (a) Score of
measures 1 to 7. (b) Tempo curves τ

FWR
w

for w ∝ 3 seconds.

by a ritardando towards the end of the introduction. Inter-

estingly, some of the pianists start with the ritardando in

measure 4 already, whereas most of the other pianists play

a less pronounced ritardando in measure 6. These exam-

ples indicate that our automatically extracted tempo curves

are accurate enough for revealing interesting performance

characteristics.

In view of a more quantitative evaluation, we computed

tempo curves using different approaches and parameters

on a corpus of harmony-based Western music of various

genres. To allow for a reproduction of our experiments,

we used pieces from the RWC music database [13]. In

the following, we consider 15 representative pieces, which

are listed in Table 1. These pieces include five classical pi-

ano pieces, five classical pieces of various instrumentations

(full orchestra, strings, flute, voice) as well as five jazz

pieces and pop songs. To automatically determine the ac-

curacy of our tempo extraction procedures, we temporally

modified MIDI files for each of the 15 pieces. To this end,

we generated continuous piecewise linear tempo curves

τGT, referred to as ground-truth tempo curves. These

curves have a constant slope on segments of roughly 10
seconds of duration, where the slopes are randomly gen-

erated either using a value v ∈ [1 : 2] (corresponding

to an accelerando) or using a value v ∈ [1/2 : 1] (cor-

responding to a ritardando). These values cover a range

of tempo changes of ±100% of the reference tempo. In-

tuitively, the ground-truth tempo curves simulate on each

segment a gradual transition between two tempi to mimic

ritardandi and accelerandi. For an example, we refer to

Fig. 6. We then temporally warped each of the original

MIDI files with respect to a ground-truth tempo curve τGT

and generated from the modified MIDI file an audio ver-

sion using a high-quality synthesizer. Finally, we com-

puted tempo curves using the original MIDI files as ref-

erence and the warped audio versions as performances.

To determine the accuracy of a computed tempo curve

τ , we compared it with the corresponding ground-truth

tempo curve τGT. Here, the idea is to measure devia-

tions by scale rather than by absolute value. Therefore,

0 10 20 30 40 50 60 70 80 90 100 110 120
0

0.5

1

1.5

2

Figure 6. Piecewise linear ground-truth tempo curve (red) and
computed tempo curves (black).

FW AW FWR
RWC ID (Comp./Int., Instr.) µ σ µ σ µ σ

C025 (Bach, piano) 3.29 7.30 2.60 5.05 1.59 2.86
C028 (Beethoven, piano) 3.24 6.98 6.36 21.14 2.66 6.72
C031 (Chopin, piano) 3.32 7.72 2.77 4.76 1.75 3.42
C032 (Chopin, piano) 2.54 4.17 3.05 4.67 1.56 2.34
C029 (Schumann, piano) 4.52 8.86 4.18 5.97 2.44 5.13
C003 (Beethoven, orchestra) 4.20 5.39 10.58 22.97 3.56 4.79
C015 (Borodin, strings) 2.44 2.85 4.68 9.85 2.25 2.71
C022 (Brahms, orchestra) 1.70 1.95 2.41 2.96 1.31 1.66
C044 (Rimski-K., flute/piano) 1.62 2.59 2.47 4.27 1.61 2.58
C048 (Schubert, voice/piano) 2.61 3.27 3.95 7.76 2.07 2.98
J001 (Nakamura, piano) 1.44 1.87 1.44 2.43 1.03 1.59
J038 (HH Band, big band) 2.24 2.96 3.20 5.41 1.91 2.74
J041 (Umitsuki, sax/bass/perc.) 1.88 2.40 3.75 4.69 1.72 2.34
P031 (Nagayama, electronic) 2.01 2.42 8.35 14.89 1.94 2.39
P093 (Burke, voice/guitar) 2.50 3.26 6.21 14.74 2.34 3.13

Average over all 2.64 4.27 4.40 8.77 1.98 3.16

Table 1. Tempo curve evaluation using the approaches FW and
FWR (with w ∝ 4 seconds) and AW (with v = 10 IOIs). The ta-
ble shows for each of the 15 pieces the mean error µ and standard
deviation σ (given in percent) of the computed tempo curves and
the ground truth tempo curve. For generating the ground-truth
tempo curves, MIDI segments of 10 seconds were used.

as distance function, we use the average multiplicative dif-

ference and standard deviation (both measured in percent)

of τ and τGT. More precisely, we define

µ(τ, τGT) = 100 ·
1

N
·

N
∑

n=1

(

2| log2
(τ(n)/τGT(n))| − 1

)

.

Similarly, we define the standard deviation σ(τ, τGT). For

example, one obtains µ(τ, τGT) = 100% in the case

τ = 2 · τGT (double tempo) and in the case τ = 1
2 · τ

GT

(half tempo). Similarly, a computed tempo of 110 BPM or

90.9 BPM would imply a mean error of µ = 10% assum-

ing a ground-truth tempo of 100 BPM.

In a first experiment, we computed the curves τFW
w and

τFWR
w with w ∝ 4 seconds as well as τAW

v with v = 10
IOIs for each of the 15 pieces. Table 1 shows the mean

error µ and standard deviation σ between the computed

tempo curves and the ground truth tempo curves. For ex-

ample, for the Schubert song Der Lindenbaum with iden-

tifier C048, the mean error between the computed tempo

curve τFW
w and the ground-truth tempo τGT amounts

to 2.61%. This error decreases to 2.07% when using

the FWR-approach based on the rectified alignment path.

Looking at the average mean error over all pieces, one

can notice that the error amounts to 2.64% for the FW-

approach, 4.40% for the AW-approach, and 1.98% for

the FWR-approach. For example, assuming a tempo of

100 BPM, the last number implies a mean difference of

less than 2 BPM between the computed tempo and the ac-

tual tempo.

In general, the FWR-approach yields the best tempo es-
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FW FWR AW
w [sec]

µ σ µ σ
v [IOI]

µ σ

1 10.62 49.88 5.58 12.47 2 14.50 31.00
2 5.37 14.21 3.58 6.16 4 9.54 23.44
3 4.39 6.90 3.42 5.34 6 7.34 17.34
4 4.62 6.52 3.99 5.74 8 6.18 12.99
5 5.48 7.08 5.06 6.63 10 5.65 10.66
6 6.79 8.02 6.52 7.74 12 5.46 9.48
7 8.40 9.19 8.22 9.00 16 5.54 8.20
8 10.15 10.51 10.03 10.38 20 5.98 8.09

Table 2. Tempo curve evaluation using the approaches FW, AW,
and FWR with various window sizes w (given in seconds) and
v (given in IOIs). The table shows the average values over all
15 pieces, see Table 1. For generating the ground-truth tempo
curves, MIDI segments of 5 seconds were used.

timation, whereas the AW-approach often produces poorer

results. Even though the onset information is of crucial

importance for estimating local tempo nuances, the AW-

approach relies on accurate alignment paths that correctly

align the note onsets. Synchronization approaches as de-

scribed in [12] can produce highly accurate alignments in

the case of music with pronounced note attacks. For ex-

ample, this is the case for piano music. In contrast, such

information is often missing in string or general orches-

tral music. This is the reason why the purely onset-based

AW-strategy yields a relatively poor tempo estimation with

a mean error of 10.58% for Beethoven’s Fifth Symphony

(identifier C003). On the other hand, using a fixed window

size without relying on onset information, local alignment

errors cancel each other out, which results in better tempo

estimations. E. g., the error drops to 3.56% for Beethoven’s

Fifth Symphony when using the FWR-approach.

Finally, we investigated the dependency of the accuracy

of the tempo estimation on the window size. We generated

strongly fluctuating ground-truth tempo curves using MIDI

segments of only 5 seconds length (instead of 10 seconds

as in the last experiment). For the corresponding synthe-

sized audio files, we computed tempo curves for various

window sizes. The mean errors averaged over all 15 pieces

are shown in Table 2. The numbers show that the mean

error is minimized when using medium-sized windows.

E. g., in the FWR-approach, the smallest error of 3.42%
is attained for a window size of w ∝ 3 seconds. Actually,

the window size constitutes a trade-off between robustness

and temporal resolution. On the one hand, using a larger

window, possible alignment errors cancel each other out,

thus resulting in a gain of robustness. On the other hand,

sudden tempo changes and fine agogic nuances can be re-

covered more accurately when using a smaller window.

5. CONCLUSIONS

In this paper, we have introduced automated methods for

extracting tempo curves from expressive music recordings

by comparing the performances with neutral reference rep-

resentations. In particular when using a combined strategy

that incorporates note onset information, we obtain accu-

rate and robust estimations of the overall tempo progres-

sion. Here, the window size constitutes a delicate trade-

off between susceptibility to alignment errors and sensibil-

ity towards timing nuances of the performance. In prac-

tice, it becomes a difficult problem to determine whether

a given change in the tempo curve is due to an align-

ment error or whether it is the result of an actual tempo

change in the performance. Here, one idea for future work

is to use tempo curves as a means for revealing problem-

atic passages in the music representations where synchro-

nization errors may have occurred with high probability.

Furthermore, it is of crucial importance to further improve

the temporal accuracy of synchronization strategies. This

constitutes a challenging research problem in particular

for music with less pronounced onset information, smooth

note transitions, and rhythmic fluctuation.
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ABSTRACT 

The paper presents a method for segmentation and labe-
ling of ethnomusicological field recordings. Field record-
ings are integral documents of folk music performances 
and typically contain interviews with performers intert-
wined with actual performances. As these are live record-
ings of amateur folk musicians, they may contain inter-
ruptions, false starts, environmental noises or other inter-
fering factors. Our goal was to design a robust algorithm 
that would approximate manual segmentation of field re-
cordings. First, short audio fragments are classified into 
one of the following categories: speech, solo singing, 
choir singing, instrumental or bell chiming performance. 
Then, a set of candidate segment boundaries is obtained 
by observing how the energy of the signal and its content 
change, and finally the recording is segmented with a 
probabilistic model that maximizes the posterior proba-
bility of segments given a set of candidate segment boun-
daries with their probabilities and prior knowledge of 
lengths of segments belonging to different categories. 
Evaluation of the algorithm on a set of field recordings 
from the Ehtnomuse archive is presented. 

1. INTRODUCTION 

Ethnomusicological field recordings are recordings made 
“in the field”, capturing music in its natural habitat. Start-
ing in the early 20th century and continuing to the present 
day, ethnomusicologists and folklorists have travelled 
and made recordings in various parts of the world primar-
ily to preserve folk music, but also to make it available 
for further researches, such as studies of acculturation and 
change in music, comparative studies of music cultures 
and studies of the music making process and its effect 
through performance. Segmentation of field recordings 
into meaningful units, such as speech, sung or instrumen-
tal parts is one of the first tasks researchers face when a 
recording is first being studied. It is also a prerequisite for 
further automatic processing, such as extraction of key-

words, melodies and other semantic descriptors.  
Segmentation of audio recordings has been extensively 

explored for applications such as speech recognition (re-
moval of non-speech parts, speaker change detection), 
segmentation in broadcast news or broadcast monitoring. 
Typically, the distinction is made between speech, music 
and silence regions. Approaches to segmentation include 
either first classifying short periods of the signal into de-
sired classes using some set of features and then making 
the segmentation [1-3], or first finding change points in 
features and forming segments and later classifying the 
segments [4-6]. Authors use a variety of features, clas-
sifiers and distances depending on the nature of signals to 
be segmented. More recently, Ajmera [7] performed clas-
sification and segmentation jointly by using a combina-
tion of standard hidden Markov models and multilayer 
perceptrons for speech/music discrimination of broadcast 
news. Pikrakis et al. [8] used a three step approach: first 
they identified regions in the signal which are very likely 
to contain speech or music with a region growing algo-
rithm. Then, they segmented the remaining short (few 
seconds long) regions with a maximum likelihood model 
that maximized the probability of class labels given 
frame-level features and segment length limits. A Baye-
sian network was used to estimate the posterior probabili-
ty of a music/speech class label given a set of features. 
Finally, a boundary correction algorithm was applied to 
improve the found boundaries. Their use of a probabilis-
tic model is somewhat similar to the proposed segmenta-
tion method, but as we describe further on, we use a max-
imum likelihood approach to segment an entire field re-
cording by first labeling signal fragments, then finding 
candidate boundaries, and finally maximizing the proba-
bility of segmentation considering probabilities of boun-
daries and segment lengths given their class. 

The algorithm presented in this paper was designed to 
robustly label and segment ethnomusicological field re-
cordings into consistent units, such as speech, sung and 
instrumental parts. Resulting segmentations should be 
comparable to manual segmentations researchers make 
when studying recordings. Field recordings are docu-
ments of entire recording sessions and typically contain 
interviews with performers intertwined with actual per-
formances. As these are live recordings of amateur folk 
musicians, they usually contain lots of “noise” and inter-
ruptions, such as silence when performers momentarily 
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forget parts of songs, false starts and restarts, laughter, 
dancing noises, interruptions by other persons, dogs bark-
ing or cars driving by. Performances may also change 
character; singing may become reciting, a second voice 
may join or drop out of a performance etc.  

The described nature of field recordings calls for a ro-
bust segmentation algorithm that would not over-segment 
a recording at each interruption – for example; we are not 
interested in each boundary separating speech and sung 
parts, as only some of them are actual segment bounda-
ries. We would also like to distinguish between several 
different classes of segments and would like to take some 
prior knowledge of the classes into account. And last, we 
are not interested in millisecond-exact segment bounda-
ries or exact labeling of each small recording fragment; 
sometimes placing a boundary between two performances 
is a very soft decision and accuracy of a few seconds is 
good enough. Taking these points into account, we pro-
pose a three step algorithm for segmentation. First, a 
standard classification algorithm is used to classify short 
audio segments into a set of predefined classes. Then, a 
set of candidate segment boundaries is obtained by ob-
serving how the energy and class distribution change, and 
finally the recording is segmented with a probabilistic 
model that maximizes the posterior probability of seg-
ments given a set of candidate segment boundaries with 
their probabilities and prior knowledge of lengths of 
segments belonging to different classes.  

2. CLASSIFICATION 

Classification of short field recording fragments into a set 
of predefined categories represents the first part of our 
segmentation algorithm. We base our work on field re-
cordings from the EthnoMuse digital archive [9]. The 
archive contains folk song, music and dance collections 
of the Institute of Ethnomusicology, Scientific Research 
Centre of Slovene Academy of Sciences and Arts. Audio 
recordings represent the largest part of the archive and 
comprise recordings of folk songs and melodies, with the 
oldest on wax cylinders from 1914 and around 30.000 
field recordings on magnetic tape and digital media dat-
ing from 1955 onwards. Only parts of the archive are di-
gitally annotated. Field recordings are typically around an 
hour long and contain interviews with performers intert-
wined with performances. The latter include singing (solo 
or group), reciting, instrumental pieces (a large variety of 
instruments is used, depending on the region), as well as 
bell chiming, which is a Slovenian folk tradition of play-
ing rhythmic patterns on church bells. The quality of re-
cordings varies a lot and depends on their age, equipment 
used, location (inside, outside) and type of event (ar-
ranged recording session or recording of a public event).  

We identified five categories into which field record-
ing fragments are to be classified: speech, solo singing, 
choir singing (any performance with two or more voices 

belongs to this class), instrumental (including instrumen-
tal with singing) and bell chiming. We then evaluated a 
set of features often used for speech/music discrimination 
and timbre recognition to find the ones most suitable for 
classification into these categories. The following nine 
features were selected: 
• the quotient of RMS energy variance over the squared 

mean of RMS energy. RMS energy r is defined as: 
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where x represents the time domain signal and W the 
window size. The feature describes the amount of sig-
nal energy fluctuations and is typically larger for 
speech than for other types of signals; 

• mean spectral entropy, as defined by Pikrakis [10]. 
The entropy represents the instability of signal energy 
calculated over a number of spectral sub-bands and is 
typically low for bell chiming recordings, somewhat 
higher for music, and high for other signal types. It is 
calculated as: 
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where L represents the number of spectral sub-bands 
and Xi the energy of the i-th sub-band (see [10] for 
more details); 

• variance of spectral entropy deltas. Deltas are calcu-
lated as a linear trend over five consecutive windows; 

• variances of the first three MFCC coefficients (omit-
ting the zero-th). MFCC coefficients describe the 
shape of the signal spectrum and are thus very appro-
priate for our classification task; 

• variances of deltas of the first three MFCC coeffi-
cients (omitting the zero-th). Deltas are calculated as a 
linear trend over five consecutive windows. 

To train and test a classifier, we manually labeled 1760 
3 second long field recording fragments from the Ethno-
Muse digital archive. All features were calculated on sig-
nals windowed with a 46ms Hamming window with 
23ms overlap. Feature means and variances were calcu-
lated over 3 second periods, thus taking approx. 130 fea-
ture values into account. A multinomial logistic regres-
sion classifier [11] was chosen for classification, because 
it’s simple and gives good results. Furthermore, its output 
can be regarded as a probability distribution over all 
classes. We trained the classifier to classify each frag-
ment into one of the five previously described classes. 2/3 
of the labeled fragments were used for training and 1/3 
for testing. Table 1 shows the average confusion matrix 
of our classifier for 10 training/test runs. The overall ac-
curacy is at 78% of correctly classified instances. 

Most of the errors made by the classification algorithm 
are easy to explain. The confusion of speech and solo 
singing segments is understandable, if we take into ac-
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count that singers are not professional musicians, they are 
often old persons and their singing close to reciting or 
very monotonous. Confusion between solo and choir 
singing occurs in choir segments sung in unison, as well 
as duet singing, while instrumental and bell chiming 
segments are correctly classified in most cases with con-
fusion mostly arising between the two classes. 

 
 classified as 
 speech solo choir instr. bell ch.
speech 79% 14% 4% 3% 0%
solo singing 13% 61% 24% 1% 1%
choir singing 2% 10% 82% 3% 3%
instrumental 1% 3% 3% 82% 11%
bell chiming 0% 0% 2% 7% 91%

Table 1. Confusion matrix of the classification algo-
rithm. 

3. SEGMENTATION 

To segment a recording, we first find a set of candidate 
segment boundaries and calculate the probability of split-
ting the recording at each boundary. Segmentation is then 
performed by maximizing the joint probability of all 
segments, taking prior knowledge of segment lengths of 
different signal classes into account.  

3.1 Finding and Evaluating Candidate Boundaries 

We consider two criteria for boundary placement: a crite-
rion based on change in signal energy, such as when per-
formances are separated by regions of silence, and a crite-
rion based on change in signal content, such as when 
speech is followed by singing. To observe changes in 
energy, we calculate RMS energy e of the audio signal; 
changes in signal content are detected by calculating the 
symmetric Kullback-Leibler (KL) divergence d [12] be-
tween probabilities of signal classes as calculated by the 
logistic classifier described in section 2. We find a set of 
candidate segment boundaries B by low-pass filtering 
both measures to obtain their filtered versions e 

f and d 
f 

and finding all candidate boundary regions (bl, br) that 
satisfy:   
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where E0 and E1 are the global and relative thresholds 
that determine the selection of energy-based candidate 
boundary regions and D0 and D1 the global and relative 
thresholds that determine the selection of divergence-
based candidate boundary regions (see also Figure 1 for 
illustration). 

Thus, the set of all candidate segment boundaries con-
tains regions of the signal where its energy falls below, or 
the amount of change in signal content rises above an 
adaptive threshold. This is illustrated in Figure 1, which 
displays a 13 minute long field recording excerpt. The 

overall RMS energy e (in dB) is displayed on top, the 
symmetric KL divergence d below. Both adaptive thre-
sholds are indicated with a dotted line; regions where the 
curves fall below (energy) or raise above (KL diver-
gence) the threshold represent candidate segment bounda-
ries. True segment boundaries are indicated in the middle. 
As shown, the candidate boundary regions correspond 
well with true boundaries. Many segments are clearly se-
parated by regions of silence, as the energy plot shows. 
On the other hand, KL divergence is high where signal 
content changes, such as between speech and instrumen-
tal or sung parts.  

 

 
Figure 1. Finding candidate boundaries. 

Selecting all of the candidate boundary regions as true 
boundaries and splitting a recording accordingly is not 
the best idea; for example energy fluctuates a lot in 
speech parts (as can be seen in Figure 1) and these parts 
would consequently be over-segmented. One could at-
tempt to find the best values for relative thresholds D1 
and E1, but as we show, we can do better by treating the 
boundary selection process as a classification task. For 
this purpose, we trained two logistic regression classifiers 
(one for energy, one for KL divergence) to predict the 
probability of splitting the segment at a candidate boun-
dary.  

The following features were found to be useful for 
energy-based boundary classification: the amount of sig-
nal energy below the energy threshold (se) and the maxi-
mum difference in signal content to the left and right of 
the boundary region (mc). They are calculated as: 
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where P(ct = c) denotes the probability that the signal at 
time t belongs to class c, as calculated by the classifica-
tion algorithm presented in section 2 and N the number of 
frames taken into account to the left or right of the boun-
dary region. The most useful features for the KL diver-
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gence-based classifier were found to be the amount of 
divergence above the threshold (sd) and the total amount 
of divergence within the boundary region (td): 
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Both classifiers were trained and tested on a set of 30 
field recordings from the Ethnomuse archive, which were 
manually segmented and labeled, containing a total of 
840 segments. The classifiers were trained to predict 
whether a found candidate boundary represents a true 
segment boundary or not. RMS energy et was calculated 
as the average RMS energy within a 3s window around t 
and a step size of 0.5s. Symmetric KL divergence dt was 
calculated between 10 second long segments to the left 
and right of t with the same step size. Such large window 
sizes were chosen primarily to make the algorithm more 
robust to “noise” in performances, such as false starts, 
performers forgetting songs, interruptions etc. To obtain 
the smoothed vectors e 

f and d 
f, we zero-phase filtered e 

and d with a first order low-pass Butterworth filter with 
cutoff frequency of 0.01π. The values of other parameters 
were experimentally obtained and set to: E1=0.2, E0=10-6, 
D1=0.1, D0=3 and N=9. Using these parameters, we ex-
tracted approximately 2400 candidate boundary regions 
from the field recordings and used two thirds of this set to 
train each classifier to predict whether a candidate boun-
dary is a true segment boundary or not. We evaluated the 
performance of the two classifiers on the remaining third 
of the dataset and compared it to an alternative of using 
an optimal fixed threshold for candidate selection. Table 
2 displays average precision and recall scores on the test 
set for 10 training/test runs. Compared to choosing a 
fixed threshold for boundary selection, logistic classifiers 
improve the accuracy of selection. An additional advan-
tage is that their output can be regarded as the probability 
of splitting the recording at a candidate boundary; a fact 
exploited by our segmentation algorithm described in sec-
tion 3.2. 
 

criterion select. method precision recall 
energy  
 

best fixed threshold 0.71 0.57 
logistic classifier 0.7 0.67 

KL  
divergence 

best fixed threshold 0.77 0.71 
logistic classifier 0.79 0.78 

Table 2. Selection of boundary candidates. 

 

3.2 Segmentation algorithm 

We perform segmentation by following the logic of 
Bayesian modeling and infer the most probable segmen-
tation by maximizing: 

 ( | ) ( | ) ( )P seg data P data seg P seg∝  (6) 

To obtain a generative segmentation model, we define 
segmentation as a sequence of segments Si1, Si2, ..., SiN, 
0<i1<i2< ... <iN, where Si1 starts at time 0 and ends at 
candidate boundary Bi1, Si2 starts at candidate boundary 
Bi1 and ends at Bi2, Si3 starts at Bi2 and ends at Bi3 and so 
on. We treat each candidate boundary Bt B as a discrete 
random variable with two outcomes: either the candidate 
boundary represents an actual boundary and splits the re-
cording into two segments, or not. The probability mass 
function for the variable is defined by outputs of the 
energy (Pe) and KL divergence (Pkl) classifiers, as de-
scribed in section 3.1: 
 ( )( ) max ( ), ( )t e t kl tP B true P B P B= =  (7) 

In our model, the probability of each segment is only de-
pendent on location of the previous segment, so we can 
express the joint probability of all segments as: 
 1 2 1 3 2 1( ) ( | ) ( | ) ... ( | )i i i i i iN iNP S P S S P S S P S S −⋅ ⋅ . (8) 

To calculate the probability of segment Si given Sj, we 
must consider all candidate boundaries within the seg-
ment, as well as its duration. If the segment is to start at 
time j and end at i, values of all candidate boundary va-
riables within the segment must be false, while the value 
of candidate boundary variable at time i must be true. 
Segmentation is further constrained by our previous 
knowledge of typical lengths of segments given their 
class, leading to the following formulation: 
 ( | ) ( | , ) ( ) ( ) .i j i i j i k

j k i
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Equation (8) then becomes: 
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where S is the set of all segment indices and (i,j) a pair 
of consecutive indices from this set.  

Probability of segment duration given its boundaries is 
dependent on the class of the segment, as calculated by 
the classifier presented in section 2. By analyzing dura-
tions of segments in our collection of field recordings, we 
estimated the means and standard deviations for all seg-
ment classes (µc, σc); for example the duration of speech 
segments varies a lot and ranges from several seconds to 
over ten minutes, while the average length of choir sing-
ing segments is around three minutes and their standard 
deviation below two minutes. By additionally enforcing 
minimal segment duration Dmin, we obtain the following 
expression: 
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where P(Ci=c|Si, Sj) represents the probability that seg-
ment Si belongs to class c and is calculated as the average 
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probability of classification of frames within the segment 
into class c. G is the unscaled Gaussian function.  

To find the sequence of segments that maximizes Equ-
ation (10) and thus provides an optimal solution, we 
resort to dynamic programming that leads us to a simple 
and efficient solution. For each segment Si ending at the 
candidate boundary Bi we can calculate the most probable 
segmentation that ends with this boundary d(Si) by the 
following rules: 
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where S0 represents the segment boundary at time 0;  S0 is 
a boundary if a performance starts at time 0, or not if 
there is silence or noise present, so we give it a probabili-
ty of 0.5.  

In our implementation, we minimize the negative log-
likelihood of segmentation, so all products become sum-
mations. When the function d(Si) is calculated for all can-
didate boundaries, the most likely segmentation can be 
recovered by tracking back the calculation and retrieving 
optimal boundary indices.  

After segmentation is calculated, segments can be la-
beled by finding the class c that maximizes P(Ci=c|Si, Sj); 
as mentioned before, the latter and is calculated as the 
average probability of classification of frames within the 
segment Si into class c. 

3.3 Evaluation  

As with boundary selection, we evaluated our segmenta-
tion algorithm on a set of 30 field recordings from the 
Ethnomuse archive, which were manually segmented and 
labeled, containing a total of 840 segments. Because of its 
specific nature, it is difficult to directly compare the algo-
rithm to other segmentation approaches. We therefore 
provide a comparison of the proposed method to a simple 
thresholding algorithm, where segments are formed by 
thresholding either the energy, KL divergence or the 
maximal energy/KL divergence candidate boundary 
probabilities. Results are given in Table 3. Average preci-
sion and recall scores of true vs. estimated segment 
boundaries for all 30 recordings for the three thresholding 
and the proposed probabilistic method are shown.  
 

 average 
precision 

average 
recall 

thresholding Pe(Bt) 0.61 0.61 
thresholding Pd(Bt) 0.65 0.64 
thresholding max(Pe(Bt),Pd(Bt)) 0.73 0.78 
proposed algorithm 0.78 0.81 

Table 3. Comparison of segmentation algorithms. 

The probabilistic algorithm is quite robust and im-
proves segmentation accuracy over the more naive thre-

sholding approaches. Most of the false positives occur in 
speech sections containing very long regions of silence 
that for example occur when people reflect on past events 
(consequently causing large drops in energy), or in solo 
singing performances that are interleaved with reciting or 
spoken statements, such as “this is repeated three times 
and we start dancing in a circle so and so ...” (causing 
high KL divergence).  False negatives occur when per-
formances follow each other without significant changes, 
for example several songs sung in a row almost without 
interruptions, or when the start or end of a segment is 
missed, because it interleaves with speech, so that the 
boundary is placed either too soon or too late in a record-
ing.  

To evaluate the influence of the choice of relative and 
global thresholds (see eq. (3)) on segmentation, we eva-
luated the algorithm’s performance by varying values of 
the four thresholds individually, with other parameters 
fixed. The resulting precision/recall curves are given in 
Figure 2.  

 

 
Figure 2. Precision/recall curves obtained by varying 
the four thresholds that influence candidate boundary 
region selection: E0 and E1 for energy (both are shown 
in dB), D0 and D1 for KL divergence curves. 

We can observe that precision is only marginally af-
fected by both global thresholds (E0 and D0) – raising 
them will result in a smaller number of boundaries found, 
thus decreasing recall, while precision will not increase 
by much, as the false positives seem to be almost equally 
spread between weak (low global threshold) and strong 
(high global threshold) candidate boundary regions. On 
the other hand, precision is more strongly affected by rel-
ative threshold selection (E1 and D1); small relative thre-
shold values will result in many false positives, as any 
significant drop in energy or rise in the KL divergence 
curve will result in a new boundary candidate. Higher 
values increase precision and decrease recall, as expected. 

The accuracy of classification of correctly found seg-
ments into one of the five classes is 86%; errors are simi-
lar to the ones described in section 2.  
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4. CONCLUSION 

The proposed algorithm for segmentation and labeling of 
ethnomusicological field recordings provides a good 
starting point for further development of automatic me-
thods for analysis of such recordings. Its accuracy is good 
enough for practical use and the algorithm has already 
been integrated into the tools of the Ethnomuse archive 
and is available to its users. For further improvements, we 
need to start looking into the inner structure of each seg-
ment, which may help us to improve the found bounda-
ries. We also plan to explore hierarchical segment classi-
fication to classify instrumental segments into typical en-
semble types, speech and singing segments into male and 
female etc. 
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ABSTRACT

This paper describes a method for music classification based
solely on the audio contents of the music signal. More
specifically, the audio signal is converted into a compact
symbolic representation that retains timbral characteristics
and accounts for the temporal structure of a music piece.
Models that capture the temporal dependencies observed
in the symbolic sequences of a set of music pieces are
built using a statistical language modeling approach. The
proposed method is evaluated on two classification tasks
(Music Genre classification and Artist Identification) us-
ing publicly available datasets. Finally, a distance measure
between music pieces is derived from the method and ex-
amples of playlists generated using this distance are given.
The proposed method is compared with two alternative ap-
proaches which include the use of Hidden Markov Mod-
els and a classification scheme that ignores the temporal
structure of the sequences of symbols. In both cases the
proposed approach outperforms the alternatives.

1. INTRODUCTION

Techniques for managing audio music databases are essen-
tial to deal with the rapid growth of digital music distri-
bution and the increasing size of personal music collec-
tions. The Music Information Retrieval (MIR) community
is well aware that most of the tasks pertaining to audio
database management are based on similarity measures be-
tween songs [1–4]. A measure of similarity can be used for
organizing, browsing, visualizing large music collections.
It is a valuable tool for tasks such as mood, genre or artist
classification that also can be used in intelligent music rec-
ommendation and playlist generation systems.

The approaches found in the literature can roughly be
divided in two categories: methods based on metadata and
methods based on the analysis of the audio content of the
songs. The methods based on metadata have the disadvan-
tage of relying on manual annotation of the music contents
which is an expensive and error prone process. Further-
more, these methods limit the range of songs that can be
analyzed since they rely on textual information which may
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not exist. The other approach is based solely on the au-
dio contents of music signals. This is a challenging task
mainly due to the fact that there is no clear definition of
similarity. Indeed, the notion of similarity as perceived
by humans is hard to pinpoint and depends on a series of
factors, some dependent on historical and cultural context,
others related to perceptual characteristics of sound such
as tempo, rhythm or voice qualities.

Various content-based methods for music similarity have
been proposed in recent years. Most of them divide the au-
dio signal in short overlapping frames (generally10-100ms
with 50% overlap), and extract a set of features usually re-
lated to the spectral representation of the frame. This ap-
proach converts each song into a sequence of feature vec-
tors, with a rich dynamic structure. Nevertheless, most of
the similarity estimation methods ignore the temporal con-
tents of the music signal. The distribution of the features
from one song or a group of songs are modeled, for in-
stance, with thek-means algorithm [3], or with a Gaus-
sian mixture model [1, 5, 6]. To measure similarity, mod-
els are compared in a number of ways, such as the Earth-
Mover’s distance [3], Monte-Carlo sampling [1], or nearest
neighbor search. Additionally, some information about the
time-dependencies of the audio signal can be incorporated
through some statistics of the features over long temporal
windows (usually a few seconds), like in [4–8].

In this work we propose computing a measure of sim-
ilarity between songs based solely on timbral characteris-
tics. We are aware that relying only on timbre to define
a music similarity measure is controversial. Human per-
ception of music similarity relies on a much more com-
plex process, albeit timbre plays an important role in it. As
pointed out by J.-J. Aucouturier and J. Pachet [1], methods
that aim at describing a timbral quality of whole song will
tend to find similar pieces that have similar timbres but be-
long to very different genres of music. For instance, pieces
like a Schumann sonata or aBill Evans tune will have a
high degree of similarity due to their common romantic
piano sounds [1]. Following our approach by modeling
time dependencies between timbre-based feature vectors,
we expect to include some rhythmic aspects in the mod-
els. As we will see in section 3.3, this approach leads
to playlists with more variety while conserving the same
overall mood.

We use a single type of low-level features: the Mel Fre-
quency Cepstral Coefficients (MFCC). The MFCC vectors
are commonly used in audio analysis and are described as
timbral features because they model the short-time spec-
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tral characteristics of the signal onto a psychoacoustic fre-
quency scale. On their own, the MFCC vectors do not
explicitly capture the temporal aspects of the music, and
therefore are often associated with the “bag of frames”
classifiers. In this type of classifiers, songs with the same
MFCC frames in different order would be yield the same
results. It is our contention that the order of MFCC frames
is indeed important and that this information can be used
to estimate a similarity measure between songs. We use a
language model approach to achieve this result. The most
related works include Soltauet al. [9], Chenet al. [10], and
Li and Sleep [11].

In Soltauet al. [9], each music is converted into a se-
quence of distinct music events. Statistics like unigram,
bigram, trigram counts are concatenated to form a fea-
ture vector that is fed into a neural network for classifi-
cation. In Chen et al. [10] a text categorization technique
is proposed to perform musical genre classification. They
build a HMM from the MFCC coefficients using the whole
database. The set of symbols is represented by the states
of the HMM. Music symbols are tokenized by computing
1 and 2-grams. The set of tokens is reduced using Latent
Semantic Indexing. In Li and Sleep, a support vector ma-
chine is used as a classifier. The feature are based on n-
grams of varying length obtained by a modified version of
the Lempel-Ziv algorithm.

This paper is organized as follows: In section 2. we de-
scribe our method for music similarity estimation. In sec-
tion 3. we report and analyze the results of the algorithm on
various task and datasets. We also compare performance of
our approach to other types of techniques. We close with
some final conclusions and future work.

2. PROPOSED APPROACH

The proposed approach is divided into several steps. First,
the music signals are converted into a sequence of MFCC
vectors1 . Then, the vectors are quantized using a hierar-
chical clustering approach. The resulting clusters can be
interpreted as codewords in a dictionary. Every song is
converted into a sequence of dictionary codewords. Prob-
abilistic models are then built based on codeword transi-
tions of the training data for each music category, and for
classification, the model that best fits a given sequence is
chosen. The details of each stage are described in the fol-
lowing sections. In the last section we consider building
models based on a single music piece, and describe an ap-
proach that allows us to define a distance between two mu-
sic pieces.

2.1 Two-Stage Clustering

The objective of the first step of our algorithm is to identify,
for each song, a set of the most representative frames. For
each track, the distribution of MFCC vectors is estimated
with a gaussian mixture model (GMM) with five gaussians

1 Twelve Mel Frequency Cepstral Coefficients are calculated for each
frame, all audio files were sampled at 22050Hz, mono and each frame has
a duration of 93ms with 50% overlap

and full covariance matrix (Λi):

pdf(f) =

N
∑

i=1

wiGi(f) (1)

with:

Gi(f)=
1

√

(2π)d|Λi|
exp

(

−
1

2
(f−µi)Λ

−1

i (f−µi)
⊤

)
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whereµi represent the Gaussian’s mean andf an MFCC
frame. We did not perform exhaustive tests in order to
chose the optimal value for the number of Gaussians (N )
but realized some tests on a reduced number of tracks and
decided to useN = 5. At this step, the use of GMM
is similar to Aucouturier’s work [12] were some hints are
given about the optimal value ofN . The parameters are
estimated using the Expectation-Maximization (EM) algo-
rithm. The probabilistic models of the songs are used to se-
lect a subset of the most likely MFCC frames in the song.
For each tracka, Fa, is the set ofk1 frames that maximize
the likelihood of the mixture.

Contrasting with Aucouturier’s approach, we do not use
the GMM as the representation of tracks in the database.
This leads to an increased memory requirement during the
training phase that is later reduced as we will see in the
next section.

The second step consists in finding the most represen-
tative timbre vectors in the set of all music pieces. At this
stage, the dataset correspond to the frames extracted from
each song:F =

⋃Nm

j Fj and the objective is to deduce
k2 vectors that represent this dataset. This is achieved
using the k-means algorithm. As an alternative, a GMM
trained on the setF was also used. But thanks to the ro-
bustness, scalability and computational effectiveness ofthe
k-means algorithm, better results were obtained using this
simpler approach. More precisely, the EM algorithm is
sensible to parameters like the number of gaussians and
the dimension and the number of data points, and can result
in ill-conditioned solutions. That was verified in numerous
cases, and we managed to train GMMs with only a reduced
number of kernels that was too small for our objectives.

The output of this two-stage clustering procedure is a
set ofk2 twelve-dimensional centroids that represent the
timbres found in a set of music pieces. The value of the
k1 parameter must be chosen in order to balance between
precision2 , computing and space resources. One of the
advantages of dividing into two steps is scalability. Indeed,
the first stage has to be done only once and, as we will
see in section 3. can be used to compute various kinds of
models.

2.2 Language Model Estimation

The set ofk2 vectors obtained during the previous step is
used to form a “dictionary” that allow us to transform a
track into a sequence of symbols. For each MFCC frame
f a symbols corresponding to the nearest centroidci is
assigned:

s = argmin d(f, ci)
i=1..k2

2 We expect that higher values ofk1 parameter will lead to a more
accurate description of the set of timbres present in a song.
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Figure 1. System structure for the language modeling approach. The music signals are converted into a sequence of MFCC
vectors, and a two-stage clustering is performed on all the training sequences. Then all the MFFCs are vector quantized
resulting in a sequences of symbols. The sequences are divided by category, and the bigrams probabilities are estimated.

whered() is the Euclidian distance. Once tracks are trans-
formed into sequences of symbols, a language modeling
approach is used to build classifiers. A Markov Model is
built for each category by computing the transition proba-
bilities (bigrams) for each set of sequences. The result is a
probability transition matrix for each category containing,
for each pair of symbols(si, sj), the probabilityP (sj |si)
of symbolsi to be followed by the symbolsj .

This matrix cannot be used like this because it contains
many zero-frequency transitions. Many solutions to this
problem have been studied by the Natural Language Pro-
cessing community. Collectively known as “smoothing”
the solution consist in assigning a small probability mass
to each unseen event in the training set. In the context of
this work we experimented several approaches such as the
Expected Likelihood Estimator and the Good-Turing esti-
mator [13]. Neither of these approaches are suitable for our
case, because the size of our vocabularies is much smaller
than those commonly used in Natural Language Process-
ing. We used a technique inspired by the “add one” strat-
egy that consists in adding one to the counts of events. Af-
ter some tests, we concluded that adding a small constant
ǫ = 1.0e − 5 to each zero probability transition allowed
us to solve the smoothing problem without adding to much
bias toward unseen events.

Once a set of models is built, we are ready to clas-
sify new tracks into one of the categories. A new track is
first transformed into a sequence of symbols (as explained
above). Given a modelM , the probability that it would
generate the sequenceS = s1, s2, ...sn is:

PM (si=1..n) = PM (s1)

n
∏

i=2

PM (si|si−1) (3)

which is better calculated as

SM (si=1..n)=log(PM (si=1..n))

=log(PM (s1))+

n
∑

i=2

log(PM (si|si−1))
(4)

This score is computed for each modelM and the class
corresponding to the model that maximize the score values
is assigned to the sequence of symbols. One of the benefits
of our method is that once the models are computed, there
is no need to have access to the audio files and MFCC fea-
tures since only the sequences of symbols are used. With
vocabulary size between 200 and 300 symbols the space
needed to keep this symbolic representation is roughly one
byte/frame or 1200 bytes/minute.

2.3 Distance Between Music Pieces

Given a database of music tracks, a vocabulary is build
following the steps described in section 2.1. Then, instead
of creating a model for each “class” or “genre” a model is
built for each track (i.e. a probability transtion matrix).Let
Sa(b) be the score of musicb given the model of musica
(see section 2.2). We can define a distance between music
a and musicb by:

d(a, b) = Sa(a) + Sb(b)− Sa(b)− Sb(a) (5)

This distance is symmetric but it is not a metric distance
sinced(a, b) = 0 ⇒ a = b is not verified. It is a diffi-
cult task to evaluate a distance between music pieces since
there is no “ground truth”. One can examine the neighbor-
hood of a song and verify to what extend the songs found
nearby show similarities. In our case, the expected sim-
ilarities should be relative to timbral characteristics since
we are using features that represent the timbre. A common
application of distances measures over music pieces is to
generate playlists. The user selects a song he likes (the
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C E J M R W %acc. pre. rec.
Classical 304 2 0 0 0 14 95.0 0.95 0.95
Electronic 1 96 0 0 10 7 84.2 0.74 0.84
JazzBlues 0 2 16 0 6 2 61.5 1.00 0.62
MetalPunk 0 1 0 24 18 2 53.3 0.89 0.53
RockPop 1 13 0 3 78 7 77.5 0.63 0.77
World 17 15 0 0 12 78 63.9 0.72 0.64

Table 1. Confusion matrix, accuracy, precision and recall
for each class of the ISMIR 2004 dataset.

seed song) and the system returns a list of similar songs
from the database.

3. EXPERIMENTAL RESULTS AND ANALYSIS

3.1 Genre Classification task

We used the ISMIR 2004 genre classification dataset which
is composed of six musical genres with a total of 729 songs
for training and 729 songs for test3 . The method described
in sections 2.1 and 2.2 was used to classify this dataset. Ta-
ble 1 shows the confusion matrix on the test set, classifica-
tion rate, precision and recall for each class, obtained using
parametersk1 = 200 andk2 = 300. The overall accuracy
is 81.85% if we weight percentages with the prior proba-
bility of each class. These results compare favorably with
those obtained with other approaches (see for example [5],
78.78% and [14], 81.71%). As can be seen in the follow-
ing table, the method is not too sensible to its parameters
(k1 andk2).

k1 k2 accuracy k1 k2 accuracy
100 25 74.90% 200 200 81.07%
200 50 77.37% 200 300 81.89%
100 50 79.70% 200 400 81.48%
100 100 80.93% 300 300 81.76%
100 200 81.34% 300 400 81.07%
100 300 81.76% 300 1000 80.52%

3.2 Artist Identification task

One of our objectives with this task is to assess the perfor-
mance of our method when models are based on smaller
datasets. Indeed, contrasting with genre classification, in
the case of Artist Identification, a model is build for each
artist. We evaluated our method using two datasets:arti-
st20 4 that contains 1412 tracks from 20 artists. Each
artist is represented by 6 albums. The second dataset focus
on Jazz music and is based on authors’ collection. It con-
tains 543 tracks from 17 artists (we will call this dataset
Jazz17). This dataset is smaller thanartist20 but
the interest here is to see if our system is able to distin-
guish songs that belong to a single genre. The abreviations
used for the names of the 17 artists are: DK: Diana Krall,
SV: Sarah Vaughan, DE: Duke Ellington, TM: Thelonious
Monk, CB: Chet Baker, MD: Miles Davis, CJ: Clifford
Jordan, NS: Nina Simone, JC: John Coltrane, FS: Frank

3 The distribution of songs along the six genres is: classical: 320; elec-
tronic: 115 jazzblues: 26; metalpunk: 45; rockpop: 101; world: 122 for
the training and the test set.This data set was used for the Genre Classifi-
cation contest organized in the context of the International Symposium on
Music Information Retrieval - ISMIR 2004 (http://ismir2004.ismir.net).

4 This dataset is available upon request, see: http://labrosa.ee.-
columbia.edu/projects/artistid/ .

Sinatra, LY: Lester Young, OP: Oscar Peterson, EF: Ella
Fitzgerald, AD: Anita O’Day, BH: Billie Holliday, AT: Art
Tatum and NJ: Norah Jones.

Regarding theJazz17 dataset, the results are shown in
the following table. For two sets of parameter values (k1

andk2) the training and test was repeated ten times and
the two last columns show the average accuracy and the
corresponding standard deviation observed on the test set.

k1 k2 mean std. dev.
100 100 73.49% 1.75
200 200 74.25% 2.25

Because of the reduced number of albums per artist, 50%
of each artist’s songs were randomly selected and for train-
ing while the other half was used for test. Table 2 contains
a confusion matrix obtained withJazz17. As can be seen
in the confusion matrix, number of misclassifications occur
between songs with strong vocals and are thus understand-
able.

The results obtained with theartist20 dataset are
shown in the following table. We used two different setups.
For rows 1 and 2, 50% of an artist’s songs are randomly
selected and used for training while the other half is used
for testing. In rows 3 and 4 we used the strategy suggested
in [15]. For each artist an album is randomly selected for
test and the other five albums are used for training.

k1 k2 mean std. dev.
1 100 100 57.40% 0.74
2 200 200 59.14% 1.49
3 100 200 45.28% 7.27
4 200 200 48.98% 7.96

The results shown in rows 3 and 4 are worse than those
obtained by Dan Ellis [15] since his approach leads to 54%
accuracy using MFCC features and 57% using MFCC and
chroma features.

As we can see, choosing the training and testing sets
randomly leads to significantly better results than keeping
one album for test. This is due to the “album effect” [16].
These results show that despite the name of the task, it is
clear that, at least in our case, the problem solved is not
the Artist Identification problem. Indeed, our method aims
at classifying songs using models based on timbre. Dif-
ferent albums of the same artist may have very different
styles, use different kinds of instruments, sound effects and
recording conditions. If a sample of each artist’s style is
found in the training set, it is more likely that the classifier
will recognize a song with similar timbre. If every songs of
an album are in the test set, then the accuracy will depend
on how close are the mixtures of timbres of this album from
those of the training set. This is confirmed by the standard
deviation observed with both approaches. When trying to
avoid the “album effect” we observe a large variation of
performance due to the variation of the datasets. In one
of our tests we reached an accuracy of 62.3% but this was
due to a favorable combination of albums in the training
and test sets.
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Notwithstanding these observations the results are inter-
esting. In particular with theJazz17 dataset, we can see
that the timbre-based classification is quite accurate even
with music pieces that belong to the same genre.

3.3 Similarity Estimation task

The good results obtained for the classification of large
sets of tracks (Genre classification) and more specific sets
(Artist Identification) led us to consider building models
based on a single track. In this section some examples
of playlists generated using our distance are shown and
discussed. From our Jazz music set (see section 3.2), we
picked some well-known songs and generated a playlist of
20 most similar songs.

In the first example, the seed song is “Come Away With
Me” by Norah Jones. The playlist, shown in table 3, is
composed of songs where vocals are the dominant timbre.
It is interesting to note that with one exception, the artists
that appear in this list are all women. The timbre of Chet
Baker’s voice is rather high and in sometimes may be con-
fused with a women’s voice. However, John Coltrane’s
“Village Blues” appears as an intruder in this list.

Dist. Artist Song
0 0 N. Jones Come Away with Me
1 4093 N. Jones Come Away with Me (other version)
2 10774 D. Krall Cry Me a River
3 11345 N. Jones Feelin’ the Same Way
4 12212 D. Krall Guess I’ll Hang My Tears Out To Dry
5 12333 J. Coltrane Village blues
6 13015 D. Krall Every Time We Say Goodbye
7 13201 D. Krall The Night we Called it a Day
8 13210 N. Jones Don’t Know Why
9 13401 D. Krall I Remember You

10 13458 D. Krall Walk On By
11 13758 D. Krall I’ve Grown Accustomed To Your Face
12 13852 S. Vaughan Prelude to a Kiss
13 13915 D. Krall Too Marvelous For Words
14 13969 D. Krall The Boy from Ipanema
15 14099 N. Jones Lonestar
16 14114 C. Baker My Funny Valentine
17 14405 D. Krall The Look of Love
18 14674 N. Jones Lonestar (other version)
19 15039 D. Krall Este Seu Olhar

Table 3. Playlist generated from “Come Away With Me”

The playlist generated starting with the seed song “Blue
Train” by John Coltrane (Table 4) is characterized by Sax-
ophone solos and trumpet. Excluding the songs from the
same album, the songs found in the playlist are performed
by Miles Davis, Dizzy Gillespie whose trumpets are as-
similated with saxophone and Ella Fitzgerald and Frank
Sinatra who are accompanied by a strong set of copper in-
struments.

3.4 Other Approaches

3.4.1 Using unigrams and bigrams

Our classification method is based on models of bigram
probabilities whereas most of previous approaches rely on
the classification of frame-based feature vectors or on es-
timates of statistical moments of those features computed
on wider temporal windows. In order to quantify the bene-
fit of taking into account transition probabilities an hybrid

Dist. Artist Song
0 0 J. Coltrane Blue Train
1 11367 J. Coltrane Moment’s Notice
2 14422 J. Coltrane Lazy Bird
3 17344 J. Coltrane Locomotion
4 23418 E. Fitzgerald It Ain’t Necessarily So
5 25006 E. Fitzgerald I Got Plenty o’ Nuttin’
6 25818 F. Sinatra I’ve Got You Under My Skin
7 27054 M. Davis So What
8 27510 M. Davis Freddie Freeloader
9 28230 E. Fitzgerald Woman is a Sometime Thing

10 28598 S. Vaughan Jim
11 28756 F. Sinatra Pennies From Heaven
12 29204 D. Gillespie November Afternoon
13 30299 M. Davis Bess oh Where’s my Bess
14 31796 F. Sinatra The Way You Look Tonight
15 31971 E. Fitzgerald There’s a Boat Dat’s Leavin’ Soon for NY
16 32129 E. Fitzgerald Dream A Little Dream of Me
17 32232 J. Coltrane I’m Old Fashioned
18 32505 E. Fitzgerald Basin’ Street Blues
19 34045 M. Davis All Blues

Table 4. Playlist generated from “Blue Train”

approach was implemented. With this approach, the clas-
sification of a sequence depends on a linear combination of
unigrams and bigrams. If we consider only unigrams, the
score of a sequence os symbolssi=1..n is:

S′M (si=1..n) = log (PM (si=1..n)) =

n
∑

i=1

log (PM (si))

Using the score computed for bigrams (see equation 4), a
linear combination can be writtem as:

S′′M (si=1..n) = αS′M (si=1..n)+(1−α)SM (si=1..n) (6)

whereα ∈ [0, 1]. This approach was experimented on the
ISMIR 2004 dataset. The results are shown in the follow-
ing table:

α 1.0 0.5 0.0
accuracy 71.88% 77.64% 81.89%

Whenα = 1, only unigrams are taken into account whereas
α = 0 reverts to the case where only bigrams are con-
sidered. As we can see in this table, the introduction of
unigrams in the classification process in not beneficial. A
closer look at unigram probabilities give an explaination
to these observations. The following table show, for each
class, the number of clusters were the class is most repre-
sented, the average probability (and standard deviation) of
observing the classM given a symbols, (P (M |si)).

Cl. El. JB MP RP Wo.
#C 73 68 4 9 16 30
P (M |s) 0.599 0.503 0.578 0.423 0.409 0.471
std.dev. 0.194 0.162 0.180 0.063 0.103 0.139

One can see that for three classes this average probabil-
ity is below 0.5 i.e. most symbols represents a mixture of
timbres. This explains why unigram probabilities are not a
good indicator of the class.
3.4.2 Hidden Markov Models

We implemented another technique commonly used to model
time-varying processes, the Hidden Markov Models (HMMs).
These models were tested on the genre classification task
with the ISMIR 2004 genre dataset. The same (discrete)
sequences used to train the language models were also used
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Poster Session 1

DK SV DE TM CB MD CJ NS JC FS LY OP EF AD BH AT NJ
DK 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
SV 0 9 0 0 1 0 0 0 0 0 0 1 1 5 0 0 0
DE 0 0 5 0 0 1 0 0 0 0 0 0 0 1 0 0 0
TM 0 0 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0
CB 0 2 0 0 20 1 1 1 0 2 0 0 0 0 0 0 0
MD 0 2 0 0 1 14 1 0 0 1 0 0 0 0 0 0 0
CJ 0 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0 0
NS 0 1 0 0 1 0 0 9 0 0 1 0 1 0 0 0 0
JC 0 0 0 0 1 2 0 0 2 0 0 0 1 0 0 0 0
FS 0 0 0 0 0 0 0 0 0 20 0 0 3 0 0 0 0
LY 0 1 0 0 4 0 0 0 0 0 11 2 1 1 1 0 0
OP 0 1 0 0 0 0 0 1 0 0 1 11 0 0 0 0 0
EF 0 4 0 0 0 0 0 0 0 0 2 0 9 2 0 0 0
AD 0 0 0 0 1 0 0 0 0 1 0 0 3 15 0 0 0
BH 0 0 0 0 0 0 0 0 0 0 0 0 0 0 17 0 0
AT 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 18 0
NJ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16

Table 2. Confusion matrix obtained with theJazz17 dataset.

in the HMM’s training. For classification, we calculated
the probabilities of a given sequence with the HMM’s trained
for different genres, and assigned the music to the genre
with the highest probability.

We used left-right models with2, 3 and4 delays, and a
fully connected model. We also tested these models with
10 and 20 hidden states. The results, shown in the fol-
lowing table, indicate that the performance of the HMMs
is worse than our method. Nevertheless, it should be noted
that in our approach, we need a significant number of states
(between 100 and 400) in order to achieve reasonable ac-
curacy in timbre modeling. To train an HMM with such a
number of hidden states would require a huge amount of
data in order for the model to converge.

HMM LR-2 LR-3 LR-4 FC
10 states 68.3% 69.3% 68.7% 69.1%
20 states 69.1% 69.8% 69.5% 69.5%

4. CONCLUSION AND FUTURE WORK

We described a method5 for the classification of music
signals that consists in a two-stage clustering of MFCC
frames followed by a vector quantization and a classifica-
tion scheme based on language modeling. We verified that
the method was suitable for problems with different scales:
Genre Classification, Artist Identification and computing
of a distance between music pieces. The distance measure,
used on a set of songs belonging to a single genre (Jazz),
allowed us to derive consistent playlists. The proposed ap-
proach was compared with an HMM-based approach and a
method that involves a linear combination of unigrams and
bigram. On-going work include testing approaches based
on compression techniques for symbolic strings.
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“Aggregate features and AdaBoost for music classification,”
Machine Learning, vol. 65, no. 2-3, pp. 473–484, 2006.

[9] H. Soltau, T. Schultz, M. Westphal, and A. Waibel, “Recog-
nition of music types,” inICASSP, 1998.

[10] K. Chen, S. Gao, Y. Zhu, and Q. Sun, “Music genres classi-
fication using text categorization method,” inMMSP, 2006,
pp. 221–224.

[11] M. Li and R. Sleep, “A robust approach to sequence classifi-
cation,” in ICTAI, 2005.

[12] J.-J. Aucouturier, F. Pachet, and M. Sandler, “The way it
sounds: Timbre models for analysis and retrieval of poly-
phonic music signals,”IEEE Transactions of Multimedia,
no. 6, pp. 1028 – 1035, 2005.

[13] C. Manning and H. Schutze,Foundations of Statistical Natu-
ral Language Processing. MIT Press, 2002.

[14] P. Annesi, R. Basili, R. Gitto, A. Moschitti, and R. Petitti,
“Audio feature engineering for automatic music genre classi-
fication,” in RIAO, Pittsburgh, 2007.

[15] D. Ellis, “Classifying music audio with timbral and chroma
features,” inISMIR, 2007.

[16] Y. Kim, D. Williamson, and S. Pilli, “Towards understanding
and quantifying the ”album effect” in artist identification,” in
ISMIR, 2006.

86



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

A PERIODICITY-BASED THEORY FOR HARMONY PERCEPTION AND
SCALES

Frieder Stolzenburg

Hochschule Harz, Automation & Computer Sciences Department, 38855 Wernigerode, GERMANY

fstolzenburg@hs-harz.de

ABSTRACT

Empirical results demonstrate, that human subjects rate

harmonies, e.g. major and minor triads, differently with re-

spect to their sonority. These judgements of listeners have

a strong psychophysical basis. Therefore, harmony percep-

tion often is explained by the notions of dissonance and

tension, computing the consonance of one or two intervals.

In this paper, a theory on harmony perception based on the

notion of periodicity is introduced. Mathematically, peri-

odicity is derivable from the frequency ratios of the tones

in the chord with respect to its lowest tone. The used ratios

can be computed by continued fraction expansion and are

psychophysically motivated by the just noticeable differ-

ences in pitch perception. The theoretical results presented

here correlate well to experimental results and also explain

the origin of complex chords and common musical scales.

1. INTRODUCTION

1.1 Motivation

Music perception and composition seem to be influenced

not only by convention or culture, manifested by musical

styles or composers, but also by the psychophysics of tone

perception [1–3]. Thus, in order to better understand the

process of musical creativity and information retrieval, the

following questions should be addressed:

• What are underlying (psychophysical) principles of

music perception?

• How can the perceived sonority of chords and scales,

in particular of western music, be explained?

Therefore, in the rest of this section (Sect. 1), we will

introduce basic musical notions and results. After that, we

will briefly review existing psychophysical theories on har-

mony perception (Sect. 2), which are often based on the

notions dissonance and tension, taking harmonic overtone

spectra into account. In contrast to this, the approach pre-

sented here (Sect. 3) is simply based on the periodicity of

chords. Applying this theory to common musical chords

and also scales (Sect. 4), shows a very good correlation to

empirical results, that e.g. most subjects prefer major to
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personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
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minor chords. Finally, we will highlight the psychophys-

ical basis of the proposed approach, by reviewing some

recent results from neuro-science on periodicity detection

of the brain, and end up with conclusions (Sect. 5).

1.2 Basic Musical Notions

Before we are able to address the problem of harmony per-

ception, we should clarify the terminology we use. For this,

we follow the lines of [2]. The basic entity we have to deal

with is a tone: A pure tone is a tone with a sinusoidal wave-

form. It has a specific pitch, corresponding to its perceived

frequency f , usually measured in Hertz (Hz), i.e. periods

per second. In practice, pure tones almost never appear.

The tones produced by real instruments like strings, tubes,

or the human voice have harmonic or other overtones. The

frequencies of harmonic overtones are integer multiples of

a fundamental frequency f . For the frequency of the n-th

overtone (n ≥ 1), it holds fn = n · f , i.e. f1 = f . The am-

plitudes of the overtones define the spectrum of a tone or

sound and account for its loudness and specific timbre.

A harmony in an abstract sense can be identified by

a set of tones forming an interval, chord, or scale. Two

tones define an interval, which is the distance between

two pitch categories. The most prominent interval is the

octave, corresponding to a frequency ratio of 2/1. Since
the same names are assigned to notes an octave apart, they

are assumed to be octave equivalent. An octave is usually

divided into 12 semitones in western music, correspond-

ing to a frequency ratio of
12
√
2 in equal temperament (cf.

Sect. 3.3). Thus, intervals may also be defined by the num-

ber of semitones between two tones. A chord is a com-

plex musical sound comprising three or more simultaneous

tones, while a scale is a set of musical notes, whose cor-

responding tones usually sound consecutively. Both can be

identified by the numbers of semitones in the harmony.

A triad is a chord consisting of three tones. Classical

triads are built from major and minor thirds, i.e., the dis-

tance between successive pairs of tones are 3 or 4 semi-

tones. For example, the major triad consists of the semi-

tones {0,4,7}, which is the root position of this chord. An
inversion of a chord is obtained by transposing the cur-

rently lowest tone by an octave. Fig. 1 (a) shows the three

inversions of the E major chord, including the root posi-

tion. Fig. 1 (b)–(e) shows all triads that can be build from

thirds including their inversion, always with e′ as lowest
tone. Fig. 1 (f) shows the suspended chord, built from per-

fect fourths (5 semitones). Its last inversion, consisting of

the semitones {0,5,10}, reveals this.
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Poster Session 1

G
(a) triads

4̄̄̄ 4̄̄̄ ¯¯4¯
(b) major

4̄̄̄ 6̄̄̄ ¯4̄̄
(c) minor

¯¯¯ 4̄̄4̄ ¯6̄̄
(d) diminished

¯2̄̄ ¯¯2¯ 2̄̄2̄
(e) augmented

4̄̄4̄
(f) suspended

¯¯¯ 4̄̄̄ ¯¯¯

Figure 1. Triads and their inversions.

2. THEORIES ON HARMONY PERCEPTION

Chord classes lead to different musical modes. The ma-

jor chord is often associated with emotional terms like

happy, strong, or bright, and, in contrast to this, the minor

chord with terms like sad, weak, or dark. Empirical results

(see e.g. [4]) reveal a preference ordering on the perceived

sonority of the triads as follows: major ≺ minor ≺ dimin-

ished ≺ augmented. Since all these triads are built from

thirds, thirds do not provide an explanation of this pref-

erence ordering on its own. Therefore, let us now review

existing theories on harmony perception, discussing some

of their merits and drawbacks.

2.1 Explanation by Overtones

Overtones can explain the origin of the major triad and

hence its high perceived sonority. The major triad appears

early in the sequence, namely overtones 4, 5, 6 (root posi-

tion) and —even earlier— 3, 4, 5 (second inversion). But

it is well-known, that overtones fail to explain the origin of

the minor chord.

2.2 Dissonance and Tension

Since the origin of harmony and scales cannot be explained

well by overtones, newer explanations base upon the no-

tions of dissonance [2,5] and tension [6]. In general, disso-

nance is the opposite to consonance, meaning how well

tones sound together. Although this approach correlates

better to the empirical results on harmony perception, it

does not explain the low perceived sonority of the dimin-

ished or the augmented triad, which are built from two

minor or major thirds, respectively. Therefore, [6] adopts

the argument from psychology that neighboring intervals

of equivalent size are instable and produce a sense of tonal

tension, that is resolved by pitch changes leading to un-

equal intervals. Since lowering any tone in an augmented

triad by one semitone leads to a major triad and raising to a

minor triad, [6] assumes sound symbolism, where the ma-

jor triad is associated with social strength and the minor

triad with social weakness. But on the contrary, a minor

triad becomes a major triad by raising the third. In ad-

dition, it is unclear whether suspended triads, built from

two perfect fourths, also have a low perceived sonority. Fi-

nally, most of the empirical experiments on harmony per-

ception present only single chords to the tested subjects.

This means, there is actually no pitch movement at all.

3. A PERIODICITY-BASED THEORY

The approaches discussed so far more or less take the fre-

quency spectrum of a sound as their starting point. Obvi-

(a)

(b)

(c)

(d)

Figure 2. Sinusoids of the major triad.

ously, analyzing the frequency spectrum is closely related

to analyzing the time domain (periodicity). Fourier trans-

formation allows to translate between both mathematically.

However, subjective pitch detection, i.e., the capability of

our auditory system to identify the repetition rate (peri-

odicity) of a complex tone sensation, only works for the

lower but musically important frequency range up to about

1.500Hz [3]. In consequence, a missing fundamental tone

can be assigned to each interval. The tone with the respec-

tive frequency, called virtual pitch of the interval, is not

present as an original tone component. It has nothing to do

with (first-order) beats and is perceived not directly in the

ear, but in the brain.

3.1 Periodicity Pitch of Chords

For intervals, i.e. two tones, the concept of virtual pitch

has been studied many times in the literature (see [3] and

references therein). The idea in this paper now is to trans-

fer this concept to chords by considering relative peri-

odicity, i.e. the period length of complex sinusoids rel-

ative to the period length of the frequency of the low-

est tone component (cf. [7, Sect. 7.1]). For example, the

A major triad in just intonation consists of three tones

with (absolute) frequencies f1 = 440Hz, f2 = 550Hz, and

f3 = 660Hz. The respective frequency ratios wrt. the low-

est tone (a′) are F1 = 1/1, F2 = 5/4 (third), and F3 = 3/2
(fifth), corresponding to the semitones {0,4,7}. Fig. 2 (a)–
(c) show the sinusoids for the three pure tone components

and Fig. 2 (d) their superposition, i.e. the graph of the func-

tion sin(ω1t) + sin(ω2t) + sin(ω3t), where ωi = 2π fi are

the respective angular frequencies, and t is the time.

As one can see, the period length of the chord is (only)
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four times the period length of the lowest tone for this ex-

ample. In the following, we call this ratio h. It depends on

the frequency ratios {a1/b1, . . . ,ak/bk} of the given chord.
We assume, that each frequency ratio Fi is a fraction ai/bi
(in its lowest terms), because otherwise no finite period

length can be found in general, and it holds Fi ≈ fi/ f1 for
1≤ i≤ k. This means, all frequencies are relativized to the

lowest frequency f1, and F1 = 1. The value of h then can

be computed as lcm(b1, . . . ,bk), i.e., it is the least common
multiple (lcm) of the denominators of the frequency ratios.

This can be seen as follows: Since the relative period length

of the lowest tone T1 = 1/F1 is 1, we have to find the small-

est integer number that is an integer multiple of all relative

period lengths Ti = 1/Fi = bi/ai for 1 < i ≤ k. Since after

ai periods of the i-th tone, we arrive at the integer bi, h can

be computed as the least common multiple of all bi.

3.2 A Hypothesis on Harmony Perception

We now set up the following hypothesis on harmony per-

ception: The perceived sonority of a chord, called har-

monicity in this context, decreases with the value of h. For

the major triad in root position we have h = 4 (see above),

which is quite low. Therefore, its predicted sonority is high.

This correlates well to the empirical results, in general bet-

ter than the approaches discussed in the previous section

(Sect. 2), as we will see later on (in Sect. 4). In addition, the

periodicity-based theory presented here is computationally

simple, because it needs no assumptions on parameters,

such as harmonic overtone spectra. Neither complex sum-

mation nor computing local extrema is required. Only the

frequency ratios of the tone components in the chord are

needed as input parameters. But we still have to answer

the question, which frequency ratios should be used in the

computation of h. Since this is done in a special way here,

we present this now in more detail.

3.3 Tuning and Frequency Ratios

The frequencies for the k-th semitone in equal tempera-

ment with twelve tones per octave can be computed as

fk = 12
√
2 k · f1, where f1 is the frequency of the lowest tone.

The respective frequency ratios are shown in Tab. 1 (a).

The values grow exponentially and not linearly, following

the Weber-Fechner law in psychophysics, which says that,

if the physical magnitude of stimuli grows exponentially,

then the perceived intensity grows only linearly. In equal

temperament, all keys sound equal. This is essential for

playing in different keys on one instrument and for mod-

ulation, i.e. changing from one key to another within one

piece of music. Since this seems to be universal, at least

in western music, we will adopt the equal temperament as

reference system for other tunings.

The frequency ratios in equal temperament are irra-

tional numbers (except for the ground tone and its oc-

taves), but for periodicity detection they must be fractions,

as mentioned above. Let us thus consider other tunings

with rational frequency ratios. The oldest tuning with this

property is probably the Pythagorean tuning, shown in

Tab. 1 (b). Here, frequency relationships of all intervals

have the form 3m/2n for some integers m and n, i.e., they

are based on fifths, strictly speaking, a stack of perfect

fifths (frequency ratio 3/2), applying octave equivalence.

However, although huge numbers appear in the numerators

and denominators of the fractions in Pythagorean tuning,

the relative errors compared to equal temperament (shown

in brackets in Tab. 1) grow up to more than 1%.

In fact, the Pythagorean tuning does not follow results

of psychophysics, namely that human subjects can dis-

tinguish frequency differences for pure tone components

only up to a certain resolution, namely 0.5% under opti-

mal conditions. For the musically important low frequency

range, especially the tones in (accompanying) chords, this

so-called just noticeable difference is worse, namely only

below about 1% [3]. Therefore, we should look for tun-

ings, where the relative error is approximately 1%. In ad-

dition, the frequency ratios should be simple integer ratios,

i.e. fractions with small numerators and denominators. In

order to achieve the latter, we can look in the harmonic

overtone sequence,when a tone of the chromatic scale ap-

pears for the first time, applying again octave equivalence.

The result of this procedure, which we will call overtonal

tuning, leads to frequency ratios of the formm/2n for some

integers m and n as shown in Tab. 1 (c). However, as one

can see, the relative error compared to equal temperament

again is sometimes high.

In the literature (see e.g. [5] and references therein),

other historical and modern tunings are listed, e.g. Kirn-

berger III, see Tab.1 (d). However, they are also only par-

tially useful in this context, because they do not take into

account the fact on just noticeable differences explicitly.

In principle, this also holds for the adaptive tunings in [5],

where simple integer ratios are used and scales are allowed

to vary. An adaptive tuning can be viewed as a generalized

dynamic just intonation, which fits well to musical prac-

tice, because the frequencies for one and the same pitch

category may vary significantly during the performance of

a piece of music. Trained musicians try to intonate e.g. a

perfect fifth with the frequency ratio 3/2, and listeners are

hardly able to distinguish this frequency ratio from others

that are close to the value in equal temperament, namely
12
√
2 7 ≈ 1.498. In consequence, also the rational tuning,

which we introduce now, primarily should not be consid-

ered as a tuning, but more as the basis for intonation and

perception of intervals. We will use the frequency ratios

of the rational tuning, shown in Tab. 1 (e), in our analyses

of harmonicity. They are fractions with smallest possible

denominator, such that the relative error wrt. equal temper-

ament is just below 1%. They can be computed by means

of Farey sequences, i.e. ordered sequences of completely

reduced fractions between 0 and 1 which have denomina-

tors less than or equal to some (small) n, or by continued

fraction expansion.

3.4 Continued Fraction Expansion

In mathematics, a (regular) continued fraction is an expres-

sion as shown in Fig. 3 (a), where the ci are integer num-

bers that must be positive for i > 0. For a given rational or
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interval k (a) equal temperament (b) Pythagorean (c) overtonal (d) Kirnberger III (e) rational

prime, unison 0 1.000 1/1 (0.00%) 1/1 (0.00%) 1/1 (0.00%) 1/1 (0.00%)

minor second 1 1.059 37/211 (0.79%) 17/16 (0.29%) 25/24 (–1.68%) 16/15 (0.68%)

major second 2 1.122 9/8 (0.23%) 9/8 (0.23%) 9/8 (0.23%) 9/8 (0.23%)

minor third 3 1.189 39/214 (1.02%) 19/16 (–0.14%) 6/5 (0.91%) 6/5 (0.91%)

major third 4 1.260 81/64 (0.45%) 5/4 (–0.79%) 5/4 (–0.79%) 5/4 (–0.79%)

perfect fourth 5 1.335 311/217 (1.25%) 21/16 (–1.67%) 4/3 (–0.11%) 4/3 (–0.11%)

tritone 6 1.414 36/29 (0.68%) 23/16 (1.65%) 45/32 (–0.56%) 17/12 (0.17%)

perfect fifth 7 1.498 3/2 (0.11%) 3/2 (0.11%) 3/2 (0.11%) 3/2 (0.11%)

minor sixth 8 1.587 38/212 (0.91%) 25/16 (–1.57%) 25/16 (–1.57%) 8/5 (0.79%)

major sixth 9 1.682 27/16 (0.34%) 27/16 (0.34%) 5/3 (–0.90%) 5/3 (–0.90%)

minor seventh 10 1.782 310/215 (1.14%) 7/4 (–1.78%) 16/9 (–0.23%) 16/9 (–0.23%)

major seventh 11 1.888 243/128 (0.57%) 15/8 (–0.68%) 15/8 (–0.68%) 15/8 (–0.68%)

octave 12 2.000 2/1 (0.00%) 2/1 (0.00%) 2/1 (0.00%) 2/1 (0.00%)

Table 1. Table of relative frequencies for different tunings.

(a) x ≈ c0 +
1

c1 +
1

c2 +
1

c3 +
1

. . .

(b) c0=⌊x⌋ cn=⌊1/xn−1⌋
x0=x− c0 xn=1/xn−1− cn

(c) a−1=1 a0=c0 an+1=an−1 + cn+1an
b−1=0 b0=1 bn+1=bn−1 + cn+1bn

Figure 3. Continued fractions and Euclidean algorithm.

real number x, the values ci can be computed recursively

by the (extended) Euclidean algorithm, stated in Fig. 3 (b),

where the floor function ⌊x⌋ is used, which yields the

largest integer less than or equal to x. The sequence of the

ci induces a sequence of fractions ai/bi, called convergents
or fraction expansion of x, which can be computed by the

equations in Fig. 3 (c). Continued fractions obey many in-

teresting properties (see [8]), for instance:

• Any finite continued fraction represents a rational

number.

• Every convergent ai/bi of a continued fraction is in

its lowest terms, i.e. , ai and bi have no common di-

visors.

• Each convergent is nearer to x than the preceding

convergent and also than any other fraction whose

denominator is less than that of the convergent.

The most important property in this context is the last

one, because it provides a procedure for computing the fre-

quency ratios of the rational tuning as follows. For the k-th

semitone, we consider the fraction expansion of x = 12
√
2 k,

i.e. the frequency ratio in equal temperament, until the rel-

ative error of the convergent y = an/bn wrt. x, i.e. the term
|y/x−1|, is less than 1%.

Continued fractions may help us explain the origin of

the chromatic twelve-tone scale. For this, we look for a

tuning in equal temperament with n tones per octave, such

that the perfect fifth in just intonation (frequency ratio 3/2)
is approximated as good as possible. Thus, we develop

a fraction m/n with 2m/n ≈ 3/2, where m is the number

of the semitone representing the fifth. Hence, we have to

approximate x = log2(3/2) ≈ 0.585. In this case, the se-

quence of convergents is 0/1, 1/1, 1/2, 3/5, 7/12, 24/41,
31/53, . . . , showing m/n= 7/12 as desired, because semi-

tone m = 7 gives the perfect fifth in the chromatic scale

with n = 12 tones per octave.

4. APPLICATION OF THE THEORY

4.1 Comparison of Different Approaches

Let us now apply the periodicity-based theory to com-

mon musical chords and correlate the obtained results with

empirical results. Tab. 2 shows the perceived and com-

puted relative sonority of basic chord classes (cf. Fig. 1).

Tab. 2 (a) shows the ranking for the perceived sonority ac-

cording to empirical experiments reported in [4], which

have been repeated by many others with similar results.

Unfortunately, [4] does not consider the suspended triad.

Therefore, it is not ranked in the table. Tab. 2 (b) provides

the ranking for complex tonalness [2], whose numerical

values are shown in brackets. The model according to [2]

builds on earlier work [9]. However, especially the disso-

nance of the augmented triad is not reflected in this model

by its calculated tonalness: It appears on rank 2, right af-

ter the major triad in root position. Therefore, [2] argues,

that this has cultural rather than sensory origin. Tab. 2 (c)

shows the ranking wrt. instability [6]. The notion of tension

used in this model produces the desired low sonority of

the diminished and the augmented triad (cf. Sect. 2.2). The

correlation with the empirical results is good, but can still

be improved, e.g., the minor triad in root position (rank 2)

scores better than the inversions of the major triad (ranks

4 and 5), which is not as desired.

Tab. 2 (d)–(e) shows the ranking wrt. the harmonic-

ity values h. As one can see, there is almost a one-to-
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chord class (a) empirical [4] (b) tonality [2] (c) instability [6] (d) harmonicity (e) harmonicity∗

major {0,4,7} 1 1 (0.48) 1 (0.624) 2 (4) 2 (4.0)

{0,3,8} 2 6 (0.38) 5 (0.814) 3 (5) 3 (5.0)

{0,5,9} 3 3 (0.43) 4 (0.780) 1 (3) 1 (3.0)

suspended {0,5,7} 8 (1.175) 4 (6) 4 (6.0)

{0,2,7} 11 (1.219) 5 (8) 5 (8.0)

{0,5,10} 9 (1.191) 6 (9) 6 (9.0)

minor {0,3,7} 4 4 (0.42) 2 (0.744) 7 (10) 7 (10.0)

{0,4,9} 5 7 (0.38) 3 (0.756) 8-9 (12) 8 (12.0)

{0,5,8} 6 10 (0.32) 6 (0.838) 10-11 (15) 9 (15.0)

diminished {0,3,6} 7 9 (0.35) 12 (1.431) 13 (60) 13 (26.0)

{0,3,9} 8 5 (0.40) 7 (1.114) 10-11 (15) 10 (16.6)

{0,6,9} 9 8 (0.37) 10 (1.196) 8-9 (12) 12 (19.9)

augmented {0,4,8} 10 2 (0.44) 13 (1.998) 12 (20) 11 (19.7)

Table 2. Ranking relative sonorities of common triads.

one correspondence with the empirical results. The num-

bers in brackets are the respective harmonicity values h

and h∗, where the latter are averaged over all inversions.

For this, we compute the harmonicity of the given chord

(cf. Sect. 3), e.g. the first inversion of the diminished triad

{0,3,9}, that is h0 = lcm(1,5,3) = 15. In addition, we

adopt each tone as reference tone, not only the lowest

tone. Thus, we consider also the chords with the semitones

{−3,0,6} and {−9,−6,0}. For semitones associated with

a negative number n, we take the frequency ratio of semi-

tone 12−n according to Tab. 1 (e) and halve it, i.e., we do

not apply octave equivalence here. Therefore, we get the

frequency ratios {5/6,1/1,17/12} and {3/5,17/24,1/1}
with harmonicity values h1 = 12 and h2 = 120, respec-

tively. Since periodicity of chords is related to the lowest

tone, we multiply the h values by the lowest frequency ra-

tio in the chord, obtaining h′0 = 15, h′1 = 5/6 ·12= 10, and

h′2 = 3/5 ·120= 72. We then average the virtual chord fre-

quencies f1/h, where h appears in the denominator. Hence,

we calculate the harmonic average of all harmonicity val-

ues h′0, h
′
1, and h′2, which yields h∗ ≈ 16.6.

Tab. 2 (a) and (e) differ only in two respects: First, the

most consonant chord according to harmonicity (rank 1)

is the second inversion of the major triad with semitones

{0,5,9} and not the root position. Its calculated harmonic-

ity is h = 3, which however coincides with the fact, that

the second inversion appears before the root position in

the harmonic overtone sequence (cf. Sect. 2.1). Second, the

augmented triad appears late as expected (rank 11 of 13),

but the root position and the second inversion of the dimin-

ished triad appear still later. However, the continued frac-

tion expansion for the tritone (semitone 6, frequency ratio√
2), occurring in both triads, yields first 7/5, which is only

slightly mistuned. This would lead to a significantly lower

h value of the two chords – as desired. Thus, in summary,

the periodicity-based approach on harmony perception fits

best to empirical results.

4.2 Overtones and Periodicity

Harmonic overtone spectra are irrelevant for determining

relative periodicities. The period length of such complex

waveforms is identical with that of its fundamental tone.

We obtain h = 1, since the frequencies of harmonic over-

tones are integer multiples of the fundamental frequency,

hence all frequency ratios {1/1,2/1,3/1, . . .} have 1 as

denominator. Therefore, harmonicity is independent from

concrete amplitudes and phase shifts of the sinusoids of the

pure tone components. This seems plausible, because har-

mony perception only partially depends on loudness and

timbre of the sound. It should not matter much, whether

a chord is played e.g. on guitar, piano, or pipe organ. Of

course, this argument only holds for tones with harmonic

overtone spectra. If we have inharmonic overtones in a

complex tone such as in gamelan music (cf. [5]), then it

holds h > 1 for the harmonicity value of a single tone,

i.e., we have an inherently increased harmonic complexity

(cf. [2]).

4.3 From Chords to Scales

The harmonicity value h can be determined for harmonies,

consisting of far more than three tones, without any com-

putational problems. Thus, let us apply the formulae from

Sect. 3 to general chords and scales. Fig. 4 (a)–(b) shows

harmonies with 5 tones, that have low h values. The pen-

tachord Emaj7/9 with h = 8, classically built from a stack

of thirds, is standard in jazz music. Alternatively, it may

be understood as superposition of the major triads E and

B, which are in a tonic-dominant relationship according to

classical harmony theory. Fig. 4 (b) shows the pentatonic

scale (h = 24), which could alternatively be viewed as the

standard jazz chord E6/9. All harmonies shown in Fig. 4

have low, i.e. good harmonicity values h, ranking among

the top 5% in their tone multiplicity category. This also

holds for the diatonic scale (7 tones, h = 24) and the blues

scale (8 tones, h = 24) in Fig. 4 (c)–(d). Furthermore, ac-

cording to their h∗ value, all church modes, i.e. the diatonic

scale and its inversions, rank among the top 11 of 462 pos-

sible scales with 7 tones. Therefore, the periodicity-based

theory can contribute significantly to the discussion about

the origin of scales of western music. There are other math-

ematical explanations for the origin of scales, e.g. by group

theory [10], ignoring however the sensory psychophysical
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Figure 4. Harmonies (scales) with more than three tones.

basis for the musical importance of the perfect fifth.

5. CONCLUSIONS

As we have seen in this paper, harmony perception can

be explained well by considering relative periodicities of

chords, that can be computed from the frequency ratios of

the intervals in the chord. The approach shows a good cor-

relation to empirical studies on perceived sonority. Even

the origin of scales can be described with this approach.

It is mathematically simple, employing Farey sequences

or the Euclidean algorithm for computing continued frac-

tions. The approach has a strong psychophysically basis. It

takes into account that human pitch perception is limited

by a just noticeable difference of about 1% and assumes

that virtual pitch of chords (chord periodicity) can be de-

tected. The latter is indeed possible, as results from neuro-

science prove, which we briefly review now.

5.1 Periodicity and Neuro-Science

From a spectral point of view, sounds are combinations of

a fundamental frequency and certain overtones. Spectral

analysis is performed in the cochlea. When a pure tone is

detected, waves travel along the basilar membrane, which

the cochlea houses, reaching a maximum amplitude at a

point depending on the frequency of the tone [1–3]. Thus,

the ear works as a spectral analyzer. This function of the ear

is used in the explanations of harmony perception, based

on overtones or dissonance (Sect. 2).

Periodicity-based explanations use missing fundamen-

tal tones, i.e. tones that are physically not present and

hence cannot perceived by the ear directly. It has been

well-known for years that periodicity can be detected in

the brain. For example, two pure tones forming a mistuned

octave cause so-called second-order beats, although no ex-

act octave is present [3]. Recently, neuro-science found the

mechanism for being able to perceive periodicity. As a re-

sult of a combined frequency-time analysis, i.e. some kind

of auto-correlation by comb-filtering, pitch and timbre are

mapped temporally and also spatially and orthogonally to

each other in the auditory midbrain and auditory cortex [1]

(see also [11]). [12] reviews neuro-physiological evidence

for interspike interval-based representations for pitch and

timbre in the auditory nerve and cochlear nucleus. Tim-

ings of discharges in auditory nerve fibers reflect the time

structure of acoustic waveforms, such that the interspike

intervals (i.e. the period lengths) that are produced convey

information concerning stimulus periodicities, that are still

present in short-term memory [1].

5.2 Summary and Open Questions

From the good correlation of the periodicity-based theory

with the empirical results presented here, one may con-

clude, that there is a strong psychophysical basis for har-

mony perception and the origin of musical scales. As un-

derlying principle for this, periodicity detection turns out

to be more important than spectral analysis, although cul-

tural and other aspects certainly must not be neglected. The

question, how different harmonies cause different emo-

tions or subjective effects like happiness or sadness is not

yet answered by this, of course.
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ABSTRACT 

This paper presents a novel way of generating 

information extractors that obtain high-level information 

from recorded music such as the presence of a certain 

musical instrument. Our information extractor is 

comprised of a feature set and a discrimination or 

regression formula. We introduce a scheme to generate 

the entire information extractor given only a large 

amount of labeled dataset. For example, data could be 

waveform, and label could be the presence of musical 

instruments in them. We propose a very flexible 

description of features that allows various kinds of data 

other than waveform. Our proposal also includes a 

modified evolutionary learning method to optimize the 

feature set. We applied our scheme to automatically 

generate musical instrument detectors for mixed-down 

music in stereo. The experiment showed that our scheme 

could find a suitable set of features for the objective and 

could generate good detectors. 

1. INTRODUCTION 

Musical information extraction technology has been 

extensively studied for various kinds of applications. 

Generally speaking, it extracts some features from input 

data, and then applies discriminant or regression analysis 

to estimate an objective variable from the features. There 

are some popular feature sets like MFCC (Mel-frequency 

cepstrum coefficient) [1] and features defined in Mpeg-7 

standard [2], along with many other proposed features 

designed by heuristics. Popular discriminant analyses, 

which estimate objective variable from given feature set, 

include SVM, AdaBoost, GMM, HMM and so on. For 

example, Soo-Chang Pei et al. introduced 

instrumentation analysis and identification method with 

MFCC, Mpeg-7 features, and SVM [3]. T.Kitahara et al. 

introduced instrument identification method which can 

estimate the note-by-note presence probability of musical 

instruments by using linear discriminant analysis and 

some features other than MFCC or Mpeg-7 [4]. In these 

studies, feature sets are designed by human.  

Meanwhile, there are some studies on Feature 

Generation [5]. Typically, a feature is obtained with a 

feature extractor composed of some basic functions. 

Genetic programming (GP) is used to design a feature 

that gives optimum objective variable. However, only a 

single feature could be designed, rather than an effective 

set of features for multivariate analysis. As a result the 

generated extractor is not accurate enough compared to 

popular methods with discriminant and multi-

dimensional feature set designed by human. Also the 

description of feature is specialized to waveforms. As 

such, we could not apply this method to other kinds of 

data such as log-frequency spectrum. 

It would appear that we can realize more accurate 

information extractor if we could automatically generate 

a set of effective features specialized for the objective. 

The work presented here is an approach to automatically 

generate an information extractor from dataset. The 

resulting extractor includes a set of effective features to 

estimate the objective variable. It also supports various 

types of data as input. First, we introduce the structure of 

the information extractor that our proposal generates. 

Next, the modified evolutionary learning method to 

optimize the feature set is presented. And finally as an 

application of this approach, we introduce our 

experiment of designing musical instrument detectors. 

2. STRUCTURE OF INFORMATION 

EXTRACTOR 

Figure 1 shows the structure of information extractor. 

Figure 1. Structure of information extractor. X represents 

input data itself such as waveform. FEF represents a 

feature extraction function which extracts a single feature 

Input data 

X 

Feature set 

Information extractor 

x1 = FEF1(X) 

x2 = FEF2(X) 

x3 = FEF3(X) 

x4 = FEF4(X) 

x5 = FEF5(X) 

… 

xm = FEFm(X) 

Discriminant or 

regression formula 

y = f(x) 

Objective 

variable 

 y 
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from the input data. xj represents the feature extracted by 

FEFj, and x represents the feature vector consisting of xj. f 

represents discriminant or regression formula which 

estimates the objective variable y based on the feature 

vector x.  

First, the information extractor calculates multiple 

features from input data in accordance with the feature 

extraction functions (FEFs). The discriminant or 

regression formula estimates the objective variable from 

the extracted features. This structure itself is the same as 

the traditional information extractors. The difference is 

that our approach optimizes the entire information 

extractor, i.e. not only the discrimination or regression 

formula, but also the feature set. 

2.1 Structure of input data 

In our scheme, input data is expressed as a multi-

dimensional matrix. For example, we can express stereo 

waveform as a two-dimensional matrix with channel and 

time dimensions (Figure 2). In this example, each 

element in two-dimensional matrix contains amplitude of 

the waveform in the channel at the time. 

Figure 2. Example of input data of waveform.  

Also we can express an image in RGB representation 

as a three-dimensional matrix with color, X, and Y axes 

(Figure 3). In this example, each element in three-

dimensional matrix contains the brightness in RGB color 

space at the coordinate. 

Figure 3. Example of input data of RGB image. 

To express video data in this fashion, we would use 

four-dimensional matrix obtained just by adding one 

more dimension for time to the matrix for image.  With 

this matrix based representation, we can flexibly handle 

various kinds of data as input data. 

2.2 Description method for FEF 

To support wide variety of input data and features, we 

propose a very flexible description of FEF. In our 

approach, FEF is formed as a cascade of basic functions 

(BFs) like a short computer program to reduce the input 

data matrix to a scalar. We prepared 51 BFs listed in 

Table 1.  

 

 
Table1. List of basic functions. 

The list includes four arithmetic operations, exponent 

functions, trigonometric functions, normalization 

algorithms, statistical functions, digital filters, etc.  

Figure 4 shows an example of FEF. And Figure 5 shows 

the calculation of the example FEF. 

 
Figure 4. Example of FEF.  

 

 
Figure 5. Calculation of the example FEF. 

First, FEF represents the input spectrum as two-

dimensional matrix with time and frequency axes, then it 
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frequency axis, applies lo-pass filter along time axis, and 

calculates standard deviation along time axis. With this 

formula, it extracts a single feature from input data of 

two-dimensional matrix. F and T before # represent 

frequency and time axes, and these are the axis 

parameters representing the axis along which the given 

matrix is processed. As Figure 4 shows, it executes 

several processes to the matrix of input data by following 

the FEF from left to right. The number of dimensions of 

the matrix was reduced in the course of processing, and 

eventually, a single value is extracted from input data. 

Some BFs have parameters. There are two kinds of 

parameter, one is axis parameter that represents which 

axis to process, and the other is the specific parameter for 

each BF such as the coefficient of lo-pass filter.  

2.3 Discriminant or regression formula 

We use linear discriminant or regression analysis with 

feature selection to estimate the objective variable from 

the feature set as below. 

y = f(x) = Σj bjxj + b0  (1) 

bj represents linear combination coefficients, and b0 

represents intercept coefficient. We use linear procedure 

here because we can easily calculate contribution ratio 

which we later use to optimize the information extractor 

as a whole. Also it would appear that we can obtain a 

measure of accuracy without non-linear procedure 

because FEF can express various non-linear conversions. 

3. MODIFIED EVOLUTIONARY LEARNING 

METHOD 

Information extractor is optimized over training dataset 

which is a list of input data with label information. Table 

2 shows an example of dataset. The label can be 0 or 1 

for two-class discriminant analysis, or a numeric value 

for regression analysis. 

Table 2. Example of dataset to generate a vocal presence 

detector which accepts a segment of waveform and 

estimates the presence of vocal in the waveform. 0 

signifies no vocal present in the waveform, and 1 signifies 

vocal present. 

As previously described, each FEF in the information 

extractor has immense flexibility, so we used 

evolutionary learning method to search for a good feature 

set from the infinite set of possibilities. One generation of 

our evolutionary learning method executes the following 

steps. 

1. Feature set generation 

2. Feature extraction 

3. Linear discriminant or regression analysis with feature 

selection 

4. Calculation of contribution ratio of each feature 

These steps are repeated until the learning is stopped 

by a user. 

3.1 Feature set generation 

In the first generation, the method synthesizes the feature 

set which is a list of fixed number of FEFs by combining 

BFs randomly. To generate the FEF, first, it chooses a 

BF randomly from the prepared BFs. If the chosen BF 

has parameters, they are set also randomly. Then this 

process is repeated to append more BFs until the matrix 

of input data is reduced to a single value by the FEF. 

In the second and later generations, the method 

generates a new feature set based on the feature set from 

the previous generation by evolutionary learning process. 

It uses the contribution ratio of each feature calculated in 

the fourth step of the previous generation as the 

evaluation of that feature. Figure 6 shows the schematic 

of feature set generation in the second and later 

generations. First, it selects features in the order of 

contribution ratio and adds them to the feature set of next 

generation unmodified until cumulative contribution ratio 

becomes 99%. Next, it generates some features by 

randomly selecting from highly contributing features and 

mutating them by inserting, deleting BFs or modifying 

parameters. Finally, it generates remaining features 

randomly as done in the first generation. Figure 7 shows 

an example of the mutation of FEF. 

 
Figure 6. Example of feature set generation. τ represents 

generation in evolutionary learning process. Feature set 

in next generation contains highly contributing features 

in the previous generation, features generated by 

mutating the highly contributing features in the previous 

generation, and those randomly generated. All features in 

the first generation are generated randomly. 
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Figure 7. Example of mutation of feature. A feature is 

mutated by inserting, deleting BFs or modifying 

parameters randomly. 

3.2 Feature extraction 

In this step, FEFj extracts feature x
(i)

j from input data 

with index i. At this point, we have dataset with its 

features. 

3.3 Linear discriminant or regression analysis with 

feature selection 

In this step, the method estimates parameters of 

discriminant or regression formula (b) in equation 1 with 

the dataset and the features calculated in step 2. Because 

some features are generated randomly, there are many 

meaningless or redundant ones in the generated feature 

set, particularly in the first generation. Feature selection 

is very important in keeping only the effective features to 

realize maximum generalization accuracy. It is also 

important for the calculation of fair contribution ratio of 

features from discriminant or regression formula. For the 

feature selection, we used local-search to search for a 

good combination of features from information criteria 

perspective. More precisely, first, it prepares parameter 

uj = {1, 0} which indicates whether the j-th feature is 

selected or not, and sets all bits to 0 at the beginning. 

Then, it tries inverting a single bit among uj’s one by one 

starting from the first one, estimates parameters b with 

the currently selected features by using least squares 

method, and calculates AIC [6] by comparing the 

estimated objective variable and the label in the dataset. 

AIC = n * log(PMSE) + 2 * (k+1)  (2) 

n represents the number of the input data in the dataset, 

PMSE represents the prediction mean square error, and k 

represents the number of the features selected in u. 

Among the possible m bit inversion positions, the one at 

which the AIC improved the most is selected and 

executed, and the local-search is continued. In case of no 

improvement, it finishes the local-search with the 

selected features and the computed b as the optimum 

with respect to AIC.  

3.4 Calculation of contribution ratio of each feature 

Contribution ratio of each feature is calculated by the 

following formula.  

vj = bj / StDev(xj) * StDev(t) * Correl(xj, t) (3) 

vj represents the contribution ratio of the feature with 

index j. t represents objective variable which is the label 

in the dataset. StDev(xj) represents the standard deviation 

of the feature with index j in the dataset. StDev(t) 

represents the standard deviation of the objective 

variable in dataset. And Correl(xj, t) represents the 

coefficient of correlation between xj and t. If xj is not 

selected in step 3, vj becomes zero. If there are multiple 

objectives, we can just use mean contribution ratio from 

each formula for each objective. With step 1, highly 

contributing features will survive and prosper, and poorly 

contributing features will die. With iteration of steps 1 

through 4, the feature set will improve with respect to the 

objective compared to the previous generation. While 

traditional GP methods can optimize only a single feature, 

our approach can optimize multiple features 

simultaneously to achieve better generalization accuracy. 

Moreover because we use contribution ratio to select 

features, we maintain the variety of features in the later 

generations, which alleviates the local optimum problem. 

4. APPLICATION TO MUSICAL INSTRUMENT 

DETECTION 

We used our scheme to automatically generate musical 

instrument detectors for mixed sound. 

4.1 Dataset 

We prepared about 100 commercially available music 

files which are sampled at 44.1 kHz in stereo. They cover 

variety of genres such as pops, rock, jazz, world, and so 

on, and various kinds of musical instruments appear in 

these music files. We labeled each 1-second interval 

according to the presence of 10 kinds of musical 

instruments which are vocal, harmonize, piano, clean 

guitar, distortion guitar, distortion guitar solo, strings, 

brass, bass and drums with true (1), false (0) or unclear 

(no label). If there is audible sound of the instrument in 

an interval, we labeled it 1, otherwise 0, and if we feel it 

is very difficult to determine the presence of the musical 

instrument from only 1-second of waveform even for 

human ear, we put no label. We decided that it was not 

necessary to label the whole music file because there are 

repetitions in music, so there are about 40% of unlabeled 

sections. Finally, we got 21,272 segments of 1-second 

waveform in total. Table 3 shows the number of correctly 

labeled segments for each musical instrument. 

Table 3. Number of segments of waveform with correct 

label information.  

4414 

 
5078 16208 14836 10185 FALSE 

5062 5675 354 1706 2684 TRUE 

Drums Bass D.G. solo D. guitar C. guitar  
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1810 946 3184 1655 3505 TRUE 
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Segments contain 3.2/10 musical instruments on 

average and 7.5/10 musical instruments at maximum if 

we treat non-labeled instrument as 0.5. And we shuffled 

these segments without keeping reference to the songs 

from which they were taken. We used the half for 

training, and the other half for testing. 

4.2 Input data 

Our scheme can handle waveform directly. However, we 

found that we can achieve better accuracy by applying 

suitable pre-processing that emphasizes the 

characteristics of the input data for the objective. So, we 

converted the waveforms into three kinds of input data 

whose names are "12TonesM", "12TonesF" and 

"12TonesB". Each data is two-dimensional matrix with 

dimensions of time and musical pitch. The difference 

among these three data will be shown later. Original 

waveform is converted to these matrices with the 

following steps. 

4.2.1 Simplified sound source separation  

We applied simplified form of the sound source 

separation algorithm described in [7] to obtain 

foreground and background sounds from the original 

stereo sound. Figure 8 shows the signal flow diagram of 

this sound source separation. 

Figure 8. Signal flow diagram of the simplified sound 

source separation. FL, BL, FR and BR represent 

foreground-left, background-left, foreground-right and 

background-right, respectively. 

Each channel is analyzed with short-time Fourier 

transform with rectangle window of 16k samples and 

overlap of 8k samples. This very long frame size is 

needed to maintain the quality of separated sound. Then 

the phase difference between stereo channels in each 

frequency is calculated. If there is a difference greater 

than 0.2 PI, the frequency component is labeled as 

background. Otherwise, it is labeled as foreground. Then, 

for each channel, two waveforms for foreground and 

background are synthesized with inverse short-time 

Fourier transform with triangle window. This results in 

four channels of waveforms. Then, the left and right 

foreground channels are mixed, and the same is done for 

the background channels. As a result, two waveforms of 

foreground and background sounds are obtained. With 

this sound source separation, monaurally recorded 

sounds such as vocal, bass, snare and kick drums will 

appear in the foreground channel. On the other hand, 

sound recorded in stereo like strings or brass section will 

appear in the background channel. 

4.2.2 Wavelet transform 

We applied wavelet transformation to convert single 

waveform into two-dimensional matrix with time and 

musical pitch dimensions. We used band-pass filter 

which passes only a single semi-tone, as the mother 

wavelet. The original waveform was decomposed into 

108 sub-bands corresponding to 12 semi-tones over 9 

octaves. Then the logarithm of energy in each 7.8ms in 

each semi-tone is calculated. Figure 9 and Figure 10 

show the schematic diagram and an example result of this 

process. 

 
Figure 9. Schematic diagram of wavelet transform. It 

separates original waveform into 108 sub-bands, and 

calculates energy in 7.8ms in each band. 
 

 
Figure 10. Example of result of wavelet transform. 

Brightness represents energy in each time and each 

musical-pitch. 

We used the result of this process from foreground 

sound as "12TonesF", result from background sound as 

"12TonesB", and average of foreground and background 

as "12TonesM". 

4.3 Result of learning 

With our scheme and dataset, we generated musical 

instrument detection algorithms for mixed sound. 

Number of features is 1,000, and 165 generations were 

used in our evolutionary learning method. Figure 11 

shows the learning curve. For comparison, it also shows 

the result for extractors with single feature.  They are 

optimized with GP by selecting 3% of features most 

correlated with the label information in each generation.  
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Figure 11. Learning curve. Dashed line represents the F-

measure on training dataset averaged over all musical 

instrument detectors, and solid line represents the F-

measure on testing dataset. Dotted line represents the F-

measure of the detector with single feature optimized with 

GP on testing dataset. 

As the learning curve shows, in the first generation, 

our detector realized average F-measures of 0.75 on 

testing dataset with features selected from 1,000 

randomly generated features of various sorts. In the final 

generation, it realized 0.88 with the feature set optimized 

with our scheme. There is very clear advantage over the 

result of extractor with single feature optimized with GP. 

And Table 4 shows the F-measures for each musical 

instrument in the final generation on testing set. 

 

Table 4. F-measures of each musical instrument detector 

in the final generation on testing set. 

Table 5. Part of highly-contributing features found in 

final generation. 

Finally, table 5 shows some examples of generated 

FEF. The first feature in table 5 takes log-frequency 

spectrum of foreground as input, calculates differential in 

each series along time axis, calculates standard deviation 

in each series along time axis, processes Hanning 

window to frequency series and calculates average from 

frequency series. “Difference” function in table 5 splits 

the input in two at the boundary specified by the 

parameter, computes the sums for the two parts, and 

outputs the difference of the sums. It is not easy to 

understand what is going on in these generated features 

explicitly. However, it looks like it found variety of 

features, not only ones like MFCC and Mpeg-7 but also 

unique features with alien concept. 

5. CONCLUSION 

We presented a novel method to automatically design a 

information extractors. We introduced a very flexible 

description of features which supports various kinds of 

data types, and a modified evolutionary learning method 

to optimize multiple features given a partially labeled 

dataset. The method generated complete musical 

instrument detectors for mixed sound with various 

undiscovered and specialized features. The detectors 

realized either equal or superior performance compared 

to other methods even though the feature set is designed 

automatically given only the dataset without human 

intervention. Now we are applying the method to build 

various kinds of detection or recognition algorithms such 

as beat detection, attribute estimation, melody line 

estimation and more, not just for music recognition but 

for image recognition. We would like to report these 

results in the future. 
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ABSTRACT

In this paper, the problem of automatically assigning a piece
of traditional Turkish music into a class of rhythm referred
to asusul is addressed. For this, an approach for rhyth-
mic similarity measurement based on scale transforms has
been evaluated on a set of MIDI data. Because this task
is related to time signature estimation, the accuracy of the
proposed method is evaluated and compared with a state
of the art time signature estimation approach. The results
indicate that the proposed method can be successfully ap-
plied to audio signals of Turkish music and that it captures
relevant properties of the individualusul.

1. INTRODUCTION

Traditional music of Turkey has a big community of listen-
ers, and the music is strongly related to the music of neigh-
boring regions. For example, in Greece and Arabian coun-
tries music melodies of traditional music are often based on
similar modal systems as in Turkey. Concerning rhythm,
there is a correspondence in classes of rhythm found in
Arabic music (iqa’) and in Turkey (usul), and dances en-
countered in Turkey have influenced rhythms played in
GreekRembetikomusic. Thus, automatic retrieval of this
information not only enables a better understanding of an
important cultural heritage but may also be of major com-
mercial interest. Methods for this type of retrieval can be
assigned to the branch of computational ethnomusicology,
as introduced in [20]. Only recently, first research results
on the classification of Turkish music into melodic classes
were presented [7]. The retrieval of rhythmic information
from traditional Turkish music has not been addressed yet.
In this paper, classification of samples of Turkish music
into rhythmic classes is proposed. These classes are re-
ferred to asusul [16]. A data set containing samples of
songs composed in six differentusulhas been compiled to
conduct experiments. As it will be shown in the later Sec-
tions, in the context of this data set the classification intoa
specific rhythmic class is related to the recognition of the
time signature in Western music.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2009 International Society for Music Information Retrieval.

In [18], an approach was presented to estimate the time
signature of a piece of music based on symbolic descrip-
tions (MIDI). This approach uses autocorrelation coeffi-
cients (ACF) derived from the annotated onsets. In [21], a
time signature estimation system for audio signals was pro-
posed and evaluated on a set of percussive music. The sys-
tem estimates the tatum [2] of the signal using inter-onset
intervals (IOI) and in parallel, ACF are computed from the
amplitude envelope of the signal. Beat and bar length are
chosen from the peaks of the ACF, taking into account the
estimated tatum. In [8], the determination of musical meter
was reduced to a classification into either binary or ternary
meter. Beat indexes are extracted in a semi-automatic way
and then ACF on a chosen set of features are used to de-
cide on the meter type. Using audio signals, the general
problem of rhythmic similarity was addressed previously
in [10] [1] in the context of traditional music, in both cas-
es by applying Dynamic Time Warping techniques. In [4],
rhythmic patterns were computed from samples of Western
ballroom dances.
In [14] a system was proposed for the automatic estimation
of the musical meter, i.e., the estimation of the position of
tatum, beat and bars in the signal. The estimation of bar po-
sitions in 3

4 time signatures is mentioned to be error-prone.
Compound time signatures such as9

8 are not mentioned
and to the best of our knowledge no reliable method has
been presented to estimate the meter in such signals.
On the other hand, compound or complex time signatures
are commonly encountered in traditional music of Turkey.
The time signatures can take various forms, as it will be de-
tailed in Section 2. Furthermore, the goal of the approach
presented in this paper is not only the correct estimation of
a time signature, but a description of the rhythmic proper-
ties of a class, becauseusul cannot be only distinguished
by time signature in all cases. In [11], audio samples of tra-
ditional dances were compared: ACF were computed from
onset strength signals (OSS) and these ACF were trans-
formed into the scale domain by using the scale transform
[3]. This results in descriptors that do not vary due to tempo
changes. Thus, the scale transform magnitudes (STM) can
be used to compare the rhythmic content of audio using
simple point to point distance measures without the need
of meter estimation. The approach in [11] was shown to be
superior to the DTW based approach presented in [10]. In
this paper, it will be combined with the approach presented
in [18] and applied to a set of MIDI data. MIDI data was
chosen as a first step to approach the problem of automat-
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Figure 1. Symbolic description of theusul Aksak

ic rhythm description in Turkish music. This approach can
easily be applied to audio signals by replacing the type of
OSS, has no need of meter estimation and is robust to large
tempo deviations.
Section 2 introduces the basic concepts of the analyzed
type of music and describes the data set. Section 3 intro-
duces the descriptors based on scale transform and propos-
es a method of comparison. Section 4 gives experimental
results and Section 6 concludes the paper.

2. DATA SET

Compositions in Turkish traditional music follow certain
schemes regarding their melodic and rhythmic content. Me-
lodies are characterized by a modal system referred to as
makam, and it defines a melodic texture consisting of spe-
cific tonal segments, progressions, directionality, tempo-
ral stops, tonal centers and cadences [13]. The rhythmic
schemes encountered in traditional Turkish music are re-
ferred to asusul. An usul is a rhythmic pattern of certain
length that defines a sequence of strong and weak intona-
tions. An example is shown in Figure 1: theusul Aksakhas
a length of nine beats. The notes on the upper line labelled
düm have the strongest intonation while the notes on the
low line denote weak intonations. The note durations in the
sequence shown in Figure 1 can be described as the string
xoxxxoxox, wherex symbolizes the start of a note and
o metric unit without note [19]. Note that this representa-
tion is a further simplification of the one shown in Figure
1, because no differentiation of the intonation strength is
contained. However these representations can be used for
estimating the similarity between rhythms of same lengths
by computing a chronotonic distance, as detailed in [19].

Unlike in [19], the length of theusulvaries. According
to H. Sadeddin Arel (1880-1955), theusul can be divid-
ed into minor and majorusul. Minor usulhave a length of
up to 15 time units, while the majorusul have up to 124
time units. As denoted in [16], minor usul are related to
small musical forms, while larger musical forms employ
the major usul in most cases. Musical forms that are usu-
ally composed in major usul are, e.g.,PresrevandBêste.
Two examples of small musical forms areSarkıandTürkü.
The latter are folk songs of unknown composers, while the
former are short songs based usually on four lines of text
with known composer. Both forms have in common that
a song follows a certain minorusuland a certainmakam,
and both forms are vocal music. The most popular songs
in Turkish music are composed in these forms. Because of
that, along with a system for the recognition of themakam
as presented in [7], an approach for the recognition of the

usul represents an essential element in automatic retrieval
of information from this music. Apart from that, the re-
lation between melody andusulhas not been investigated
and an automatic approach like the one presented here can
give valuable insight into the relation between melody and
usul.
The data set used in this paper consists of Turkish songs in
the forms ofSarkıandTürkü. They are following six dif-
ferent types of rhythmic schemes having lengths from 3 up
to 10:Aksak( 9

8 ), Curcuna( 10
8 ), Düyek( 8

8 ), Semai( 3
4 ), So-

fyan( 4
4 ), andTürk Aksăgi ( 5

8 ). The softwaremus2okur[13]
has been used to obtain a data set consisting of 288 songs
distributed along the six classes as shown in the second line
of Table 1. Each sample consists of a MIDI description of
the song melody, in most cases also a MIDI voice with
a percussive accompaniment is contained. This percussive
accompaniment has been left out, in order to be able to fo-
cus on the rhythmic properties of the melody. Due to the
character of this music, there exists no chord accompani-
ment.
As all usul in the data set have different length, the recog-
nition of the usul can be reduced to a recognition of its
length. This is closely related to the task of time signa-
ture recognition and motivates the experimental setup de-
scribed in the following Sections. The lower two lines in
Table 1 depict the mean values of the tempi inbpm(beats
per minute) and the standard deviation of the tempi, respec-
tively. It is apparent that there are large overlaps between
the tempo distributions of theusul. Thus, a system forusul
length estimation for a given audio signal has to be robust
to the tempo deviations and overlaps.

Table 1. Data set: number of songs, mean and standard
deviation of tempi inbpm

CLASS AKS CUR DUY SEM SOF TUR
NSongs 64 57 47 22 60 38
MEAN 98.5 98.3 70.7 131.9 81.3 73.1
STD 27.9 13.5 12.6 26.3 16.7 22.3

3. TIME SIGNATURE ESTIMATION

3.1 Rhythm Description

3.1.1 Tempo-invariant ACF

In order to describe and compare the content of the sam-
ples, an autocorrelation based method as presented in [18]
has been combined with a method used for estimating rhyth-
mic similarity presented in [11]. The onset times are read
from the MIDI files and each onset is assigned a weight.
In [18], different methods to set the weights were evaluat-
ed, and in this paper the three most successfull weighting
schemes have been applied: the weight of an onset can ei-
ther be related to the note duration as proposed in [15],
to characteristics of the melody [17], or all onsets are as-
signed the same weight. The best weighting scheme will be
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Figure 2. Autocorrelationsru derived from two samples
of usul aksak

determined in Section 4. In the method presented in [18],
an onset strength signal (OSS) is generated at a sampling
frequency related to the eighth note of the piece. This OSS
has an impulse of height according to the assigned weight
at the positions related to the onset time. From an OSSo(n)
an ACFr(m) can be derived

r(m) =

∑
n o(n)o(n −m)∑

n o(n)2
(1)

Note that the autocorrelations are not affected by tempo
differences, when the OSS are computed at a sampling fre-
quency that changes with the tempo (eighth note). Because
of this, changing the tempo will result in constant ACF,
which will be denoted asrc.

3.1.2 Tempo-variant ACF

As mentioned in [18], beat tracking is a necessary step
when applying the above described approach to audio. It
is necessary to correctly estimate all metric levels in or-
der to determine the eighth note pulse of the piece. When
dealing with compound rhythms of different type as they
are contained in the data set and commonly encountered in
the music of Turkey and the whole eastern Mediterranean,
no method has been presented yet to perform this task. For
that reason, the MIDI data contained in the data set as de-
scribed in Section 2 is used to compute OSS using a con-
stant sampling frequency offs = 50Hz. From the OSS au-
tocorrelations are derived. For two pieces having the same
time signature but different tempi, their autocorrelations
will differ by an unknown scaling factor, as can be seen in
Figure 2. This is particularly critical for the type of music
examined in this paper due to the large tempo deviations
as detailed in Section 2. In order to overcome this scaling
problem, typically the beat tracking would be necessary in
order to estimate the tempo difference between the pieces.
However, in this paper the usage of the method introduced
in [11] is proposed to avoid the intractable problem of beat
tracking in the presence of complex and compound time
signatures. Due to the unknown scaling factor depicted in
Figure 2, a simple point-to-point distance measure cannot
be applied when comparing these autocorrelations, which
due to the unknown scaling will be denoted asru. In order
to solve this problem, a scale transform has been applied
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Figure 3. Two STM derived from the twoaksakexamples
shown in Figure 2

to the autocorrelation sequenceru(t) :

R(c) =
1

2π

∫
∞

0

ru(t)e(−jc−1/2) ln tdt (2)

The scale transform has the property that for a signalru(t)
and its time scaled version

√
aru(at), with a > 0 being

the scaling factor, the two computed scale transform mag-
nitudes will be the same. This can be seen in Figure 3,
where the two scaled autocorrelations from Figure 2 have
been transformed to scale space. Due to the scale invari-
ance property they are aligned and can be directly com-
pared.
Thus, in this paper OSS will be computed from the MIDI
files using a constant sampling frequency offs = 50Hz.
Then, scale transform magnitudes (STM) are computed from
the autocorrelationsru using the discrete scale transform
algorithm proposed in [22]. This results in a STM vector
that describes the rhythmic content of the signal, the scale
resolution was found to be of minor importance and has
been set to∆c = 0.5. The accuracy in the task of time sig-
nature recognition when using either scaling free autocor-
relationsrc or the STM derived fromru will be compared.
The results will indicate if by using a scale transform, the
unsolved problem of meter estimation in complex time sig-
natures can be avoided and theusul length could be deter-
mined by using this method.

3.2 Rhythm Dissimilarity

In order to determine the time signature of a piece the fol-
lowing approach will be applied: All pairwise dissimilari-
ties between songs are computed using either the scale-free
ACF rc or the STM vectors, by using a cosine distance as
proposed in [6] [9]. This results in dissimilarity matrices,
having values close to zero whenever two pieces are found
to be similar regarding their rhythmic content. In order to
determine the accuracy of the proposed rhythmic similarity
measure, the accuracies of a modifiedk-Nearest Neighbor
(kNN) classification will be determined. For this, each sin-
gle song will be used as a query for that a classification
into one of the available classes is desired. This classifi-
cation is performed by applying the modified kNN to the
dissimilarity matrix. As shown in [10], a locally weighted
kNN was found to improve accuracies on similar data, and
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DURATION MELODY FLAT
80.2% 68.1% 72.9%

Table 2. Time signature recognition accuracies when using
scale freerc representation

therefore it has been used in the experiments. It assigns a
weight wi = 1 − (di/dk+1) to the i-th training sample,
wheredk+1 is the distance of thek + 1-nearest neighbor
to the test sample. Thus, training samples more far away
from the test sample contribute less to its classification.
An usul can be expressed in a simplified way as a string,
as for example the stringxoxxxoxox for Aksak. In Sec-
tion 4, for someusul their string representations will be
used to estimate their similarity using a method proposed
in [19]: From the string representations chronotonic chains
can be computed, by breaking down the rhythm into its
smallest time unit on thex-axisand assigning to each el-
ement a height on they-axisaccording to the beat-to-beat
interval. This results in the chronotonic chain[211221] in
case ofAksak. As proposed in [19], in order to compare
two such chronotonic chains, then a discrete form of the
Kolmogorov Variational Distance (DKVD) can be applied.
Given two chronotonic chainsg andf of same lengthL,
this distance can be computed as

K =
L∑

i=1

|f [i]− g[i]| (3)

and is equal to the1− norm distance between the chains.
Thus, by depicting anusul pair as two strings of same
length, their rhythmic similarity can be estimated. In this
paper, this method will be applied to pairs ofusul for that
samples frequently were confused in the time signature
recognition.

4. EXPERIMENTS

4.1 Scale-free ACF

Three different weighting schemes have been evaluated in
the experiments: the duration accent as proposed in [15],
the melodic accent [17], and the flat accent (i.e., using the
same accent weight for all onsets). Using therc autocorre-
lations computed using these three accents in the classifi-
cation approach as described in Section 3.2, resulted in the
best accuracies for the duration accent, as documented in
Table 2. This contradicts with the findings in [18], where
the melodic and flat accents were found to be preferable.
Furthermore, using a selected range of autocorrelation co-
efficients could not further improve results on this data set,
while in [18] using the coefficients of longer lags and leav-
ing out the coefficients of short lags was found superior.
This must be assigned to the differences between the data
sets.

In Table 3 the confusion matrix for the best classifica-
tion in Table 2 is shown. The biggest confusion happens
between the88 time signatureusul and the4

4 usul (Düyek

Predicted
9/8 10/8 8/8 3/4 4/4 5/8

Notated

9/8 62 0 1 0 1 0
10/8 0 50 0 0 1 6
8/8 1 4 24 0 18 0
3/4 0 0 0 20 2 0
4/4 2 0 12 0 46 0
5/8 0 9 0 0 0 29

Table 3. Confusion matrix forrc using duration accent

Symbolic Description
Düyek: xxoxxoxo Curcuna: xoxxoxoxox
Sofyan: xoooxoxo Türk Aksăgi: xoooxoooxo

Chronotonic Chains
Düyek: 12212222 Curcuna: 2212222221
Sofyan: 44442222 Türk Aksăgi: 4444444422

Normalized DKVD betw. Chronotonic Chains
10/8=1.25 18/10=1.8

Table 4. Computing chronotonic distances between con-
fusedusul

andSofyan, respectively). The pieces in the88 -usul could
be equivalently annotated in a84 time signature by chang-
ing their degree, referred to asmertebe, to four. The second
biggest confusion happens betweenCurcunaandTürk Ak-
saği. The time signatures are related by a factor of two as
well ( 10

8 and 5
8 ). These types of errors have been denoted

as typical as well in [18]. Still, the confusion between be-
tweenDüyekandSofyanis larger. This can be attributed
to the different degree of similarity of theusul, which can
be estimated using the approach proposed in [19]: In Ta-
ble 4, the symbolic descriptions for the two confusedusul-
pairs are depicted as vectors of same length. From these
descriptions the chronotonic chains have been derived that
are depicted in Table 4. Note thatSofyanwould be typi-
cally denoted as[211] as its smallest beat-to-beat interval
is a fourth note. In order to get chains of equal length,
the eighth note has been chosen as smallest unit. Com-
puting the Kolmogorov Variational Distances between the
chronotonic chains, and normalizing by the length of the
vectors it can be seen that theusul DüyekandSofyanare
more similar than the other pair. This is reflected in the
higher confusion in Table 3. Thus, it can be concluded that
the applied autocorrelation method is not only suitable for
determining time signatures, but can as well capture rhyth-
mic similarities contained in the piece.

4.2 Scale Transform Magnitudes

The results presented in Section 4.1 have been obtained
using the known note values that have been read from the
MIDI files. As discussed above, when audio signals have to
be examined instead of MIDI, this knowledge can only be
obtained by means of beat tracking, which is an unsolved
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Figure 4. Result of the parameter grid search using the
STM descriptors

Predicted
9/8 10/8 8/8 3/4 4/4 5/8

Notated

9/8 51 3 3 1 3 3
10/8 0 52 2 0 0 3
8/8 1 1 30 2 11 2
3/4 3 0 3 15 1 0
4/4 0 2 8 1 48 1
5/8 2 4 3 0 1 28

Table 5. Confusion matrix for STM atC = 140 and max-
imum lag of14s

task for the time signatures obtained in the data set. Thus,
the STM represent a solution to avoid beat tracking, and in
this Section the influence of its application on the resulting
accuracies will be documented.
The parameters to set when using the STM are the maxi-
mum lag considered in the autocorrelationru and the num-
ber of scale coefficientsC that is to be used when comput-
ing the cosine distance.
The influence of these parameters has been evaluated in a
grid search. The resulting accuracies are depicted in Fig-
ure 4. It can be seen that by increasing the maximum lag
size and the maximum scale coefficient the accuracies are
improved until a level of about77% is reached. The high-
est accuracy achieved at some points on the dotted line in
Figure 4 is77.8%, for example atC = 140 and at a max-
imum lag of14s (marked in Figure 4). Choosing a point
with small maximum lag leads to faster computation of the
scale transform, and choosing a small value ofC means a
more compact STM description.

The related confusion matrix is shown in Table 5 and
comparing it with the confusion matrix shown in Table
3 reveals very similar structure. The decrease in accuracy
seems to be caused by some misclassification that cannot
be justified by a similarity of theusul, as for example the
9
8 -time signature, which for the STM descriptor is random-
ly misclassified. Thus it appears that transforming autocor-
relations to scale domain in the proposed way introduces
some noise to the rhythm descriptors. However, the per-

formance is only2.4% lower than for using the scale-free
autocorrelations (77.8% instead of80.2%). Hence, by in-
cluding scale transform the currently infeasible step of beat
tracking in this kind of meters is avoided and time signa-
ture estimation is made feasible, when presented with ar-
bitrary types of music signals having a compound or com-
plex meter.

5. FUTURE WORK: TOWARDS AUDIO SIGNALS

As mentioned in [18], in order for the above described ap-
proach to work on audio instead of MIDI three algorith-
mic steps have to be added: onset detection, pitch estima-
tion and beat tracking. The first step appears to be nec-
essary, because the onset locations are not known as it is
the case for MIDI. The pitch estimation is necessary only
when the weights in the OSS are desired to be influenced
by the pitch properties of the melody. On audio data, this
can be approached using a fundamental frequency based
OSS as proposed in [12], otherwise this step can be left
out and an OSS as described in [5] can be used instead.
The most error-prone step when dealing with audio is the
beat tracking: it is necessary to correctly estimate all met-
ric levels in order to determine the eighth note pulse of the
piece, when the method as described in Section 3.1.1 is de-
sired to be applied. Fortunately, the results using the STM
as described in Section 3.1.2 avoids this step of beat track-
ing. Thus, time signatures and rhythmic properties can be
captured by computing an OSS from an audio signal, and
computing ACF and STM as described above. In order to
evaluate the accuracy of the approach on audio data, a set
of audio recordings similar to the MIDI data set will have
to be compiled.

6. CONCLUSIONS

In this paper the application of scale transform for the recog-
nition of time signatures is proposed. Using a data set of
MIDI data with high class intern tempo deviations it is
shown that this method achieves almost the same accu-
racy as a method that assumes that the metric levels of
the piece are known. Thus, this method can be applied
to the time signature recognition of audio signals by esti-
mating an OSS suitable for the character of the signal and
then computing the STM descriptors as proposed. This rep-
resents a significant achievement because the estimation
of the metric levels in music signals having compound or
complex meters is not a solved problem. The proposed ap-
proach is computationally simple because the scale trans-
form can be performed using FFT algorithms. Furthermore,
the proposed descriptors seem to capture a reasonable amount
of information about the rhythmic properties of theusul, as
could be seen in the relation between symbolic similarity
and the confusion. As the rhythmic properties of Turkish
music have never been studied using computational meth-
ods, this indicates an interesting direction for future stud-
ies. Next steps of these studies have to be the usage of au-
dio signals and the examination ofusulof same length.
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Emmanouil Benetos, André Holzapfel, and Yannis Stylianou

Institute of Computer Science, FORTH, Greece,

and Multimedia Informatics Lab, Computer Science Department, University of Crete, Greece

{benetos,hannover,yannis}@csd.uoc.gr

ABSTRACT

In this paper, a novel method for onset detection of music

signals using auditory spectra is proposed. The auditory

spectrogram provides a time-frequency representation that

employs a sound processing model resembling the human

auditory system. Recent work on onset detection employs

DFT-based features, such as the spectral flux and group

delay function. The spectral flux and group delay are in-

troduced in the auditory framework and an onset detection

algorithm is proposed. Experiments are conducted on a

dataset covering 11 pitched instrument types, consisting of

1829 onsets in total. Results indicate the superiority of

the auditory representations over the DFT-based ones, with

the auditory spectral flux exhibiting an onset detection im-

provement by 2% in terms of F-measure when compared

to the DFT-based feature.

1. INTRODUCTION

The detection of the starting time of each musical note

plays an important role in the analysis of music signals.

This process is referred to as musical instrument onset de-

tection and it is an essential step for music transcription

applications, as well as for music signal compression, beat

tracking, and music information retrieval. The goal of an

onset detection system is the accurate estimation of note

onset times, regardless of the instrument type or perfor-

mance style. Several approaches for pitched instrument

onset detection have been proposed in the literature, how-

ever they are mostly limited to a small number of instru-

ment classes.

In [1], an onset detection system combining both en-

ergy and phase information was proposed. The employed

dataset contained pitched nonpercussive, pitched percus-

sive, nonpitched percussive, and complex sounds. Reported

results indicated an improvement over energy and phase-

based approaches. An improved version of the system in

[1] was proposed in [4], tested on the same dataset. In [3],

a system for onset detection employing a constant-Q pitch
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detector was proposed, tested on the pitched nonpercussive

sounds also employed in [1]. It is also suggested in [3] that

a detector based on a computational auditory model might

improve onset detection performance. Gainza et al. em-

ployed FIR comb filters on a frame by frame basis combin-

ing the inharmonicity properties with the energy increases

of the signal onset [5]. Results report an improvement offer

energy-based and phase-based approaches. Finally in [6],

the group delay function was proposed for onset detection

in a beat tracking application. Multiband analysis was per-

formed on two datasets, the first from the MIREX 2006

beat tracking task and the second containing samples of

traditional Cretan music.

In this paper, a novel approach for onset detection is

proposed by employing auditory spectrograms instead of

DFT-derived spectrograms for the computation of onsets

detection features. The auditory spectra, based on the model

presented in [11], are designed to mimic the functions of

the human auditory system. In the auditory domain, the

group delay and spectral flux features are introduced, and

an onset detection system is proposed. Comparative exper-

iments on onset detection were performed using the same

features in the DFT domain. The dataset used for exper-

imentation contains a wide variety of pitched instrument

types, not limited to western instruments, containing 1829

onsets in total. Results indicate that the auditory features

outperform DFT-based features for onset detection, with

the auditory spectral flux reaching an F-measure of 75.9%.

The outline of the paper is as follows. Section 2 is de-

voted to the DFT-based features and system for onset de-

tection. In Section 3, the auditory model and features are

presented, along with the proposed onset detection system.

The employed dataset, the methods used for evaluation and

the experimental results are discussed in Section 4. Con-

clusions are drawn and future directions are indicated in

Section 5.

2. DFT-BASED ONSET DETECTION

2.1 Group Delay

As described in [6], phase information can be used for on-

set detection by considering the group delay τ(ω), which
for a given signal x[n] with a phase spectrum Φ(ω) is de-
fined as the derivative of phase over frequency:

τ(ω) = −
dφ(ω)

dω
(1)
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The average of the group delay is determined by the dis-

tance between the center of the analysis window and the

position of an impulse within the window, even when the

impulse has been filtered by a causal and stable filter. As

the onset of a musical instrument might be modelled by

an impulse sent into a causal and stable system, in [6] the

average group delay is used as an onset detection func-

tion: using a large overlap, an analysis window is shifted

over the signal and for each window position the average

group delay is computed. The obtained sequence of aver-

age group delays is referred to as phase slope function. In

Figure 1, an example of a phase slope function is depicted

by the dashed line which has positive zero crossings at the

position of impulses in the signal. In order to avoid error

problems when unwrapping phase in the group delay com-

putation, the slope of the phase function can be computed

as [10]:

τ(ω) =
XR(ω)YR(ω) + XI(ω)YI(ω)

|X(ω)|2
(2)

where
X(ω) = XR(ω) + jXI(ω)
Y (ω) = YR(ω) + jYI(ω)

are the Fourier Transforms of x[n] and nx[n], respectively.
The phase slope is then computed as the negative of the av-

erage of the group delay function. In this paper, the imple-

mentation of the phase slope onset detector as presented in

[7] has been used, which includes a multiband processing

of the complex DFT spectra and band-wise zero-crossing

selection for increased accuracy. The resulting group de-

lay onset detection signal, computed from the band-wise

zero-crossing selection, contains peaks located at the time

instants of the detected onsets.

2.2 Spectral Flux

Spectral flux (SF) is based on the detection of sudden pos-

itive energy changes in the signal which indicate attack

parts of new notes. The accuracy of onset detection us-

ing SF and its computational simplicity were presented

in [2, 4]. SF is computed as:

SF (k) =
∑

ω

HW (|X(ω, k)| − |X(ω, k − 1)|) (3)

where HW (x) = x+|x|
2

is the half wave rectifier function,

and X(ω, k) is the STFT of the signal with 5.6ms hop size

and a window length h of 46ms. For the experiments in

this paper, the L1-norm SF is used as shown in (3), since it

was shown in [4] that it outperforms the L2-norm.

2.3 DFT-based Onset Detection System

Onsets are detected by selecting the zero crossings of the

phase slope and the local maxima of the spectral ux de-

tection signals. The onset detection method has been mo-

tivated by the processing steps proposed in [1]: first, the

detection signals are smoothed using a Hanning window

of length 51ms, which was found to be crucial for im-

proving onset detection results. Afterwards, the signals

are normalized using z-score. In [7], the application of

an adaptive threshold has been shown to improve accuracy

for SF, while it was found be impaired in case of PS. For

that reason, an adaptive threshold is applied to SF only. It

is computed by applying a moving median lter of length

97ms which is subtracted from the SF detection signals.

Finally, a peak selection algorithm is performed in order

to produce the detected onsets, by selecting peaks that are

separated by a minimum peak distance of 40ms.

3. AUDITORY SPECTRUM-BASED ONSET

DETECTION

In this Section the auditory model is presented, followed

by the definition of the group delay function and spectral

flux in the auditory spectrum domain. Finally, an onset

detection system using auditory spectra is proposed.

3.1 Auditory Model

The auditory model was first introduced in [13] and for-

malized in [11]. It is inspired by physiological, psychoa-

coustical and computational studies in the human primary

auditory cortex. The model consists of two stages, a spec-

tral estimation model (designed to mimic the cochlea in the

auditory system) and spectral analysis model (which mim-

ics the primary auditory cortex). The spectral estimation

model produces the so-called auditory spectrogram.

The auditory spectrum produces a time-frequency rep-

resentation of the signal on a logarithmically scaled fre-

quency axis, referred as the tonotopic axis. The auditory

spectrogram consists of 128 log-frequency bins and can be

approximated as:

XA[n, l] = max(∂lg(∂nx[n] ∗n h[n, l]), 0), (4)

where x[n] is the original signal and h[n, l] is a minimum-

phase seed bandpass filter where h[n, l] = αh[αn, l0], with
scaling factor α = 2l−l0 and l = 1, . . . , 129. The convo-
lution of x[n] with h[n, l] is an application of a constant-Q
filter-bank wavelet transform. ∂i stands for differentiation

over i, and g(m) = 1

1+e−m
− 1

2
is a sigmoid-like function,

which is used to model the hair cell response in the human

auditory system. It should be noted that in (4) two oper-

ations are not mentioned for simplicity purposes, they are

however employed for the auditory spectra computation.

The first consists of a temporal smoothing operation which

filters out responses beyond 4 kHz and the second consists

of a temporal integration of XA[n, l], which is followed by
subsampling.

3.2 Auditory Group Delay

According to (2), and by noting that XA[n, l] has no imag-

inary values like the DFT-based group delay, the proposed

function for computing the group delay in the auditory
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Figure 1. A sequence of impulses with linearly time

varying amplitudes, the associated DFT-based group de-

lay function (dashed line), and the associated auditory

spectrum-based group delay function (dashed-dotted line).

spectrum is defined as:

AUD GRD[n, l] =
YA[n, l]

XA[n, l]
, (5)

where YA[n, l] is the auditory spectrum of nx[n]. Due to

the differentiation factor ∂n in (4), onsets are detected by

determining the positions of positive peaks rather than pos-

itive zero-crossings. In Figure 1, the auditory spectrum-

based group delay that is obtained when shifting an anal-

ysis window over a sample signal is depicted as a dashed-

dotted line. Note that the term group delay was preferred

for the detection function instead of auditory phase slope,

because no average value has been computed for neighbor-

ing bands as is the case for the DFT-based phase slope.

The processing steps for the computation of the onset

detection signal, based on the auditory spectrum group de-

lay function, can be seen in Figure 2. The auditory spec-

trum was computed using the NSL toolbox [9]. For the

computation of the auditory spectrum the window length

is set to 0.1s, with 4.5ms hop size and the resulted spectro-

gram is computed for a bandwidth of 76-3242 Hz. In pro-

cessing block 2, the auditory group delay function is com-

puted from auditory spectrograms XA[n, l] and YA[n, l]
using (5). For our analysis, tonotopic bands b = 10, . . . , 39
of the auditory spectrogram were utilized, thus ignoring

bands containing high-frequency noise, as well as bands

ranging from 76-104 Hz which are not crucial for onset

detection purposes, because these frequencies are below

the F0 range of the investigated instruments. In processing

block 3 of Figure 2, each band is smoothed in time using a

3rd degree Savitzky-Golay filter with window size equal to

12 samples [12]. The Savitzky-Golay filter uses local poly-

nomial regression and is considered superior compared to

FIR filters or moving average filters, preserving the local

maxima of the signal while rejecting noise. In processing

block 4, for each group delay band, peak picking is per-

formed in order to select candidate onsets. For each band,

an onset detection signal is constructed containing either

the value zero when no peak has been detected, or the am-

plitude of the detected peak. In each band b, a threshold for

peak detection is determined separately by the mean value

of the half-wave rectified group delay function for the par-

Sample

0 100 200 300 400 500 600 700 800 900 1000

Figure 3. The spectral flux onset strength signals of a

tanbur recording. The lower-placed signal depicts the au-

ditory spectrum-derived spectral flux, while the higher-

placed signal depicts the DFT-based spectral flux. The ‘x’

marker corresponds to the annotated onset time.

ticular band. Finally, all band-wise detection signals are

summed, creating a single onset detection signal based on

the auditory group delay.

3.3 Auditory Spectral Flux

The spectral difference in the auditory domain is defined

in a similar manner to the group delay. The spectral flux in

the auditory spectrum is defined using the L1 norm:

AUD SF [n] =
∑

l

HW (XA[n, l] − XA[n − 1, l]). (6)

For the auditory spectral flux, the original signal is re-

sampled to 8kHz and the spectral flux is computed with

a step size of 8ms. It should be noted that no band-wise

smoothing or band selection was performed on the audi-

tory spectral flux, since it was found to degrade onset de-

tection performance. In Figure 3, the auditory spectrum-

based and DFT-based spectral flux onset strength signals

of a tanbur (plucked string instrument) recording are de-

picted. The annotated onset times can also be seen, as well

as a false detection for the DFT-based spectral flux at sam-

ple 790.

3.4 Auditory Spectrum-based Onset Detection System

Onsets from the auditory group delay and spectral flux

detection signals are detected using roughly the same ap-

proach as for the DFT representations, by selecting the lo-

cal maxima of the signals. First, each detection function

is normalized using z-score standardization. Afterwards,

a moving median filter of length 0.2s is computed as an

adaptive threshold, which is a robust method for detecting

impulses in audio signals [8]. The adaptive threshold is

then subtracted from the detection signals. Finally, peak

picking is performed, by selecting peaks that are higher

than threshold δ and are separated by a minimum peak dis-

tance of 40ms.
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Figure 2. Block diagram of the computation of the auditory spectrum-based group delay.

Instrument No. of onsets No. of files

Cello 150 5

Clarinet 149 5

Guitar 174 5

Kemençe 186 5

Ney 147 7

Ud 211 5

Piano 195 5

Saxophone 148 5

Tanbur 156 5

Trumpet 140 5

Violin 173 5

Total 1829 57

Table 1. Onset dataset details.

4. EXPERIMENTS

4.1 Dataset

In our experiments, the dataset introduced in [7] was em-

ployed. It consists of 57 recordings of pitched instruments,

including 11 instrument types, as seen in Table 1. The var-

ious instrument types can be organized into three classes:

pitched-percussive instruments (guitar, ud, piano, and tan-

bur), wind instruments (clarinet, ney, saxophone, and trum-

pet), and bowed string instruments (cello, kemençe, and vi-

olin). It should be noted that the set is not limited to west-

ern instruments, but also contains middle-eastern instru-

ment samples. In total, the recordings contain 1829 anno-

tated onsets, while each instrument type contains roughly

the same number of onsets. All recordings are monophonic,

sampled at 44.1kHz.

4.2 Evaluation Methods

For evaluating the results of the proposed onset detection

systems, the recall (R), precision (P ), and F-measure (F )

are employed as figures of merit. Let Ntp stand for the

number of correctly detected onsets, Nfp the number of

false positives, and Nfn the number of missed onsets. P

and R are defined as:

P =
Ntp

Ntp + Nfp

, R =
Ntp

Ntp + NFN

(7)

while the F-measure is computed from P and R:

F =
2PR

P + R
(8)

It should be noted that P , R, and F are utilized for eval-

uation in the MIREX onset detection contests. An onset

Feature GRD SF AUD GRD AUD SF

F-measure 73.7% 73.9% 73.8% 75.9%

Table 2. F-measures for the various onset detection fea-

tures.

is correctly matched if it is detected within 50ms of the

ground truth onset time. By varying parameter δ in small

steps, P /R-curves can be created by placing R values on

the horizontal axis and P values on the vertical one. The

P /R-curve which is closer to the upper right corner of the

diagram is considered to be the best detector with regards

to F .

4.3 Results

The performance of the various onset detection features is

shown in P /R-curves in Figure 4. In Figure 3(a) the per-

formance of the complete dataset as described in Table 1

is shown. Regarding the optimum F-measure, the DFT-

based group delay and spectral flux along with the audi-

tory group delay seem to perform almost equally good, but

they are surpassed by the auditory spectral flux. The best

F-measures on the complete dataset can be seen in Table

2, where it can be seen that the auditory spectral flux out-

performs the other three features by about 2% in terms of

F-measure. The auditory group delay performs marginally

better than its DFT-based counterpart, achieving high pre-

cision rates. In general, the auditory-based features outper-

form their respective DFT-based features.

As far as the individual instrument types are concerned,

the auditory group delay exhibits very high precision rates

for the set of string instruments in Figure 3(b), making it

useful for beat tracking tasks. However, the auditory group

delay is vastly outperformed by the remaining three fea-

tures when pitched percussive instruments are employed

in Figure 3(c), with the DFT-based spectral flux achieving

very high precision and recall rates. The DFT-based spec-

tral flux slightly outperforms the auditory spectrum-based

spectral flux for pitched percussive instruments, which can

be attributed to the limited frequency range of the auditory

spectrum, since percussive onsets are detected in high fre-

quency bands [2]. It should be noted that all features report

high rates for pitched percussive instruments compared to

string and wind instruments. Finally, the set of wind instru-

ments in Figure 3(d) shows lower precision rates compared

to the other sets. The auditory features achieve roughly the

same best F-measure, outperforming the DFT-based fea-

tures.
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Figure 4. Performance curves of the various onset detection features. Recall and Precision values are plotted on the

horizontal and vertical axis, respectively.

5. CONCLUSIONS

In this paper a new approach for onset detection using au-

ditory spectra was proposed. The group delay function and

spectral flux in the auditory domain were introduced as fea-

tures for onset detection, and a system was proposed. The

onset detection performance of the auditory spectral flux

was found to be superior compared to the DFT-based fea-

ture, reaching an F-measure of 75.9% compared to 73.9%

of the DFT-based spectral flux. While the performance

of the auditory spectral flux for pitched percussive instru-

ments was inferior compared to DFT-based features, it is

relatively superior when string and wind instruments are

tested.

In the future, a fusion of the onset detection features in

the auditory domain will be performed, in an attempt to

maximize onset detection performance. The system could

also consider onsets produced by non-pitched percussive

instruments, which can be easily detected using energy de-

scriptors. In addition, the creation of an onset detection

system which is dependent of the instrument family can

lead to improved results. Finally, the aforementioned tech-

niques can be developed for usage in polyphonic record-

ings.
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ABSTRACT

Many interesting pieces of music violate established struc-
tures or rules of their genre on purpose. These songs can
be very atypical in their interior structure and their differ-
ent parts might actually allude to entirely different other
songs or genres. We present a query-by-example-based
user interface that shows songs related to the one currently
playing. This relation is not based on overall similarity,
but on the similarity between the part currently playing and
parts of other songs in the collection along different dimen-
sions (pitch, timbre, bars, beats, loudness). The similarity
is initially computed automatically, but can be corrected
by the user. Once a sufficient number of corrections has
been made, we expect the similarity measure to reach an
even higher precision. Our system thereby allows users to
discover hidden similarities on the level of song sections
instead of whole songs.

1. INTRODUCTION

All music is based on repetition on different levels: From
the lowest level of sounds in different frequencies to the
highest, cultural aspects of genres and trends, every song
is contained in an intricate network of repeating segments.
One of the best known of these patterns is the verse-chorus
form [1] that has been defining for the last half century
of popular music and implies inherent repetitive structures,
possibly to increase recognition. Nevertheless, certain parts
such as the intro, outro or especially the bridge can stand in
complete contrast to the rest of the song, sometimes form-
ing a mini-song of their own (and sometimes even digress-
ing along this path and never returning to their origin).

Music recommendation and visualization often relies
on an abstract idea of ”similarity” between songs, which
is actually a measure for repetition. It is mostly generated
by collaborative filtering or content-based measures, but
this similarity normally works on the level of whole songs,
with a set of related songs based on their averaged close-
ness. While some systems access songs on a lower level to

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

extract segments, they do so to find the most representative
part of the song to, again, do an overall comparison.

In this way, parts of songs with a high inner diversity
(as in the bridge parts mentioned above) simply disappear
in the similarity measure: While the overall impression of
song A might be very similar to song B regarding content
and sound, its bridge might be an allusion to a third song
C and its outro even closer to another song D, neither of
which is reflected in a generalized, one-dimensional simi-
larity value. Query-by-example/humming systems, in con-
trast, have to rely on these deeper structures within a song,
as they mostly have to work with incomplete input. Still,
their main use is not to reveal hidden connections between
parts of songs but to retrieve the one song that the user has
in mind - multiple songs are only displayed because of in-
accuracies in retrieval.

In this paper we present our web-based system Shades
of Music that provides users with an interface to retrieve
and discover connections between songs at the level of
parts or sections. The user can listen to songs and see
which other songs are similar to the currently playing sec-
tion and in which of their parts. To stay with the example
from above: For most of song A, sections from song B
are shown as the most similar ones, but during A’s bridge
song C and during A’s outro, song D appear. A similar-
ity between these sections is initially calculated using the
web service Echo Nest[2], but our system then encourages
users to give feedback and improve its classification. In
the rest of this paper we present related work in the areas
of music user interfaces, then describe our system, the way
users can give feedback, and the underlying calculations.

2. RELATED WORK

Query-by-example is an active field of research that aims
for retrieving an item with only insufficient information.
As the input mostly represents a part of the full item, ex-
tracting segments and being able to compare them is an
important first step. Older QBE systems for audio mostly
worked with symbolic MIDI-files[3], but more recent sys-
tems evaluate the actual audio signals. Various attributes,
such as note sequences[3], melody[4] (e.g., with Query-
by-humming), or beat[5] are used. Since these systems
always try to retrieve one specific item, the segmentation
is used to create a ranked list of possible candidates. More
creative approaches to QBE such as [6] are trying to let
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Figure 1. Shades of Music: Listening to a song and finding related songs based on different attributes

the user ”sketch” aspects of a song in various ways as an
input to the system. Applications for representing larger
music collections follow two courses: One approach is to
visualize the collection in a global way, for example us-
ing the popular self-organizing maps (Islands of Music [7],
but also [8] and [9]) or force-directed layouts[10]. Another
way is to display related items based on one currently ac-
tive item (in principle QBE) as in Musicream[11] or the
Expressive Music Jukebox[12].

To make up for the shortcomings in automatic content-
based similarity analysis and allow for personalization, user
feedback is incorporated in various systems. Recommender
systems[13], for example based on ratings [14] or implicit
data such as listening histories in the online community
Last.fm[15] offer the user suggestions for novel music. Con-
nections between song parts are central, for example, for
the music website Who Sampled? [16] whose community
adds samples and their origin to the database.

3. SHADES OF MUSIC

Shades of Music is a (prototype of a) web-based service
that allows users to listen to songs and find related sec-
tions. Based on the currently playing song, related sections
of other songs are displayed. Echo Nest does an initial

similarity classification, but as the interface collects user
feedback this similarity measure becomes more accurate.
We implemented Shades of Music with the Ruby on Rails
framework on the server side and a browser application
based on Adobe Flash on the client side.

3.1 The User Interface

Initially, a list of all songs in her or his collection is dis-
played. Additional songs can easily be uploaded from the
computer or retrieved from online sources. After choosing
a song, the application starts to play this song and displays
the main interface (see figure 1). A horizontal bar at the
bottom represents the current song and its sections. A play
head and additional color highlighting show the currently
playing section of the song. With the check boxes below
the bar, the user can choose the criteria based on which re-
lated sections are displayed. Pitch, timbre, bar, beat and
loudness plus a cumulative total value are available. For
each selected attribute, an additional line of songs is dis-
played (”Pitch”, ”Timbre” and ”Total” in figure 1). Their
order reflects the similarity: The most similar song sec-
tion appears on the left followed by less similar ones to
the right. For each of these sections, the complete song is
displayed including artist and title. Each of these songs is
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again divided into its subsections with unrelated sections
transparent and related sections with a five-step color cod-
ing that shows similarity for the current attribute from low
to high. Once familiar with this visualization, the user can
see at first glance that, for example, the intro of another
song is similar to the active section. It is important to note
here that the same song might appear not only once but
several times: Once among each of the different attributes
but also within the list for one attribute if more than one
section of the song corresponds to the current section (see
”Faithless - God is a DJ” in figure 2). The lists contain only
the five most similar songs along that particular dimension.
Since the sections of a song are often very similar to other
sections of the same song, related sections from the current
song are not displayed.

Figure 2. Detail of figure 1: The same song might be rep-
resented by several sections

Shades of Music can be used as a web-based radio: If
one song is over, the system automatically picks the overall
most similar song and starts playing that (which makes the
first chosen song the seed song of the playlist[17]). With
our similarity metric (see below) being symmetrical, this
would lead to two similar songs playing in an endless loop
(as the one most similar to the first would in turn have
the first song as its top candidate). Therefore, the system
only plays each song once. The user can of course also
use the system to actively navigate her or his collection:
Upon double-clicking one of the suggested songs, the sys-
tem starts playing it.

3.2 Segmentation

Separating music into relevant subsections is a topic of ac-
tive research. Methods learned from extracting representa-
tive audio thumbnails [1] can also be used to analyse the
structure of an audio source [18]. Echo Nest is a web ser-
vice that provides among others such an analysis for audio
data. Besides retrieving meta-data for songs and values
such as their current popularity (based on mentioning on
webpages), it also performs segmentation and analysis of
songs. Details can be found in [19].

One useful feature in our case is the automatic division
into longer sections of several seconds length (e.g., verse
or chorus) and very short segments that form short stable
elements of a song. For each of these segments, Echo Nest

returns a value for variations in loudness plus a chroma
vector for pitch and another twelve-dimensional vector for
timbre. The pitch chroma vector reflects the relative distri-
bution of the acoustic content along the twelve semitones,
while the timbre vector tries to capture the spectral surface
of sound in an Echo Nest specific format with weights for
twelve basis functions [2].

Additionally, positions of beats and bars for the whole
song can also be retrieved. To calculate the similarity be-
tween sections of songs, we use the following procedure:
First, the positions of segments and sections are retrieved.
The longer sections form the basis for the comparison and
are displayed in the interface as separate areas. Two sec-
tions’ beat- or bar-wise similarity is determined by count-
ing the number of beats and bars within a section and com-
paring these numbers.
For all segments within one section, values for changes
in loudness, pitch and timbre are available for a more so-
phisticated comparison. Variations in loudness can be very
easily compared by calculating their difference in decibels.
To compare the pitch and timbre vectors, the positions of
the vectors within one section are averaged and the result-
ing vectors compared using the euclidean distance between
them.

The final comparison value for two sections is formed
by normalizing all five values (beats, bars, loudness, pitch,
timbre) and calculating the average difference, which leads
to a final similarity between 0 and 1.

This very simple algorithm provides an initial compar-
ison that is sufficient for our purposes, as the given values
can be adjusted by the users anyway. Adding weights to
the different features could also improve the classification,
but since this would need more fine-tuning, at the moment
all attributes have the same influence on the final result.

Figure 3. User feedback for one suggestion of the system

3.3 User Feedback

Automatically extracted similarity naturally has its limits.
Although the hypothesized glass ceiling [20] for content-
based extraction might be circumventable [21], some in-
herent problems will remain: Especially the issue of per-
sonalization is crucial. One user’s idea of similarity might
completely differ from another’s who has a different taste
in music or a more sophisticated sense for it. Thus, we
are convinced that a metric based on automation is only a
first step. For a final classification, user input has to be in-
corporated into the interface and its underlying algorithms.
Last.fm [15] is a prominent example of a robustly classi-
fied music library based on user feedback.
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3.3.1 Ratings for the automatic suggestions

In its current version, Shades of Music provides a very
straightforward mechanism with which the user can cor-
rect the suggestions of the system. In the general play view,
each song has a button to the left of its icon that makes a
small window pop up (see figure 3). Here, the user can rate
the suggestion made by the system on a scale from 1 to 5.
As songs can appear more than once in the list of sugges-
tions (for example, if the current song section corresponds
to the repeated chorus of the other song) and even in sev-
eral lists (for example for beat and pitch), the user can also
criticize certain suggestions while promoting others. This
means that the feedback is very specific and doesn’t sim-
ply rate the computed similarity, but actually the aspect on
which it was based.

If the user makes the effort to actually rate a sugges-
tion, this overrides the respective computed value. The
user is unable to see the actual internal similarity values
and is shown the most similar sections only, so a negative
rating always results in a reduction of the calculated simi-
larity (and possibly a removal of the rated section from the
list). Therefore, a vote replaces (for the user who made it)
the initial similarity calculated by the system for the two
sections concerned. The rating of a specific aspect is inter-
preted as a similarity of 0.0 (1), 0.25 (2), 0.5 (3), 0.75 (4)
or 1.0 (5) and stored in the database. If the user votes on
the total cumulative value, the rating is used as a factor for
all the other attributes, so that their average corresponds
with the rating value.

3.3.2 Incorporation of multiple users and feedback

From an initial five-dimensional metric of similarity be-
tween sections, the additional user feedback leads for a
number of users to a higher-dimensional similarity. In the
simplest case, only one user accesses the system and up-
loads songs from her or his own collection. The system
calculates similarity values for existing sections and the
user rates these suggestions as replacements for the au-
tomatically extracted similarity. In the end, the system
reaches an optimal suggestion for this theoretical single
user (of course with the overhead of rating millions of sec-
tion combinations).

As Shades of Music is a web-based system, it is in-
herently targeting multiple users who all upload their own
songs. This is used to reduce the analytical overhead by
using meta-data to identify identical songs within separate
collections. For these songs, existing classification data
can be used. To counter erroneous meta-data, audio thumb-
nails could also be used for identification as the data is ex-
tracted anyway. Previous ratings by other users work as a
refinement of the system-generated similarity: All ratings
for an attribute of a pair of sections are again converted to
a similarity value and, together with the system-generated
one, averaged to reach a final value. In this way, we are
able to improve suggestions even for new users (as long
as they upload existing songs which were already rated by
other users). Once a user starts rating suggestions within
her or his own collection, these ratings are of course again

directly applied (see 3.3.1).

4. SUMMARY AND FUTURE WORK

We presented Shades of Music, a web-based system that
lets users discover connections between parts of songs within
their music collection. For an exemplary song, a number
of similar song sections are displayed, regarding the five
attributes beats, bars, loudness, pitch and timbre and an
average total. The user can give a rating for a suggestion
and thus improve the system’s results for himself and oth-
ers. Informal first feedback showed great potential for the
application as especially users with large song collections
were curious what connections might be discovered. As
a user study for our system should show the merits of the
underlying idea and not, for example, the usability of the
interface, we plan to open the system for multiple users
over a longer period of time and collect our observations.
In this way, we will also be able to investigate the value of
the integrated rating system.

Extensive testing showed that our prototype also has
some shortcomings. First of all, we used a rather simple
and not state-of-the-art algorithm for calculating the sim-
ilarity between sections. When improving this, we would
also address the lack of scalability caused by the pair-wise
comparison of sections, for example by indexing [22]. With
our initial test set of ten songs and an average number of
twenty extracted sections, adding one song already leads
to a total of 20.000 comparisons (4.000 for each of the five
attributes).
The user interface can also be improved in several ways:
The representation of the current song as grey section blocks
does not help in understanding its structure. Labels with
’verse’ or ’chorus’ might help, but automation to do that
is probably not feasible. Heuristics, such as ”repeated sec-
tions are a chorus” will most likely be insufficient. Inter-
face elements for labelling could be included to let users
do that (and maybe also add the lyrics to the song for addi-
tional orientation).

The ways in which users are able to give feedback could
also be expanded: Adjustment of section borders or sug-
gestion of new songs (or sections) are only two ideas. Based
on our algorithm of averaging all users’ votes and the Echo
Nest value for novel users we also face the problem of
changing suggestions if new votes arrive. To avoid con-
fusing our users with ever-changing suggestions, it might
help to only initially use this method and don’t update the
results every time the interface is launched. Finally, with
the generated database of related song sections, additional
projects are also feasible: Novel visualizations for a global
music collection as a network of interconnected song sec-
tions could prove interesting just as clustering the user com-
munity (”neighbors” in Last.fm) based on their votes.
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ABSTRACT

Finding automatically the starting time of audio events is
a difficult process. A promising approach for onset detec-
tion lies in the combination of multiple algorithms. The
goal of this paper is to compare score-level fusion rules
that combine signal processing algorithms in a problem of
automatic detection of onsets. Previous approaches usually
combine detection functions by adding these functions in
the time domain. The combination methods explored in
this work fuse, at score-level, the peak score information
(peak time and onset probability) in order to obtain a bet-
ter estimate of the probability of having an onset given the
probability estimates of multiple experts. Three state-of-
the-art spectral-based onset detection functions are used:
a spectral flux detection function, a weighted phase devi-
ation function, and a complex domain detection function.
Both untrained and trained fusion rules will be compared
using a standard data set of music excerpts.

1. INTRODUCTION

The automatic detection of onsets is essential in many ap-
plications, including a number of important music infor-
mation retrieval (MIR) tasks. Onset detection is useful in
the analysis of the temporal structure of music as, for ex-
ample, beat tracking and tempo induction, but it is also
important in other relevant tasks such as melody, bass-line
and chord extraction.

Finding automatically the starting time of audio events
is a difficult process and many onset detection methods ex-
ist [1–3]. However, the performance of current detection
methods is highly dependent on the nature of the signal
as shown in [1]. The reason is that onset detection tech-
niques assume an implicit nature or probability model for
the signal to be analyzed. Actually, several well known
algorithms can be described in terms of an implicit proba-
bility model of the signal [4].

For this reason, it is not expected that a single method
will perform accurately for strongly nonstationary signals

Permission to make digital or hard copies of all or part of this work for
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and audio signals are intrinsically variable in nature. In-
stead of designing a very complex algorithm, a promis-
ing development lies in the combination of multiple meth-
ods [5]. In fact, this is most likely the way human percep-
tion seems to work [6], using different processing princi-
ples for the same purpose so when one of them fails per-
haps another succeeds.

Methods that combine time-domain onset detection func-
tions to provide with a more accurate detection have been
proposed. However, most of the existing combination
schemes use ad-hoc approaches that, for example, choose
a particular detection function between two different func-
tions based on the type of onset [7] or a quality measure [8].

Recently, onset detection systems based on machine
learning algorithms have been developed. In [9] two Gaus-
sian Mixture Models are used to merge multiple audio fea-
tures, but the combination of the individual detection func-
tions is still done by a linear weighted sum of the time
domain functions. Other approaches merge the detection
functions using a time-delay neural network [10, 11].

The integration of tools and information is one of the
significant challenges for the field of MIR as discussed
in [12] and fusion methods can potentially be used for this
purpose. Fusion is an important research area that stud-
ies the combination of multiple sources of knowledge to
obtain more reliable information [13, 14].

This paper emphasizes the use of information fusion
methods to gather the efforts of MIR community which de-
velops multiple signal processing algorithms for the same
purpose. In particular, we compare the use of untrained and
trained fusion rules to combine, at score-level, the peak
information obtained from three spectral-based onset de-
tection functions. Scores represent the estimated time in-
stant and the probability of having an onset at that instant.
Hence, our multiple-expert approach aims to calculate a
better estimate of that probability given the probability es-
timates (scores) of multiple experts, which is radically dif-
ferent to adding time-detection functions as previous ap-
proaches do. This study is the first work, to our knowl-
edge, that focuses just on the combination of techniques by
introducing score-level fusion for onset detection, opening
a novel direction to address the problem of combining de-
tection algorithms.

Section 2 introduces the fusion approach to onset de-
tection, describing the structure of the system and the de-
tection functions extracted. Section 3 describes the dataset
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Figure 1. The Multiple-expert paradigm. The system fuses
the peak information extracted from three detection func-
tions: the spectral flux measure (SF), the weighted phase
deviation (WPD) and the complex domain method (CD).

and the evaluation measures used in the present work. Re-
sults are presented in Section 4. And finally, Section 5
contains the conclusions and some ideas for future work.

2. FUSION FOR ONSET DETECTION

Fusion is an important and widely studied area that focuses
on the issue of how to combine information to achieve an
improved performance. This multiple expert paradigm is
based on the combination of various diagnosis to exploit
the expertise of the different experts. Score-level fusion
combines the different opinions (probability estimates) of
the experts to obtain a better estimate of the appropriate a
posteriori probability.

Figure 1 shows the multiple expert fusion system that
combines the peak information obtained from three state-
of-the-art onset detection algorithms. First, the spectrum of
the audio signal is calculated using the Short Time Fourier
Transform (STFT). Then, three experts derive the detection
functions using features extracted from the STFT. Finally,
the system combines the peak information obtained from
the detection functions using a fusion rule.

2.1 Onset Detection Functions

The detection functions used for fusion in this work are the
following spectral-based reduction methods: the spectral
flux measure (SF), the weighted phase deviation (WPD)
and the complex domain method (CD) described in [2].

All these methods are based on a STFT scheme that
applies a Hamming window h(n). Given an audio signal
x(n) sampled at fs = 44.1 kHz, the kth frequency bin of
the nth spectrum frame X(n, k) is given by:

X(n, k) =
m= N

2 −1∑

m=−N
2

x(nh + m)h(m) exp−
j2πkm

N (1)

In our experiments, the window size in samples is N =
2048 (46 ms) and the hop size h = 441 (10 ms).

The spectral flux (SF) measures the distance between
successive short-time Fourier spectra:

SF (n) =
m= N

2 −1∑

m=−N
2

H(|X(n, k)|−| X(n− 1, k)|) (2)

where H(x) = x+|x|
2 is a half-wave rectifier. This function

is used to emphasize onsets rather than offsets since the
sum is restricted to those frequencies where the spectral
difference is positive and an increase of energy exists.

In order to add phase information in this system of mul-
tiple experts, the weighted phase deviation reduction
method has also been considered. The rate of change of
phase is an estimation of the instantaneous frequency and
abrupt changes in the instantaneous frequency may suggest
a potential onset. The weighted phase deviation (WPD) re-
duction method takes the mean of the absolute value of the
instantaneous frequency difference weighted by the mag-
nitude of the spectra:

WPD(n) =
1
N

m= N
2 −1∑

m=−N
2

|X(n, k)||ϕ
′′
(n, k)| (3)

where ϕ′′(n, k) is the second derivative of the 2π-
unwrapped phase of the Fourier spectra X(n, k).

Finally, the complex domain detection function consid-
ers jointly both magnitude and phase to search for tran-
sients on the signal. The spectral component X(n, k) can
be predicted from the previous frame spectra magnitude
and phase change:

X̂(n, k) = |X(n− 1, k)|eϕ(n−1,k)+ϕ′(n−1,k) (4)

The complex domain (CD) detection function is defined
as the sum of the absolute deviations from the predicted
spectral values X̂(n, k),

CD(n) =
m= N

2 −1∑

m=−N
2

|X(n, k)− X̂(n, k)| (5)

Normalization is a key step in fusion, therefore each of
the detection functions is normalized to have a mean 0 and
standard deviation of 1.

2.2 The Multiple-expert Architecture

In this approach, where multiple algorithms are combined
to accomplish the same goal and can potentially interact to
adapt its behavior, the architecture is very important. In
this sense, blackboard modeling, an approach taken from
artificial intelligent systems, has been successfully applied
to other relevant applications such as computational audi-
tory scene analysis [15] and polyphonic music transcrip-
tion [16]. In a blackboard model, experts communicate
using a common database what allows to pursue multiple
lines of analysis at the same time and to adapt the strategies
to a particular problem context.
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The multiple-expert approach described in this paper
has been developed within a blackboard-agent framework.
Although the number of experts used in this paper is small,
the blackboard-agent framework will probably be useful
when combining many more experts, by implementing top-
down processing where results coming from fusion are fed
back into experts to improve individual results.

2.3 Peak Selection

Peaks are selected from the onset detection functions by
peak-picking the local maxima. We apply the peak-picking
algorithm used in [2] to obtain the peak-score information
used for fusion: the peak time and the estimated probabil-
ity of having an onset at that time.

A peak at time t = nh
fs

(where n is the current sample,
h the hop length and fs the sampling frequency) is chosen
as a relevant peak if the peak is a local maximum and the
detection function is larger than a threshold above the local
mean of the detection function f(n), this is:

f(n) ≥ f(m) for m such that n− w ≤ m ≤ n + w (6)

f(n)−
∑n+w

m=n−lw f(m)
lw + w + 1

≥ δ (7)

where w is the size of the window used to find local max-
ima, l is a weighting factor to calculate the mean over a
larger range before the peak (emphasizing onsets rather
than offsets) and δ is the threshold.

Peak scores are normalized by subtracting the calcu-
lated local mean to the peak value of the detection function
as given in equation (7).

The values of the peak-picking parameters have a large
impact on the results. Hence, we follow the approach cho-
sen in [1] and [2] selecting the parameters that maximize
the F-measure, a performance measure defined in Section 3.

2.4 Fusion

Onsets in the original signal are related to peaks in the
detection functions, therefore the normalized peak scores
and times pairs are selected by using the mean-filter peak-
picking algorithm described above. Peak scores and time
stamps from the three experts are grouped in time frames
of 50 ms and 50% overlap. If a given expert proposes
several peaks within the merging frame, the peak with the
highest score is selected.

Let F (l) = {fsffpdfcd} and T (l) = {tsf tpdtcd} be,
respectively, the peak scores and time stamps for each ex-
pert in the grouping time frame l. The proposed system
fuses this peak information using the rules described be-
low and classifies the frame as an onset or non-onset frame.
The parameters of the fusion algorithms are chosen so as
to maximize the performance of the fusion system.

Voting is perhaps one of the oldest strategies for deci-
sion making. The voting mechanism counts the number
of expert scores that are higher than a given threshold and
a consensus pattern is applied. A grouping frame can be

classified as an onset-frame if any, the majority or all (una-
nimity) the experts exceed the threshold.

The sum rule simply adds the normalized expert scores
in the grouping frame to obtain a better estimate of the a
posteriori onset probability. A frame is labeled as an onset-
frame if the resulting sum score exceeds a threshold.

Trained fusion strategies are also explored in this pa-
per. In particular, we evaluate the performance of a K-
Nearest Neighbor (K-NN) rule and a Support Vector Ma-
chine (SVM) with RBF kernel using cross-validation. The
parameters of the RBF kernel are selected using a grid-
search technique.

Grouping peak information in overlapping time frames
generates doubled detections, therefore the output of the
fusion rule is post processed to remove doubled onsets.

3. DATASET AND EVALUATION
METHODOLOGY

The evaluation of the proposed fusion approaches is per-
formed using the annotated dataset used in [1]. The dataset
is composed of excerpts of different musical styles classi-
fied into the following categories: pitched non-percussive
(PN), pitched percussive (PP), non-pitched percussive (NP)
and complex mixtures (CM). This allows to test the algo-
rithms on different classes of audio signals. There is a total
of 1060 onsets.

The majority of the literature reporting results on onset
detection shows a lack of proper statistical evaluation. Few
works report standard deviations to give an idea of the vari-
ability of the results and most of them rely on mean per-
formances only. Fortunately, a proper statistical hypothesis
testing methodology has been adopted in MIREX 2008.

Hence, we decided to segment the original signals into
homogeneous folds to evaluate the accuracy of our system
using K-fold cross-validation. Cross-validation allows the
statistical evaluation of the performance measures, enabling
the estimation of confidence intervals [17]. We used differ-
ent cross-validation files for each category, with no overlap
between folds. The number of folds were 14 (CM), 12
(NP), 12 (PN) and 14 (PP).

For the evaluation and comparison of onset detection al-
gorithms three measures are usually considered: precision
(P), recall (R) and F-measure (F). These evaluation mea-
sures are defined as:

P =
ncd

ncd + nfp
(8)

R =
ncd

ncd + nfn
(9)

F =
2PR

P + R
(10)

where ncd is the number of correctly detected onsets, nfp

is the number of false positives (detection of an onset when
no ground truth onset exists) and nfn is the number of
false negatives (missed detections). Due to the reliabil-
ity of hand-labeled annotations, a time tolerance of 50 ms
is usually assumed. This means that an onset is consid-
ered to be correctly matched if the detected onset is within
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50 ms of the ground truth onset time. In addition, we do
not penalized merged onsets since we do not try to identify
individual notes.

As discussed in Section 2.3, peak-picking and fusion
rule parameters are chosen so as to maximize the F-
measure, which assigns the same significance to false pos-
itives and false negatives.

4. RESULTS AND DISCUSSION

Table 1 compares the results of the best individual experts
and the proposed fusion rules on the different datasets. We
choose the best expert for comparison because fusion al-
ways performed better than the worst expert in our experi-
ments. In addition, we want to show that fusion can obtain
even better results than the best expert and that fusion per-
formance is not limited by the worst expert.

Total performance do not show enough information to
compare different approaches and a proper statistical anal-
ysis is essential to fully understand how the different meth-
ods perform. Hence, Table 1 shows mean values and the
95% confidence interval for the F-measure using cross-
validation.

As it can be seen in this table, fusion rules are able to
achieve better performance than the best of the experts. For
the PN and PP datasets, the relative increase in F-measure
is important considering that the performance of the best
of the experts is already high. Hence, the accuracy of the
fusion algorithms is not limited by the worst of the experts
and fusion achieves an improvement in performance by ex-
ploiting consensus diagnosis of the three experts.

For the NP and CM cases, the increase in performance
given by the fusion rules is not significant. In fact, the
performance is limited by the number of false negatives
because there is a number of onsets that are not detected
for any of the the experts. To exploit the benefits of fusion,
experts should be as diverse as possible meaning that on-
set detection functions should be accurate and should not
make coincident errors.

It is noteworthy that fusion has reduced the F-measure
deviation in the PN and PP datasets but is still large for
the NP and CM datasets. A large deviation means that
fusion obtains good results for some of the folds but the
performance is very low for other folds. In this sense, the
performance could potentially be increased if we were able
to identify the quality of the detection functions and apply
different fusion strategies based on this quality measure.

We turn now to discuss the different approaches for fu-
sion. Simple fusion rules obtain better results than trained
fusion rules. The size of the test sets is small and both
the K-NN and SVM approaches suffer from overfitting. In
addition, the SVM achieves better performance than the
K-NN except for the CM case. Finally, the SVM achieves
very good results for the PP case, probably because the
number of samples required to learn the task of identifying
PP onsets is low.

We followed the statistical evaluation methodology pro-
posed in [17] and we assumed a t-distribution for the sam-
ple mean estimator of the F-measure (the number of folds

for cross-validation was less than 30). However, perfor-
mance depends on various factors such as the set size, com-
position and the choice of the samples. Another interest-
ing accuracy measure would be the Weighted Error Rate
(WER), widely used in biometrics. In this case, a specific
method for the calculation of confidence intervals for the
total WER, not the mean, is already defined in [18]. This
method reduces the performance dependency of these fac-
tors. The WER, a error measure widely used in biometrics,
is defined as:

WER(R) =
fn + Rfp

1 + R
(11)

where fn and fp are the false negatives and positives rates.
The parameter R allows to balance the significance of the
false positives and false negatives in the error measure
which could be of interest in some applications and useful
to compare algorithms at different operating points. There-
fore, the WER can be an appropriate measure for the statis-
tical evaluation of music information retrieval experiments.

5. CONCLUSIONS AND FUTURE WORK

The originality of this contribution is the introduction of
score-level fusion strategies for onset detection, looking at
the problem of combining onset information as a multiple-
expert fusion problem. Our approach aims to calculate
a better estimate of that probability given the probability
estimates of multiple experts, which is radically different
to adding time-detection functions as previous approaches
do. This study is the first work, to our knowledge, that
focuses just on the combination of techniques by introduc-
ing score-level fusion for onset detection, opening a novel
direction to address the problem of combining detection
algorithms.

This paper compares untrained and trained fusion rules
on four sets of different music styles. Results show how
information fusion rules can lead to a higher performance
when combining multiple signal processing algorithms de-
signed for onset detection. However, the increase in perfor-
mance seems to be not important if experts are not diverse.
Simple fusion rules show better performance than trained
rules due to, probably, the small number of samples avail-
able for training.

In addition, a performance measure widely used in bio-
metrics has been proposed. The Weighted Error Rate al-
lows to balance the significance of the false positives and
false negatives in the error measure and a specific method
for the calculation of the confidence intervals of the total
error rate is already defined.

In future work, we will include more experts to exploit
diversity in the information fusion process. In addition, the
cross-validation analysis showed a high deviation of the F-
measure for complex signals. This means that the perfor-
mance of the experts is highly dependent on the conditions
of the signal. To face this problem, we will explore quality-
based information fusion which basically weights scores
according to the quality of the expert’s detection functions.
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PN data PP data NP data CM data
P R F P R F P R F P R F

B.E. 93.8 98.1 95.7± 5.1 97.4 98.5 97.8± 1.7 99.5 94.5 96.7± 5.5 89.4 89.6 88.8± 6.7
Vot. 99.1 95.6 97.3± 2.4 98.4 98.8 98.6± 1.0 96.9 96.7 96.7± 5.7 91.0 88.5 89.2± 7.5
Sum 99.1 95.6 97.3± 2.4 99.8 98.6 99.2± 0.9 98.0 94.6 96.2± 5.5 93.9 85.4 88.9± 7.0
KNN 91.4 96.4 93.5± 4.3 95.7 98.0 96.7± 1.5 94.2 92.6 93.2± 8.0 88.2 82.9 84.3± 10.4
SVM 92.2 98.1 94.7± 5.6 99.5 98.5 99.0± 1.0 96.8 95.6 96.2± 6.3 84.0 84.8 83.5± 8.9

Table 1. Performance comparison of the score-fusion rules and the best individual expert (B.E.), showing precision (P),
recall (R) and F-measure (F), for the different data sets. The table shows the mean and 95% confidence interval for the
F-measure using K-fold cross-validation.

We will also intend to use a larger dataset to avoid over-
fiting in trained fusion rules. Finally, we will consider in-
formation fusion in other relevant problems such as beat
tracking and tempo induction.
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ABSTRACT

A method is proposed for detecting the emotions of Chi-
nese song lyrics based on an affective lexicon. The lexicon
is composed of words translated from ANEW and words
selected by other means. For each lyric sentence, emo-
tion units, each based on an emotion word in the lexicon,
are found out, and the influences of modifiers and tenses
on emotion units are taken into consideration. The emo-
tion of a sentence is calculated from its emotion units. To
figure out the prominent emotions of a lyric, a fuzzy clus-
tering method is used to group the lyric’s sentences accord-
ing to their emotions. The emotion of a cluster is worked
out from that of its sentences considering the individual
weight of each sentence. Clusters are weighted accord-
ing to the weights and confidences of their sentences and
singing speeds of sentences are considered as the adjust-
ment of the weights of clusters. Finally, the emotion of the
cluster with the highest weight is selected from the promi-
nent emotions as the main emotion of the lyric. The perfor-
mance of our approach is evaluated through an experiment
of emotion classification of 500 Chinese song lyrics.

1. INTRODUCTION

In order to organize and search large song collections by
emotions, we need automatic methods for detecting the
emotions of songs. Especially, they should work in small
devices such as iPod and PDA. At present, much, if not
most, research work on song emotion detection was con-
centrated on the audio signals of songs. For example, a
number of algorithms [2,7,9] that classify songs from their
acoustic properties were developed.

The lyric of a song, which will be heard and understood
by listeners, plays an important part in determining the
emotion of the song. Therefore, detecting the emotions of
the lyric effectively contributes to detecting the emotions
of the song. However, there is now comparatively less
research done on methods for detecting the emotions of
songs based on lyrics. There has been indeed a very large
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Figure 1. Russell’s model of mood

literature already out there on emotion analysis or opinion
analysis of text. But, nearly all of them [1, 3, 6] use a one-
dimensional model of emotions, such as positive-negative,
which is not fine enough to represent lyric emotions which
need more dimensions. Lyrics are much smaller in size
than other kinds of text, such as Weblogs and reviews, and
this makes it hard to detect lyrics’ emotions. Being more
challenging, lyrics are often abstract and in lyrics, emo-
tions are expressed implicitly.

We propose an approach to detecting the emotions of
lyrics based on an affective lexicon. The lexicon is orig-
inated from a translated version of ANEW and then ex-
tended. According to the lexicon, emotion units(EUs) [13]
of a sentence are extracted and the emotion of the sentence
is calculated from those EUs.

A lyric generally consists of several sentences and those
sentences usually expresses more than one emotions. In
order to figure out all the prominent emotions of a lyric,
we use a fuzzy clustering method on the sentences of the
lyric. The method is robust enough to sustain the noises
induced in previous processing steps.

In our approach, Russell’s model of mood [11] is adopted,
as shown in Figure 1, in which emotions are represented
by two dimensions, valence and arousal. The lyric files
we use are in LRC format 1 which have time tags in them
and we got the LRC files from the Web. The framework of
our approach is illustrated in Figure 2. It consists of three

1 http://en.wikipedia.org/wiki/LRC_(file_
format)
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Figure 2. The framework of the proposed approach

main steps: (i) building the affective lexicon (ANCW); (ii)
detecting the emotion of a sentence; (iii) integrating the
emotions of all sentences.

The rest of this paper is organized as follows. In Section
2, the method for building an affective lexicon is presented.
Section 3 describes the method for detecting the emotions
of sentences. The approach to integrating the emotions of
sentences is described in Section 4. Experiments and dis-
cussion are presented in Section 5. Finally, we conclude
our work in Section 6.

2. BUILDING THE AFFECTIVE LEXICON

2.1 Translating the Words in ANEW

For analyzing the emotion of Chinese song lyrics, an af-
fective lexicon called ANCW (Affective Norms for Chi-
nese Words) is built from the Bradley’s ANEW [4]. The
ANEW list was constructed during psycholinguistic exper-
iments and contains 1,031 words of all four open classes.
As described in it, humans assigned scores to each word
according to dimensions such as pleasure, arousal, and
dominance. The emotional words in ANEW were trans-
lated into Chinese and these constitute the basis of ANCW.
10 people took part in the translation work. Each of them
was asked to translate all the words in ANEW into Chi-
nese words that he/she thought to be unambiguous and
used often in lyrics. The Chinese word that was chosen
by the largest number of translators for an ANEW word
was picked and added into ANCW. A word may have more
than one part of speech(POS), namely performs different
functions in different context, and each may have a differ-
ent emotion. Therefore, the part of speech of an ANCW
word must be indicated. The words, the emotions of which
in English culture are different from that in Chinese cul-
ture, are simply excluded from ANCW. To see if ANCW
is consistent with ANEW, we use Meyers’s method [10] to
extend ANCW based on a corpus of People’s Daily and the
extended ANCW includes 18819 words. Meyers extends
ANEW to a word list including 73157 words. The distri-
butions of the emotion classes of the words in the extended
ANCW is illustrated in Figure 3. We find that the emo-
tion class distribution of the words in the extended ANCW
is similar to the distribution of the words in the extended
ANEW. This proves that ANCW is consistent with ANEW
and is reasonable.

Figure 3. Distributions of the words in the extended
ANEW and ANCW

Table 1. The origins of the words in ANCW

Origin Translated Synonyms Added by
from ANEW lyrics corpus

# of words 985 2995 71

2.2 Extending ANEW

However, the words translated from ANEW are not suffi-
cient for the purpose of detecting emotions of lyrics so it
is necessary to extend ANCW. We extend ANCW in two
ways. In one way, with each word in ANCW as a seed,
we find out all of its synonyms in TONG YI CI CI LIN 2 .
Then, only synonyms with the same part of speech as that
of their seed are added to ANCW. In the other way, we
extract all constructions of apposition and coordination in
a corpus of lyrics(containing 18000 Chinese lyrics) by an
off-the-shelf natural language processing tool [8]. If either
word in such a construction is in ANCW, its counterpart
is added to ANCW. The origins of the words in ANCW
is shown in Table 1 and valence-arousal distribution of
the words in ANCW is illustrated in Figure 4. To indi-
cate whether a word in ANCW is a translated word from
ANEW or a later added word, we attach an origin property
to each word. Therefore, terms in the affect lexicon have
the following form: < word, origin, POS, valence, arousal >

3. DETECTING THE EMOTION OF A SENTENCE

First, word segmentation, POS annotation and NE recog-
nition are performed for lyrics, with the help of the NLP
tool. After stop words removed, the remaining words of
a sentence are examined to see if they appear in ANCW,
and each of the words that do appear in ANCW constitutes
an EU. If there is an adverb that modifies or negates an
emotion word, it is included in the corresponding EU as a
modifier. We recognize the modifiers of EUs by using the
NLP tool. The emotion of an EU is determined as follows:

vu = vWord(u) ·mModifier(u),v (1)

au = aWord(u) ·mModifier(u),a (2)

2 The lexicon of synonyms is manually built and includes 77,343 terms
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Figure 4. Valence-arousal distribution of the words in
ANCW

Where vu and au denote the valence and arousal value
of EU u respectively, vWord(u) and aWord(u) denote the
valence and arousal value of the EU’s emotion word re-
spectively, mModifier(u),v and mModifier(u),a denote mod-
ifying factors to represent the effect of the EU’s modifier
on the EU’s valence and arousal respectively. vWord(u)

and aWord(u), the valence and arousal value of the emo-
tion word are obtained through looking up in ANCW. Sen-
tences that have not any emotion unit are discarded.

We have collected 276 individual modifier words, which
cover all the occurrences in the Chinese lyric corpus we
use, and a table of modifiers has been set up. According to
the polarities and degrees to which modifiers influence the
emotions of EUs, we assign each modifier a modifying fac-
tor on valence and a modifying factor on arousal. The val-
ues of the modifying factors are in the range of [−1.5, 1.5].
For a negative modifier adverb, mModifier(u),v is set to a
value in [−1.5, 0] and for a positive modifier adverb, it is
set to a value in [0, 1.5].

Tenses influence the emotions of sentences. Some sen-
tences literally depict a happy life or tell romantic stories in
one’s memory but, actually, the lyric implies the feeling of
missing the happiness or romances of past days. Similarly,
the sentence with future tense sometimes gives the sense
of expectation. Therefore, when we calculate the emotions
of sentences, the influence of particular tenses are consid-
ered. We use Cheng’s method [5] to recognize tenses of
sentences and sentences are classified into three categories
namely, past, current and future, according to their tenses.
A sentence may have more than one EUs. Because the
EUs of a sentence always have similar or even identical
emotions, they can be unified into one in a simple way, as
follows:

vs =

∑
u∈Us

vu

|Us| · fTense(s),v (3)

Table 2. Adjustment of wu and ru of unit u
Increase when Decrease when

wu u is after u is before
adversative words; adversative words;
u is after u is before
progressive words; progressive words.
u is in title.

ru None. The emotion word’s
origin is extended;
The sentence is
adjusted by tense.

as =

∑
u∈Us

au

|Us| · fTense(s),a (4)

where vs and as denote the valence and arousal of sentence
s respectively, Us denotes the set of EUs of the sentence,
vu and au denote the valence and arousal of EU u(u ∈ Us)
respectively, and fTense(s),v and fTense(s),a are modifying
factors to represent the effect of the tense of the sentence on
valence and arousal respectively. The values of the modi-
fying factors representing the effects of tenses on emotions
are in the range of [−1.0, 1.0].

There are cases where two sentences(clauses) joined by
an adversative or progressive word form an adversative or
progressive relation. The following are two examples:
Adversative relation:
You are carefree
But I am at a loss what to do

Progressive relation:
Not only I miss you
But also I love you
Adversative and progressive relations in lyrics tend to

remarkably affect the strength of involved EUs in deter-
mining the emotions of lyrics. Specifically, an emotion
unit following an adversative word in a lyric influences the
emotion of the lyric more significantly than a unit before
an adversative word does. For example, the EUs in the
sentence before but is given less weight, while the EUs
of the sentence after the adversative word is given more
weight. Similarly, in a progressive relation, the emotion
unit after the progressive word is thought to be more im-
portant. So, a weight property is introduced for an EU to
represent its strength of influence on lyric emotions. The
initial value of weight of an EU is set to 1. A confidence
property is also attached to an EU. If the emotion word of
an EU is a later added word in ANCW, its confidence will
be decreased. Also, if the emotion of a sentence is adjusted
due to a particular tense, the confidence of its EUs will be
decreased. The initial value of confidence of an EU is set
to 0. The details of how to adjust the values of the weight
and confidence of an EU are shown in Table 2. Accord-
ingly, properties weight and confidence are also introduced
for a sentence, which are calculated from that of its EUs in
a simple way as follows:

125



Poster Session 1

ws =
∑

u∈Us

wu (5)

rs =
∑

u∈Us

ru (6)

where ws and rs denote the weight and confidence of
sentence s respectively, and wu and ru denote the weight
and confidence of EU u respectively. ws and rs are used
to determine the main emotion of a lyric in the following
processing.

4. INTEGRATING THE EMOTIONS OF ALL
SENTENCES

4.1 Challenges

1. Reduce the effect of errors in sentence emotions on
the result of the emotions of lyrics.

2. Recognize all the emotions of a lyric on the condi-
tion that the lyric has more than one emotion.

3. Select one emotion as the main emotion, if needed,
or give a probability to each of the emotions.

4.2 Methodology

In recent years, spectral clustering based on graph parti-
tion theories decomposes a document corpus into a num-
ber of disjoint clusters which are optimal in terms of some
predefined criteria functions. If the sentences of a lyric
are considered as documents and the lyric is regarded as
the document set, the document clustering technology can
conquer the above three challenges. We define an emotion
vector space model, where each sentence of a lyric is con-
sidered as a node with two dimensions that represent the
valence and arousal of an emotion respectively. We choose
Wu’s fuzzy clustering method [12] because it can cluster
the sentences without the need to specify the number of
clusters, which meets our demands. Wu’s fuzzy cluster-
ing method includes three steps: building a fuzzy similar-
ity matrix, generating a maximal tree using Prim algorithm
and cutting tree’s edges whose weight is lower than a given
threshold.

A song usually repeat some sentences. Sometimes the
repeated sentences are placed in one line, with each sen-
tence having its own time tag. In other cases, each repeated
sentence occupies one line and the line has one time tag. If
the repeated sentences are placed in more than one lines,
these sentences are bound to form a cluster in the later
clustering processing. If the emotions of those repeated
sentences were not recognized correctly, subsequent pro-
cessing will be ruined definitely. Hence, before sentences
are clustered, lyrics should be compressed so as to place
the iterative sentences in one line, with each sentence hav-
ing its own time tag.

Having examined hundreds of lyrics, we find that sen-
tences in a lyric always fall into several groups. The sen-
tences of a group have similar emotions which can be uni-

Figure 5. Distribution of speed, V and A

fied to a prominent emotion of the lyric. Therefore, the
isolated sentences are mostly noises and will be removed.

There are a dozen of means to measure the similarity be-
tween two nodes in vector space. After experiment those
means, we select the following means to measure the sim-
ilarity of the sentences’ emotions i, j.

Simij = 1− σ(|vi − vj |+ |ai − aj |) (7)

where vi,vj ,ai, and aj denote the valence and arousal
of sentences i and j respectively, and σ is set to 0.3.

The center of a survived cluster is calculated as the weighted
mean of emotions of all members of the cluster. The weighted
mean is defined as follows:

vc =

∑
s∈Sc

vs · ws

|Sc| (8)

ac =

∑
s∈Sc

as · ws

|Sc| (9)

where Sc denotes the set of sentences in cluster c, vc and
ac denote the valence and arousal respectively of cluster c,
and vs, as and ws denote the valence, arousal and weight
respectively of sentence s(s ∈ Sc).

The weight of cluster c is calculated as follows:

wc =
∑

s∈Sc

(α · ws + β · Loop(s))
−γ · rs + 1

(10)

where Loop(s) denotes the number of times sentence
s(s ∈ Sc) repeats, α, β and γ are set to 2, 1, 1, respec-
tively. These constant parameters are adjusted through ex-
perimentation and the set of values resulting in the highest
F-measure was chosen.

Lyrics we got have time tags and we use these tags to
compute the singing speed of sentences in lyrics, which is
defined in milliseconds per word. Although, singing speed
is not the only determinant of the emotions of lyrics, there
is correlation between the singing speed of a song and its
emotions, as shown in Figured 5. Hence, we use singing
speeds of sentences to re-weight each clustering center.
Having analyzed the singing speeds and emotions of the
songs in the corpus, we think that Gaussian Model is suit-
able for expressing the degrees to which different singing
speeds influence emotions. The re-weighting is considered
as follows:
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Table 3. The distribution of the songs corpus
Class +V,+A +V,-A -V,-A -V,+A

# of lyrics 264 8 174 54

w′c = wc+
M√
2πσ

e−
(Speed(c)−µv)2

2σ2 +
M√
2πσ

e−
(Speed(c)−µa)2

2σ2

(11)

M = max(wc |c ∈ Lyric ) (12)

where the µv and µa are the offset of v and a, respec-
tively. The meaning of σ is the variance of the speed of
lyrics. Lyric is the set of emotion clusters of a lyric. Speed(c)
is the average speed of sentences in cluster c. Finally, the
clustering center with the highest weight is considered the
main emotion. If there is a need for the possibility of sev-
eral emotions, the possibility is computed as follows:

p (c) =
w′c∑

c∈Lyric

w′c
(13)

5. EXPERIMENTS

Our ultimate goal is to compute the valence and arousal
value of lyrics, not to do classification. We do classification
for broad classes for the purpose of evaluating our emotion
detecting method and comparing the performance of our
method with that of other classification methods proposed
in the literatures, many of which were for the same broad
classes.

5.1 Data Sets

To evaluate the performance of our approach, we collected
981 Chinese songs from the classified catalogue accord-
ing to emotion in www.koook.com. These songs are up-
loaded by netizens and their genres include pop, rock &
roll and rap. These songs were labeled by 7 people whose
ages are from 23 to 48. Two of them are professors and five
are postgraduate students, all native Chinese. Each judge
was asked to give only one label to a song. The songs that
are labeled by at least 6 judges to the same class are re-
mained. We use these songs’ lyrics as the corpus. The
distribution of the corpus in four classes is shown in Table
3. Although the number of songs in +V-A class is small, it
is not surprising. This phenomenon conforms to the distri-
bution in reality.

5.2 Results

To demonstrate how our approach improves the emotion
classification of lyrics in comparison to existing methods,
we implemented a emotion classification method based on
lyrics with emotion lexicon: Lyricator [10]. Lyricator uses
ANEW to extend the emotion lexicon by natural language
corpus with a co-occurrence method. Using the extended
emotion lexicon, Lyricator computes the emotion of each

Table 4. Evaluation results of Lyricator and our work
Class Lyricator Our work
+V+A Precision 0.5707 0.7098

Recall 0.7956 0.6856
F-measure 0.6646 0.6975

+V-A Precision 0.0089 0.0545
Recall 0.1250 0.7500
F-measure 0.0167 0.1017

-V+A Precision 0.6875 0.6552
Recall 0.0632 0.3276
F-measure 0.1158 0.4368

-V-A Precision 0.0000 0.3125
Recall 0.0000 0.2778
F-measure 0.0000 0.2941

sentence of a lyric and the sentence emotion is the mean of
emotion values of the emotion words contained in the sen-
tence. The emotion of a lyric is weighted mean of values
of the emotions of sentences. The weight is defined as the
loop of sentences in the lyric.

To process Chinese lyrics, we translate the lexicon used
in Lyricator and implement Lyricator’s method. What’s
more, the parameters are adjusted to gain its best perfor-
mance. Under the same test corpus that has been men-
tioned above, we compare Lyricator with our system. Ta-
ble 4 shows the evaluation results between Lyricator and
our work in the same songs corpus. The precision for a
class is the number of lyrics correctly labeled the class di-
vided by the total number of lyrics labeled as belonging
to the class. The Recall is defined as the number of true
positive divided by the total number of lyrics that actually
belong to the positive class. The small number of lyrics
in +V-A leads to the low precision for this class. Because
we have used the wealth of NLP factors and fuzzy cluster-
ing method, our method’s performance is better than the
previous work.

5.3 Discussion

An analysis of the recognition results reveals the following
findings:

1. Errors made by the NLP tool are especially salient
because lyrics are very different from ordinary texts
in word selection and arrangement. It is challenging
for the NLP tool to do word segmentation, POS and
NE recognition well. For example,
Hope desperation and helpless to fly
away
the NLP tool considered terms ”desperation” and ”help-
less” as verbs while they are actually norms. With-
out word lemmatization, recognizing POS of words
in Chinese is much harder than in English. What’s
more, it will lead to errors in subsequent processing.

2. Some errors were due to complex and unusual sen-
tence structures, which make it hard for our rather
simple method to recognize emotion units correctly.

127



Poster Session 1

For example, the subject of a sentence is usually
omitted due to the limitation of length of lyrics.

3. It seems that lyrics usually don’t express much about
arousal dimension of emotion. Experimental results
show confusion rate between +A and -A is higher
than that between +V and-V, suggesting that lyrics
don’t express much about arousal dimension.

4. The emotions of some lyrics were not explicitly ex-
pressed, and therefore deduced by human listeners
based on his or her knowledge and imagination.

The following sentences come from a typical lyric, the
emotions of which are not recognized correctly:

Do you love me? Maybe you love me.
Hanging your head, you are in silence.
Those sentences form the chorus of CherryBoom’s Do

You Love Me and they express intensive emotions. Al-
though it is easy for human listeners to tell the emotions, it
is quite difficult for a computer to detect the emotions only
literally from the words of the lyric.

6. CONCLUSION

In this paper, we propose an approach to detecting emo-
tions of songs based on lyrics. The approach analyzes the
emotion of lyrics with an emotion lexicon, called ANCW.
In order to obtain the emotion of a lyric from that of its
sentences, we applied a fuzzy clustering technique which
can reduce the effect of errors introduced in the process of
analyzing emotions of sentences. Finally, we use the mean
singing speed of sentences to re-weight the emotion results
of clusters. The experimental result is encouraging.

Although this paper handles Chinese lyrics, we also im-
plement an English version of emotion analysis system
using English lexicon because our method is not specifi-
cally designed for Chinese environment. What’s more, the
method is unsupervised and training is not needed. Conse-
quently, it takes about two seconds 3 to process a lyric and
is apt to apply in small devices.
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ABSTRACT

Many music portals offer the possibility to explore mu-
sic collections via browsing automatically generated mu-
sic recommendations. In this paper we argue that such
music recommender systems can be transformed into an
equivalent recommendation graph. We then analyze the
recommendation graph of a real-world content-based mu-
sic recommender systems to find out if users can really
explore the underlying song database by following those
recommendations. We find that some songs are not rec-
ommended at all and are consequently not reachable via
browsing. We then take a first attempt to modify a recom-
mendation network in such a way that the resulting net-
work is better suited to explore the respective music space.

1. INTRODUCTION

Now that millions of songs are available for purchase and
download on modern music platforms, developing concepts
that help customers to navigate and explore the underly-
ing song database becomes more and more important. A
straight forward solution that is used in many commercial
settings to assist users in finding songs in a database is to
simply present lists of recommendations. Users are then
able to explore a collection by moving from recommenda-
tion to recommendation. Exploring a music collection via
such a sequence of recommendations is called browsing.
We believe that browsing will be a key feature of modern
music portals and consequently it is important to view rec-
ommendation not just in terms of individual recommen-
dation queries only, but also as a continuous process. To
analyze recommender systems with respect to their ability
to support users to browse throughout a music collection,
we can view a music recommender as a recommendation
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network. Recent research work on analyzing music rec-
ommendation networks [1, 2] indicates that many songs in
such a network stay hidden in the so-called Long Tail [3,4].
One reason why songs stay hidden in the Long Tail is that
it is hard to navigate through the network to reach those
unknown songs. Thus, it seems to be an essential property
of such a recommendation network that each song can be
reached via browsing the recommendations. The goal of
this paper is to analyze music recommendation networks
with respect to their browsability.

The rest of this paper is organized as follows: In section
2 we start with formally defining the general recommen-
dation scenario. In section 3 we show that under some
restrictions any recommender system can be transformed
into an equivalent recommendation graph. We then define
properties for a recommendation graph that make such a
graph useful for browsing the underlying music database
and introduce the notion of a browsing graph. In section
4 an analysis of a recommendation graph of a real world
content-based music recommender system illustrates the
limitations of a simple recommender system with respect
to the reachability of database items. We then propose in
section 4.2 an algorithm which effectively modifies a rec-
ommendation graph to overcome these reachability limita-
tions. Finally, we give an outlook on the application of the
proposed method and some future work.

2. RECOMMENDATION SCENARIO

Although many different music recommender systems have
been proposed so far, the fundamental principle is basically
the same. Independent of the actual recommendation ap-
proach we can give a formal model of a recommendation
scenario for item-based recommendation:

Given a set of database items U of size N and a specific
item o ∈ U that a user is currently focusing on, a recom-
mendation is a subset of items R ⊂ U related to o, where
the size of the subset R is far smaller than the total number
of items in the database. This very simple recommendation
scenario can be extended by generating a recommendation
not only based on the current item o but additionally spec-
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ifying a user profile p ∈ P , where P is a set of all user
profiles stored in the recommender system. We call a tu-
ple q = (o, p) a recommendation query and the item set
R(q) returned by the recommender system the result set or
recommendation.

Actual recommender systems then differ in the way the
recommendations are generated in this scenario. With re-
spect to music recommender systems, there seem to exist
five general recommendation approaches: collaborative fil-
tering approaches, content-based approaches, web-mining
based approaches, expert-based approaches and hybrid ap-
proaches.

Our investigations in the next sections are in general
independent of the recommendation approach. The only
requirement is that the recommender system under inves-
tigation returns, for any query q(o, p), an ordered set of
recommended items of a given length k such that the rec-
ommended items are ordered according to a measure of
relatedness.

3. RECOMMENDATION GRAPHS

An intuitive way of exploring a music catalog is to pick
an arbitrary item out of the database and than navigate
throughout the database moving from recommendation to
recommendation. One important requirement of such a
browsing system is reachability. Reachability essentially
ensures that a user will be able to access all songs in the
collection by means of exploration and will not be limited
to a small subset by the recommender system. To be able
to show that reachability is ensured for a specific recom-
mendation algorithm, we have to establish a formal model
of the browsing process.

Based on our definition of a recommendation scenario
(see section 2), browsing can be seen as an extension to
recommendation from a single query to a consecutive se-
quence of queries s = (q1, q,2 , ..., qN ). Two consecutive
queries qi = (oi, p) and qi+1 = (oi+1, p) within such
a browsing sequence are related by the fact that the item
oi+1 of the next recommendation query qi+1 is an element
of the result set of the previous recommendation query qi.
Consequently, a sequence s of recommendation queries of
length N is a valid browsing sequence in the case that the
following property is fulfilled:

∀i < N : oi+1 ∈ R(qi) (1)

To guarantee this essential reachability property for a
recommender system we have to show that starting from a
arbitrary but fixed database item, all other database items
can be reached by a finite sequence of recommendation
queries. Formally, reachability starting from an arbitrary
but fixed item o1 holds if:

∀o ∈ U : ∃i ∈ N : ∀j < i : (2)

oj+1 ∈ R(qj) ∧ qj+1 = (oj+1, p) ∧ o ∈ R(qi)

Before we can start drawing any conclusions about reach-
ability, we have to make some additional assumptions about

the recommender system. The reason is that for dynamic
recommenders, e.g., based on collaborative filtering, where
the recommendations may change as a result of system use,
it is impossible to prove reachability, since we cannot make
any assumption about future recommendations. Therefore
we have to assume a static recommender system where the
recommendation will not change over time. It is impor-
tant to note that this is not in principle a loss in generality;
it just implies that if there are any changes in the recom-
mender system then we also have to prove reachability for
this new recommendation state.

Furthermore we constrain our analysis to systems where
the recommendation result is independent of the user pro-
file. This implies that all users get the same recommen-
dations for one and the same query item. Once more this
is not in principle a loss in generality as we could handle
such systems by proving reachability for each user sepa-
rately. In practice, however, analyzing recommender sys-
tems that generate personalized recommendations seems to
be impossible due to the potential enormous computational
costs.

Given these restrictions, we can now transform every
possible recommender system into a recommendation net-
work or recommendation graph. A recommendation graph
is a directed graph G = (V,E), where each vertex in the
graph corresponds to a database item. For each item o in
the database the corresponding vertex in the graph has a
directed edge to all the items in the result set R(q) of the
recommendation query q = (o, p). (Note that based on
our assumptions R(q) does not depend on p, an optionally
given user profile.) To prove reachability for such a recom-
mendation graph we can for instance apply the depth first
search algorithm for each vertex in the graph separately.

While this is not a very practical or fast method to prove
reachability, in most cases it is quite trivial to disprove
reachability either by showing that the recommendation
graph is not connected, or by identifying a single source.
A source is a vertex v which has no incoming edges, i.e.,
has an indegree of zero (deg−(v) = 0). This implies that
there is a song in the database that does not occur in the
result set of any possible recommendation query and is
consequently not reachable at all. Sources are especially
problematic with respect to browsing: not only are they
not reachable if one starts from some specific song in the
database, but they are not reachable from any other song
in the database. In section 4 we show, based on empirical
analysis of a real world music recommender system, that
in contrast to what one would expect it is rather likely that
there are many sources in a simple recommendation graph.
Identifying sources in a graph is a fast operation and can
be done in O(n).

Proving and disproving reachability is of course an im-
portant analysis, however in the likely case that we are able
to disprove reachability, what can we do about it? How
can we find a recommendation algorithm that guarantees
reachability? To put it another way, can we modify a rec-
ommendation graph in such a way that the recommenda-
tion graph guarantees reachability? In section 4 we will
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show that it is quite likely that a recommendation graph
does not fulfill the reachability property. We then propose
an algorithm that transforms a recommendation graph into
a browsing graph, a recommendation graph that besides
reachability has some other properties that we are going to
introduce in the next section.

3.1 Further Requirements and Constraints

Up to now we have only considered reachability as an im-
portant property of a recommendation graph. But we can
derive additional constraints for the recommendation graph
by analyzing user requirements of browsing systems.

The first requirement that jumps to the eye is that the
result set should be relatively small — first of all, because
the display space for recommendations is in general lim-
ited on output devices, and secondly, because too large a
result set would confuse the user and make for a very un-
focused search. Thus it is a natural constraint that the size
of the result set should not exceed a maximum number of
recommendations kmax. For the corresponding recommen-
dation graph this implies that the outdegree of all vertices
is less or equal to kmax. We call this property maximum
outdegree property.

∀v ∈ V : deg+(v) ≤ kmax (3)

The second constraint is that if item B is a recommenda-
tion for item A then item A should also be a recommenda-
tion of item B. This corresponds not only to humans’ intu-
ition that similarity relations are symmetric, but also allows
to easily go back each recommendation step. The symme-
try property as defined in (4) implies that the browsing
graph is an undirected graph.

∀e1 = (v1, u1) ∈ E :
∃e2 = (v2, u2) ∈ E : (4)

v1 = u2 ∧ u1 = v2

Finally, we extend our notion of reachability. Reachability
just ensures that starting from an arbitrary vertex there is at
least a single path to each other vertex. This could make it
rather difficult to find this path. Therefore we require each
vertex to have a minimum number of incoming edges. For
the browsing graph this implies that each vertex has a min-
imum indegree kmin and means that each item is reachable
by recommendations from at least kmin other items. This
property is called minimum indegree property.

∀v ∈ V : deg−(v) ≥ kmin (5)

As a result from this requirement analysis we claim that a
recommendation graph is better suited for browsing a mu-
sic archive if these four properties are ensured. We then
call such a graph no longer a recommendation graph, but a
browsing graph instead.

In the next section we illustrate the limitations of a sim-
ple recommendation graph based on a real world content-
based music recommender system and show that in most
cases such a recommendation graph is not adequate for
browsing. We then introduce a heuristic algorithm that can
transform a recommendation graph into a browsing graph.

4. BROWSING GRAPHS

4.1 An Empirical Study

In this section we will show that properties like reachabil-
ity are essential and cannot be neglected when designing
a recommender or browsing system. To do so we analyze
a real world content-based music recommender system at-
tached to the music portal. The FM4 Soundpark 1 is an
internet platform of the Austrian public radio station FM4.
This internet platform allows artists to present their music
free of any cost in the WWW. All interested parties can
download this music free of any charge. At the moment
this music collection contains about 10000 songs and is
steadily growing. In our experiments we were allowed to
use a subset of 7665 songs out of the whole collection.

The recommender system attached to the FM4 Sound-
park music portal is based on a standard similarity measure
for music audio files. Each song is modeled as a distribu-
tion of local spectral features, namely Mel Frequency Cep-
strum Coefficients (MFCCs). MFCCs are a compact rep-
resentation of the spectral envelope of a short audio frame
and are one of the most widespread features used in the
Music Information Retrieval (MIR) community. A sin-
gle multivariate Gaussian distribution is used to model the
distribution of MFCCs of a song. Recommendations can
then be generated by comparing these distributions. This is
commonly done by computing the Kullback-Leibler (KL)
divergence [5] or relative entropy between the distributions
of two songs. For more details on the feature extraction
process and the generation of music recommendations we
refer to [6–8]. Using the MIR system of the FM4 Sound-
park we were able to generate lists of recommended songs
of a given length k, ordered according to the similarity to
the query song, exactly as required by our general scenario
(see section 2).

Assuming a fixed sized result set of k recommenda-
tions for each query, we systematically created all recom-
mendation graphs for k = 1 . . . 100, where we denote
k as the degree of the recommendation graph. For each
of these graphs we computed the indegree for all vertices
and counted the number of sources in each graph. Figure
1 shows that for small result sets the number of sources
is extremely high. For example, in the recommendation
graph of degree 5 there are 2661 sources, which implies
that 34.72% of all the songs in the music collection are not
reachable at all within this graph. By increasing the result
set size the number of sources decreases, but even for a
quite large result set of size 20 we still have approximately
1320 sources. Consequently still 17.22% of the songs in
the collection cannot be reached. From figure 2 we can
see how the number of sources scales with the collection
size. To simulate different collection sizes songs were ran-
domly removed from the collection. Figure 2 illustrates
that the problem gets worse for increasing collection sizes.
In fact the analysis of the recommendation graph that cor-
responds to the online version of the FM4 Soundpark —
there are only three recommendations per song — revealed

1 http://fm4.orf.at/soundpark/main
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Figure 1. For small result sets, the number of sources is
extremely large and decreases with an increasing number
of recommendations per query, whereas the maximum in-
degree over all vertices in each graph increases. For a
result set size of 100, there is one song that appears in the
recommendation list of 2628 other songs, or in 34.29% of
all recommendation lists.

that only 56,79% of all songs are reachable by recommen-
dations, the remaining 43,21% of the songs are sources and
are never recommended.

In addition to the number of sources, we also computed
the maximum indegree over all vertices in each graph, visi-
ble in figure 1. Obviously, while some songs are not reach-
able at all, some others are directly reachable from very
many songs. However it is of course quite implausible
that a single song is similar to several hundred other songs.
Songs that have a very high indegree, but do not share any
perceptual similarity with the referring songs are called
hub-songs according to [9]. In our case the hub problem
seems to be related to the content-based audio similarity
measure itself. Interestingly, hubs naturally appear in so-
cial networks (including collaboration networks) as well
[10]. Regardless of the reasons for hubs and sources, both
essentially reduce the usability of music recommender sys-
tems to explore the music spaces. In the following we pro-
pose a heuristic algorithm that transforms a recommenda-
tion graph into a browsing graph that fulfills the properties
introduced in section 3.

4.2 Constructing a Browsing Graph

The main idea behind our approach is to transform a rec-
ommendation graph into a browsing graph, simply by re-
placing all directed edges by undirected edges and then it-
eratively (and heuristically) removing edges from the re-
sulting graph such that the maximum outdegree and the
minimum indegree property are satisfied for all vertices.
The symmetry property is automatically ensured because
the graph is undirected. Furthermore, reachability is guar-

Figure 2. The number of sources in a recommendation
graph scales with the number of items in a database. Fur-
thermore the number of sources depends on the number
of recommendations for each query. This is illustrated for
fixed result set sizes of k = 5, 10, 15, 20, 25, 30.

anteed if the resulting graph is connected.
The proposed algorithm has three important parameters.

There is the minimum indegree kmin and the maximum
outdegree kmax, which directly result from the required
properties. It is easy to see that in combination with the
symmetry property this implies that each vertex in the fi-
nal browsing graph will have to have an edge degree be-
tween kmin and kmax. The proposed algorithm starts from
the directed version of the recommendation graph. One
could of course start the algorithm from a recommenda-
tion graph with outdegree kmax, but since we want to give
our algorithm additional flexibility during the process of
removing edges, it is required that the original recommen-
dation graph has an outdegree of at least kstart for all ver-
tices. This simply means that for each item we can gener-
ate at least kstart recommendations and is in line with the
requirement on recommender systems in section 2. The
three parameters are related to each other as stated in (6).

kmin < kmax < kstart (6)

The only thing left to do is to remove edges till each ver-
tex has a degree in between kmin and kmax. This should
be done in such a way that each vertex tries to remove its
‘weakest’ links (i.e., those with the lowest degree of relat-
edness), since the recommendations should be as good as
possible. This can be done as follows:

1. Put all vertices into a priority queue q, where all
vertices are sorted according to their degree deg(v);
break ties among same-degree nodes randomly;

2. Pop the vertex with the highest degree from the queue.

3. If this vertex already has a degree smaller than or
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equal to kmax, then all vertices in the queue have a
degree smaller or equal to kmax. We are done.

4. As the current vertex has too many edges, remove an
edge that connects this vertex to another vertex hav-
ing a degree greater than kmin. Choose the edge to
remove according to the indegree of the neighboring
vertices. Remove the edge connecting to the ver-
tex with the highest indegree and if there are several
vertices of the same indegree remove the vertex with
the weakest (lowest similarity) edge. If this vertex
is not connected to any other vertex having a degree
greater than kmin, then we are not able to ensure the
maximum indegree property for this node. Stop in
this case.

5. Since we have removed an edge, the indegrees of the
two vertices connected by the edge have changed.
Remove them from the queue and reinsert them such
that the queue is up to date.

6. Go back to step 2.

Of course it is true that this algorithm might find a so-
lution where individual vertices have an edge degree higher
than kmax, violating the maximum outdegree property. This
can be due to the fact that for given constraints there sim-
ply does not exist any solution. In such a case weakening
the constraint till enough solutions to the problem exist can
help. If there are enough solutions, simply rerunning the
algorithm might help. Vertices of the same edge count are
inserted into the priority queue in random order. There-
fore the algorithm might find other solutions. However our
experiments indicate that it is quite easy to find a valid
solution. Furthermore, the proposed algorithm does not
guarantee that the resulting graph is connected, but in all
our conducted experiments the resulting browsing graph
turned out to be connected.

4.2.1 Time Complexity

One major advantage of this algorithm is that it is of time
complexity O(n log(n)). At most n(kstart − kmin) edges
have to be removed. Therefore we have to perform a maxi-
mum of 3n(kstart− kmin) removal or insertion operations
on the sorted priority queue. Sorting and removing ele-
ments from a priority queue can be done in O(log(n)),
e.g., by using a balanced red-black tree. Therefore remov-
ing all the additional edges from the graph can be done in
O(n log(n)). The initial insertion operation of all elements
in the priority queue is also of complexity O(n log(n)).
Thus, the overall complexity of this algorithm is O(n log(n)).

4.2.2 Validation of the Transformation Algorithm

To validate the proposed algorithm we analyzed the re-
sult after the transformation of the FM4 Soundpark into
a browsing graph. The parameters used to transform the
graph were kmin = 4, kmax = 7 and kstart = 9. As we
do not have yet statistics of the usage before and after the
transformation, we follow the standard procedure in MIR

research and evaluate transformation algorithm in an indi-
rect way, via a music genre analysis. For all query songs
q we count the number of songs in the result set R(q) that
have the same genre as the query song and compute the
overall percentage relative to the number of recommended
songs. That way we measure the accuracy of the recom-
mendations independent of the number of the recommen-
dations. The accuracy of the recommendations using result
sets of length k = 5 was 35.39%, for k = 6 was 34.86%
and for k = 7 was 34.32%. After the transformation us-
ing the above parameters the accuracy was 35.63% with
an average degree of 5.918 per vertex. This preliminary
result indicates that there is only a marginal change in rec-
ommendation quality, however a more detailed empirical
study will be done in future. Furthermore to evaluate how

Figure 3. The average percentage of songs that can be
reached by browsing sequences of different length. Before
the transformation (for k = 5, 6, 7 ) and after the tranfor-
mation.

the reachability of songs has changed we investigated how
many songs can be reached in average by a recommenda-
tion sequence of length l. To do so we computed for each
song the number of songs that can be reached by such a se-
quence. This can be done by traversing the recommenda-
tion graph using the breadth-first search (BFS) algorithm
up to a maximum depth of l. We then take the average over
all songs to get a quality indicator for the whole network.
As one can see from figure 3 after the transformation more
songs can be reached when browsing the resulting graph
than before.

5. APPLICATION AND FUTURE WORK

Based on the graph-theoretic studies performed on the FM4
Soundpark Recommender, we are now investigating ways
of turning the Soundpark into a Browsing Graph. Given
the purpose of the system – to make new music artists
known to a wide public – reachability of as many artists
(or works) as possible would be a prime feature. This is
not quite straightforward and will involve some interesting
research questions. Several aspects have to be addressed:

Recommendation quality: Clearly, the quality of the rec-
ommendations changes as a recommendation graph
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(which is based on content-based similarity relations)
is transformed into a browsing graph (which sacri-
fices certain recommendation links in order to sat-
isfy the browsing constraints). Whether or not that
unduly degrades the quality of the recommendation
service can only be studied empirically. We will ad-
dress this issue by means of a large-scale user study,
which is yet to be designed (see below).

Incremental updates: The FM4 music database grows on
a daily basis. Every day, dozens of new songs, mostly
by new artists, are added to the database and inte-
grated into the recommender system in nightly batch
update sessions. Thus, the browsing graph transfor-
mation will also have to be run at regular intervals.
As an alternative, we will look into the possibility of
incremental update algorithms for browsing graphs.

Time-varying recommendations: A specific aspect of the
growing database is that the system’s recommenda-
tions may change from day to day. That is, if the user
selects the same seed song on two consecutive days,
she may get different recommendations of songs that
are supposedly ‘similar’. This may be a problem in
certain applications, but perhaps not in the case of
the Soundpark. Soundpark users have been taught
to regard the recommendation service as a means
to explore the Soundpark and find new things that
they would not otherwise find. From the user feed-
back we currently have, we can conclude that many
of the users are quite open-minded about occasional
‘strange’ recommendations, regarding them as ‘in-
teresting’ or ‘funny’ ideas by the computer, rather
than annoying mistakes. Thus, they might find time-
varying recommendations (if they ever notice them)
to be enriching rather than irritating.

Modifications to the Soundpark recommender system
will be accompanied with a large scale user study. We have
access to two kinds of user feedback: the browsing ses-
sions themselves (click data) as logged by the Soundpark
server, and an on-line user forum, where users discuss their
impressions of the system (among other things). Questions
to be studied include, e.g., whether improved reachability
conditions really increase the number of artists that are lis-
tened to by users; whether and how one can quantify dif-
ferences in recommendation quality between recommen-
dation and browsing graphs; and general aspects of user
browsing behaviour that may help in designing better rec-
ommenders in the future (for instance: how long is a typ-
ical browsing sequence? do users follow more than one
recommendation in a given recommendation list? etc.).

In this way, the FM4 Soundpark may then become one
of the first real-world music recommendation system that
is (a) purely content-based, that is, based on musical simi-
larity as estimated by the system itself, and (b) specifically
designed to maximize the percentage of music items that
can be found via similarity-based browsing.

6. CONCLUSIONS

In this paper we have shown that designing music recom-
mender systems is not as straight forward as it seems. Es-
pecially reachability is an important property if a music
recommendation system should also allow users to explore
a music archive via browsing. A bad system design might
have the consequence that a portion of all songs in the
database cannot be discovered as they are not accessible at
all. To overcome these limitations we took a first attempt to
modify the graph representation of a recommender system
in such a way that browsing the resulting recommendation
network is more convenient. We believe that improving
the accessibility of songs in a music archives can signifi-
cantly increase the usability of music services and might
even help to alleviate the long tail phenomenon by ensur-
ing the accessibility of ’niche’ products.
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ABSTRACT

This paper proposes an automatic DJ mixing method that

can automate the processes of real world DJs and describes

a prototype for a fully automatic DJ mix-like playing sys-

tem. Our goal is to achieve a fully automatic DJ mixing

system that can preserve overall user comfort level during

DJ mixing.

In this paper, we assume that the difference between the

original and adjusted songs is the main cause of user dis-

comfort in the mixed song. In order to preserve user com-

fort, we define the measurement function of user discom-

fort based on the results of a subjective experiment. Fur-

thermore, this paper proposes a unique tempo adjustment

technique called “optimal tempo adjustment”, which is ro-

bust for any combination of tempi of songs to be mixed. In

the subjective experiment, the proposed method obtained

higher averages of user ratings on three evaluation items

compared to the conventional method. These results indi-

cate that our system is able to preserve user comfort.

1. INTRODUCTION

Due to the development of various audio compression meth-

ods, many online music distribution services have provided

the opportunity for users to listen to songs from huge mu-

sic collections. Furthermore, the increasing popularity of

portable music players has enabled users to carry around

thousands of songs. However, the variety of methods for

the common user to enjoy listening to the songs in their

collection is basically limited to “shuffle” play, which sim-

ply plays songs in the collection (and/or playlists) in ran-

dom order. In order to extract a set of songs that match user

preferences from large-scaled music collections , there are

many useful techniques such as [1–3]. These techniques

can provide users a set of songs as playlists, from which

users select and play songs. In order to provide users new

experience, it is important to play the songs in an entertain-

ing way. For instance, Basu proposed a method which can

blend two songs smoothly to create different aspects of the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2009 International Society for Music Information Retrieval.

songs [4].

In the real world, DJs (disk jockey), i.e., people who se-

lect and play music in clubs and discos, are able to main-

tain the excitement of the audience by continuously play-

ing songs with the utilization of various DJ techniques: se-

lections of songs, beat adjustment, etc.. One fundamental

DJ technique is to gradually switch from one song to the

other, while adjusting the beats of the songs. This tech-

nique enables the DJ to switch songs smoothly without

disturbing the listener. A similar method should be ef-

fective in providing an entertaining music experience for

common music listeners. However, such music playing

requires skilled techniques and/or specialized equipment,

which are both difficult for casual users to utilize.

In this research, we propose an automatic DJ mixing

method that can automate real world DJ processes and de-

scribe a prototype for a fully automatic system. The ob-

jective of this research is to develop an automatic music

playing system that can play a variety of different songs

consecutively in an entertaining way without causing the

users any discomfort. Specifically, we define the measure-

ment function of user discomfort based on the results of a

subjective experiment. Furthermore, we propose an opti-

mal tempo adjustment technique that is robust for any com-

binations of the tempi of songs to be mixed.

2. CONVENTIONAL PLAYING METHOD

As mentioned in the previous section, DJs effectively uti-

lize the cross-fade playing (CFP) technique to maintain

the entertain level of the music they play. Naive CFP,

i.e., cross-fading two songs without any tempo/beat ad-

justment, is a simple and effective approach in avoiding

silence between songs, and can be easily implemented in

any music playing application. This method is effective in

avoiding silence between songs, which may be distracting

to listeners who prefer that the music play continuously.

However, especially in situations where the tempi of the

two songs to be cross-faded are significantly different (Fig-

ure 1-(a)), naive CFP may result in a negative listening

experience, since the beats of the two songs occur asyn-

chronously. Therefore, it is necessary for DJs to conduct

CFP while adjusting the tempo and beat of one song to

the other. The adjustment of tempo can be done by simple

signal expansion (in cases where the song is to be played

slower than the original) or contraction [5].
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Figure 1. Conceptual illustrations of cross-fade playing

and naive DJ mixing.

3. PROBLEMS

However, there are two problems in realizing such DJ tech-

niques automatically.

One problem is the degradation in the acoustic qual-

ity of music, which may occur in the tempo adjustment

process, especially in conditions where the tempi of the

two target songs are significantly different (Figure 1-(b)).

Such quality degradation may cause discomfort for listen-

ers. Furthermore, the double or half tempo error is com-

mon for any existing automatic tempo extraction algorithm,

as mentioned in [9]. Although a highly accurate tempo and

beat extraction method is obviously essential for the imple-

mentation of a fully automatic DJ mix playing system, it is

unrealistic to expect any system to achieve 100% accurate

beat extraction. If the fully automatic DJ mix playing sys-

tem adjusts the tempo based on tempo extraction results

with double/half errors, the resulting factors of tempo ad-

justment will be two times the actual requirement. It is

obvious that such excessive tempo adjustment is a cause

of acoustic quality degradation, and ultimately, discomfort

for music listeners. Furthermore, in the cases of adjust-

ment of the song/songs that result in double/half tempo

errors, strong beats and weak beats are adjusted to each

other, which causes user discomfort.

The other problem is that there is no previous work on

the effective measure of tempo adjustment to preserve the

comfort level of users. It is not clear that users feel dis-

comfort with regard to the degree of tempo adjustment or

the manner in which the tempo was adjusted for the songs

to be mixed. Actually, it is essential to define some kind

of measure in order to achieve the fully automatic DJ mix-

ing system. Additionally, it is important to investigate the

threshold and the applicable range of tempo adjustment for

songs to be mixed in order to achieve a comfortable DJ

mixing system.

4. DEFINITION OF MEASUREMENT FUNCTION

In this section, we conducted a subjective experiment to

define the measurement function of user discomfort. The

objective of this experiment is to define the measurement

function of user discomfort to determine the level of user

discomfort given the tempo adjustment ratio.

In this experiment, we assume that the difference be-

tween the original and adjusted songs is the main cause of

user discomfort. We investigate the correlation between

user discomfort and tempo adjustment factors with actual

tempo adjusted songs using time-scaling algorithms. De-

tails of this experiment are presented as follows.

4.1 Experimental method

The methodology of this experiment, namely, details on

the method of generating the sample audio and the subjec-

tive measure, are explained. In this experiment, we gen-

erate the actual songs for which the tempo will change.

Subjects listen to these songs and input the time when they

feel discomfort.

The experimental data set consists of 18 popular songs

selected from the RWC music database [11]. For each of

the selected songs, tempo changes are applied to the song

excerpts. The adjusted tempo is obtained by multiplication

of the original tempo of song and the factor of tempo ad-

justment f , f > 1 means the speedup factor and f < 1
means the slowdown factor. The speedup and slowdown

factors for tempo changes are set from 1.00 to 2.00 and

1.00 to 0.30, respectively. For each experiment, the song

is played in its original tempo for the first 15 seconds. Af-

ter this initial period, the tempo of the song is repetitively

increased (in the case of speedup) or decreased (in the case

of slowdown) by a scale of 0.05, for every three seconds,

until the tempo change factor reaches its maximal/minimal

value. This range is decided empirically enough to investi-

gate the correlation.

In the tempo adjustment, we have changed the time scale

of the songs, while maintaining the original pitch. As tools

of tempo adjustment, we use the two time-scaling algo-

rithms: the audio processing library SoundTouch Library 1

and the SOLA [10] time-scaling algorithm. SoundTouch

is a high quality means to change tempo, SOLA is a low

quality means. A total of 72 excerpts are generated for this

experiment (44.1 kHz, 16-bit, WAV).

In this experiment, the 96 subjects are divided into two

groups. Each group listens to half of the excerpts (36 ex-

cerpts per group). In the listening task, the subject is to

submit the time when they feel discomfort to the tempo

change of the song. The submission results are accumu-

lated to analyze the effects of tempo change factors.

4.2 Results

Table 1 shows the averages of tempo adjustment factors

that subjects feel discomfort to the song associated with

each time-scaling algorithm. In this table, there are differ-

ences between speedup and slowdown factors where the

subjects feel discomfort. These results show that the sub-

jects are more sensitive to effect of slowdown as opposed

to speedup. Furthermore, the averages of tempo adjust-

ment factors for SoundTouch and SOLA are approximately

1 SoundTouch Library: http://www.surina.net/soundtouch/
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Figure 2. Histogram of user discomfort to factors of tempo

adjustment.

Table 1. Averages of tempo adjustment factors

method speedup slowdown

SoundTouch 1.227 0.852

SOLA 1.226 0.852

equal to each other. These results indicate that user dis-

comfort depends on tempo adjustment factors rather than

the method.

Figure 2 shows the histogram of user discomfort and

factors of tempo adjustment with each time-scaling algo-

rithm. In this figure, the factors at the peaks of each al-

gorithm are 1.10 (speedup) and 0.90 (slowdown). The

percentages of subjects that feel discomfort inside these

factors of each algorithm are 15.42% (SOLA) and 11.31%
(SoundTouch). In the area near the original tempo, there

are differences between the algorithms. SoundTouch is bet-

ter able to preserve the comfort level of subjects under the

condition in which the factor satisfies 0.90 < f < 1.10
than SOLA.

4.3 Definition from the result

In order to define the measurement function based on the

results in the previous section, we assume that the differ-

ence between the original and adjusted songs is the main

cause of user discomfort. On the basis of this assump-

tion and previous results, we define the level of discomfort

(Ldc) expressed by the following equation:

Ldc(f) =







a(f − 1) f > 1
0 f = 1
b(1/f − 1) f < 1

(1)

In Eq.(1), parameters a and b are to be weighted because

the level of user discomfort is different between the ad-

justment from the speedup factor and from the slowdown

factor as described in the previous section. Hence we ex-

tract the weighted parameters a and b as a = 0.765 and

b = 1.000, these are extracted to make the score computed

by speedup and slowdown factors equal when the factors

are given as those written in Table 1. These weighted

parameters are assumed to be effective in preserving the

users’ level of comfort in the song-to-song (StS) transi-

tion of DJ mixing. For example, Eq.(1) is able to decide

which factor is appropriate (speedup or slowdown) in the

database

Tempo and Beat Extraction

Music Information Retrieval

OTAC computation

Tempo and Beat Adjustment

Cross-fade processing

Input the query song

Output the mixed sound

Pre-processing

Real-time processing

Figure 3. An overview of prototype of fully automatic DJ

mixing system.

DJ mixing. Additionally, we extract the stricter and aver-

age applicable ranges from the factors at the peaks (men-

tioned in Section 4.2) and the averages shown in Table 1.

Specifically, we extract the 0.90 < f < 1.10 as the stricter

applicable range and 0.852 < f < 1.227 as the average

applicable range.

5. SYSTEM

In this section, we describe the prototype of the fully auto-

matic DJ mixing system, which can solve the problems of

tempo/beat adjustment, described in Section 3. By apply-

ing the score of the measurement function, which is com-

puted based on the tempi of the target songs, our system

is designed to be able to preserve the overall level of user

comfort during the transition between songs.

Fig. 3 shows the overview of the prototype for the fully

automatic DJ mixing system. This system mainly consists

of five processes: tempo and beat extraction, music infor-

mation retrieval (MIR), optimal tempo adjustment coeffi-

cients computation, tempo and beat adjustment, and cross-

fade playing. In this system, we propose a unique tempo

and beat adjustment method, which is able to deal with

double or half tempo errors in the tempo and beat extrac-

tion technique: optimal tempo adjustment is able to com-

pute the optimal factors of tempo adjustment to minimize

the amount of tempo adjustment by dealing with tempo

octave relationships. Details of the main processes of the

system are described as follows.

5.1 Tempo and beat extraction

In this section, we describe the method of automating the

DJ processes: tempo and beat extraction. As concerns the

tempo and beat extraction process, there are many research

efforts in tempo and beat extraction techniques, such as

[6–8]. Although these techniques have the common prob-

lem of double/half error, there are practical mean to ex-

tract the tempo and beat automatically. Such methods can

be useful to automate the tempo and beat extraction in DJ

mixing processes. In our proposal, we apply BeatRoot 2 as

the method of extracting the beat in the pre-process to the

database.

2 http://www.elec.qmul.ac.uk/people/simond/beatroot/
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Figure 4. Conceptual image of dual tempo adjustment

5.2 Music information retrieval

In this section, we describe the method of automating the

DJ processes of selecting the songs to be mixed. As men-

tioned in Section 1, there are many research efforts in mu-

sic information retrieval/recommendation. Although these

are not specialized to DJ mix playing, these have achieved

highly accurate retrieval/recommendations. Hence these

are practical ways of substituting and selecting the song

manually. In this system, we apply the content-based MIR

technique [2], which can retrieve songs from the database

by means of content-based similarity to the users’ query.

5.3 Proposed DJ mixing

5.3.1 Optimal tempo adjustment coefficient computation

In order to automatically generate a smooth StS transition,

we propose a unique tempo adjustment technique. Our

proposal computes the optimal tempo adjustment coeffi-

cients, hereafter described as OTAC, which expresses the

factors of tempo adjustment for the songs to be consecu-

tively played, thus is capable of automatically generating

smooth StS transitions for any given combination of songs.

Namely, two OTACs are computed and optimized for each

song in the combination. As previously mentioned, the

naive tempo adjustment approach may result in user dis-

comfort, especially under conditions where the tempo of

song A (TA) and song B (TB) are significantly different,

which causes the tempo adjustment factor to be extremely

high.

In order to solve this problem, the proposed method

considers the individual position of beats in the two songs

to compute the OTACs, which will hereafter be denoted as

fopt. Figure 4 shows the conceptual image of proposed DJ

mixing. We focus on the position of beats in the two songs,

and it is clear that the beats of the two songs can match the

smaller factors of tempo adjustment compared to naive DJ

mixing. The proposed method computes OTACs by utiliz-

ing the double/half characteristics to reduce the score for

user discomfort.

The following describes the computational procedure

for OTACs, which expresses the factors of optimal tempo

adjustment of the two target songs. In this procedure, we

reduce the amount of tempo adjustment and user discom-

fort in a StS transition by dual tempo adjustment, for exam-

ple, song A with a 5% speedup factor and song B with a 5%

slowdown factor, instead of song A with a 10% speedup

smooth tempo change to smooth tempo change to 

tgtT

AT

BT

B
P

M

tgtT
BT

cross-fade range

t

song A song B

Figure 5. Shifts of tempi of target songs in StS transition.

factor and song B untouched. In the following explanation,

song A is defined as the target song to compute OTACs.

First, a candidate set of adjusted TA is computed using

the following Equation:

T ′

A = 2C × TA (2)

where C = {−2,−1, 0, 1, 2}. From the set of T ′

A, we

select the result which is closest to TB . This is equivalent

to determining Copt = argmin(|T ′

A − TB|).
Next, parameter bopt is computed with the following

Equation:

bopt = 2Copt × TA (3)

In Eq.(3), multiple values of bopt can be computed in cer-

tain combinations of TA and TB . In such cases, the value

bopt, which results in a smaller |Copt|, is selected. For ex-

ample, given tempo combination as (TA, TB) = (50, 75),
possible solutions of Eq.(3) are bopt = 50, 100. In this

case, bopt = 50 is selected as the final parameter.

The target tempo Ttgt, which the adjustment of the tempi

of songs A and B will match, is computed with the follow-

ing equation:

Ttgt =
(a− b)Tlow +

√

(a− b)2T 2

low + 4abThighTlow

2a
(4)

where Thigh denotes the tempo of the song with a higher

tempo, and Tlow denotes the lower in bopt and TB . Ttgt is

designed to divided the score based on Eq.(1) equally be-

tween the two songs, i.e., Ttgt is computed in order to sat-

isfy that the Ldc of speedup and slowdown is equal. Figure

5 shows the shifts in the tempi of target songs in the transi-

tion, which is the case where the tempo of song A is lower

than song B. These shifts are optimized for reducing the

score of user discomfort based on Eq.(1).

Finally, the OTACs foptA, foptB are computed based on

bopt.

foptA =
Ttgt

bopt

, foptB =
Ttgt

TB

(5)

The proposed method is capable of computing the fac-

tors of optimal tempo adjustment for any combination of

two songs. For instance, where the tempi of songs A and

B are 60 and 120 BPM, the result of the computed OTACs

is foptA = foptB = 1, which is equal to the ideal rate

for preserving the overall acoustic quality of the DJ mix

result. It is also notable that the proposed method is ca-

pable of applying the DJ mix regardless of the existence
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of double/half tempo estimation errors, since the effect of

such errors is disregarded during the OTAC computational

procedure.

5.3.2 Beat adjustment and cross-fade playing

Next, we explain the procedure to generate the StS transi-

tion of the mixed sound. This procedure is necessary to re-

duce the discomfortness of the mixed sound, which assume

to occur when the strong beats of a song are adjusted to the

weak beat of the other song during the cross-fade range.

In this procedure, we utilize the power of the beats in the

cross-fade sections, to avoid the mismatching of strong and

weak beats in the two songs to be mixed.

In order to generate the StS transition that matches the

strong beats precisely, our method computes the score for

the cross-correlation of the beats of target songs within the

range of the cross-fade. When the powers of beats within

the range of the cross-fade of songs A, B are described as

PowA and PowB . The following describes the power of

n-th beat as PowA(n) and PowB(n). The score between

the songs A, B is described as Equation (6):

score(τ) =

∑τ

k=1
(PowA(NA − k + 1)PowB(k))

τ
(6)

where τ denotes the number of beats within the range of

the cross-fade and NA denotes the number of beats of song

A as the former song in the mixed sound. Specifically, the

beats of song A are matched to the beats of song B when

τmax = argmaxτ (score(τ)) is satisfied. Pows are com-

puted by the power located near the beat (±50ms). The

powers of the spectrogram are computed by the FFT of the

audio signal low-pass filtered (20th order FIR, cutoff freq.

1500Hz). Finally, cross-fade is applied to the overlapped

range based on the highest score computed by τmax.

6. EXPERIMENT

In this section, we will describe the experiment to sub-

jectively evaluate our system and the proposed DJ mixing

method. The objective of this experiment is to evaluate the

effectiveness of the proposal.

In order to conduct this evaluation, two sets of DJ mixed

sounds are generated; one by naive DJ mixing, and the

other by the proposed method. The experiment is evalu-

ated in a subjective manner. Namely, subjects of the exper-

iment are to listen to the mixed sounds and provide prefer-

ence ratings for each sample. Details of the experiment are

described as follows.

6.1 Data

Experimental data consist of 1434 songs, which are col-

lected from Jamendo 3 , a web site which distributes music

licensed by Creative Commons. The source audio used

for the experiments is extracted from the songs in the data

3 http://www.jamendo.com/
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Figure 6. Average of user ratings in proposal and naive DJ

mixing.

collection. The length of each source is 30 seconds in-

cluding the chorus. Note that, for all source audio, meta-

information, such as the position of each beat, and tempo

(BPM) are applied by BeatRoot.

6.2 Experimental method

6.2.1 DJ mixed sound generation

The mixed sound files are generated by applying one of the

previously described methods using five selected source

audio extracted by MIR system [2] as the target songs. In

total, six mixed sounds are generated by naive DJ mixing

and the proposal, respectively. For the methods that utilize

tempo adjustment, we have added interval periods to grad-

ually change the tempi from/to the original to/from the tar-

get tempo, as shown in Fig.5. This interval period, which

is fixed as 5 seconds for all mixed songs, is inserted in or-

der to avoid abrupt changes in tempo, which is obviously

uncomfortable. The period in which CFP is conducted be-

gins immediately after the 5 second interval. For tempo

adjustment, we use the SoundTouch Library.

6.2.2 Subjects and evaluation measures

A total of 27 subjects participated in the experiment. Each

subject listened to all of the generated DJ mixed sounds

and were asked to provide subjective ratings in five ranks

for all sounds. In total, 165 ratings were collected on naive

DJ mixing and the proposed method, respectively. Evalu-

ation measures consist of the following three items: “com-

fort”: the level of listener comfort during StS transition (1:

discomfort – 5: comfort), “rhythm”: the smoothness of the

rhythm through the sound (1: bad – 5: good), and “en-

tertainability”: the overall preference rating (1: bad – 5:

good).

6.3 Results

Average of user ratings in proposed method and naive DJ

mixing are shown in Figure 6. It is clear from this fig-

ure that the proposed method was given a higher rating for

all evaluation items compared to the conventional method,

proving the overall effectiveness of the proposed method.

According to the result of paired t-test, there are statistically-

significant differences (p < 0.001).
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Figure 7. Histograms of the relative frequency of factors

in StS transitions of proposal and naive DJ mixing.

Figure 7 shows the histograms of the relative frequency

of factors in each of the StS transitions in each mixed sound.

In this figure, stricter and average applicable ranges de-

scribed in Section 4.2 are plotted as solid and dashed lines.

It is clear from this figure that the proposed method can

keep factors near the original tempo compared to naive DJ

mixing in a transition. The proposed method is able to

deal with the difference in tempi between the former and

latter songs. Furthermore, it is notable that the proposed

method can almost satisfy the stricter applicable range and

perfectly satisfy the average applicable range. Specifically,

the percentage of factors inside the stricter range of the

proposed method is 50.00% and inside the average range

is 100.00%.

For further analysis, we investigated the averages of

user ratings for each mixed sound. There were some cases

that although Ldc of the proposed method were lower than

naive DJ mixing, the score of user ratings was lower than

naive DJ mixing. These cases tended to be adjusted strong

beats and weak beats. In this case, user ratings of the pro-

posed method about the evaluation item RH is lower than

that of naive DJ mixing, which is able to adjusted appro-

priately. Furthermore, the correlation between CF and RH

has a strong positive-correlation to each other. These re-

sults indicate that appropriate beat adjustment is one of the

important factors. Generation of a smooth StS transition in

the aspect of RH is essential to achieving a high quality DJ

mixing method.

7. CONCLUSIONS

In this paper, we proposed an automatic DJ mixing method

with optimal tempo adjustment with a function to measure

user discomfort, described a prototype for a fully auto-

matic DJ mixing system. The measurement function is de-

fined by a subjective experiment, and our proposed method

is designed to optimize the score of the function. In or-

der to generate a smooth song-to-song transition, this pa-

per proposes an optimal tempo adjustment based on the

computation of optimal tempo adjustment coefficient. Fur-

thermore, the proposed DJ mixing method is designed to

preserve user comfort. The proposed DJ mixing is ca-

pable of generating a smooth song-to-song transition for

any given combination of songs that includes double or

half tempo errors. The advantages of the proposed method

were proved by comparing the subjective evaluations of

the samples generated by the proposed and conventional

methods.

However, it is also obvious that tempo is just one of

many elements in music that affect user preferences. For

example, some combinations of source songs were unac-

ceptable to subjects in the experiments, regardless of the

DJ mixing method implemented to generate the sample

audio. Therefore, we plan to further pursue research to de-

velop a way to effectively apply the measurement function

and a fully automatic music playing method, including the

extraction and utilization of features other than tempo and

beat position.
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ABSTRACT

We propose a new watermarking method that hides the

writer’s identity into symbolic musical scores featuring fin-

gering annotations. These annotations constitute a valu-

able part of the symbolic representation, yet they can be

slightly modified without altering the quality of the musi-

cal information. The method applies a controlled distortion

of the existing fingerings so that unauthorized copies can

be identified. The proposed watermarking method is robust

against attacks like random fingering alterations and score

cropping, and its detection does not require the original

fingering, but only the suspect one. The method is general

and applies to various fingering contexts and instruments.

Keywords. Watermarking, fingering

1. INTRODUCTION

In this work we consider symbolic musical scores that con-

tain fingering annotations. Such fingerings ease the score

interpretation for the novice player, and can guide the pro-

fessional player. Producing high quality fingerings is a

complex and costly task for the score writer. Up to now,

it mainly remains an hand-made task, although several au-

tomatic fingering methods have been proposed recently [1–

3].

The score writer’s investment is threaten by the devel-

opment of musical scores in digital form. Any buyer of

such scores can obtain a perfect copy of the files and resell

illegal copies. Watermarking is a known tool to protect the

intellectual property of digital content, and it can be envi-

sioned for musical scores as well. This would enable the

distribution and sharing of score files marked by the copy-

right of their owner(s), just like score sheets are nowadays,

but with the numerous advantages associated with the dig-

ital format.

Several methods have been proposed to hide the owner’s

identity into score images, by changing pixels [4], staff

thickness [5] or symbols shape [6, 7]. These approaches

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2009 International Society for Music Information Retrieval.

are well fitted for protecting score images, but are not rel-

evant for data exchange in a symbolic format like Mu-

sicXML [8]. Given the high cost of producing a symbolic

digital score, writers may demand a robust mechanism to

embed their copyright mark in the music symbolic repre-

sentation. This copyright mark must be preserved through-

out the operations that can be applied to the digital repre-

sentation (e.g., transposition). It should not depend on side

aspects such as graphical output details (e.g., the thickness

of staff lines) which can easily be replaced or even elim-

inated without harm, as they are not part of the symbolic

representation. Finally, the watermark should not alter the

music content. In order to satisfy these requirements, our

approach consists in watermarking the existing scores an-

notations. In the present paper we apply this idea to finger-

ing annotations. Up to our knowledge, this is the first work

on watermarking the music semantics itself.

The key idea of the method, given a musical score and

a hand-made high quality fingering, is to choose several

short secret fragments of the score. Given a score frag-

ment, we replace the existing fingering with another fin-

gering, chosen secretly among several computer-made fin-

gerings of comparable quality. All secret choices are made

using a cryptographic pseudo-random number generator,

seeded by a summary of the musical structure and with a

secret key known only by the legitimate owner. The re-

sulting fingering will be published with the musical score.

Finally, given a suspect score, the correspondence of the

suspect fingering with our secret choices on our secret frag-

ments acts as the proof of ownership. Our method applies

to any fingering scenario, as soon as a quality metric of

fingerings is available along with an automatic fingering

method for small fragments (such as in piano or guitar mu-

sic for example).

It should be clear that we protect the combination of the

score and its fingering, and not the score itself. We also

suppose that the attacker cannot afford to alter the score

significantly, as this would result in an unsellable score

(nevertheless we moderate this assertion in Section 3).

Outline. The paper is organized as follows. In Section 2

we introduce our general model for fingering and water-

marking. Section 3 presents our watermarking and detec-

tion algorithms. Section 4 discusses several issues on the

robustness of the watermark against natural score manip-

ulation or malevolent attacks. Experiments assessing our
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method are presented in Section 5. Section 6 briefly covers

the related work and Section 7 concludes.

2. FINGERING AND WATERMARKING

2.1 Fingering

The method proposed in this paper applies to any finger-

ing context, but for the sake of simplicity we will focus

on right-hand piano fingering for melodic inputs. Given

a score in symbolic notation, we abstract it as a sequence

s = (n1, . . . , nN ) of N consecutive notes. A fingering

f(ni) for a note ni is an integer in {1, 2, . . . , 5}, where
number 1 to 5 represents a right-hand finger, respecting

the usual conventions. For example, f(A) = 2 means that

note A will be played by the forefinger.

The watermarking method uses an estimate of the qual-

ity of a fingering, that is related to the player inner feelings.

We suppose the existence of a cost function cost(f, s) that
provides the cost of fingering f for the score s: the higher
the cost output by this function, the lower the quality of

the provided fingering (such functions exist for several in-

struments like piano [1]). We will explicit such a function

in the experiments of Section 5, but our method applies to

any cost function. We also often use the cost of a fragment

w of the score s, that we denote cost(f, w, s).
The first staff of Figure 1 presents an original score frag-

ment with fingering annotations built by the score writer.

Fingering annotations appear above the score. Annotations

below the score are presented here only for the purpose of

explanation, but are not published by the score writer. They

show the cumulative cost of playing the score with the cor-

responding fingering (for example, playing the whole score

costs 50 according to the chosen cost function).
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Figure 1. Different fingerings of the same score, with cu-

mulative costs

2.2 Watermarking protocols

A watermarking protocol is a pair of algorithms (W,D),
where W and D are respectively the marker and detector

algorithms (see Figure 2). Given an original score s and

a high quality fingering f , the score writer will watermark

it by obtaining a specific fingering fM = W(s, f,K), de-
pending on a secret numerical key K. The watermarked

score (s, fM ) is sold to users. If a suspect copy (s∗, f∗)
is discovered, the detector D applied on (s∗, f∗) using the

secret key K should output guilty if f∗ was obtained from
fM , and not guilty if f∗ is a fingering obtained indepen-

dently from fM . A watermarking protocol is said to be

blind if the original fingering is not needed at detection

time, which may be useful as writer’s fingerings may not be

accessible easily or archived properly. The suspect finger-

ing may have been also attacked/distorted before reselling,

in order to erase the watermark. A watermarking protocol

is said to be robust if it can still detect reasonably altered

fingerings. Finally, respecting usual conventions, marker

and detector algorithms are public, and their security relies

only on the secret key.

secret key

secret key

score publisher’s side

very good fingering

proof

of ownership

users side

(s,f)

reselling

illegal

attack

(s*,f*)

marker

detector

original score
& good fingering
(s,f  )

M

original score &

lawful user

malevolent user

Figure 2. Protecting score and fingering by watermarking

3. FINGERING WATERMARKING

3.1 Watermarking algorithm

Algorithm 1 gives the pseudo-code of the marker. This

algorithm scans a given score s by considering only a win-
dow of k consecutive notes (line 4 and 5). For each win-

dow, we first decide if it constitutes a good candidate for

watermarking (line 6 and 7). This choice is secret and is

based on the window content, the secret key K and a wa-

termarking period γ known only by the score writer (this

will be explained in the next section).

If a given window w is considered for watermarking,

we focus on its first note ni. We try to replace the original

fingering f(ni) for this note by another one, f ′(ni), also
chosen secretly between the 5 possible fingerings for our

piano example (line 9).

We compare the cost of this new fingering cost(f ′, w, s)
on window w with the cost of the original fingering

cost(f, w, s) on w (line 10). If the new cost exceeds the

previous one by a limit ε, we cancel this modification (line

12). If the new fingering has a reasonable cost, we keep it

for publication. Parameter ε, chosen by the score writer,

controls the allowed amount of alteration that results from

the watermarking process, and guarantees to produce fin-

gerings with a good quality.

The second staff on Figure 1 demonstrates the process.

For example, the 9th note (E) is considered for watermark-
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Algorithm 1: Watermarking

Input: a score s of N notes n1, . . . , nN , a high

quality fingering f for s, a secret key K, a
window size k, a quality threshold ε, a
period γ.

Output: a watermarked fingering f ′.
begin1

// copy f to f ′2

f ′ := f3

for i = 1 to N − k + 1 do4

w = ni.ni+1 . . . ni+k−1 // reference window5

seed PRNG G with signature(w).K6

if (G.nextInt() mod γ = 0) then7

// try to watermark the first note8

f ′(ni) := G.nextInt() mod 59

if (|cost(f ′, w, s)− cost(f, w, s)| > ε) then10

// revert changes11

f ′(ni) := f(ni)12

end13

end14

end15

return f ′16

end17

ing. Its original fingering (finger 2) has been replaced by

a new fingering (finger 1). This yields an extra cost of 2,

which is considered reasonable for this example. The over-

all watermarking process yields a total extra cost of 4 on

the score fingering.

3.2 Randomness

We now explain how random choices are made. Given a

window w, we compute its musical signature based on its

core music content (signature() function, line 6). The sig-

nature is independent from annotations and ornaments that

are pointless for our algorithm. It is robust against naı̈ve

transposition attacks as it transposes the score into a com-

mon key (but of course, fingering costs are computed ac-

cording to the original score). It is also invariant against

score rewriting replacing a note or group of notes by an

equivalent encoding (for example, replacing a half note by

two tied quarters). In this paper, the signature is the con-

catenation of transposed note pitches, where consecutive

equal pitches are suppressed. For example, the signature

of ABAABC is ABABC (seen as a number), and time is not

taken into account.

We concatenate this signature with the secret key K (a

number), known only by the score writer. Then (line 6),

we seed a cryptographic pseudo-random number genera-

tor (PRNG) with this number (as in [9]). This generator is

used for all subsequent choices and has interesting prop-

erties. First, if it is seeded with the same value, the pro-

duced numbers are deterministic. Hence, if we know the

secret key, we will be able to reproduce the pseudo-random

choices made at watermarking time. Second, if the se-

cret key is unknown, the generator outputs look completely

random and can not be reproduced. Hence an attacker, un-

aware of the secret key, is fighting against randomness.

3.3 Detection algorithm

Algorithm 2: Detection

Input: a suspect score s of N notes n1, . . . , nN with

its fingering f∗, a secret key K, a window size

k, a quality threshold ε, a period γ, a security
parameter δ.

Output: guilty or not guilty.
begin1

// copy f∗ to f ′2

f ′ := f∗3

total := 0, match := 04

for i := 1 to N − k + 1 do5

w = ni.ni+1 . . . ni+k−1 // reference window6

seed PRNG G with signature(w).K7

if (G.nextInt() mod γ = 0) then8

// check this window9

// compute awaited value10

f ′(ni) := G.nextInt() mod 511

if (|cost(f ′, w, s)− cost(f∗, w, s)| ≤ ε) then12

// probably watermarked position13

total++14

if (f ′(ni) = f∗(ni)) then15

match++16

end17

end18

else19

f ′(ni) := f∗(ni) // revert changes20

end21

end22

end23

if (match/total > 1
5 + threshold(N, δ)) then24

return guilty25

else26

return not guilty27

end28

end29

The detection algorithm (see Algorithm 2 for the pseudo-

code) proceeds like the marker algorithm. Using the same

window size, watermarking period and secret key used at

watermarking time, we seed the generator with each win-

dow signature and the secret key (line 7). Hence, the same

random choices made at watermarking time are reproduced.

Thus we can locate exactly those windows selected at wa-

termarking time (line 8). Then, since the detector does not

have the watermarked fingering for comparison (blind de-

tector), we have to assess that this position has really been

used for watermarking. For that, we replace the fingering

of the first note by the awaited one, using the random gen-

erator (line 11). We then compute the cost of this fingering.

If it exceeds the error limit ε, we discard this window and

restore the initial fingering (line 20). If error limit is re-

spected, this position is probably a watermark (line 14).
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We then compare the awaited fingering with the found one

(line 15). For the whole score, we maintain the ratio of the

number of matching fingerings with the number of win-

dows considered for detection. If this ratio exceeds a given

threshold (line 24), we consider the score as suspect (the

threshold value is discussed below).

4. DISCUSSION

In this section we discuss several classical issues related to

watermarking algorithms.

Impact on quality. Since the PRNG outputs random num-

bers with uniform distribution, the probability for a win-

dow w to be considered for watermarking is 1/γ. The im-

pact of watermarking this window can not be higher than

ε. Hence, for a N notes score, the mean overall alteration

is at most ε⌊N − k⌋/γ.

Window size. As the window size k increases, the amount

of randomness injected into the random generator extends.

If we consider reasonable scores whose notes span 2 oc-

taves, there is up to 14k potential fingerings for k consecu-

tive notes. We chose k = 5 in our experiments, leading to

half-a-million distinct window signatures.

False positives probability and threshold function. A

false-positive detection occurs when the detector considers

a random score as guilty. Clearly, this probability must

be negligible. Let δ be this acceptable probability, say

δ = 10−10. Let us consider a random score. The prob-

ability of a given window to be selected by the detector

is 1/γ. For piano fingering, the probability of a finger-

ing to correspond – by chance – to the watermarked one

is 1/5 (as there is 5 different possible fingerings). Hence

the average number of total matches on a random score is

⌊N−k⌋/5γ. By the Hoeffding bound [10], the probability
that the detector ratio match

total
on a random score deviates

from the previous average is such that

P [|
match

total
−

1

5
| > threshold(N, δ)] < e−2 N

γ
threshold(N,δ)2 .

Hence, choosing threshold(N, δ) =
√

γ
N

ln 1
δ
guarantees

a false positive rate smaller than δ. For example, on a score

of 10,000 notes with a watermarking period γ = 10 and

δ = 10−10, the recommended threshold is 0.22.

Available bandwidth. Robustness and significance are

proportional to the amount of watermark bits that can be

hidden. In popular guitar pieces (e.g., guitar scores and

tablatures for beginners), a significant number of water-

mark positions are available. But music for expert players

may contain only a few fingering annotations. If this num-

ber is not sufficient to reach the security limit, or if the

musical corpus is made of small pieces only, a natural ex-

tension is to consider the watermarking of an entire piece

collection (collected in a CD for example). The watermark

is spread on the collection, and since the detection method

uses only a finite-size sliding window, the order of pieces

within the collection is pointless at detection time. The

method is also robust enough to recover the watermark on

a subset/superset of scores.

Attacks. An attacker suspecting the occurrence of a wa-

termark may try to evade detection by several means. First,

the attacker can add easy-to-correct errors in the fingering.

To be successful, the attacker will have to add such errors

all along the piece, in order to erase sufficient watermark

positions. Hence the overall fingering is full of errors. Sec-

ond, the attacker can leave the fingering unchanged, but

add errors on the score itself, in order to break synchro-

nization with the fingering. If errors are simply equiva-

lent notes rewritings, the signature method will probably

recover the correct ones. If the error is large, it will break

one watermark position. Again, errors must span the whole

score to be efficient, which is unreasonable (due to lack of

space, we omit the mathematical proof of these statements.

They are similar to the false-positive analysis).

Another approach for the attacker is to refinger the score.

A complete rewriting represents a significant amount of

work, so why would this attacker bother buying a fingered

score in the first place ? On the contrary, a small refin-

gering acts as a random attack, as the attacker has no idea

where to perform this fingering.

Finally, the malevolent user can attack the score struc-

ture. Brute-force transposition is not sufficient, as we nor-

malize the score in a specific key for detection. A first

technique is to resell only subscores (excerpts). This can

occur even for a normal buyer using the score. However,

as long as a significant fraction of the piece is present, the

watermark can be detected (this fraction is typically 30%

in the database watermarking literature [9]). If less than

1/3 of the piece is stolen, the loss of property is harmless.

If an attacker mixes a watermarked collection with a huge

number of unwatermarked pieces, the argument is similar.

A last technique is to fold or unfold the score according

to repetition symbols. This attack can be counterfeited by

discarding repeated parts in the signature() function, both
for watermarking and detection.

5. EXPERIMENTS

5.1 Data, cost function, parameters

Our experiments are based on 50 Chopin piano pieces from

the KernScores repository [11], for a total of around 10,000

notes. Original fingerings were found with a Dijkstra algo-

rithm using a fingering cost function close to [1] and [2]

(our method supposes hand-made high quality fingerings,

but this approach is sufficient to measure the watermark-

ing impact on quality). These models encompass the cost

of playing a note with a given hand position (vertical cost

costv(f, n)), and the cost of the transition between one

hand position to the next one (horizontal cost costh(fi, ni →
fi+1, ni+1)). These costs are constant values that agree

with the human hand physical possibilities (the precise def-
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inition of these costs in not relevant for the present paper,

we refer the reader to [2] for in-depth explanations.) The

cost(f, n) of a fingering f is the sum of its horizontal and

vertical costs, i.e.,

cost(f, n) =

N
∑

i=1

costv(fi, ni)+costh(fi, ni → fi+1, ni+1).

We used window size k = 5, error tolerance ε = 10
and detection threshold 0.8 (vertical and horizontal costs

for one note or transition span between 0 and +14).

5.2 Experiments

Figure 3 shows the impact of the watermarking method for

various values of watermarking period γ. Clearly, a period
smaller than 5 yields a huge distortion, and greater values

tend toward a constant error with respect to the original fin-

gering. Figure 4 and 5 study the impact of a random attack

that tries to erase the watermark as follows: a note fin-

gering is chosen with probability 1/γa, and changed into a

random fingering up to a cost impact of 10. Figure 4 shows

the attack impact on the watermarked fingering quality for

various values of γa. It appears that the attack impact is

larger than the watermark impact on the fingering cost:

choosing γa < 5 leads to fingerings with poor (unsellable)

quality. Figure 5 shows the attack impact on the detec-

tor ratio. Choosing a detection threshold of 0.8 guarantees

that all suspect fingerings are correctly detected, expect for

those with attack γa smaller than 6. Hence, Figure 4 and 5

argue that any attack tricking the detector also destroys the

fingering quality. Finally, Figure 6 shows that using a ran-

dom secret key does not yield false positive detection (the

correct key is presented at index 50).

Figure 3. Impact of watermarking on fingering cost

6. RELATED WORK

Hiding information (for various purposes) in musical scores

is an old story. A study of music score watermarking was

performed during the WEDELMUSIC project. A good

survey [12] recalls these approaches. In the visual domain,

Figure 4. Impact of attack on fingering cost

Figure 5. Impact of attack on detector’s output

Figure 6. Detector output for random secret keys (correct

one at 50)
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classical but adapted image watermarking techniques can

be applied on the image of a musical score. The water-

mark can be hidden by altering grayscales, or the binary

representation of images, or the pixels themselves. In the

musical notation (but still into the score image), one can

alter the staff thickness, the vertical or horizontal distance

between notes or groups of notes, notes orientation, thick-

ness [5] or shape [6, 7]. Little is known on information

hiding into the music semantics, where our work stands.

Our method shares some similarities with database wa-

termarking methods: watermarking of relational databases

of numerical values [9], numerical data streams [13] and

XML streams [14]. All these methods use the same PRNG

technique, and [13, 14] also use a finite window to scan

a numerical or textual stream. The main difference is that

our method has to control a non-local cost on data and may

require rollbacks.

7. CONCLUSION

On-line distribution of musical scores is a promising area.

Among other advantages, it could offer instant access to

music collections, a wide diffusion of rare musical pieces,

and computer-based services to browse, recommend, search

and analyze music. However, producing music scores is a

costly process and the protection of score writers against il-

legal copies is a prerequisite for on-line collection to emerge.

In the present paper, we propose a watermarking algorithm

based on the idea that the owner signature should be based

on the musical content (which can hardly be modified) and

hidden in a valuable annotation of this content – namely,

fingerings. We propose a simple algorithm and show that

it results in an effective protection. Although currently lim-

ited to fingerings, we believe that our approach can be ex-

tended to music annotations in general, for instance lyrics

in vocal music. We are currently investigating this larger

context.
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ABSTRACT

To facilitate information retrieval of large-scale music data-
bases, the detection of musical concepts, or auto-tagging,
has been an active research topic. This paper concerns the
use of concept correlations to improve musical concept de-
tection. We propose to formulate concept detection as an
ordinal regression problem to explicitly take advantage of
the ordinal relationship between concepts and avoid the
data imbalance problem of conventional multi-label clas-
sification methods. To further improve the detection ac-
curacy, we propose to leverage the co-occurrence patterns
of concepts for context fusion and employ concept selec-
tion to remove irrelevant or noisy concepts. Evaluation on
the cal500 dataset shows that we are able to improve the
detection accuracy of 174 concepts from 0.2513 to 0.2924.

1. INTRODUCTION

Music plays an important role in human’s history, even
more so in the digital age. Never before has such a large
collection of music been created and accessed daily by
people. Bridging the semantic gap–the chasm between raw
data (signals) and high-level semantics (meanings)–is es-
sential for exploiting the growing music content. Toward
this goal, recent research has focused on building detectors
for detecting musical concepts such as genre, emotion, and
instrumentation using a pre-defined lexicon and a sufficient
number of annotated examples [1–8]. Once trained, these
detectors can be used to semantically tag and index music
content in a fully automatic fashion. A user can then query
music by semantic description [2], such as “find me a song
that is brit poppy and alternative, features male vocal, and
has a nice distorted electric guitar solo.”

Early attempts to musical concept detection formulated
the problem as a multi-label binary classification problem
and trained detector independently for each concept [1–3].
The training data is annotated by human subjects and the
relationship between ground truth and audio features is
learnt by machine. Subsequent efforts went one step for-
ward and utilized the correlation between concepts (either

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

Figure 1. A schematic diagram of the proposed musical
concept detection system.

positive or negative) to improve concept detection. Duan
et al. proposed a collective annotation scheme that trains
additional models for the pairs of concepts that have strong
correlations [4]. Bertin-Mahieux et al. studied a second-
stage learning and a correlation reweighting scheme to boost
the result of concept detection [5]. Aucouturier et al. [6]
used decision tree to refine the result of individual detec-
tors. Chen et al. built anti-models to exploit the negative
correlations of concepts [7]. Modeling concept correlation
has been shown effective for improving musical concept
detection.

It is, however, noted that most existing works focus on
the refinement of the individual detectors by training ad-
ditional models rather than focus on the direct incorpora-
tion of concept correlation in training the individual de-
tectors. Evidently, there are different levels of correlation
between concepts, by which we can divide the training
data into more than two categories; some of the training
pieces should be more relevant to a target concept than
other pieces. Consider the following toy example. We are
training a concept detector of “happy” based on three train-
ing pieces a, b and c, which are annotated with “happy,”
“tender” and “sad” respectively. Conventional approaches
formulate the problem as a flat binary classification, using
a as positive example and b, c as negative examples. How-
ever, since “happy” is semantically closer to “tender,” there
should be an ordinal scale among them, a � b � c, where
� denotes a relevance relationship. Such ordinal informa-
tion is neglected by treating b and c the same.

In this paper, we propose to formulate concept detec-
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tion as an ordinal regression problem [9–11] and train a
concept model to estimate the relevance score of a song
with respect to a target concept. A higher relevance score
represents a higher probability of the song being anno-
tated with the concept. The advantage of this approach
is two-fold. First, we can make better use of the training
data (whose collection process is fairly time-consuming
and labor-intensive) by explicitly leveraging the ordinal re-
lationship between concepts. Second, conventional classi-
fication algorithms are hampered by the so-called data im-
balance problem: the performance of a classifier degrades
significantly when the number of training data is not uni-
formly distributed across classes. For example, when 95%
of the training data is negative, a classifier can achieve a
95% accuracy by simply classifying everything as nega-
tive, which is highly undesirable. This problem is usually
observed for infrequent concepts such as “genre-swing”
and “instrument-organ.” Ordinal regression is free of this
problem because the objective function of learning is not
minimizing classification errors and because the training
pieces that are annotated with semantically close concepts
can still be leveraged in learning.

The second contribution of the paper is the investiga-
tion of context fusion and concept selection to improve
the detection result. The basic idea of context fusion is to
leverage the co-occurrence patterns between target seman-
tic and peripherally related concepts to improve the result
of an initial model. It has been successfully applied to im-
prove visual concept detection and image search [12–14].
Because of the assumption that the result is presented in an
ordered form, context fusion can be combined with ordi-
nal regression in an elegant way. We also study a concept
selection method to remove irrelevant concepts to improve
context fusion. The number of selected concepts is target
concept-dependent. For a concept that lacks strongly cor-
related concepts, context fusion is not applied.

A schematic diagram of the overall system is shown in
Fig. 1. In the train phase, the annotations, features, and
concept correlations are utilized to train the individual con-
cept detectors by ordinal regression. We then exploit the
contextual patterns among concepts to train a context de-
tector for each concept. The concepts utilized in context
fusion are selected based on concept correlations. In the
test phase, we extract the features of the test data and then
apply concept detection and context fusion in cascade to
generate the detection result.

The paper is organized as follows. In Section 2 we de-
scribe the corpus adopted in this work and the concept cor-
relations therein. The correlations are then used in Section
3 for ordinal regression and in Section 4 for context fusion.
We report the experimental results in Section 5. Section 6
concludes the paper.

2. CORPUS AND CONCEPT CORRELATION

We use the Computer Audition Lab 500-Song (cal500) data
set [2] in this study for it is publicly available. 1 The col-

1 Available at: http://cosmal.ucsd.edu/cal/projects/AnnRet

Figure 2. Concept frequency distribution of a subset (413
songs) of cal500 [2]. Note the concepts have been sorted
by the number of positive examples.

lection is made of 502 recent Western songs by 502 differ-
ent artists chosen to cover a large amount of acoustic varia-
tion. 66 paid students were recruited to annotate the songs
with a fixed vocabulary of 135 musical concepts, with each
song annotated by at least three respondents. A song is an-
notated with a concept if there is at least 80% agreement
between the respondents. The concept lexicon spans six
semantic categories: 29 instruments, 22 vocal character-
istics, 36 genres, 18 emotions, 15 acoustic qualities, and
15 usage terms. The concepts of emotions and acoustic
qualities are further broken down into bipolar ones (e.g.,
“emotion-happy” and “emotion-NOT happy”), resulting in
a total of 174 concepts [2].

We collect the audio files of 413 songs of cal500 and
analyze the frequency of each concept. As Fig. 2 shows,
rare concepts form a long tail in the concept frequency dis-
tribution. While frequent concepts (e.g., “song-recorded”
and “instrument-male lead vocals”) have more than 300
positive examples, 37 concepts have less than 10 positive
examples. A preliminary evaluation also shows the detec-
tion accuracy of the infrequent concepts are particularly
low. Because of this data imbalance problem, we also use
a subset of concepts that have more than 50 positive exam-
ples in this study. The resulting lexicon, which consists of
69 concepts, is denoted as cal500-lite hereafter.

Given a concept lexicon C = {c1, c2, . . . , c|C|} and N
annotated examples D = {d1, d2, . . . , dN}, we can mea-
sure the pairwise correlation ρmn between two concepts
cm and cn from the annotations A, which are represented
by a |C| ×N binary matrix, with Ami = 1 indicating that
di is annotated with cm. We compute ρmn by the Pearson’s
correlation coefficient of Am and An,

ρmn =
E((Am − µAm

)(An − µAn
))

σAm
σAn

. (1)

ρmn ∈ [−1, 1] and ρmn > 0 iff there is a positive correla-
tion. Interestingly, we find the correlation values generally
follow a Laplacian-like distribution: the number of con-
cept pairs decreases exponentially along with the absolute
values of correlation. See Fig. 3.

148



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

Figure 3. Distribution of the correlation values of cal500.

3. ORDINAL REGRESSION

3.1 Brief Review

Unlike classification, ordinal regression defines a number
of classes that exhibits an ordinal scale among them. For
example, the preference of a song can be categorized to
“very dislike,” “dislike,” “neutral,” “like,” and “very like.”
The outcome space can be denoted as Y = {r1, . . . , rK},
with ordinal classes rK �Y rK−1 �Y . . . �Y r1, where
K is the number of classes. A closely related problem
is ranking, which presents ordered results to a user in re-
sponse to a query. A common example is the ranking of
search results from the search engine (e.g., Google). Both
ordinal regression and ranking assign each object a rele-
vance score, by which the object is ranked. The difference
is ordinal regression needs a further step that determines
the class membership of each object with respect to the
discrete ordinal classes.

In the seminal work of Herbrich et al., the ordinal classes
were modeled by intervals on the real line [9]. A discrim-
inative function f : X 7→ R was trained to predict the
relevance score ŷi = f(xi) = (w · xi), where xi is a
feature vector of an object and w is a vector of weights.
However, because the outcome space Y is discrete, Her-
brich et al. determined the rank boundary θ(rk) between
classes rk and rk+1 on the real line according to the fol-
lowing heuristics,

θ(rk) =
1
2
(f(x1) + f(x2)), (2)

(x1,x2) = arg min
(xi,xj)∈Θ(k)

[f(xi)− f(xj)], (3)

where Θ(k) is the set of object pairs (xi,xj) with yi = rk,
yj = rk+1, and (ŷi − ŷj)(yi − yj) ≥ 0. In other words,
the optimal threshold θ(rk) for rank rk lies in the middle of
the estimates of the closest objects of rank rk and rk+1 that
can be correctly ranked by f(·). After the estimation of
the boundaries θ(rk) a new object is assigned to an ordinal
class according to the following equation,

g(xi) = rk ⇔ f(xi) ∈ [θ(rk−1), θ(rk)]. (4)

To learn f(·), Herbrich et al. viewed the problem as
the classification of object pairs into two categories (cor-
rectly ranked and incorrectly ranked) and trained a support

vector machine (SVM) to minimize the classification error∑N
i,j(ŷi − ŷj)(yi − yj). Though this algorithm, generally

called rankSVM, offers advantages, it is time-consuming
as the operation on every possible pair is O(N2).

Alternatively, we employ the listNet [11] algorithm in
this work. It uses score lists directly as learning instances
and minimizes the listwise loss between the ground truth
ranking list and the estimated one. In this way, the opti-
mization is performed directly on the list and the compu-
tation complexity is reduced to O(N). More specifically,
to define a listwise loss function, the top-one probability
is employed to transform a list of relevance scores into a
probability distribution. The top one probability P (yi) of
the ith object, defined as follows, represents the probability
of the object being ranked on the top,

P (yi) =
Φ(yi)∑N
i=1 Φ(yi)

=
exp(yi)∑N
i=1 exp(yi)

, (5)

where Φ(·) is an increasing and strictly positive function
such as the exponential function. Modeling the list of scores
as a probabilistic distribution, a metric such as the cross
entropy can be used to measure the distance (listwise loss)
between the ground truth list and the estimated one,

L(y, ŷ) = −
N∑

i=1

P (yi) log(P (f(xi))), (6)

where y = {yi}Ni=1 and ŷ = {f(xi)}Ni=1. The algorithm
then learns the weighting vector w by updating it at a learn-
ing rate η by gradient descent,

w← w − η ×∆w, (7)

∆w =
∂L(y, ŷ)

∂w
=

N∑
i=1

(P (f(xi))− P (yi))xi. (8)

It has been shown that listNet is more efficient and effec-
tive than rankSVM for a variety of ordinal regression and
ranking problems, such as image/video search [13].

3.2 Concept Model Training by Ordinal Regression

Given the ground truth Am of concept cm and the feature
representation of D, typically a binary classifier bm(·) is
trained by treating D+

m = {di|Ami = 1} as positive ex-
amples and D−m = {di|Ami = 0} as negative examples.
However, such a dichotomy of the training data loses many
valuable information embedded in Am, as we have illus-
trated in Section 1. We can in fact divide the training data to
multiple (K ≥ 2) ordinal classes according to concept cor-
relations and then employ listNet to train a concept model
fm(·) for each concept cm,

ŷmi = fm(xi) = (w · xi). (9)

Two such implementations are employed in this work,
K = 2 and K = 4. The first one simply dichotomizes
D as the binary classification setting. That is, Dr2

m = D+
m

and Dr1
m = D−m. We then set ymi = rk if di ∈ Drk

m .
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In this way, the concept correlations are not explicitly uti-
lized, but thanks to the ordinal regression algorithm (which
minimizes a listwise loss instead of clarification error) the
data imbalance problem is avoided. The second implemen-
tation uses K = 4 and partitions D to four classes accord-
ing to the following rules, which are listed in descending
order of precedence,

• Dr4
m = D+

m

• Dr1
m = {di|Ani = 1, ρmn ≤ l, di ∈ D−m}

• Dr3
m = {di|Ani = 1, ρmn ≥ u, di ∈ D−m \ Dr1

m}

• Dr2
m = D−m \

⋃
{Dr1

m ,Dr3
m}

In other words, Dr1
m consists of songs that are annotated

with any of the concepts Cr1
m that are strongly negatively

correlated with cm, and Dr3
m consists of songs that are an-

notated with any of the concepts Cr3
m that are strongly posi-

tively correlated with cm. In this work, we set l = µρ−σρ,
u = µρ+σρ, where µρ ' 0.01 and σρ ' 0.11 are the mean
and the standard deviation of all the correlation values of
the concept corpus (see Fig. 3).

Table 2 shows some highly correlated concepts for four
different target concepts. It can be found that most of the
correlated concepts are intuitively correct.

4. CONTEXT FUSION

The nature of concept detection makes it possible to dis-
cover co-occurrence patterns through mining ground truth
annotations and utilize the patterns to improve concept de-
tection. For example, if a song has the concepts “song-high
energy” and “song-heavy beat,” it is very likely that it also
has the concept “song-fast tempo.” If the relevance score
of “song-fast tempo” is somehow detected low (maybe the
detector is less reliable), we can modify the result by in-
creasing the value. We refer to such a model that learns the
co-occurrence patterns as the context model.

Following the idea of discriminative model fusion (DMF)
[12, 13], we train a context model for each concept based
on the output of the concept models. For each song, the
|C| concept models are employed to predict the relevance
score of song di with respect to each concept; this re-
sults in a |C|-dimensional model vector vi = {ŷni}|C|n=1 =
{f1(xi), · · · , f|C|(xi)}. We use the model vectors to train
the context model f̃m(·) for each concept cm by minimiz-
ing the loss between {ymi}Ni=1 and {f̃m(vi)}Ni=1 using list-
Net. We then replace ŷmi with f̃m(vi). That is,

ŷmi ← f̃m(vi) = (w̃ · vi) =
|C|∑

n=1

w̃nfn(xi). (10)

Therefore, f̃m(vi) can be regarded as the weighted com-
bination of the relevance scores of di with respect to other
concepts. Intuitively, the absolute value of w̃n would be
large if cn is highly correlated with cm. A total of |C| con-
text models are trained.

TRAINING PHASE
INPUT: training data D, A, {xi}Ni=1, parameters K, θ

compute correlations {ρmn}|C|m,n by Eq. 1.
for m = 1 to |C|

partition D to K classes by Am and {ρmn}|C|n=1

set ymi = rk if di ∈ Drk
m

train fm(·) by minimizing L({ymi}, {fm(xi)})
end
for m = 1 to |C|

construct vmi = {fn(xi)}n:abs(ρmn)≥θ

train f̃m(·) by minimizing L({ymi}, {f̃m(vi)})
end

OUTPUT: concept and context models {fm, f̃m}|C|m=1

TEST PHASE
INPUT: test data {xz}

for m = 1 to |C|
predict ŷ′mz = fm(xz)

end
for m = 1 to |C|

construct vmz = {ŷ′mz}n:abs(ρmn)≥θ

predict ŷmz = f̃m(vmz)
end

OUTPUT: concept scores {ŷmz} (one can get binary
result with the boundary θ(rK−1); see Eqs. 2–4)

Table 1. Pseudo codes of the concept detection framework.

We also study concept selection by removing concepts
whose absolute correlation values to the target concept are
below a threshold θ. That is,

vmi = {fn(xi)}n:abs(ρmn)≥θ, (11)

where abs(·) is an operator that takes the absolute value. In-
tuitively, the number of selected concepts |vmi| decreases
as θ is set larger and the actual number of |vmi| depends
on cm but not on di. When θ = 0, no concept selection is
performed and all the concepts are utilized; when θ = 1,
no context fusion is conducted. For a concept that does not
have strongly correlated concepts, |vmi| would equal zero
and we do not apply context fusion to it.

The algorithmic descriptions of the proposed concept
detection framework is shown in Table 1.

5. EXPERIMENTAL RESULT

5.1 Experiment Setup

For fair comparison, each songs is converted to a standard
format (22,050 Hz sampling frequency, 16 bits precision
and mono channel) and represented by a 30-second seg-
ment starting from the initial 30th second of the song, a
common practice in music classification.

For feature representation of a song we use the com-
puter program MA toolbox [15] to extract Mel-frequency
cepstral coefficients (MFCC), one of the most popular fea-
ture representation for audio signal processing. It is com-
puted by taking the cosine transform of the short-term log
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target concept cm = Cr4
m strongly positively correlated concepts Cr3

m strongly negatively correlated concepts Cr1
m

emotion: angry/agressive emotion: exciting/thrilling, powerful/strong emotion: calming, laid-back, happy,
genre: metal/hard rock, hip hop/rap, punk loving, positive, tender
instrument: drum machine, electric guitar (distorted) instrument: piano
song: fast tempo, heavy beat, high energy; song: positive feelings, texture acoustic

emotion: sad emotion: calming/soothing, emotional/passionate emotion: arousing, carefree, happy
instrument: female lead vocals instrument: drum set, male lead vocals
song: quality, texture acoustic song: high energy, positive feelings
usage: going to sleep, intensive listening usage: cleaning the house

genre: jazz emotion: calming, laid back, pleasant, tender, touching emotion: not calming, not loving
genre: bebop, contemporary R&B, cool jazz, swing genre: rock
instrument: piano, saxophone, trombone, trumpet instrument: male lead vocals

song: very danceable emotion: arousing, carefree, exciting, happy, light emotion: calming, laid-back, sad, tender
genre: dance pop, funk, swing, hip-hop/rap, pop, R&B genre: alternative, soft rock, rock
usage: at a party, exercising

Table 2. Using the rules described in Section 3.2, we can obtain the highly correlated concepts for a target concept and
partition the training data to four classes. This table shows some (only partial) highly correlated concepts for four concepts.

power spectrum expressed on a nonlinear perceptual-related
mel-frequency scale. We use the default 23ms frame size
with half overlapping to compute a bag of 20-dimensional
MFCC vectors and then collapse the sequence of feature
vectors into a single feature vector by taking the mean and
standard deviation. As prior works [2], we also take the
first-order derivatives of the MFCC vectors to capture tem-
poral information, resulting in a 80-dimensional feature
vector xi for each song.

We randomly hold out 100 songs as the test set and
use the remaining 313 songs for training. The evaluation
process is repeated 100 times to compute the average ac-
curacy, which is measured by average precision (AP), the
approximation of the area under the recall/precision curve
[10]. Let p̂m = {rank(ŷmi)}Ni=1, where rank(ŷmi) is the
ranking order of di in D according to ŷmi, we have

AP (p̂m, Am) =
1

rel

∑
j:Amj=1

Prec@j, (12)

where rel = |i : Ami = 1| is the number of relevant ob-
jects (true positives) of concept cm, and Prec@j is the per-
centage of relevant objects in the top j objects in predicted
ranking p̂m. AP equals 1 when all the relevant objects are
ranked at top. Since AP only shows the performance of a
concept, we evaluate the performance in terms of mean av-
erage precision (MAP), the mean of APs for all concepts.

5.2 Evaluate Ordinal Regression

We first compare the performance of ordinal regression and
multi-label classification. We use listNet for ordinal re-
gression and SVM for multi-label classification. 2 Table
3 shows the MAP of different learning algorithms. It can
be found that listNet(K=2) significantly outperforms SVM
(p-value<0.01) for both the cal500 and cal500-lite lexi-
cons, showing the effectiveness of ordinal regression. Set-

2 We use SVM for its superior performance in classification problems.
We implement it based on the LIBSVM library [16]. The parameters are
tuned by a cross validation procedure to achieve better result: for SVM,
we set the cost parameter C to 1000 and the gamma γ in the RBF kernel
to 0.01; for listNet, we set the learning step η to 0.05.

SVM listNet(K=2) listNet(K=4)
cal500 0.2513 0.2769 0.2787
cal500-lite 0.4323 0.4687 0.4727

Table 3. Evaluation of ordinal regression.

SVM listNet(K=4)
the 40 most freq. cpts 0.5113 0.5523 (+8.02%)
the medium freq. cpts 0.2182 0.2460 (+12.74%)
the 40 least freq. cpts 0.0690 0.0818 (+18.47%)
average 0.2513 0.2787 (+10.89%)

Table 4. The accuracy of concept detection for the cal500
concepts of different concept frequencies.

ting K = 4 and leveraging concept correlation to the train-
ing process further improves the accuracy. The relative
gain of listNet(K=4) over SVM is +10.89% and +9.35%
for cal500 and cal500-lite, respectively.

To investigate the detection accuracy of ordinal regres-
sion for concepts of different frequencies, we break down
the cal500 concept lexicon to three groups: the 40 most
frequent ones, the 40 least frequent ones, and the others.
Table 4 shows the MAP of the concept groups of SVM
and listNet(K=4). The correlations between concept fre-
quency, accuracy of concept detection, and the relative per-
formance gain of listNet(K=4) over SVM are salient. The
detection accuracy is generally higher for frequent con-
cepts, while the relative performance gain of listNet(K=4)
is generally higher for rare concepts. This implies that the
data imbalance problem is mitigated by listNet.

5.3 Evaluate Context Fusion and Concept Selection

We then evaluate the performance of context fusion (us-
ing DMF) with and without concept selection. We use
listNet to train both the concept models and context mod-
els and vary the value of the concept selection threshold
θ. Results shown in Table 5 lead to the following obser-

151



Poster Session 1

cal500 cal500-lite
listNet(K=4) 0.2787 0.4727
listNet(K=4)+DMF(θ=0) 0.2829 0.4873
listNet(K=4)+DMF(θ=0.1) 0.2911 0.4882
listNet(K=4)+DMF(θ=0.2) 0.2924 0.4854
listNet(K=4)+DMF(θ=0.3) 0.2856 0.4824
listNet(K=4)+DMF(θ=0.5) 0.2784 0.4754

Table 5. Evaluation of context fusion with different values
of threshold θ (smaller θ selects more concepts).

vations. First, with mild concept selection, context fu-
sion greatly improves concept detection. The MAP reaches
0.2924 (+4.92%) for cal500 and 0.4882 (+3.28%) for cal500-
lite. This degree of performance gain is similar to that of
applying context fusion to visual concept detection [13].
Second, without concept selection (θ=0), the performance
of context fusion for cal500-lite is similar to the optimal
one 0.4882, which may result from the fact that the de-
tection accuracy of cal500-lite is generally high and thus
directly leveraging all concepts is effective. On the con-
trary, due to the rather inconsistent accuracy, the detection
of cal500 calls for concept selection to remove irrelevant
concepts. Finally, setting θ too large removes most of the
concepts and degrades accuracy. A mild value of θ exhibits
the best result.

Table 6 shows the MAP of different semantic categories
with and without context fusion. It can be found that con-
text fusion with concept selection consistently improves all
the semantic categories, especially for “emotion,” “genre,”
and “usage.” In particular, because the detection accuracy
of “genre” and “usage” are relatively low, concept selec-
tion is prerequisite for context fusion to be effective. In
addition, due to the lack of strongly correlated concepts,
context fusion does not improve the category “vocal.” An-
other interesting observation is the selected concepts often
belong to “emotion,” “song,” or the same semantic cate-
gory as the target concept. This evaluation demonstrates
the importance of context fusion and concept selection.

6. CONCLUSION

In this paper, we have presented a novel framework of
utilizing concept correlations to improve musical concept
detection. A concept model is trained by an ordinal re-
gression algorithm, which effectively utilizes the ordinal
relationships among concepts and avoids the data imbal-
ance problem of the commonly-used classification meth-
ods. A context model is then trained to improve the detec-
tion result by leveraging the co-occurrence patterns among
concepts. We also employ a concept selection method to
keep irrelevant concepts from being used in context fusion.
Experimental results show that ordinal regression outper-
forms the conventional multi-label classification method
by a great margin; a +10.89% relative gain in mean av-
erage precision is achieved. With mild concept selection,
context fusion further improves the detection accuracy to
0.2924 for the 174 musical concepts of cal500.

listNet +DMF(θ=0) +DMF(θ=0.2)
emotion 0.4272 0.4369 (+2%) 0.4522 (+6%)
genre 0.1731 0.1769 (+2%) 0.1890 (+9%)
instrument 0.2321 0.2345 (+1%) 0.2383 (+3%)
song 0.4233 0.4302 (+2%) 0.4345 (+3%)
usage 0.1753 0.1750 ( 0%) 0.1952 (+11%)
vocal 0.1981 0.1998 (+1%) 0.1997 (+1%)
average 0.2787 0.2829 (+2%) 0.2924 (+5%)

Table 6. The accuracy of concept detection for the cal500
concepts of different semantic categories.
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ABSTRACT

This paper describes a fast and efficient template-based

chord recognition method. We introduce three chord mod-

els taking into account one or more harmonics for the notes

of the chord. The use of pre-determined chord models

enables to consider several types of chords (major, mi-

nor, dominant seventh, minor seventh, augmented, dimin-

ished...). After extracting a chromagram from the signal,

the detected chord over a frame is the one minimizing a

measure of fit between the chromagram frame and the chord

templates. Several popular measures in the probability and

signal processing field are considered for our task. In or-

der to take into account the time persistence, we perform a

post-processing filtering over the recognition criteria. The

transcription tool is evaluated on the 13 Beatles albums

with different chord types and compared to state-of-the-

art chord recognition methods. We particularly focus on

the influence of the chord types considered over the per-

formances of the system. Experimental results show that

our method outperforms the state-of-the-art and more im-

portantly is less computationally demanding than the other

evaluated systems.

1. INTRODUCTION

Chord transcription is a compact representation of the har-

monic content and structure of a song. Automatic chord

transcription finds many applications in the field of Musi-

cal Information Retrieval such as song identification, query

by similarity or structure analysis.

The features used for chord recognition may differ from

a method to another but are in most cases variants of the

12-dimensional Pitch Class Profiles [1]. Every component

represents the spectral energy of a semi-tone on the chro-

matic scale regardless of the octave. The succession of

these chroma vectors over time is called chromagram : the

chord recognition task consists in outputting a chord label

for every chromagram frame.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
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The first chord recognition systems consider many chord

types. The method proposed by Fujishima [1] considers

27 chord types. The transcription is done either by mini-

mizing the Euclidean distance between Pitch Class Profiles

and 12-dimensional chord templates constituted by 1’s (for

the chromas present in the chord) and 0’s (for the other

chromas) or by maximizing a weighted dot product. Sheh

& Ellis [2] use a Hidden Markov Model composed of 147

hidden states each representing a chord (7 types of chords

and 21 root notes). All the HMM parameters are learned

by a semi-supervised training with an EM algorithm.

These two methods have been improved upon by reduc-

ing the number of chord types considered. Fujishima’s sys-

tem is improved in [3] by reducing the number of chords

types from 27 to 4 (major, minor, augmented, diminished)

and by calculating a more elaborate chromagram includ-

ing notably a tuning algorithm. Chord transcription is then

realized by retaining the chord with larger dot product be-

tween the chord templates and the chromagram frames.

Sheh & Ellis method is modified in [4] : the number of

hidden states is reduced from 147 to 24 by only consid-

ering major and minor chords for the 12 semi-tones root

notes. Musical knowledge is introduced into the model by

initializing the HMMs parameters with values inspired by

musical and cognitive theory. Since then, almost all the

chord transcription methods [5], [6], [7], [8], [9], only con-

sider major and minor chords.

Our chord recognition system is based on the intuitive

idea that for a given 12-dimensional chroma vector, the

amplitudes of the chromas present in the chord should be

larger than the ones of the non-played chromas. By intro-

ducing chord templates for different chord types and roots,

the chord present on a frame should therefore be the one

whose template is the closest to the chroma vector accord-

ing to a specific measure of fit.

The paper is organized as follows. Section 2 gives a de-

scription of our recognition system. Section 3 describes the

corpus and the protocol of evaluation. Section 4 presents

the results of our system, a study on the influence of the

chord types considered, a comparison with the state-of-the-

art and an analysis of the frequent errors. Finally the main

conclusions of this work are summarized in Section 5.

153



Poster Session 1

2. DESCRIPTION OF THE SYSTEM

2.1 General idea

Given N successive chroma vectors {cn}n, K chord tem-

plates {pk}k and a measure of fit D, we define :

dk,n = D (hk,n cn;pk) . (1)

hk,n is a scale parameter whose role is to fit the chroma

vector cn with the chord template pk according to the mea-

sure of fit used. In practice, hk,n is calculated such as :

hk,n = argmin
h

D (h cn;pk) . (2)

The detected chord k̂n for frame n is then the one min-

imizing the set {dk,n}k
:

k̂n = argmin
k

{dk,n} . (3)

In our system, the chroma vectors are calculated from

the music signal with the same method as Bello & Pickens

[4]. The frame length is set to 753 ms and the hop size is

set to 93 ms. We use the code kindly provided by these

authors.

We have omitted for sake of conciseness the expressions

of dk,n and hk,n which are easily obtained by canceling the

gradient of (1) wrt hk,n.

2.2 Chord models

The intuitive chord model is a simple binary mask consti-

tuted of 1’s for the chromas present in the chord and 0’s for

the other chromas [1], [3].

Yet, the information contained in a chromagram cap-

tures not only the intensity of every note but a blend of in-

tensities for the harmonics of every note. Like Gomez [10]

and Papadopoulos [5], we assume an exponentially de-

creasing spectral profile for the amplitudes of the partials.

An amplitude of 0.6i−1 is added for the ith harmonic of

every note in the chord.

In our system three chord models are defined, corre-

sponding to 1, 4 or 6 harmonics. Examples for C major

and C minor chords are displayed on Figure 1.

From these three chord models we can build chord tem-

plates for all types of chords (major, minor, dominant sev-

enth, diminished, augmented,...). By convention in our

system, the chord templates are normalized so that the sum

of the amplitudes is 1.

2.3 Measures of fit

We consider for our recognition task several measures of

fit, popular in the field of signal processing : the Euclidean

distance (later referred as EUC), the Itakura-Saito diver-

gence [11] and the Kullback-Leibler divergence [12].

Since the Itakura-Saito and Kullback-Leibler divergence

are not symmetrical, they can be calculated in two ways.

D (hk,n cn|pk) will respectively define IS1 and KL1, while

D (pk|hk,n cn) will define IS2 and KL2.

CC#DD#E F F#GG#A A#B
0

0.2

0.4
C major with 1 harmonic

CC#DD#E F F#GG#A A#B
0

0.2

0.4
C major with 4 harmonics

CC#DD#E F F#GG#A A#B
0

0.2

0.4
C major with 6 harmonics

CC#DD#E F F#GG#A A#B
0

0.2

0.4
C minor with 1 harmonic

CC#DD#E F F#GG#A A#B
0

0.2

0.4
C minor with 4 harmonics

CC#DD#E F F#GG#A A#B
0

0.2

0.4
C minor with 6 harmonics

Figure 1. Chord templates for C major / C minor with 1, 4

or 6 harmonics.

2.4 Filtering methods

In order to take into account the time-persistence, we intro-

duce some post processing filtering methods which work

upstream on the calculated measures and not on the se-

quence of detected chords.

The new criterion d̃k,n is based on L successive val-

ues {dk,n′}n−L−1

2
≤n′≤n+

L−1

2

previously calculated. In

our system two types of filtering are used.

The low-pass filtering takes the mean of the L values.

It tends to smooth the output chord sequence and to reflect

the long-term trend in the chord change.

The median filtering takes the median of the L values.

It has been widely used in image processing and is partic-

ularly efficient to correct random errors.

In every case, the detected chord k̂n on frame n is the

one that minimizes the set of values
{

d̃k,n

}

k
:

k̂n = argmin
k

{

d̃k,n

}

(4)

3. EVALUATION

3.1 Corpus

The evaluation database used in this paper is made of the

13 Beatles albums (180 songs, PCM 44100 Hz, 16 bits,

mono). The chord annotations for these 13 Beatles albums

are kindly provided by Harte and Sander [13].

In these annotation files, 17 types of chords and one

‘no chord’ label (N) corresponding to silences or untuned

material are present.

The most common chord types in the corpus are major

(63.89% of the total duration), minor (16.19%), dominant

seventh (7.17%) and ‘no chord’ states (4.50%). Figure 2

shows the repartition of the chord types among the 13 al-

bums of the Beatles. We can see that the number of major,

minor and dominant seventh chords varies much with the

album. Yet, the last six albums clearly contain more chord
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Repartition of the chord types over the 13 Beatles albums

Figure 2. Repartition of the chord types as percentage of

the total duration for the 13 Beatles albums.

types (other than major, minor and dominant seventh) than

the first seven ones.

3.2 Protocol of evaluation

The evaluation method used in this paper corresponds to

the one used in MIREX 08 for the Audio Chord Detection

task. 1

As the evaluation method only takes into account major

and minor chords, the 17 types of chords present in the an-

notation files are first mapped into major and minor types

following the rules used in MIREX 08 :

• major : maj, dim, aug, maj7, 7, dim7, hdim7, maj6,

9, maj9, sus4, sus2

• minor : min, min7, minmaj7, min6, min9

For the systems detecting more chord types (dominant

seventh, diminished, etc.), once the chords have been de-

tected with their appropriate models, they are then mapped

to the major and minor following the same rules than for

the annotation files.

A score is calculated for each song as the ratio between

the lengths of the correctly analyzed chords and the to-

tal length of the song. The final Average Overlap Score

(AOS) is then obtained by averaging the scores of all the

180 songs. An example of calculation of an Overlap Score

is presented on Figure 3.

4. RESULTS

The five previously described measures of fit (EUC, IS1,

IS2, KL1 and KL2), three chord models (1, 4 or 6 harmon-

ics) and two filtering methods (low-pass and median) with

neighborhood sizes from L = 1 to L = 25 are tested. For

every method we only present the results for the optimal

parameters (measure of fit, chord models, filtering method

and neighborhood size).

1 http://www.music-ir.org/mirex/2008/

4.1 Results with major/minor chord types

Considering only major and minor chords (like most of the

chord recognition methods of the actual state-of-art), we

obtain a Average Overlap Score of 0.70 over the 13 Beatles

albums. The optimal parameters are the Kullback-Leibler

divergence KL2, the single harmonic chord model and the

median filtering with a neighborhood size of L = 17.

4.2 Introduction of other chord types

The simplicity of our method allows to easily introduce

chord templates for chord types other than major and mi-

nor : we study here the influence of the chord types consid-

ered over the performances of our system. The choice of

these chord types is guided by the statistics on the corpus

previously presented : we introduce in priority the most

common chords types of the corpus.

4.2.1 Dominant seventh and minor seventh chords

In the Beatles corpus, the two most common chord types

other than major and minor are dominant seventh (7) and

minor seventh (min7) chords. The results for major, minor,

dominant seventh and minor seventh chords are presented

in Table 1. The score displayed in a case is the best Average

Overlap Score obtained by considering the chord types of

the corresponding row and column.

min min7 min & min7

maj 0.70 0.64 0.69

7 0.69 0.63 0.65

maj & 7 0.71 0.66 0.69

Table 1. Average Overlap Scores with major, minor, dom-

inant seventh and minor seventh chords.

The best results are obtained by detecting major, minor

and dominant seventh chords, with the Kullback-Leibler

divergence KL2, the single harmonic chord model and the

median filtering with L = 17 giving a recognition rate of

71%. Only the introduction of dominant seventh chords,

which are very common in the Beatles corpus, enhances

the results. The introduction of minor seventh chords, which

are less common, degrades the results. Indeed, the struc-

ture of minor seventh chords (for example Cmin7) leads to

confusion between the actual minor chord and the relative

major chord (E♭ in our example).

4.2.2 Augmented and diminished chords

Augmented and diminished chords have been considered

in many template-based chord recognition systems [1], [3].

Interestingly, while the augmented and diminished chords

are very rare in the Beatles corpus (respectively 0.62% and

0.38% of the total length), the introduction of chord tem-

plates for augmented and diminished chords does not de-

grade the results. We obtain a recognition rate of 69%

by considering major, minor, augmented and diminished

chords and of 71% by taking into account major, minor,

dominant seventh, augmented and diminished chords.
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ground truth :

transcription :

overlap :

Overlap Score = 3+4

10
= 0.70

C major A minor

C major F major A minor

Figure 3. Example of calculation of an Overlap Score.

4.2.3 Other chord types

The introduction of other chord types (ninth, major sev-

enth, sus4, etc.) does not improve the results. This can

be explained either by the structures of the chords which

can lead to confusions with other chord types or by the

low number of chords of these types in the Beatles cor-

pus. Indeed, the introduction of a model for a new chord

type gives a better detection for chords of this type but also

leads to new errors such as false detections. Therefore only

frequent chords types should be introduced, ensuring that

the enhancement caused by the better recognition of these

chord types is larger than the degradation of the results

caused by the false detections.

4.3 Influence of the album
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Figure 4. Average Overlap Scores for the 13 Beatles al-

bums (in chronological order) for the major/minor and the

major/minor/dominant seventh methods.

We can see on Figure 4 that results are better for the first

seven albums : this can be explained by the low number

of chords other than major, minor and dominant seventh

on these albums (see Figure 2). Surprisingly the introduc-

tion of dominant seventh chords tend to improve results not

necessarily on albums containing many dominant seventh

chords (for example album number 3) but on albums con-

taining many chords other than major, minor and dominant

seventh (for example albums number 8 & 11).

4.4 State-of-the-art

Our method is now compared to the following methods that

entered MIREX 08.

Bello & Pickens [4] use 24-states HMM with musically

inspired initializations, Gaussian observation probability

distributions and EM-training for the initial state distribu-

tion and the state transition matrix.

Ryynänen & Klapuri [6] use 24-states HMM with ob-

servation probability distributions computed by comparing

low and high-register profiles with some trained chord pro-

files. EM-training is used for the initial state distribution

and the state transition matrix.

Khadkevich & Omologo [7] use 24 HMMs : one for

every chord. The observation probability distributions are

Gaussian mixtures and all the parameters are trained through

EM.

Pauwels, Verewyck & Martens [8] use a probabilis-

tic framework derived from Lerdahl’s tonal distance metric

for the joint tasks of chords and key recognition.

These methods have been tested with their original im-

plementations on the same Beatles corpus than before and

evaluated with the same protocol (AOS). Results of this

comparison with the state-of-the-art are presented on Ta-

ble 2.

AOS Time

Our method (Maj-Min-7) 0.71 796s

Bello & Pickens 0.70 1619s

Our method (Maj-Min) 0.70 790s

Ryynänen & Klapuri 0.69 1080s

Khadkevich & Omologo 0.64 1668s

Pauwels, Varewyck & Martens 0.62 12402s

Table 2. Comparison with the state-of-the-art.

First of all it is noticeable that all the methods give

rather close results : there is only a 9% difference between

the methods giving the best and worse results. Our method

gives the best results, but more importantly with a very

low computational time. It is indeed twice as fast as the

best state-of-the-art method (Bello and Pickens).
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4.5 Analysis of the errors

In most chord transcription systems, the errors are often

caused by the structural similarity (common notes) and

the harmonic proximity between the real chord and the

wrongly detected chord.

Two chords are likely to be mistaken one for another

when they look alike, that is to say, when they share notes

(especially in template-based systems). Given a major or

minor chord, there are 3 chords which have 2 notes in com-

mon with this chord : the parallel minor/major, the relative

minor/major (or submediant) and the mediant chord.

Besides the structural similarity, errors can also be caused

by the harmonic proximity between the original and the de-

tected chord. Figure 5 pictures the doubly nested circle of

fifths which represents the major chords (capital letters),

the minor chords (lower-case letters) and their harmonic

relationships. The distance linking two chords on this dou-

bly nested circle of fifths is an indication of their harmonic

proximity.

Given a major or minor chord, the 4 closest chords on

this circle are the relative (submediant), mediant, subdom-

inant and dominant. One can notice that these 4 chords

are also structurally close to the original chord, since they

share 1 or 2 notes with it.

Figure 5. Doubly nested circle of fifths [4].

We have therefore brought out 5 potential sources of

errors among the 23 possible ones (i.e., the 23 other wrong

candidates for one reference chord). Examples of these

potential sources of errors for C major and C minor chords

are displayed on Figure 6.

Reference chord C Cm

parallel Cm C

relative (submediant) Am A♭

mediant Em E♭

subdominant F Fm

dominant G Gm

Figure 6. Particular relationships between chords and po-

tential sources of errors : examples for C major and C mi-

nor chords.

Figure 7 displays the repartition of these error types as a

percentage of the total number of errors for every evaluated

method. Errors due to the bad detection of the ’no chord’

states are represented with the ’no chord’ label.

The main sources of errors correspond to the situations

previously described and to the errors caused by silences

(’no chord’). Actually, in most methods, the 5 types of

errors previously considered (over the 23 possible ones)

represent approximately 60% of the errors.

The introduction of the dominant seventh chords clearly

reduces the proportion of the errors due to relative (subme-

diant) and mediant (-9%). Another noteworthy result is

that the methods by Ryynänen & Klapuri, Bello & Pick-

ens and our major/minor method approximately have the

same error repartition despite the different structures of the

methods, which proves that the semantic of the errors is

inherent to the task. Pauwels, Varewyck & Martens’ sys-

tem is mostly penalized by the wrong detection of the ’no

chord’ states, when Khadkevich & Omologo’s method pro-

duces a wider range of errors.

5. CONCLUSION

Our system offers a novel perspective about chord detec-

tion. The joint use of popular measures and filtering meth-

ods distinguishes from the predominant HMM-based ap-

proaches. The introduction of chord templates allows to

easily consider many chord types instead of only major and

minor chords. Since our method is only based on the chro-

magram no information about style, rhythm or instruments

is required and thank to the fact that no training or database

is needed, the computation time can be kept really low.
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ABSTRACT

Social tagging is an increasingly popular phenomenon with
substantial impact on Music Information Retrieval (MIR).
Tags express the personal perspectives of the user on the
music items (such as songs, artists, or albums) they tagged.
These personal perspectives should be taken into account
inMIR tasks that assess the similarity between music items.
In this paper, we propose an novel approach for cluster-
ing music items represented in social tagging systems. Its
characteristic is that it determines similarity between items
by preserving the 3-way relationships among the inherent
dimensions of the data, i.e., users, items, and tags. Con-
versely to existing approaches that use reductions to 2-
way relationships (between items-users or items-tags), this
characteristic allows the proposed algorithm to consider
the personal perspectives of tags and to improve the clus-
tering quality. Due to the complexity of social tagging data,
we focus on spectral clustering that has been proven effec-
tive in addressing complex data. However, existing spectral
clustering algorithms work with 2-way relationships. To
overcome this problem, we develop a novel data-modeling
scheme and a tag-aware spectral clustering procedure that
uses tensors (high-dimensional arrays) to store the multi-
graph structures that capture the personalised aspects of
similarity. Experimental results with data from Last.fm in-
dicate the superiority of the proposed method in terms of
clustering quality over conventional spectral clustering ap-
proaches that consider only 2-way relationships.

1. INTRODUCTION

Music Information Retrieval (MIR) is highly interdisci-
plinary a field that, due to the nature of music, requires
an increased amount of contextual information for most of
its processes [1]. One popular method that supplies this

THE SECOND AUTHOR GRATEFULLY ACKNOWLEDGES
THE PARTIAL CO-FUNDING OF HIS WORK THROUGH
THE EUROPEAN COMMISSION FP7 PROJECT MYMEDIA
(WWW.MYMEDIAPROJECT.ORG) UNDER THE GRANT
AGREEMENT NO. 215006.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

contextual information is the practice of social-tagging.
Social tags are shared, free-text keywords that web users
can assign to music items, such as artists, albums, songs,
playlists, genres, etc. The popularity of music tagging rests
with the easy and effective organisation it produces, in con-
trast to the obscure and ambiguous hierarchical classifica-
tion (in terms of genre, mood, etc). Social tagging assists
the retrieval of items and social expression of taste [2].
Therefore, tags over music items reflect conveniently the
personalised opinion of users for these items.
Social tagging attracts increasing attention andMIR sys-

tems like Last.fm [3] and MyStrands [4] contain a body
of collected data in which data mining is challenging and
promising. One of the most essential data mining tasks is
the clustering of music data to assist their organisation,
the creation of playlists and the model-based music rec-
ommendation. However, several existing MIR approaches
consider clustering of data based solely on features ex-
tracted directly from the audio. In contrast, the proposed
approach is based on user-generated content, in the form of
tags, in order to include contextual information that would
be otherwise non-extractable from the content of items.
Data from social-tagging systems have 3 inherent di-

mensions: the users, the music items, and the tags. More-
over, they contain 3-way relationships of the form items–
users–tags between these dimensions. Thus, there is a clear
difference between just knowing that a tag has been applied
to an item regardless by which users, and knowing the spe-
cific users that applied this tag to the item. The reason is
that in the latter case the tag expresses the personalised per-
spective of the specific users on the item. Clustering of mu-
sic items with existing algorithms requires the suppression
of the 3 dimensions and the reduction of their 3-way rela-
tionships into 2-way of the form items–users or items–tags.
This is because most existing clustering algorithms model
the data in 2-dimensional arrays whose rows correspond
to items and columns to features. Thus, clustering can be
performed over items-users or items-tags arrays, but not
without breaking the original 3-way relationships between
items-users-tags. However, such approach may incur loss
of valuable information contained in the 3-way relation-
ships.
To address the complexity of data from social tagging

systems, we focus on the popular family of spectral cluster-
ing algorithms. This type of clustering algorithms work on
a similarity graph that connects every item to its k nearest-

159



Poster Session 1

Input:

Social

Compute�

the�k�NN�

Compute�

the�

Decompose�

the�

Run�

conventional

clustering in
Output�

Social�

Data
multi�

graph

Laplacian

Tensor

Laplacian

Tensor

clustering�in�

eigenvector�

space

Clusters

Figure 1. The steps followed by the proposed approach.

neighbors (k-NN) and map each item to a feature space de-
fined by eigenvectors of the similarity graph. Spectral clus-
tering algorithms have been proven effective in address-
ing complex data [5]. However, existing spectral cluster-
ing algorithms cannot be used directly for data from social
tagging systems without suppressing the 3 dimensions in
order to consider only either items-users or items-tags re-
lationships. The reason is that existing spectral clustering
algorithms form the k-NN similarity graph based on the
single value of similarity between each pair of items.
To overcome the problems of existing approaches and

avoid breaking the original 3-way relationships existing in
social-tagged data, we propose the extension of spectral
clustering in order to become tag-aware and directly han-
dle all present dimensions. Our technical contributions to-
wards this objective are the following: (i) We provide the
insight that multiple similarity values between each pair
of items should be used to account for the fact that when
all 3 dimensions are considered, then similarity between
two items depends both on the users who tagged them and
the tags they assigned, a fact that leads to several similar-
ity values between them. (ii) To support multiple similarity
values, we extend the modeling based on k-NN similarity
graphs by using k-NN similarity multigraphs, which allow
the existence of multiple edges between two nodes. (iii)
We extend existing spectral clustering algorithms to con-
sider the k-NN similarity multigraphs by extracting infor-
mation about eigenvectors from tensors (i.e., multidimen-
sional arrays). (iv) We perform experiments with real data
crawled from Last.fm and compare the proposed method
against conventional spectral clustering that suppresses the
original data and consider only 2-way relationships (either
items-users or items-tags) in terms of quality of the final
clustering.
The rest of this article is organised as follows. Section 2

reviews related work. Section 3 presents an overview of the
proposed approach, whereas Section 4 describes the pro-
posed data modeling and Section 5 the proposed clustering
algorithm. Experimental results are detailed in Section 6.
Finally, Section 7 concludes the article.

2. RELATEDWORK

Clustering tagged music data, as well as their visualisa-
tion, has also been the focus of the research of Lehwark et
al. [6]. In the interest of discovering new music based on
the semantic organisation provided by tags on music data,
they propose the use of the Emergent-Self-Organising-Map

(ESOM) for the clustering of tagged data. Additionally,
they also utilise U-Map in order to provide a visually ap-
pealing user interface and an intuitive way of exploring
new content. Differently from this approach, we apply spec-
tral clustering in contrast to ESOM while our focus is on
multiple pairwise similarities in contrast to visualisation of
the produced clusters.
Levy et al. [7], investigate the performance of mod-

els for varying latent dimensions examining the alteration
of low-dimensional semantic representations discrimina-
tive capability in searching music collections. This approach
is different than the one presented in our work, as we fo-
cus on multiple pairwise similarities on the music data for
the purpose of clustering the music items, in contrast to [7]
where different models are tested in order to uncover emer-
gent semantics from social tags for music.
The clustering of music data has received extensive at-

tention from the MIR community. Most research aims in
genre classification (readers are suggested [8] for a detailed
survey of the area) as the classification emerging is based
on objective similarity measures from the data, thus avoid-
ing the constraints possed by fixed taxonomies, which may
be difficult to define as well as suffer from ambiguities and
inconsistencies. Using a set of extracted features from the
content of the music data, and a similarity measure for the
comparison of the data, clustering algorithms organise mu-
sic data in clusters of similar objects.
Symeonidis et al. [9] proposed dimensionality reduction

using higher order SVD for the purposes of personalised
music recommendation. That is, given a user and a tag,
their purpose is to predict how likely is the user to label
a specific music item with this tag. However, conversely
from [9] we use tensor factorisation for extracting spec-
tral information and performing spectral clustering, not for
predicting recommendations.

3. OVERVIEW OF PROPOSED APPROACH

This section outlines the proposed approach. The steps that
will be described in the following are depicted (for refer-
ence) in Figure 1.
Existing (non tag-aware) spectral clustering algorithms

[5] first compute the k-NN similarity graph, which con-
nects every item with its k-NN. Next, the Laplacian graph
of the k-NN similarity graph is used instead, because of
the benefits it offers, i.e., it is always positive-semidefinite
(allowing its eigenvector decomposition) and the number
of times 0 appears as its eigenvalue is the number of con-
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nected components in the k-NN similarity graph. Due to
these convenient properties, if c clusters are required to
be found, spectral clustering algorithms proceed by com-
puting the c eigenvectors that correspond to the c small-
est eigenvalues, and represent each original item as a c-
dimensional vector whose coordinates are the correspond-
ing values within the c eigenvectors. With this representa-
tion, they cluster the c-dimensional vectors using simple
algorithms, like k-means or hierarchical agglomerative.
As described in Introduction, differently from conven-

tional spectral clustering algorithms, our proposed approach
considers multiple similarity values between each pair of
items. In particular, let U be the set of all users. For a given
tag t, let U1 ⊆ U be the set of users that tagged an item i1
with t, whereas U2 ⊆ U be the set of users that tagged
an item i2 with t too. We can define a similarity value be-
tween i1 and i2 as follows. We form two vectors v1 and
v2, both with |U | elements that are set to 1 at positions that
correspond to the users contained in U1 and U2, respec-
tively, whereas all rest positions are set to 0. Therefore, the
similarity between i1 and i2 is given by the cosine measure
between the two vectors v1 and v2. Since the above process
can be repeated for all tags, the result is several similarity
values between each pair of items i1 and i2. The set of all
multiple similarity values are tag-aware and reflect the per-
sonalised aspect of similarity perceived by the users (e.g.,
two users may tag the same item but using entirely differ-
ent tags).
To account for the various similarity values between

each pair of items, we extend (Section 4) the k-NN similar-
ity graph to a k-NN multidigraph that is the union of mul-
tiple simple k-NN graphs, one for each distinct tag. The
adjacency matrix of a k-NN multidigraph forms a tensor,
i.e., a multidimensional array. In order to attain the afore-
mentioned advantages of the Laplacian graph, we propose
a method (Section 5.1) to extent towards the construction
of the Laplacian multidigraph, whose adjacency matrix is
again represented as a tensor. To map each item to a fea-
ture space comprised from spectral information extracted
from the Laplacian tensor, we describe (Section 5.2) how
to use tensor factorisation that extends SVD to multidimen-
sional arrays. Finally, based on the computed features, we
describe (Section 5.3) how the clustering is performed. To
help comprehension, we use the data from the following
example.

Example 1 (Data representation).We assume 3 users that
assign tags to 4 music items (henceforth ‘items’ for sim-
plicity) from a tag-set with 3 tags. Each assignment com-
prises a triple of the form (user, item, tag). The 9 triples
of the example are given in Table 1, whereas we addition-
ally denote (in the first column) the ID of the triple. The
corresponding view of the data as tripartite graph is de-
picted in Figure 2. In this figure, the numbered edges cor-
respond to the triple IDs in Figure 2a. For instance, the first
triple (ID = 1) is: Alice tagged Elvis as Classic. In Fig-
ure 2 this corresponds to the path consisting of all edges
labelled as 1. To avoid cluttering the figure, parallel edges
(i.e., edges between the same two nodes) with different la-

bels are depicted as one with different labels separated by
comma. In this example, we assume that Elvis and Beatles
form one cluster, whereas Mozart and Bach form a sec-
ond cluster. This follows by observing in Figure 2 that,
although users tag items from both clusters, they assign
different tags to the first cluster than the second. There-
fore, the relationships between users-items alone are not
able to determine a clustering structure among the items.
In contrast, when considering the multi-way relationships
between users-items-tags, we are able to better detect the
clustering of items. Although this simple example high-
lights the advantage of preserving the multi-way relation-
ships compared to considering only item-user relationships,
our experimental results show the advantages compared to
the consideration of only item-tag relationships, as well.�

ID User Item Tag
1 Alice Elvis Classic
2 Bob Beatles Classic
3 Bob Elvis Classic
4 Bob Mozart Symphonic
5 Joe Mozart Symphonic
6 Joe Bach Symphonic
7 Alice Mozart Orchestral
8 Joe Mozart Orchestral
9 Joe Bach Orchestral

Table 1. Example of input data

Alice

1
1,3

3
Classic

Elvis

2
2

4 5 Symphonic

Beatles

4

4,5�

6

7 8

7

Bob
Symphonic

Mozart

6,9

7,8
5,8

9
Joe

Bach

Orchestral

Figure 2. Illustration of the tripartite graph.

4. DATA MODELLING

In this section, we describe the modelling of multiple sim-
ilarity values with a k-nearest-neighbor multidigraph. A
multidigraph is a directed graph permitted to have multi-
ple directed edges (henceforth, simply called edges), i.e.,
edges with the same source and target nodes.
A tripartite graph (like in the example of Figure 2b) can

be partitioned according to the tags. For each tag t, we
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get the corresponding underlying subgraph Bt, by keeping
users and items that participate in triples with this tag.
Each bipartite subgraph is represented with its adjacency

matrix Bt (1 ≤ t ≤ |T |), whose size is |I| × |U |; that
is, its rows correspond to items and its columns to users.
(Henceforth, wherever there is no ambiguity, we use inter-
changeably the same symbol for a graph and its adjacency
matrix.) Each element Bt(i, u) is equal to 1, if there is an
edge between the item i and user u, or 0 otherwise. There-
fore, from each adjacency matrix Bt we can compute for
every pair of items i, j (1 ≤ i, j ≤ |I|), a similarity mea-
sure according to the values in their corresponding rows
Bt(i, :) and Bt(j, :). Following the widely used approach
for 2 dimensional matrixes (like document-term in infor-
mation retrieval or user-item in CF), we consider the cosine
similarity measure between every pair of items.
Having defined a similarity measure, from each sub-

graph Bt (1 ≤ t ≤ |T |), we can compute the correspond-
ing k-nearest neighbor (k-NN) graph, Nt, which is a la-
belled and directed graph (digraph). The nodes of each Nt

correspond to the items. There is an directed edge between
items i and j (1 ≤ i, j ≤ |I|), if j is among the k nearest
neighbors of i. Each edge is labelled with the correspond-
ing similarity value.
Considering all k-NN digraphs together, we form the k-

NN labelled multidigraph,N , that summarises all multiple
similarities. The nodes of N correspond to the items. The
labelled edges of N is a multiset resulting from the union
of the labelled edges of all Nt for 1 ≤ t ≤ |T |.

Example 2 (k-NN multidigraph). For the data in Figure 2,
the resulting k-NN multidigraph N , for k = 1, is depicted
in Figure 3a. The multiple edges between the nodes of
N denote the different similarities between the items, ac-
cording to the different tags. To assist notation, we assume
that T1 denotes the first tag, i.e., Classic, T2 the second,
i.e., Symphonic, and T3 the third, i.e., Orchestral. In Fig-
ure 3a, the edges representing similarities according to tag
Ti (1 ≤ i ≤ 3) are annotated with Ti and then follows the
corresponding similarity value. 1 Notice that N correctly
captures the clustering structure: edges exist only between
items of the same cluster, i.e., between Elvis and Beatles
for the first cluster and between Mozart and Bach for the
second. Conversely, in Figure 3b, which depicts the k-NN
digraph when only user-item relationships are considered,
the separation of clusters is not clear. �

5. THE PROPOSED CLUSTERING ALGORITHM

5.1 Constructing the Laplacian Tensor

For each k-NN digraph Nt (1 ≤ t ≤ |T |) of N , compute
Dt as a diagonal matrix the diagonal elements of which are
defined as follows:

1 In this small example, to avoid numerical problems, we assign similarity equal
to 0 when at least one item has no edge at all in the corresponding bipartite
graphs. Moreover, to avoid cluttering the graph, only the non-zero similarities
are depicted.

T1:�0.71 0.71
Elvis ElvisB tl Beatles

T 0 71

0.82

Elvis ElvisBeatles Beatles

T2:�0.71

T : 0 71

0.58
Mozart MozartBach Bach

T2:�0.71

(a) (b)

Figure 3. The k-NN multidigraph for the running example.

Dt(i, i) =
|I|∑

j=1

Nt(i, j) (1)

The Laplacian matrix, Lt, of each Nt is computed as
follows [10]:

Lt = 1I−D
−1/2
t NtD

−1/2
t (2)

where 1I is the identity matrix.
The Laplacian tensor of N is therefore defined as L ∈

R
|I|×|I|×|T |, whose elements are given as follows:

L(i, j, t) = Lt(i, j) (3)

Thus, each matrix Lt, for 1 ≤ t ≤ |T |, comprises a frontal
slice in L.
The Laplacian tensor L has 3 modes: the first mode cor-

responds to the items, the second mode to the neighboring
items, and the third mode to the tags. To perform spectral
clustering, we are interested in extracting the spectrum of
L for the first mode. This procedure is explained in the
section to follow.

5.2 Factorising the Laplacian Tensor

In this subsection, we summarise the factorisation of the
Laplacian tensor using Tucker decomposition [11], which
is the high-order analogue of the Singular Value Decompo-
sition (SVD) for tensors. The factorisation of the Laplacian
tensor will produce the required spectrum of its first (cor-
responding to items) mode.
First, we define the n-mode product T ×n M between

a general N -order tensor T ∈ R
I1×...×IN and a matrix

M ∈ R
Jn×In . The result is an (I1 × I2 × . . . × In−1 ×

Jn × In+1 × . . . × IN )-tensor, whose entries are defined
as follows (elements are denoted through their subscript
indexes):

(T ×n M)i1i2...in−1jnin+1...iN =
∑

in

Ti1i2...in−1inin+1...iN Mjnin (4)

Since L is a 3-order tensor, we henceforth focus only on
1-mode, 2-mode and 3-mode products.
The Tucker decomposition of the 3-order tensor L can

be written as follows [12]:
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L ≈ C ×1 P1 ×2 P2 ×3 P3 (5)

The P1 ∈ R
|I|×|I|, P2 ∈ R

|I|×|I|, P3 ∈ R
|T |×|T | are

called the mode-1 (items), mode-2 (neighboring items),
and mode-3 (tags) projection matrixes, respectively. The
3 projection matrixes contain the orthonormal vectors for
each mode, called the mode-1, mode-2 and mode-3 sin-
gular vectors, respectively. C is called the core tensor and
has the property of all orthogonality. Nevertheless, unlike
SVD for matrixes, C is not diagonal. Recently, several al-
gorithms have bee proposed to efficiently compute the com-
ponents of the Tucker decomposition. Due to lack of space,
more details about the algorithms and their complexity can
be found in a recent survey on tensor factorisation [11].
Having already performed the Tucker decomposition of

the Laplacian tensor L, we are interested in the mode-1
singular vectors that are stored in P1. A frequently fol-
lowed approach in spectral clustering, when c clusters are
required, is to select the c eigenvectors associated to the c
smallest eigenvalues [5]. Similarly, we select the c mode-1
singular vectors in P1 associated to the smallest singular
values in the core tensor C.

5.3 Performing the Final Clustering

To find c clusters of items using the c mode-1 singular
vectors that were computed and selected during the fac-
torisation of the Laplacian tensor, we apply the following
steps: (1) Normalise the c selected mode-1 singular vectors
to have norm equal to 1. (2) Form a matrix X ∈ R

|I|×k,
whose columns are the normalised c selected mode-1 sin-
gular vectors. (3) Associate each item i to a point xi whose
coordinates are the contents of the i-th row ofX . (4) Choose
a distance metric for the (xi)i=1,...,|I| points. (5) Cluster
the points (xi)i=1,...,|I| into c clusters using a conventional
clustering algorithm, according to the chosen distance met-
ric. (6) Assign each item to the cluster of its associated
point.
Due to the properties of the Laplacian tensor, in prac-

tice, the points in X can be easily clustered (Step 5) us-
ing simple conventional algorithms, like the K-Means or
the hierarchical agglomerative algorithms. In the sequel
we consider hierarchical agglomerative algorithms for this
purpose based on Euclidean distance (Step 4).
Therefore, the proposed approach can better detect the

clustering as it fully exploits all users-items-tags relation-
ships. This is verified with the experimental results in the
following section.

6. PERFORMANCE EVALUATION

6.1 Experimental setting

In our experiments we tested the proposed method, de-
noted as Tag-aware Spectral Clustering (TSC). For com-
parison purposes we tested two baseline Spectral Cluster-
ing methods, denoted as SC(U) and SC(T), that apply spec-
tral clustering on a 2-dimensional item-user and item-tag
matrix, respectively. In the former matrix an element is

set to 1 when the corresponding item has been tagged at
least once by the corresponding user (otherwise set to 0),
whereas in the second matrix, when the corresponding item
has been assigned at least once the corresponding tag (oth-
erwise set to 0). All methods have been implemented in
Matlab using the same components. Tensor factorisation
was computed using the Tensor toolbox 2 .
We used a real data set crawled from Last.fm (June

2008) by using Last.fm web services. The music items cor-
respond to song titles. There are 64,025 triplets in the form
user–tag–song. These triplets correspond 732 users, 2,527
tags and 991 songs.
Social-tagging data present problems like tag polysemy

and sparsity. To address them, we applied the widely used
technique of Latent Semantic Indexing (LSI) and reduced
the number of dimensions in the modes of users and tags,
by maintaining a percentage of them. This reduction was
performed by modelling the original triples as a 3-mode
tensor and applying Tucker decomposition [11]. The item
mode is left unchanged, whereas the number of maintained
users and tags after this process is expressed as a percent-
age (default value 30%) of the original number of users and
tags (for simplicity we use the same percentage for both).
Both SC(U) and SC(T) also utilise this technique by main-
taining the same percentage for users or tags.
To form the k-NN similarity graphs and multidigraphs,

we used the cosine distance, which is commonly applied
for 0-1 sparse data like in our case. We tested several val-
ues of k and found that all examined methods are not sen-
sitive in this parameter (default value k = 10). For the
fifth step of the spectral clustering algorithm, we examined
the Unweighted Pair Group Method with Arithmetic mean
(UPGMA) hierarchical agglomerative clustering algorithm
over the Euclidean distance (in the spectral feature space).
Following the approach of conventional spectral clustering
algorithms [5], we considered the number of clusters as a
user-defined parameter. The quality of the final clustering
result is measured with the popular Silhouette coefficient
(the higher the better) that expresses both the coherency
within clusters and the separation between clusters. For an
item that is mapped to a vector x in the spectral feature
space and is assigned to cluster C, its silhouette coefficient
s(x) is calculated as follows: ax is the mean distance of
x from all other vectors in C, whereas bx is the minimum
mean distance from vectors in all other clusters except C.
Then, s(x) = (bx − ax)/ max(ax, bx). The overall silhou-
ette coefficient is the mean of all s(x) for each x. 3

6.2 Experimental results

We experimentally compare TSC against SC(U) and SC(T).
The mean Silhouette coefficients for varying number of
clusters is depicted in Figure 4. Due to its ability to con-
sider 3-way relationships, TSC clearly outperforms the two
baseline methods, which suppress the 3-way relationships

2 http://csmr.ca.sandia.gov/∼tgkolda/TensorToolbox/
3 For all compared method the silhouette coefficients are computed
based on the Euclidean distance in the resulting feature space.
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into 2-way, thus loosing information that is valuable for the
clustering.
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Figure 4. Results for varying number of clusters.

We also tested the sensitivity of the result against the
percentage of maintained users/tags after the application of
LSI (described in Section 6.1). Figure 5 depicts the result-
ing Silhouette coefficients for varying values of this per-
centage (the number of clusters is set to 10). When the per-
centage of maintained users/tags is severely low, the qual-
ity of TSC is reduced, as the resulting information is not
adequate to capture the clustering structure. When the per-
centage is high, quality is again reduced, as the problems
in the original data (polysemy, sparsity, noise) cannot be
addressed. Therefore, in accordance to most applications
of LSI, the best performance is attained with percentages
that are in between the two extremes. In all cases, TSC
compares favorably against TS(U) and TS(T).
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Figure 5. Results for varying perc. maintained users/tags.

7. CONCLUSIONS

We proposed a novel, tag-aware clustering algorithm for
music data from social tagging systems. The advantage of
the proposed algorithm over conventional clustering algo-
rithms is that it preserves all 3 dimensions in the data and
the 3-way relationships among them. The 3-way relation-
ships of the form items–users–tags between these dimen-
sions offers a clear advantage between just knowing that a
tag has been applied to an item regardless by which users,
and knowing the specific users that applied this tag to the
item. To attain its advantages, the proposed algorithm uses

tensors to store the underlying data model represented with
multigraph structures, and extracts spectral features from
them using tensor factorisation. Experimental results with
real data showed that the proposed method yields cluster-
ing with better quality compared to conventional spectral
clustering methods that suppress the dimensions and con-
sider only 2-way relationships.
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ABSTRACT 

A novel algorithm is proposed to estimate the 
fundamental frequencies present in polyphonic acoustic 
mixtures expressed in a transform domain. As an 
example, the algorithm operates on Modified Discrete 
Cosine Transform (MDCT) coefficients in order to 
demonstrate the utility of the method in commercially 
available perceptual audio codecs which use the MDCT. 
An auditory model is developed along with several 
optimizations that deal with the constraints of processing 
in the transform-domain, including an interpolation 
method, a transform-domain half-wave rectification 
model, tonal component estimation, and sparse 
convolution. Test results are separated by instrument and 
analyzed in detail. The proposed algorithm is shown to 
perform comparably to state of the art time-domain 
methods.  

1. INTRODUCTION 

Perceptually coded formats such as mp3 and AAC have 
become the dominant storage and distribution format for 
commercial digital music. These formats are popular 
because they greatly reduce bandwidth and memory 
requirements related to transmission and storage. As a 
result of the successes of these formats, portable media 
players are becoming increasingly important platforms 
for the analysis and synthesis of digital media. These 
devices have limited processing power and battery life, 
and therefore require analysis and synthesis algorithms 
with minimal computational complexity where possible. 
     One emerging family of algorithms that is finding 
increased applicability in music information processing 
is multiple fundamental (F0) estimation. Loosely 
speaking, the purpose of multiple F0 estimation is to 
estimate the perceived pitches of multiple harmonic 
series, such as those created by the human voice or 
various musical instruments, when sounding 
concurrently. Multiple F0 estimation finds widespread 
use as a front-end to various pitch tracking and source 
separation algorithms. 
     State of the art analysis algorithms are typically 
designed to begin their operations on uncompressed 
PCM audio signals in the time-domain. Because music 
files on portable devices are stored in a perceptually 
coded format, they must first be decoded before the 
algorithms can begin their analysis. For example, many 

perceptual audio codecs spend considerable resources in 
using the well-known Inverse Modified Discrete Cosine 
Transform (IMDCT) to synthesize a time-domain signal 
during the decoding process. Therefore, it would be 
especially advantageous to avoid this expensive 
decoding process where possible, and operate directly 
on the native MDCT representation used in a 
perceptually coded file. 
     This work adapts a state of the art multiple F0 
estimation algorithm to operate directly on a transform-
domain representation used in modern audio codecs as a 
starting point for this research. Very few authors have 
researched transform-domain processing. Previous 
works include beat detection [1], music/speech 
classification [2], and sinusoidal analysis [3]. A primary 
reason for the limited body of work related to F0 
estimation algorithms is the limited frequency resolution 
used in transform-based audio coders. When working in 
the transform domain, we are stuck with whatever frame 
size the coder uses. A secondary difficulty with 
transform domain processing is that some time-domain 
processes do not easily lend themselves to operation in 
the transform-domain. In this work several novel 
modifications to the auditory model are proposed that 
successfully mitigate both of these limitations. A third 
difficulty with transform domain processing is that 
processing in some transform domains, such as the 
MDCT domain, can be problematic because of some of 
the aliasing properties of the transforms [10].  
     We propose an algorithm for multiple F0 estimation 
in the transform domain that adapts the work of Klapuri 
[4] to function in the MDCT domain. Like [4], the 
proposed algorithm uses a model of the human auditory 
system along with iterative estimation and cancellation 
to estimate component F0s, as the auditory model 
described by Klapuri consists of an auditory filterbank 
followed by half-wave rectification and low pass 
filtering. However, in this work, each of these processes 
is adapted to operate in the transform-domain. We also 
incorporate modifications to the iterative estimation 
portion of the algorithm by Paz [6] in order to improve 
performance.  

2. OVERVIEW OF REFERENCE ALGORITHM 

The design of the proposed algorithm is based on the 
work of Klapuri [4]. The basic framework of Klapuri’s  
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Figure 1. Overview of reference multiple F0 estimation 
method 

 
Figure 2. Detail of auditory model used in reference 
method 

method is shown in Figure 1. A key feature of the 
algorithm is the auditory model, shown in Figure 2. The 
auditory model used by Klapuri consists of a 70 channel 
gammatone filterbank design, using the 
computationally efficient implementation by Slaney 
[11], followed by half-wave rectification and low-pass 
filtering. Finally, a Discrete Fourier Transform (DFT) is 
taken in each channel, and the spectra in each channel 
are summed to create a summary magnitude spectrum. 
     To identify F0s, the salience of each candidate F0 is 
calculated using (1), where USMS is the summary 
magnitude spectrum, Kτ,m is a region where each partial 
is expected to be based on the period (τ) of the F0 and 
the harmonic number (m), and ω(τ,m) is an 
exponentially decreasing weighting function dependent 
on F0 and harmonic number. 

 

 
(1) 

 
     The salience can be interpreted as a measure of the 
perceptual strength of each candidate F0. On each 
iteration, the F0 with the highest salience is chosen. Its 
partials are then identified and partially subtracted from 
the mixture according to an exponentially decreasing 
weighting scheme. This process is repeated until a 
known number of F0s have been estimated. In Klapuri’s 
work the polyphony considered to be known a priori in 
most cases. 

3. PROPOSED ALGORITHM 

Our proposed algorithm comprises three main stages: 
interpolation, a low complexity transform-domain 
auditory model plus iterative estimation and subtraction. 
The algorithm makes changes mainly to the auditory 
model and adds transform domain interpolation to the 
front  end  of  the  salience  calculation  in  an attempt to 

 
Figure 3. Example of interpolation process. In this 
figure the peak has been shifted to the left after 
interpolation based on the distribution of energy around 
the old peak. 
 
deal with the limited frequency resolution of the 
transform-domain representation used in audio codecs. 

3.1. Interpolation of MDCT coefficients 

As stated previously, one of the fundamental limitations 
of transform-domain processing is that we are stuck 
with whatever frame size the codec uses. Codecs like 
AAC use large frame sizes of 2048 samples for tonal 
content, and smaller frame sizes of 256 samples for 
transients [9]. A frame size of 2048 samples at 44.1 kHz 
yields a frequency resolution of roughly 21.5 Hz. Since 
F0s are more closely spaced at lower frequencies in 
contemporary western scales, this means that a peak in 
one MDCT bin can span as many as six notes. In fact, 
F0s are not spaced more than 21 Hz apart until the 4th 
octave (E4 or 330 Hz). If nothing is done to address 
this, this means that any peak corresponding to an F0 
below 330 Hz could be one of many F0s. This assumes 
an equal tempered scale. The details of other tuning 
systems will be different. 
     To solve this problem, we use a simple interpolation 
method in the transform-domain. While this method 
does not increase the real frequency resolution of the 
transform-domain representation, it does have the effect 
of shifting peaks to a more accurate location 
corresponding to the true F0, making estimates of 
frequency when peak picking more accurate. The 
implementation of this method consists of zero 
padding/upsampling, then performing a zero order hold 
and low pass filtering. An upsampling factor of 3 was 
used here, but any odd factor may be used.  
     The low pass filtering was implemented as a simple 
FIR filter, which takes the form of a convolution with a  
sinc function. We found a filter length of 24 samples to 
be adequate for an upsampling factor of 3. An example 
of the result of the interpolation process is shown in 
Figure 3. 
     What is left as a result of the interpolation process 
can no longer be called a realistic MDCT spectrum, but 
this is of no consequence to the proposed algorithm. 
What we do have at this point is a reasonable estimation 
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of the magnitude spectrum of our signal, and a better 
estimation of true peak locations due to the interpolation 
process. It is important to remark that this is a 
computationally expensive process, which could 
probably be replaced by a less intensive interpolation 
method. However, this method was chosen here for its 
simplicity and good results. 

3.2. Transform-Domain Auditory Model 

After interpolation, the spectrum is passed onto a 
transform-domain auditory model, where we implement 
a modified version of the Unitary model of human pitch 
perception, proposed by Meddis [7]. In this section, we 
describe our modifications and improvements to the 
model’s four following steps: 

 
1. The stimulus is passed through a filterbank of 

band-pass filters, which simulate the action of 
the basilar membrane. 

2. Each sub-band signal is compressed, half wave 
rectified, and low-pass filtered to obtain the 
time domain amplitude envelope. 

3. Periodicity estimation is carried out on each 
sub-band. 

4. Periodicity information from each sub-band is 
combined across channels. 

 
     Step 1 of the unitary model is said to mimic the 
frequency selectivity of the inner ear. Typically a 
gammatone filterbank implementation by Slaney is 
used, although the number of channels necessary to 
achieve good results is debated. Depending on the 
application, previous works using auditory models use 
as few as 2 channels [8] and as many as 70 [4]. For this 
reason, we implemented filterbanks with 8, 16, 32, 64, 
and 70 channels to explore the effect on performance of 
the algorithm. If the number of channels can be reduced, 
then the computational complexity of the algorithm can 
be reduced significantly. 
     Step 2 of the unitary model processes information 
contained in the time domain amplitude envelope of the 
stimulus signal. Many musicians know the information 
we are looking for here as beating. Beating occurs when 
two sinusoids that have slightly different frequencies 
cancel and/or reinforce each other periodically. The 
fundamental period of the beating corresponds to the 
difference in frequency between the two sinusoids. 
Thus, this process (half wave rectification and low pass 
filtering) can be considered as a way of analyzing the 
intervals between harmonics, which corresponds to the 
F0 of a harmonic sound. This type of information is 
called spectral interval information. 
     Steps 3 and 4 are merely ways to extract the 
periodicity of the time-domain amplitude envelope, 
which is reinforced in step 2. Typically an 
autocorrelation function (time-domain) or a Discrete 
Fourier Transform (frequency-domain) is used in each 
channel. Given these processes, it is easy to see why we 
do not want a large number of channels if it is not 
necessary. 

     Some of these steps lend themselves easily to a 
transform domain implementation, while others prove 
more difficult. For example, step 1 of the auditory 
model is trivial in the transform domain. The auditory 
filterbank can be implemented easily by a matrix 
multiply if we store the magnitude response of each 
channel in an N × nC matrix, where N is the number of 
coefficients in our upsampled MDCT spectrum and nC 
is the number of channels in our filterbank. The 
magnitude response of each channel of the auditory 
filterbank can be obtained easily by first obtaining a 
standard time-domain design, and processing each 
channel with an impulse. Taking the magnitude DFT of 
the result yields the magnitude response of each 
channel. Since the filterbank is static, it can be 
calculated once, and the magnitude response can simply 
be stored in memory.  

Step 2 of the auditory model is the most difficult to 
adapt for the transform domain. It is not obvious how 
half-wave rectification can be translated into the 
transform domain. However, Klapuri [5] points out that 
half wave rectification can be modeled as a convolution 
operation. The mathematical details of that argument are 
beyond the scope of this paper, but the interested reader 
is encouraged to check the source for an in depth 
analysis. Instead, we simply note that since the goal of 
this step of the model is to reinforce spectral interval 
information, that a convolution operation is an intuitive 
method for extracting that information. 

There are two difficulties with the convolution of 
spectra to extract spectral interval information. One is 
that spectra have a DC offset due to the fact that all 
magnitude coefficients are positive. This causes a 
triangular shaped buildup around DC that obscures 
peaks indicating prominent spectral intervals. The other 
is that the process is prohibitively expensive 
computationally, especially since this is a process that 
must be performed on each channel individually. A 
standard way to attack the first problem is to subtract 
the mean from the signal. Not only does this not work in 
this case because the DC offset is caused by a small 
region of disproportionately large peaks, but it also does 
not address the second problem. We propose here a 
method for solving both of these problems based on 
tonal component estimation. 

Since we are looking for intervals between peaks, 
we begin the process by finding the locations of the 
peaks in the subband spectrum. This is called tonal 
component estimation (TCE). First, the derivative of 
each subband is taken. Next, the derivative is used to 
analyze the slope of each peak. Using a sliding window 
of 15 coefficients, local maxima are found by 
identifying locations in which the derivative transitions 
from a positive value to a negative value, and the 
difference between the two is greater than some 
threshold. The mean of each subband signal was found 
to be a good threshold, though this value may be 
changed to adjust sensitivity. Once we have identified 
the locations of tonal components, we replace each peak  
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Figure 4. Comparison of TCE and sparse convolution 
to traditional convolution of MDCT spectra. 

 
with a single spike that has the same amplitude as the 
peak. 

Using this process, each subband signal is reduced 
to only the most pertinent information (i.e., the locations 
and magnitudes of harmonics). This transforms the 
signal into a sparse vector, since most of the elements in 
each subband signal are now zeros. Next, a sparse 
convolution may be used to extract spectral interval 
information. This process is shown in Figure 4 and 
compared to a standard convolution. Not only does it 
solve the problem of DC buildup, but it also reduces the 
computational complexity drastically. 

The result of this process is a vector of extracted 
spectral interval information, Vc. By combining this 
with the original subband spectrum, we can obtain both 
spectral interval and spectral location information. 
Therefore, we calculate a weighted combination of the 
original spectrum (Xc), using (2), where α is a simple 
parameter which can be used to adjust the importance of 
spectral interval information. Yc is the resulting signal in 
each channel after the half wave rectification process. 

 

 
(2) 

 
Step 3 of the auditory model is performed by a DFT 

in the reference method. Here, we are already in the 
frequency domain, so this step can be skipped, yielding 
a large computational savings. Step 4 is also trivial and 
is computed by summing across channels to create a 
summary magnitude spectrum, USMS. This is shown in 
(3). In this step, channels that have peaks in the same 
location in their Vc components (meaning their spectral 
interval information is in agreement) reinforce each 
other to accentuate (or in some cases, reproduce) the 
peaks corresponding to the F0s in the mixture.  

 

           

 
(3) 

 

3.3. Iterative Estimation and Subtraction 

Once the summary magnitude spectrum has been 
calculated, the algorithm performs an iterative 
estimation and subtraction process largely similar to that 
in the reference algorithm. On each iteration, the 
salience is calculated for all fundamental candidate 
periods τ as described in (1). The candidate period with 
the maximum salience is chosen to be an F0. Next, we 
attempt to identify the peaks that contributed to the 
salience of the currently estimated F0. An adaptive 
scheme is used to capture peaks as well as their side 
lobes, which was developed by Paz [6] and was found 
to improve performance significantly. First local 
maxima are identified within each region defined by 
Kτ,m. Next, the boundaries are expanded until they lie at 
adjacent local minima. Once this is completed, a 
detected spectrum UD is formed consisting of the 
partials of the estimated fundamental. These partials are 
then weighted by the same weighting function that was 
used to calculate the salience. This allows us to remove 
some of the energy in each partial, but not all of it. This 
is critical for cases in which multiple sounds have 
partials that overlap. 

Finally, a residual spectrum UR is formed by 
subtracting UD from USMS. The process of calculating 
the salience and estimating the partials of F0s is 
repeated on UR a number of times that is equal to the 
polyphony, which is known a priori. The estimated F0s 
are then quantized to the nearest frequency value 
corresponding to a valid note on the equal tempered 
scale, with A4 corresponding to 440Hz.  

4. RESULTS 

The proposed algorithm was tested in a similar manner 
to the reference algorithm. Polyphonic mixtures of 2, 4, 
and 6 notes were created from four different types of 
instruments: Saxophone, Flute, Violin, and Cello. 
Sample recordings of individual notes were used from 
the University of Iowa1 database. For each polyphony 
and instrument, 100 mixtures were created by lining up 
the onsets of notes and mixing them at equal RMS 
levels. Each individual file was then encoded using the 
LAME mp3 encoder2 at 128 kbps. The results presented 
in all tests for the reference algorithm are based on a 
careful implementation based on the information given 
in the papers published by the author. 

4.1. Decoder Model 

To modify an actual decoder to return just MDCT 
coefficients (prior to taking the IMDCT and performing 
overlap and add) would have taken considerable time 
and effort. Instead, we constructed a simplified decoder 
                                                             
1 http://theremin.music.uiowa.edu/MIS.html 
2 http://lame.sourceforge.net/ 
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Figure 5. Multiple F0 estimation error rates for several musical instruments and several polyphonies. The reference 
method is in black. The proposed algorithm is tested for a Unitary model of hearing having 8, 16, 32, and 70 frequency 
bands. 

model that fully decodes the mp3 file and then reverses 
the last two steps by windowing and then taking the 
MDCT. 

While a real partial decoder would be best, we 
consider this decoder model to be a sufficient first 
attempt at multiple F0 estimation in the transform-
domain. To implement the MDCT, we used a “fast 
MDCT” which utilizes an FFT with two rotations to 
perform an MDCT. In order to have a consistent basis 
for comparison with the reference algorithm, we used a 
frame size of 46ms, which corresponds to 2048 time-
domain samples. This is also the largest frame size used 
in AAC [9]. 

4.2. F0 Estimation Results 

The results of the F0 estimation tests for each 
instrument and filterbank design are shown in the top of 
Figure 5.  

Error rate is calculated in the same manner as in the 
reference. The most important result of the F0 
estimation results is that performance is roughly equal 
for filterbank designs with as few as 16 channels. The 
algorithm performed significantly worse when using 
less than 16 channels. Interestingly, a 16 channel 
filterbank design of the range of 60 Hz to 2.2 kHz 
roughly corresponds to a 1/3 octave filterbank design 
(which would have 19 channels in this case). This is a 
common psychoacoustically motivated design for 
equalizers in stereo systems. This result is important, as 
it demonstrates that we can drastically reduce the 
complexity of our filterbank while paying a minimal 
performance penalty. 

Additionally, the results show that the algorithm 
performs well, outperforming the reference algorithm in 
most cases. The error rates published here are slightly 
higher than previously published for the reference using 
a 46ms window. This could be due to implementation 
inaccuracies or a discrepancy in test material. 

4.3. Chroma Estimation Results 

In some applications, the exact octave that a note is 
from may not be as important as the chroma of the note. 
That is, in a mixture that contains the notes C3, E4, and 
G3, an estimation of C, E, and G may be sufficient. To 
investigate the proposed algorithm’s perfomance in 
chroma estimation, the F0 estimation tests were re-run, 
but this time octave errors were not counted as errors. 
The results in the bottom half of Figure 5 show that the 
error rates dropped drastically for all instruments except 
for Cello. Error rates for each filterbank design with 
more than 8 channels were less than 5% for low 
polyphonies. This shows that a majority of the errors 
from the F0 estimation tests were octave errors. 

4.4. Discussion 

While the proposed algorithm’s performance was 
impressive on each task, the question still remains as to 
why the Cello performed so poorly, while the other 
instruments performed well. One would think that the 
inharmonicity of stringed instruments as well as the low 
frequency range of the cello played a part. An analysis 
of the distribution of samples for each instrument was 
conducted and this revealed that indeed the cello had a 
distribution that occupied a significantly lower range 
than the other instruments. This is likely to have played 
a larger role than inharmonicity, since the algorithm had 
no problem dealing with the violin samples.  

This reveals a primary weakness of the proposed 
algorithm. It does not seem to deal well with lower F0s. 
This is most likely due to inadequate frequency 
resolution for F0s below the 3rd octave. A higher 
upsampling rate in the interpolation stage may mitigate 
this somewhat, but this would increase computational 
complexity. 
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Figure 6. Polar comparison of flute (left) and cello 

(right) sample distributions, by chroma (angle) vs. 
octave (radius). 

5. CONCLUSIONS AND FUTURE WORK 

In conclusion, we have shown here that it may be 
possible to perform multiple F0 estimation entirely in 
the transform-domain. We have adapted a state of the 
art algorithm to work in the transform-domain, which 
includes a model of human pitch perception. We have 
shown that upsampling and interpolation of MDCT 
coefficients is a viable strategy for mitigating the 
inadequate frequency resolution of frame sizes native to 
perceptual audio coders. However, we have also found 
that F0s in the lower octaves still remain a problem due 
to limited frequency resolution. 

For the purposes of comparing this algorithm 
against other multiple F0 estimation algorithms, it 
would be useful to use a MIREX database [12] for 
future test material. This would provide more reliable 
grounds on which to make comparisons. The test 
material used here was intended to be as close as 
possible to that used in the reference method. 
Furthermore, while a large effort was made to 
accurately implement the reference algorithm, mistakes 
will always be made because limited publication space 
inevitably causes some details to be left out. 

Future work should also include a more detailed 
decoder model, as well as further experimentation with 
different upsampling factors and filterbank designs. The 
MDCT spectra used for this investigation, while fine for 
a starting point on this research, are certainly not an 
exact representation of what we would see coming from 
an actual decoder. Strategies will need to be developed 
to deal with the limitations of more realistic 
representations of MDCT coefficients in perceptually 
coded files. While this work does not address these 
tedious details, it lays the groundwork for an evolution 
in that direction. 
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ABSTRACT 

A system for automatic motive identification of large 
folksong corpora is described in this article. The method 
is based on a dynamic time warping algorithm determin-
ing inherent repeating elements of the melodies and a 
self-organizing map that learns the most typical motive 
contours. Using this system, the typical motive collec-
tions of 22 cultures in Eurasia have been determined, and 
another great common self organising map has been 
trained by the unified collection of the national/areal mo-
tive collections. The analysis of the overlaps of the 
national-areal excitations on the common map allowed us 
to draw a graph of connections, which shows two main 
distinct groups, according to the geographical distribu-
tion.  
 

1. INTRODUCTION 

In order to study interethnic and historical relations, 
Bartók and Kodály compared different layers of Hungar-
ian folk music to those of other nations living in the 
neighborhood of Hungarians. Later, they extended the 
study to Anatolian, Mari and Chuvash folk music [1-2]. 
These exciting results raise the question, whether it is 
possible to describe a whole and clear system of musical 
contacts in Eurasia by a systematic comparison of a suffi-
cient number of national or regional cultures.  
 
A further question, raised by the classical results men-
tioned above, refers just to the method of the analysis. 
The aim of these classical works was to find parallelism 
of entire melody structures. The similarity of whole mel-
ody contours seems to be really a sufficient condition to 
find genetic musical relations [1-3]. However, the 
question rises: do less rigorous requirements also exist? 
Instead of comparing the complete melody structures, our 
aim was to find and analyse the smallest independent me-
lodic units. It is well known that folksongs can usually be 
divided into certain phrases on the basis of musical and 
textual regularities. In a previous work, we have shown 
some results comparing individual phrases, as well as 
whole melodies of 6 European cultures [4].   
 
The idea of a motive identification algorithm can be de-
rived from the recognition that phrases are not necessarily 
the smallest intelligible units in folk music. We want to 
find the most frequently appearing motive types in a well 

defined melody corpus, with the assumption that each 
motive type may have several variants. However, the rep-
etition inside a melody can also be considered as an indi-
cation of a motive. Therefore, we suppose two possible 
detections of the motives. In addition to the “culture-
defined” motive identification, based on the frequent ap-
pearance in different songs, we also suppose the existence 
of the “melody-defined” identification which is based on 
the repetitions inside the melodies.  
 
The central problem of algorithmic melody pattern identi-
fication is the musical relevance of the results [5]. The 
most frequently applied melody segmentation techniques 
can be divided into two main groups. In the first group, 
segmenting is based on pre-defined and data-independent 
rules [6-8]. Using such rules, the so-called Local Boun-
dary Detection Model (LBDM) determines a boundary 
strength value between each couple of notes, and deter-
mines the segment boundaries at the maximal strength 
values [6,9]. Due to the requirement of pre-defined rules, 
such methods are not available for the sake of a learning 
system. The second group of segmenting techniques is 
based on a learning process to determine the regularities 
of a given melody corpus. Such regularities can be char-
acterised by the frequencies or conditional probabilities 
of the motives [10-12]. The so called Markov technique 
operating with conditional probabilities has already been 
applied to folk songs [13-14]. A further data-based self 
learning method for segmenting a large corpus of folk-
songs has been also described, which determines the con-
ditional entropy of the motives and defines an average 
entropy increment value for a given segmentation [15]. A 
method based on knowledge representation has been el-
aborated for identifying recurrent melody parts in large 
folksong corpora [16].  
 
The learning unit of the system described in this paper is 
a self organising map (SOM), trained by the contour 
functions of the motives [17-18]. The motive identifica-
tion in a given melody is accomplished in two steps. 
Firstly we determine the repeating elements of the 
melody by an algorithm based on dynamic time warping 
(DTW). After that, the remaining melody parts are ana-
lysed using a self organizing map, which learns and iden-
tifies the most frequently appearing patterns as “culture-
defined” motives. 
 
Our current possibilities allowed us to set up 22 folksong 
corpora, each of them consisting of 600-2400 melodies, 
representing Hungarian, Slovak, Moravian, Chinese, 
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Mongolian, Kyrgyz, Mari-Chuvash-Tatar, Karachay-
Balkar, Anatolian Turkish, Azeri, Sicilian, Spanish, Ru-
manian, Bulgarian, Polish - Cassubian, Finnish, Norwe-
gian, German, Luxembourgian-Lotharingian, French, 
Dutch and Irish-Scottish-English  musical traditions. In 
order to make an unbiased and general analysis, these 
nearly 40 000 melodies were transposed to the common 
final tone G automatically in the analysis. 
 

2. DETERMINATION  OF MOTIVES 
DEFINED BY REPETITION WITHIN 

MELODIES 
 

To search for essentially identical, but not completely 
uniform motives inside melodies, we developed an algor-
ithm based on dynamic time warping technique [17]. The 
operation of the algorithm is illustrated in Figures 1 and 
2. 
 
In the first step, the contour vectors   of the melodies 
are generated in the way demonstrated in Figure 1. The 
time duration of the kth melody is divided into small units 
according to the rhythmic value of 1/16, and the pitch 
values belonging to these subsequent small time intervals 
are stored in a multidimensional vector .  

 

 
Figure 1. Generation of the contour vector . 

 
The original aim of a DTW process is to determine a non-
negative scalar number characterising the difference of 
two vectors. In order to calculate this DTW-distance be-
tween melody contours  and , the matrix  is gener-
ated containing the deviations of the nth and mth pitch 
samples of the vectors   and : 
 

  ,                (1) 

where  and are the dimensions of  and  re-
spectively. Figure 2 shows an example of the above cal-
culation for the contour vectors demonstrated by the dia-
grams on the left side and the bottom of the matrix.  
 
The zero elements of the matrix  marked by bold italic 
characters indicate local warping curves assigning similar 
parts of the two vectors to each other. Our algorithm is 
based right on this recognition: instead of determining the 
total DTW distance of the vectors, we search for such lo-
cal warping paths in matrix . To do this, the partial 

time warping distances  are calculated, according to 
the dynamic time warping process: 

 

 
 

Figure 2. Generation of the partial deviation matrix , 
and the path of 0 elements indicating the relation between 

corresponding motives. 
 

 
               

(2) 
 
The original DTW algorithm produces the final distance 
at the end of the above recursive calculation as . 

The local warping paths can be determined using the 
dimensional matrix . Since the elements of the 

matrix  cannot be defined for negative indices, the al-
gorithm starts with the values of ,  

and the initial values of   are  and 

.  
 
The overall similarity of the vectors can be characterised 
by the summed length of the similar sub-sequences com-
pared to the sum of the total length of the vec-
tors . Thus, our technique can characterise the 
similarity of two different contour vectors by a scalar 
number ranging between 0 and 1. This similarity measure 
ignores the order of the motives, in contrast to the origi-
nal DTW and the Euclidean distances. Therefore it is able 
to detect the relationship even if the successions of the 
characteristic melody parts are different in the compared 
melodies.  
 
Example 1 shows two couples of melodies arising from 
different cultures, with a significant amount of similar 
parts found by the above described method. For instance, 
the first, second and fourth phrases of the Hungarian song 
in the first example are practically identical to the second 
and fourth phrases of the corresponding Appalachian 
melody, and the third phrase of the Appalachian song ap-
pears as a dominant part of the corresponding Hungarian 
phrase, too. Due to these local correspondences, the 
melodies are found to be similar, in spite of the difference 
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between the domed, as well as descending character of 
the two melodies.  

 
The above technique can be applied also to identical vec-
tors (i.e. ). In such cases, the trivial result that the 
whole melody is identical to itself is indicated by the zero 
elements of the diagonal, but the partial warping paths 
marked by zero matrix elements indicate the similar sub-
sequences. Therefore, our technique is also able to find 
similar parts within one given melody (see Figure 3). 
 

 

 
 

Figure 3.  Application of the DTW technique to search 
for repeated parts in a melody.  

 
The technique can be generalized for not exactly identical 
pitch values, too, by the extension of the search for paths 
of small elements in matrix . Some results of the 
method are shown in Example 2.   
 

 
 

Example 1.  Common motives of related melodies arising 
from different cultures. 

 
3. THE COMPLEX MOTIVE IDENTIFICATION 

ALGORITHM 
 
In addition to the melody-based motive identification, we 
also need a technique for the culture-defined identifica-
tion which was defined as the determination of those 
melody parts which frequently appear in a whole 
national/areal database. While the melody-based tech-

nique needs the analysis of one given melody, the cul-
ture-based identification requires a self learning process 

 
 
Example 2. Melody-defined and culture-defined motives 
in 4 folksongs. 
 
analysing the whole database simultaneously. In order to 
solve this problem, i.e. to identify the most frequent 
melody parts automatically, we developed a system based 
on a self organising map, as it is shown in Figure 4. 
 

 
 
Figure 4. The complex motive identification system. 
 
The input to the algorithm is a melody selected randomly 
from the database. At the beginning of the process, the  
dimensional motive type contour vectors assigned to the 
lattice points of the SOM,  are filled by random 
numbers. The choice of  proved to be sufficient 
for our database.  
 
The processing is done by the following steps:  
 
1. In the first step, all melody-defined motives of a 
melody are determined, using the melody-based identifi-
cation algorithm. 
 
2. All possible motives of the remaining parts of the 
melody are determined. The time duration of each pos-
sible motive is divided into  parts, and the pitch values 
belonging to the subsequent time intervals are stored in a 
vector  of dimensionality . This operation has been 
discussed in reference to melody contour generation (see 
Figure 1), but it is worth mentioning here an important 

173



Poster Session 1  
 

difference: When generating motive contour vectors, the 
vector dimension  is a pre-defined constant, while it is 
variable for melody vector generation, because the sam-
pling time unit is pre-defined in this latter case.  
 
3. The optimal motives are identified on the basis of the 
current estimates of the most typical motive types as-
signed to the lattice points of the SOM. Let  denote 
the contour vector belonging to the kth possible motive, 
and the current estimate of the motive contour type 

belonging to the lattice point with the coordinates . 

The motive contour vector  is assigned to the most 
similar motive contour type vector of the SOM:  
 

,                                                       

(3)  
  
where the similarity measure  is the Euclidean 

distance between the  and . 
 

                                 (4) 
 
Finally, the culture-based motives are defined using the 
following constraints: 
 
- The distance of the motive and the corresponding mo-
tive type must be less than a critical value. 
- The culture-defined motives are defined as the longest 
melody parts satisfying the above requirement. 
- The culture-defined motives should not overlap with 
melody-defined motives. Melody-defined motives have 
priority. 
 
4. The SOM is trained with the resulting set of culture-
defined and melody-defined motives, using the well 
known algorithm. Each  vector determines a “winner” 
motive type contour on the SOM according to Equation 
3, and the winner vectors  are modified towards the 
corresponding motive contour (denoting a winner posi-
tion by  on the SOM). The motive type vectors lo-
cated in the surroundings of a winner are also modified, 
while the radius defining the surroundings decreases dur-
ing the training steps [17].  
 
The input data vectors are usually invariable during the 
training process of self organising maps. In our system, 
however, they are variable, because the optimal culture-
based motive identification depends on the current state 
of the motive type vectors  (see Equations 3 and 4). 

Since  are modified during the learning process, the 
optimal segmentation itself depends on the current state 
of the SOM. In other words, there exists a feedback be-
tween the segmentation and the learning algorithm, thus, 
our system converges to an optimal training- and feature 

vector set in parallel. The results of many independent 
training processes verified that all of the characteristic 
motive contour types have been learned consistently and 
independently of the starting conditions of the SOM-s. 
 

4. ANALYSYS OF THE CULTURAL CONTACTS 
AMONG 22 CORPORA 

 
Let suppose that we can create a whole collection of mo-
tive contour types, containing all the significant contours 
that appear in any of the 22 cultures. It is obvious that the 
national/areal sets of motive types can be considered as 
different subsets of this great common collection, there-
fore the study of musical connection between different 
cultures can be determined by the analysis of the intersec-
tions of these subsets.  
 
Being in possession of the size of the great common mo-
tive contour type collection (N), the sizes of its two na-
tional/areal subsets (A and B), as well as the size of their 
intersection (X), the measure of the relationship between 
these cultures can be expressed by a probability as fol-
lows.  
 
As a first step we compute the probability of the event 
that a random choice of two subsets with sizes A and B 
from the set of size N results in an intersection of size x, 
as 

.                                          

(5) 
 
Using this probability density function, the probability of 
the event that the size of the intersection is less than X, is 
expressed as 

 

(6).                                                                
 
A high value of this probability indicates that the number 
of common contour types in the two corpora is much 
higher than the expected value in case of random correla-
tions. Consequently the similarity, manifested by such 
high intersection of two corpora, cannot be a product of 
occasional coincidences of independent musical 
evolutions. It can be stated in such cases of similarity that 
the common musical characteristics implicate a historical 
or present, immediate or intermediate cultural interaction, 
that is, the established relationship is necessarily determi-
nistic. 
 
To construct the above mentioned sets, we first had to 
deduce the characteristic motive contour type collections 
for eash of the 22, by training 22 SOM-s of size 20*20 
lattice points separately. After determining the 22 na-
tional/areal motive contour type collections, a new large 
self organizing map of size 30*30 was trained by the 
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united set of them, in order to determine the set of all 
possible motive contour types appearing anywhere in the 
22 cultures.  
 
This common SOM allows us to classify all motive types 
of a given national/areal collection on it using Equations 
3 and 4. We call this process “excitation of the common 
map by a culture”. The values A, B and X can be deter-
mined for any selected two cultures by counting up the 
lattice points excited in the great common SOM. With 
these quantities, the calculation of the probability  
can be carried out using Equations 5 and 6, knowing that 
N is equal to the total number of the common contour 
types. It is worth mentioning here that this calculation 
avoids the problems arising from the different sizes of the 
corpora, since the expected intersection decreases with 
decreasing subset sizes A and B.  
 
The graph of the system of closest relationships is sum-
marized in Figure 5, where a connection line indicates a 
high probability ( ) of deterministic contact 
between the nodes of musical cultures. The Figure shows 
two main sub-graphs containing an “Eastern” - Mongo-
lian, Chinese, Volga,  Hungarian, Slovak, Moravian, 
Spanish, Kyrgyz, Romanian, Bulgarian, Azeri, Sicilian, 
Turkish and Karachay-Balkar, as well as a “Western” - 
Finnish, Norwegian, Irish-Scottish-English, French, 
German, Dutch, Luxembourgish and Cassubian – group 
of nodes. There are some interconnections between these 
two large sets due to the close connections of the Hungar-
ian – Slovak – Finnish – (Irish-Scottish-English), and the 
Moravian - Norwegian corpora. Besides these close con-
tacts of the Carpathian Basin to the Scandinavian and 
Irish-Scottish-English cultures, the Irish-Scottish-English 
and Norwegian corpora have certain further Eastern con-
tacts to the Volga-region and Kyrgyzstan. Anyhow, the 
connection of the two main subsystems indicates a spe-
cial role of the above mentioned cultures inside their 
main groups and also in the whole system.  
 
The structure of the graph indicates certain smaller 
groups inside the great “Eastern” system. The majority of 
the motives belonging to the large pattern excited by the 
Mongolian, Chinese and Volga group on the common 
SOM move in the highest regions of the melodies – they 
start or end at the octave or higher notes (See the Mongo-
lian motive contour type in Figure 4). The visible over-
laps of the patterns of the Hungarian, Slovak, Karachay-
Balkar, Turkish and Sicilian excitations with the above 
mentioned triad are based mainly on the above mentioned 
motives in the highest region of the melodies.  
 
The patterns of the Irish-Scottish-English, Finnish and 
Norwegian excitations also indicate an important role of 
such motives, resulting in the deterministic contacts of 
these cultures to the Carpathian Basin and the Volga-
region. However, this “Eastern” part of the common mo-
tive type map empties in the further Western patterns. 
 

The French and Dutch contour examples show that the 
most common Western motive types move in the lowest 

 
 
Figure 5. The graph of deterministic relations of 22 musi-

cal cultures in Eurasia. 
 
 
ranges of the melodies, starting or ending at a fourth or 
fifth below the ending note.  
 
The cloud of the high motives also disappears gradually 
along the branch of the Spanish – Kyrgyz – Romanian – 
Bulgarian – Azeri excitations, while the pattern on the 
left side of the motive type map becomes more and more 
emphasized. The Azeri motive example illustrates that 
the motive types belonging to this part of the map are of 
low ambit, ranging between the fourth, third or the sec-
ond. The Sicilian, Turkish and  Karachay-Balkar excit-
ations show that these cultures also frequently apply such 
motive types, (beneath the above mentioned group of mo-
tives in high), indicating deterministic cultural contacts 
between the two branches. However, the group of these 
low-ambit motives practically misses in the Mongolian-
Chinese-Volga branch, and it is also rather rare in the 
Hungarian, Slovak and Moravian melodies. Therefore, 
these cultures have no direct connections to the Spanish-
Kyrgyz-Romanian-Bulgarian-Azeri branch.  

 
SUMMARY 
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The very clear connections between the patterns of the 
different national/regional excitations on the common 
motive type map allowed us to analyze the musical struc-
tures of different cultures as different manifestations of a 
common motive set, and led to the conclusion that the 
main contacts between the cultures can be explained by 
the dominance/lack of a few motive types. This analysis 
clarified that “Eastern” cultures prefer motives in high 
regions of the melody, generally moving between the oc-
tave and the fifth as well as fourth, while the “Western” 
melodies prefer motives connecting the tonic to a fifth or 
a fourth beyond the tonic. The combined analysis of the 
contact probabilities and the overlaps of the national/areal 
patterns indicated several distinguishable branches among 
the Eastern cultures. The Mongolian-Chinese-Volga 
branch highly prefers motives in high, while the Sicilian-
Turkish-Karachay branch evaluates a balance between 
these high motives and those of an explicitly low ambit. 
The close contacts of Hungarian, Slovak and Moravian 
cultures to these two distinguishable branches are based 
mainly on the high motive types. At the same time, the 
high motive types gradually disappear in the Spanish-
Kyrgyz-Romanian-Bulgarian-Azeri branch, while the 
dominance of motives of low ambit connects them to the 
Sicilian-Turkish-Karachay branch.  
 
Not forgetting the simplifications made during the appli-
cation of our technique, we can state that the motive 
analysis allowed us to draw a rather perspicuous picture 
of the cross-cultural connections of different folksong 
cultures. We hope that these results may demonstrate the 
feasibility of an extended research of “musical linguis-
tics”, and suggest an efficient and quantitative tool for 
“melody mining”, using artificial intelligence and other 
mathematical tools.  
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ABSTRACT

Rhythmic descriptors are often utilized for semantic mu-

sic classification, such as genre recognition or tempo de-

tection. Several algorithms dealing with the extraction of

rhythmic information from music signals were proposed in

literature. Most of them derive a so-called beat histogram

by auto-correlating a representation of the temporal enve-

lope of the music signal. To circumvent the problem of

tempo dependency, post-processing via higher-order statis-

tics has been reported. Tests concluded, that these statis-

tics are still tempo dependent to a certain extent. This

paper describes a method, which transforms the original

auto-correlated envelope into a tempo-independent rhyth-

mic feature vector by multiplying the lag-axis with a stretch

factor. This factor is computed with a new correlation tech-

nique which works in the logarithmic domain. The pro-

posed method is evaluated for rhythmic similarity, consist-

ing of two tasks: One test with manually created rhythms

as proof of concept and another test using a large real-

world music archive.

1. INTRODUCTION

During the last years the need of new search and retrieval

methods for digital music increased significantly due to the

almost unlimited amount of digital music on users hard

disks and in online stores. An important pre-requisite for

these search methods is the semantic classification, which

requires suitable low- and mid-level features. The ma-

jor goal of many researchers is the computation of mid-

level representations from audio signals, which are des-

tined to capture the rhythmic gist from the music. A huge

amount of work has been done in this field so far by devel-

oping techniques like beat histogram, inter-onset-interval

histogram or rhythmic mid-level features, e.g., [1], [2], [3],

[4], [5]. In general, the beat histogram technique very of-

ten used as feature basis for semantic classification. This

histogram is computed by taking the audio spectrum en-

velope signal, which is differentiated and half/full-wave

rectified. As a final step an auto-correlation function is ap-

Permission to make digital or hard copies of all or part of this work for
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not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
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plied, which estimates the periodicities within the modified

envelope. The resulting feature vector is only limited us-

able for pattern recognition. Two similar rhythms are eas-

ily comparable with the beat histogram as feature, if their

tempi are equal. A different tempo leads to a compression

or expansion of the lag-axis, as depicted in Figure 1. This

modification has a disadvantageous effect when perform-

ing a comparison of beat histograms via Euclidean distance

measure. This issue has been raised by Foote [6]. A num-

ber of approaches tried to come up with solutions for that

challenge. Paulus [7] presented a method, which could be

considered reasonable for comparing beat histogram vec-

tors containing different tempi by applying a dynamic time

warping technique. A similar approach has been also pro-

posed by Holzapfel [8]. These techniques require special-

ized classifiers and the beat histogram cannot be used as

feature in conjunction with other low-level features. In or-

der to solve that problem, Tzanetakis [1], Gouyon [2], and

Burred [3] computed descriptive statistics, such as mean,

variance, and kurtosis on the beat histogram. These statis-

tics were used as feature vector for classification. To a cer-

tain degree, these are also tempo-dependent. This paper

suggests a new post-processing method which performs a

transformation of the beat histogram into the logarithmic

lag domain. The transformation into the logarithmic do-

main has not been described for rhythm features, but for

harmonic and chroma features in [9] and [10]. This trans-

formation transfers the multiplicative factor of the tempo

changes into an additive offset. Hence, the transformed

rhythmic feature vector contains a tempo independent part

located on the right-hand side of the vector. An approach

for detection of this tempo independent rhythmic informa-

tion is presented. A number of different features were ex-

tracted and evaluated for the task of rhythmic similarity.

The remainder of this paper will be organized as fol-

lows: Section 2 introduces the proposed algorithm, Sec-

tion 3 describes the evaluation and discusses the results.

Section 4 concludes and indicates further directions in this

area.

2. PROPOSED APPROACH

In this work, the beat histogram is extracted from MPEG-

7 AudioSpectrumEnvelope (ASE) features [11]. Different

variants of the basic feature extraction algorithm have been

reported in literature. Tzanetakis’ [1] work was based on

a wavelet transform, Scheirer [12] used a filter bank. Nev-
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ertheless, both authors extracted an envelope signal from

non-linearly spaced frequency bands, as is the case with

ASE. In the proposed implementation, the different ASE

bands are smoothed in time. Subsequently, the bands are

weighted by enhancing the lower and higher frequency ba-

nds and decreasing the center frequencies. All bands are

accumulated, differentiated in time, and full-wave-rectified.

This results into a so-called detection function, containing

the the most salient rhythmic information of the music sig-

nal. The detection function is subdivided into snippets of

N successive frames. The auto-correlation inside such a

frame yields the beat histogram, also called rhythmic mid-

level feature, beat spectrum, etc.

The beat histogram may be used in a different num-

ber of applications, such as beat tracking or tempo detec-

tion. As already mentioned in Chapter 1, this vector should

not be directly utilized for classification. If two similar

rhythms are played in different rhythms and there beat his-

tograms are compared, the vectors would look similar, but

one would be a more stretched or compressed (in terms of

the lag-axis) version from the other. Hence, a direct com-

parison of these vectors using common distance measures

(e.g., Euclidean distance) results in large distances. Thus,

it is state of the art to compute descriptive statistics from

the beat histogram and use these measures as features for

classification. Unfortunately, these statistics are also prone

to tempo changes.

In order to create a tempo independent beat histogram,

Foote [6] proposed to stretch or compress the original vec-

tor based on the tempo of the rhythm. The compression of

the beat histogram can be considered as multiplication of a

time-stretching factor f with the argument τ of the under-

lying pattern signal c(τ ′). This pattern signal can be the

mentioned auto-correlation signal. The observed feature

vector can therefore be described with c(τ) = c(τ ′ ∗ f). In

order to obtain the tempo invariant beat histogram c(τ ′),
the stretch factor f needs to be known, but its automatic

computation might be unreliable. One option for solving

this issue is to use a logarithm function. By applying the

logarithm on an arbitrary function, multiplicative terms are

transformed to additive terms. Transferring this theorem to

the lag-axis of the beat histogram c(τ) leads to the equation

(1):

c(log(τ ′ ∗ f)) = c(log(f) + log(τ ′)) (1)

For the logarithmic processing step, a new argument is

estimated by (2):

τlog =
log(τ) ∗max(τ)

log(max(τ))
(2)

Resampling the original beat histogram c(τ) in such a

way, that the values in τ are available on places of τlog

results in a new beat histogram feature with logarithmized

lag-axis (Figure 2 d).

Since τlog consists of non-integer values, the practical

implementation of this variable requires an interpolation.

For this task, a bicubic interpolation method as described

in [13] has been applied.
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Figure 2. This figures shows an example beat histogram

(c) and a rhythmic grid (a) and their logarithmic counter-

parts (d,a, respectively).

Figure 2 c,d shows an example beat histogram and its

transformation into the log-lag domain.

By inspecting a large number of such logarithmized vec-

tors it can be observed, that all vectors consist of a large

decaying slope towards a first local minimum, whose ab-

solute position depends on the tempo of the music. That

slope represents the first maximum lobe of the auto-correlation

function. Due to the fact, that a time-varying signal is al-

ways most similar to itself for small lags, the first lobe

is always the highest and does not carry any significant

rhythmic information. However, the successive minimum

appears to be the point from where on the logarithmized

beat histogram shows similar tempo-independent charac-

teristics if the rhythm is similar. These characteristics are

similar, but they are moved further right or further left, de-

pending on the tempo. The goal is to find the starting point

of these tempo-independent characteristics and to use the

tempo-independent excerpt of the feature vector for classi-

fication. In the original beat histogram the first local min-

imum (or maximum) could be used as starting point for

stretching or compressing the vector in order to receive a

tempo-independent version. Unfortunately, this procedure

is only applicable on a minority of rhythms, since often the

first local minimum is misleading and the stretched vector

results in octave errors. In the log-lag domain the result

would be similar, if only the first minimum is used. The

proposal in this publication is to find the point more re-

liably by taking the evolution of the vector into account.

Therefore, the authors use an artificial rhythmic grid fea-

turing eight successive Gaussian pulses as depicted in Fig-

ure 2 a. The Gaussian pulses are computed as described in

the following Matlab code snippet (Code 1) with the block-

size blksize as functional parameter and tmp acf as result

vector.

This rhythmic grid is transformed into the logarithmic

domain with the same method as described above. In order

to find the tempo-independent characteristics of the loga-

rithmized beat histogram, both vectors, the logarithmized

rhythmic grid and the logarithmized beat histogram are
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Figure 1. These figures depict a beat histogram excerpt for the same rhythm with tempos of 90 Bpm (left), 110 Bpm

(middle), 130 Bpm (right).

Code 1 Example Matlab code for the creation of Gaussian

pulses

mu = [29:29:blksize]; sd = 2;
tmp_acf = zeros(1,blksize); lobe=[];
for k = 1:length(mu)
t_exp=-0.5*(((1:blksize)-mu(k))/sd).ˆ2;
lobe(k,:) = exp(t_exp)/(sd*sqrt(2*pi));
lobe(k,:) = lobe(k,:)/max(lobe(k,:));
tmp_acf = tmp_acf + lobe(k,:);
end

cross-correlated. Best results could be achieved by only

evaluating only the first slope (histogram points 200-300 in

2 d). The maximum of the correlation function equals the

point in the vector, where the tempo-independent charac-

teristic starts. A faster tempo results in a shift of the tempo-

independent part to the left, and thus additional peaks ap-

pearing at the right border. In order to process almost iden-

tical beat histograms, regardless of the tempo, the length of

the tempo independent characteristics has to be suitably re-

stricted. This tempo independent vector could be theoreti-

cally used as feature vector for rhythmic similarity. Due to

the interpolation for the logarithmic processing, small vari-

ations lead sometimes to a small movement either to the

right or to the left side of the axis. These small variations

affect the rhythmic similarity negatively. In order to reduce

this effect, statistical measures as proposed by the other

authors have been applied in the tests for this paper. The

following statistics as described by Tzanetakis [1], Gou-

yon [4], and Burred [3] were computed from the tempo

independent vector. All statistics from these authors were

appended and formed the final feature vector for the exper-

iments:

• Tzanetakis: Relative amplitude (divided by the sum

of amplitudes) of the first, and second histogram peak;

ration of the amplitude of the second peak divided

by the amplitude of the first peak; period of the first,

second peak in bpm; overall sum of the histogram

• Gouyon: Mean of magnitude distribution; geometric

mean of magnitude distribution; total energy; cen-

troid; flatness; skewness; high-frequency content

• Burred: Mean; standard deviation; mean of the deri-

vative; standard deviation of the derivative; skew-

ness; kurtosis and entropy.

Since some statistics from Gouyon and Burred partly

overlapped the final feature size consisted of 18 dimen-

sions. For the practical implementation, excerpts of 500

ASE frames were chosen, which corresponds to 5 seconds

in music, given a low-level hop-size of 10 milliseconds.

This size constitutes a trade-off between the length of at

least two repeating patterns and the ability to track abrupt

tempo changes sometimes encountered in real-world mu-

sic. A correlation size of 5 seconds has been also used in

previous approaches (e.g., [14]). Since the test songs con-

tain more than five seconds of audio content, one of such a

feature vector is computed every 0.5 seconds. In order to

compute the Gaussian pulses, a default standard deviation

of 2 has been chosen and and only eight successive pulses

were used in the evaluation. Another standard deviation

could also be chosen, which increases/decreases the width

of the pulses.

For the tests in this paper, the following 4 feature vec-

tors were created:

• Statistics of original beat histogram: The beat his-

togram has been extracted as described in this paper.

Based on that histogram, a feature vector contain-

ing all statistics by Tzanetakis [1], Gouyon [4], and

Burred [3] as described above was extracted.

• Statistics of logarithmized beat histogram: The statis-

tics by Tzanetakis, Gouyon, and Burred were com-

puted from the logarithmized beat histogram tech-

nique as described above.

• Statistics of beat histogram with stretch factor: Based

on the logarithmized beat histogram, a point has been

estimated, where the tempo-independent rhythmic

characteristic begins. This point has been transformed

into the non-logarithmic domain and a stretch fac-

tor (as proposed by Foote) has been computed. The

original beat histogram has been stretched by the
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stretch factor and the statistics from Tzanetakis, Gou-

yon, and Burred were computed from that vector.

• Beat histogram with stretch factor: The original beat

histogram has been stretched as suggested by Foote

with the stretch factor derived from the logarithmic

post-processing.

3. EVALUATION

3.1 Evaluation Procedure

In order to test the logarithmic post-processing of the beat

histogram, two different evaluation strategies were imple-

mented. The first test evaluated a number of manually cre-

ated rhythms in order to prove the theoretic improvement

of the results. The second test evaluates rhythmic similar-

ity based on beat histograms with a large real-world music

set.

3.1.1 Tests based on manually created rhythms

The first test scenario examined the tempo dependence of

the described feature sets based on different rhythms. A

number of 18 different base rhythms were established, which

can be divided into 9 rhythm genres, e.g., electro, drum’n’base

or hip hop. The rhythms were played without any addi-

tional instruments in order to test the tempo dependence of

only the base rhythms. Each of these rhythms was played

in six different tempo variations ranging from 90 Bpm to

190 Bpm in 20 Bpm steps. Each base rhythm was repeated

a number of times, whereby the duration of one single

rhythm pattern was less than 5 seconds. A total of 108

rhythms were collected and the low-level ASE features as

well all four versions of the described mid-level features

were extracted. Since the window length of the described

mid-level features consisted of 5 seconds, the base rhythm

of every rhythm class is contained in every frame of the

feature matrix. Therefore, an arbitrary frame from the fea-

ture matrix can be chosen for comparison. In the evalua-

tion for this paper, the second consecutive vector was used

as mid-level feature. Prior to the classification, a mean and

a variance normalization step over all data was applied.

A simple k-nearest neighbor classifier with Euclidean dis-

tance was set up using the features and the rhythm class

information as ground-truth. k for the k-nearest neigh-

bor classifier has been chosen to be one. Subsequently,

all features were consecutively used as query to the classi-

fier, whereby it has been ensured, that the query item was

not contained in the reference set. The evaluation method

returned the distance and the closest class to each of the

108 rhythms. The average accuracy has been estimated per

class. The minimum, maximum and average of the over-

all test set has been estimated by using the class-dependent

accuracy. Based on the results of this simple classifier a

base-line assumption can be made about the accuracy of

the tempo independent rhythmic classification. One might

raise concerns that the comparison of base rhythms is not

very practice relevant, since popular music contains addi-

tional polyphonic properties in the signal, which may in-

terfere with the beat histogram. In order to prevent this

”distortion” it has been shown, e.g. in [15], that drum tran-

scription algorithms as preprocessing steps have a positive

effect on beat histogram.

3.1.2 Tests based on a large test set

To evaluate the performance on real world data instead of

the rather artificial data, a diverse set of 753 songs from

60 different genres and sub-genres was compiled. Rhyth-

mic similarity measures are hard to evaluate by using real

world data. An option for testing rhythmic similarity mea-

sures can be based on the assumption, that songs from the

same genre have similar rhythms, while songs from dif-

ferent genres have different rhythms. But similar rhythms

might be also available across genres and the results would

not directly predicate rhythmic similarity. To cope with

that, another approach was chosen. A rhythm similarity

ground truth was manually created for the used dataset.

First, for each song, a representative rhythm pattern was

annotated by hand, then a similarity matrix from all pairs

of rhythms was calculated.

Representative rhythm pattern: For each song, one rep-

resentative rhythm pattern was manually annotated. Five

different classes of rhythmical events were differentiated:

base drum, snare drum, hi hats, further percussive events,

and non-percussive events. A quantization could be freely

chosen, but in general, events have been quantized onto

1/16 bar length in case of a 4/4 bar and 1/12 bar length in

case of a 3/4 bar. Similarity between patterns: The dis-

tance between two characteristic patterns was calculated

by performing the following steps. First, both of the pat-

terns have been stretched onto the same length. Then, all

the simultaneous occurrences of an event of a certain class

in both patterns were summed up. Finally, the resulting

value was normalized by the length of the pattern. For each

of the mentioned percussion classes, the 753x753 distance

matrix was computed. Afterwards, the mean distance ma-

trix was estimated by equally weighting all distances of the

distance matrices from each percussion class.

Also, for each song in the database the features de-

scribed above were extracted whereby the mean value for

all feature frames of a song was calculated. Using Eu-

clidean distance, the 5 closest songs to each song excluding

the query itself were determined. The list of the 5 closest

songs to the query song C are denoted LC . Incorporating

both the ground-truth rhythm similarity matrix and the list

of the 5 closest songs for each of the 753 queries, the dif-

ferent feature sets were compared using the following pro-

cedure: For each query song C, a list TC of all the other

songs, was generated. This list was sorted in ascending or-

der of the distances derived from the manually annotated

rhythm patterns. Then, for each song c in LC the number

of songs in TC have been counted, which were closer to C
than c. By averaging over these numbers, a value r is cal-

culated. This value describes the mean number of songs

in TC that are closer to the query song than the retrieved

songs. In order to obtain a statement about the accuracy

of the system in such a way, that higher numbers refer to

better results, a score has been computed by Si = |S − 1|.
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Figure 3. Average accuracy for rhythmic classification of

the first test based on different feature vectors in percent.

Mean Min Max

Stat. Original Beat Hist. 25.93 0.00 83.33

Stat. Logarithm. Beat Hist. 57.41 0.00 100.00

Stat. Stretched Beat Hist. 51.85 16.67 66.67

Stretched Beat Hist. 66.67 33.33 100.00

Table 1. Accuracy measures (first test) for rhythm classi-

fication based on different feature vectors in percent.

This score is referred to the term similarity index. For sig-

nificance purposes a random score has been established by

generating a random result list for each of the 753 songs.

This result list has been evaluated in a similar procedure as

the described mid-level features.

Other rhythmic similarity measures were described in

literature by Hofman-Engl [16] and Toussiant [17]. These

measures are established when it comes to the compari-

son of actual rhythmic descriptions. In this paper features

based on rhythms are to be compared. Therefore, these

methodologies could not be applied.

3.2 Results and Discussion

3.2.1 Test based on manually created rhythms

The following table (Table 3.2.1) shows the results for the

first test containing the manually created rhythms. This

table shows minimum, maximum and mean accuracy. In

order to get a quick overview about the results in general,

the mean is also plotted in Figure 3.

The state of the art methodology by computing statis-

tics over the beat histogram achieves an average accuracy

of approx. 26%. This is based on the fact, that the statis-

tic measures are by far not tempo independent. Better re-

sults could be obtained by the logarithmic post-processing

step. The statistics computed on the logarithmized beat

histogram and over the stretched beat histogram performed

reasonably well with 57.4% and 51.9%, respectively. The

best results could be obtained by the stretched beat his-

togram with the stretch factor computed from the logarith-

mized beat histogram. This methodology leads to an aver-

age accuracy of 66.7%. An intuitive guess would be, that

identical rhythms in different tempos should always return

an accuracy of 100%. In practice, the results look differ-
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Figure 4. Similarity index (second test) expressing the

rhythmic similarity for different feature vectors.

ent due to windowing effects. The minimum accuracy of

the algorithms ranges from 0% to 33.3%. This is based on

the fact, that the separability between some of the 18 base

rhythms is strongly restricted. The highest accuracy is ob-

tained by the stretched beat histogram also in case of the

minimum. This might imply that postprocessed beat his-

togram performs better as feature than the statistics over

postprocessed beat histograms. A similar statement can

be also made by evaluating the maxima of the four fea-

ture vectors. These tests prove, that the tempo independent

version of the beat histogram (stretched beat histogram)

outperforms the statistics over the beat histogram.

3.2.2 Test based on a large real-world music set

The following figure (Figure 4) shows the accuracy for

the test with real-world music. Additionally, these num-

bers are depicted in Table 3.2.2. The similarities between

manually annotated base rhythms and the beat histogram

features are expressed by a similarity index. The higher

the index is, the better is the similarity between the man-

ually annotated rhythms and the automatically extracted

rhythms. The figure shows, that a random generation of

similarities results with a similarity index of 0.632. Most

of the observed feature vectors obtained a similarity in-

dex around 0.65, including the statistics over the beat his-

togram, the statistics over the logarithmized beat histogram

and the stretched version of the beat histogram. The statis-

tics computed from the stretched beat histogram outper-

form all other results by a similarity index of 0.03.

The first test, which was based on the manually cre-

ated rhythms, showed the best results on the stretched beat

histogram. In this second test, these results cannot be val-

idated in every case. This may be based on the fact that

the point in the logarithmic domain, which separates the

tempo dependent and tempo independent parts is inaccu-

rate in a few cases. These inaccuracies have influence on

the stretched beat histogram and may result in octave er-

rors, which affect the rhythmic similarity. However, com-

puting the descriptive statistics over the resulting vectors

improves the results. These statistics seem to neglect the

slight deviations significantly. This test on real world data

might be not optimal, since rhythms in real songs might
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Feature Name Similarity Index

Random 0.632

Stat. Original Beat Hist. 0.658

Stat. Logarithm. Beat Hist. 0.650

Stat. Stretched Beat Hist. 0.687

Stretched Beat Hist. 0.648

Table 2. Similarity index of the second test expressing the

rhythmic similarity for different feature vectors.

change and the evaluation was performed on one repre-

sentative rhythm of the song. But this methodology gives

a rough indication of the performance of the logarithmic

processing.

4. CONCLUSIONS AND FUTURE WORK

The rhythmic information from music is captured by the

commonly used beat histogram. This paper presented a

post-processing technique for the beat histogram, which is

based on logarithmic re-sampling of the lag axis and cross-

correlation with an artificial rhythmic grid. This technique

seems to improve the applicability of the beat histogram

technique as feature for music information retrieval tasks.

The practical tests on a large music archive were based on

a mean feature vector per song. In order to be more accu-

rate, future tests should perform a rhythmic segmentation

and analyze the segments individually. The logarithmic

processing methodology as described in this paper may

be also beneficial for beat tracking and tempo detection.

Future tests will provide an evaluation, if the tempo esti-

mation results can be improved when using the proposed

algorithm.
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ABSTRACT

We describe a novel tempo estimation method based on
decomposing musical audio into sources using principal
latent component analysis (PLCA). The approach is moti-
vated by the observation that in rhythmically complex mu-
sic, some layers may be more rhythmically regular than the
overall mix, thus facilitating tempo detection. Each excerpt
was analyzed using PLCA and the resulting components
were each tempo tracked using a standard autocorrelation-
based algorithm. We describe several techniques for ag-
gregating or choosing among the multiple estimates that
result from this process to extract a global tempo estimate.
The system was evaluated on the MIREX 2006 training
database as well as a newly constructed database of rhyth-
mically complex electronic music consisting of 27 exam-
ples (IDM DB). For these databases the algorithms im-
proved accuracy by 10% (60% vs 50%) and 22.3% (48.2%
vs. 25.9%) respectively. These preliminary results suggest
that for some types of music, source-separation may lead
to better tempo detection.

1. BACKGROUND AND MOTIVATION

A working definition of tempo is the rate of the underlying
rhythmic pulse of music determined by a human listener
tapping along to the music, typically expressed in beats per
minute (BPM). This may differ from a notated tempo, and
different listeners, or the same listener at different times,
often entrain to different metrical levels, so that some tap-
ping rates may be half or double as fast as others. Further,
in some types of music, the most natural way to tap along
is asymmetric (e.g. tapping on the accented first and third
beat in a fast group of five beats). For our purposes, these
complexities are important to acknowledge at the outset as
they set natural bounds on performance and suggest appro-
priate ways of judging accuracy.

Tempo estimation is a fundamental MIR task and under-
lies almost all rhythmic descriptions of music. However,
state-of-the-art tempo detection is still highly variable in
its accuracy, working well on most simple cases, but often
performing poorly or not at all on rhythmically complex

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

music [1]. The current work is motivated by two observa-
tions: 1) rhythmically complex music may be constructed
out of components or layers (e.g. musical parts or sources)
that are rhythmically simpler than the mix and thus easier
to track; 2) in many types of music, humans track the beat
or the tempo by hearing out a particular instrument or part.
For example, in many types of rhythmically complex elec-
tronic music, a “click track” is present in the mix. More
generally, in many musical genres a particular part plays
a time-keeping function: for example, in standard jazz the
walking bass line is the time keeper, in Indian music the
tabla, in Afro-Cuban music the clave. Being able to hear
out these time-keeping parts makes tempo tracking easier
for humans.

2. RELATED WORK

The starting point of the current work is tempo detection
that looks for periodicities in the signal by taking the au-
tocorrelation of the detection function (ACF). A good re-
view of current algorithms can be found in McKinney et
al. [2] as well as specific descriptions of autocorrelation-
based approach in Ellis [3] and Davies and Plumbley [4].
Recent work has explored the extension of this basic ap-
proach to tempo detection in a variety of ways. Wright
et al. [5] describe a system that searches for the rhythmic
pattern of the clave in Afro-Cuban music and show that
such an approach out-performs techniques more reliant on
isochronous events such as the Ellis and Dixon [6] algo-
rithms. In their work, a matched filter is used to extract the
clave from the mix. In this paper, we attempt to general-
ize the idea of finding the time-keeper in the mix in a way
that is less reliant on domain-specific knowledge. Seyer-
lehner et al. [7] cast tempo estimation as a nearest neighbor
problem, representing instances using a smoothed autocor-
relation function (ACF). This approach suggests the idea
of using not just the peak of the ACF, but including other
features to improve tempo detection. Xiao et al, [8] demon-
strate that using timbral features in addition to ACF-based
features can reduce double/half tempo errors and indicates
that even very crude uses of timbre can improve tempo esti-
mation accuracy. Earlier work on tempo detection has also
sought to improve accuracy by processing information in
particular frequency sub-bands [9, 10]. In some cases, this
is akin to a crude source separation, for example, separat-
ing the bass drum from the rest of a song.

Probabilistic latent component analysis (PLCA), a tech-
nique for source-separation described in Section 3.2, has
been used for unmixing as well as transcription [11, 12].
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The closely related technique of non-negative matrix fac-
torization (NMF) has been used to improve drum detec-
tion [13, 14]. In these works, tracks were separated into
sources that were then grouped into either tonal or percus-
sive layers based on features of the components. This is
relevant to the current work because it demonstrates the
idea of using source-separation as a pre-processing step to
improve performance on a standard MIR task. Addition-
ally, features of the components are used to classify them
into different groups, a technique used in this work to judge
how strong a pulse different components have.

3. METHOD

3.1 Overview

As stated, the technique described here builds on ACF-
based tempo detection. First, the track is separated into
components using a single-channel source separation method
(PLCA). Next, the tempo of each component is estimated
on the separated audio. The component tempo estimates,
along with the windowed ACF that was used to calculate
the component tempo, are then used to find a global tempo
estimate for the excerpt. We discuss several attempts to
solve the problem of finding the best tempo estimate from
the components. Two basic strategies were employed: se-
lecting the tempo of a component with the highest esti-
mated rhythmic clarity, and clustering component tempo
estimates and weighting each cluster by the rhythmic clar-
ity of each element in the cluster. Figure 1 shows a block
diagram of the system.

3.2 Source Separation

Blind source separation attempts to recover constituent el-
ements from a signal without any specific a priori knowl-
edge of their characteristics. For audio, this corresponds to
“unmixing,” the reconstruction of a clean signal of each of
a number of sounds that have been mixed together. Faith-
ful reconstruction of component elements has a wide array
of potential applications; in the current work we are less
interested in mimicking the timbre of the original sources
than in capturing rhythmic characteristics that may be less
evident in a full mix.

We approach this task using the non-shift-invariant ver-
sion of Probabilistic Latent Component Analysis (PLCA)
[11, 12]. The input to the PLCA is a spectrogram, com-
puted using a 1024 sample Hann window with a hopsize
of 256 samples and then normalized to be a valid probabil-
ity distribution. Latent variables representing the compo-
nents are estimated using expectation maximization, and
the output consists of a magnitude spectrum and relative
contribution over time for each component; the number of
desired components must be specified by the user.

After some experimentation, we set the number of com-
ponents to be extracted to eight. A more systematic evalua-
tion of the optimal number components remains for future
work. The corresponding timbral and temporal profiles
were used to synthesize audio for each component using
phase information from the original audio.

3.3 Tempo Estimation

The tempo was estimated for each component using the
Ellis algorithm [3]. The algorithm constructs a detection
function based on a 40-channel db-magnitude mel spectro-
gram. First the signal is downsampled to 8 kHz, mixed to
mono and divided into 32 ms frames with a 4 ms hopsize.
The first-order difference is taken for each channel, and the
sum of positive values across all channels is the value of the
detection function for that frame (spectral flux). The auto-
correlation of the detection function is calculated and then
windowed to bias it towards tempos close to 120 BPM. The
windowing effectively excludes tempos falling outside an
acceptable range, and at the same time mimics the natu-
ral preference of humans to tap at rates between 90-120
BPM [1]. The tempo estimate is simply the lag time corre-
sponding the peak value of the windowed ACF, converted
to BPM. Any peaks before the first zero-crossing of the
ACF are disallowed to prevent spurious peaks near zero
lag. A small modification was made to the Ellis algorithm
so that the top ten tempo candidates were returned rather
than a single best tempo estimate, defined as the BPMs cor-
responding to the ten highest peaks in the windowed ACF.
These additional tempo estimates were used in the cluster-
ing method described below. For all other techniques, only
the best estimate for each component was used.

Each component was tempo tracked in this way, result-
ing in ten candidate tempos for each component. This
meant that for a given track there were 80 tempo candi-
dates (8 components × 10 estimates). The ACF value as-
sociated with each candidate and the entire windowed ACF
were also stored, and these were used to help select the best
global tempo estimate from the candidates.

3.4 Tempo Selection

Below we describe several approaches to selecting a single
tempo estimate from the candidates.

3.4.1 Pulse-clarity

Inspired by the idea that certain components might accu-
rately represent a relatively isochronous part of the track,
the first approach focused on finding the best component
from which to estimate the global tempo. That is, we at-
tempted to find the component with the clearest pulse, and
then choose the highest ranked tempo estimate for that one
component as the global tempo estimate.

Lartillot et al. [15] showed that several features of the
ACF are correlated with human judgments of pulse-clarity.
Intuitively, the idea is that a relatively isochronous part
with clear onsets will lead to an ACF that has well-defined
and relatively large peaks. Following Lartillot et al., we
calculated the following features on the ACF: maximum,
minimum, and kurtosis. Additionally we added entropy
and sparseness [16] as features, with sparseness defined
as:

sparseness(x) =
√

n− (
∑
|xi|)/

√∑
x2

i√
n− 1

(1)
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Figure 1. Block diagram of tempo estimation algorithm

Before calculating these features the ACF was normal-
ized so that higher amplitude components would not domi-
nate. For each component the ACF values were divided by
the sum of the absolute value of all ACF values. The max
and min were simply the maximum and minimum ACF
values after normalization, and we expected that larger ab-
solute values would correspond with greater pulse-clarity.
Kurtosis was used to measure the peakiness of the ACF,
i.e. how well-defined the ACF peaks were. Entropy and
sparseness also assessed peakiness.

Each feature was evaluated separately; Table 2 summa-
rizes the performance of each feature (evaluation criteria
are discussed in Section 4.2). It can be seen that the most
obvious feature, the maximum ACF value, outperformed
the other measures on the IDM09 data, while they were
about equal on the MIREX06 data.

In order to make better use of pulse-clarity features,
an attempt was made to apply them to a more system-
atic supervised machine-learning framework. For this, we
trained a multivariate Gaussian classifier using a ten-fold
cross validation scheme. In addition to the ACF features
we defined a new set of features based on the ratios of
the candidate tempo estimates for each component. These
features were based on the idea that we would expect to
see harmonically related peaks in the ACF of rhythmically
clear components. The ratio between every possible pair-
ing of the ten candidate tempos was computed, leading to(
10
2

)
, i.e. forty-five ratios per component. We then com-

puted a histogram of these values in the range .45 to 2.05
with a bin width of .1, leading to 23 features. The targets

were binary, representing whether the component estimate
matched the ground truth. The tempo of an excerpt was
calculated by choosing the tempo associated with the com-
ponent that had the highest posterior probability, i.e. the
greatest likelihood of its tempo matching the ground truth
given the ACF features. This approach worked well for the
MIREX06 data but less so for the IDM09 data (Table 2).
At this point it is difficult to say whether the IDM09 perfor-
mance was due to an insufficiently large training database
to accurately learn the multivariate distribution or if more
discriminative features must be found.

3.4.2 Clustering

Another method was attempted for determining the global
tempo, based on the idea of taking a vote among the candi-
date tempos, possibly weighted by the corresponding nor-
malized ACF values. The basic intuition was that the true
tempo should appear more frequently than spurious esti-
mates among the candidate tempos. To implement this, we
first partitioned the candidate tempos into clusters using a
hierarchical cluster tree. However, a simpler approach that
did not attempt an exclusive partitioning performed bet-
ter. In the latter approach, the candidate tempos for all
components and their associated normalized ACF values
were merged into a single matrix. For each tempo candi-
date, a score was determined by summing the ACF values
for that tempo as well as for any tempos that were half or
double, within a 5% tolerance. Of course such a method
will often lead to ties, which we resolved by choosing the
tempo closest to 120 BPM. Because we chose to measure
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accuracy accounting for half and double matches (see Sec-
tion 4.2), this was not a major issue. The tempo candidate
with the highest score was chosen as the global tempo es-
timate. To see if ACF weighting was important we also
performed experiments ignoring ACF values and assign-
ing scores by simply counting the number of elements in
each cluster. However, ACF weighting consistently im-
proved performance and was chosen as the default. Ad-
ditionally, we experimented with multiplying each ACF
value by the pulse-clarity estimate of the component based
on the heuristics described above. This did not affect re-
sults and was therefore not included in the final version.

4. EVALUATION

4.1 Databases

Evaluation was performed on two databases. The main
database consisted of twenty-seven 30-second excerpts cho-
sen from the IDM/glitch genre of electronic music (IDM09),
with an emphasis on tracks that we thought were rhythmi-
cally complex and layered. For each excerpt, two inde-
pendent manual annotations were made. 1 For all excerpts
the human annotators agreed, with the exception of a few
half/double conflicts. In those cases, we randomly selected
a single estimate. It should be noted that our accuracy mea-
sure allowed for half/double errors.

Additionally, the twenty publicly available MIREX06
training excerpts were used [2]. These consisted of a mix
of genres and tempo ranges, and included annotation of
two tempos representing the two highest peaks in a distri-
bution of tempos calculated from listeners’ tapping times.
For our experiments we simply selected the ground truth
tempo that was more commonly assigned.

4.2 Accuracy measure

We defined a match to be whenever the estimated tempo
matched the annotated tempo, or double or half the anno-
tated tempo, within a five percent tolerance window. Eval-
uation of tempo detection algorithms is somewhat depen-
dent on the end-goal. We might reasonably hope that the
tempo detection algorithm would correspond to judgments
of human listeners. However, although there may be a fair
degree of reliability between judgments for simple rhythms,
there can be substantial disagreement about the appropri-
ate metrical level or even the tempo for more rhythmically
complex music. Moreover, more experienced listeners of-
ten tap at a lower metrical level (i.e. slower tempo) than
novice listeners and in some cases novice listeners tap ir-
regularly and are unable to clearly sense the tempo. Al-
though this may be trivially true for music with no clear
rhythm, this can also occur for music where there is a
high degree of reliability for experienced listeners. For
retrieval tasks, such as selecting tracks with similar tem-
pos, it might be more appropriate to consider a match only
when the metrical level of the main ground truth annota-
tion is matched. On the other hand, for transcription or

1 The IDM09 database and the tempo annotations will be made pub-
licly available online.

Baseline (Ellis) Clustering Change
MIREX06 0.50 0.60 0.10
IDM09 0.26 0.48 0.22
combined 0.36 0.53 0.17

Table 1. The primary results are summarized here for each
of the databases as well as for the combined set. The base-
line is the Ellis algorithm run on the unseparated excerpts.
Clustering refers to choosing the global estimate according
to the procedure described in Section 3.4.2

synchronization tasks it is appropriate to consider matches
at different metrical levels. Because our emphasis here was
on IDM, a genre that often contains metrical level ambigu-
ity, we decided that this latter definition of accuracy made
the most sense.

4.3 Results

To get a sense of the upper-bound of performance for each
track we checked to see if the true tempo was the pri-
mary tempo estimate for any of the components, and also
whether the true tempo was present in any of the candi-
date tempos. Since subsequent steps attempt to filter these
values, our pulse-clarity based technique can do no bet-
ter than this first value, and the clustering method can do
no better than the latter. The primary component tempo
was correct for 70.4% of excerpts from IDM09 and 75%
of MIREX06. A match was found in a candidate tempo
of one of the components 96.3% and 85% of the time for
IDM09 and MIREX06 respectively. Of course it should
be noted while that we would expect this percentage to in-
crease as the number of candidate tempos per component
increases, the number of false positives will also tend to in-
crease. Nevertheless these data suggest a high performance
ceiling.

Table 1 summarizes the main the results, while Table
2 provides a more complete view of the performance of
the different algorithms described in the paper. The first
column in both tables is the baseline performance, given
by running the Ellis algorithm on the unseparated excerpt
using the definition of accuracy described above. Base-
line accuracy for the MIREX06 data was 50% and 25.9%
for IDM09. The substantially lower baseline accuracy for
IDM09 reflects the rhythmic complexity of these excerpts.
It can be seen that for the MIREX06, IDM09, and com-
bined databases that the clustering algorithms improved
accuracy by 10% (60% vs 50%) , 22.3% (48.2% vs. 25.9%)
and 17% (53.2% vs. 36.2%), respectively. From the de-
tailed results table we can see that the ML-based approach
achieved a 10 percentage-point improvement on MIREX06
(60% vs 50%), and a 3.7 percentage-point increase on IDM09.

Clustering using multiple candidates per component, as
well as the ML-based approach, had an accuracy of 60%
for MIREX06, a 10% improvement on the baseline. In
the case of IDM09 there was a substantial improvement of
22.3% (48.2% vs. 25.9%). However in this case the ML-
based approach was only marginally better than baseline.

186



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

Baseline Pulse Clustering ML
Ellis min max entropy kurtosis sparseness all features pulse-only

MIREX06 0.50 0.35 0.40 0.40 0.40 0.40 0.60 0.60 0.60
IDM09 0.26 0.15 0.33 0.26 0.26 0.30 0.48 0.27 0.26
combined 0.36 0.23 0.36 0.32 0.32 0.34 0.53 0.43 0.40

Table 2. Detailed accuracy results for each of the pulse-clarity measures described in Section 3.4.1 as well as for the
machine learning algorithm also described in Section 3.4.1. For the ML algorithm results are shown for all features, as well
as with only the original pulse heuristic features.

For both data sets using pulse-clarity alone did not im-
prove results, with the exception of the max ACF (33.3%
vs. 25.9%) and sparseness (29.6% vs 25.9%) features for
IDM09.

5. DISCUSSION AND CONCLUSION

From these data it seems that the clustering-based approach
is the superior method, particularly when compared to us-
ing a single component as the basis for the global estimate.
It is possible, however, that this is simply an artifact of
an inaccurate source separation step. Auditioning compo-
nents reveals that many components are not true sources
at all but parts of sources or several sources; source sep-
aration is still a delicate art. Nevertheless, many compo-
nents do clearly correspond to parts and at times one can
clearly hear time-keeping parts popping out. This noisi-
ness probably accounts for the fact that the clustering ap-
proach, which retains more information about possible pe-
riodicities by retaining multiple tempo estimates for each
component, is more robust. Although the current work did
not bear out the ML-based approach, we believe that sys-
tematic incorporation of multidimensional rhythmic infor-
mation will play an important part in future component-
based tempo detection algorithms.

We have shown that for these data, using source separa-
tion in conjunction with clustering can substantially im-
prove results, particularly for rhythmically complex and
layered material. We have also explored a variety of tech-
niques for implementing the core idea of using source de-
composition to improve tempo estimation. In particular,
we developed techniques for tempo estimation based on
pulse clarity scoring of components and clustering of com-
ponent tempo estimates. As source separation techniques
improve, it should be possible to more closely mimic the
rhythmic perception of humans, which in many cases is
based on recognizing distinct parts that have a time-keeping
function.

We expect that the approach described here will be most
useful for layered, rhythmically complex music that tends
to have simpler sub-parts. For simpler music, on the other
hand, the less dramatic results are unlikely to justify the
computational cost of source separation. We expect that
this method will fail for music where the rhythm is emer-
gent, i.e. only becomes apparent when several layers are
played simultaneously.

6. FUTURE WORK

There are many possible extensions to this work. Thus
far we have done little work to tune the source separa-
tion step. For example, what is the optimum number of
components? It is likely that eventually this should be
set adaptively based on the characteristics of the piece and
the likely number of sources. These, however, remain un-
solved problems, though the recent surge in research on
single-channel source separation using PLCA and NMF
is likely to dramatically improve our unmixing capabili-
ties. Additionally, we intend to pursue the ML-based ap-
proach. In the long-run, it is likely that some combination
of features can be found that will determine more reliably
whether a component tempo estimate is the correct global
estimate. And, as always, only with the expansion of the
tempo database, and additional benchmarking against mul-
tiple systems, will we truly be able to assess the strengths
and weaknesses of the techniques presented here.
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ABSTRACT

Automated beat tracking and tempo estimation from music

recordings become challenging tasks in the case of non-

percussive music with soft note onsets and time-varying

tempo. In this paper, we introduce a novel mid-level rep-

resentation which captures predominant local pulse infor-

mation. To this end, we first derive a tempogram by per-

forming a local spectral analysis on a previously extracted,

possibly very noisy onset representation. From this, we de-

rive for each time position the predominant tempo as well

as a sinusoidal kernel that best explains the local periodic

nature of the onset representation. Then, our main idea is

to accumulate the local kernels over time yielding a single

function that reveals the predominant local pulse (PLP).

We show that this function constitutes a robust mid-level

representation from which one can derive musically mean-

ingful tempo and beat information for non-percussive mu-

sic even in the presence of significant tempo fluctuations.

Furthermore, our representation allows for incorporating

prior knowledge on the expected tempo range to exhibit

information on different pulse levels.

1. INTRODUCTION

The automated extraction of tempo and beat information

from audio recordings has been a central task in music

information retrieval. To accomplish this task, most ap-

proaches proceed in two steps. In the first step, positions

of note onsets in the music signal are estimated. Here, one

typically relies on the fact that note onsets often go along

with a sudden change of the signal’s energy and spectrum,

which particularly holds for instruments such as the piano,

guitar, or percussive instruments. This property allows for

deriving so-called novelty curves, the peaks of which yield

good indicators for note onset candidates [1, 15]. In the

second step, the novelty curves are analyzed with respect

to reoccurring or quasiperiodic patterns. Here, generally

spoken, one can roughly distinguish between three differ-

ent methods. The autocorrelation method allows for de-

tecting periodic self-similarities by comparing a novelty
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bear this notice and the full citation on the first page.
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curve with time-shifted copies [5, 12]. Another widely

used method is based on a bank of comb filter resonators,

where a novelty curve is compared with templates consist-

ing of equally spaced spikes or pulses representing various

frequencies and phases [10, 14]. Similarly, one can use

a short-time Fourier transform to derive a time-frequency

representation of the novelty curve [12]. Here, the novelty

curve is compared with templates consisting of sinusoidal

kernels each representing a specific frequency. Each of the

methods reveals periodicity properties of the underlying

novelty curve, from which one can estimate the tempo or

beat structure. The intensities of the estimated periodicity,

tempo, or beat properties typically change over time and

are often visualized by means of spectrogram-like repre-

sentations referred to as tempogram [3], rhythmogram [9],

or beat spectrogram [6].

Relying on previously extracted note onset indicators,

tempo and beat tracking tasks become much harder for

non-percussive music, where one often has to deal with

soft onsets or blurred note transitions. This results in rather

noisy novelty curves, exhibiting many spurious peaks. As

a consequence, more refined methods have to be used for

computing the novelty curves, e. g., by analyzing the sig-

nal’s spectral content, pitch, or phase [1, 8, 15]. Even more

challenging becomes the detection of locally periodic pat-

terns in the case that the music recording reveals signif-

icant tempo changes, which typically occur in expressive

performances of classical music as a result of ritardandi,

accelerandi, fermatas, and so on [4]. Finally, the extrac-

tion problem is complicated by the fact that the notions of

tempo and beat are ill-defined and highly subjective due

to the complex hierarchical structure of rhythm [2]. For

example, there are various levels that are presumed to con-

tribute to the human perception of tempo and beat. Most of

the previous work focuses on determining musical pulses

on the tactus (the foot tapping rate or beat [10]) or mea-

sure level, but only few approaches exist for analyzing the

signal on the finer tatum level [13]. Here, a tatum or tem-

poral atom refers to the fastest repetition rate of musically

meaningful accents occurring in the signal.

In this paper, we introduce a novel mid-level represen-

tation that unfolds predominant local pulse (PLP) infor-

mation from music signals even for non-percussive mu-

sic with soft note onsets and changing tempo. Avoiding

the explicit determination of note onsets, we derive a tem-

pogram by performing a local spectral analysis on a pos-

sibly very noisy novelty curve. From this, we estimate for
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each time position a sinusoidal kernel that best explains the

local periodic nature of the novelty curve. Since there may

be a number of outliers among these kernels, one usually

obtains unstable information when looking at these ker-

nels in a one-by-one fashion. Our idea is to accumulate

all these kernels over time to obtain a mid-level represen-

tation, which we refer to as predominant local pulse (PLP)

curve. As it turns out, PLP curves are robust to outliers and

reveal musically meaningful periodicity information even

in the case of poor onset information. Note that it is not

the objective of our mid-level representation to directly re-

veal musically meaningful high-level information such as

tempo, beat level, or exact onset positions. Instead, our

representation constitutes a flexible tool for revealing lo-

cally predominant information, which may then be used

for tasks such as beat tracking, tempo and meter estima-

tion, or music synchronization [10, 11, 14]. In particular,

our representation allows for incorporating prior knowl-

edge, e. g., on the expected tempo range, to exhibit infor-

mation on different pulse levels. In the following sections,

we give various examples to illustrate our concept.

The remainder of this paper is organized as follows. In

Sect. 2, we review the concept of novelty curves while in-

troducing a variant used in the subsequent sections. Sect. 3

constitutes the main contribution of this paper, where we

introduce the tempogram and the PLP mid-level represen-

tation. Examples and experiments are described in Sect. 4

and prospects of future work are sketched in Sect. 5.

2. NOVELTY CURVE

Combining various ideas from [1, 10, 15], we now exem-

plarily describe an approach for computing novelty curves

that indicate note onset candidates. Note that the particular

design of the novelty curve is not in the focus of this pa-

per. Our mid-level representation as introduced in Sect. 3

is designed to work even for noisy novelty curves with

a poor pulse structure. Naturally, the overall result may

be improved by employing more refined novelty curves

as suggested in [15]. Given a music recording, a short-

time Fourier transform is used to obtain a spectrogram

X = (X(k, t))k,t with k ∈ [1 : K] := {1, 2, . . . ,K}
and t ∈ [1 : T ]. Here, K denotes the number of Fourier

coefficients, T denotes the number of frames, and X(k, t)
denotes the kth Fourier coefficient for time frame t. In

our implementation, each time parameter t corresponds to

23 milliseconds of the audio. Next, we apply a logarithm

to the magnitude spectrogram |X| of the signal yielding

Y := log(1 + C · |X|) for a suitable constant C > 1,

see [10]. Such a compression step not only accounts for

the logarithmic sensation of sound intensity but also allows

for adjusting the dynamic range of the signal to enhance

the clarity of weaker transients, especially in the high-

frequency regions. In our experiments, we use the value

C = 1000. To obtain a novelty curve, we basically com-

pute the discrete derivative of the compressed spectrum Y .

More precisely, we sum up only positive intensity changes

to emphasize onsets while discarding offsets to obtain the
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Figure 1: Excerpt of Shostakovich’s second Waltz from Jazz
Suite No. 2. The audio recording is a temporally warped or-
chestral version conducted by Yablonsky with a linear tempo in-
crease (216 − 265 BPM). (a) Piano-reduced score of measures
13− 24. (b) Ground truth onsets. (c) Novelty curve ∆ with local
mean. (d) Novelty curve ∆̄. (e) Magnitude tempogram |T | for
KS = 4 sec. (f) Estimated tempo τt. (g) PLP curve Γ.

novelty function ∆ : [1 : T − 1] → R:

∆(t) :=
∑K

k=1|Y (k, t + 1)− Y (k, t)|≥0 (1)

for t ∈ [1 : T − 1], where |x|≥0 := x for a non-negative

real number x and |x|≥0 := 0 for a negative real number

x. Fig. 1c shows the resulting curve for a music record-

ing of an excerpt of Shostakovich’s second Waltz from the

Jazz Suite No. 2. To obtain our final novelty function ∆̄,

we subtract the local average and only keep the positive

part (half-wave rectification), see Fig. 1d. In our imple-

mentation, we actually use a higher-order smoothed differ-

entiator. Furthermore, we process the spectrum in a band-

wise fashion [14] using 5 bands. The resulting 5 novelty

curves are weighted and summed up to yield the final nov-

elty function. For details, we refer to the quoted literature.

3. TEMPOGRAM AND PLP CURVE

We now analyze the novelty curve with respect to local

periodic patterns. Note that the novelty curve as intro-

duced above typically reveals the note onset candidates

in form of impulse-like spikes. Due to extraction errors

and local tempo variations, the spikes may be noisy and
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irregularly spaced over time. Dealing with spiky novelty

curves, autocorrelation methods [5] as well as comb fil-

ter techniques [14] encounter difficulties in capturing the

quasiperiodic information. This is due to the fact that spiky

structures are hard to identify by means of spiky analysis

functions in the presence of irregularities. In such cases,

smoothly spread analysis functions such as sinusoids are

much better suited to detect locally distorted quasiperiodic

patterns. Therefore, similar to [12], we use a short-time

Fourier transform to analyze the novelty curves. More pre-

cisely, let ∆̄ be the novelty curve as described in Sect. 2.

To avoid boundary problems, we assume that ∆̄ is defined

on Z by setting ∆̄(t) := 0 for t ∈ Z \ [1 : T − 1]. Further-

more, we fix a window function W : Z → R centered at

t = 0 with support [−N : N ]. In our experiments, we use

a Hann window of size 2N + 1. Then, for a frequency pa-

rameter ω ∈ R≥0, the complex Fourier coefficient F(t, ω)
is defined by

F(t, ω) =
∑

n∈Z
∆̄(n) ·W (n− t) · e−2πiωn . (2)

Note that the frequency ω corresponds to the period 1/ω.

In the context of beat tracking, we rather think of tempo

measured in beats per minutes (BPM) than of frequency

measured in Hertz (Hz). Therefore, we use a tempo pa-

rameter τ satisfying the equation τ = 60 · ω.

Similar to a spectrogram, we define a tempogram which

can be seen as a two-dimensional time-pulse representa-

tion indicating the strength of the local pulse over time.

Here, intuitively, a pulse can be thought of a periodic se-

quence of accents, spikes or impulses. We specify the peri-

odicity of a pulse in terms of a tempo value (in BPM). The

semantic level of a pulse is not specified and may refer to

the tatum, the tactus, or measure level. Now, let Θ ⊂ R>0

be a finite set of tempo parameters. In our experiments, we

mostly use the set Θ = [30 : 500], covering the (integer)

musical tempi between 30 and 500 BPM. Here, the bounds

are motivated by the assumption that only events showing

a temporal separation between 120 milliseconds and 2 sec-

onds contribute to the perception of rhythm [2]. Then, the

tempogram is a function T : [1 : T ]×Θ → C defined by

T (t, τ) = F(t, τ/60). (3)

For an example, we refer to Fig. 1e, which shows the mag-

nitude tempogram |T | for our Shostakovich example. Note

that the complex-valued tempogram contains magnitude as

well as phase information. We now make use of both,

the magnitudes and the phases given by T , to derive a

mid-level representation that captures the predominant lo-

cal pulse (PLP) of accents in the underlying music signal.

Here, the term predominant pulse refers to the pulse that is

most noticeable in the novelty curve in terms of intensity.

Furthermore, our representation is local in the sense that it

yields the predominant pulse for each time position, thus

making local tempo information explicit, see also Fig. 1f.

Also, the semantic level of the pulse may change over time,

see Fig. 4a. This will be discussed in detail in Sect. 4.

To compute our mid-level representation, we determine

for each time position t ∈ [1 : T ] the tempo parameter
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Figure 2: (a) Optimal sinusoidal kernel κt for various time pa-
rameters t using a kernel size of 4 seconds for the novelty curve
shown in Fig. 1d. (b) Accumulation of all kernels. From this, the
PLP curve Γ (see Fig. 1f) is obtained by half-wave rectification.

τt ∈ Θ that maximizes the magnitude of T (t, τ):

τt := argmaxτ∈Θ|T (t, τ)|. (4)

The corresponding phase ϕt is defined by [11]:

ϕt :=
1

2π
arccos

(

Re(T (t, τt))

|T (t, τt)|

)

. (5)

Using τt and ϕt, the optimal sinusoidal kernel κt : Z → R

for t ∈ [1 : T ] is defined as the windowed sinusoid

κt(n) := W (n− t) cos(2π(τt/60 · n− ϕt)) (6)

for n ∈ Z. Fig. 2a shows various optimal sinusoidal ker-

nels for our Shostakovich example. Intuitively, the sinu-

soid κt best explains the local periodic nature of the nov-

elty curve at time position t with respect to the set Θ. The

period 60/τt corresponds to the predominant periodicity of

the novelty curve and the phase information ϕt takes care

of accurately aligning the maxima of κt and the peaks of

the novelty curve. The properties of the kernels κt depend

not only on the quality of the novelty curve, but also on the

window size 2N +1 of W and the set of frequencies Θ. In-

creasing the parameter N yields more robust estimates for

τt at the cost of temporal flexibility. In our experiments,

we chose a window length of 4 to 12 seconds. In the fol-

lowing, this duration is referred to as kernel size (KS).

The estimation of optimal sinusoidal kernels for nov-

elty curves with a strongly corrupted pulse structure is still

problematic. This particularly holds in the case of small

kernel sizes. To make the periodicity estimation more ro-

bust, our idea is to accumulate these kernels over all time

positions to form a single function instead of looking at the

kernels in a one-by-one fashion. More precisely, we define

a function Γ : [1 : T ] → R≥0 as follows:

Γ(n) =
∑

t∈[1:T ]|κt(n)|≥0 (7)

for n ∈ [1 : T ], see Fig. 2b. The resulting function is our

mid-level representation referred to as PLP curve. Fig. 1g

shows the PLP curve for our Shostakovich example. As it

turns out, such PLP curves are robust to outliers and reveal

musically meaningful periodicity information even when

starting with relatively poor onset information.
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Figure 3: Excerpt of an orchestral version conducted by Ormandy of Brahms’s Hungarian Dance No. 5. The score shows measures 26
to 38 in a piano reduced version. (a) Novelty curve ∆̄, tempogram derived from ∆̄, and estimated tempo. (b) PLP curve Γ, tempogram
derived from Γ, and estimated tempo. (c) Ground-truth pulses, tempogram derived from these pulses, and estimated tempo. KS = 4 sec.

4. DISCUSSION AND EXPERIMENTS

In this section, we discuss various properties of our PLP

concept and sketch a number of application scenarios by

means of some representative real-world examples. We

then give a quantitative evaluation on strongly distorted

audio material to indicate the potential of PLP curves for

accurately capturing local tempo information.

First, we continue the discussion of our Shostakovich

example. Fig. 1a shows a piano-reduced score of the mea-

sures 13 − 24. The audio recording (an orchestral version

conducted by Yablonsky) has been temporally warped to

possess a linearly increasing tempo starting with 216 BPM

and ending at 265 BPM at the quarter note level. Firstly,

note that the quarter note level has been identified to be

the predominant pulse throughout the excerpt, see Fig. 1e.

Based on this pulse level, the tempo has been correctly

identified as indicated by Fig. 1f. Secondly, first beats

in the 3/4 Waltz are played by non-percussive instruments

leading to relatively soft and blurred onsets, whereas the

second and third beats are played by percussive instru-

ments. This results in some hardly visible peaks in the

novelty curve shown in Fig. 1d. However, the beats on

the quarter note level are perfectly disclosed by the PLP

curve Γ shown in Fig. 1d. In this sense, a PLP curve can

be regarded as a periodicity enhancement of the original

novelty curve, indicating musically meaningful pulse on-

set positions. Here, the musical motivation is that the peri-

odic structure of musical events plays a crucial role in the

sensation of note changes. In particular, weak note onsets

may only be perceptible within a rhythmic context.

As a second example, we consider Brahm’s Hungarian

Dance No. 5. Fig. 3 shows a piano reduced version of mea-

sures 26 − 38, whereas the audio recording is an orches-

tral version conducted by Ormandi. This excerpt is very

challenging because of several abrupt changes in tempo.

Additionally, the novelty curve is rather noisy because of

many weak note onsets played by strings. Fig. 3a shows

the extracted novelty curve, the tempogram, and the ex-

tracted tempo. Despite of poor note onset information, the

tempogram correctly captures the predominant eighth note

pulse and the tempo for most time positions. A manual

inspection reveals that the excerpt starts with a tempo of

180 BPM (measures 26−28, seconds 0−4), then abruptly

changes to 280 BPM (measures 29 − 32, seconds 4 − 6),

and continues with 150 BPM (measures 33 − 38, seconds

6− 18). Due to the corrupted novelty curve and the rather

diffuse tempogram, the extraction of the predominant sinu-

soidal kernels is problematic. However, accumulating all

these kernels smooths out many of the extraction errors.

The peaks of the resulting PLP curve Γ (Fig. 3b) correctly

indicate the musically relevant eighth note pulse positions

in the novelty curve. At this point, we emphasize that all

of the sinusoidal kernels have the same unit amplitude in-

dependent of the onset strengths. Actually, the amplitude

of Γ indicates the confidence in the periodicity estimation.

Consistent kernel estimations produce constructive inter-

ferences in the accumulation resulting in high values of

Γ. Contrary, outliers or inconsistencies in the kernel es-

timations cause destructive interferences in the accumula-

tion resulting in lower values of Γ. This effect is visible

in the PLP curve shown in Fig. 3b, where the amplitude

decreases in the region of the sudden tempo change. As

noted above, PLP curves can be regarded as a periodicity

enhancement of the original novelty curve. Based on this

observation, we compute a second tempogram now based

on the PLP instead of the original novelty curve. Com-

paring the resulting tempogram (Fig. 3b) with the origi-

nal tempogram (Fig. 3a), one can note a significant clean-

ing effect, where only the tempo information of the dom-

inant pulse (and its harmonics) is maintained. This exam-

ple shows how our PLP concept can be used in an iterative

framework to stabilize local tempo estimations. Finally,

Fig. 3c shows the manually generated ground truth onsets
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Figure 4: Beginning of the Piano Etude Op. 100 No. 2 by Burgmüller. Tempograms and PLP curves (KS = 4 sec) are shown for various
sets Θ specifying the used tempo range (given in BPM). (a) Θ = [30 : 500] (full tempo range). (b) Θ = [40 : 180] (quarter note tempo
range). (c) Θ = [140 : 280] (eighth note tempo range). (d) Θ = [350 : 500] (sixteenth note tempo range).

as well as the resulting tempogram (using the onsets as ide-

alized novelty curve). Comparing the three tempograms of

Fig. 3 again indicates the robustness of PLP curves to noisy

input data and outliers.

In our final example, we look at the beginning of the

Piano Etude Op. 100 No. 2 by Burgmüller, see Fig. 4. The

audio recording includes the repetition and is played in a

rather constant tempo. However, the predominant pulse

level changes several times within the excerpt. The piece

begins with four quarter note chords (measures 1−2), then

there are some dominating sixteenth note motives (mea-

sures 3 − 6) followed by an eighth note pulse (measures

7 − 10). The change of the predominant pulse level is

captured by the PLP curve as shown by Fig. 4a. We

now indicate how our PLP concept allows for incorpo-

rating prior knowledge on the expected tempo range to

exhibit information on different pulse levels. Here, the

idea is to constrain the set Θ of tempo parameters in the

maximization (4) of Sect. 3. For example, using a con-

strained set Θ = [40 : 180] instead of the original set

Θ = [30 : 500], one obtains the tempogram and PLP

curve shown in Fig. 4b. In this case, the PLP curve cor-

rectly reveals the quarter note pulse positions as well as

the quarter note tempo of 100 BPM. Similarly, using the

set Θ = [140 : 280] (Θ = [350 : 500]) reveals the eighth

(sixteenth) note pulse positions and the corresponding tem-

pos, see Fig. 4c (Fig. 4d). In other words, in the case there

is a dominant pulse of (possibly varying) tempo within the

specified tempo range Θ, the PLP curve yields a good pulse

tracking on the corresponding pulse level.

In view of a quantitative evaluation of the PLP concept,

we conducted a systematic experiment in the context of

tempo estimation. To this end, we used a representative

set of ten pieces from the RWC music database [7] con-

sisting of five classical pieces, three jazz, and two popular

pieces, see Table 1 (first column). The pieces have differ-

ent instrumentations containing percussive as well as non-

percussive passages of high rhythmic complexity. In this

experiment, we investigated to what extend our PLP con-

cept is capable of capturing local tempo deviations. Using

the MIDI files supplied by [7], we manually determined

the pulse level that dominates the piece. Then, for each

MIDI file, we set the tempo to a constant value with regard

to the respective dominant pulse level, 1 see Table 1 (sec-

ond and third columns). The resulting MIDI files are re-

ferred to as original MIDIs. We then temporally distorted

the MIDI files by simulating strong local tempo changes

such as ritardandi, accelerandi, and fermatas. To this end,

we divided the original MIDIs into 20-seconds segments

and then alternately applied to each segment a continuous

speed up or slow down (referred to as warping procedure)

so that the resulting tempo of the dominant pulse fluctu-

ates between +30% and −30% of the original tempo. The

resulting MIDI files are referred to as distorted MIDIs. Fi-

nally, audio files were generated from the original and dis-

torted MIDIs using a high-quality synthesizer.

To evaluate the tempo extraction capability of our PLP

concept, we proceed as follows. Given an original MIDI,

let τ denote the tempo and let Θ be the set of integer tempo

parameters covering the tempo range of ±40% of the orig-

inal tempo τ . This coarse tempo range reflects the prior

knowledge of the respective pulse level (in this experiment,

we do not want to deal with tempo octave confusions) and

comprises the tempo values of the distorted MIDI. Based

on Θ, we compute for each time position t the maximizing

tempo parameter τt ∈ Θ as defined in (4) of Sect. 3 for

the original MIDI using various kernel sizes. We consider

the local tempo estimate τt correct, if it falls within a 2%
deviation of the original tempo τ . The left part of Table 1

shows the percentage of correctly estimated local tempi for

each piece. Note that, even having a constant tempo, there

are time positions with incorrect tempo estimates. Here,

one reason is that for certain passages the pulse level or

the onset information is not suited or simply not sufficient

for yielding good local tempo estimations, e. g., caused by

musical rests or local rhythmic offsets. For example, for

the piece C022 (Brahms’s Hungarian Dance No. 5), the

tempo estimation is correct for 74.5% of the time param-

eters when using a kernel size (KS) of 4 sec. Assuming a

constant tempo, it is not surprising that the tempo estima-

tion stabilizes when using a longer kernel. In case of C022,

the percentage increases to 85.4% for KS = 12 sec.

1 In this experiment, we make the simplistic assumption that the pre-
dominant pulse does not change throughout the piece. Actually, this is not
true for most pieces such as C003 (Beethoven’s Fifth), C022 (Brahms’s
Hungarian Dance No. 5), or J001 (Nakamura’s Jive).
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original MIDI distorted MIDI
Piece Tempo Level 4 6 8 12 4 6 8 12

C003 360 1/16 74.5 81.6 83.7 85.4 73.9 81.1 83.3 86.2
C015 320 1/16 71.4 78.5 82.5 89.2 61.8 67.3 71.2 76.0
C022 240 1/8 95.9 100.0 100.0 100.0 95.0 98.1 99.4 89.2
C025 240 1/16 99.6 100.0 100.0 100.0 99.6 100.0 100.0 96.2
C044 180 1/8 95.7 100.0 100.0 100.0 82.6 85.4 77.4 59.8
J001 300 1/16 43.1 54.0 60.6 67.4 37.8 48.4 52.7 52.7
J038 360 1/12 98.6 99.7 100.0 100.0 99.2 99.8 100.0 96.7
J041 315 1/12 97.4 98.4 99.2 99.7 95.8 96.6 97.1 95.5
P031 260 1/8 92.2 93.0 93.6 94.7 92.7 93.7 93.9 93.5
P093 180 1/8 97.4 100.0 100.0 100.0 96.4 100.0 100.0 100.0

average: 86.6 90.5 92.0 93.6 83.5 87.1 87.5 84.6

average (after iteration): 89.2 92.0 93.0 95.2 86.0 88.8 88.5 83.1

Table 1: Percentage of correctly estimated local tempi for the
experiment based on original MIDI files (constant tempo) and
distorted MIDI files for kernel sizes KS = 4, 6, 8, 12 sec.

Anyway, the tempo estimates for the original MIDIs

with constant tempo only serve as reference values for

the second part of our experiment. Using the distorted

MIDIs, we again compute the maximizing tempo param-

eter τt ∈ Θ for each time position. Now, these values

are compared to the time-dependent distorted tempo val-

ues that can be determined from the warping procedure.

Analogous to the left part, the right part of Table 1 shows

the percentage of correctly estimated local tempi for the

distorted case. The crucial point is that even when using

strongly distorted MIDIs, the quality of the tempo estima-

tions only slightly decreases. For C022, the tempo estima-

tion is correct for 73.9% of the time parameters when using

a kernel size of 4 sec (compared to 74.5% in the original

case). Averaging over all pieces, the percentage decreases

from 86.6% (original MIDIs) to 83.5% (distorted MIDIs),

for KS = 4 sec. This clearly demonstrates that our concept

allows for capturing even significant tempo changes. As

mentioned above, using longer kernels naturally stabilizes

the tempo estimation in the case of constant tempo. This,

however, does not hold when having music with constantly

changing tempo. For example, looking at the results for the

distorted MIDI of C044 (Rimski-Korsakov, The Flight of

the Bumble Bee), we can note a drop from 82.6% (4 sec
kernel) to 59.8% (12 sec kernel).

Furthermore, we investigated the iterative approach al-

ready sketched for the Brahms example, see Fig 3b. Here,

we use the PLP curve as basis for computing a second

tempogram from which the tempo estimation is derived.

As indicated by the last line of Table 1, this iteration in-

deed yields an improvement for the tempo estimation for

the original as well as the distorted MIDI files. For exam-

ple, in the distorted case with KS = 4 sec the estimation

rate raises from 83.5% (tempogram based on ∆̄) to 86.0%
(tempogram based on Γ).

5. CONCLUSIONS

In this paper, we introduced a novel concept for extracting

the predominant local pulse even from music with weak

non-percussive note onsets and strongly fluctuating tempo.

We indicated and discussed various application scenarios

ranging from pulse tracking, periodicity enhancement of

novelty curves, and tempo tracking, where our mid-level

representation yields robust estimations. Furthermore, our

representation allows for incorporating prior knowledge on

the expected tempo range to adjust to different pulse lev-

els. In the future, we will use our PLP concept for sup-

porting higher-level music tasks such as music synchro-

nization, tempo and meter estimation, onset detection, as

well as rhythm-based audio segmentation. In particular

the sketched iterative approach, as first experiments show,

constitutes a powerful concept for such applications.
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ABSTRACT

Discovering music that we like rarely happens as a result
of a directed search. Except for the case where we have
exact meta data at hand it is hard to articulate what song
is attractive to us. Therefore it is essential to develop and
evaluate systems that support guided exploratory browsing
of the music space.

While a number of algorithms for organizing music col-
lections according to a given similarity measure have been
applied successfully, the generated structure is usually only
presented visually and listening requires cumbersome skip-
ping through the individual pieces.

To close this media gap we describe an immersive mul-
timodal exploration environment which extends the pre-
sentation of a song collection in a video-game-like virtual
3-D landscape by carefully adjusted spatialized plackback
of songs. The user can freely navigate through the virtual
world guided by the acoustic clues surrounding him.

Observing his interaction with the environment the sys-
tem furthermore learns the user’s way of structuring his
collection by adapting a weighted combination of a wide
range of integrated content-based, meta-data-based and col-
laborative similarity measures.

Our evaluation proves the importance of auditory feed-
back for music exploration and shows that our system is
capable of adjusting to different notions of similarity.

1. INTRODUCTION

Early work in Music Information Retrieval primarily con-
centrated on the development and evaluation of systems to
support the identification of songs in a collection given a
well-formulated query. According to Cunningham [1], this
retrieval paradigm hardly matches the way we usually look
for CDs in a music shop. Instead of searching for a ded-
icated album, participants in a user study showed a more
exploratory browsing behaviour, which can be summarized
as “shopping around” in contrast to “shopping for”. This
exploratory behaviour is however not completely chaotic:
Users are reported to prefer some sort of structure in a mu-
sic collection (e.g. a categorization according to genres),

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

as long as this organization is intuitively understandable to
them.

Even having a specific song in mind, we may find it dif-
ficult to articulate the information demand properly, if the
name of the artist and the song title are unknown. Query
by Example approaches like Query by Humming can only
partly bridge this media discontinuity gap.

These reasons have led to an increased interest in ex-
ploration environments for music over the last years [2–
4]. Most of theses approaches focus on visualizing a mu-
sic collection with only standard playback functionality,
which results in a media discontinuity problem in the oppo-
site direction and does not exploit the human’s capability
to orientate himself in a complex environment of simulta-
neously playing spatialized sounds.

Therefore, we developed and evaluated an exploration
prototype that provides an immersive virtual environment,
in which the user can navigate guided by acoustic clues
from song playbacks surrounding him.

As in previous approaches, the placement of pieces in
this environment is based on a similarity function. The
notion of similarity is known to be multifaceted, highly
user-dependent and also influenced by the song collection
at hand. We therefore allow the user to move songs in
the environment as well as raise or lower borders between
song clusters. Observing the user’s interaction with the
landscape we furthermore adapt a linear combination of
content-based and collaborative similarity measures to best
fit his understanding of similarity.

To our knowledge our prototype is therewith the first
multimodal exploration environment which integrates an
immersive virtual 3D-landscape of clustered songs with
spatialized audio playback respecting humans’ auditory per-
ception limitations and furthermore adapts to the user’s
strategy of organizing his collection by learning the weights
of a wide range of different music similarity measures.

In the next section we give a brief overview of related
work on exploration environments for music collections.
Then we list the integrated base similarity functions used
as components of a user-adaptive similarity measure. The
following section describes our exploration environment in
detail. We continue with the explanation of the similar-
ity measure adaption process, which is followed by results
from an qualitative and quantitative evaluation of our sys-
tem and concluded by some final remarks and an outlook
on further research.

195



Poster Session 2

2. RELATED WORK

Over the last years, a number of proposals for visualizing
music collections have been made.

Pampalk et al. reduce the audio signal of a song to the
median of frame-based Fluctuation Patterns, which model
loudness periodicities in different frequency bands of the
signal [5]. These features are used to train a small-size
rectangular Self-Organizing Map (SOM). They interpret
the estimated song densities of the cells as the height pro-
file of a map. Applying an appropriate color map gener-
ates an intuitive visualization of similar song clusters posi-
tioned on “Islands of Music” separated by blue water.

The approach by Moerchen et al. is conceptually simi-
lar [7]. Their work mainly differs in the use of a compact
but highly discriminative content-based feature set and the
distribution of the collection items over a larger, emer-
gent SOM. Still, Moerchen et al. do not integrate any kind
of acoustic presentation besides a standard playback func-
tionality of a selected song.

In contrast to this, Hamanaka and Lee focus on audio-
only exploration of a given song set [8] without the need
for a display. By spatializing songs according to different
pre-defined allocation schemes, a user wearing a special
headphone has the impression of being surrounded by si-
multaneously playing sound sources from different direc-
tions. Sensors mounted on the headphone detect the move-
ment of the head and allow the user to change focus to
songs he perceives from left or right. This interaction pro-
motes the impression of an immersive virtual environment.
Additionally, he can narrow the range of sounding sources
by putting his hands behind the ear and thereby fading out
songs that are not placed directly in front of him. This re-
sembles the focus of perception mechanism we introduced
in [9] and supports humans’ ability to concentrate on spe-
cific sounds in a complex mixture, known as the cocktail
party effect.

To our knowledge, the approach by Knees et al. is the
first one that combines SOM-based structuring of music
collections with three-dimensional visualization and au-
ralization to an immersive multimodal exploration envi-
ronment [10]. Their work extends the Island of Music
metaphor by using the smoothed height profile of SOM
cells to generate a virtual 3D-landscape that the user can
intuitively explore. Songs in the neighborhood of the cur-
rent position sound from the respective direction. Knees
and et. do not implement a focus mechanism, which seems
to be critized by one of the comments in their user study,
that asks for a larger landscape especially when facing
crowded regions.

All of the above exploration environments quantify sim-
ilarity between songs according to a fixed measure, that is
supposed to reflect a generic similarity understanding by
the average user. Recognizing the diversity of the similar-
ity notion, Pampalk et al. align three SOMs representing
timbral, rhythmic and metadata-provided aspects and al-
low the user to gradually change between these presenta-
tions [11].

Baumann linearly combines content-based similarity

with cultural similarity and text-based similarity of the lyr-
ics [12]. The user can adjust the weights of this trimodal
measure by moving a virtual joystick into the direction of
the favoured similarity aspect.

Instead of forcing the user to learn the semantics of dif-
ferent similarity measures and to decide for the individual
importance of them, we propose a machine learning strat-
egy that induces the weights of each component from the
user’s interaction with our immersive multimodal explo-
ration environment.

Figure 1 depicts the stages involved in generating and
adapting this environment. The following sections describe
these phases in detail.

3. SIMILARITY

To model a user’s notion of similarity as precisely as pos-
sible, it is mandatory to combine a number of base similar-
ity measures covering different musical aspects and let the
system adapt their weights.

We therefore decided to integrate timbral similarity mea-
sures (based on stochastic MFCC models as proposed by
Logan/Salomon [13] and Aucouturier/Pachet [14] or the
20-feature set proposed by Moerchen et al. [7]) as well as
more rhythm-based measures (Fluctuation Patters and Pe-
riodicity Histograms [11]). Furthermore we calculate the
average and variance of 15 frame-based audio features as
provided by the MIRtoolbox library [15]. These features
are of varying complexity, ranging from simple RMS val-
ues over spectral centroids and roughness measures to key
clarity and tempo estimates.

Additionally, we use ID3 metadata to make contextual
information available. In particular, we calculate the time
period between the publication of two pieces. To group
songs by the same artist even in the commonly encountered
presence of small typing errors, we furthermore calculate
the edit distance between ID3 artist strings.

These similarity measures are complemented by three
collaborative approaches based on direct last.fm similarity
links, last.fm top tags and co-occurrence on playlists pub-
lished on Art of the Mix.

last.fm offers the compilation of recommended tracks
to a personalized music stream based on the user’s profile.
This requires the establishment of similarity links between
tracks. last.fm allows access to this information by a web
service that returns a number of similar tracks to a given
song. Each of these similar tracks is assigned a match
value that quantifies the degree of similarity scaled to 100
for the most similar song. We consider the presence of a di-
rect similarity link as a strong indication of similarity, even
if the match value might be low. Therefore we transform
the match score with a compressed exponential function to
a distance value. Averaging the mutual distances to guar-
antee symmetry leads to the following calculation for two
tracks tri and trj :

dDL(tri, trj) = 0.5(e−cDL·
mstri (trj)

100 + e−cDL·
mstrj (tri)

100 ),

where mstri(trj) denotes the match score of track trj in
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Figure 1. Data transformation stages for building and adapting the exploration environment.

the list of similar tracks to track tri if present and 0 oth-
erwise. We empirically chose a value of cDL = 5 for the
compression factor.

While a track-based similarity measure is very specific,
it may be difficult to find enough collaborative data for a
reliable estimate. We therefore calculate the distance be-
tween the artists of two songs in the same way as above and
combine it linearly with the track-based measure weighting
the more precise track distance double.

Instead of assigning fixed genre categories to songs,
last.fm allows users to tag tracks with arbitrary keywords
favouring the emergence of a folksonomy over the defini-
tion of a static genre hierarchy. The comparison of these
song descriptions is another valueable source of similarity.
Retrieving the top tags for a song results in a list ranked
according to the frequency used to annotate the song. Un-
fortunately, last.fm’s count attribute does not quantify
this per-track frequency but the overall popularity of a tag.
Lacking further information, we consider the tags as nat-
ural language terms in a text about the track. This allows
us to assume that the tag distribution follows Zipf’s law
and approximate tag frequencies by a Zipfian density func-
tion. Likewise, we do not have access to the ratio of tracks
that are tagged with a certain keyword and have to estimate
the inverse document frequency on the basis of the overall
popularity of a tag.

These approximations can be used to weight the impor-
tance of a tag for a song according to the standard tf·idf
scheme. The track-based top tag-similarity between two
songs can finally be calculated as the cosine between a-
ligned weight vectors. For the same reasons as above we
also calculate top tag-similarity on artist level.

The last distance calculation we derive from collbora-
tive data is based on co-occurrences of songs on playlists
(called mixes) that are published by users on the Art of the
Mix portal 1 . We follow the assumption that two pieces
occuring on the same list fit the same taste and can be con-
sidered as similar. To quantify this notion we use a simple
overlap distance measure:

dAotM (si, sj) = 1− |M(si) ∩M(sj)|
min{|M(si)|, |M(sj)|}

,

whereM(si) denotes the set of mixes that contain song si.
As done for the other collaborative measures, we combine
this distance with its artist-based variant.

1 www.artofthemix.org

Since some of the presented measures (like Logan/Sa-
lomon) are based on pairwise comparisons between songs,
the composed distance values are arranged in a (symmet-
ric) matrix. As the SOM training algorithm requires the
representation of each item as a feature vector in Euclidean
space, we apply multi-dimensional scaling (MDS) to find
d-dimensional coordinates for each song such that the Eu-
clidean distance between two song vectors resembles the
distance matrix value (see figure 1). In our experiments we
chose a value of d = 20, which matches the dimensionality
of the data space used for the MusicMiner-SOM [7].

4. EXPLORATION ENVIRONMENT

4.1 SOM Training

As humans are used to intuitively estimate distances be-
tween points on a 2-dimensional plane, dimensionality re-
duction techniques that map high-dimensional data to low-
dimensional representations while preserving distances as
much as possible are popular data visualization strategies.

One of these techniques is the Self-Organizing Map
(SOM) proposed by Kohonen,which arranges disjoint cells
{yi} on a usually rectangular grid. Each yi is associated
with a model vector mi from data space. We initialize
the model vectors with linear combinations of the first two
principial components of the song feature values according
to the grid coordinate of their cell.

In each iteration t we randomly choose a data vector xj

and identify the cell bm with the closest model vector to
xj , i.e. that minimizes ||xj − mbm||. The model vectors
of this Best Matching Unit bm and its neighborhood are
moved towards xj according to the following equation:

mi(t+ 1) = mi(t) + α(t) · hi,bm(t)[xj −mi(t)],

where α(t) denotes the learning rate at time t and hi,bm(t)
quantifies the distance between xi and bm, usually by some
Gaussian function centered around bm. Since α(t) and
hi,bm(t) decrease with each iteration and thereby weaken
the adaption process with time, the map converges to a con-
figuration where the Best Matching Units of similar data
points are located close to each other.

In contrast to clustering algorithms like k-Means, a SOM
is also capable of adaquately representing data points that
lie in between clusters and reveals the macro-structure of
the data space by retaining similarity relationships between
clusters themselves.
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The distribution of model vectors over the grid that is
generated on the fly during the adaption contains additional
valueable information about the similarity space: This in-
formation can be visualized by the U-Matrix [6], which as-
signs to each cell the average distance of its model vector
to the model vectors of its neighbors. High values thereby
indicate clear borders separating coherent regions of simi-
lar objects on the map.

4.2 Visual Presentation

Displaying these U-Matrix values and placing songs at their
Best Matching Unit already yields an untuitively under-
standable visualization of the collection. But if we inter-
pret the U-Matrix values as heights of a landscape we can
generate a 3-D terrain and allow the user to leave his bird’s
eye-view on the music space in favor of becoming part in
an immersive virtual environment.

Our prototype is based on Microsoft’s game framework
XNA 3.0 to realize efficient state-of-the-art visualization.
We generate a high-resolution terrain mesh by bilinear in-
terpolation of the U-Matrix height values and use a cus-
tomized shader for visualization which appropriately com-
bines sand, grass, mountain and snow textures according
to the height.

By default, songs are visualized as small cubes textured
with the cover image of their album if available. The po-
sition of a cube is mainly determined by the coordinates
of the song’s Best Matching Unit. To avoid clumping at
grid points, we slightly move it towards the location in the
immediate neighborhood where the bilinearly interpolated
model vector is closest to the feature vector of the song.

The user can freely run through the landscape, move his
head around and lift up to get an overview of the scenery.
Figure 2 shows a screenshot of our environment taken from
different elevation levels. The user is standing in (or over)
a valley that contains songs from the German hiphop group
Fanta4. As can be seen, these songs are clearly separated
from different pieces by surrounding hills.

4.3 Auditory Presentation

Music is described best by music. This asks for the pres-
ence of acoustic information as guidance in the exploration
process: Since humans are used to differentiate well be-
tween sound sources from different directions, exposing
the user to simultaneously playing spatialized music facil-
itates efficient and well-informed navigation through the
collection.

Fortunately, the above virtual environment can be ex-
tended naturally to incorporate the presentation of acoustic
information, simply by associating each cube with a sound
source playing the song from its location in the landscape.

As described in [9] the unrestricted simultaneous play-
back of many songs quickly overwhelms the user’s audi-
tory system and confuses more than it helps. Following
ideas from visual perception we therefore define the point
the user is currently looking at as the Focus of Perception
and attenuate the volume of songs the more they deviate
from the view direction. To allow for broad “listening

around” as well as for clearly focussing on the sound in
front we model the strength of this attenuation by a Gaus-
sian function with user-adjustable variance. More precisely,
the gain factor due to perception focussing is given as fol-
lows:

gPF (ϕ) = e
−ϕ2

σ2 ,

where ϕ denotes the angle between the direction to the
song and the view direction and σ2 = −AoP

ln(gAoP ) is the vari-
ance for the user-adjustable Angle of PerceptionAoP , such
that gPF (AoP ) = gAoP .

We describe the influence of a song’s distance to its gain
by an inverse distance model:

gDist(d) = min(1,
decSpeed

d
− decSpeed

minDist
+ 1),

where d is the distance to the song, decSpeed parame-
terizes the speed of gain decrease per distance unit and
minDist denotes the distance at which no attenuation takes
place.

To summarize, the overall gain for a song s at location
~ps assuming a listener’s position ~p and a view direction ~vd
is the product of its gain influences:

g(s, ~p) = gDist(||~p−~ps||)·gPF ( 6 ( ~vd, ~ps−~p))·gmuff (s, ~p).

gmuff (s, ~p) reduces the gain for a song, that is hidden be-
hind a rise of the terrain. To generate the impression of a
muffled sound this is complemented by a highcut filter.

Still, the simultaneous playback of all songs in the col-
lection is too demanding (as well from an computational as
from a perceptual point of view). We tested several song
selection criteria and decided for a simple approach that
guarantees perceptual separability and does not change the
set of active sources when the user rotates his head: First,
all songs in the neighborhood of the listener’s position are
sorted according to their gain factor. Following this order
we then successively activate songs as long as they do not
sound from a direction similar to the one of already playing
songs.

4.4 User Interaction

A standard xBox 360 game controller can be used to nav-
igate in the virtual world. Besides this, the user can cus-
tomize the landscape as follows:

• Songs that seem to be misplaced in the opinion of
the user can be moved easily.

• Alternatively, songs can be released to let the system
find a new location during the next adaption cycle.

• Landmarks can be placed to emphasize and easily
recover locations on the terrain. The user can choose
between different sign types that can be labeled or
textured with arbritary images. Figure 2 shows two
triangular landmarks.

• The terrain can be altered by raising or lowering its
height at the position the user points to. This allows
the formation of new separating hills between song
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Figure 2. Screenshot of the exploration prototype: Views from different elevation levels

clusters that are perceived as different or the remove-
ment of borders between areas that the user judges
similar.

5. USER ADAPTATION

As Cunningham observes, music listeners organize their
personal collections according to different criteria. Some
may sort their albums by the year of publication, some may
cluster their music by genre, for others rhythmic content
plays a dominant role. An exploration environment should
be flexible enough to follow the user’s organization strat-
egy.

Instead of asking the user to articulate his structure prin-
ciples explicitly we decided to learn his similarity notion
from his interaction with the environment. Adapting the
weights in the linear similarity model properly allows us
to reposition songs that have been released by the user or
to place new songs that are added to the collection.

The user can build or destroy separating hills between
songs. To account for these terrain changes, we numeri-
cally integrate over the height profile (hn) between the lo-
cations pi and pj and compare this to the situation before
the change (ho):

tdt(si, sj) =
1

||~pi − ~pj ||
·

(∫ ~pj

~pi

(hn(~p)− ho(~p))d~p

)

The combination of tdt with the Euclidean distance be-
tween the (interpolated) model vectors of two songs’ loca-
tions on the map is stored in a target distance matrix. Each
entry of this matrix is considered a training case for a linear
regression learner, that adapts the weighting of the imple-
mented base distances to approximate the target distance.

As figure 1 shows, the updated similarity model is sub-
sequently used to rebuild the environment by the same pro-
cess chain as before. To avoid drastic changes in the ex-
ploration space that potentially disorientate the user, we
initialize the vector representation of each fixed song by
its old value before the MDS optimization starts. Like-
wise, we guarantee topographic stability of the SOM by

constantly taking a song’s old location as its Best Match-
ing Unit during training.

6. EVALUATION

We conducted a user study with nine participants showing
different music taste, listening habits and experience with
computer games.

In a first experiment we aurally presented an unknown
song and measured the time needed to find it in a collection
of about 100 tracks, that were randomly distributed over a
flat exploration plane. Cover and metadata of the wanted
song were not given to the user. We repeated the task for a
different song and collection, this time providing the SOM-
based organization. To eliminate effects from the choice of
song and collection, we shuffled task and data for different
participants.

A similar pair of experiments investigates the impor-
tance of spatialized acoustic clues when navigating through
the exploration space by comparing this feature with stan-
dard media player functionality which requires to explic-
itly start and stop the playback of a song.

We found reductions in search time of 61% and 58%
on average, which demonstrate, how significantly the user
benefits from a well structured collection and acoustic clues
during the exploration.

The last group of experiments evaluate the adaptation
capabilities of our system to a user’s notion of similarity:
We asked the participants to customize a collection of 20
tracks by moving the songs and changing the terrain struc-
ture. Similar to a leave-one-out evaluation we successively
release one song and compare its original position to the
location that would be assigned by the SOM training. This
placement error is calculated with and without executing
the adaptation procedure. The first data series in figure 3
shows the relative difference between these two runs and
reveals, that generally the adaptation works well, but re-
duces the placement error only slightly. One reason for
that might be the that the initial similarity measure already
captured the user’s notion rather well.
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Figure 3. Relative reduction of placement error by adap-
tation to users’ similarity notion

Therefore, we asked the users to organize the collec-
tion according to tempo independent of the genre and again
computed the relative improvement in placement error. As
can be seen from the second data series in figure 3 our sys-
tem also adapts generally well to this more drastic change
in similarity notion.

After these quantitative experiments we handed out an
extensive questionnaire for qualitative evaluation. Study
participants consistently judged the usability of the system
as high but repeatedly proposed the addition of a 2-D map
view to the environment to avoid disorientation in the ex-
ploration landscape.

7. CONCLUSION AND OUTLOOK

We presented an immersive multimodal exploration envi-
ronment, that visualizes and auralizes music collections or-
ganized according to an user-adaptable similarity model,
which combines content-based, meta-data-based and col-
laborative similarity measures. While our evaluation shows
the general tractability of our approach, some open ques-
tions for further research remain:

So far, we did not focus on scalability issues in our
work. We found, that collections of up to 400 songs are
still manageable in our environment. Larger numbers of
tracks require some form of hierarchical organization to
remain accessible. We may can adopt ideas from [16] to
extend the SOM-based placement algorithm.

Since they can model more complex relationships than
vector-based distances, we deliberately integrated similar-
ity measures that require pairwise computation of distances.
Because of this the complexity of the similarity calculation
stage is in O(n2). To alleviate the scalability problems
arising from this, one could restrict the calculation to some
anchor songs. The MDS stage is already prepared to han-
dle sparse distance matrices.

As shown by the evaluation, the adaption to the user’s
similarity notion still has room for improvement. A rea-
son for this might be that a linear model is not expressive
enough to capture the intended combination of base simi-
larities. More complex models should therefore be investi-
gated in future research.
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ABSTRACT 

This paper proposes a novel approach to extract the 
pitches of singing voices from monaural polyphonic 
songs. The hidden Markov model (HMM) is adopted to 
model the transition between adjacent singing pitches in 
time, and the relationships between melody and its chord, 
which is implicitly represented by features extracted from 
the spectrum. Moreover, another set of features which 
represents the energy distribution of the enhanced singing 
harmonic structure is proposed by applying a normalized 
sub-harmonic summation technique. By using these two 
feature sets with complementary characteristics, a 2-
stream HMM is constructed for singing pitch extraction. 
Quantitative evaluation shows that the proposed system 
outperforms the compared approaches for singing pitch 
extraction from polyphonic songs. 

1. INTRODUCTION 

Melody, usually represented by the pitch contour of a 
lead vocal in a song, is considered as one of the most im-
portant elements of a song. It is broadly used in various 
applications, including singing voice separation, music 
retrieval, and musical genre classification. 

Since Goto [1] proposed the first melody extraction 
system by employing a parametric model trained by sta-
tistical methods in 1999, more and more work has been 
proposed in the literature [2-8]. Because harmonic struc-
tures of a singing voice are very noticeable in spectro-
gram even in a polyphonic song, they are commonly used 
as cues for extracting the singing melody [1][4-6]. How-
ever, they neglect the contextual information of music. 

Ryynänen et al. [8] used both acoustic and musicolog-
ical models to generate hidden Markov models (HMMs) 
for a singing melody transcription system. The musico-
logical models determine the transition probabilities be-
tween the adjacent notes. Li et al. [2] also utilized an 
HMM where the transition probability was estimated 

from the labeled training data. However, they only consi-
dered the transition between adjacent notes; the concur-
rent pitches generated by other musical instruments, such 
as chords, were not considered. 

While the concurrent pitches are usually the obstacles 
in singing pitch extraction, we try to utilize them as the 
cues to extract the melody. Generally speaking, melody is 
composed of a series of notes and is decorated by chords. 
The chords here represent the concurrent pitches accom-
panying the melody. These notes and chords progress ac-
cording to some underlying music rules to make the song 
euphonious. Therefore, we use an HMM to learn these 
rules from actual song data by observing their spectro-
grams. Note that we do not identify the chords explicitly. 
Instead, we use the energy distribution of each semitone 
to train the contextual audio model. In addition, in order 
to utilize the harmonics information as cues to extract the 
singing pitches, we also model the energy distribution of 
harmonics by using the proposed normalized sub-
harmonic summation (NSHS) to enhance the harmonic 
structures of the sound sources especially for those of the 
singing voices. By synergizing these two techniques, the 
accuracy of singing pitch extraction is improved signifi-
cantly. 

The rest of this paper is organized as follows. Section 
2 describes the proposed system in detail. The experi-
mental results are presented in section 3, and section 4 
concludes this work with possible future directions. 

2. SYSTEM DESCRIPTION 

Fig. 1 shows the overview of the proposed system. Two 
streams of features are extracted from the spectrogram 
and the NSHS map, respectively, of the input polyphonic 
song. A 2-stream HMM is then employed to decode the 
input songs into the most likely unbroken pitch vectors. 
On the other hand, the MFCCs (Mel-frequency cepstral 
coefficients) are extracted to perform the voiced/non-
voiced detection. Lastly, the singing pitch vectors are 
produced by integrating the results of these two 
processes. The following subsections explain these 
blocks in detail. 

2.1 Features Extraction from a Spectrum 

This block extracts two types of features, including 
MFCCs and ESI (Energy at Semitones of Interests). 
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MFCCs are the features for a 2-state HMM for 
voiced/non-voiced detection. ESI is the 1st-stream fea-
ture for a 2-stream HMM for pitch extraction. Since 
most of the songs nowadays follow the twelve-tone 
equal temperament, it is intuitive to employ semitone 
scale to model the relations between melody and chords. 
For each integer semitone of interests within the 
range [ ]72,40 , we identify its maximum energy as an 
element of the feature vector. Take semitone 69 for ex-
ample, the search range in semitone is [ ]5.69,5.68 , cor-
responding to a frequency bin of [ ]89.452,47.427  in 
terms of Hertz. Then we find the maximum power spec-
trum within this range as the feature associated with se-
mitone 69. Since there are 33 elements within semitone 
of interests, the length of the feature vector of ESI is also 
33. 

More specifically, the ESI computed from a spectrum 
in the time frame t  can be obtained as follows: 
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where ( )∗tP  is the power spectrum calculated from short 
time Fourier transform (STFT), 1,..,1,0 −= Mm , M  is 
the total number of semitones that are taken into account, 
and mf  is the frequency of m th semitone in the selected 
pitch range. 

Note that we also need to record the maximizing fre-
quency within each frequency bin in order to reconstruct 
the most likely pitch contours. 

2.2 HMM-based Voiced/Non-voiced Detection 

This block employs a continuous 2-state HMM to decode 
the mixture input into voiced and non-voiced segments, 

similar to the one proposed by Fujihara et al. [9]. Note 
that the “voiced” here indicates the voiced singing voice, 
and “non-voiced” indicates the unvoiced singing voice 
and music accompaniments. Given the MFCC feature 
vectors },,,{ 0 ⋅⋅⋅⋅⋅⋅= txxX  of the input mixtures, the 
problem is to find the most probable sequence of 
voiced/non-voiced states, },,,{ˆ
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where )|( sxp  is the output likelihood of a state s , 
)|( 1−tt ssp  is the state transition probability from state 

1−ts  to ts , and )( tsp  is the prior of the state ts . Note 
that )|( 1−tt ssp  and )( tsp  can be obtained from the ac-
tual song data with manual annotations. 

2.3 Features Extraction from NSHS 

This block extracts the 2nd-stream feature vector which 
represents the energy distributions of the enhanced har-
monic structures of singing voices. The harmonic struc-
tures can be enhanced by sub-harmonic summation (SHS) 
proposed by Hermes [10]: 
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where ( )fHt  is the sub-harmonic summation value of  
the frequency f  at time frame t , ( )∗tP  is the power 
spectrum calculated from STFT, n  is the index of har-
monic components, N  is the number of the harmonic 
components in consideration, and nh  is the weight indi-
cating the contribution of the n th harmonic component. 
Usually we set 1−= n

n hh , where 1≤h . In order to fur-
ther enhance the harmonics of singing voices, we propose 
the use of normalized SHS (NSHS)  defined as follows: 
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where the number of harmonic components fN  depend 
on the frequency under consideration: 
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with sf being the sampling rate. The reason of the mod-
ification is based on the observation that most of the 
energy in a song in located at the low frequency bins, and 
the energy of the harmonic structures of the singing voice 
seems to decay slower than that of instruments [2]. 
Therefore, when more harmonic components are consi-
dered, energy of the vocal sounds is further strengthened. 
Although some percussive instruments (e.g. cymbals) 
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Figure 1. System overview 
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present high energy at higher frequency bins, their non-
harmonic nature does not affect the NSHS much. 

Figure 2 illustrates the energy distributions of a tradi-
tional spectrogram, original SHS map, and the proposed 
NSHS map. By comparing the spectrogram in 2(b) and 
the SHS map in 2(c), it is obvious that most of the energy 
of accompaniments in the spectrogram is attenuated in 
the SHS map. However, the energy in the lower frequen-
cy bins remains high. The proposed NSHS map shown in 
2(d) further attenuates the low-frequency energy and en-
hances the sub-harmonic structure of the singing voice. 
As a result, after the enhancement by the NSHS map, the 
pitch of the singing voice can be extracted much easier. 

Based on the proposed NSHS, we can extract a 33-
element feature vector of ESI for each given frame, as 
explained in Section 2.1. The feature vector is sent to the 
2-stream HMM for pitch extraction. 

2.4 2-Stream HMM-based Pitch Extraction 

We employ a 2-stream HMM to model the relationship 
between the adjacent melody pitches and their corres-
ponding audio context. Given the 1st-stream ESI feature 
vectors },,,{ 0 ⋅⋅⋅⋅⋅⋅= tvvV  from spectrogram and the 2nd-
stream ESI feature vectors },,,{ 0 ⋅⋅⋅⋅⋅⋅= tccC  from NSHS 
map, our goal is to find the most likely sequence of pitch 
states, },,,{ˆ
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where )|( 1−tt rrp  is the state transition probability from 

pitch state 1−tr  to tr , )( trp  is the prior of the pitch state 

tr , and )|,( rcvp  is the joint output likelihood of the 
pitch state r  defined as: 

)|()|()|,( rcprvprcvp cv= ,                  (7) 

where )|( rvpv  and )|( rcpc  are the state likelihoods of 
feature vectors v and c , respectively, given the state r . 
This is a typical multi-stream HMM which is broadly 
used in speech processing [11]. The state likelihoods (or 
conditional observation likelihoods), transition probabili-
ties, and priors of eq. (6) and (7) can all be obtained from 
the actual song data with manually annotated pitch con-
tours. 

Figure 3 shows the benefits of applying a 2-stream 
HMM instead of using a single-stream feature from either 
the spectrum or the NSHS. Each of the plots is a state-
frame likelihood table where the vertical axis indicates 
the pitch state of each semitone and horizontal axis indi-
cates time frames. The likelihood is computed for each 
state and time frame. All likelihood in the same time 
frame is normalized to zero mean and unity variance for 
better visualization. The ideal singing pitches are overlaid 
as solid lines. Figure 3(a) shows )|( rvpv  of each state 
which utilizes audio context as cues to extract the singing 
pitches. Figure 3(b) shows )|( rcpc  of each state which 
indicates the likelihood that an enhanced singing harmon-
ic structure is presented, and Figure 3(c) shows the joint 
likelihood )|()|( rcprvp cv . Figure 3(d) and (e) illustrate 
the overall maximum likelihoods (up to a given frame 
time and pitch state) of single-stream HMMs using fea-
ture vectors V  and C , respectively. More specifically, 
the value of each point in the figure represents the max-
imized accumulated likelihood of the previous pitch 
states sequence including the transition probabilities.  
Again, for better visualization, each column in these two 
tables is normalized to have zero mean and unity variance. 
The joint likelihood using the 2-stream HMM is shown in 
Figure 3(f). It can be observed that the likelihood of the 
singing pitch states at around 1.2 and 5.6 seconds are low 
in Figure 3(d), but they are recovered in Figure 3(f) by 
combining with the likelihood in Figure 3(e). In addition, 
the likelihood of the states that are not corresponding to 
the singing pitches between 1.5 and 5.3 seconds in Figure 
3(e) are diminished in Figure 3(f) as well. Furthermore, 
both single-stream HMMs exhibit high likelihood for the 
singing pitch states. Therefore, after combining the like-
lihood using the 2-stream HMM, the likelihood of the 
singing pitch states are higher than that of the other states, 
and the pitches of singing voices can thus be extracted 
more accurately. 
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Figure 2. The energy distributions of a sample clip 
Amy_4_05 in MIR-1K dataset at 0 dB SNR. The distri-
butions are computed within the frequency range [80.06, 
538.58], or [39.5, 72.5] in terms of semitones. (a) The 
waveform of the mixture. (b) The spectrogram. (c) The 
SHS map. (d) The proposed NSHS map. (e) The manual-
ly labeled pitch vector of the singing voice.  
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3. EVALUATION 

Two datasets were used to evaluate the proposed ap-
proach. The first one, MIR-1K1, is a publicly available 
dataset proposed in our previous work [12]. It contains 
1000 song clips recorded at 16 kHz sample rate with 16-
bit resolution. The duration of each clip ranges from 4 to 
13 seconds, and the total length of the dataset is 133 mi-
nutes. These clips were extracted from 110 karaoke songs 
which contain a mixed track and a music accompaniment 
track. These songs were selected (from 5000 Chinese pop 
songs) and sung by our colleagues in the lab, consisting 
of 8 females and 11 males. Most of the singers are ama-
teurs with no professional training. The music accompa-
niment and the singing voice were recorded at the left 
and right channels, respectively. The second dataset, 
called commercial set for short, contains 178 song clips 
                                                           
1 The MIR-1K dataset is available at 
http://unvoicedsoundseparation.googlepages.com/mir-1k 
 

from commercial CDs, and the total length of the dataset 
is about 25 minutes. The ground truth of the voiced/non-
voiced segments and pitch values of the singing voices 
were first estimated from the pure singing voice and then 
manually adjusted for these two datasets.  

All songs are mixed at 0 dB SNR, indicates that the 
energy of the music accompaniment is equal to the sing-
ing voice. Note that the SNRs for commercial pop songs 
are usually larger than zero, indicating that our experi-
ments were set to deal with more adversary scenarios 
than the general cases. 

3.1 Evaluation for Voiced/Non-voiced detection 

The evaluation was performed via two-fold cross valida-
tion with the MIR-1K dataset. The dataset was divided 
into two subsets of similar sizes (487 vs. 513, recorded 
by disjoint subjects). In addition, the commercial set was 
also evaluated by using all MIR-1K for training. The rea-
son for not using the commercial set for training the 
voiced/non-voiced model is because its size is too small. 

39-dimensional MFCCs (12 cepstral coefficients plus 
a log energy, together with their first and second deriva-
tives) were extracted from each frame. The MFCCs were 
computed from STFT with a half-overlapped 40-ms 
Hamming window. Cepstral mean subtraction (CMS) 
was used to reduce channel effects. 

Two 32-component GMMs were trained for voiced 
frames and non-voiced frames, respectively. All GMMs 
had diagonal covariance matrices. Parameters of the 
GMMs were initialized via k-means clustering algorithm 
and were iteratively adjusted via expectation-
maximization (EM) algorithm with 30 iterations. Each of 
the GMMs was considered as a state in a fully connected 
2-state HMM, where the transition probabilities and the 
weight of each GMMs were obtained through frame 
counts of the labeled dataset. For a given input song mix-
ture, Viterbi algorithm was used to decode the mixture 
into voiced and non-voiced segments. 

Table 1 shows the performance of voiced/non-voiced 
detection. The precision is the percentage of the frames 
that are correctly classified as voiced over the frames that 
are classified as voiced. The recall is the percentage of 
the frames that are correctly classified as voiced over all 
the voiced frames. The effects of the results will be dis-
cussed in the following subsections.  

3.2 Evaluation for Singing Pitch Extraction 

The MIR-1K dataset was divided into two subsets in the 
same way as subsection 3.1 for two-fold cross validation, 
and the commercial set was evaluated by using all MIR-
1K for training. The spectrum of each frame was com-

 MIR-1K Commercial 
set 

Precision 87.48 % 91.14 % 
Recall 86.03 % 91.78 % 

Overall accuracy 81.52 % 87.12 % 
 
Table 1. Performance of voiced/non-voiced detection 
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Figure 3. The state likelihood and HMM likelihood 
comparison for the clip Amy_4_05 in MIR-1K dataset 
at 0 dB SNR. (a) to (c) and (d) to (f) show the likelih-
ood of contextual audio model, the likelihood of en-
hanced harmonic model, and the join likelihood of state 
likelihood and HMM likelihood, respectively. The solid 
line indicates the manually labeled pitch vector of the 
singing voice. 
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puted from STFT with a half-overlapped 40-ms window 
and zero padding to 142 . In addition, the pitch range for 
computing ESI (for both spectra and NSHS) was [40-0.5, 
72+0.5] in semitones or [80.06, 538.58] in Hertz, which 
is similar to the common singing frequency range used in 
[2]. The compression factor h  for computing NSHS was 
set to 0.99. At last, a 33-dimentional feature vector tv  
from spectra and a 33-dimentional feature vector tc  from 
NSHS were extracted for each frame. 

Two diagonal 8-component GMMs,  VΓ  and CΓ , 
were trained for each of the 33 semitone models by using 
feature vectors tv  and tc , respectively. Parameters of the 
GMMs were initialized via k-means clustering algorithm 
and were iteratively adjusted via EM algorithm with 30 
iterations. Each of the mCV ),( ΓΓ  pairs (with ]32,0[=m )  
was considered as a state in an HMM, where the transi-
tion probabilities and the prior of each GMM were ob-
tained through frame counts of the labeled dataset. For a 
given input mixture, Viterbi algorithm was used to de-
code the mixture into a sequence of pitch states R̂ . By 
tracking the maximizing frequency (which generates ESI 
at each semitone) for each pitch state, we can then recon-
struct the optimum pitch contour. 

In order to evaluate the proposed method, eight other 
approaches were used for comparison. For simplicity, we 
use SPEC and NSHS to indicate ESI that were extracted 
from a spectrum or a NSHS, respectively. In addition, 
HMM, DP, and MAX are used to indicate different 
schemes for extracting the singing pitches. More specifi-
cally, HMM represents the proposed HMM approach; DP 
represents the approach of dynamic programming over 
spectrum/NSHS directly (to be detailed next); MAX is 
simply maximum-picking over spectrum/NSHS. 

The goal of the DP method is to find a path 
[ ]10 ,,,, −⋅⋅⋅⋅⋅⋅= ni ffff  that maximizes the score function: 

( ) ( )∑ ∑
−

=

−

=
−−×−=

1

0

1

1
1,s

n

t

n

t
tttt fffYfcore θθ ,          (8) 

where ( )tt fY  is a feature vector extracted from spec-
trum/NSHS at the frame t  and frequency tf . The first 
term in the score function is the sum of energy of the 
pitches along the path, while the second term controls the 
smoothness of the path with the use of a penalty term θ  
(which is set to 2 in this study). If θ  is larger, then the 
computed path are smoother. In particular, the MAX ap-
proach sets θ  to be zero so that maximizing the above 
objective function is equivalent to maximum-picking of 
the features from spectrum/NSHS of each frame. 

The DP method employs dynamic programming to 
find the maximum of the score function, where the opti-
mum-valued function ),( mtD  is defined as the maximum 
score starting from frame 1  to t , with mft = : 
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k
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θ         (9) 

where n is the number of frames, ]1,1[ −= nt , and 
]32,0[=m . The initial conditions are )(),0( 0 mYmD = , 

and the optimum score is equal to
[ ]

),1(max
32,0

mnD
m

−
∈

. 

Moreover, the “Dressler” approach indicates a melody 
extraction method proposed by Dressler [4] which ranked 
first from 2005 to 2006 in the MIREX task of audio me-
lody extraction. We obtained the software from her for 
comparison purpose. The “Cao” approach indicates the 
method proposed by Cao et al. [5], which was re-
implemented by us for comparison. 

Figure 4 shows the performance comparison for the 
singing pitch extraction. Figure 4(a) shows the raw pitch 
accuracy with ideal voiced/non-voiced detection, where 
the correct rate is computed over the frames that were la-
beled as voiced in the reference files. Figure 4(b) shows 
the raw pitch accuracy with automatically detected 
voiced/non-voiced segments. Figure 4(c) shows the over-
all accuracy where all frames are taken into account for 
computing the correct rate. In other words, Figure 4(a) 
shows the performance of the singing pitch extraction 
alone, assuming ideal voiced/non-voiced detection. On 
the other hand, the Figure 4(b) and (c) shows the perfor-
mance in a practical situation where the results are af-
fected by the errors of voiced/non-voiced detection. 
Since Dressler’s and Cao’s method perform singing voice 
detection implicitly, their performance is only shown for 
the cases of raw pitch and overall accuracy in Figure 4(b) 
and (c). Note that Dressler’s method was designed not 
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Figure 4. Performance comparison for singing pitch ex-
traction. (a) Raw pitch accuracy with ideal voiced/non-
voiced detection. (b) Raw pitch accuracy. (c) Overall 
accuracy. 
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only to extract the melody from vocal songs, but also 
from non-vocal music which contains no singing voice, 
so the performance may not be as good as the other ap-
proaches that solely designed for vocal songs. 

The proposed system achieved 71.10% and 80.24% 
overall accuracy in MIR-1K and commercial set, respec-
tively. Experiments show that performance is significant-
ly improved by applying the proposed HMM and by the 
NSHS in both datasets. Two points are worth noting. 
Firstly, while NSHS enhances the harmonic structures of 
both the singing voices and chords, the energy enhance-
ment of chords is relatively weaker. Therefore, the im-
provement of using HMM over the MAX and DP ap-
proaches is much larger by using spectrum-based ESI 
than NSHS-based. This shows that the chord information 
embedded in spectrum-based ESI does help for extracting 
the singing pitches. Secondly, when spectrum-based ESI 
are replaced by NSHS-based ESI, the performance of 
MAX and DP is improved significantly. It shows that the 
NSHS does help for reducing the interference of non-
singing pitches. By taking the advantages of both ap-
proaches, the proposed method therefore performs signif-
icantly better than the compared approaches. 

4. CONCLUSIONS 

In this paper, we propose a new singing pitch extraction 
system by employing a 2-stream HMM to model the rela-
tion between adjacent notes and between melody and 
chords. By modeling the energy distribution in spectro-
gram and in the proposed NSHS map, the performance is 
significantly improved. Besides, the improvement of the 
performance is quite similar in different datasets which 
confirms the robustness of the proposed approach. 

The proposed NSHS only applies a simple weight 
function for harmonic components; the performance can 
be further improved by optimizing it with the training 
scheme proposed by Klapuri [13]. In addition, the raw 
pitch accuracy with ideal voiced/non-voiced detection of 
the proposed system is much higher than that of the over-
all accuracy (6~8%). Therefore it is also one of our future 
directions to improve the voiced/non-voiced detector by 
not only using MFCCs but also considering the voice vi-
brato information as proposed by Regnier et al. [14].  

It is worth noting that the evaluation is performed by 
using our dataset, MIR-1K, which contains more song 
clips than that used in MIREX (less than 20 minutes, and 
only 7 minutes of them are publicly available). It allows 
researchers to evaluate and compare their systems with 
others easily by using the more comprehensive dataset. 
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ABSTRACT

This research presents a formal user evaluation of a typical
visualization method for content-based music information
retrieval (MIR) systems, and also proposes a novel inter-
face to improve MIR usability. Numerous interfaces to vi-
sualize content-based MIR systems have been proposed,
but reports on user evaluations of such proposed GUIs are
scarce. This research aims to evaluate the effectiveness
of a typical 2-D visualization method for content-based
MIR systems, by conducting comparative user evaluations
against the traditional list-based format to present MIR re-
sults to the user. Based on the observations of the exper-
imental results, we next propose a 3-D visualization sys-
tem, which features a function to specify sub-regions of
the feature space based on genre classification results, and
a function which allows users to select features that are as-
signed to the axes of the 3-D space. Evaluation of this GUI
conclude that the functions of the 3-D system can signif-
icantly improve both the efficiency and usability of MIR
systems.

1. INTRODUCTION

The popularity of online music distribution services have
provided an opportunity for users to access to millions of
songs. Furthermore, the rapid spread of portable devices
with large storage, e.g., the iPod and 3G mobile phones,
has also enabled common users to carry around music col-
lections, which may consist of thousands of songs. These
developments have prompted the need for effective music
information retrieval (MIR) technologies, in order to ease
the user burden to find songs which they want to listen to.

It is obvious that, for any MIR system, the usability of
its interface is essential for the user to efficiently search
for songs which match their preferences. However, while
various GUIs for MIR systems have been proposed, reports
on user evaluations of such GUIs are scarce, hence, the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

effectiveness and/or problems of visualizing MIR systems
are yet to be formally clarified.

The objective of this research is to evaluate the effec-
tiveness of MIR visualization, and derive what functions
are necessary to improve its usability. In order to accom-
plish this objective, we first conduct a comparative user
experiment between a typical 2-D visualization MIR in-
terface, against the traditional list-based format. Through
the analysis of this experiment, we verify if visualization
actually contributes to improve the efficiency of MIR, and
also derive potential problems of visualization in general.
Based on the knowledge obtained from this analysis, we
next propose an extended 3-D interface with several new
functions, which aim to resolve the problems that have be-
come apparent from the results of the prior experiment.
Comparative experiments with the previous GUI indicate
that the additional functions contribute to improve the effi-
ciency and entertainability of MIR systems.

2. RELATED WORK
One of the initial research efforts to visualize content-based
MIR is the Islands of Music application, developed by Pam-
palk [1]. This application utilizes self-organized maps to
plot songs on a two-dimensional feature space, and ex-
presses populated clusters in the feature space by illustrat-
ing “islands” of music. Furthermore, Lamere et al. have
developed a visualization application called Search Inside
the Music [2], which calculates audio-based similarity be-
tween songs in the music collection, and locates highly
similar songs adjacently in a 3-D feature space.

Recently, there have been numerous reports to collect
meta-information of songs and/or artists from the Web, and
display the collected information on the user interface of
MIR systems, to support the users’ music searching pro-
cess. MusicRainbow [3] is an application designed to dis-
cover artists, which maps similar artists on a circular “rain-
bow.” The artist similarity is calculated based on acoustic
analysis of the artists’ songs. Labels of the artists are ap-
plied by analyzing Web information retrieved by using the
name of the artists as the search query. Other applications
to visualize music with web-based metadata include Mu-
sicSun [4], an extended application of MusicRainbow, as
well as the work presented in [5, 6], etc.

As clear from the above descriptions of existing work,
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many proposals of user interfaces for MIR systems have
been made in recent years. However, thorough user eval-
uations of such interfaces are scarce. Therefore, it is not
apparent that the various functions, user interface designs,
etc. which have been proposed in previous work, actually
contribute to improve the overall usability of MIR systems.

Considering these problems, we set the motivation of
our research to first evaluate the effectiveness of typical vi-
sualization interfaces, by comparison with the traditional
list-based format to output MIR results. Furthermore, through
the analysis of user logs of the experiment, we will clarify
the advantages and drawbacks of visualization, and utilize
this analysis to further improve usability of MIR visualiza-
tion interfaces.

3. EVALUATION OF 2-D INTERFACE

Our first experiment is to evaluate a prototype 2-D inter-
face for content-based MIR systems, by comparison with
the traditional list-based interface. For the following ex-
periment, 16 subjects (all Japanese students in computer
science) have participated to work on an experiment task
using the MIR systems. Details of the systems, and the
evaluation experiment are as follows.

3.1 Systems

3.1.1 Feature extraction

For both MIR systems used in the experiment, the songs
in the music collection are vectorized, based on the TreeQ
algorithm developed by Foote [7]. For the initial training
data of TreeQ, we use the songs and sub-genre metadata
of the RWC Genre Database [8]. MFCCs are extracted as
the features used for the TreeQ method. In order to op-
timize the feature space to suit the characteristics of the
experimental music collection, we re-construct the feature
space based on the algorithm proposed by Hoashi et al
[9]. The final song vectors are generated based on the re-
constructed feature space.

3.1.2 2-D interface

Based on the song vectors generated by the previous pro-
cess, we have developed a prototype 2-D interface for our
MIR system. In order to plot the song vectors to the 2-D
space, the vectors are compressed to two dimensions, by
conducting principal component analysis (PCA), and ex-
tracting the first two components of the PCA results.

A screenshot of this system is illustrated in Figure 1.
The 2-D interface consists of two major components: the
macro feature space viewer, which displays the entire “uni-
verse” of the music feature space, and the local feature
space viewer, which displays a close-up view of the area
where the user is interested in. In this system, users can
first select their area of interest, by clicking on the macro
feature space viewer. Next, users can listen to songs in the
selected area, by clicking on the plots displayed in the local
feature space viewer.

macro feature 
space viewer

macro feature 
space viewer

local feature 
space viewer
local feature 
space viewer

song 
plots
song 
plots
song 
plots
song 
plots

Figure 1. Screenshot of 2-D interface

List-based 
MIR results
List-based 
MIR results

Search 
button

Search 
button

Figure 2. Screenshot of list-based interface

3.1.3 List-based interface

For comparison with the 2-D interface, we have also de-
veloped a list-based MIR system, which outputs the MIR
results in a list-based format. This interface resembles the
list format to present search results for typical Web search
engines. A screenshot of this system is shown in Figure 2.

In this system, a random list of songs in the music col-
lection is initially presented, with the title and artist infor-
mation hidden to the user. Users are to search for the target
songs, by first listening to the songs in this initial list to se-
lect a query, and clicking on the “Search” button to execute
MIR. The vector similarity between the query song and all
other songs are calculated, and the songs with high sim-
ilarity are presented in the list, sorted accordingly to the
similarity to the query song. Users can listen to the songs
in the list and continue searching, by repeating the MIR
procedure for the songs listed in the MIR results.

3.2 Experiment task

The task given to the subjects of the experiment is to use
the two previous MIR systems, to search for songs per-
formed by specific artists. For each experiment, a set of tar-
get songs, which are performed by a pre-specified Japanese
artist, are added to the base collection, which consists of
723 Korean pop songs (hereafter referred to as K-pop songs).
Naturally, the K-pop songs are unfamiliar to the subjects.
The number of target songs ranges from 10 to 14 songs,
depending on the target artist.

Prior to each experiment, the subjects are provided with
a set of sample songs, which are performed by the target
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artist, but are different from the target songs added to the
base collection. Based on the impression of listening to
the sample songs, the subjects then use the MIR system to
search for the target songs. A single task session finishes,
when the subject has successfully discovered one of the
target songs. Each experiment consists of three sessions.
For each session, a different artist is assigned as the target.
Each subject performs this experiment, for both the 2-D
and list-based systems.

3.3 Evaluation measures
Comparative evaluation of the two systems are conducted
by the following objective and subjective measures.

3.3.1 Objective evaluation measures

For objective evaluation, we measure the efficiency of the
MIR experiment task, based on the following two mea-
sures:

• Operation time (OTime): Time required to com-
plete experiment task.

• Number of song plays (PlayNum): Number of songs
played to complete task.

3.3.2 Subjective evaluation measures

For subjective evaluation, each subject is asked to apply
a five-ranked rating to the systems, for the following ele-
ments (1:Bad ∼ 5:Good):

• Operability (Oper): Evaluation of the usability of
the interface

• Accuracy (Acc): Evaluation of the accuracy of MIR
results

• Explicitness (Expl): Easiness to grasp relationship
between songs in the MIR results

• Enjoyability (Enj): Evaluation of overall entertain-
ability of system

3.4 Results
3.4.1 Comparison of evaluation measure results

In order to directly compare the two systems, we summa-
rize the evaluation results by an election-like approach. For
each subject, the evaluation value for each measure is com-
pared, and a “vote” for the subject is cast to the system
with the higher score. For the objective measures (OTime,
PlayNum), the vote is cast to the system with the smaller
value, since the efficiency of a superior system should re-
sult in lower OTime and PlayNum.

The resulting number of votes of all evaluation measure
for the two systems, are illustrated in Figure 3. Note that,
the votes of the subjects who could not complete the ex-
periment task are omitted from the results of the objective
measures (OTime, PlayNum).

Comparison of the number of votes for the objective
measures in Figure 3, show that the number of subjects
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Figure 3. Number of votes for 2-D and list-based systems

who have completed the experiment task more efficiently
with the 2-D interface is approximately twice as high as
the list-based interface. This result indicates that the 2-D
interface contributes to improve MIR efficiency. However,
the vote results for Oper show that, subjectively, the op-
erability of the two systems do not differ as much as the
objective evaluation results suggest. A reason for this re-
sult is assumed to be that, many of the subjects are gen-
erally used to the traditional list-based interface, while the
2-D interface requires time to get acquainted with. Fur-
ther analyses to discuss this result will be presented in the
following section.

The results for the other subjective evaluation measures
show that the 2-D interface has been more well-accepted
than the list-based interface. The reason why the 2-D sys-
tem has received more votes for Expl is obvious, since the
list-based interface can only present the similarity between
the query songs and other songs in the MIR results, while
the 2-D interface not only displays the similarity to the
query, but also the relative position between other songs
that are plotted in the interface. An interesting observation
is that the accuracy (Acc) of the 2-D system has received
more votes, despite the fact that the feature extraction and
vectorization methods of the systems are the same. This re-
sult indicates that the visualization of the feature space not
only improves efficiency of MIR, but also applies a better
impression about the accuracy of MIR results.

3.4.2 Analysis of user logs

For further analysis of the 2-D system, we analyze the
user logs of the experiment. Figures 4 and 5 illustrate the
PlayNum of all subjects, for the three target songs (here-
after referred to as J-pop{1,2,3}, respectively). For the
first target song (J-pop1), PlayNum is generally lower for
the list-based system, compared to that of the 2-D system.
This indicates that the initial efficiency of MIR is higher
for the list-based system, which is assumed to be the reason
for the close voting results for Oper in Figure 3. However,
as the experiment proceeds to the second and third target
songs, a decreasing trend of PlayNum can be observed for
the 2-D system, while no such trend is apparent for the list-
based system. These observations show that users are able
to search for music with high efficiency by using the 2-D
system, as soon as they get acquainted with its interface.

Next, we analyze the search logs of 2-D system users,
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Figure 4. PlayNum per target song (2-D system)
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Figure 5. PlayNum per target song (list-based system)

to identify drawbacks of the 2-D system. Figure 6 illus-
trates the distribution of the K-pop and target song plots
in the 2-D feature space, and Figure 7 shows the search
path of a typical subject when using the 2-D interface. The
search path for the first target song J-pop1 shows that the
subject first tries to grasp the characteristics of the feature
space, by listening to songs that are plotted in various lo-
cations. In the next session, i.e., the search for J-pop2, the
log shows that the subject initially focuses on the edges of
the feature space, where the acoustic features of the songs
are assumed to be characteristic from the others, and grad-
ually moves towards the center area. Finally, in the third
session, it is clear that the subject is able to discover the tar-
get songs (J-pop3) with ease, assumably based on his/her
experience from the previous sessions.

Overall, the above experimental results provide proof
that the visualization interface of the prototype 2-D system
contributes to improve the efficiency and usability of the
MIR process. However, analysis of user logs also show
that a major problem of the visualization interface is that
users are required to experience the system sufficiently, in
order to grasp its characteristics. Another interpretation of
this result may be that, many users have experienced diffi-
culty to comprehend the features, i.e., the timbral features
of the MFCC-based TreeQ vectors, that are used for the
visualization of the songs in the MIR system.

4. 3-D MIR SYSTEM INTERFACE

In order to resolve the problems that have become appar-
ent from the previous experiment, we next develop an ex-
tended visualization interface for content-based MIR. This
system features a 3-D visualization interface with the fol-
lowing additional functions: (1) Selection of sub feature
spaces based on genre classification, and (2) User selec-
tion of features which define the axes in the 3-D feature
space. A screenshot of the 3-D system is illustrated in Fig-
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Figure 6. Song plots in the 2-D interface
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Figure 7. Search path of typical user of 2-D interface

ure 8. The objective of the first function is to provide an
intuitional way to choose specific areas within the visual-
ization feature space, in order to reduce the time required to
grasp its characteristics. The second function aims to im-
prove the understandability of the visualization interface,
by allowing the users to select features which they prefer
to use for MIR. Details of the system are presented in the
following sections.

4.1 Selecting subspaces based on genre classification
A major problem of visualization, as clarified from the pre-
vious experiment, is the experience time required for the
user to get acquainted to the visualization interface. In
order to reduce this acquaintance time, we have added a
function to the 3-D system, which enables the user to select
“sub-spaces” in the macro feature space viewer, by utiliz-
ing genre classification results.

The sub-spaces are generated by conducting k-means
clustering on all vectors of the songs included in the mu-
sic collection, plus the song vectors of the RWC Genre
Database [8], which were used as the initial training data
to generate the tree-based vector quantizer. Next, labels
are applied to the clusters, by referring to the sub-genre
metadata of the RWC songs that are classified to each of
the clusters. The number of clusters k was set to k = 7,
based on preliminary experiments. The labels applied to
the clusters are listed in Table 1.

Each sub-space is represented as a sphere in the macro
feature space viewer of the 3-D system. The labels for
each sub-space are listed below the viewer. Users can drag
in the viewer to rotate the feature space, and click on the
sphere which best represents their area of interest. This
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Figure 8. Screenshot of 3-D interface

Cluster ID Labels
C1 blues, bossanova, enka, flamenco, reggae
C2 baroque, bigband, classic, folk, india
C3 house, rhythm blues, samba, techno
C4 heavymetal, pops, rock
C5 ballad, gospel, traditional
C6 funk, rap
C7 chanson

Table 1. Sub-space labels of 3-D system

function enables users to select areas in the feature space
intuitively, thus is expected to resolve the try-and-error ap-
proach necessary to get acquainted with the previous 2-D
system.

4.2 Selection of features for visualization
By clicking on a sub-space sphere in the macro feature
space viewer, users can view the plots of the songs which
belong in the selected sub-space (cluster), on the local fea-
ture space viewer. As illustrated in Figure 8, the song plots
are displayed in a 3-D feature space.

Another problem of visualization is the unfamiliarity of
the features used to visualize music. However, it is also
clear that the appropriateness of features differ among in-
dividual users. For example, users with musical experience
may consider keys or chords as adequate features for MIR,
while casual music listeners may not be able to discrimi-
nate such high-level features of music.

In order to resolve this problem, we have added the
feature selector function, which allows the user to define
the features to be used in the 3-D feature space. By us-
ing the feature selector, system users can select a feature
which corresponds to the x, y, z axes in the feature space.
The list of features from which users can select from, are
written in Table 2, along with the tools used to extract
the features: TreeQ [10], MIRtoolbox [11], jAudio [12],
and COFViewer [13]. Note that the “Timbre” features are
equivalent to the PCA results of the TreeQ vectors utilized
in the previous 2-D system.

Feature Description Tool
Timbre(1,2,3) PCA results (first 3 compo-

nents) of TreeQ vectors
TreeQ

Man-Woman Categorization score of
Male/Female vocal TreeQ
classifier

TreeQ

Tempo Average tempo MIRtoolbox
Dynamics Overall power of song jAudio
Key Basic key of song COFViewer
TransKey Transition ratio of keys COFViewer
Mode Degree of major/minor MIRtoolbox
Stat(1,2,3) PCA results (first 3 compo-

nents) of jAudio features
jAudio

Table 2. List of features in 3-D system

5. EVALUATION OF 3-D INTERFACE
We have conducted a user experiment to evaluate the 3-
D system. The objective of this experiment is to exam-
ine whether the problems of the 2-D system have been re-
solved by the additional features of the 3-D system. The
task of the experiment, and the subjects are the same as the
experiment described in Section 3. The measures used for
evaluation are also the same as the previous experiment.

5.1 Results and discussions
First, we compare the usability of the 2-D and 3-D inter-
faces, by counting the votes of the subjects for all evalu-
ation measures, similar to the evaluation in Section 3.4.1.
Figure 9 illustrates the number of votes for the 2-D and
3-D systems.

The voting results for the objective measures, OTime
and PlayNum, indicate that the 3-D system has contributed
to improve the efficiency of MIR. Furthermore, the votes
for the subjective measures show that the subjects have
considered the 3-D system to be superior than the 2-D sys-
tem, for all evaluation measures.

As mentioned in Section 3.4.2, a problem of the 2-D
system is the time required to get used to the interface.
In order to examine if the 3-D system has resolved this
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Figure 9. Number of votes for 2-D and 3-D systems
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Figure 10. PlayNum per target song (3-D system)

problem, we analyze the PlayNum of the 3-D system for
the three target songs, similar to the analysis presented in
Figure 4. This result is illustrated in Figure 10.

Comparison of the results in Figures 4 and 10 show that,
the PlayNum of the first target song J-pop1 is lower for the
3-D system. This result shows that users have required less
time to get acquainted with the interface of the 3-D system.

Next, in order to evaluate the usability of the feature
selection function, we asked the subjects to select which
features they considered useful for the experiment task, af-
ter the experiment (subjects are allowed to select multiple
features in this questionnaire). The number of selections
for each feature is listed in Table 3.

The results in Table 3 show that system users have se-
lected features other than the timbre features that were used
in the 2-D system. Furthermore, in this questionnaire, 11
of the 16 subjects have selected more than one feature as
useful. These results indicate that users have proactively
selected various features during the task, meaning that users
have favorably accepted the feature selection function.

6. CONCLUSION

In this research, we have evaluated the effectiveness of vi-
sualization methods for content-based MIR, by conducting
comparative user experiments of various MIR interfaces.
The first experiment, which is based on a GUI with a typ-
ical 2-D visualization approach, has proved that visualiza-
tion contributes to improve overall usability compared to
the list-based interface, but also indicate problems for in-
experienced users to comprehend the characteristics of the
visualized feature space. Evaluation of the extended GUI,
which is added new functions to resolve the previous prob-
lems, makes clear that the additional functions further con-
tribute to improve the usability of MIR systems. Through

Feature No of selections
Man-Woman 14
Tempo 8
Timbre 4
Dynamics 4
Key 1
Total 31

Table 3. Number of selections per feature in 3-D system

this research, we consider ourselves to have contributed
to clarify general user requirements for the visualization
of MIR systems, and also have proposed a successful ap-
proach to satisfy such needs.
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ABSTRACT

In this paper, we provide a tool for automatically choos-
ing appropriate music clips from a given audio collection
and properly combining the chosen clips. To seamlessly
concatenate two different music clips without causing any
audible defect is really a hard nut to crack. Borrowing
the idea from the musical dice game and the DJ’s strat-
egy and considering psychoacoustics, we employ the cur-
rently available audio analysis and editing techniques to
paste music sounded as pleasant as possible. Besides, we
conduct subjective evaluations on the correlation between
pasting methods and the auditory quality of combined clips.
The experimental results show that the automatically gen-
erated music pastes are acceptable to most of the evalua-
tors. The proposed system can be used to generate length-
ened or shortened background music and dancing suite,
which is useful for some audio-assisted multimedia appli-
cations.

1. INTRODUCTION AND MOTIVATION

Nowadays, more and more music lovers prefer to create
their own music from the existing music audio collections,
for the purpose of generating background music or danc-
ing suite with specific length or composing a new song
with all the favorite parts from different songs. However,
they often confront difficulties in reaching a desirable re-
sult. The main problem lies in how to choose appropri-
ate music clips from a large database and find out proper
connecting-positions among these chosen clips. To our big
surprise, studies on the relationship between the “hearing
quality” and the “connecting-positions” in music combin-
ing has been long ignored. Conventionally, professional
users would rely on their music sense and a few music the-
ories to choose the clips and the connecting-positions, but
the editing process is still try-and-error. As the amount
of tasks increases, the process becomes time-consuming
and labor-intensive. Therefore, the goal of this paper is

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
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two-fold: (i) providing a tool for automatically choosing
appropriate music clips from given audio collections and
combining the chosen clips as euphonious as possible, and
(ii) conducting several experiments and investigating the
relationship between pasting methods and the correspond-
ing auditory quality. The ultimately combined music is
named as “music paste” because it is just like the concept
of pasting. The terminology “euphonious” is defined as
follows: (i) listeners do not notice the transitions in the
music paste, or (ii) listeners do notice the transition but
they do not perceive the exact connecting-positions or the
transitions sound pleasant to them.

2. RELATED WORK

2.1 Combine Music in Symbolic Domain

Combining two music clips in symbolic domain has been
early studied. In the European classical era, preeminent
composers developed a kind of musical dice game called
Musikalische Würfelspiele [1] . Composers composed num-
bers of music clips for each measure in advance. While
playing the game, players throw a dice to select the pre-
determined music clips. The action is performed for ev-
ery measure. The generated music piece would not be
strange because the music clip candidates for the same
measure usually consist of the same chord or similar domi-
nant tones. Based on this idea, Cope [2] conducted numer-
ous experiments and developed a music-generating system.
In the system, music clips of master composers have been
analyzed and recombined to generate a new master style
music piece.

The advantage of combining music clips in symbolic
domain is that it causes less artifacts in auditory aspect. It
is simple to transpose the midi clips to the same scale and
directly combine two midi clips without causing artifacts
while artifacts are usually inevitable in combined audio
clips. However, the approaches in symbolic domain are not
easy to be applied in audio domain due to the complication
of polyphonic audio files. Moreover, current state of the
art music transcription and separation techniques are not
accurate enough to extract all the musical notes from poly-
phonic clips. Thus, the most commonly applicable editing
operations in audio domain are only tempo change, remix,
and concatenation.
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Figure 1. An example of pasting at the measures with the
same chords.

2.2 Combine Music in Waveform Domain

Conventionally, what a DJ does can be treated as a human
version of music-combining system. DJs often have tal-
ents for combining music clips appropriately. They can
obtain hidden messages from the music clips by hearing
even without the score information. In addition to choos-
ing proper clips and connecting-positions, they also change
the tempi around the connecting-positions of music clips
to make the pasted music clips be pleasant for hearing.
Based on this concept, Tristan [3, 4] proposed an auto-
mated DJ system by extracting auditory features, connect-
ing the clips at rhythm-similar segments and aligning the
beats of clips. However, the concatenated result may be
discordant if these rhythm-similar segments are not pitch-
similar. Thus, in this work, we adopt the chroma-based
similarity measurement to solve this problem. Moreover,
several useful schemes for filtering out dissimilar music
clips are presented as well.

3. SYSTEM OVERVIEW

The key idea of the proposed system is as follows:
People usually anticipate the succeeding notes while lis-

tening to music [1]. Figure 1 shows an example of 2 in-
put clips: clip1, clip2. Originally, each input clip fits peo-
ple’s expectation. To continue the expectation between the
clips, we choose the most similar segments (pitch-similar
and rhythm-similar, inspired by the musical dice game and
automated DJ) between them as the connecting-position.
Then, we can ensure that in the pasted music, from the be-
ginning through the connecting-position to the end will all
conform to people’s anticipation. In this example, the last
three chords of clip1 are the same as the first three chords
of clip2. So, we connect these 2 clips by superimposing the
beginning of clip2 onto clip1 at the position of the third
last chord. We define the overlapping parts (the marked
chords) as “transition segments.” It will be determined by
finding the most alike segments of the two combined clips.
Besides, we use another term “transition length” to repre-
sent the length (in beat) we need for gradually adjusting the
tempo from clip1 to that of clip2 if there is a discrepancy
of tempi in these two clips.

The proposed system framework is illustrated in Figure 2.
First, we extract all the features we need from music clips
such as loudness, chroma, rhythm, and tempo. Then, we
filter out dissimilar music clips by pair-wise comparisons.

Music Audio Clips

Di t M t i T iti S t
Feature Extraction

Distance Matrix 

Construction

Transition Segments 

Locating

T iti L th

Music OrderingMusic Filtering

h i

Transition Length 

Determination

Synthesis Process

Output Audio Files

Figure 2. The block diagram of the proposed system.

Next, we construct a distance matrix by chroma and rhythm
features. With this matrix, we determine the transition seg-
ments and decide an appropriate pasting ordering. After
that, we determine the transition lengths and adjust the
tempi within them. Then, we rearrange the volume within
the transition segments and synthesize all the processed
music clips. For better understanding, we will firstly de-
scribe how to paste two music clips in section 4. And the
music ordering and filtering schemes for dealing with more
than two clips will be illustrated in section 5.

4. CONCATENATION OF TWO CLIPS

In this section, we describe the process of pasting two mu-
sic clips. We name these two clips as clip1 and clip2.

4.1 Transition Segments Locating

The common-used similarity/distance matrix [5] method
is applied to measure the similarities between clip1 and
clip2. We extract chroma-based [6] and rhythm features
[7] per beat and then calculate their Euclidian distance.
Thus, the smaller the values are, the more similar the seg-
ments are. LetDc12(i, j) andDr12(i, j) represent the chroma
and rhythm distance values between clip1’s ith beat and
clip2’s jth beat, respectively. That is,

Dc12(i, j) = ||~C1i − ~C2j ||2 (1)

Dr12(i, j) = ||~R1i − ~R2j ||2 (2)

where ~C1i and ~C2i denote clip1’s ith and clip2’s jth chroma
vectors, respectively. And similarly, ~R1i and ~R2i represent
the rhythm feature vectors. The two matrices Dc12(i, j)
and Dr12(i, j) are linearly combined into a new matrix
Dcr12 (as shown in Eqn. (3)), which is the distance matrix
we used for finding transition segments:

Dcr12(i, j) = αDc12(i, j) + (1− α)Dr12(i, j) (3)

where α ∈ [0, 1]. We set α = 0.5 as default to equally
consider the two features. Figure 3(a) depicts a distance
matrix (Dcr12 ) of 2 clips chosen from Chinese pop songs:
“real man” (clip1), “Let’s move it” (clip2). The darker the
color is, the more similar the segments are. Since the tran-
sition segment of clip1 and the transition segment of clip2

should be similar beat by beat, we trace the values diago-
nally by applying overlapping window with Lmin to Lmax
beats long and compute the average value within each win-
dow. We pick the windows with the minimum average
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(a) (b)

Figure 3. (a) The distance matrix of the two clips : “Real
man” and “Let’s move it.” (b) The ignored areas.

value as the transition segments. Moreover, for the purpose
of reducing the computational load and avoiding promptly
switching clips, we consider only the last half of clip1 and
the first half of clip2. Figure 3(a) shows the most similar
segment we found. Figure 3(b) shows the ignored areas
marked with thick crosses. The process is described by

[i∗, j∗, L∗] = arg min
i,j,L

1
L+ 1

L∑

l=0

Dcr12(i+ l, j + l) (4)

where L ∈ [Lmin, Lmax], i ≥ N
2 , j ≤ M

2 , N and M are
the total beat number of clip1 and clip2, respectively.

4.2 Transition Length Determination

In musical theory, tempo is defined as the speed of a given
piece [8] , usually measured by the number of beats per
minute (BPM). The tempo value at the ith beat (T (i)) can
be calculated as follows:

T (i) =
60

beati+1 − beati (5)

where beati and beati+1 are the time indices (in seconds)
of the ith and the (i + 1)th beats of a clip extracted from
the state-of-the-art tempo tracker: beatroot [9]. In order to
gradually adjust the tempi from clip1 to clip2, the “transi-
tion length” should be long enough to let the difference be-
tween the adjacent T (i) within the transition length small
enough. An example is shown in Figure 4. To change the
tempi from Tempo1 to Tempo2, the changing ratio (rc) of
the adjacent tempi within K beats is

rc = K

√
Tempo2
Tempo1

(6)

By choosing a proper value of rc, we can determine the
minimum value of K. We adopt the concept of just no-
ticeable difference [10] (JND) in the domain of psychoa-
coustics to determine rc. JND is defined as the minimum
difference of stimuli that people can perceive. These stim-
uli include loudness, tempo and pitch. According to We-
ber’s law, the JND can be computed with the Weber’s Con-
stant. However, the Weber’s Constant of tempo varies with
changes in the environment. Thus, inspired by Thomas
[11], we conduct experiments to find the JND of tempo
on our music clip datasets. For quick (i.e. fast tempo)
clips, we found out that the ratio of the tempi from 0.95
to 1.03 will not be perceived. For slow clips, the JND

Tempo1 Tempo2

rc rc rc rc

Tempo1 Tempo2

K

Figure 4. Diagram for changing tempi within a length K.
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Figure 5. The sketch map of finding the transition length.

range is from 0.96 to 1.04. Nevertheless, real world mu-
sic clips may contain more than one tempo, e.g. the pieces
with accelerando or ritardando. Therefore, we developed
Algorithm 1 to find the transition length and the target tempi
Tt1, Tt2. The procedure is also illustrated in Figure 5.
Then, we use phase vocoder [12] to adjust the tempi from
T1, T2 to Tt1, Tt2 , respectively. Figure 6 shows the cor-
responding results of two song clips: “Let’s move it” and
“Real man.” The ratio of change appears like a linear decay
because the ratios are usually very close to 1.

Algorithm 1
Input: the tempi of clip1 and clip2: T1(i), T2(j), for i =

1 . . . N , j = 1 . . .M
1: for x = 0 to i∗, y = 0 to (M − L∗ − j∗) do
2: itmp ⇐ (i∗ − x)
3: jtmp ⇐ (j∗ + L∗ + y)

4: rc ⇐ x+y+L∗
√

T2(jtmp)
T1(itmp)

5: if rc is within JND then
6: break
7: end if
8: end for

9: Tt1(i) ⇐
{
T1(i), for i ≤ itmp
T1(itmp)× r(i−itmp)

c , otherwise.

Tt2(j)⇐
{
T2(j), for i ≥ jtmp
T2(jtmp)× r−(jtmp−j)

c , otherwise.
Output: the target tempi Tt1, Tt2

4.3 Synthesis Process

After changing the tempi, we align clip2 at the start posi-
tion of clip1’s transition segment. Then, we apply cross-
fading on the transition segments. The effect of cross-
fading is achieved by using the log-transform method [3]
because it better fits the actual human auditory system.

5. MUSIC FILTERING AND ORDERING

In this section, we describe the extra steps for dealing with
more than two clips: music filtering and ordering.
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Figure 6. Tempi change in the transition length of the clips
of “Let’s move it” and “Real man.”

5.1 Music Filtering

In order to reduce the probability of pasting quite distinct
clips and the computational load in the ordering process
(c.f. Section 5.2), we eliminate clips with extreme values
by pair-wise comparison. A clipp is said to be extreme
dissimilar and should be eliminated if there are more than
half of the other clips (clipq) in the database dissimilar to
clipp. The dissimilarity and similarity of any two clips are
measured sequentially as follows.

5.1.1 Loudness Dissimilarity

The loudness dissimilarity is defined by the ratio rL(p, q)
of the average loudness value of two clips clipp and clipq,
as shown in Eqn. (7)

rL(p, q) =
|Ldp − Ldq|

Ldp
, q = 1 . . .W, q 6= p (7)

where Ldp and Ldq are the average loudness values of the
pth and the qth clips in the datasets andW is the total num-
ber of clips. The loudness values are computed by accumu-
lating log-energy (in db) in all the frequency bands. clipp
and clipq are said to be loudness-dissimilar if rL(p, q) is
greater than a certain threshold. By Weber’s law [10], the
JND of loudness in db is 0.1, i.e. we will perceive the loud-
ness change between clipp and clipq when the changing
ratio (rL(p, q)) is greater than 0.1. Since we have applied
log-transform mechanism to smooth the change of volume
in the sound effect module, we set the threshold value as
0.2 instead of the original strict standard.

5.1.2 Tempo Dissimilarity

Borrowing the concept in section 4.2, clipp and clipq are
said to be tempo-dissimilar if there are not enough length
for them to gradually adjusting the tempi from one to the
other. The tempo dissimilarity is defined by rT (p, q):

rT (p, q) =
(
Tq
Tp

) 1
Lp+Lq

, q = 1 . . .W, q 6= p (8)

where Tp and Lp are the minimal tempo value of the last
quarter in clipp and the corresponding length from the po-
sition of Tp to the end of clipp. Similarly, Tq and Lq are
the maximal tempo value of the first quarter in clipq and
the corresponding length, as shown in Figure 7. If rT (p, q)
does not lie in the range of JND mentioned in section 4.2,
there will not be enough transition length for changing
tempi from clipp to clipq and they should be regarded as
tempo-dissimilar.

Tp Minimal  value
clipclipp

The last quarter
Lpq

The first quarter

clip

T

clipq

Maximal  value
Tq

Lq

Figure 7. Finding tempo dissimilarity.

5.1.3 Chroma Histogram Similarity

In this module, we tend to avoid concatenating clips with
different pitch distribution. The reason is as follows: the
music paste will be unpleasant if we directly combine clips
of different tonalities (e.g. C Major → e[ minor) with-
out modulation. Generally speaking, music clips with the
same tonality contain similar pitch distributions. Thus, we
construct a chroma histogram for each clip to represent its
dominant pitch distribution and compare the clips by this
histograms. For the 12 dimensional chroma vector (~Cpi)
of the ith beat in clipp, we choose the index of its maximal
value to represent the chroma dominant pitch (CMpi) of
this beat. That is,

CMpi = arg max
u

Cpi(u), u = 1 . . . 12 (9)

The chroma histogram of clipp (CHp) is constructed from
CMpi’s. Inspired by the commonly used color histogram
intersection method [14] in the computer vision field, we
define the chroma histogram similarity between clipp and
clipq by

SH(p, q) =
∑12
u=1 min(CHp(u), CHq(u))∑12

u=1 CHp(u)
(10)

where q = 1 . . .W , p 6= q. Analogous to the two previ-
ous subsections, clipp and clipq are viewed as dissimilar if
SH(p, q) is less than 0.5.

5.2 Music Ordering

In the music ordering process, we tend to find an appropri-
ate order to minimize the average distance values between
each clip pair. For example, if the transition segments be-
tween clip1 and clip3 is not similar enough, maybe clip2

can be the bridge of them. Besides, the transition segments
from clip1 to clip2 may be less similar as compared with
the transition segments from clip2 to clip1. Therefore,
the ordering problem can be formulated as finding a path
which goes through all clips in the datasets with minimum
cost in the ordering matrix (Do) defined as follows:

Do(p, q) = min
i,j,L

1
L+ 1

L∑

l=0

Dcrpq (i+ l, j + l) (11)

where L ∈ [Lmin, Lmax]. To reduce the computation, we
use a method analogous to the greedy algorithm but the
path found cannot be guaranteed to reach the global opti-
mum. The procedure is as follows:
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clip1 clip2 clip3 clip4

clip1 0 0.3486 0.329 0.342

clip2 0.3936 0 0.4704 0.4577

clip3 0.2609 0.537 0 0.4806p3

clip 0 2898 0 4826 0 3732 0clip4 0.2898 0.4826 0.3732 0

Figure 8. An example of the ordering matrix for 4 clips.

1. Find the minimum value in the ordering matrix and
set the corresponding two clips as the initial clips.

2. Find the minimum value in the row that correspond-
ing to the last clip in the order found previously (each
clip can only be visited once) and then add the cor-
responding clips to the order.

3. Repeat step 2 until all the values in the target row are
larger than a predefined threshold or all clips have
been visited.

Figure 8 shows an example of an ordering matrix con-
structed by four clips. First, we look for the minimum
value in the matrix: 0.2609. We set the order as 3 → 1.
Then, we check the values of first row: {0, 0.3486, 0.3290,
0.3420}. Since the first entry (0) represents clip1 goes to
clip1 itself and the third entry (0.3290) means clip1 goes
to clip3 again, we would not consider these two values.
We find the minimum value of the rest: {0.3486, 0.3420}
is 0.3420. Thus, the order becomes 3 → 1 → 4. Next,
we check the fourth row and find 0.4826 is the only left
value, so we compare it with the predefined threshold. If it
is smaller than the threshold, the order would become 3→
1 → 4 → 2. Otherwise, we would not concatenate clip2

and the order would be just 3 → 1 → 4. Currently, the
threshold is 0.5.

6. EXPERIMENTS AND USER EVALUATIONS

The experiments are conducted on the basis of user eval-
uations. In order to reduce the impact of the prejudices,
evaluators will not be informed the methods used in the
testing sequences.

6.1 Overlap Length Discussion

Assuming that the smoothness of the results depends on
the overlap length, we let 15 evaluators judge the music
pastes with different overlap lengths. 8 sets of clips (≈ 40
secs/clip) from different types of Chinese pop songs are
used. We generate music pastes with 2 overlap lengths
(force L∗ = 4, 12 beats) and give each of them three dif-
ferent α values (c.f. Eqn. (3)) in the transition segments
finding process. Figure 9 describes the overall results. The
vertical axis represents the percentages of how many peo-
ple prefer each method. We found that results with longer
overlap length aren’t really more acceptable than the shorter
ones. The reason is probably that the similarity of transi-
tion segments decreases as the overlap length grows. An-

0 4

0.6

0.8

1
“4 beats” is better
“12 beats” is better
The same

0

0.2

0.4

Chroma Rhythm Both

Figure 9. Overlap length comparison results.
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0.25

00

Chroma Rhythm Both

Figure 10. Comparison of 3 measurements.

other observation is that the evaluator’s acceptance varies
with the types of the music clips. For instance, the accepted
overlap length between two rap clips may be shorter than
those of two lyric clips. Besides, over 60% of the evalua-
tors preferred 4 beats as the overlapping length. Hence, we
set the default overlap length to 4 beats long in the next sec-
tion to compare the influence of different similarity mea-
surements.

6.2 Comparison of different similarity measurements

The similarity measurements we used for comparison are
chroma only, rhythm only and both chroma and rhythm,
i.e. α = 0, 1, 0.5. We utilized 8 sets of clips from songs
in different languages. Fifteen evaluators gave scores from
1 to 10 to represent their satisfactions (higher score means
better satisfaction) with respective to the feeling of intru-
sion. Figure 10 shows the percentages of how many peo-
ple prefer each method. We found that chroma may be the
most preferred measurement. Therefore, we choose the
chroma measurements to conduct the following compari-
son with automated DJ.

6.3 Comparison with Automated DJ

In the automated DJ system [4], we can only use the mu-
sic clips existing on the Amazon website and they should
overlap at least 2 seconds. Thus, we selected 5 sets of pop
songs available on Amazon and set the overlap length to 8
beats (≈ 2 secs). Each set consists of two music pastes, one
is generated by automated DJ and the other is by our ap-
proach. Seventeen evaluators participate in choosing their
preferable method. Similarly, Figure 11 shows the per-
centages of how many people prefer each method. Overall
speaking, the music pastes generated by our approach are
promising and preferred as compared to those generated by
the automated DJ. The acceptances may vary with different
sets. For instance, our method is superior to automated DJ
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Figure 11. Comparisons with Automated DJ.

in a great level for set 2. The reason is that set 2 is a combi-
nation of a female voice and a male voice singing in quite
different pitches. The results will be a little bit intrusive
if we just concatenate these clips by rhythm-similar seg-
ments. Instead, we choose pitch-similar segments where
the pitch of female voice downwards and the pitch of male
voice upwards. The results would be more pleasant to hear.

6.4 Discussion

According to the above experimental results, we discov-
ered the following factors affecting people’s feeling toward
the music paste: (i) Language and lyrics. The music
pastes with unfamiliar languages will be probably more ac-
ceptable. In our datasets, half of sets are with unfamiliar
languages to the evaluators. And 75% of this kind of pastes
are scored higher than the average scores. This is proba-
bly because the intrusiveness increases when the lyrics of
clips in familiar language conflict with each other. In con-
trast, it is not easy for evaluators to perceive the transition
in clips with unfamiliar languages. (ii) The ending po-
sition of phrases in the clips. The music pastes will be
probably more acceptable if the clips are transformed at
the ending position of phrases. We have gathered statistics
on our experiment datasets. There are 50% of the sets fit
the mentioned condition. The scores are all higher than the
average scores of all sets. The reason is probably that peo-
ple’s anticipation for the ending phrases will smooth the
intrusiveness at the transition. (iii) Familiarity with the
music clips. The music pastes are probably less acceptable
if the evaluators have heard the music clips before. 71% of
the evaluators gave higher score to unfamiliar music pastes
than familiar ones. (iv) The influence of vision. The tran-
sition in music paste would be less noticeable if vision in-
formation involves. We combined one of our music pastes
with a photo slideshow and let the evaluators view and lis-
ten again. Over 90% of evaluators gave higher scores to it
because they almost did not notice the transition.

7. CONCLUSION AND FUTURE WORKS

In this paper, we provide a tool for automatically choos-
ing proper music clips from a given audio collection and
combining the chosen clips as euphonious as possible. We
employ common auditory music features and borrow the
concept from distance matrix to determine the transition
segment and choosing music clips. The transition length
is determined by Weber’s Law. Besides, we apply phase

vocoder to adjust the audio files and use cross-fading in
synthesis process. Moreover, we conduct subjective evalu-
ations on the correlation between pasting methods and au-
ditory quality of combined clips. The overall experiment
results show that the generated music pastes are acceptable
to humans.

There are rooms for improving the proposed system.
First, the pasting method is restricted to clips with similar
enough transition segments. Perhaps the clips can be con-
nected by automatically generating appropriate intermezzo
or bridge music. Second, the proposed work can be me-
liorated by the improvement of music analysis techniques.
More similarity measurements closer to style-similarity (tim-
bre, rhythm) would improve the filtering process. Further-
more, more representative auditory features and similar-
ity measurements, techniques for music structure analysis
and phrase boundary extraction would help the process of
locating transition segments. Third, studies on the vari-
ant overlapped length range in the transition segments are
still worth investigating while currently the whole transi-
tion segments are overlapped. In the future, we will con-
tinue our investigation in these directions.
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ABSTRACT

This paper discusses a new approach for clustering mu-
sical bass-line patterns representing particular genres and
its application to audio genre classification. Many musical
genres are characterized not only by timbral information
but also by distinct representative bass-line patterns. So far
this kind of temporal features have not so effectively been
utilized. In particular, modern music songs mostly have
certain fixed bar-long bass-line patterns per genre. For in-
stance, while frequently bass-lines in rock music have con-
stant pitch and a uniform rhythm, in jazz music there are
many characteristic movements such as walking bass. We
propose a representative bass-line pattern template extrac-
tion method based on k-means clustering handling a pitch-
shift problem. After extracting the fundamental bass-line
pattern templates for each genre, distances from each tem-
plate are calculated and used as a feature vector for super-
vised learning. Experimental result shows that the auto-
matically calculated bass-line pattern information can be
used for genre classification effectively and improve upon
current approaches based on timbral features.

1. INTRODUCTION

Due to the increasing size of music collections available on
computers and portable music players, the need for music
information retrieval (MIR) has surged recently. In partic-
ular, automatic genre classification from audio is a tradi-
tional topic of MIR and provides a structured way of eval-
uating new representations of musical content. In this task,
not only instrumental information but also a bass-line in-
formation is thought to be important. For instance, bass
parts in most rock songs consist of root notes of the chords
in a uniform rhythm. In comparison to this, bass parts in
jazz songs have a lot of characteristic movements which
are called walking bass. If such representative bar-long
bass-line patterns in music can be captured automatically
as templates, they can potentially be used to characterize
different music genres directly from audio signals.

In previous research, timbral features, rhythmic features
and pitch features have been used for audio genre classi-
fication [1]. In this work, the timbral features were the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

most dominant and the pitch features used were not lim-
ited to the bass register. Studies more related to bass part
extraction have been presented [2] where musical melodic
and bass notes were modeled with Gaussian mixture model
(GMM) and estimated. Using this pitch estimation method,
Marolt [3] worked on the clustering of melodic lines using
GMM. Researches using bass-line information for genre
classification include McKay [4] and Tsuchihashi [5]. How-
ever the bass-line features discussed were based on overall
statistics and did not represent directly temporal informa-
tion.

In this paper, we discuss an approach for clustering unit
bass-line patterns from a number of audio tracks and pro-
pose a feature vector based on the distances from templates
for the applicationto genre classification. First, we empha-
size only harmonic sounds of the audio tracks and esti-
mate measure segments which divide tracks into measures.
Then we propose a clustering method specialized to bass-
line patterns based on the k-means clustering algorithm.
For the purpose of an application to audio genre classifi-
cation, the scheme to extract feature vector based on the
bass-line patterns which contain temporal information is
suggested. Finally, the effectiveness of the proposed bass-
line pattern information for genre classification is verified
experimentally.

2. BASS-LINE PATTERN CLUSTERING

2.1 Challenges in Bass-line Pattern Clustering

Bar-long bass-line patterns are frequently common and char-
acteristic of a particular genre. In order to extract those
representative patterns from audio signals, there are sev-
eral challenges to be cleared. Especially in modern popu-
lar music, pieces comprise of both harmonic and percus-
sive sounds and percussive components might disturb the
bass-line analysis. Additionally, the bar lines of the mu-
sic pieces need to be estimated. Another problem is that
unit bass-line patterns are shifted in pitch according to the
chord played. For example, a pattern consists of only root
notes in a uniform rhythm, all notes in this pattern need to
be pitch-shifted by the same amount of notes according to
the chord, because the root note changes accompany with
the chord changes.

Therefore the problems in extraction of representative
bar-long patterns can be summarized as the following three
problems:

I. audio signals may contain not only harmonic sounds
but also percussive sounds,
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Figure 1. The flow diagram of the system.

II. measure segmentation is to be estimated, and
III. bass-line patterns are pitch-shifted according to chords.

In the next subsections, we describe our approach to solv-
ing these challenges. Fig. 1 illustrates the flow of the algo-
rithm.

2.2 Emphasizing Harmonic Components

Generally, harmonic and percussive sounds are mixed in
the observed spectrograms of audio pieces (the problem
I). Therefore in order to perform bass-line pattern analysis
it is useful to separate these components as a preprocess-
ing step. We utilize the harmonic/percussive sound sepa-
ration (HPSS) technique which we have proposed [6] that
is based on the difference of general timbral features. By
looking at the upper left figure in Fig. 2, a typical instance
of spectrogram, one can observe that harmonic compo-
nents tend to be continuous along the temporal axis in par-
ticular frequencies. On the other hand, percussive compo-
nents tend to be continuous along the frequency axis and
temporally short. Mask functions for separating the two
components (harmonic and percussive) are calculated fol-
lowing a maximum a priori (MAP) estimation approach us-
ing the expectation maximization (EM) algorithm. Apply-
ing this approach to the shown spectrogram, harmonic and
percussive components are separated and harmonic ones
are emphasized (harmonic and percussive components are
shown in the upper right and the lower left of Fig. 2 respec-
tively). In order to capture only the bass part we apply low
pass filtering to the harmonic-only spectrogram.

2.3 Bar Line estimation Using Percussive Clustering
Method

There are many possible ways to solve problem II which is
the estimation of bar lines. One way is beat tracking [8] in
which onset, chord changes and drum patterns are used as
cues. Instead, in the case where it is unknown how many
beats are in one measure or songs do not always start with
the head of the measure, the pattern matching approach is
rather useful to estimate bar lines. Therefore the rhythm
map which we have proposed [9] is employed.

The rhythm map is an approach to estimate representa-
tive bar-long percussive patterns and its segmentation (i.e.
bar lines) simultaneously. This algorithm also requires the

Figure 2. The original spectrogram (upper left), the
harmonics-emphasized spectrogram (upper right) and the
percussion-emphasized spectrogram (lower left) of a pop-
ular music piece (RWC-MDB-G-2001 No.6 [7]). The
low-pass filtered logarithmic spectrogram calculated us-
ing wavelet transform from harmonics-emphasized spec-
trogram is shown in lower right figure.

source separation method shown in previous subsection as
a preprocessing and deals with the percussive-emphasized
spectrogram. By iterating dynamic programming (DP) match-
ing and updating the templates used for DP matching based
on the k-means-clustering-like update rules, both segmen-
tation and templates themselves are updated. After conver-
gence, the multiple percussive patterns in the input song
are learned and the optimal segmentation is obtained. We
use this estimated segmentation as bar lines.

2.4 Iterative Update of Bass-line Pattern Cluster

If there was no pitch shift (problem III) a simple k-means
clustering approach can be used to estimate the represen-
tative bar-long bass-line patterns: Distances between each
bar-long spectrogram pattern and centroid spectrogram pat-
terns are calculated, and the centroids are updated by aver-
aging the sample patterns. In order to deal with pitch-shift
problem, we propose an new approach where every possi-
ble pitch-shift is compared in k-means framework.

Here we should note that both centroid template spec-
trogram and input spectrogram need to be logarithmic along
frequency axis in order to consider pitch-shift. Because
the musical notes are fashioned logarithmic in linear fre-
quency domain. This kind of logarithmic spectrogram can
be obtained by using wavelet transform. The lower right
of Fig. 2 shows the logarithmic spectrogram which is pro-
cessed low-pass filtering after Gabor wavelet transform whose
frequency resolution is semitone (100 cents). The low-pass
filtering (actually a band-pass filtering) was done by setting
high and low frequency components to be zero. In this fig-
ure, the energy of bass drum is still dominant even after the
source separation. That is because the bass drum sounds
sometimes have long duration and the duration compo-
nents also have the same feature with harmonic sounds
which are continuous along the temporal axis. However
these energies are thought not to be so harmful because
when averaging spectrogram patterns to update templates,
those parts become relatively small.
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Mathematically, we modeled a bass-line template as a
matrix and find out the most matched template for each
bar-long spectrogram by calculating distances over all pos-
sible pitch-shift. The centroid bass-line pattern is defined
as a matrix whose rows represent semitone numbers and
whose columns are time instants. This matrix contains en-
ergy distribution of bar-long harmonic spectrogram. When
the input piece has M measures, mth measure processed
low-pass filtering can be written as Xm, the I ×N matrix,
where N is the number of semitones to capture in low fre-
quency band and I is the resolution of time that divides a
bar-long. On the other hand, kth bass-line pattern template
can be written as the I × 2N matrix Bk. Since there are N
notes to pitch-shift potentially, at least N rows of margin
have to be provided.

As a distance measure of two bass-line pattern matri-
ces, we use the following distance introduced by Frobenius
norm:

d(X,Y ) =
I∑

i=1

N∑
n=1

(xi,n − yi,n)2 , (1)

where xi,n and yi,n are the (i,j)th entries of matrices X
and Y . Considering pitch-shift, we can define the distance
between input spectrogram Xm and template bass-line pat-
tern Bk as

D(Xm, Bk) = min
1≤n≤N

d(Xm, Bk,n) (2)

where Bk,n is a I ×N submatrix of Bk which is from nth
row to (n + N − 1)th row.

Like k-means algorithm, for every input bass-line pat-
tern Xm, the distances are calculated according to Eq. (2)
and classes and pitch-shift intervals are determined as

k̂m = argmin
1≤k≤K

D(Xm, Bk) (3)

and
n̂m = argmin

1≤n≤N
d(Xm, Bk̂,n). (4)

Then the update rule of a template pattern can be written as
following, just by averaging patterns in a particular class,

B′
k =

∑
m∈{m|k=k̂m} Sn̂mEXm∑

m∈{m|k=k̂m} 1
, (5)

where E is an N × 2N extending matrix and S is a 2N ×
2N pitch-shift matrix respectively defined as

E =



1 0 . . . 0
0 1 0
...

. . .
...

0 . . . 0 1
0 0 . . . 0
...

...
...

0 0 . . . 0


(6)

S =


0 0 0 . . . 0
1 0 0 . . . 0
0 1 0 . . . 0
...

. . . . . . . . .
...

0 . . . 0 1 0

 . (7)

This update rule satisfies following equation as far as
Euclidean distance metric is used,∑

m∈{m|k=k̂m}

D(Xm, B′
k) ≤

∑
m∈{m|k=k̂m}

d(Xm, B′
k,n̂)

≤
∑

m∈{m|k=k̂m}

D(Xm, Bk,n̂), (8)

and convergence of iterative update is guaranteed. After
the convergence, K centroid bass-line patterns Bk (k =
1, . . . ,K) are obtained.

3. BASS-LINE PATTERN FEATURE EXTRACTION

As the proposed clustering method applied to audio genre
classification, there is a problem that the learned templates
cannot be used directly. Ideally bass-line patterns for a
particular genre would be fixed and would be automati-
cally extracted perfectly. If that was the case then auto-
matic genre classification could be performed simply by
looking at which particular bass-line patterns are used in a
music pieces by calculating the distance defined in Eq. (2).
However in practice there is no guarantee that patterns are
fixed for a particular genre or that their automatic extrac-
tion will be perfect. Therefore in many cases the bass-line
patterns of a particular music piece will belong to more
than one genre. To address these problems simultaneously
we utilize a feature vector based on the distances from each
template followed by statistical machine learning to auto-
matically classify music genre. Supervised learning clas-
sifiers such as support vector machines (SVM) [10] can be
used for this purpose.

One possible way to extract feature vector is calculat-
ing distances between every measure of input spectrogram
and every template pattern following Eq. (2) and averaging
them through whole an input piece. Even though there is
a possibility for a music piece to belong to more than one
genre templates, the distances between spectrogram in the
input piece and learned templates are still affected, e.g.,
one measure spectrogram in blues song is close enough to
the templates learned from blues collection even if its dis-
tance is not the smallest.

The mathematical definition of the feature vector is fol-
lowing. After bass-line pattern templates are learned, we
have K ·G templates when K templates are learned from G
genres. Then the distances between input song which have
M measures and learned templates are calculated. The av-
eraged distances are obtained as follows:

dl =
1
M

M∑
m=1

D(Xm, Bl) (9)

where 1 ≤ l ≤ KG is the template number. The feature
vector x can be written as

x = (d1, d2, . . . , dKG)T . (10)

We use this feature vector for a supervised learning classi-
fication to classify music genre.
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Figure 3. Two examples of learned bass-line templates
from jazz, blues, rock, and hiphop, in descending order.
While a lot of movements of bass notes are shown in jazz
and blues, bass notes in rock are unchanged, and hiphop
bass-line templates are quite sparse.

4. PROCEDURAL SUMMARY OF THE
ALGORITHM

The overall algorithm can be summarized as follows:

1. Preprocessing

(a) Emphasis of harmonic components using HPSS
(b) Apply low-pass filtering
(c) Estimate bar lines using rhythm map

2. Bass-line Pattern Clustering

(a) Provide initial (random value) templates
(b) Match the templates patterns with pitch-shifting

by Eq. (2)
(c) Update the template patterns following Eq. (5)
(d) Iterate steps b and c until the convergence

3. Genre Classification

(a) Calculate the distances between patterns (Eq. (10))
and use it as a feature vector characterizing a
music pieces

(b) Perform classification into genres using a ma-
chine learning technique

5. EXPERIMENTAL RESULTS

5.1 Dataset

Experiments with the proposed algorithms were conducted
on the GTZAN dataset [1]. The dataset had 10 genres:

Figure 4. Classification accuracy using only bass-line fea-
tures for each number of templates learned from one genre.
The baseline accuracy of random classifier was 10.0%

blues, classical, country, disco, hiphop, jazz, metal, pop,
reggae, and rock. The dataset had 100 songs per genre all
of which were single-channel and sampled at 22.05kHz.
All songs were processed harmonic-percussive sound source
separation and wavelet transform. Then they were pro-
cessed low-pass filtering and obtained the spectrogram only
from 82.4Hz (E1) to 330.0Hz (E3). The reason we didn’t
use the spectrogram under 82.4Hz was the dominance of
the energy of bass drums in that area.

5.2 Template Learning and Feature Extraction

First, common bass-line pattern templates were learned us-
ing the proposed algorithm for each genre. The proposed
algorithm was implemented using audio processing frame-
work Marsyas1 which is open source software with spe-
cific emphasis on Music Information Retrieval (MIR) [11].
To generalize the learning templates part, we divided the
dataset 50-50 into two parts randomly and obtained two
sets of templates for each genre. In this experiment, the
number of iteration was fixed to 15 times because it was
enough to converge, and the number of the time resolution
was fixed to 16.

The examples of learned templates of jazz, blues, rock
and hiphop are shown in Fig. 3. While jazz bass patterns
had some movements, rock patterns showed the horizon-
tally straight lines. In blues bass-line templates, a typical
swing rhythm is shown, and in hiphop templates, there are
sparse bass notes because hiphop songs mostly have strong
drum sounds but bass sounds are not so melodic.

After learning templates two sets of templates were ob-
tained, and next, we extracted feature vector (Eq. (10)) us-
ing those template sets. The templates learned from data
1 were used to extract feature vectors of data 2, and vice
versa.

5.3 Classification results

In order to train a classifier in the feature space, the “Weka”
machine learning toolkit [12] was employed. All the re-
sults shown were based on 10-fold cross validation using a
linear SVM as a classifier. The labeled data was split into
10 folds and each fold was used once for testing with the
remaining 9 folds used for training the classifier to gener-
alize the classification, for both of divided data sets.

1 http://marsyas.sness.net/
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Figure 5. Classification accuracy using both bass-line and
timbral features for each number of templates learned from
one genre. The baseline accuracy of existing features was
72.4%.

Table 1. Genre classification accuracy using only bass-line
pattern features and merged with timbral features.

Features data 1 data 2
Baseline (random classifier) 10.0% 10.0%

Only bass-line (400 dim.) 42.0% 44.8%
Existing (Timbre, 68 dim.) 72.4% 72.4%

Merged (468 dim.) 74.4% 76.0%

The number of templates learned for each particular genre
were decided experimentally. Fig. 4 shows the results us-
ing only the bass-line pattern features whose dimension
was 10K when the number of templates learned from one
genre was K. As can be seen the proposed features had
enough information for genre classification and the accu-
racy improved as the number of templates was increased.

An existing state-of-the-art genre classification system
which uses 68 dimensional timbral features like MFCC
and spectrum centroids proposed by Tzanetakis was used
for comparison. The system performed well on several au-
dio classification tasks in MIREX 2008 [13]. Merging this
timbral features and bass-line features, the classification
accuracies shown in Fig. 5 were obtained. When the num-
ber of templates K was 40 the performance was the best,
and when we increased the number K more than that the
performance got worse. That was because the dimension
of feature space became larger and curse of dimensional-
ity was thought to occur. In particular case the number
of templates K was fixed to 40 for each particular genre,
the precise result is shown in Table 1 and the confusion
matrices are shown in Table 2 and Table 3. These results
were higher than existing genre classification systems that
rely on timbral information and verify the effectiveness of
the proposed bass-line patterns. One can see that classical
was the most distinguished by the system and some reggae
songs were mistaken for disco.

6. CONCLUSIONS

We discussed an approach for clustering common bar-long
bass-line patterns for particular genres, and proposed a fea-
ture vector which represented relations to learned bass-
line templates. We used HPSS technique to extract har-
monic components from audio signals and rhythm map
to estimate measure segmentation. After processing low-

pass filtering, bass-line patterns were clustered using a new
clustering method based on k-means clustering with pitch-
shift. For audio genre classification, a new feature vec-
tor was defined as averaged distances from each template.
Experiments over music pieces from various genres con-
firmed that the proposed algorithm can improve the accu-
racy of classification systems based on timbral informa-
tion.

Future work includes more experiments with the param-
eters of the algorithms such as the resolution of time in
templates. Additionally, other features than pattern dis-
tance vector can be devised. Combination with other fea-
tures like percussive pattern can be done to improve further
genre classification as well.
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Table 2. The confusion matrix of data 1 in the case 40
templates learned from each genre

classified as bl cl co di hi ja me po re ro
bl: blues 38 0 5 0 0 2 1 0 1 3

cl: classical 0 48 0 0 0 0 0 0 0 2
co: country 3 0 30 1 1 2 1 3 0 9

di: disco 0 0 1 36 1 1 1 2 2 6
hi: hiphop 0 0 1 6 34 0 1 2 4 2

ja: jazz 4 2 1 1 0 41 0 0 0 1
me: metal 0 0 2 1 0 0 43 0 0 4

po: pop 1 0 3 3 3 2 0 34 0 4
re: reggae 0 0 4 4 2 0 0 0 37 3

ro: rock 3 0 4 3 2 1 3 0 3 31

Table 3. The confusion matrix of data 2 in the case 40
templates learned from each genre

classified as bl cl co di hi ja me po re ro
bl: blues 38 0 5 2 0 2 2 0 1 0

cl: classical 0 47 0 0 0 3 0 0 0 0
co: country 4 0 40 0 0 0 0 0 0 6

di: disco 3 0 0 34 1 0 1 2 3 6
hi: hiphop 1 0 0 3 41 0 0 0 5 0

ja: jazz 3 1 0 0 0 43 2 0 0 1
me: metal 1 0 0 0 0 1 44 0 1 3

po: pop 4 0 1 2 1 0 0 35 3 4
re: reggae 4 0 0 9 4 2 0 3 27 1

ro: rock 6 0 3 5 0 0 3 2 0 31
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ABSTRACT

The task of identifying cover songs has formerly been stu-
died in terms of a prototypical query retrieval framework.
However, this framework is not the only one the task al-
lows. In this article, we revise the task of identifying cover
songs to include the notion of sets (or groups) of covers. In
particular, we study the application of unsupervised clus-
tering and community detection algorithms to detect cover
sets. We consider current state-of-the-art algorithms and
propose new methods to achieve this goal. Our experi-
ments show that the detection of cover sets is feasible, that
it can be performed in a reasonable amount of time, that
it does not require extensive parameter tuning, and that
it presents certain robustness to inaccurate measurements.
Furthermore, we highlight two direct outcomes that natu-
rally arise from the proposed framework revision: increas-
ing the accuracy of query retrieval-based systems and de-
tecting the original song within a set of covers.

1. INTRODUCTION

Cover song identification has been a very active area
of study within the music information research (MIR) com-
munity over the last years [1]. Traditionally, cover song
identification has been set up as a typical information re-
trieval (IR) task where queries are processed in a batch
mode [2] (p. 74): the user submits a query (a song) and
receives an answer back (a list of songs ranked by their
relevance to the query). Such a setup has conditioned the
way of implementing and evaluating cover song identifica-
tion systems [1, 3].

Here we take a new qualitative approach by consider-
ing cover song sets instead of isolated cover song queries.
More concretely, we automatically identify sets (or groups)
of covers of the same underlying musical piece in a music
collection. We do so by utilizing grouping algorithms on
top of an existing cover song identification system. We
focus on unsupervised clustering [4,5] and community de-
tection [6, 7] algorithms.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

The usage of grouping algorithms can be intuitively jus-
tified from multiple perspectives. First, grouping algo-
rithms are a natural choice given the output of current cover
song identification systems. Because this usually consists
in a set of pairwise distances 1 , we can directly assume that
the preliminary issues of a typical pattern grouping task
[5], namely feature extraction and distance measurement,
are appropriately dealt with. Second, grouping algorithms
may help in obtaining more coherent answers for isolated
queries. In particular, the answers to any query song be-
longing to a given cover set would coherently contain the
other songs in the set (notice that this property is not en-
sured by the distance measurements nor by batch-mode
query systems). Third, grouping algorithms may profit
from second order cover song associations. For instance,
if cover song pairs si, sj and sj , sk are independently de-
tected, the cover song relation between si and sk could au-
tomatically be inferred. This way, the system would take
advantage of these collaborative effects and, among other
things, increase the overall accuracy. Fourth, grouping al-
gorithms can provide insightful clues to the study of inter
and intra-group relations (e.g. by using hierarchical clus-
tering algorithms [4, 5]).

The Music Information Retrieval Evaluation eXchange
(MIREX) provides a batch-mode query framework for eval-
uating cover song identification systems 2 . Nonetheless,
some participants have started moving towards the cover
set detection framework. This framework has been indi-
rectly and scantily introduced in [8] and, simultaneously,
in our previous work in [9]. In [8], a multidimensional
scaling analysis was performed on the basis that the con-
figuration of the music collection under study was known
(i.e. the number of cover sets and their cardinality was a
priori defined, and the latter was assumed to be constant
for all sets). This analysis was shown to substantially in-
crease the final system’s identification accuracy. A com-
parable increase was also achieved by the post-processing
step mentioned in [9], whose details we now disclose.

Below, we first present the grouping algorithms that we
use for detecting cover song sets (Sec. 2). We then summa-
rize the followed methodology (Sec. 3) and subsequently
present the obtained results (Sec. 4). We also show two

1 In this article we pragmatically use the term distance to refer to any
similarity or dissimilarity measure between cover songs.

2 http://www.music-ir.org/mirex/2008/index.php/
Audio_Cover_Song_Identification
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natural outcomes of detecting cover sets (Sec. 5): increas-
ing the accuracy of batch-mode query systems (Sec. 5.1)
and detecting the original song (Sec. 5.2). We finally close
the article with a conclusions section (Sec. 6).

2. STUDIED ALGORITHMS

2.1 K-medoids

The K-medoids algorithm is a common choice when the
computation of means is unavailable, as it solely operates
on pairwise distances and can exhibit some advantages com-
pared to the standard K-means algorithm [4]. We employ
the K-medoids implementation of the TAMO 3 package,
which incorporates several heuristics 4 to achieve an opti-
mal K value [4]. We use the default parameters and try all
possible heuristics provided in the aforementioned imple-
mentation.

2.2 Hierarchical clustering

We also consider four representative agglomerative hierar-
chical clustering methods [4, 5]: single linkage, complete
linkage, group average linkage (UPGMA), and weighted
average linkage (WPGMA). We use the hcluster 5 imple-
mentation with the default parameters, and we try different
cluster validity criteria [4] such as 6 checking descendants
for inconsistent values, or considering the maximal or the
average inter-cluster cophenetic distance.

2.3 Proposed method 1

The present and subsequent methods perform community
detection [6, 7] on a complex network [10]. A weighted
complex network [11] can be easily built from pairwise
distances. Given a music collection S ={si}, i=1, ..., NS ,
with NS songs, we query a cover song identification sys-
tem for each song and obtain a set of answers A = {Ai},
where Ai contains NAi

tuples {sj , d(si, sj)}, sj ∈ S,
ranked from low to high according to the provided dis-
tance measure d. In our case, NAi

can be different for
each Ai and it can be significantly lower than NS . As
we do not expect cover songs to have high distances or
ranks in Ai, we determine NAi

by applying a distance and
a rank threshold dTh and rTh, respectively. From A, we
construct a graph G with NS vertices (V = {vi}, V ↔ S)
and NAi

weighted edges for each vertex (an edge with a
weight wi,j = 1

d(si,sj)+ε
, ε being an arbitrary small con-

stant, e.g. ε=0.01, is assigned between vertices vi and vj

if sj ⊂ Ai or si ⊂ Aj).
The method performs community detection by just look-

ing at connected vertices in G in such a way that all con-
nected vertices are assigned to the same community. There-
fore, this algorithm strongly relies on dTh and/or rTh pa-
rameters. This approach presents some analogies with the
common nearest neighbor clustering approach [5].

3 http://fraenkel.mit.edu/TAMO
4 http://fraenkel.mit.edu/TAMO/documentation/

TAMO.Clustering.Kmedoids.html
5 http://code.google.com/p/scipy-cluster
6 http://www.soe.ucsc.edu/˜eads/cluster.html

2.4 Proposed method 2

The aforementioned approach could be further improved
by reinforcing triangular connections in the complex net-
work before the last step of checking for connected ver-
tices. Following the intuitive reasonings advanced in Sec. 1,
the algorithm proposed here tries to reduce the “uncer-
tainty” generated by triplets of vertices connected by two
edges. In other words, it tries to reinforce coherence in a
triangular sense.

If vi, vj and vj , vk are respectively connected, we can
induce more coherence by either creating a connection be-
tween vi and vk (i.e. forcing the existence of a triangle),
or by deleting one of the existing edges. This coherence
can be measured through an objective function fO which
considers complete and incomplete triangles in the whole
graph G. We define fO as a weighted difference between
the number of complete triangles NΘ and the number of
incomplete triangles NΦ (three vertices connected by only
two links) that can be computed from a pair of vertices:
fO(NΘ, NΦ)=NΘ−αNΦ. The constant α, which weights
the penalization for having incomplete triangles in G, is set
experimentally.

The method starts by building a complex network G as
described in the previous section. Then, for each pair of
vertices vi, vj , the value of fO is calculated for two situ-
ations: (i) when an edge between vi and vj is artificially
created and (ii) when such an edge is deleted. Then, the
option which maximizes fO is preserved and the adjacency
matrix of G is updated as necessary. The process of as-
signing cover sets is again the connected vertices criterion.

2.5 Proposed method 3

We can substantially reduce the computation time of pro-
posed method 2 by considering for the computation of fO
only those vertices whose connections seem to be uncer-
tain. If the distance between two songs is extremely high
or low, this means that the cover song detection system
has clearly detected a match or a mismatch. Accordingly,
we just consider the pairs of vertices whose edge weight
is around wTh = 1

dTh+ε
. In particular, for each vertex vi,

a pre-selection of adjacent vertices is performed according
to a certain weight margin wMa, which we set manually.
This way, vj is associated to vi for further processing iff
|wi,j−wTh|<wMa, where |·| indicates absolute value. The
process of building the initial complex network and assign-
ing cover sets is the same as in Sec. 2.3.

2.6 Modularity optimization

We also consider the method in [12], which extracts the
community structure from large networks based on the op-
timization of the network modularity [6, 7, 12]. This algo-
rithm outperforms all other known community detection
methods in terms of computational time while maintain-
ing a high accuracy [12]. We use the implementation by
Aynaud 7 and we build the initial network as in Sec. 2.3.

7 http://perso.crans.org/˜aynaud/communities/
index.html
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3. METHODOLOGY

3.1 Data

For the generality of our experiments, we employ two
sources of data: artificial and real-world symmetric dis-
tance matrices. Artificial distances are randomly gener-
ated given a predefined noise level σξ. More concretely,
the distance d(si, sj) = d(sj , si) between songs si and sj

is drawn from a normal distribution N (μ, σ) with mean μ
and standard deviation σ such that

d(si, sj) =

⎧⎪⎨
⎪⎩

0 if i = j,
|N (0, σξ)| if i > j and si, sj covers,
1− |N (0, σξ)| otherwise.

(1)
Real-world distances are provided by a state-of-the-art
cover song identification system [13].

3.2 Experimental setups

A cover song music collection can be characterized by cer-
tain parameters constituting a setup [1]: the total number of
songs NS , the number of cover sets NC the collection in-
cludes, the cardinality C of these cover sets, and the num-
ber of added noise songs 8 NN . Because some setups can
lead to wrong accuracy estimations [1], it is safer to con-
sider several of them, including fixed and variable cardi-
nalities. In our experiments we use the setups summarized
in Table 1. For real-world data we use an extension of the
music collection described in [13] which comprises a vari-
ety of genres and styles, as well as different types of cov-
ers. The characteristics of this music collection correspond
to setup 3. For other setups we simply sample cover sets
from setup 3 and repeat the experiments NT times (num-
ber of trials, average accuracies reported). We either sam-
ple cover sets with a fixed cardinality (C =4, the expected
cardinality of setup 3) or without fixing it (variable cardi-
nality, C = ν). When using artificial data, we construct
the distance matrix following Eq. (1). As fixed cardinal-
ity we use C = 4 as well, and as variable cardinality we
take ν ∼ �2 + e(1/2)�, where �·� denotes floor value and
e(1/λ) corresponds to an exponential distribution 9 with
rate parameter λ.

3.3 Evaluation measures

To evaluate batch-mode query systems we employ the mean
of average precisions (MAP) over all queries [3, 14]. The
average precision for a query si (APi) is calculated from
the retrieved answer Ai as APi = 1

C−1

∑NS−1
r=1 Pi(r)Ii(r),

where Pi is the precision of the sorted list Ai at rank r,
Pi(r) = 1

r

∑r
l=1 Ii(l), and Ii is a relevance function such

that Ii(z)=1 if the song with rank z in Ai is a cover of si,
Ii(z)=0 otherwise.

8 By noise songs we mean songs that do not belong to any cover set
included in the collection.

9 An exponential distribution is used to imitate the distribution of C

with setup 3 (see [13]). With λ=2, an expected value 〈ν〉=4 is obtained.

Setup Parameters
NC C NN NS NT

1.1 25 4 0 100 20
1.2 25 ν 0 〈100〉 20
1.3 25 4 100 200 20
1.4 25 ν 100 〈200〉 20
2.1 125 4 0 500 20
2.2 125 ν 0 〈500〉 20
2.3 125 4 400 900 20
2.4 125 ν 400 〈900〉 20
3 525 ν 0 2135 1

Table 1. Experimental setup summary. The 〈·〉 delimiters
denote expected value.

To evaluate cover set detection we resort to the classical
F-measure with even weighting [2,14]: F = 2PR

P+R
. Here P

and R correspond to precision and recall, respectively. For
our evaluation, we compute these quantities independently
for all songs and average afterwards. More concretely, for
each song si, we count the number of true positives TPi

(i.e. the number of cover songs of si belonging to the the
same group 10 as si), the number of false positives FPi

(i.e. the number of songs belonging to the same group as
si that are not covers of si), the number of false negatives
FNi (i.e. the number of cover songs of si that do not be-
long to the same group as si), and average Pi = TPi

TPi+FPi

and Ri =
TPi

TPi+FNi
across all NS songs 11 .

4. RESULTS

4.1 Artificial data

We first evaluate the algorithms’ accuracy as a function of
the noise level σξ introduced to the artificial data for se-
tups 1.1 to 1.4. Before computing the reported accuracies,
we independently performed a parameter optimization for
each algorithm 12 , σξ, and setup. Then, using the optimal
parameters found for a given σξ, we plot average F over
20 trials versus σξ (Fig. 1). In general, we observe that the
accuracy for all algorithms starts to drop for σξ > 0.2 un-
til it reaches an F < 0.3 for σξ > 0.5. We also see that the
K-medoids and single-linkage algorithms are less robust to
noise than the others. Low accuracies for the K-medoids
algorithm might be explained by the difficulty to automat-
ically set the correct K value. Furthermore, cover sets with
variable cardinality, such as the ones used for setups 1.2
and 1.4, might further decrease the accuracy [4]. Low ac-
curacies for the single linkage algorithm with respect to
other hierarchical clustering algorithms confirm the find-
ings in the literature [5]. UPGMA, and WPGMA accura-
cies are slightly higher than other algorithms under noise
levels σξ ∈ [0.2, 0.4].

10 Through this subsection by group we mean the cover set detected by
the evaluated algorithm.

11 Note that, unlike other clustering evaluation measures [15], F is not
computed on a per-cluster basis, but on a per-song basis.

12 This parameter optimization was not critical to achieve near-optimal
accuracies (see Sec. 4.2). We did not consider proposed method 2 at this
stage due to its computational complexity (see Sec. 4.3).
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Figure 1. Accuracy under different noise levels for setup
1.4. Other setups lead to similar curves. Here and in sub-
sequent tables and figures KM stands for K-medoids, SL
for single-linkage, CL for complete-linkage, UPGMA for
group average linkage, and WPGMA for weighted average
linkage, PM for proposed method, and MO for modularity
optimization.

Algorithm Setup
2.1 2.2 2.3 2.4

KM 0.517 0.497 0.520 0.500
SL 0.656 0.690 0.654 0.683
CL 0.816 0.820 0.814 0.821
UPGMA 0.895 0.900 0.897 0.902
WPGMA 0.879 0.889 0.883 0.893
PM1 0.713 0.723 0.716 0.718
PM3 0.665 0.698 0.668 0.704
MO 0.721 0.735 0.716 0.744

Table 2. Accuracy (F ) for artificial data with σξ =0.25.

To better assess the algorithms’ performance, we show
the accuracies achieved with setups 2.1 to 2.4 under a fixed
noise level of σξ = 0.25 (Table 2). Here, differences be-
tween accuracies can be better estimated, as we are em-
ploying a bigger music collection and quite a high noise
level. We see that UPGMA and WPGMA definitely per-
form best under the specified σξ.

4.2 Real-world data

To evaluate the algorithms’ accuracy with real-world data
we independently optimized all possible parameters for
each algorithm on setups 1.1 to 1.4. Within this pre-
analysis, we saw that the definition of a distance thresh-
old 13 was, in general, the only critical parameter for all
algorithms. Apart from this, all other parameters turned
out not to be critical for obtaining near-optimal accura-
cies. Methods that had specially broad ranges of these
near-optimal accuracies were K-medoids, proposed method
2, and all considered hierarchical clustering algorithms.

We report the accuracies with optimal parameters for
setups 2.1 to 3 (Table 3). We see that accuracies for pro-
posed methods 1 and 3 are comparable to the ones achieved

13 Either cophenetic distances, dTh, or rTh (see Sec. 2).

Algorithm Setup
2.1 2.2 2.3 2.4 3

KM 0.637 0.642 0.656 0.666 n.c.
SL 0.776 0.783 0.833 0.828 0.676
CL 0.777 0.768 0.860 0.853 0.756
UPGMA 0.797 0.812 0.865 0.875 0.796
WPGMA 0.800 0.804 0.866 0.862 0.788
PM1 0.804 0.813 0.853 0.853 0.751
PM2 0.761 0.738 n.c. n.c. n.c.
PM3 0.788 0.790 0.841 0.848 0.733
MO 0.808 0.809 0.856 0.858 0.762

Table 3. Accuracy (F ) for real-world data. Due to algo-
rithms’ complexity, some results were not computed (de-
noted as n.c., see Sec. 4.3).

by the other algorithms and, in some setups, even better.
Overall, we corroborate the findings of the previous sec-
tion, although differences between algorithms are not so
large now. We hypothesize that these similar (as well as
near-optimal) accuracies are due to the relatively good dis-
tance measure provided by the employed cover song iden-
tification system (we have already seen that these differ-
ences get stressed with artificial data).

4.3 Time performance

In the application of these techniques to big real world mu-
sic collections, computational complexity is of great im-
portance. To qualitatively evaluate this aspect, we report
the average amount of time spent by each algorithm to
achieve a solution for each setup (Fig. 2).

We see that K-medoids and proposed method 2 are com-
pletely inadequate for processing collections with more
than 2000 songs (e.g. setup 3). The steep rise in the time
spent by hierarchical clustering algorithms to find a clus-
ter solution for setup 3 also raises some doubts as to the
usefulness of these algorithms for huge music collections.
Furthermore, the hierarchical clustering algorithms, as well
as the K-medoids algorithm, take the full pairwise distance
matrix as input. Therefore, with a music collection of, say,
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Figure 2. Average time performance for each considered
setup. Algorithms were run with an Intel(R) Pentium(R) 4
CPU 2.40GHz with 512M RAM.
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10 million songs, this distance matrix might be difficult to
handle. In contrast, algorithms based on complex networks
such as modularity optimization and proposed methods 1
and 3, only need a single list of answers A. Moreover, the
length of the elements of this list can be very small due
to dTh and rTh defined above (e.g. in our tests we found
unnecessary to consider rTh >3). It should also be noticed
that the resulting network is sparse, i.e. the number of links
is much lower than NS

2 [10] and, therefore, calculations
on such graphs can be strongly optimized both in mem-
ory requirements and computational costs as demonstrated,
for instance, by [12]. Thus, methods based on complex
networks, despite not achieving the highest accuracies for
cover set detection, represent a robust and scalable option
for processing big music collections.

5. OUTCOMES

5.1 Accuracy increase

In this section we show that the detection of cover song sets
can improve the accuracy of batch-mode query systems. In
particular, we study the relative MAP increase for the best
cover set detection algorithms found. For comparison pur-
poses, we take the output A of an initial batch-mode query
system and transform it according to the grouping solution
achieved. More concretely, we divide the distances in each
Ai by the maximum distance value found and add an arbi-
trary constant β > 1 to the songs that are not detected as
belonging to the cover set where si is included.

We plot the relative MAP increment versus the cardi-
nality C of the cover sets for artificial data in Fig. 3. We
show that one can get a MAP accuracy improvement of up
to 25%. A comparable improvement can also be achieved
in the case C =ν. In general, it can be seen that the higher
the cardinality, the higher the improvement we can get by
detecting cover sets. Improvements for real-world data are
much more modest as we do not have many sets with high
C. With setup 2.4, average improvements are 2.8% for
UPGMA, 2.1% for WPGMA, 5.1% for proposed method
1, and 4.9% for modularity optimization.
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Figure 3. Relative MAP increment with artificial data. We
use σξ = 0.25 and, except C, the same parameters as in
setups 2.3 and 2.4.

A further out-of-sample test was done within the
MIREX 2008 audio cover song identification contest,
where we submitted two versions of the same system [9]
and obtained the two highest accuracies 14 achieved to date.
The first version corresponded to the algorithm we use here
for obtaining the real-world data [13]. The second version
comprised the same algorithm, plus an additional post-
processing step performing cover set detection based on
proposed method 1 (the only method we had available at
that time) and the maximum distance value normalization
described in the present section. The MAP achieved with
the former was 0.66 while the MAP of the latter was 0.75,
which corresponds to a 13.6% relative increment. This
increment is higher than the one achieved here with real-
world data most probably because in the MIREX task
C =10.

5.2 Original detection

In the clustering context, many applications exploit com-
pact cluster descriptions such as centroids or medoids [4,
5]. Analogously to cluster centroids and medoids, the cover
set centroids and medoids can be determined. This way,
the centroid of a cover set would correspond to the “aver-
age realization” and the medoid would correspond to the
“prototype” 15 of the underlying musical piece. We here
focus on the latter and leave the former for future consid-
eration. In general, we could consider this prototype to be
the most referential, influential, or inspirational song in a
cover set (e.g. the musical piece covered by the majority of
the other pieces). We here make an oversimplification and
assume that the medoid of a cover song set corresponds to
the original version.

To evaluate this option for detecting original songs we
manually check for original versions in setup 3 of the used
real-world data (we find 426 originals out of 525 cover
sets) and we consider an ideal cover set detection algo-
rithm (with all cover sets correctly estimated) as well as
the best performing algorithms found in previous sections.
For these last ones, we discard for evaluation the detected
sets that do not contain an original.

To automatically determine the original song we take all
possible pairwise distances within songs in a detected set
and select the one which has a minimal distance sum to the
other songs in the set. Let Ŝ = {ŝj}, j = 1, ..., Ĉ, be a set
of detected covers with cardinality Ĉ. Then, the index i of
the prototype song corresponds to 16

i = argmin
j

⎧⎪⎨
⎪⎩

Ĉ∑
k=1
k �=j

d(ŝj , ŝk)

⎫⎪⎬
⎪⎭

. (2)

The results in Table 4 show the percentage of hits and
misses, which can be compared to the null hypothesis of
randomly selecting one song in the set. We observe that,

14 http://www.music-ir.org/mirex/2008/index.php/
Audio_Cover_Song_Identification_Results

15 Standard, typical, or best example.
16 Notice that analogous formulae can be derived by employing the no-

tion of betweenness or closeness centrality in a complex network [10,11].
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Algorithm C
2 3 4 5 6

Ideal 50.0 51.8∗∗ 39.2∗ 36.8∗ 41.7∗∗
UPGMA 50.0 58.0∗∗ 55.0∗∗ 60.4∗∗ 50.4∗∗
WPGMA 50.0 55.9∗∗ 46.6∗ 63.2∗∗ 47.5∗∗
PM1 50.0 62.7∗∗ 61.3∗∗ 70.0∗∗ 50.0∗∗
MO 50.0 62.8∗∗ 61.0∗∗ 70.0∗∗ 50.0∗∗
Null 50.0 33.3 25.0 20.0 16.7
Ref. NC 187 85 51 38 24

Table 4. Accuracies (%) for the original song detection
task depending on C. The ∗ and ∗∗ symbols denotes sta-
tistical significance at p < 0.05 and p < 0.01, respectively.
The last line shows a referential NC corresponding to the
number of cover sets obtained with an ideal grouping solu-
tion.

in general, accuracies are around 50% with all considered
cardinalities. This exactly corresponds to the null hypoth-
esis of sets with C = 2 but, as soon as C > 2, accuracies
become higher than the null hypothesis and statistical sig-
nificance arises (statistical significance is assessed with the
binomial test [16]). Discarding cover sets with no original
song explains why accuracies for the algorithms studied
here become slightly higher than the ones achieved by the
ideal grouping algorithm. We hypothesize that our algo-
rithms tend to split the ideal cover sets into “more coher-
ent” or compact subsets and, therefore, within these, the
method of Eq. 2 can better determine the original song.

6. CONCLUSIONS

In this paper we propose and study a framework for cover
song identification based on the notion of cover sets that
subsumes the current batch-mode query framework (the
latter is naturally incorporated as an important part of the
former). Through comprehensive experiments we show
that the detection of cover sets is feasible, that it does not
require extensive parameter tuning, and that it is quite ro-
bust to noisy distance measurements. Furthermore, we
propose three versions of an unsupervised community de-
tection algorithm that, when compared to existing state-of-
the-art methods, achieve comparable accuracies with sim-
ilar computation time (proposed method 3) or even faster
(proposed method 1). We evidence that this new frame-
work can provide new outcomes and can give raise to new
applications. In addition to showing that cover set de-
tection can substantially increase the accuracy (and co-
herence) of current systems, we here provide a proof-of-
concept application to detect the original song within a
cover set, which is inspired by the notion of cluster
medoids.

Finally, we would like to highlight that, in spite of fo-
cusing on cover songs, the intuitive reasonings followed
thoughout the paper could be as well applied to any IR
batch-mode query system, and especially to other MIR sys-
tems (e.g. query-by-humming, query-by-example, audio
fingerprinting, or music similarity).
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ABSTRACT

Chord extraction from audio is a well-established music
computing task, and many valid approaches have been pre-
sented in recent years that use different chord templates,
smoothing techniques and musical context models. The
present work shows that additional exploitation of the repet-
itive structure of songs can enhance chord extraction, by
combining chroma information from multiple occurrences
of the same segment type. To justify this claim we mod-
ify an existing chord labelling method, providing it with
manual or automatic segment labels, and compare chord
extraction results on a collection of 125 songs to baseline
methods without segmentation information. Our method
results in consistent and more readily readable chord la-
bels and provides a statistically significant boost in label
accuracy.

1. INTRODUCTION

The automatic extraction of chords from audio has appli-
cations in music retrieval, cognitive musicology, and auto-
matic generation of lead sheets. In this work we present
a technique that allows us to generate more authentic lead
sheets than previously possible with automatic methods,
by making use of musical structure. Much of musical struc-
ture is defined by repetition, a core principle in music [1,
p. 229].

In popular songs a repeated verse-chorus format is com-
mon, in which the chord sequence is the same in all sec-
tions of the same type. In lead sheets, for better readabil-
ity these sections would normally only be notated once,
with repeats indicated. Our method mirrors this improve-
ment by assigning the same chord progression to repeated
sections. In addition, having found repeating sections, we
have available several instances of a given chord sequence
from which to estimate the chords, so we expect an im-
provement in estimation accuracy. We demonstrate the
improvements in readability and accuracy using manually-
annotated descriptions of the musical structure, and show
that the improvement can also be achieved using an auto-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

matic structure annotation algorithm tailored to the task.
In Section 2 we describe related work. In Section 3 we

describe the chord extraction method used and present a
new segmentation technique that is tailored to our task of
finding repeated chord sequences. We give examples of
chord estimation with and without the segmentation tech-
nique in Section 4, and present quantitative chord estima-
tion results in Section 5. In Section 6 we discuss our find-
ings, and present our conclusions in Section 7.

2. RELATED WORK

The majority of approaches to automatic chord estimation
rely on framewise chroma features [2] as a representation
of the relative energy in each pitch class for a given time
window, then apply some further processing to estimate
the chords. When template-matching is used to identify
chords, additional smoothing over time, for example by a
median filter [3], is necessary due to musical variation and
noise. Inference in hidden Markov models (HMMs) [4]
simultaneously performs template-matching and smooth-
ing. These methods treat chords as isolated features of the
music, which is a considerable simplification. In reality,
chords are heard in context, together with the melody, key,
rhythm, form, instrumentation, and other attributes. Some
chord estimation methods account for additional musical
attributes during the estimation process such as key [5], or
key and rhythm together [6, 7], which is a step towards a
unified music analysis model.

In this work we extend the concept of unified music
analysis by using repetition in the structure to enhance
chord estimation. Dannenberg [8] shows that knowledge
of the musical structure can greatly improve beat tracking
performance, but to our knowledge the principle has not
yet been applied to chord estimation.

Previous automatic music structure extraction tech-
niques include those that primarily search for section
boundaries, indicated by a sudden change in the feature of
interest, which could be timbre [9], spectral evolution [10],
or combinations of features [11]. A common approach is to
cluster together frames that are similar, then label contigu-
ous similar frames as a segment. However, this relies on a
particular feature remaining approximately constant for the
duration of a section. We are interested in chords, which
do change during a section, so an approach that searches
for repeated progressions [12, 13] is more appropriate for
our purposes. Methods using this paradigm rely on a self-
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similarity matrix [14], which is a symmetric, square ma-
trix that contains a measure of the similarity between every
pair of frames. Repeated sections appear as parallel diago-
nal lines, and can be extracted with some post-processing,
such as application of a low pass filter to reduce noise [15]
followed by a thresholding operation to find contiguous
frames with high similarity. In Section 3.3 we present a
new variation which is similar to algorithms proposed by
Ong [16] and Rhodes and Casey [17] and extracts repeated
chord progressions of equal length.

3. METHOD

In a song, we call a chord sequence that describes a section
such as the verse or chorus a segment type. Any segment
type may occur one or more times in a song and we call
each occurrence a segment instance. To make use of seg-
ment repetition as part of the chord estimation process, we
rely on segment types whose instances are not only har-
monically very similar, but also have the same length in
beats (see Section 3.4). This is not required of a general
purpose segmentation task, and hence generic segmenta-
tions are not directly utilisable. In Section 3.2 we de-
scribe how we preprocess manual segmentations to meet
our needs. For automatic segmentation we choose to im-
plement our own algorithm, which fulfills the above re-
quirements by design (Section 3.3). First, we describe the
method for calculating our basic features, beat-synchronous
chromagrams (Section 3.1).

3.1 Beat-Synchronous Chromagrams

The automatic segmentation and chord estimation algo-
rithms both rely on chroma features that are synchronised
to the musical beat. The features represent the importance
of each pitch class at the current beat. The initial, short
chroma frames are generated from a note salience repre-
sentation similar to a constant-Q transform, at a hopsize
of 512 samples (46 ms) from audio that has been down-
sampled to 11025 Hz. For the chord extraction algorithm
we split the salience representation to obtain separate bass
and treble chromagrams, but the chromagram used by the
segmentation algorithm covers both the bass and the treble
range. For details see [18].

In order to produce beat-synchronous chromagrams we
obtain a single chroma vector for each beat by taking the
median (in the time direction) over all the chroma frames
falling between two consecutive beat times. We use one
of two sorts of beat times: manual or automatic. The col-
lection of manual beat annotations covers 125 songs per-
formed by the rock group The Beatles. The automatic
beat times were extracted using Davies’s automatic beat-
tracker [19] on the same set of songs.

3.2 Manual Structural Segmentation

The manual structural segmentations cover the same 125
songs by The Beatles as we have beat annotations for: 29

songs were annotated for a previous project 1 , and 96 were
newly annotated for the present work. The basis for all
annotations are Pollack’s song analyses [20].

Every song contains several segment types, some of
which have multiple instances. In some songs, the in-
stances of a segment type differ in length. In that case,
to fulfill the requirement of equal length instances, the seg-
ment type is divided to create one or more new segment
types whose instances all have the same length. This may
result in new segment types having only one instance in the
song.

3.3 Automatic Segmentation Algorithm

The automatic segmentation method has two main steps:
finding approximately repeated chroma sequences in a song,
and a greedy algorithm to decide which of the sequences
are indeed segments. We calculate the Pearson correlation
coefficients between every pair of chroma vectors, which
together represent a beat-wise self-similarity matrix R =
(rij) of the whole song. This is similar to the matrix of
cosine distances used by Ong [16]. In the similarity ma-
trix, parallel diagonal lines indicate repeated sections of a
song. In order to eliminate short term noise or deviations
we run a median filter of length 5 (typically just more than
one bar) diagonally over the similarity matrix. This step
ensures that locally some deviation is tolerated.

We perform a search of repetitions over all diagonals
in the matrix over a range of lengths. We assume a mini-
mum length of m1 = 12 beats and a maximum length of
mM = 128 beats for a segment, leading to a very large
search space. We minimise the number of elements we
have to compare by considering as section beginnings only
those beats that have a correlation r greater than a thresh-
old tr, and assuming that section durations are quantised to
multiples of four beats. We found that a value of tr = 0.65
worked well. In future work we would like to learn tr from
data. We further reduce the search space by allowing seg-
ments to start only at likely bar beginnings. Likely bar
beginnings are beats where the convolution of a function
representing the likelihood of a change in harmony, and a
kernel with spikes every two beats has a local maximum
(details in [18]).

To assess the similarity of a segment of length l starting
at beat i to another one of the same length starting at j we
consider the diagonal elements

Di,j,l = (ri,j , ri+1,j+1, . . . , ri+l,j+l) (1)

of the matrix R. If the segments starting at i and j are
exactly the same, then Dij will be a vector of ones, and
hence we can characterise a perfect match by

min{Di,j,l} = 1. (2)

To accomodate variation arising in a practical situation,
we relax the requirement (2) by using the empirical p-

1 Segmentations available at http://www.elec.qmul.ac.uk/
digitalmusic/downloads/index.html#segment.
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quantile function 2 instead of the minimum (which is the 0-
quantile), and choosing a segment threshold ts lower than
unity. The triple (i, j, l) hence describes a repetition, if

quantilep{Di,j,l} > ts. (3)

The two parameters p = 0.1 and ts = 0.6 are chosen
empirically. In future work we would like to learn these
values from the ground truth data. The set of repetitions
Ril = {j : quantilep{Di,j,l} > ts} is then added to a list
L of repetition sets, if it has more than one element j, i.e.
if it actually describes at least one repetition. If two seg-
ments (i, j1, l) and (i, j2, l) overlap, only the index of the
one with the higher score is retained inRil.

Each of the setsRil represent a potential segment type,
and its elements represent the start beats of instances of
that segment type. However, there are typically many more
repetition sets than there are segment types. To find repeti-
tion sets relating to actual segment types we use the heuris-
tic of a music editor who tries to save paper: he will first
take the repetition set in which l × |Ril| is maximal, and
then repeat this kind of choice on the remaining segments
of the song, resulting in a greedy algorithm. The only
exception to that rule is the case in which he finds that a
sub-segment of a repetition is repeated more often than the
whole segment. He then chooses the Ril pertaining to the
sub-segment.

3.4 Using Repetition Cues in Chord Extraction

We use structural segmentation to combine several instances
of a segment type in a song and then infer a single chord
sequence from the combination.

The baseline is an existing chord labelling method [6],
which extracts chords from beat-synchronous treble and
bass chromagrams. Using a dynamic Bayesian network
[21] similar to a hierarchical hidden Markov model the net-
work jointly models metric position, chords and bass pitch
class and infers the most probable sequence from the beat-
synchronous chromagrams of the whole song. The method
models four different chord classes: major, minor, dimin-
ished and dominant 3 .

In order to integrate the knowledge of repeating seg-
ments, we split the chromagram for the whole song into
smaller chromagram chunks, each belonging to one seg-
ment instance. If a segment type has more than one in-
stance, all its chromagram chunks are averaged by tak-
ing the mean of the respective elements, thus creating a
new chromagram chunk representing all instances of the
segment type. The chord extraction is then performed on
the newly generated chromagram chunk, and the estimated
chords are transcribed as if they had been extracted at the
individual segment instances.

4. EXAMPLES

In this section we present some example chord transcrip-
tions with and without the segmentation technique, for the

2 http://www.mathworks.com/access/helpdesk/
help/toolbox/stats/quantile.html

3 strictly speaking: major with a minor seventh

fully automatic method. Figure 1 shows a complete song
segmentation, and indicates regions where the chord ex-
traction was correct with and without the segmentation
technique. Figures 2 and 3 show some excerpts on a
larger scale, with the chord estimation detail visible. It
is clear that the segmentation technique has had a defrag-
mentation effect on the chord labels. A change in re-
alisation of a repeated chord sequence between segment
instances, such as a difference in melody, has in numer-
ous places caused the standard transcription to incorrectly
change chord, but when repeated segments are averaged
these inconsistencies are removed. Examples include the
E:min chord in the third row of Figure 2 and the frag-
mented F] chords in the third row of Figure 3. This not
only improves the chord accuracy (see Section 5), but also
results in more natural transcriptions that include repeated
chord progressions, so could be used to generate compact
lead-sheets with each segment written exactly once. The
figures demonstrate how the segmentation technique gen-
erates chord progressions that are indeed identical for all
instances of a given segment type.

For a few songs the segmentation caused the chord es-
timation accuracy to decrease. Figure 4 shows an excerpt
from A Taste of Honey, a song with one of the greatest re-
ductions in chord accuracy due to segmentation. The tran-
scription in the second row is good in general, but the long
F sharp minor chord has been incorrectly labelled as ma-
jor, an error that repeats three times in the song. The final
chord in the song is F sharp major, and the segmentation al-
gorithm has incorrectly marked this chord as a repetition of
the minor chords earlier on. The problem is compounded
by the behaviour of the automatic beat tracker at the end
of the song: when the true beats stop, the beat tracker con-
tinues at a much faster tempo, which has caused the last
chord to appear to have the same length in beats as the
much longer (in seconds) F sharp minor chords through-
out the song. This poor case, then, still produces a good
transcription but with a parallel major-minor error caused
in part by the beat tracker giving too much importance to
the final chord.

5. QUANTITATIVE RESULTS

While the previous section has demonstrated how segmen-
tation can help create consistent and more readily read-
able chord transcriptions, this section examines their over-
all performance. To that end we compare the six different
combinations arising from two different beat annotations
(manual and automatic) and three different segmentation
annotations (manual, automatic, and none).

For each of the ground truth chords, we make a mu-
sical judgement regarding whether it should fall into one
of the chord classes we investigate: major, minor, dimin-
ished, dominant or no chord. If there is no clear suitable
mapping, for example for an augmented chord, our chord
estimation will always be treated as incorrect. We use as
an evaluation measure the relative correct overlap per song
in physical time against a reference of Harte’s chord tran-
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A A A B A B A B A B A B A

A A A B A B A B A B A B A
A A A B A B A B A B A B AFigure 1. Dizzy Miss Lizzy (complete). First row: automatic segmentation. Second row: regions of correctly-labelled

chords using segmentation. Third row: regions of correctly-labelled chords without using segmentation.

Figure 2. Extract from Dizzy Miss Lizzy. First row: automatic segmentation. Second row: automatic chord labels using
segmentation. Third row: automatic chord labels without using segmentation. Fourth row: hand-annotated chord labels.

Figure 3. Extract from Please Mister Postman. First row: automatic segmentation. Second row: automatic chord labels
using segmentation. Third row: automatic chord labels without using segmentation. Fourth row: hand-annotated chord
labels.

Figure 4. Extract from A Taste of Honey. First row: automatic segmentation. Second row: automatic chord labels using
segmentation. Third row: automatic chord labels without using segmentation. Fourth row: hand-annotated chord labels.

scriptions [22], i.e.

O =
summed duration of correct chords

duration of song
. (4)

A chord is considered correct if its chord type matches that
of the ground truth chord and its root note matches that of
the ground truth or its enharmonic equivalent. In Table 1
we report mean overlap scores over the 125 songs. For
completeness we also report the equivalent scores using the
chord classes used in the MIREX chord detection task [23],
in which only two chord classes are distinguished. We rec-
ommend that these numbers are used only to assess the ap-
proximate performance of the algorithm because—as can
be seen in Figure 5—the distribution is multimodal with a
wide spread, due to the large range of difficulty between
songs. An evaluation method that takes into account these
“row effects” is the Friedman analysis of variance [24]
based on ranking the results per song. The associated p-
value is below double precision, suggesting that at least
one method is significantly different from the others. The
multiple comparison analysis 4 in Figure 6 shows that the

4 http://www.mathworks.com/access/helpdesk/
help/toolbox/stats/multcompare.html

improvements due to segmentation cues for both manual
segmentation and automatic segmentation are significant.
Figure 7 illuminates why this is so: the use of segmentation
information leads to an improved relative overlap score in
most of the songs, for example, automatic segmentation
improves accuracy on 74% of songs.

Table 1 shows that the choice of segmentation method
makes very little difference to our results, with a much
greater difference caused by the beat annotation method.
Since the automatic beat tracker was adjusted for quick
tempos, several songs were tracked at double tempo with
respect to the manual annotations, so our results suggest
that the chord estimation method works better with higher
beat granularity.

6. DISCUSSION

The method presented here is not tied to the individual al-
gorithms. Using other chord extraction or segmentation
methods could further improve results and shed more light
on the performance of its constituent parts. As mentioned
in Section 3.3 we plan to investigate the effects of training
some of the segmentation parameters. It would also be in-
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Figure 5. Relative correct overlap for the configura-
tion using automatic beats and automatic segmentation:
Histogram showing song frequencies. The clearly non-
Gaussian distribution suggests that the mean correct over-
lap should not be the main evaluation technique.
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Figure 6. Multiple comparison test of the three best-
performing variants (automatic beat extraction) at a confi-
dence level of 99%, based on Friedman analysis of vari-
ance. The upper two rows show that of the two meth-
ods using manual (auto/man.) and automatic (auto/auto)
segmentation significantly outperform the one without
(auto/none), while the difference between automatic and
manual segmentation is not significant.
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Figure 7. Song-wise improvement in correct relative over-
lap for the methods using segmentation cues: using au-
tomatic beats, automatic segmentation improves perfor-
mance on 74% of songs (left); for manual beats, manual
segmentation improves 68% of songs (right).

configuration four classes MIREX

man. beat
man. segm. 64.4 71.8
auto segm. 64.1 71.5
no segm. 61.7 69.1

auto beat
man. segm. 66.4 73.7
auto segm. 65.9 73.0
no segm. 63.4 70.7

Table 1. Mean relative overlap in percent and mean rank
results. The four classes measure is our preferred mea-
sure for this task. The MIREX measure gets higher scores,
since it maps all chords to two classes, in particular domi-
nant and major chords are taken to be equivalent.

teresting to determine whether using the median (instead
of the mean) to average chromagram chunks would lead to
improvements for cases like A Taste of Honey, where one
major chord has tipped the mean to the parallel major.

The present work focussed on early rock music. We
expect that—given a good segmentation—improvements
in recognition results could be even greater for jazz: while
the extraction of chords in jazz is more difficult than in
rock music due to improvisation and more complex chord
types, the repetition of segment types is often more rigid.

The method to share information globally between seg-
ments we used for this work is a simple one. Integrating
this process with the chord extraction itself is a more ele-
gant solution, but would require structure learning.

7. CONCLUSIONS

We have shown that using knowledge of repeating struc-
ture in a song can improve chord recognition in two ways.
Firstly, by design the chord estimates are more consis-
tent between instances of the same segment type, which
leads to a more natural transcription that could be used
to generate realistic lead sheets with structure markings.
Secondly, we have shown that our method of averaging
the different instances of each segment type has signif-
icantly improved the measured chord accuracy. This is
demonstrated by examples that show how non-repeating
incorrect chord fragments are removed by the averaging
process. The improvement is observed both when using
manually-annotated beat times and segments, which shows
that the principle is valid, and when using a fully-automatic
method, which shows that the principle can be applied to
real systems, and is effective even when there are some er-
rors in the beat or segment labels.

The results we have presented support the wider hy-
pothesis that unified music analysis improves estimation
of individual features [6–8]. We would like to extend
this approach in our future work to allow chord estimation
to be informed by a complete musical context, including
melody, tonality, timbre and metrical structure.
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ABSTRACT

A musical performance is seen as the performer’s inter-
pretation of a musical score, illuminating the interaction
between the musical structure and implied emotive charac-
ter [1]. It has been demonstrated that performers’ physical
gestures correlate with structural and emotional aspects of
the piece they are performing and that this information can
be decoded by an audience when presented with a visual-
only performance [2].

This paper investigates the relationship between direc-
tion of physical movement and underlying musical struc-
tures. The Vicon motion capture system is used to record
3D movements made by nine university-level pianists per-
forming Chopin preludes op.28 Nos 6 and 7. The examina-
tion of several pianists provides insight into the similarity
and differences in gestures between performers and how
these relate to structure.

Principal Component Analysis (PCA) of these perfor-
mances and consequent analysis of variance reveals a rela-
tionship between extrema of the first six significant compo-
nents and timing of phrasing structure in Prelude 7 where
motion troughs consistently lag behind the occurence of
phrase boundaries in the audio. This relationship is then
examined for Prelude 6 which encompasses longer, ex-
panded phrases and changes in rhythm. These expanded
phrases are associated with elongated or split gestures, and
variations of the motif with changes in movement.

1. INTRODUCTION

Structural communication in performance is well under-
stood for parameters such as timing and dynamics, and
certain relationships between these parameters and struc-
tures have been clarified [3]. We now know that perform-
ers tend to slow the tempo towards the end of a phrase and
use dynamics to ‘shape’ a phrase often using a diminuendo
towards the end. These are of course context-dependent as
a performer can use the same parameters to mark differ-
ent structural features [4]. Performers also have personal
styles of playing and will not all use the same performance

Permission to make digital or hard copies of all or part of this work for
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not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

parameter to emphasise the same structural feature.
This personal style becomes a much bigger issue when

treading into the field of physical gestures. No such
straightforward relationships exist between physical ges-
tures and musical structure, although it has been demon-
strated that performers’ gestures do contain information
about the music being performed [5, 6]. Perception stud-
ies have also shown that typical audience members can ac-
curately perceive information about tension and phrasing
from visual-only performances [2].

This paper aims to establish relationships between body
movement and the phrasing structure it attempts to con-
vey, exploring how these change between different pieces
of music. This investigation of phrasing and gesture re-
lationships will be conducted by recording piano perfor-
mances through the Vicon motion capture system in syn-
chrony with audio recordings, and subsequent analysis
of the movement results alongside traditional analyses of
structure in the chosen pieces.

2. CHOPIN PRELUDES

Several factors fuelled the choice of two Chopin preludes
for gestural analysis.

• In order to make general statements about phras-
ing structure, it was necessary to provide some
amount of scientific control, otherwise the exercise
could become tantamount to guesswork. Two pieces
were therefore chosen to examine the progression of
movement and structure relationships.

• The pieces’ genre may have an effect on perfor-
mance gestures, so ideally those from the roman-
tic period would provide the most expressive perfor-
mances.

• The motion capture system coped better with shorter
recordings and so brief pieces were preferred.

The preludes chosen for this investigation were Pre-
ludes op.28 No.s 6 & 7. Prelude No. 7 in A major has
a strict, rigid structure, with the rhythmically identical two
bar phrase occurring eight times in total. As can be seen
from Figure 1, this binary form 16-bar piece has the main
boundary occurring exactly halfway through at bar 8, and a
harmonic arrival point occurring with the chord at the end
of bar twelve [7]. The two sections of the piece are thought
to each contain a set of antecedent-consequent phrases.
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Figure 1. Chopin prelude op.28 No.7 with two-bar phrases
marked in red and line boundary for end of first section.

Prelude No.6 in B minor comprises three sections [8]
from bars 1-8, bars 9-22 and a coda section from bars 23-
26. The first section represents an ‘extended idea’. As
seen in Figure 2, Chopin begins with another two-bar motif
in B minor. This motif is repeated with a slightly higher
pitch range in the next two bars. The first part of the motif
is repeated again and then expands into a four bar phrase
ending at bar 8, the first sectional boundary. The second
section represents an expansion of this idea. At bar 9, The
two-bar motif from the beginning is repeated with the next
expansion moving into C major. A new four bar phrase
is introduced at bar 15, answered by the consequent four
bar phrase concluding on the tonic at bar 22 at the second
sectional boundary. The piece ends with a slight coda in B
minor in its final phrase 1

As many different analyses of one piece can exist, each
pianist’s own interpretation of phrasing is noted within this
experiment. Analysis of each pianist’s performance of the
rigidly structured prelude no.7 will provide an impression
of performance style. This piece provides the opportunity
to observe movements for each phrase in isolation before
moving on to examine the other prelude containing slightly
more complicated structures.

3. METHOD

3.1 Performance Motion Capture

Using the Vicon 3D-motion capture system [9], perfor-
mances of the two selected Chopin preludes by nine highly
trained pianists 2 were recorded. All pianists were asked

1 This analysis of Chopin’s Prelude Op.28 No.6 is combined from Kofi
Agawu, V. ’Concepts of Closure and Chopin’s opus 28’ in Music Theory
Spectrum 9:1–17, 1987. and comments made by Jennifer MacRitchie,
University of Glasgow, and David Lewis and Christophe Rhodes, Gold-
smiths, University of London

2 These nine performers consisted of five music performance under-
graduate students, four at the University of Glasgow and one at the Uni-
versity of Edinburgh, two postgraduate students from the Royal Scottish
Academy of Music and Drama and two amateur pianists with more than
ten years of performance experience. Each pianist was paid a one-off sum
of £25 for their participation in the experiment.

Figure 2. Chopin prelude op.28 No.6 with phrases marked
in red and line boundaries for the ends of sections.

to play the pieces from memory in an effort to ensure an
in-depth knowledge of both pieces. The only performance
direction given to the pianists was to play as if they were in
a normal concert setting. Pianists’ interpretation of phras-
ing structure and gestural expression were taken by means
of a self-report following the recording.

The Vicon motion capture system consists of twelve
infra-red cameras placed around the room to ensure cap-
ture of a particular volume of space. Retro-reflective mark-
ers were placed onto a velcro jacket and hat worn by the
performers in the configuration shown in the head and up-
per body model in Figure 3. This particular model com-
bined the upper body model from Cutti et al. [10] with
four reference markers for the head positions. Each cam-
era tracks the coordinates of the 28 markers and trian-
gulates their position in order to build a 3-D model of
each performer. Each video was recorded at 120 frames
per second in synchrony with an analogue input for the
recorded sound. The models were then reconstructed by
post-processing and any points where the cameras had
failed to pick up a certain marker were filled with the esti-
mation models available from the Vicon Nexus software.

Problems were encountered particularly with the mark-
ers placed on the elbows of the performers. As the markers
were placed not directly onto the skin but onto a velcro
jacket, there were several points in the recordings where
the marker was lost by the camera as the jacket had moved
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Figure 3. Vicon marker model for upper body of pianists.

round the elbow and displaced the marker. Although the
Vicon interpolation algorithms filled most of these elbow
gaps, the system is proprietary, so these algorithms are un-
available for inspection. The accuracy of reconstruction
for these elbow gaps must therefore be considered suspect.

4. RESULTS

4.1 Motion Capture Analysis

As motion capture always produces such an overwhelm-
ing plethora of data, the traditional phrase analysis of each
prelude provides us with points from which to start inves-
tigation of gestural cues at phrasing boundaries. Each per-
former’s audio recording was annotated in Audacity [11]
with the timings of the phrase boundaries explained in sec-
tion 2. by a separate professional pianist. Each performer’s
own view of the phrase segmentation was also noted in
case of any differences to traditional analysis. The pi-
anists’ self-reports also conveyed a wide view on the role
of movement in performance, with some branding move-
ments extra to sound productive ones as completely un-
necessary and something they tried to limit, whilst oth-
ers felt it vital to move in order to ‘feel’ the music they
were performing. Although physical gestures in perfor-
mance can be classified as movements necessary to the
actual sound-production, or movements that are related to
the music but not necessary for the actual sound (i.e. an-
cillary) [12], it is acknowledged that gestures may still be
multi-functional. To view the overall general motion char-
acteristics of each performer, principal component analysis
(PCA) was performed through designated pca modules us-
ing singular value decomposition algorithms [13] on the
complete set of motion data for each pianist. Each per-
son’s principal component score was mapped against the
timings of each phrasing boundary to determine if there
was a pattern of movement for each phrase. Reduced-
dimension curves such as these are good at expressing a
general overview but tend to lose some semantics of the
actual movement being performed and so each individual
marker is then also examined for reference to phrases, mea-
sures and beats.

Three pianists have been chosen to demonstrate the
spread of results concisely. These pianists were chosen
according to their ability, their standard deviation and vari-

Figure 4. First two principal components of movement for
prelude 7, Performer 1 mapped against phrase boundaries.

ance of movement calculated for intra-performance data
and also their views on movement during a performance.
Performer 1 is a highly trained amateur pianist and had a
small standard deviation of movement. Performer 2 is a
conservatory trained postgraduate student and had a large
standard deviation of movement, and Performer 3 is a mu-
sic undergraduate student and had a mid-range standard
deviation. Normalization of results allows the movements
to be correlated with phrase structure independent of dif-
ferences in amplitude. The arrows in each graph indicate
the point in time where the last note of each phrase ends in
the audio stream.

4.2 Prelude 7 in A major

Starting with prelude 7, in which the pianists self-reporting
analysis agreed with the traditional phrase segmentation
marked in section 2., Figures 4, 5 and 6 show the first
two principal components accounting for around 70% of
the overall movement. These appear to relate to the phrase
boundaries as dictated by traditional music analysis. For
each performer, the correlation between markers and the
resultant PCA curves i.e. the loadings, clarified that in-
stead of a few markers being prevalent in causing the most
variance in motion, the PCA curves were a result of the
variances in a combination of several markers and these
differed slightly for each pianist.

Interestingly, Performer 1’s self-report on conclusion
of the recordings expressed the opinion that movement in
performance did not convey any information on phrasing
and that during performances, he/she attempted to mini-
mize movements and facial expressions. However, Per-
former 1’s movement, shown in Figure 4, shows a clear
relationship between physical gestures and phrasing struc-
ture where each phrase boundary precedes a trough in the
motion graph. The loadings for Performer 1 related highly
to movements in the upper arms, the elbows, the wrists and
the chest.

Performer 2’s main component loadings consist of
movement in every section of markers: the wrists, elbows,
upper arms, shoulders, chest and the head. A pattern can
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Figure 5. First two principal components of movement for
prelude 7, Performer 2 mapped against phrase boundaries.

be seen in Figure 5 for the first principal component(red),
where the phrase boundary occurs at a motion peak for all
but phrase endings 1, 5 and 6 whose peaks precede the
boundary in time. The second component (green) shows a
relationship between the phrase endings and peaks in the
graph.

Figure 6. First two principal components of movement for
prelude 7, Performer 3 mapped against phrase boundaries.

Performer 3’s main component loadings relate to move-
ments in the wrists, upper arms, chest and head. A pattern
can be seen in Figure 6 where each phrase boundary pre-
cedes a trough in the main component in all phrases. The
pattern of movement for each phrase in this component is
changed slightly during phrase six. This could be to em-
phasise the harmonic arrival in bar 12 of the piece.

The addition of the weighted values of the first six prin-
cipal component scores for each performer produces a vi-
sualisation of data accounting for more than 90% of the
variance in motion, the weightings calculated from the
percentage variance of each component over the dataset.
These have been resampled with 10,000 points and time-
warped to allow more direct comparison between per-
formers. The distance between each audio phrase bound-
ary is 0.1 and quoted means and standard deviations are

calculated for the distances between the troughs of the
motion trajectory and its corresponding phrase bound-
ary. Figure 8 shows a pattern in all phrases except one,
five and six (mean=0.0369,s.d=0.015). Phrases 1 and
5 are the first phrases in the each section of prelude 7
whilst phrase 6 contains the harmonic arrival point. Fig-
ures 7 and 9 show a clear relationship between the move-
ment and phrase boundaries.(mean=0.0186,s.d=0.0116
and mean=0.0204,s.d=0.0068 respectively) The calibra-
tion of this hypothesis with prelude 7 now provides us with
a useful tool to observe the structure of prelude 6 for the
same performers.

Figure 7. Combination of first six components for prelude
7, Performer 1 mapped against phrase boundaries.

Figure 8. Combination of first six principal components
of movement for prelude 7, Performer 2 mapped against
phrase boundaries.

4.3 Prelude 6 in B minor

The initial two-bar motif in prelude 6 is in the left hand
melody marked in the score seen in section 2. This motif
is varied in the subsequent phrases, first in pitch for the
second phrase, then also in rhythm for the third phrase
ending at bar 8. This is echoed in the movements made
by performers. This initial step looks at the first three
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Figure 9. Combination of first six principal components
of movement for prelude 7, Performer 3 mapped against
phrase boundaries.

phrases of prelude 6 as agreement on phrase segmenta-
tion between analyses and performers’ self-reports diverge
from this point onwards. The means and standard devia-
tions of distance between motion trough and phrase bound-
ary are for the first three phrases only.

Figure 10. Combination of first six principal components
of movement for prelude 6, Performer 1 mapped against
phrase boundaries.

Performer 1’s weighted combination of principal com-
ponents of movement, shown in Figure 10, shows a dis-
tinct pattern of movement for the two-bar motif established
in phrase one of the piece (mean=0.0223,s.d=0.0110). Its
elongation in phrase 3 is mimicked by an elongated ges-
tural movement. The change in motif at bar 15 beginning
with a four bar phrase (phrase 5), is marked with a differ-
ent pattern of movement. This movement is repeated as the
consequent four bar phrase is played.

The first six principal components for Performer 2, as
seen in Figure 11, also shows a clear pattern within the
first three phrases (mean=0.0129,s.d=0.0115 this particu-
lar mean is negative as each trough occurs slightly before
the phrase boundary). Interestingly, in phrase 3 where the
original two-bar motif is expanded, we clearly see two sep-

Figure 11. Combination of first six principal components
of movement for prelude 6, Performer 2 mapped against
phrase boundaries.

arate movements. As the length of the phrase being per-
formed is just under 12 seconds long, we refer to the theory
of gestures being separated into gesture-units i.e. action-
chunking [14]. At which points within a long phrase this
action-chunking occurs is most likely related to the smaller
rhythmical groupings within the particular phrase.

Figure 12. Combination of first six principal components
of movement for prelude 6, Performer 3 mapped against
phrase boundaries.

The first principal component for Performer 3 as seen
in Figure 12 again shows this pattern between movement
and phrasing (mean=-0.0069,s.d=0.0086). Again at phrase
3, we can see the beginning of the two-bar motif related
movement before the phrase is expanded and the resulting
gesture elongated as well.

4.4 Analysis Across All Performers

One-way ANOVAs were conducted to investigate the ef-
fects of performer style and phrasing motion. No sig-
nificant effect of performer was found which, when cou-
pled with variance analyses of individual performers, re-
vealed that performers were consistent in their movement
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patterns throughout the piece, showing no significant dif-
ference between performers in their overall motion timing
variance. A significant effect of trough location was found
between performers (F=17.32, p<0.001). When consid-
ered with the minimal variance within performances, these
results show that performers were consistent in the location
of their coherant motion patterns (troughs) with respect to
phrasing boundaries. As performers’ interpretations of the
latter part of prelude 6 differ, such straightforward compar-
isons cannot be performed for this piece.

Comparisons of pianists’ singular marker movements
for both preludes showed similarities in movement in the
y axis (along the length of the keyboard) of every single
marker of the upper body. Troughs in each plot occurred
either slightly before or slightly after the audio phrase
boundary. This changed between pianists but was con-
sistent between performances of two preludes with differ-
ing structure and different melodies. Differences in pi-
anists’ marker movements showed for some pianists, a
clear relationship with phrasing in all three axes of move-
ment for each marker. Some used their heads to mark
out phrasing whereas others preferred to use their upper
body. These movements were performer specific and oc-
curred across both pieces. Within some markers denoting
phrasing, movements corresponding to the measures and
beats within the piece were found. Markers which were not
phrasing specific also appeared to highlight beats or mea-
sures of the piece. Despite this, the overall general move-
ment reflected by the PCA shows a clear phrasing pattern.

5. CONCLUSIONS

Structural information appears to be inherent in pianists’
directional movements across the three axes. Princi-
pal component analysis confirms the relationship between
general movement in the upper body and head with com-
posed structure. Variance analysis shows that each per-
former’s general movement consistently lags behind the
occurence of a phrase boundary in the audio stream. By ex-
amining pianists’ movements in performances of Chopin’s
prelude op.28 no.7, it is confirmed that short phrases in iso-
lation, with the same rhythmical pattern appear to invoke
similar movements by the performers. Movement also ap-
pears to change when the motif is varied, as examined in
performances of Chopin’s prelude op.28 no.6. In compar-
ison with the short two-bar motif, phrases with a longer
duration have different elongated gestures and are some-
times split into sections in a process referred to as action-
chunking.

This investigation provides the initial step of relating
movements to phrases. Further investigations into effect
of genre of the music being performed on the structural
relationship with movement are required to make more
general statements across a wider variety of music. Fur-
ther steps for this research are to clarify whether physi-
cal gestures are related to other compositional or perfor-
mance attributes. Empirically relating general movement
to structural aspects of performed music contributes to the
argument that ancillary performer movements may have

a music-related function. This has implications for piano
pedagogy and furthers the understanding of the wider rela-
tionship between music and movement.
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ABSTRACT

We address here the automatic description of percussive
events in real-world polyphonic music. By taking a pattern
recognition approach we evaluate more than 2,450 object-
level features. Three binary instrument-wise support vec-
tor machines (SVM) are built from a training set of more
that 100 songs and 10 genres. Then, we use these bi-
nary models to build a drum transcription system achieving
comparable results with state of the art algorithms. Finally,
we present 17 song-level percussion descriptors computed
from the imperfect output of the transcription algorithm.
We evaluate the usefulness of the proposed descriptors in
music information retrieval (MIR) tasks like genre clas-
sification, danceability estimation and Western vs. non-
Western music discrimination. We conclude that the pre-
sented song-level percussion descriptors provide comple-
mentary information to “classic” descriptors, that can help
in the previously mentioned MIR tasks.

1. INTRODUCTION

During the last decade the interest in the transcription of
percussive instruments has grown and most of the work has
focused on the problem of drum 1 transcription [1]. The
aim of such systems is to obtain, from an audio signal, a
representation of the type of percussion instrument played
(instrument recognition), and when it has been played (tem-
poral location).

The transcription of isolated or polyphonic drum sounds
(i.e. without concurrent pitched sounds) can be considered
a practically solved problem (e.g. see [2]). However, the
automatic transcription of percussive events in polyphonic
music is an open problem where there is still a lot of room
for improvement.

Instead of focusing on a full transcription system, we
consider that, when MIR of polyphonic music is addressed,
an automatic music “description” approach should be taken.

1 The word “drum” refers to a standard Rock/Pop drum kit found in
Western music.
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The main idea behind such an approach is to obtain “predi-
cates” or labels that apply to a given music excerpt and usu-
ally this information goes beyond traditional music scores.

In this paper we present and evaluate several song-level
percussion descriptors extracted from the output of an im-
perfect transcription system. The aim of these descrip-
tors is to semantically describe general characteristics of
within-song drum events such as drum-instrument degree
of presence, drum-instrument relationships (i.e. inter-ins-
trument ratios) and most-frequent inter-instrument inter-
vals. Finally, we explore the usefulness of the proposed
descriptors for some MIR tasks such as genre classifica-
tion, danceability estimation and Western vs. non-Western
music classification.

The paper is organized as follows: An overview on per-
cussion transcription of polyphonic music is presented in
section 2. In section 3 “full” and “relaxed” transcription
systems are described. Next, song-level percussion de-
scriptors are proposed and evaluated within several MIR
tasks (section 4). Finally, section 5 presents some conclu-
sions.

2. RELATED WORK

Most of the works on transcription of percussive events in
polyphonic music have focused on transcription of drum
kit sounds, specially on bass drum (BD), snare drum (SD)
and hi-hat (HH) sounds. In Table 1 a summary of the most
relevant works on drum transcription in polyphonic mu-
sic is presented. It is worth to notice here that the pre-
sented results can not be directly compared since they were
not evaluated on the same dataset. Sandvold et al. [3]
used a combination of general and localized sound mod-
els. The correct classified instances obtained from the gen-
eral model (C4.5 with AdaBoost) were manually parsed
to a localized training set. Yoshii et al. [4] achieved the
best results in the MIREX 2005 2 audio drum detection
contest by using matching template spectrograms. The
main idea here was to obtain a template spectrogram rep-
resentation of a particular percussion instrument from a
large training database of sounds. Thus, when analyzing a
song, a template-adaptation algorithm was applied on ev-
ery onset. A distance measure for template matching was
used to try to minimize the spectral overlapping of other
sounds. Dittmar’s [5] system was also evaluated within

2 See MIREX web site: http://www.music-ir.org/evaluation/mirex-
results/audio-drum/index.html for more information.
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Authors # songs Approach Main Algorithms Overall BD SD HH
Sandvold et al. [3] 25 Patt-Rec local. model 0.924 0.951 0.931 –

Yoshii et al. [4] 50 Sp. Temp Temp. match. 0.670 0.728 0.702 0.574
Dittmar [5] 50 S. Sep+Sp. Temp NN ICA 0.588 0.606 0.581 0.585

Tanghe et al. [6] 50 Patt-Rec SVM 0.615 0.688 0.555 0.601
Gillet and Richard [7] 20 Patt-Rec SVM+local. model 0.840 0.824 0.842 –
Paulus and Klapuri [8] 45 Patt-Rec HMM 0.697 0.795 0.655 0.660
Gillet and Richard [9] 28 S. Sep+Patt-Rec SVM 0.678 0.695 0.583 0.755

Table 1. Summary of drum transcription systems in polyphonic music. Almost all works classify bass drum (BD), snare drum (SD) and
hi-hat (HH) sounds, except for Gillet and Richard [7] (where only BD and SD were detected) and Sandvold et al. [3] (where BD, SD and
Cymbal were computed).“Approach” considers Pattern Recognition (Patt-Rec), Source Separation (S. Sep), and Spectral Template (Sp.
Temp). F-measures results (except for Sandvold et al. where accuracy was measured). Since different datasets were used, results can not
be directly compared.

the MIREX contest. It combined source separation (Non-
Negative ICA) with template matching algorithms. Tanghe
et al. [6], another MIREX participant, presented an onset-
based classification system usingN -binary SVM as recog-
nition algorithm (being N the number of instruments to
detect). Gillet and Richard [7] also used N -binary SVM
as classification algorithm. This system performed a band-
wise harmonic/noise decomposition as pre-processing step
to enhance the presence of unpitched instruments. A lo-
calized adapted model like the one presented in [3] was
also evaluated. Paulus and Klapuri [8] presented an evalu-
ation using Hidden Markov Models with a combination of
spectral features and temporal descriptors calculated from
long narrow-band frames. In a recent work by Gillet and
Richard [9] a combination of source-separation and pattern-
recognition algorithms was proposed. Two set of features
were computed, one from the original audio signal and the
other from a “drum enhanced” track obtained by source
separation. These feature vectors were then classified by
three binary SVM.

As can be seen from the literature review, there is still a
lot of room for improvement in the problem of drum tran-
scription in polyphonic music. But, instead of pursuing
a perfect transcription system, we decided to explore the
potential of song-level percussion descriptors to describe
real-world music. In order to achieve that we implemented
a simple drum transcription system. This system could be
used later as a baseline for more complex implementations
(e.g. based on source separation or harmonic/noise decom-
position). Thus, we chose to follow a standard pattern-
recognition approach, trained on a large set of sounds and
audio features. The potential of this kind of basic system
to describe percussive events in polyphonic music was not
previously assessed.

3. TRANSCRIPTION EXPERIMENTS

3.1 Datasets

We used three song collections with proper annotations of
percussive events. Two of them are publicly available and
were used in previous studies on drum transcription.

ENST-Drums database [10]: This is the largest pub-
licly available drum database. Since we wanted to detect

drum events in “real” music, we decided to mix the pro-
vided “wet” drums and their accompaniment tracks with-
out further changes on amplitude (-6dB drum level). From
the obtained collection of 64 songs we randomly selected
30 seconds excerpts of each song and their labels.

MAMI database [11]: This database is a collection of
52 music fragments (30 seconds length) extracted from
commercial CDs. We managed to gather 48 songs and
aligned them with the provided annotations. This database
was one of the three databases used in the MIREX 2005
audio drum detection contest.

In-house database [12]: This is a database of 30 anno-
tated music excerpts (20 seconds length), extracted from
commercial CDs. Since HH events were not specifically
annotated, we only used the BD and SD labels.

Due to the number of instances and the musical impor-
tance of each instrument within the drum kit we decided to
work with the following instruments classes: BD, SD and
HH (including open and closed HH sounds). Finally, we
obtained a large set of polyphonic music excerpts adding
up a total of 142 songs labeled with three, possibly con-
current, tags. The final number of instances per instrument
was: 6,407 for BD, 5,655 for SD and 8,400 for HH.

3.2 Descriptors

First, we computed a set of frame-level descriptors (frame-
size of 46 ms, hop-size of 12 ms) namely: temporal de-
scriptors (zero-crossing rate and lpc coefficients), spectral
descriptors (e.g. centroid, complexity, crest, decrease, dis-
sonance, energy, flatness, flux, kurtosis, pitch, rms, rolloff,
skewness, spread, strong-peak), perceptual descriptors
(MFCCs, Bark-bands and Bark-bands kurtosis, skewness
and spread) and tonal descriptors (Harmonic Pitch Class
Profile). See [13] and [14, p. 20] for an overview on these
descriptors.

After this first step we computed a set of object-level
descriptors 3 from the time series of each frame-level de-
scriptor (about 12 frames per object). The computed object-
level descriptors were:

3 The term “object” is considered here as: every sound event starting
from an onset and finishing 150 ms after (or in the next onset if this new
onset falls within the 150 ms interval).
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a) Amplitude-related object descriptors: mean, variance,
minimum, maximum, skewness and kurtosis.

b) Time-related object descriptors: temporal skewness,
temporal kurtosis, temporal centroid, max. and min. nor-
malized position (normalized temporal position of the max-
imum, or minimum, value of the time series), slope (arct-
angent of the slope of the linear regression of the data), at-
tack and decay (slope descriptor from initial, or end, point
to the maximum point) and amplitude-normalized attack
and decay.

At the end of this process we obtained about 2,400 de-
scriptors for every sound object. See [14, p. 46] for a de-
tailed explanation on the computed descriptors.

3.3 Model training

Since we were working with three drum categories that
can occur at the same time, we decided to train N -binary
(SVM) classifiers instead of one model with 2N possible
classes. In this context we have each trained model in
charge of detecting the presence or absence of one partic-
ular instrument (e.g. SD or not-SD).

In order to have a more representative database for train-
ing purposes we mixed the ENST and the MAMI databases.
Taking into account that the final system has to label pre-
detected onsets we decided to train our models with la-
beled onsets. Thus, we performed an onset detection (by
using an implementation of the onset algorithm proposed
by Brossier in [15]) and we assigned the corresponding la-
bels to every detected onset. Finally we split the database
leaving 90% for training and reserving 10% to be used as
independent test set. We called these databases 90%MIX
and 10%MIX. The In-House database was also reserved as
second independent testing set.

To build the SVM models we first used the correla-
tion based feature selection (CFS) [16] algorithm in 10-
fold cross-validation (CV) to identify the most informa-
tive object-level descriptors from the 90%MIX database.
We chose only those descriptors selected in all CVs (i.e.
10 times) obtaining 56 relevant descriptors for BD (e.g.
low Bark-bands, MFCCs, spectral-energy low and spec-
tral flux), 77 for SD (e.g. mid Bark-bands, temporal lpc,
MFCCs and spectral flatness ) and 38 for HH (e.g. high
Bark-bands, temporal lpc, MFCCs, spectral spread and
spectral flatness). Then, we trained the SVM models with
the selected descriptors of the 90%MIX database and eval-
uated their performance using 10-fold CV. We also ap-
plied these models to the testing sets (i.e. 10%MIX and
In-House). The classification results for every labeled in-
stance and every model (after a grid search of SVM pa-
rameters) can be seen in Table 2. We obtained averaged
F-measure results of 0.806 and 0.782 for the training and
testing sets respectively.

3.4 Full transcription

Since up to this step we had worked only with labeled
onsets, the next step was to evaluate the learned models
against all the ground truth labels in the datasets. In order
to do that we implemented a complete drum transcription

Instrument Model 90%MIX In-House 10%MIX

bass drum 0.834 0.812 0.835

snare 0.778 0.687 0.773

hi-hat 0.806 — 0.802

Table 2. F-measure classification results after grid search of
SVM parameters. Models were trained with 90%MIX database.
Results were evaluated using 10-fold CV on each dataset.

system. The three previously described databases were an-
alyzed (ENST, MAMI and In-house) adding up a total of
142 songs (20 to 30 seconds length).

The experiment set-up for evaluating the transcription
capabilities of our system was as follows: a) Perform an
onset detection on the audio excerpts (we used the same
onset detector as in the model training step). b) Compute
the descriptors used by each model on every onset plus
150 ms (or until the next onset). c) Apply the models to
every set of descriptors to obtain the predicted labels. d)
Evaluate the predicted results against the ground truth an-
notations (as in the MIREX 2005 contest, a range of ±30
ms from the true times was allowed). After evaluating all
142 song excerpts, we obtained an overall result of 0.659
(F-measure) and per instrument F-measure results of 0.699
for BD, 0.652 for SD and 0.626 for HH. If we compare our
system with the fully automatic systems described in sec-
tion 2 (i.e. [4, 6, 8, 9]) we can see that our system obtained
near state-of-the-art drum transcription performance with a
quite simple pattern recognition algorithm. Nevertheless,
these performances are still far from reliable transcriptions.

3.5 Relaxed Transcription

Taking into account that state-of-the-art algorithms are still
far from yielding perfect transcriptions and that our final
goal was to derive song-level percussion descriptors, we
decided to evaluate the capacity of our transcription sys-
tem to estimate the total number of drum events in a song
(e.g. how many BD, SD or HH strikes a particular song
has). These descriptors could be used to characterize a
song as having, for example, a lot of SD, no HH, etc.,
hence they contribute to bridge the semantic gap [17]. In
this experiment we considered as a “correct” decision the
total number of instrument instances (e.g. HH events) in
the whole audio file discarding time-information 4 . Using
the same datasets as in the full transcription experiments
we obtained, as expected, better classification performance
(F-measure) for all classes (BD = 0.822, HH = 0.794 and
SD = 0.698). The overall performance of this “relaxed”
transcription system was 0.771 (F-measure). These results
encouraged us to investigate if useful song-wise percussion
descriptors could be computed.

4 We define correct transcription (CTR) as the arg min(TR,GT ), be-
ing TR = transcription and GT = ground truth labels per instrument.
Then, we compute P = CTR/TR and R = CTR/GT and finally
F = 2PR/(P +R).
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4. SONG-LEVEL PERCUSSION DESCRIPTORS

4.1 Computed Descriptors

In [12] and [18] two percussion-related descriptors were
presented and evaluated with promising results namely:
Percussion Index (a ratio between the total number of de-
tected percussion events and the number of detected on-
sets) and Percussion Profile (the relative amount of BD,
SD, cymbals, and non-percussion events normalized by the
total number of onsets). Following this idea of percussion
related descriptors we decided to compute and evaluate the
following song-level percussion descriptors (some of these
descriptors appeared as suggested future work in [12] but,
up to our knowledge, they have not been implemented nor
evaluated yet).

Computed song-level percussion descriptors:

• Percussion Profile: The ratio between the number
of detected percussion events and the number of de-
tected onsets [18]. Computed for BD, SD, HH and
drum (D) 5 (e.g. BD/total, SD/total).

• Inter-Instrument Ratio: The ratio among all per-
cussive instrument events namely: BD/SD, BD/HH
and SD/HH.

• Instrument Per Minute: The number of detected
events per minute for BD, SD, HH and D.

• Inter-Instrument Interval (iii): The first and sec-
ond peak values of the histogram of the differences
between successive events. Thus, we computed: first
and second-iii-peak for BD, SD and HH.

At the end of this process we obtained 17 song-level per-
cussion descriptors for each song.

4.2 Evaluation

To investigate the correlation between the proposed per-
cussion descriptors and the ground truth values we com-
puted the percussion descriptors both from the ground truth
labels (labeled onsets) and from the output of our tran-
scription system. Then, we built a fractional ranking 6 for
each descriptor (for every song) and computed the Pear-
son’s correlation coefficient between both rankings. The
correlation results showed large correlation values (i.e. >
0.5) for 12 out of 17 proposed descriptors (only: BD/SD,
second-iii-peak for the three instruments and first-iii-peak
for HH presented correlation values below 0.5). These
highly correlated values between our descriptors and de-
scriptors computed from the ground truth labels were spe-
cially strong (i.e. > 0.7) for D/total, D/min, HH/total and
HH/min. These results suggest that the proposed descrip-
tors have potential to describe the percussive content of a
song.

5 In this context “drum” means the number of detected onsets labeled
by the system as BD, SD or HH.

6 If the ordered vector to rank is A,B,C,D and B is equal to C (i.e. tie)
the fractional ranking assigns the same mean position value in both cases,
i.e. 1,2.5,2.5,4.

Figure 1. Genre classification results per genre and descriptor
set. F-measure after 10-fold CV.

Next, we evaluated the usefulness of the percussion de-
scriptors as features in several MIR tasks such as genre
and sub-genre classification, danceability 7 and Western
vs. non-Western music estimation. We decided to set-up
a general methodology for evaluating the song-level per-
cussion descriptors on every selected MIR task. Firstly,
we computed, for each song in the dataset, the mean value
of a set of “standard” descriptors to be used as baseline
for the evaluation. Secondly, we computed the proposed
song-level percussion descriptors on the same database.
Thirdly, we selected a classification algorithm and we de-
termined the “best” classification values for the “standard”,
“percussion” and “standard + percussion” descriptor sets.
Finally, we evaluated the classification results by compar-
ing F-measures and performing a Binomial test [20, p. 37]
with 5% significance level (i.e. α = 0.05). This Binomial
test determines if the difference between correctly classi-
fied songs for each descriptor set is statistically significant
or not. It is worth to notice that none of the songs used
for training the SVM models were used in these evaluation
experiments.

4.2.1 Genre

For genre classification we used an in-house database of
30 seconds excerpts extracted from 350 songs equally dis-
tributed among 7 genres: classic, dance, hip-hop, jazz, pop,
r&b and rock. The computed “standard” descriptors were:
Bark-bands, Bark-bands kurtosis, Bark-bands skewness,
Bark-bands spread, spectral centroid, spectral crest, spec-
tral decrease, spectral dissonance, spectral energy, spec-
tral energy-band high, spectral energy-band low, spectral
energy-band middle high, spectral energy-band middle low,
spectral flatness, spectral flux, spectral hfc, spectral kurto-
sis, MFCCs, spectral skewness, spectral spread and tempo-
ral zero-crossing rate. We called “timbral” descriptors this
set of 60 features. We used multi-class SVM as classifica-
tion algorithm.

The genre classification results can be seen in Figure 1.
From these results it is interesting to notice that by using
the percussion descriptors only, good discrimination rates

7 The easiness with which one can dance to a musical track [19].
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Genre T P T+P

ambient 0.531 0.433 0.588

drum’n bass 0.475 0.619 0.576

house 0.200 0.500 0.427

techno 0.369 0.269 0.380

trance 0.438 0.566 0.427

Average 0.403 0.478 0.480

Table 3. Electronic sub-genre classification. T = timbral, P
= percussion and T+P = timbral+percussion. C4.5 classification
algorithm. Results in F-measure after 10-fold CV.

can be achieved for classic (F = 0.818), rock, dance and
hip-hop (F ≈ 0.600) genres. The overall classification
for the percussion-only data set was about 12 percentage
points (pp) below “timbral” descriptors. When combining
“timbral” and “percussion” descriptors a small improve-
ment in the overall result was observed (+2.1 pp). It is
worth to notice that big improvements were produced in
dance (+12.7 pp) and pop (+15 pp) results, whereas results
for rock and r&b decreased 5.6 and 4.4 pp respectively.

The Binomial test showed no statistically significant dif-
ference between “timbral + percussion” and “timbral” de-
scriptors (p = 0.1932), but both sets evidenced signifi-
cant differences with the “percussion” descriptor set (p <
0.0001 in both cases).

4.2.2 Electronic

For electronic sub-genre classification we performed our
experiments on an in-house database of 270 songs (30 sec-
onds length each) equally distributed among the following
genres: ambient, drum’n bass, house, techno and trance.
The computed descriptors were the same as in the genre
experiment. Given that sub-genre and genre classification
could be considered as very related tasks, we decided to try
a different algorithm to gain some insight on the descrip-
tors. Therefore, we used in this case the C4.5 decision tree
algorithm for classification, since its output can be easily
summarized into interpretable trees of descriptors.

Results for electronic sub-genre classification are de-
picted in Table 3. In this experiment we observed that clas-
sification results obtained by the “percussion” set outper-
formed “timbral” descriptors by 7.5 pp. The combination
of “timbral” and “percussion” descriptors showed no sig-
nificant difference with results from percussion-only de-
scriptors in the overall classification result (although this
combination seems to output more balanced classification
rates among categories). In both “percussive” and “tim-
bral + percussive” models the D/total and first and second
iii-peak BD were the most informative descriptors.

The significance test corroborates the conclusions ex-
tracted from the F-measure results where “percussion” de-
scriptors performed significatively better than “timbral” de-
scriptors (p = 0.0028), “timbral + percussion” performed
better than “timbral” (p = 0.0058) and no statistical dif-
ference between “percussion” and “percussion + timbral”
descriptor sets was appreciated (p = 0.4273).

Figure 2. Danceability classification results after 10-fold CV.

4.2.3 Danceability

For danceability tests we used an in-house database of 374
song excerpts of 30 seconds equally distributed into three
classes (i.e. non-dance., mid-dance. and high-dance.). We
computed the same descriptors as in the genre experiment
plus an estimation on the beats per minute (bpm) of the
song 8 , we called this descriptor set as “timbral + bpm”.
As in the genre experiments we decided to use the SVM
algorithm (multi-class).

Results for Danceability tests are shown in Figure 2.
From these results we can conclude that “percussion” de-
scriptors performed better than both “timbral + bpm” and
“timbral + bpm + percussion”. Percussion-only descrip-
tors outperformed by 8.9 pp and 7.4 pp “timbral + bpm”
and “timbral + bpm + percussion” respectively, obtaining
better results in all three categories. It is interesting to no-
tice that percussion descriptors also outperformed obtained
results by [19] which achieved an accuracy of 61.78% in
classifying 225 songs into the same three categories by us-
ing a different and more complex approach.

The Binomial test on danceability results showed that
“percussion” descriptors provided significatively better per-
formance than the other two sets (p = 0.0025 for “timbral
+ bpm” and p = 0.0074 for “timbral + bpm + percus-
sion”). The test also showed no statistical difference be-
tween “timbral + bpm” and “timbral + bpm + percussion”
descriptor sets (p = 0.3793).

4.2.4 Western vs. non-Western music classification

For Western vs. non-Western experiments we used an in-
house database of 139 Western songs from 16 genres in-
cluding classical, jazz, rock, pop, religious and hip-hop,
and 139 non-Western songs including songs from Africa,
Arab States, Asia and the Pacific. The computed descrip-
tors and classification algorithm were the same as in genre
experiments.

The results for these experiments are shown in Table
4. Here we observed an almost linear increment in the
classification rates starting by “timbral” descriptors with

8 Since bpm is an important descriptor for danceability estimation we
included it into the “standard” set. Otherwise, it would be too easy for
our descriptors to outperform.
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Class T P T+P

Western 0,817 0,803 0,856

non-Western 0,747 0,828 0,833

Average 0,782 0,816 0,844

Table 4. Western vs. non-Western music classification. T =
timbral, P = percussion and T+P = timbral+percussion. SVM
classification algorithm, F-measure results after 10-fold CV.

F = 0.782 followed by “percussion” descriptors with F =
0.816 (+3.4 pp) and “timbral + percussion” withF = 0.844
(+2.8 pp from “percussion”). It seems clear that adding
percussion descriptors helped in the process of Western
vs. non-Western song discrimination. Is is also interesting
to notice that classification results for non-Western music
were much better when percussion descriptors were used
(more than 8 pp above “timbral”).

The significance test showed no statistically significant
difference between “percussion + timbral” and “percus-
sion” descriptors (p = 0.1212) and between “percussion”
and “timbral” descriptors (p = 0.1349). The test also
depicted statistical difference between “percussion + tim-
bral” and “timbral” descriptors (p = 0.0096). See [21]
for an in-depth study on Western vs. non-Western music
classification.

5. CONCLUSIONS

Within the present work we have conducted several exper-
iments in order to detect and describe percussive events in
polyphonic music. Firstly, we built, by combining three
databases, a large set of percussion-labeled songs. Sec-
ondly, we evaluated the capacity of an automatic drum
transcription system, based on object-level features and
three binary SVM models, to transcribe percussion events
in polyphonic music. From the transcription results we
extrapolated that our relatively simple algorithm can be
placed among the top ranked ones, even though all these
systems leave a lot of room for improvement. After per-
forming “relaxed” transcription experiments we observed
that our system can detect the total number of drum events
in a song with an overall F-measure of 0.771. Finally,
we presented 17 song-level percussion descriptors and we
evaluated their usefulness among several MIR tasks. These
preliminary results suggest that song-level percussion (i.e.
“semantic”) descriptors, even though they are based on im-
perfect transcriptions, can help in MIR tasks such as genre
and sub-genre classification, danceability and Western vs.
non-Western music estimation. It also seems clear that
song-level percussion descriptors offer useful information
that complements the one provided by classic “spectral”
and “timbral” descriptors. This new information could also
be exploited in music similarity tasks.
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ABSTRACT

A robust music genre classification framework is proposed
that combines the rich, psycho-physiologically grounded
properties of auditory cortical representations of music re-
cordings and the power of sparse representation-based clas-
sifiers. A novel multilinear subspace analysis method that
incorporates the underlying geometrical structure of the
cortical representations space into non-negative tensor fac-
torization is proposed for dimensionality reduction com-
patible to the working principle of sparse representation-
based classification. The proposed method is referred to
as Locality Preserving Non-Negative Tensor Factorization
(LPNTF). Dimensionality reduction is shown to play a cru-
cial role within the classification framework under study.
Music genre classification accuracy of 92.4% and 94.38%
on the GTZAN and the ISMIR2004 Genre datasets is re-
ported, respectively. Both accuracies outperform any ac-
curacy ever reported for state of the art music genre classi-
fication algorithms applied to the aforementioned datasets.

1. INTRODUCTION

Despite the lack of a commonly agreed definition of music
genre due to genre dependence on cultural, artistic, or mar-
ket factors and the rather fuzzy boundaries between differ-
ent genres, music genre is probably the most popular de-
scription of music content [1].

Psycho-physiology indicates that the acoustic stimulus
is encoded in the primary auditory cortex by its spectral
and temporal characteristics. This is accomplished by cells
whose responses are selective to a range of spectral and
temporal resolutions resulting into a neural representation.
In particular, when the acoustic stimulus is either speech or
music, its perceptual properties are encoded by slow spec-
tral and temporal modulations [13, 18].

The appealing properties of slow spectro-temporal mod-
ulations from the human perceptual point of view and the
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strong theoretical foundations of sparse representations [4,
6] have motivated us to propose a robust framework for
automatic music genre classification here. To this end, the
auditory model [17] is used in order to map a given music
recording to a three-dimensional (3D) representation of its
slow spectral and temporal modulations with the same pa-
rameters as in [15]. This 3D representation is referred to
as cortical representation and exploits the properties of the
human auditory system [18]. The cortical representations
form an overcomplete dictionary of basis signals for music
genres, which is exploited for sparse representation-based
classification (SRC) as proposed in [19]. That is, first each
music recording is represented by its cortical representa-
tion. Second, each cortical representation is modeled as
a sparse weighted sum of the basis elements (atoms) of
an overcomplete dictionary, which stems from the corti-
cal representations associated to training music recordings
whose genre is known. If sufficient training music record-
ings are available for each genre, it is possible to express
any test cortical representation as a compact linear combi-
nation of the dictionary atoms of the genre, where it ac-
tually belongs to. This representation is designed to be
sparse, because it involves only a small fraction of the dic-
tionary atoms and can be computed efficiently via `1 op-
timization. The classification is performed by assigning
each test recording to the class associated with the dictio-
nary atoms, that are weighted by non-zero coefficients.

Since we would like to build an overcomplete dictio-
nary extracted from training cortical representations, the
dimensionality of dictionary atoms must be much smaller
than the cardinality of the training set. Such a dimension-
ality reduction facilitates the treatment of missing data,
noise, and outliers. Conventional linear subspace analy-
sis methods, such as Principal Component Analysis, Lin-
ear Discriminant Analysis, and Non-Negative Matrix Fac-
torization (NMF) deal only with vectorial data. By vec-
torizing a typical 3D cortical representation of 6 scales,
10 rates, and 128 frequency bands, a vector of dimensions
7680×1 results. Handling such high-dimensional patterns
is computationally expensive not to mention that eigen-
analysis cannot be easily performed. Despite the imple-
mentation issues, by reshaping a 3D cortical representa-
tion into a vector the natural structure of the original data
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is destroyed. Thus, dimensionality reduction applied di-
rectly to tensors rather than their vectorized versions is
desirable. Unsupervised multilinear dimensionality reduc-
tion techniques, such as Non-Negative Tensor Factoriza-
tion (NTF) [2] or Multilinear Principal Component Analy-
sis (MPCA) [12] as well as supervised ones including Gen-
eral Tensor Discriminant Analysis (GTDA) [20] or Dis-
criminant Non-Negative Tensor Factorization (DNTF) [21]
could be considered. However, the just mentioned meth-
ods do not take into account the geometrical structure of
the original data space. To reduce tensor dimensions in a
consistent manner with the working principle of SRC, we
should guarantee that two data points, which are close in
the intrinsic geometry of the original data space are also
close in the new data space after multilinear dimension-
ality reduction. To this end, we propose a novel algo-
rithm, where the geometrical information of the original
data space is incorporated into the objective function op-
timized by NTF. In particular, we encode the geometri-
cal information by constructing a nearest neighbor graph.
Furthermore, the non-negativity of cortical representations
is preserved to maintain their physical interpretation. The
proposed method is referred to as Locality Preserving Non-
Negative Tensor Factorization (LPNTF). We derive a mul-
tiplicative updating algorithm for LPNTF, which extracts
features from the cortical representations. For comparison
purposes, NTF, MPCA, GTDA, DNTF, and random pro-
jections are also tested.

Next, the features extracted by the aforementioned mul-
tilinear dimensionality techniques are classified by SRC.
Performance comparisons are made against the SVMs em-
ploying a linear kernel. The reported genre classification
accuracies are juxtaposed against the best ones achieved by
the state of the art algorithms applied to the GTZAN and
ISMIR2004 Genre datasets. More specifically, two sets of
experiments are conducted. First, stratified ten-fold cross-
validation is applied to the GTZAN dataset. The proposed
genre classification method, that extracts features using the
LPNTF, which are then classified by SRC (i.e. LPNTF plus
SRC), yields an accuracy of 92.4%. Second, experiments
on the ISMIR2004Genre dataset are conducted by adher-
ing to the protocol employed during ISMIR2004 evalua-
tion tests. This protocol splits the dataset into two equal
disjoint subsets with the first one being used for training
and the second one being used for testing. Features ex-
tracted by NTF, which are then classified by SRC, yield an
accuracy of 94.38%. An accuracy of 94.25% was achieved
when the LPNTF plus SRC framework is employed. To
the best of the authors’ knowledge, the just quoted genre
classification accuracies are the highest ever reported for
both datasets.

The paper is organized as follows. In Section 2, ba-
sic multilinear algebra concepts and notations are defined.
The LPNTF is introduced in Section 3. The SRC frame-
work, that is applied to music genre classification, is de-
tailed in Section 4. Experimental results are demonstrated
in Section 5 and conclusions are drawn in Section 6.

2. NOTATION AND MULTILINEAR ALGEBRA
BASICS

Tensors are considered as the multidimensional equivalent
of matrices (i.e., second-order tensors) and vectors (i.e.,
first-order tensors) [9]. Throughout this paper, tensors are
denoted by boldface Euler script calligraphic letters (e.g.
X, A), matrices are denoted by uppercase boldface letters
(e.g. U), and vectors are denoted by lowercase boldface
letters (e.g. u).

A high-order real valued tensor X of order N is defined
over the tensor space RI1×I2×...×IN , where Ii ∈ Z and
i = 1, 2, . . . , N . Each element of tensor X is addressed by
N indices, i.e. xi1i2 i3...iN

. Mode-n unfolding of tensor
X yields the matrix X(n) ∈ RIn×(I1 ...In−1In+1...IN ). In
the following, the operations on tensors are expressed in
matricized form [9].

An N -order tensor X has rank 1, when it is decomposed
as the outer product of N vectors u(1), u(2), . . . , u(N), i.e.
X = u(1) ◦ u(2) ◦ . . . ◦ u(N). That is, each element of the
tensor is the product of the corresponding vector elements,
xi1i2...iN

= u
(1)
i1

u
(2)
i2

. . . u
(N)
iN

for all in = 1, 2, . . . , In.
The rank of an arbitrary N -order tensor X is the mini-
mal number of rank-1 tensors that yield X when linearly
combined. Next, several products between matrices will
be used, such as the Kronecker product denoted by ⊗, the
Khatri-Rao product denoted by¯, and the Hadamard prod-
uct denoted by ∗, whose definitions can be found in [9] for
example.

3. LOCALITY PRESERVING NON NEGATIVE
TENSOR FACTORIZATION

Let {Xq|Qq=1} be a set of Q non-negative tensors Xq ∈ RI1
+

×I2×...×IN of order N . Let us also assume that these Q
tensors lie in a nonlinear manifold A embedded into the
tensor space RI1×I2×...×IN

+ . Accordingly, we can repre-
sent such a set by a (N + 1)-order tensor A ∈ RI1×I2×...

+
×IN×IN+1 with IN+1 = Q. Conventional NTF operates in
the Euclidean space and does not consider the intrinsic ge-
ometrical structure of the data manifold [2]. To overcome
the just mentioned limitation of NTF, we propose LPNTF
by incorporating a geometrically-based regularizer stem-
ming from locality preserving projections [7] into the op-
timization problem to be solved.

Given {Xq|Qq=1}, one can model the local structure of
A by constructing the nearest neighbor graph G. By ex-
ploiting the heat kernel function [7], one can define the ele-

ments of the weight matrix S of G as sqp = e−
||Xq−Xp||2

τ if
Xq and Xp belong to the same class and 0 otherwise, where
|| ||2 denotes the tensor norm [9]. Accordingly, the Lapla-
cian matrix is defined as L = Γ−S, where Γ is a diagonal
matrix with elements γqq =

∑
p sqp, i.e. the column sums

of S. Let Z(i) = U(N+1)¯ . . .¯U(i+1)¯U(i−1)¯ . . .¯
U(1). Since the Laplacian matrix is analogous to Laplace-
Beltrami operator on compact Riemannian manifolds [7],
one can incorporate the local geometry of A into NTF by
constructing the following objective function for LPNTF
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in matrix form:

fLPNTF

(
U(i)|N+1

i=1

)
= ||A(i) −U(i)

[
Z(i)

]T ||2

+ λ tr
{[

U(N+1)
]T

L U(N+1)
}

, (1)

where λ > 0 is a parameter, which controls the trade off
between goodness of fit to the data tensor A and locality
preservation. Consequently, we propose to minimize (1)
subject to the non-negativity constraint on factor matrices
U(i) ∈ RIi×k

+ , i = 1, 2, . . . N +1, where k is the desirable
number of rank-1 tensors approximating A when linearly
combined.

Let∇U(i)fLPNTF = ∂fLP NT F

∂U(i) be the partial derivative
of the objective function fLPNTF (U(i)|N+1

i=1 ) with respect
to U(i). Since U(i), i = 1, 2, . . . , N + 1, Γ, and S are
non-negative, the partial derivatives of the objective func-
tion can be decomposed as differences of two non-negative
components denoted by∇+

U(i)fLPNTF and∇−
U(i)fLPNTF ,

respectively. It can be shown that for i = 1, 2, . . . , N we
have

∇U(i)fLPNTF = U(i)
[
Z(i)

]T
Z(i)

︸ ︷︷ ︸
∇+

U(i)fLP NT F

− A(i)Z(i)

︸ ︷︷ ︸
∇−

U(i)fLP NT F

, (2)

while for i = N+1 by invoking the definition of the Lapla-
cian we obtain

∇U(N+1)fLPNTF =

U(N+1)
[
Z(N+1)

]T
Z(N+1) + λ ΓU(N+1)

︸ ︷︷ ︸
∇+

U(N+1)fLP NT F

− (
A(N+1)Z(N+1) + λ S U(N+1)

)
︸ ︷︷ ︸

∇−
U(N+1)fLP NT F

. (3)

Following the strategy employed in the derivation of NMF
[10], we can obtain an iterative alternating algorithm for
LPNTF as follows. Given N +1 randomly initialized non-
negative matrices U(i)|N+1

i=1 ∈ RIi×k
+ , a local minimum

of the optimization problem (1) subject to non-negativity
constraints can be found by the multiplicative update rule:

U(i)
[t+1] = U(i)

[t] ∗
∇−

U
(i)
[t]

fLPNTF

∇+

U
(i)
[t]

fLPNTF

, (4)

where the division in (4) is elementwise and t denotes the
iteration index. The multiplicative update rule (4) suffers
from two drawbacks: (1) The denominator may be zero;
(2) U(i)

[t+1] does not change when U(i)
[t] = 0 and ∇U(i)[t]

fLPNTF < 0. In order to overcome these drawbacks, we
can modify (4) as in [11]. A robust multiplicative update
rule for LPNTF is then

U(i)
[t+1] = U(i)

[t] −
Ū(i)

[t]

∇+

U
(i)
[t]

fLPNTF + δ
∗ ∇

U
(i)
[t]

fLPNTF ,

(5)
where Ū(i)

[t] = U(i)
[t] if ∇

U
(i)
[t]

fLPNTF ≥ 0 and σ other-

wise. The paremeters σ, δ are predefined small positive
numbers, typically 10−8 [11].

4. SPARSE REPRESENTATION-BASED
CLASSIFICATION

For each music recording a 3D cortical representation is
extracted by employing the computational auditory model
of Wang et al. [17] with the same parameters as in [15].
Thus, each ensemble of recordings is represented by a 4th-
order data tensor, which is created by stacking the 3rd-
order feature tensors associated to the recordings. Con-
sequently, the data tensor A ∈ RI1×I2×I3×I4

+ , where I1 =
Iscales = 6, I2 = Irates = 10, I3 = Ifrequencies = 128,
and I4 = Isamples is obtained.

Determining the class label of a test cortical representa-
tion, given a number of labeled training cortical represen-
tations from N music genres is addressed based on SRC
[19]. Let us denote by Ai = [ai1|ai2| . . . |aini ] ∈ R7680×ni

+

the dictionary that contains ni cortical representations stem-
ming from the ith genre as column vectors (i.e., atoms).
Given a test cortical representation y ∈ R7680

+ that belongs
to the ith class, we can assume that y is expressed as a lin-
ear combination of the atoms that belong to the ith class,
i.e.

y =
ni∑

j=1

aij cij = Ai ci, (6)

where cij ∈ R are coefficients, which form the coefficient
vector ci = [ci1, ci2, . . . , cini ]

T . Let us, now, define the
matrix D = [A1|A2| . . . |AN ] = AT

(4) ∈ R
7680×Isamples

+

by concatenating Isamples cortical representations, which
are distributed across N genres. Accordingly, a test cor-
tical representation y that belongs to the ith genre can be
equivalently expressed as

y = D c, (7)

where c = [0T | . . . |0T |cT
i |0T | . . . |0T ]T is the augmented

coefficient vector whose elements are zero except those as-
sociated with the ith genre.

Since the genre label of any test cortical representation
is unknown, we can predict it by seeking the sparsest solu-
tion to the linear system of equations (7). Let ||.||0 be the
`0 quasi-norm of a vector, which returns the number of its
non-zero elements. Formally, given the matrix D and the
test cortical representation y, sparse representation aims to
find the coefficient vector c such that (7) holds and ||c||0 is
minimum, i.e.

c? = arg min
c
||c||0 subject to Dc = y. (8)

(8) is NP-hard due to the underlying combinational opti-
mization. An approximate solution to (8) can be obtained
by replacing the `0 norm with the `1 norm, i.e.

c? = arg min
c
||c||1 subject to D c = y, (9)

where ||.||1 denotes the `1 norm of a vector. The optimiza-
tion problem (9) can be solved by standard linear program-
ming methods in polynomial time [5].

Since we are interested in creating overcomplete dictio-
naries derived from the cortical representations, the dimen-
sionality of atoms must be much smaller than the training

251



Poster Session 2

set cardinality. Thus, we can reformulate the optimization
problem in (9) as follows:

c? = arg min
c
||c||1 subject to W D c = Wy, (10)

where W ∈ Rk×7680 with k ¿ min(7680, Isamples) is
a projection matrix. The projection matrix W can be ob-
tained by LPNTF or any other multilinear dimensionality
reduction technique, such as NTF [2], MPCA [12], GTDA
[20], or DNTF [21]. Alternatively, one can even employ
a random projection matrix whose elements are indepen-
dently sampled from a zero-mean normal distribution, and
each column is normalized to unit length as proposed in
[19]. More particularly, when LPNTF, NTF, or DNTF is
applied to the data tensor A, four factor matrices U(i) ∈
RIi×k

+ , i = 1, 2, 3, 4, are obtained, which are associated
to scale, rate, frequency, and sample modes respectively.
The projection matrix W is given by either W = (U(3) ¯
U(2)¯U(1))T or W = (U(3)¯U(2)¯U(1))†, where (.)†

denotes the Moore-Penrose pseudoinverse. Accordingly,
every column of D (i.e. vectorized cortical representation
of a music recording) is a linear combination of the ba-
sis vectors, which span the columns of the basis matrix
WT with coefficients taken from the columns of matrix
[U(4)]T . That is, D = AT

(4) = WT [U(4)]T . For MPCA or
GTDA, three factor matrices U(i) ∈ RIi×Ji , with Ji < Ii,
i = 1, 2, 3, are obtained, which are associated to scales,
rates, and frequencies, respectively. The columns of D are
obtained by applying the projection matrix W = (U(3) ⊗
U(2) ⊗ U(1))T or W = (U(3) ⊗ U(2) ⊗ U(1))† to vec-
torized training tensors vec(Xq). The dimensionality re-
duction of the original cortical representations data space
has two benefits: (1) It reduces the computational cost of
linear programming solvers for (9) [5]; (2) It facilitates the
creation of a redundant dictionary out of training cortical
representations.

A test cortical representation can be classified as fol-
lows. First, y is projected onto the reduced dimensionality
space through the projection matrix W as ŷ = Wy. Then,
the following optimization problem is solved

c? = arg min
c
||c||1 subject to W D c = ŷ. (11)

Ideally, the coefficient vector c? contains non-zero entries
in positions associated with the columns of WD associ-
ated with a single genre, so that we can easily assign the
test auditory representation y to that genre. However, due
to modeling errors, there are small non-zero elements in
c? that are associated to multiple genres. To cope with
this problem, each auditory modulation representation is
classified to the genre that minimizes the `2 norm residual
between ŷ and y̆ = W D ϑi(c), where ϑi(c) ∈ Rn is a
new vector whose non-zero entries are only the elements
in c that are associated to the ith genre [19].

5. EXPERIMENTAL EVALUATION

In order to assess both the discriminating power of the fea-
tures derived by LPNTF applied to cortical representations

for dimensionality reduction and the accuracy of sparse
representation-based classification, experiments are con-
ducted on two widely used datasets for music genre clas-
sification [3, 8, 14, 16]. The first dataset, abbreviated as
GTZAN, was collected by G. Tzanetakis [16] and consists
of 10 genre classes. Each genre class contains 100 audio
recordings 30 sec long. The second dataset, abbreviated
as ISMIR2004 Genre, comes from the ISMIR 2004 Genre
classification contest and contains 1458 full audio record-
ings distributed across 6 genre classes. All the recordings
were converted to monaural wave format at a sampling fre-
quency of 16 kHz and quantized with 16 bits. Moreover,
the music signals have been normalized, so that they have
zero mean amplitude with unit variance in order to remove
any factors related to the recording conditions. Since the
ISMIR2004 Genre dataset consists of full length tracks, we
extracted a segment of 30 sec just after the first 30 sec of
a recording in order to exclude any introductory parts that
may not be directly related to the music genre the recording
belongs to. The cortical representation is extracted for the
aforementioned segment of 30 sec duration for any record-
ing from both datasets. The best reported music genre
classification accuracies obtained for the aforementioned
datasets are summarized in Table 1.

Reference Dataset Accuracy
Bergstra et al. [3] GTZAN 82.5%
Holzapfel et al. [8] ISMIR2004 83.5%
Pampalk et al. [14] ISMIR2004 82.3%

Table 1. Best classification accuracies achieved by music
genre classification approaches on standard datasets.

Following the experimental set-up used in [3, 15, 16],
stratified 10-fold cross-validation is employed for experi-
ments conducted on the GTZAN dataset. Thus each train-
ing set consists of 900 audio files. Accordingly, the train-
ing tensor AGTZAN ∈ R6×10×128×900

+ is constructed by
stacking the cortical representations. The experiments on
ISMIR 2004 Genre dataset were conducted according to
the ISMIR2004 Audio Description Contest protocol. The
protocol defines training and evaluation sets, which consist
of 729 audio files each. Thus the corresponding training
tensor AISMIR ∈ R6×10×128×729

+ is constructed.
The projection matrix W is derived from each training

tensor AGTZAN and AISMIR by employing either LP-
NTF, NTF, DNTF, MPCA or GTDA. Throughout the ex-
periments the value of λ in LPNTF was empirically set
to 0.5, while the parameter τ of the heat kernel was set
equal to 1. In order to determine automatically the param-
eters λ and τ one can apply cross-validation to the training
set. However, the systematic setting of these parameters
could be a subject of future research. In order to deter-
mine the dimensionality of factor matrices, the ratio of the
sum of eigenvalues retained over the sum of all eigenvalues
for each mode-n tensor unfolding is employed as in [12].
By using this ratio as a specification parameter, the num-
ber of retained principal components for each mode (e.g.
scale, rate, and frequency) was determined, as is demon-
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Figure 1. Total number of retained principal components in each mode (e.g. rate, scale, and frequency) as a function of
the portion of total scatter retained for the: a) GTZAN dataset and b) ISMIR 2004 Genre dataset. Feature dimension as a
function of the portion of the total scatter retained for the: c) GTZAN dataset and d) ISMIR 2004 Genre dataset.

strated in Figure 1 for the GTZAN and the ISMIR Genre
2004 datasets. The different subspace analysis methods are
compared for equal dimensionality reduction. That is, the
same J1 = Jscales, J2 = Jrates and J3 = Jfrequencies

were used in MPCA and GTDA, while k = J1J2J3 for
LPNTF, NTF, and DNTF. The same value of parameter k
is used in order to construct the random projection ma-
trix. Since the low dimensional features obtained by the
aforementioned multilinear dimensionality reduction algo-
rithms are linearly combined for classification, SVMs with
linear kernel are tested as alternatives to SRC.

In Figure 2, the classification accuracy achieved by the
three different classifiers is plotted as a function of the por-
tion of the total scatter retained, when various subspace
analysis methods are applied to both GTZAN and ISMIR
2004 Genre datasets. On the GTZAN dataset the best clas-
sification accuracy (92.4%) was obtained when LPNTF ex-
tracts features, that are classified by SRC. In this case,
k = 135, as shown in Figure 1(c). The standard devia-
tion of the classification accuracy was estimated thanks to
10-fold cross-validation. At the best classification accu-
racy, its standard deviation was found to be 2%. The re-
ported classification accuracy outperforms those listed in
Table 1. The interval ± one standard deviation is overlaid
in all plots for the various values of the portion of the total
scatter retained.

On the ISMIR 2004 Genre dataset the best classification
accuracy (94.38%) was obtained, when the NTF with k =
135 extracts the low dimensional features that are classified
by SRC next. When the LPNTF with k = 105 extracts
features that are classified by SRC next, the classification
accuracy is found equal to 94.25%, that is very close to the
best accuracy. Both accuracies outperform the previously
reported ones, which are listed in Table 1.

It is seen that the classification accuracy obtained by
LPNTF and SRC outperforms the accuracy obtained with
features extracted by all other multilinear subspace analy-
sis techniques, which are next classified by either SRC or
linear SVMs, for all the values of the portion of the total
scatter retained but one. Moreover, the classification ac-
curacy obtained with features extracted by LPNTF, NTF,
MPCA or GTDA that are subsequently classified by SRC
exceeds 80% for both datasets despite the reduced dimen-
sions of the feature space extracted that are plotted in Fig-
ure 1(c) and (d). The experimental results reported in this
paper indicate that the dimensionality reduction is crucial,
when SRC is applied to music genre classification. This
was not the case for face recognition [19].

6. CONCLUSIONS

In this paper, a robust music genre classification frame-
work has been proposed. This framework resorts to corti-
cal representations for music representation, while sparse
representation-based classification has been employed for
genre classification. A multilinear subspace analysis tech-
nique (i.e. LPNTF) has been developed, which incorpo-
rates the underlying geometrical structure of the cortical
representations with respect to the music genre into the
NTF. The crucial role of feature extraction and dimension-
ality reduction for music genre classification has been dem-
onstrated. The best classification accuracies reported in
this paper outperform any accuracy ever obtained by state
of the art music genre classification algorithms applied to
both GTZAN and ISMIR2004 Genre datasets.

In many real applications, both commercial and private,
the number of available audio recordings per genre is lim-
ited. Thus, it is desirable that the music genre classifica-
tion algorithm performs well for such small sets. Future
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Figure 2. Classification accuracy for various feature extraction methods and classifiers. (a) SRC on GTZAN dataset; (b)
SRC on ISMIR2004 Genre dataset; (c) Linear SVM on GTZAN dataset; (d) Linear SVM on ISMIR2004 Genre dataset.

research will address the performance of SRC framework
under such conditions.
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ABSTRACT

We present a two-stage approach for retrieval in a melodic
Query by Example system inspired by the BLAST algo-
rithm used in bioinformatics for DNA matching. The first
stage involves an indexing method using n-grams and re-
duces the number of targets to consider in the second stage.
In the second stage we use a matching algorithm based on
local alignment with modified cost functions which take
into account musical considerations.

We evaluate our system using queries made by real users
utilising both short-term and long-term memory, and present
a detailed study of the system’s parameters and how they
affect retrieval performance and efficiency. We show that
whilst similar approaches were shown to be unsuccessful
for Query by Humming (where singing and transcription
errors result in queries with higher error rates), in the case
of our system the approach is successful in reducing the
database size without decreasing retrieval performance.

1. INTRODUCTION

The transition to digital media and the growing popularity
of portable media devices over the past decade has resulted
in much research into new ways of organising and search-
ing for music. Of note are Content Based Music Retrieval
(CBMR) systems [21] which search the musical content
directly as opposed to using song meta-data for retrieval.

A specific case of CBMR is that of performing a melodic
search in a collection of music, where the input query can
be made either symbolically (e.g. text, score, MIDI con-
troller) [8, 9, 19, 22] or by the user singing/humming the
query, called Query by Humming (QBH) [4, 15]. For con-
venience we will refer to the symbolic input case as Query
by Symbolic Example (QBSE). Both QBSE and QBH rely
on an underlying model of melodic similarity [6]. In [17],
a detailed review of algorithms for computing symbolic
melodic similarity is provided. In recent years QBH sys-
tems have become increasingly popular, as they do not re-
quire musical knowledge such as playing an instrument or

Permission to make digital or hard copies of all or part of this work for
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not made or distributed for profit or commercial advantage and that copies
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c© 2009 International Society for Music Information Retrieval.

understanding musical notation. On the other hand, QBSE
can be advantageous over QBH in certain cases – firstly, it
affords more elaborate query specification, which might be
preferred by advanced users and music researchers. Sec-
ondly, it does not require the automatic transcription of
audio queries, which introduces additional errors into the
queries.

In [4] a detailed comparative evaluation of different al-
gorithms for QBH was carried out, comparing approaches
based on note intervals, n-grams, melodic contour, HMMs
and the Qubyhum system. The authors noted that the most
successful approaches lacked a fast indexing algorithm,
which is necessary in order to apply them to large databases.
They studied a potential solution to the problem using a
two-stage approach – an n-gram algorithm is used as a first
stage for filtering targets in the database. The remaining
targets are then passed to the second stage which uses a
slower note interval matching algorithm which has better
retrieval performance. The authors concluded that the ap-
proach was unsuccessful, as any significant improvement
in search time resulted in a dramatic degradation in re-
trieval performance. They attributed this degradation to the
errors introduced into the queries due to singing and tran-
scription errors, which inhibited successful exact matching
in the n-gram stage.

Nonetheless, other approaches for searching symbolic
data exist for which efficient indexing is possible. Set-
based methods (which also support polyphonic queries)
have been shown to be effective for both matching and in-
dexing – Clausen et al. use inverted files [3], Romming
and Selfridge-Field use geometric hashing [16], Lemström
et al. use index based filters [10] and Typke et al. use van-
tage objects [18]. For string based approaches (such as
ours) many efficient indexing algorithms exist for metric
spaces [2]. However, due to the melodic similarity measure
used in our system (section 2.1.3), we can not use these
algorithms and require an alternative solution (a recent so-
lution to indexing non-metrics is also proposed in [20]).

In the following sections we present a two-stage index-
ing and matching approach for a QBSE system, inspired
by the BLAST algorithm used in bioinformatics for DNA
matching [5]. The first stage involves an indexing method
(section 2.1.2) similar to the n-gram approach studied and
evaluated in [4]. As our system avoids the need to tran-
scribe user queries, the degree of errors in the queries de-
pends only on the user, and is lower as a result. Conse-
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quently, it allows us to considerably reduce the database
size for the second stage without degrading retrieval per-
formance. In section 2.1.3 we present the second stage
in which we perform matching using local alignment. We
then detail the evaluation methodology used to evaluate our
system, using real user queries utilising both short-term
and long-term memory. Finally in the results section we
show that this two-stage approach can be applied success-
fully in the case of QBSE, and study how the parameters of
the indexing and matching algorithms affect retrieval per-
formance and efficiency.

2. THE SONGSEER QBSE SYSTEM

2.1 System overview

SongSeer is a complete query by symbolic example sys-
tem. The user interacts with the system through a graphical
user interface implemented as a Java applet, allowing ac-
cess from any web-browser 1 . The interface is further de-
scribed in section 2.2. User queries are sent to a server ap-
plication which contains a database of songs and performs
the matching and returns the results to the client applet.

2.1.1 Query and target representation

The internal representation of user queries and database
targets is based on the one proposed in [15] – pitch is rep-
resented as pitch intervals and rhythm as LogIOI Ratios
(LogIOIR) [14]. This representation is independent of key
and tempo, as well as concise, allowing us to match queries
against targets even if they are played in another key or at
a different tempo.

The targets are extracted from polyphonic MIDI files –
every track in the MIDI file results in a single monophonic
target. Tracks that are too short, as well as the drum track
which is easily detectable are filtered out, but otherwise all
tracks are considered. This allows the user to search for
melodic lines other than the melody, though at the cost of
considerably increasing the database size and adding tar-
gets which could possibly interfere with the search.

2.1.2 Indexing

The first stage in our two-stage approach is the indexing al-
gorithm. Indexing is required in order to avoid comparing
the query against every target in the database, thus improv-
ing system scalability an efficiency. As previously noted,
our melodic matching is non-metric meaning we can not
use existing indexing approaches, leading us to propose an
alternative solution based on the BLAST algorithm.

The BLAST algorithm [5] was designed for efficiently
searching for DNA and protein sequences in large databases.
The steps of the original BLAST algorithm are the fol-
lowing: first, low-complexity regions or sequence repeats
are removed from the query. Then, the query is cut into
“seeds” – smaller subsequences of length n which are eval-
uated for an exact match against all words (of the same
length) in the database using a scoring matrix. High scor-
ing words (above a threshold T ) are collected and the database

1 http://www.online-experiments.com/SongSeer

is then scanned for exact matches with these words. The
exact matches are then extended into high-scoring pairs
(HSP) by extending the alignment on both sides of a hit till
the score starts to decrease (in a later version gaps in the
alignment are allowed). HSPs with scores above a cutoff
score S are kept, and their score is checked for statistical
significance. Significant HSPs are locally aligned, and an
expectation value E is calculated for the alignment score.
Matches with E smaller than a set threshold are reported
as the final output.

Our indexing algorithm is based on this concept of pre-
ceding the slower local alignment stage with a fast exact
matching stage. Given a query, we cut it into “seeds” as in
BLAST, and search for exact matches in the database. This
can be efficiently implemented by storing the targets of the
database in a hash table where every key is a seed which
hashes to a collection of all targets containing that seed.
We also implement the idea of filtering less informative
parts of the query as detailed in section 4.5. This first stage
allows us to return a much reduced set of targets, which we
then compare to the query using our matching algorithm.
A crucial parameter of this approach is the seed size n –
a longer seed will return less targets making the retrieval
faster, but requires a longer exact match between query and
target potentially reducing performance for queries which
contain errors.

2.1.3 Matching

For determining the similarity of a query to a target, we
use the dynamic programming approach for local align-
ment [13], similar to the one proposed in [15] with one
significant difference – in an attempt to make the match-
ing procedure more musically meaningful, we replace the
skip and replace costs in the local alignment algorithm
with cost functions. These functions determine the skip
and replace cost based on the specific pitch intervals and
LogIOIRs being compared. The underlying assumption is
that some errors should be penalised less heavily than oth-
ers, based on the errors we can expect users to make when
making a query:

• Repeated notes – the user might repeat a note more
or less times than in the original melody (for exam-
ple when translating a sung melody into piano strokes).
Thus, the penalty for skipping a repeated note should
be reduced.

• Pitch contour – the user might not remember the exact
pitch interval, but remember the pitch contour correctly
(big/small jump up/down or same). Thus, the penalty
for replacing an incorrect interval which has the correct
contour should be reduced.

• Rhythm contour – the user might not remember the ex-
act rhythm ratio between two notes, but remember the
“rhythmic contour” correctly (slower, faster or same).
Thus, the penalty for replacing an incorrect LogIOIR
which has the correct contour should be reduced.

• Octave errors – the user might play the correct pitch
class but in the wrong octave relative to the previous
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note. Thus, the penalty for replacing a note which is
off by an integer number of octaves should be reduced.

Following this rationale, we define two cost parame-
ters – a full cost and a reduced cost. When one of the
aforementioned cases is detected the cost functions return
the reduced cost, and in all other cases the full cost. An-
other issue is the relative importance we give to the pitch
and rhythm match scores. As the pitch and rhythm of a
query might be represented with different degrees of accu-
racy, the match scores should be weighted differently when
combining them to obtain the final match score. To do
this we introduce a pitch factor and rhythm factor which
weight the pitch and rhythm scores when combining them.

By default, the full cost is set to 2 and the reduced cost
to 1, and both pitch and rhythm factors are set to 1 (so
that the pitch and rhythm scores are weighted equally and
summed into the final score). In the results section we
explain how these parameters are optimised based on real
user queries.

2.2 The SongSeer GUI

The SongSeer GUI is displayed in Figure 1. Two query in-
put methods are provided – a text search allowing to make
textual queries similar to the ones supported by the The-
mefinder [8] system by Huron et al. (including pitch and
rhythm contour), and a virtual keyboard that can be played
using the mouse, the computer keyboard or a connected
MIDI controller. Once a query is made the top 10 results
are displayed back to the user with a percentage indicat-
ing the matching degree, and the user can select a song
and play back the corresponding MIDI file stored in the
database.

Figure 1. The SongSeer user interface.

3. EVALUATION METHODOLOGY

3.1 Test collections and machines used

For the evaluation, we compiled a corpus of 1,076 poly-
phonic MIDI files of pop and rock music, including 200
songs by the Beatles. After ignoring short tracks and drum
tracks, this translates into 6,541 targets in the database. For

scalability tests we have also compiled several more cor-
pora of increasing size, the largest containing 18,017 songs
which translates into 88,034 targets.

All user experiments were run on standard pentium IV
PCs running windows XP. The quantitative evaluation was
run on a server machine with two Intel R©Dual Core Xeon R©
5130 @ 2GHz with 4MB Cache and 4GB RAM, running
Linux 2.6.17-10 and Java HotSpotTM 64-Bit Server VM.

3.2 Collecting user queries

We conducted a user experiment with 13 participants of
varying musical experience, ranging from amateur guitar
players to music graduates. The first part of the experiment
involved a usability test in which the subjects were asked to
complete a set of tasks using the SongSeer interface, which
also allowed them to familiarise themselves with the sys-
tem. The second part involved the subjects making queries
which would then be used to perform a quantitative eval-
uation of the system. For the purpose of the quantitative
evaluation, all subjects were asked to play on the virtual
keyboard, using either the mouse or computer keyboard.

To collect queries, subjects were presented with a list
of 200 Beatles songs, and asked to record queries of songs
they can remember from the list. This stage simulates the
event where a user remembers part of a song they have
not heard recently, and resulted in 63 “long term memory”
queries. Next, subjects were asked to listen to 10 audio
recordings of Beatles songs and then record a query, simu-
lating the event where the user has recently heard the song,
resulting in 123 “short term memory” queries. This gives
us a total of 186 real user queries for system evaluation.

3.3 Evaluation metrics

As there is always only a single correct result (the database
contained no cover versions), we use a metric based on the
rank of the correct song based on match score, the Mean
Reciprocal Rank (MRR) which is given by:

MRR =
1
K

K∑
i=1

1
ranki

(1)

where K is the numbers of queries evaluated and ranki is
the rank of the correct song based on the match score for
query i. This is similar to taking the average rank of the
correct song over all queries but is less sensitive to poor
ranking outliers, and returns a value between 1/M and 1
(where M is the number of songs in the database) with
higher values indicating better retrieval performance.

It is important to note however that as it is possible for
several songs to have the same match score, they may share
the same rank (in which case they are returned by alpha-
betical order in the results list). In order to evaluate per-
formance from a user perspective (where the position of a
song in the result list is significant), we introduce a second
metric – the ordered MRR (oMRR) which is computed in
the same way as the MRR but where the rank is based not
on the match score but on the actual position of the song in
the final results list.
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4. RESULTS

4.1 Initial results

In order to asses the performance of our approach, we start
by estimating a baseline performance for the problem. The
baseline is estimated using the following procedure: Given
a query, we randomly generate the rank of the correct song
in the result list (between 1 and 1076). We repeat this pro-
cess 99 times for the same query, saving the best randomly
generated rank out of the 99 repetitions. We perform this
procedure for all 186 queries, and use the saved ranks to
compute an overall oMRR. This gives us an oMRR of 0.211
(with a variance of 0.051).

Next we turn to evaluate our algorithm. As a first step,
we compute the MRR and oMRR taking only the pitch in-
formation into account, using a seed size n = 3 and the
matching parameters set to their default values (full cost =
2, reduced cost = 1). The results are presented in Table 1.

Query Group #Queries MRR oMRR
All queries 186 0.800 0.659

Long term memory 63 0.765 0.627
Short term memory 123 0.818 0.675

Table 1. Initial results.

The table shows that our oMRR values are significantly
(P < 10−10, Wilcoxon rank-sum test) higher than the
baseline. Though results for the short term memory queries
are slightly higher than for the long term memory queries,
the difference is not statistically significant, and for the rest
of the evaluation we use all the queries together. Finally,
we observe that, as expected, the MRR values are higher
than the oMRR values. This suggests that songs are not
sufficiently distinguished using the default parameters.

4.2 The effect of rhythm on performance

We now include the rhythm information in the matching
procedure, setting the pitch and rhythm factors to 1:1. The
MRR and oMRR go down from 0.800 and 0.659 (pitch
only) to 0.677 and 0.594 (pitch+rhythm) respectively. This
indicates that giving rhythm equal importance as pitch de-
grades performance. We could argue that as the rhythm
information is less detailed compared to the pitch informa-
tion, it will match a greater set of songs, so when given
equal importance as the pitch information it ends up de-
grading the results. Another possibility is that due to the
use of a virtual keyboard rather than a real one users found
it harder to accurately play the rhythm of a query.

4.3 Choice of seed size

As previously mentioned, in [4] it was shown that a two
stage retrieval process for QBH was unsuccessful in reduc-
ing search time without considerably degrading retrieval
performance. In Figure 2 we evaluate the effect of the seed
size n in our indexing algorithm (the first stage of our two-
stage approach) on retrieval performance and search time.
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Figure 2. MRR, oMRR, retrieval time and DB reduction
vs seed size.

Figure 2 shows that the number of targets to search re-
turned by the indexing algorithm is almost halved every
time we increase the seed size, and consequently the search
time goes down. Interestingly, the MRR and oMRR val-
ues remain stable as we increase the seed size (only the
MRR for pitch only shows slight signs of decline). Increas-
ing the seed size n does however require the user query to
contain at least n sequential correct pitch intervals, in ad-
dition to increasing memory and storage requirements for
the database. All in all it is a trade-off between retrieval
performance, efficiency and resource usage. For the rest of
the evaluation we choose a seed size of 4, providing a sig-
nificant reduction in database size (reduced to 23%) with
practically no degradation of retrieval performance.

4.4 Parameter optimisation

In section 2.1.3 we introduced the notion of having a full
cost and a reduced cost in the matching algorithm, and in
section 4.2 we saw that giving rhythm equal importance
as pitch in the matching is detrimental to retrieval per-
formance. In this section we optimise these parameters,
namely the ratio between the full and reduced costs, and
the ratio between the pitch and rhythm factors.

To do so we divided the queries into two groups of
roughly equal size – the optimisation is performed using
the queries of group 1, and then validated on the queries
of group 2. For the optimisation we use the Simulated
Annealing approach for global optimisation [7]. The per-
formance for the two query groups before optimisation is
given in Table 2.

Query Pitch:Rhythm Full:Reduced MRR oMRR
Group Ratio Cost

1 1:1 2:1 0.704 0.646
2 1:1 2:1 0.634 0.574

Table 2. Results for the groups before optimisation.

We start by optimising the pitch and rhythm weighting
factors. The effect of these parameters on performance is
visualised in Figure 3. The optimal pitch to rhythm ra-
tio was found to be 3:1 (Table 3), and is used in all fur-
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Figure 3. oMRR as a function of the pitch and rhythm
factors.

ther evaluations. A slightly higher MRR value could be
achieved by ignoring rhythm altogether, but at the cost of
significantly reducing the oMRR indicating that the rhythm
information is useful for distinguishing between targets which
have the same pitch match score.

We next perform the optimisation for the cost parame-
ters in the matching algorithm. The optimal values were
found to be 3 for full cost and 1 for reduced cost (Table
3 last row). This suggests that the modified cost functions
provide an improvement to performance, as otherwise the
optimal full and reduced costs would have been equal to
each other (Table 3 penultimate row).

Pitch:Rhythm Ratio Full:Reduced Cost MRR oMRR
1:1 2:1 0.704 0.646
3:1 2:1 0.784 0.745
3:1 1:1 0.759 0.717
3:1 3:1 0.787 0.761

Table 3. Results for group 1 before and after pitch:rhythm
optimisation and full:reduced optimisation.

Finally we compute the MRR and oMRR for query group
2 and for all queries together using the optimised param-
eters. Figure 4 shows that in all cases performance is im-
proved, though only in the case of oMRR for all queries
(Group 1&2) is the improvement statistically significant
(p=0.018, Wilcoxon rank-sum test).

4.5 Seed filtering

Next we examine the distribution of seeds in the queries
and the database, displayed in Figure 5.

Both distributions constitute a power law probability
distribution, obeying a kind of Zipf’s law for musical inter-
val sequences [23]. Accordingly, the most frequent seeds
comprise the largest proportion of the database but convey
the least amount of information useful for distinguishing
between songs. By filtering from the query the seeds which
are most common in the database we can further reduce the
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Figure 4. MRR and oMRR results, before and after opti-
misation.
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Figure 5. Seed distributions for queries and songs in the
database.

fraction of the database returned by the indexing algorithm
while maintaining retrieval performance.

When filtering just the three most common seeds in the
database, we reduce the database size by a further 40%
(from 23% to 14% of the original size) while the MRR and
oMRR values go down by less than 1.3%. This concept
could be further extended by introducing a seed weight-
ing function, for example using tf ∗ idf [1] like weighting
based on seed distributions. This could also help in rank-
ing songs which have the same match score after the sec-
ond stage, however we have not explored this option and
leave it for future work.

4.6 Scalability

Finally, we evaluate how retrieval performance and effi-
ciency are affected as we scale the database size up to
18,017 songs which translates into 88,034 targets. The re-
sults are presented in Figures 6 and 7.

First we note that our indexing algorithm provides a
considerable reduction in the fraction of the database re-
turned by the first stage, reducing it to 15% of its origi-
nal size. Nonetheless, further work would be required for
our approach to be applicable to collections of millions of
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Figure 7. MRR and oMRR vs numbers of targets in the
database.

songs, ideally obtaining a sublinear relation between the
number of targets in the database and the number of tar-
gets returned by the indexing stage.

Next we note that both the MRR and oMRR decrease as
O(log(n)) as the database size n is increased (R2 > 0.98),
indicating that performance scales well with database size.

5. CONCLUSIONS

In this paper we introduced a two-stage retrieval approach
for a melodic QBSE system. We demonstrated that whilst
for QBH systems similar approaches were unsuccessful,
for QBSE this approach can successfully reduce the database
size while maintaining high MRR values. We provided
a detailed study of the effect of different parameters of
the system, namely the seed size, the relative weighting
of pitch and rhythm and the full and reduced costs in the
matching algorithm.

Finally we consider some ideas for future work. Instead
of considering almost every track in a MIDI file as a tar-
get, we could aim to extract only the most relevant melodic
parts of the piece, as done in [11, 12]. Next, it would
be interesting to further study the seed distributions in the
queries and the database, which could help develop more
elaborate seed filtering and/or a seed weighting scheme. 2
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ABSTRACT 

One can define the origin of an artist as the geographical 
location where he started his career. The origin is an im-
portant metadata element, because it can help to specify 
subgenres, be an indicator of regional popularity and im-
prove recommendations. In this paper, we present six 
methods to determine the origin, based on Web data 
sources: one extracts data from Last.fm, two query Free-
base and three analyze biographies. We evaluate the dif-
ferent methods with 11275 artists. Circa 55% of the art-
ists can be classified using biographies. The best Freebase 
method can classify 26% and the Last.fm based method 
7%. When comparing on accuracy, the Last.fm and Free-
base methods perform similarly with around 90% accu-
racy. For the biography-based methods we achieve 71%. 
To improve coverage, a final, hybrid method achieves 
77% accuracy and 60% coverage. The accuracy of the 
continent classification is 87%. As a showcase for our 
classifier, we developed a mashup application that dis-
plays, among others, information about the origin of art-
ists from radio station playlists on a map. 

1. INTRODUCTION 

In a previous project [1], we developed a music player for 
hotels, restaurants and pubs. Peculiar to our approach is 
that a user can describe the music he wants by referring to 
a situation, rather than by defining the usual search crite-
ria on artist, title, etc. This system uses almost 40 meta-
data fields, manually annotated by music experts of 
Aristo Music (http://www.aristomusic.com), which is a 
very time-consuming and expensive labor. Currently, the 
Aristo Music database contains around 58000 songs. The 
time-consuming metadata annotation process is difficult 
to scale: in the case of Aristo Music for instance, it limits 
the ability to penetrate new markets. In order to assist the 
experts, we already achieved some success in automating 
the annotation process for some metadata fields [2]. 

This paper reports on ongoing work in the MuziK pro-
ject that focuses on automatically generating the metadata 

fields that are most costly to do manually and most rele-
vant for end users. For this purpose, we rely on a variety 
of approaches: digital signal processing [3], web-based 
classification [4] and data analysis [5]. 

This paper focuses on one of the parameters: the origin 
of an artist, defined here as the geographical location 
where an artist started his musical career. This can be 
hard to determine sometimes. It can be seen as the coun-
try of the artist’s first success, where he lived most of his 
life or where some of the group members live. For exam-
ple Georg Friedrich Händel was born in Germany, but 
went to England where his career really took off. 

1.1 Relevance 

Although the origin of an artist can thus be quite fuzzy, it 
is a useful piece of metadata in many cases.  
• Some subgenres are based on geographical location of 

the artist, for example Britpop and Viking Metal.  
• It can also be a good indicator of the popularity of an 

artist in a region, as most artists are often most popu-
lar in their country of origin. An artist popularity visu-
alization based on Last.fm data shows this by 
comparing two countries, 
http://hublog.hubmed.org/archives/001085.html. 
There are of course exceptions with an international 
carreer, like the Spice Girls. 

• Recommendations can also improve by using the art-
ist’s origin. They can be tuned to the location of the 
listener. Some musically very similar songs can be 
good or bad recommendations, depending on the re-
gion (and dialect): for example, a small stage art genre 
in Belgium and the Netherlands (called “Kleinkunst”) 
is mostly expressed in regional dialects and if the rec-
ommendation for a song from Antwerp is a song 
originating from Amsterdam it could break the at-
mosphere, although they are musically very similar. 

The data in Figure 1, collected during an internal time 
management evaluation, shows the average time in sec-
onds needed by a music expert to annotate different meta-
data fields. Origin is the 6th most expensive element, and 
rather close to the top. Providing the origin often requires 
manual lookup work, hence making it very expensive to 
annotate. Annotating continent takes much less because it 
is derived from origin. Target region is used for localized 
music distribution and is done in batch, making it faster. 
One can determine the origin in a more or less precise 
way. Sometimes, the country is not specific enough due 
to differences in regional music styles or linguistic, 
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linguistic, cultural or religious differences within a coun-
try, as in for instance East coast vs. West coast rap. We 
rely on two levels: country and continent.  

1.2 Related work 

Today, specialized search engines enable searching for 
persons, which often requires linking different sources to 
a person. Researchers are using knowledge management 
systems to find experts [6]. Numerous examples can be 
found online: NNDB (http://www.nndb.com/), Pipl 
(http://pipl.com/), and Spock (http://www.spock.com/). 
They often offer information on birthplace and residence 
and some even recognize music artists. Except for 
Celma’s demo [7], we did not find any related work spe-
cialized towards classifying the origin of music artists. 

Origin is annotated by the experts based on either their 
personal knowledge of the artist or by looking up the ori-
gin information. Therefore, we try to automate this meta-
data field by extracting information from web data 
sources. In this paper, we present our approach to classify 
an artist’s geographical origin. First, the web data sources 
and algorithms will be explained and evaluated in section 
3. Afterwards, we discuss the concept and design of our 
mashup tool, which locates artists of radio station play-
lists as a demonstration of the technique, and present the 
conclusion and possible further work. 

2. FINDING THE ORIGIN 

Determining the origin of the artist will be very hard by 
using content-based techniques (e.g. by analyzing the 
signal). The best option is to analyze other data sources. 
In our quest to classify the origin we looked at a wide 
plethora of music related web resources. Most of these 
resources are in plain text, for example sites with reviews 
like Amazon.com, which makes it hard to extract geo-
graphical locations, but results can be achieved with for 
example named entity recognition [8]. One of the main 
problems is the use of the names of the inhabitants or ad-
jectives of geographical locations, e.g. German vs. Ger-
many. These kinds of words are called demonyms and 
are not recognized as geographical descriptors by most 

named entity recognizers, e.g. Open Calais 
(http://www.opencalais.com/). Luckily, more structured 
data sources are available: for instance, most Wikipedia 
artist pages contain a box with background information. 
Moreover, there are some online databases available for 
querying, e.g. Freebase (http://www.freebase.com). Tags 
are also a rich source of information and often contain 
geographical data. If an artist is really more popular in 
his country of origin (not proven), listening counts of an 
artist per country might also be an interesting source. 

Our approach relies on several methods with different 
data sources, because no single data source covers all art-
ists. In the remainder of this section, we will present our 
methods to determine the origin of an artist. Section 2.1 
covers a screen scraping technique based on Last.fm 
(http://last.fm). Section 2.2 presents two approaches that 
rely on Freebase, and section 2.3 details a method to ana-
lyze an artist biography with demonyms. 

2.1 Origin determination with Last.fm 

Last.fm is a well-known music recommender system and 
a music community website with over 30 million users, 
making it a great resource of metadata for MIR, such as 
biographies and tags [9]. For some artists, Last.fm con-
tains the origin and sometimes their different where-
abouts over time, for example Radiohead is located in 
Abingdon, Oxfordshire, UK since 1986, according to 
http://www.last.fm/music/Radiohead. 

We scrape the Last.fm artist page with Dapper 
(http://www.dapper.net/open/), which basically creates a 
web service out of unstructured data. Sometimes the data 
on Last.fm is incomplete: e.g. New York, without a coun-
try. To fill in these gaps, we use the Google Maps API 
(http://maps.google.com) for geo-coding to retrieve the 
ISO 3166-1 country code, used to identify the origin. 

2.2 Origin determination with Freebase 

Freebase [10] is a large collaborative semantic database, 
containing structured data, harvested from different re-
sources, e.g. Wikipedia.org and MusicBrainz.org. Free-
base allows querying through a REST-ful web service, 
using ontologies to describe the semantics and data inter-
linking. Different classes (/music/group_membership, 
/music/artist, /music/musical_group/member) describe 
music artists and within these, others (place_of_birth, na-
tionality, origin, places_lived) describe geo-locations. We 
run a long complex query covering all the artist and  geo-
location classes of Freebase, which is used in 2 methods: 
• Based on the freebase origin class (freebase-

origin): the origin class is geo-coded with the Google 
Maps API to get the country code, which is the result. 

• Most frequent location (freebase-most_freq): takes 
the nationality, birthplace and places where the artist 
lived and geocodes them all. The most occurring 
country code in all the locations is selected. Then out 
of all the locations with this selected country code, the 
most occurring city is selected. The location of that 

Figure 1. The average number of seconds to manually 
annotate a metadata field. 
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city and country code is the result of the method. To 
conclude, this method returns the most frequent loca-
tion of nationalities, birthplaces and residences of the 
group members. 

2.3 Origin determination with biographies 

Biographies often provide a lot of geographical informa-
tion and thus can be a great source of information on the 
origin. As mentioned before, authors often describe geo-
locations with demonyms, for example "Anders Tren-
temøller is a Danish electronic musician…" (from 
http://www.last.fm/music/Trentemøller). We looked for 
natural language stemmers to transform demonyms, but 
none were found. One might be able to extend a stemmer 
with rules to cover all exceptions. We use a list of coun-
tries and their demonyms from Wikipedia, which also 
contains Anglo-Saxon cities and the states of the USA 
(http://en.wikipedia.org/wiki/Nationality). We noticed 
that the origin or residence of an artist is often mentioned 
in the first sentences of the biography. We implemented 3 
variations that exploit this characteristic. The biography 
is split into natural language sentences and for every sen-
tence the occurring demonyms and locations are noted. 
• Highest occurrence (bio-most_freq): The result is 

the demonym or geographical location that occurs 
most often. 

• Favor first occurrences (bio-favour_1st): For every 
encountered country code (cc) a list of sentence num-
bers s in which cc occurred is kept. Say, stot is the total 
number of sentences in the biography, then following 
formula is calculated for every country code cc: 

Rcc =
(stot +1) si
stot +1i= 0

length(s)

 

The result is the country code with the highest Rcc. 
• Weaker favoring first occurrences (bio-

weak_favour_1st): this method is equal to the previ-
ous, but another weighting function is applied for 
every country code cc: 

Rcc =
(stot + 2) si
stot +1i= 0

length(s)

 

Again, the result is Rcc. This method tries to spread 
importance a bit more over the sentences. 

3. EVALUATION 

The approaches from section 2 are evaluated against a 
ground truth data set provided by Aristo Music. First, we 
describe the data set normalization, then the results are 
discussed and a combination of all methods is presented. 

3.1 The data set 

As ground truth, we use the origin and continent field 
from the Aristo Music database. They group metadata per 
song, although the origin is an artist property. For some 
artists, different songs indicate different origins, due to 
errors in the database. In those cases, we consider the ori-

gin that occurs most often. From the data set, we removed 
10 artists that are not annotated with origin, as well as 
artists with an origin value like "Mixed" and "Others": 
these are used when for instance a group of artists col-
laborate, e.g. "George Michael & Aretha Franklin". These 
artists are removed from the ground truth – we identify 
them through connectors like "and", "feat." and "vs.". The 
Caribbean contains the Caribbean Sea and its islands and 
cannot be mapped to a single country code. Artists anno-
tated with “Caribbean” are thus also removed from the 
ground truth based. The overall result is that 25% are re-
moved: we keep 11275 artists (Table 1). 

To classify continents, the origin is mapped to a conti-
nent lookup table. There are different ways to define con-
tinents, based on geography or political treaties. We use a 
Wikipedia table (http://en.wikipedia.org/wiki/List_of_-
countries_by_continent_(data_file)). Table 1 also shows 
the distribution of artists over continents. Our data set re-
flects mainstream music taste in Europe, with a strong 
representation of North America and Europe. 

As input for the methods, the artist page and biography 
is retrieved for all artists with the Last.fm API. All ori-
gins are geocoded to obtain the country code. 

3.2 The results 

Section 3.2.1 examines how well all approaches cover the 
data set. Section 3.2.2 discusses the accuracy of the re-
sults per method. Finally, we present a new method that 
increases the coverage and improves overall performance. 

3.2.1 Coverage 

The coverage is defined as the number of artists of the 
ground truth that have been determined. Figure 2 shows 
the percentage of artists for which an origin was found 
per method. For 59%, an origin can be found by at least 
one of the methods. The large difference in coverage is 
the main reason why we use multiple data sources.  

Only a small percentage of Last.fm artist pages (7%) 
contain the origin. Freebase covers a bit more than 26%. 
Surprisingly, only 5% less artists have an explicit origin 
class in the Freebase ontology. For the three biography-
based methods, the coverage is obviously the same (56%) 
and about double that of Freebase. As only 63% of artists 

Table 1. The number of artists in the data set and for 
each continent in the cleaned data set. 
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have a biography, this means that almost all of the re-
trieved biographies contain geographical information. For 
62% of the artists, an origin could be retrieved with at 
least one of the methods. The coverage of the combina-
tion method will be discussed later. 

As discussed, the best method can only annotate 56% 
of the artists. One of the reasons is that Aristo Music is a 
Belgian company with a database that includes many lo-
cal artists for whom neither biographies nor freebase en-
tries are available. There is also a rich tradition of mardi 
gras music in Belgium, made by artists well known in a 
very small region (sometimes only a village or town) for 
a short period of the year. Their online presence is zero. 
There are also possible differences in artist name writing 
between Aristo Music and Last.fm. The latter often offers 
alternative pages for the different writings; most of these 
pages contain no biography or a very condensed one, dis-
abling the biography-based methods. 

3.2.2 Accuracy 

The combination method makes use of the results of the 
other methods. Therefore the same data set cannot be 
used to evaluate all methods. A data set, called combo 
data set, contains 3000 randomly selected artists from the 
full data set to evaluate the combination method. The 
8275 artists left are used to evaluate the Last.fm, Freebase 
and biography methods and is called the LFB data set. 
The coverage of the LFB and combo data set is almost 
equal to Figure 2 (up to about 1% difference). 

The accuracy is defined as the number of correct clas-
sifications divided by the total number of artists covered 
by a method. The accuracy of the Last.fm, Freebase and 
biography-based methods for the continent and origin 
classification on the LFB data set is shown in Table 2. As 
expected, the continent classification is performing better, 
because small errors in the origin will not impact on the 
continent classification: for instance, a misclassification 
of a French artist as a German one will still result in a 
correct continent (Europe). The Last.fm screen scraping 
approach has the highest accuracy overall and the Free-
base methods perform equally well and are close second. 
Their 95% confidence intervals overlap, so the best per-
former cannot be concluded, nor from performed t-tests. 

There is quite a drop in accuracy when using the biogra-
phy as a source. Continent classification with biographies 
performs much better than origin. When comparing the 
results of the 3 different biography-based methods, it is 
clear that our assumption that the origin appears in the 
first sentences is valid, because the method favoring the 
first sentences most strongly, bio-favour_1st, is the best. 

All methods have their issues. We noticed that some of 
them occur due to errors in geocoding of locations with 
the same name, e.g. Birmingham in USA and UK, or a 
mix-up between small geographical entities and their big 
neighboring countries, e.g. Jersey and England, Luxem-
burg and Belgium. Another problem occurs when differ-
ent artists have the same name; in that case, they have to 
be identified on song level. Of course, there are also 
method dependent errors: for example, sometimes the 
Last.fm origin is given as a demonym instead of a coun-
try, e.g. “American” and “French”, and the geocoding 
will resolve this to another country, respectively to 
Americana, Brazil and Wattsburg, USA. The freebase-
origin method often takes the country of birth as the ori-
gin of the artist, e.g. Akon was born in Senegal, but 
moved as a child to the USA. In the case of freebase-
most_freq, it occurs that one band member dominates the 
locations, because Freebase contains many more geo-
graphical data on that one member as the rest. This is the 
case with Ry Cooder of Buena Vista Social Club: he 
originates in the USA, while this is a Cuban band. The 
Last.fm biography can contain multiple biographies from 
different artists with the same name. This of course con-
fuses the biography-based methods. 

In Figure 3, we can see the accuracy for every method 
for every continent. It is clear that the continent classifi-
cation works better for Europe, North America and Oce-
ania. This can be due to the strong representation of these 
continents in the ground truth or a stronger representation 
on the web (see Table 1). To be able to see a consistent 
trend, we need more data for the smaller continents. We 
noticed that the misclassifications of the biography-based 
methods for Asia can often be traced back to Japan, be-
cause of Japanese album releases. Some of the Belgian 
and Dutch artists are classified with former colonies. This 
happens when the biography contains the place of birth or 
performance locations. Bio-favour_1st outperforms the 
two other biography methods in Africa, Asia and South-

Figure 2. The percentage of annotated artists by the dif-
ferent methods. 

Table 2. The accuracy and 95% confidence intervals for 
all methods for the classification of continent and origin 
on the LFB data set. 
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America. Due to the high number of countries it is im-
possible to this on country level. 

3.2.3 Improve by combination (combo_method) 

We will now introduce a new method that maximizes 
coverage and improves performance beyond bio-
favour_1st. The idea of the new method is to use all ori-
gins found by all methods to improve the coverage and 
select the origins smartly to improve accuracy. 

The result is selected in an order based on the accuracy 
in Table 2. Since the 95% confidence intervals of the 
Last.fm and Freebase methods overlap, we don’t know 
which one is significantly better. We used the highest ac-
curacy and the spread of the confidence intervals to order. 
If a location of lastfm-origin is available, this is the result, 
because it has the highest accuracy. Otherwise freebase-
most_freq is selected, because the confidence interval of 
freebase_most_freq lies encapsulated in that of freebase-
origin, then freebase-origin and as last option bio-
favour_1st. We can still improve this slightly by using the 
continent accuracy in Figure 3. Freebase-origin performs 
better in Africa, Asia and South-America. If the origin 
determined by freebase-origin is from these continents, 
this is selected before freebase-most_freq. 

Obviously, the coverage of the new method (59%) for 
the complete data set equals the percentage found by all 
methods (Figure 2). The accuracy of the combo-method 
for classifying origin on the combo data set is shown in 

Table 3. The method with the highest coverage previ-
ously, bio-favour_1st, improves from 71% to 77% and 
for continent to 86%. The lower accuracy, compared to 
the Freebase and Last.fm methods, is caused by half of 
the results, which are from bio-favour_1st. The combo-
method performs 14% less than the best method, free-
base-most_freq, but covers more than double. 

Table 4 shows the recall, precision and F-measure of 
the 10 countries with the most artists classified by 
combo_method. Overall the precision is higher than the 
recall. A higher precision is preferred for this task, be-
cause the main task of the classifier is to classify new art-
ists. Belgium, the Netherlands and Germany have a rather 
low recall value. Currently, these countries are the main 
markets of Aristo Music, so there are comparatively more 
globally lesser-known artists in the database for these 
countries than others and thus less data available on the 
web. The lower precision for Canada is probably caused 
by misclassifications with US and mistakes by the biog-
raphy analysis: for example, if the bio mentions “French 
speaking”, then the artist may be classified with France. 

4. MASHUP 

As a showcase for the classifier, a mashup application 
was developed, that visualizes playlists from radio sta-
tions and locates the artists on a map, based on the origin 
classifier. We also link the data to YouTube videos, biog-
raphies and the Last.fm account. 

The playlists are retrieved from Last.fm accounts, 
Twitter or scraped from radio station websites with Dap-
per. Yahoo! Pipes retrieves the data from these sources 
and adds the biography, pictures, track duration and 
Last.fm URL from the Last.fm API. Then we apply the 
origin classifier, implemented as a REST web service on 
Google App Engine. It requires the artist, the biography 
and the Last.fm artist page URL; e.g. 
http://artistlocator.appspot.com/?artist=Morrissey&bio=T
est+bio&last_fm_url=http://www.last.fm/music/Morrisse
y. Figure 4, shows a screenshot of the mashup applica-
tion, http://www.cs.kuleuven.be/~sten/lastonamfm/. 

During its 24 days online, the mash-up attracted 220 
individual visitors; almost 30% of them return. Most visi-
tors come from Belgium, USA, France and UK. On 8 
May, it was “Mashup of the Day” on Programmable Web 
(http://www.programmableweb.com/). A Belgian na-

Figure 3. The accuracy of every method for every conti-
nent on the LFB data set. 

Table 4. Precision, recall and F-measure of the top coun-
tries categorized by combo_method. 

Table 3. The accuracy and 95% confidence intervals for 
all methods on the combo data set. 
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tional radio station discussed it on air. Another radio sta-
tion intends to use it to analyze playlists of competitors. 

5. CONCLUSION AND FUTURE WORK 

Our aim was not to build a very complex classifier, but to 
see how far we could get using simple techniques. Real 
life systems can often benefit from this, e.g. short 
computation time. This rather simple approach leads to 
decent performance. From 6 different methods to classify 
the origin, the 4 best performing are combined in the final 
classifier to maximize coverage to 59%. The resulting 
origins are selected from the classifier with the highest 
accuracy. This results in a final accuracy of 77% for ori-
gin classification and 86% for continent classification. 

 The classifier can probably benefit from applying data 
mining techniques. For example the biographies can be 
analyzed for words that co-occur for artists of the same 
country. Something similar could be trained on the 
Last.fm tags of artists with the same origin to extract 
geographical information from tags. Another idea is to 
use named entity recognition, like Open Calais, to extract 
birthplaces and other geographical facts. This could com-
plement the demonym analysis to get more detailed in-
formation, for example city names. 

 One important way to improve the classifier is by in-
creasing the coverage. The identification of an artist on-
line has to be improved to get the correct biography. This 
can be done with online identification services, e.g. Mu-
sicBrainz.  More data sources can also enable further im-
provement. People search engines sometimes show the 
birthplace and could thus be leveraged. Additional data 
sources, such as Belgian rock/pop catalogs, could be ex-
ploited to cover local artists. An obstacle might the intel-
lectual properties of such collections. The web can be 
used as a whole to extract information from by for exam-
ple crawling music related sites, using search engines for 
classification [4] or using links from semantic search en-
gines, like http://sig.ma.    

In any case, we believe that our classifier is accurate 
enough to automatically annotate the origin of an artist 

for applications like that of Aristo Music. This can re-
move the need for costly manual effort and enable scal-
able automation for an important metadata element. 
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ABSTRACT

Chronicle is a novel open source system for represent-
ing structured data involving time, such as music.

It offers an XML-based file format, object models for
internal representation in various programming languages,
and software libraries and tools for reading and writing
XML and for data transformations.

Chronicle defines basic blocks for representing time-
based information using events, a hierarchy of groups and
instantiable templates. It supports two modes of timing:
local timing within a group and association with other el-
ements. The built-in mechanism for resolving time refer-
ences can be used to implement both timescale mappings
and tagging of information.

Chronicle aims to be a powerful and flexible founda-
tion on which new file formats and software can be built.
Chronicle focuses on structure and timing, but leaves the
actual content free to choose. Thus format- or software-
developers can specify their own domain-model. This makes
it possible to make representations for different types of
musical information (scores, performance data, ...) in dif-
ferent styles or cultures (CMN, non-western, contempo-
rary, ...), but also for other domains like choreography,
scheduling, task management, and so on. It is also ideal
for structured tagging of audio and multimedia (movie sub-
titles, karaoke, synchronisation, ...) and for representing
”internal” data used in music algorithms.

The system is organized in four levels of increasing com-
plexity. Software developed for a specific level and domain
will also accept lower level data, while users can choose to
represent data in a higher level and use Chronicle tools to
reduce the level.

1. INTRODUCTION

Since the beginning of computing hundreds of music en-
codings (representations, formats) have been invented, and
new ones are still being developed today. For overviews
see e.g. [1–3]. Part of the reason is that the landscape of
forms of musical information is so large, ranging from au-
dio to symbolic, from performance to score, from western
to non-western, from classical to popular, from ancient to

Permission to make digital or hard copies of all or part of this work for
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not made or distributed for profit or commercial advantage and that copies
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c© 2009 International Society for Music Information Retrieval.

contemporary. Some of these terrains are relatively well
established, even standardized, others are still being ex-
plored.

Most symbolic music encodings focus on common west-
ern music notation (CWMN). However, many new appli-
cations are pushing the limits of conventional encodings.
Some examples:

• non common western music, e.g. traditional African
music, medieval music

• special notations such as percussion notations, tab-
lature, Gregorian plainchant

• extra data such as lyrics, choreography, instrument-
specific notations, harmony. Also: auxiliary data for
music software, e.g. chroma vectors, onset times, ...

• synchronization or alignment with multimedia, an-
notations and labeling

Existing encodings are not always suitable to accommo-
date the storage of these types of data. Developers are
forced to invent their own encoding, or to abuse existing
encodings such as MIDI [1].

The most important common factors in these applica-
tions are time and structure. We have developed a new sys-
tem for dealing with structured data involving time, called
Chronicle. The system deals with time and structure, but
leaves the actual content or data free to choose. A devel-
oper has the freedom to represent the content in any form
he wishes. Thus the Chronicle system can serve as the
skeleton for a variety of applications, allowing the devel-
oper to concentrate on content-specific issues.

In the early 90s, one of the first systems dealing with
time was HyTime [4] on which the symbolic music encod-
ing SMDL [5] was based. Although both are international
ISO/IEC standards, and have had a lot of influence on later
initiatives, they have never been used in practice. There
are a number of reasons for this, but the main reason is
probably that the system was far too complex. Chronicle
is similar in some aspects, but aims to be as simple as pos-
sible. Related efforts for symbolic music can be seen in
Music Space [6] and SMI [7] or IEEE 1599 [8].

Similar time-based approaches can be found in the field
of multimedia, notably with SMIL [9] and its recent off-
spring Timesheets [10]. For a more theoretical background
please refer to [11]. These systems were designed to sched-
ule multimedia presentations. The use of parallel and se-
quential groups of elements (sound, image, movie) can

267



Poster Session 2

also be found in Chronicle, but Chronicle offers much more
advanced mechanisms for annotations, timescale mappings,
templates etc.

Chronicle is intended to aid developers of (music) soft-
ware and file formats, by providing simple yet powerful
and flexible basic building blocks and structuring mecha-
nisms. It offers support for working with events, groups,
relative time, parallel and sequential layout, timescales,
timescale mappings, association, parametrized templates
and more. The system was developed primarily for sym-
bolic music, but is also applicable in other domains like
audio, multimedia, choreography, job scheduling etc.

The Chronicle system consists of different parts:

• external representation: XML-based file format

• software tools for manipulating Chronicle XML files

• internal representations: object models (interfaces,
classes, ...)

• software libraries for manipulating, storing, parsing...

Internal representations and libraries are developed in var-
ious programming languages 1 .

The main aim is to facilitate the development of new
domain-specific encodings and software by providing in-
ternal data representations (in the form of interfaces and
classes) and software-libraries for various tasks such as
writing and parsing XML, processing events, manipulat-
ing structure, querying information etc.

2. DESIGN

2.1 Elements and ID’s

The basic elements are events and groups. A group con-
tains child-elements, which are either events or sub-groups.
Sub-groups contain other elements and so on. The root-
group is the common ancestor of all elements. The result is
a hierarchy or tree-structure, comparable to a file system.
Every element in the tree, except the root, has a parent
group.

Every element is identified within its parent group by a
unique integer number called local ID. By default elements
are numbered 0, 1, 2, ..., but it is possible to override this
by an explicit ID-definition.

Every element in the hierarchy is uniquely identified by
its local ID, the local ID of its parent group, the local ID
of its grandparent group etc. This sequence of local IDs is
called the elements global ID.

It is convenient to introduce path-notation, where a global
ID is specified by concatenating the local IDs top-down
(starting from the root) separated by slashes, similar to a
file path or URL. The root itself is notated by /. Thus, for
example, global ID /2/3 identifies the element with local
ID 3 in the sub-group with local ID 2 in the root group.
Optionally, an element can have a name (String) which is
also unique within its parent group. Names can be used to
embellish path-notation, e.g. /part1/section3/4.

1 currently Java and ActionScript

Path expressions starting with / are called absolute, be-
cause they identify an element starting from the root. It
is also possible to identify elements using a relative ID
from within another element. As in a file-path, one can
use ”..” in path-notation to indicate the parent (group). For
example ../../section/2 refers to the element with
local ID 2 in a group named ”section” in the grandparent
group of the current element. As an alternative, the no-
tation @name can be used to refer to an element named
name anywhere up in the hierarchy. First the parent group
is searched. If the element is not found there, the grand-
parent is searched, and so on, until the root is reached.
This mechanism is similar to the lookup of variable names
in nested scopes. For example, @section/2 is equiva-
lent to ../../section/2 if the grandparent contains a
child named ”section”, but the parent doesn’t.

2.2 Time

All elements have a timestamp, which is expressed either
in local time or in non-local time.

Local time is represented by an integer number and is to
be interpreted relative to the timescale of the parent group.
The parent group has its own (start-)time and, optionally, a
scale. An example in XML-form:

<group time="100" scale="4">
<event time="10" />

</group>

In this fragment the ”absolute” time of the event would
be 100+4×10 = 140. If an element’s time is not specified,
it defaults to zero (local time). The scale defaults to one.

Alternatively, an element can specify its timestamp in
non-local time using a time reference. A time reference
is represented by a path-expression, either absolute or rela-
tive, which can be written using path-notation starting with
/, .. or @. If this path refers to an element which exists
in the tree, then the referring element gets the same time as
the element it refers to.

<event name="e1" time="100" />
...
<group>
<event name="e2" time="@e1" />

</group>

In this example event ”e2” refers to event ”e1”, so it also
has time 100. Here we used @e1 in the path expression.
Equivalently, one could specify this using a relative path
../e1 or an absolute path.

Time references can also be chained (refer to a refer-
ence...) and mixed with local timing:

<group name="e1" time="100" />
<event time="10" />
<event time="20" />

</group>
...
<group time="@e1/0">
<event name="e2" time="1" />

</group>

Here event ”e2” uses local time, which is added to the
parent group time, resulting in @e1/1. This path refers to
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the second element (id=1) of the group ”e1”. The result is
that the time of event ”e2” resolves to 100 + 20 = 120.

The technique of time references is very powerful. It
can be used for associating elements with other elements
(tagging...), but also to implement mappings between time-
scales. This will be illustrated in section 3.

Chronicle also supports layout-schemes which allows
automatic determination of element times. The most com-
mon examples are sequential and parallel layout which sched-
ule elements resp. one after the other and at the same time.

2.3 Levels

Chronicle is organized in four levels of increasing com-
plexity.

A level 0 file consists of one list of events. There is one
global timescale. All events use local time relative to this
timescale. The events are ordered in ascending time order:
every event must have a time greater than or equal to that
of its predecessor. No restrictions are imposed on the data
carried by the events.

Level 1 adds the possibility of groups and nesting, with
the restriction that groups have starting time equal to zero.
This means that local times in groups are equivalent to ”ab-
solute” times in the global timescale. In this (and higher)
levels, the events needn’t be ordered in time.

In level 2 all elements, including groups, can specify
their (start) time as a local time or using a time reference,
and groups can use a layout-scheme to set child element
times.

Finally, level 3 introduces templates and template in-
stances. Note that every level is a subset of the higher lev-
els. Chronicle provides tools to transform data to a lower
level.

2.4 Domain

As noted in the introduction the Chronicle system only
deals with structure and timing, not with the actual domain-
specific content, which can be chosen freely. Different
Chronicle applications can be developed for specific do-
mains representing different types of musical information
(scores, performance data, ...) in different styles or cultures
(CMN, non-western, contemporary, ...), but also for other
domains like choreography, scheduling, task management,
and so on. It is also ideal for structured tagging of audio
and multimedia (movie subtitles, karaoke, synchronisation
of score and audio, ...) and for representing ”internal” data
used in music algorithms (chroma, coordinates, ...)

In the XML-format domain-specific information is en-
coded in the content of event-elements, either as text or as
one or more child elements. Additionally it is possible to
give the event an attribute type. To illustrate this we show
some possibilities for encoding a chord-symbol:

<event>Am7</event>
<event type="chord">Am7</event>
<event><chord>Am7</chord></event>
<event>
<chord><root>A</root><kind>m7</kind></chord>

</event>

We have provided API’s to read and write Chronicle el-
ements (event, group, ...), but it is up to the user to deal
with event-content. Groups cannot carry data themselves,
although it is possible to specify a group-type using the
type-attribute. If necessary, extra events can be intro-
duced in a group to encode group-related information.

3. EXAMPLE

We will demonstrate the key features of the Chronicle sys-
tem and the level reduction process by means of an ex-
ample. We present the material in XML-form, although
it should be borne in mind that Chronicle also supports
”internal” representations and transformations in different
programming languages.

<chronicle version="2.0" level="3"
domain="http://.../leadsheet" />

<template name="note" >
<group>
<event time="0">
<note_on pitch="#pitch" />

</event>
<event time="#dur">
<note_off pitch="#pitch" >

</event>
</group>

</template>

<template name="voice">
<group>
<group name="notes" layout="sequential">
<instance model="/note"

pitch="D4" dur="12" />
<instance model="/note"

pitch="D4" dur="12" />
<instance model="/note"

pitch="D4" dur="9" />
<instance model="/note"

pitch="E4" dur="3" />
<instance model="/note"

pitch="F#4" dur="12" />
... MORE NOTES ...

</group>
<group type="lyrics" time="@notes/0">
<event time="0" type="lyric">Row,</event>
<event time="1" type="lyric">row,</event>
<event time="2" type="lyric">row</event>
<event time="3" type="lyric">your</event>
<event time="4" type="lyric">boat</event>
... MORE LYRICS ...

</group>
</group>

</template>

<group name="song" time="@ticks/0">
<group name="canon" layout="sequential">
<group time="0" name="first">
<instance model="/voice" />

</group>
<group time="48" name="second">
<instance model="/voice" />

</group>
<group time="96" name="third">
<instance model="/voice" />

</group>
<group time="144" name="fourth">
<instance model="/voice" >

</group>
</group>
<instance name="unison" model="/voice">

</group>

<group name="ticks" time="@ms/0" >
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<event id="0" time="0" />
<event id="192" time="19200" />
<event id="240" time="21600" />

</group>

</chronicle>

This example illustrates an encoding of the song ”Row,
row, row your boat”. It is important to note that this is only
one of many possible encodings.

After the XML-preamble, the file starts with a root-
element chronicle. The attribute version specifies
the version of the Chronicle system itself. The attribute
level indicates the encoding level used, and the attribute
domain specifies the domain (content types and structural
restrictions). In this case the attribute points to a URI.

The first element defines a template note. A template
is a kind of prototype which can be instantiated (copied)
multiple times. Templates are useful for avoiding code-
duplication. A template can have parameters, which makes
it possible to vary the instances. In this case the note-
template is used as a convenient way to bundle a note-on
and note-off event. It represents a single note with a certain
pitch and duration. The pitch is encoded as a simple string
which indicates pitch class (e.g. F#) and register or octave
(4th octave). This is not dictated by Chronicle but is a
choice made by the domain-developer.

Next, the template voice defines notes and lyrics of
the song. The group song instantiates five copies at dif-
ferent times, representing four voices sung in canon, fol-
lowed by one in unison. Finally, group ticks relates the
ticks-timescale to milliseconds.

The example is a level-3 encoding. We will now illus-
trate how it can be reduced to lower levels.

The first phase, which transforms from level-3 to level-
2, is template instantiation, also called expansion. It is car-
ried out bottom-up: first the innermost elements, then their
parents and so on. In this case, the voice-template con-
tains instances of note-templates which are instantiated ex-
panded first, the parameters #pitch and #dur being sub-
stituted by their actual values defined in attributes pitch
and dur. Subsequently, the four voice-instances in the
song-group are expanded. Since this template has no pa-
rameter, the instances are exact copies. In the resulting
level-2 file the templates have disappeared:

<chronicle version="2.0" level="2"
domain="http://.../leadsheet" />

<group name="song" time="@ticks/0">
<group time="0" name="first">
...

</group>
<group time="48" name="second">
<group>
<group name="notes" layout="sequential">

<group>
<event time="0">
<note_on pitch="D4" />

</event>
<event time="12">
<note_off pitch="D4" />

</event>
</group>
... MORE NOTES ...

<group>
<event time="0">
<note_on pitch="E4" />

</event>
<event time="3">
<note_off pitch="E4" />

</event>
</group>
... MORE NOTES ...

</group>
<group type="lyrics" time="@notes/0">
<event time="0" type="lyric">Row,</event>
<event time="1" type="lyric">row,</event>
<event time="2" type="lyric">row</event>
<event time="3" type="lyric">your</event>
<event time="4" type="lyric">boat</event>
... MORE LYRICS ...

</group>
</group>

</group>
... THIRD AND FOURTH VOICE ...

</group>

<group name="ticks" time="@ms/0" >
<event id="0" time="0" />
<event id="192" time="19200" />
<event id="240" time="21600" />

</group>

</chronicle>

Reduction from level-2 to level-1 is carried out in two
phases. The first phase is the layout phase. In the example,
the notes-group has sequential layout, which means that
its elements must be scheduled one after the other. Techni-
cally, the (start) time of element i + 1 is equal to the (start)
time of element i plus the duration of element i, for all i.

The duration of a group is equal to the largest local time
of (grand)child events. If necessary the duration can also
be specified explicitly. In the case of the notes, the duration
of a note-group is equal to the time of the offset-event.

In the resulting file the element groups have acquired
an explicit time, and the layout-indications are gone. In
the example, the note-groups have times 0, 0 + 12 = 12,
12 + 12 = 24, 24 + 9 = 33, 33 + 3 = 36 and so on.
This is illustrated in the following fragment which shows
the onset-event of the fourth note (E4) in the second voice,
and its ancestor groups:

<group name="song" time="@ticks/0">
<group time="48">
<group>
<group name="notes">

...
<group time="33">
<event time="0">
<note_on pitch="E4" />

</event>

The layout phase is followed by the time resolution phase.
The timestamps of all elements are resolved in the manner
illustrated in section 2.2.

Consider for example the onset of the fourth note (E4)
in the fragment above. Following the way up from parent
to parent, it can be seen that the additions result in a time
equal to @ticks/81. This means that that note starts on
tick 81.

The domain-developer has chosen to encode the lyrics
in a separate group which is associated with the notes-
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group. In the group lyrics the event times are added
to the group-time, yielding value @notes/0, @notes/1
and so on. The @notes-reference points to the notes-
group. Therefore the timestamps of the lyric-events are
substituted by the timestamps of the note-groups which
they refer to, in this case @ticks/0, @ticks/12 and
so on.

The reference @ticks in turn points to the ticks-
group defined near the end of the example. As this group
contains only three events with local ID 0, 192 and 240,
a reference like /ticks/12 doesn’t point to a real el-
ement. Such a reference is called virtual. In that case
times are resolved by a linear interpolation between real
elements. In the example ID 0 maps to time 0 and ID 192
maps to 19200, so each tick in this range has a duration of
100 ms. This means, for instance, that @ticks/12 re-
solves to @ms/1200 which signifies that tick 12 occurs
after 1200 milliseconds. Ticks in the range up to 240 have
a duration equal to (21600−19200)/(240−192) = 50 ms.
As a result, the fifth instance of the voice-template (named
”unison”) is played in double tempo.

The net effect is that the ticks-group defines a map-
ping between timescales. Note that the mechanism for re-
solving (local or non-local) times is used to accomplish
two different goals: a. the lyrics are associated (tagged) to
notes, b. the ticks timescale is mapped to the millesecond
timescale.

Note that all references can be resolved to a form ms/x
where x is an integer number. The reference @ms/...
cannot be resolved any further - this is the ”global” timescale.
If we set all group times to zero, then the absolute times are
equivalent to relative times. The result is a level-1 file, with
the timescale ms specified in the root-element:

<chronicle version="2.0" level="1"
domain="http://.../leadsheet"
timescale="ms" />

<group name="song">
<group name="first">
...

</group>
<group name="second">
<group >
<group name="notes" >

<group>
<event time="4800">
<note_on pitch="D4" />

</event>
<event time="6000">
<note_off pitch="D4" />

</event>
</group>

...
... MORE NOTES ...
<group>
<event time="8100">
<note_on pitch="E4" />

</event>
<event time="8400">
<note_off pitch="E4" />

</event>
</group>

...
... MORE NOTES ...

</group>
<group type="lyrics" >

<event time="4800" type="lyric">

Row, </event>
<event time="6000" type="lyric">

row, </event>
<event time="7200" type="lyric">

row </event>
<event time="8100" type="lyric">

your </event>
<event time="8400" type="lyric">

boat </event>
...

... MORE LYRICS ...
</group>

</group>
</group>
...
... THIRD AND FOURTH VOICE ...

</group>
...
... TICKS ...
</chronicle>

To reduce from level-1 to level-0 one more transforma-
tion is needed. In this final phase groups are serialized or
flattened into one long series of events, and they are or-
dered in ascending time order. In the resulting level-0 file,
there are no more groups:

<chronicle version="2.0" level="0"
domain="http://.../leadsheet"
timescale="ms" />

...
<event time="4800">
<note_on pitch="D4" />

</event>
<event time="4800" type="lyric">Row,</event>
<event time="6000">
<note_off pitch="D4" />

</event>
...
<event time="8100">
<note_on pitch="E4" />

</event>
<event time="8100" type="lyric">your</event>
<event time="8400">
<note_off pitch="E4" />

</event>
...
</chronicle>

4. IN PRACTICE

How can the Chronicle system be used in practice?
The XML-format can be used by software-developers

as a convenient means to persist data. Chronicle provides
easy-to-use libraries for writing and reading the XML-for-
mat. For new software projects it may even be advisable
to use the Chronicle classes and interfaces as the basis for
the object model, even if XML-persistence is not needed.
It is up to the developer to specify the domain-model by
constraining content types and level.

Consider, for example, a Chronicle-encoding of MIDI-
information (see e.g. [1]) By its very nature, this applica-
tion is ideal for a level-0 encoding, i.e. a flat list of simple
events. The domain model establishes event-types (note-
on, note-off, control change, program change) and their
XML-encoding. A typical event could look like this:

<event time="196">
<note_on key="100" velocity="127" channel="0">

</event>
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Software applications operating on this data, for exam-
ple for playing the music, typically process the events one
by one. Whereas the processing software is happy to con-
sume level-0 data, from a musical point of view it may
be desirable to add some structure. This can be achieved
by encoding in a higher level, using mechanisms such as
grouping, association, sequences, templates etc. Chronicle
tools can then be used to transform to level-0 and feed the
reduced data to the processing software.

The nice thing is that users can choose the organiza-
tion which best suits their needs. For example, one might
choose a ”part-by-part” organization using parallel groups
for different instrument parts, or a ”frame-by-frame” or-
ganization using a sequence of parallel note-groups. One
can choose to use sequential groups for measures, for sec-
tions (movements). It is also possible to play around with
associations, timescales and time-mappings, and so on.

One important point which hasn’t been addressed is that
Chronicle files can be embedded as subgroups within an-
other chronicle file using an include-element. The mech-
anism of association by time-references can be used to add
information to a group without changing it. This is espe-
cially useful if the target is an embedded group, or if it is
external data such as an audio or multimedia file.

Chronicle is currently being tested for the encoding of
leadsheets for wikifonia.org. In the near future, we are
planning to create more domain-specific applications, and
hope that other developers will do the same.

Documentation, tools and open source code can be found
at http://code.google.com/p/chronicle-xml/.
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ABSTRACT

Many of the recent advances in music information retrieval
from audio signals have been data-driven, i.e., resulting
from the analysis of very large data sets. Widespread per-
formance evaluations on common data sets, such as the
annual MIREX events, have also been instrumental in ad-
vancing the field. These endeavors incur a large computa-
tional cost, and could potentially benefit greatly from more
rapid calculation of acoustic features. Traditional, cluster-
based solutions for large-scale feature extraction are ex-
pensive and space- and power-inefficient. Using the mas-
sively parallel architecture of the field programmable gate
array (FPGA), it is possible to design an application spe-
cific chip rivaling the speed of a cluster for large-scale
acoustic feature computation at lower cost. Recent ad-
vances in development tools, such as the Xilinx Blockset in
Simulink, allow rapid prototyping, simulation, and imple-
mentation on actual hardware. Such devices also show po-
tential for the implementation of MIR systems on embed-
ded devices such as cell phones and PDAs where hardware
acceleration would be an absolute necessity. We present a
prototype library for acoustic feature calculation for imple-
mentation on Xilinx FPGA hardware. Furthermore, using
a genre classification task we compare the performance of
simulated hardware features to those computed using stan-
dard methods, demonstrating a nearly negligible drop in
classification performance with the potential for large re-
ductions in computation time.

1. INTRODUCTION

The extraction of appropriate acoustic features is the first
step for nearly all audio-based music information retrieval
applications. Many recent advances in MIR systems are
the result of large-scale, data-driven analysis of audio sam-
ples. Such corpora may contain thousands (or even mil-
lions, in the case of some commercial databases) of audio
files, and the accompanying analyses of these data sets de-
mands vast computational resources. In seeking improved
methods for music classification and understanding, resear-
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chers are constantly searching for more informative feature
sets, which requires the ability to rapidly prototype and
evaluate new features on very large databases. Addition-
ally, performance evaluations, such as the annual MIREX
events [1], of multiple approaches to specific application
tasks on common data sets have proven to be invaluable
for advancing the state-of-the-art in MIR research. These
evaluations, however, are increasingly difficult to adminis-
ter, since both the number of participants and the size of
the data sets continues to grow annually.

The most common solution to problems having such
computational demands involves an investment in comput-
ing clusters, which are expensive and inefficient (in terms
of both their utilization of hardware resources and energy
consumed). Using the massively parallel architecture of
the field programmable gate array (FPGA) it is possible to
achieve parallel processing on a scale similar to that of a
small cluster (for specific applications) on a single chip.
Current tools such as the Xilinx System Generator (XSG)
for DSP 1 enable rapid prototyping of DSP algorithms in
the graphical language of Simulink with the ability to in-
corporate hardware in the modeling and design loop. Ad-
ditionally, any algorithm built using the Simulink Xilinx
Blockset can be easily compiled into Verilog or VHDL
code and incorporated into a larger hardware system de-
sign. One possible implementation would be MIR on em-
bedded, mobile devices, such as cell phones and PDAs,
where the computation of acoustic features would not be
possible using the onboard CPU. Such a hardware accel-
eration system could be designed both for the computation
of acoustic features, and evaluation of the decision func-
tion of a pre-trained classifier.

We have developed an acoustic feature extraction li-
brary, implemented using XSG, that can be synthesized
directly on supported FPGA hardware. The library sup-
ports the calculation of both Mel-Frequency Cepstral Coef-
ficients (MFCC) [2] and common Statistical Spectrum De-
scriptors (SSDs). Here, we present preliminary classifica-
tion results using fixed-point MFCC features calculated by
the XSG (simulating an FPGA implementation). The accu-
racy of these features is verified through their use in a genre
classification task on a medium-sized audio database, and
we demonstrate that the resulting classification performance
is comparable to that of a floating-point MATLAB and
double-precision Java implementation of similar feature cal-

1 Xilinx System Generator: http://www.xilinx.com/ise/
optional_prod/system_generator.htm
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culation algorithms.

Furthermore, we also present a process for migrating
acoustic features designed using MATLAB to the Xilinx
System Generator in Simulink. The ultimate goal of this
endeavor is to develop a system in which features can be
rapidly and easily prototyped within Simulink, synthesized
to Verilog hardware description language (HDL), and em-
bedded into a larger standalone FPGA-based system-on-
chip design. Tools developed for such a platform could be
easily shared between members of the MIR research com-
munity and could potentially allow even an inexperienced
HDL programmer to take advantage of the performance
gained from implementing feature extraction in hardware.

2. BACKGROUND

Early efforts at implementing acoustic feature computation
in hardware required systems built entirely from scratch,
which is a significant and time-consuming endeavor when
working directly with low-level hardware descriptor lan-
guages (HDLs). Prior work has almost exclusively targeted
MFCC feature calculation for automatic speech recogni-
tion. For example, [3] presents an optimized algorithm
for efficient computation of MFCCs using an FPGA im-
plementation, while [4] focuses on implementing only the
FFT sub-calculation in hardware for eventual use in MFCC
computation. In the direction of easing the dependence
on hardware arithmetic units, [5] proposes modifying the
MFCC algorithm from a triangular filterbank to a mel-
spaced rectangular filterbank, and their results demonstrate
only a minimal decrease in classification accuracy. Other
work has focused on full hardware system integration for
speech recognition. In [6] an on-chip, retrainable hardware
speech recognition system is presented using MFCC fea-
tures and Hidden Markov Models (HMMs) for statistical
pattern recognition.

The annual Music Information Retrieval Evaluation eX-
change (MIREX) tasks, initiated in 2005, have become a
core component of the field of MIR in terms of advanc-
ing and disseminating the latest research and results. With
the number of tasks, participants, and data sets increasing
annually, the evaluations have become exponentially more
difficult to administer. The International Music Informa-
tion Retrieval Systems Evaluation Laboratory (IMIRSEL),
the organizers of MIREX, has traditionally gone above and
beyond in order to accommodate a wide range of imple-
mentation platforms and architectures and retains a range
of machines, including an ever-expanding cluster, for this
purpose, resulting in additional complexity. This configu-
ration, while offering a great deal of flexibility, limits their
ability to take advantage of parallel processing implemen-
tations, which are still highly platform-specific. A 72-hour
runtime cap is enforced for all submissions, but even so, re-
cent evaluations have required up-to 1000 person-hours of
effort. A significant speedup in feature computation could
greatly reduce the runtime requirements for MIREX.

3. HARDWARE IMPLEMENTATION OF
FEATURES

The Xilinx System Generator (XSG) tools in Simulink en-
able the prototyping of complex signal processing algo-
rithms for hardware implementation in a relatively straight-
forward manner. For our initial implementation, we lim-
ited ourselves to analysis windows with a length of 512
samples and 50% overlap, 40 triangular mel-filters, and 20
DCT coefficients. These parameters were chosen because
of their wide application in audio and music processing al-
gorithms. Other research has shown that the number of
filters and DCT coefficients can be greatly reduced while
still maintaining adequate performance [7].

MATLAB Simulink
(Xilinx Blockset)

Xilinx System
Generator

Hardware
Deployment

Figure 1. Implementation flowchart for audio feature ex-
traction algorithms.

The first processing stage for our audio features requires
a DFT calculation, which is performed using the pipelined
Xilinx core FFT v5.0, producing real-time serial FFT data.
Next, using two multipliers, we square the results of the
real and imaginary parts and add them together to obtain
the energy spectral density (ESD), which is quantized to
32-bits. In this case, ESD is preferred to the magnitude
FFT because the square root function necessary to obtain
magnitude is not easily implemented in hardware. XSG in-
cludes Coordinate Rotation Digital Computer (CORDIC)
algorithms which can compute square roots as well as trig-
onometric, logarithmic, and division functions using only
addition, subtraction, bitshift, and table lookup, but in a
practical design these algorithms tend to take up large ar-
eas of the FPGA fabric and often incur large delays. In
general, we avoided the use of these functions whenever
possible.
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3.1 Mel-Frequency Cepstral Coefficients

3.1.1 Algorithm

Mel-frequency cepstral coefficients (MFCCs) are among
the most widely used acoustic features in speech and audio
processing. MFCCs are essentially a low-dimensional rep-
resentation of the spectrum warped according to the mel-
scale, which reflects the nonlinear frequency sensitivity of
the human auditory system [2]. In our implementation,
MFCCs are defined as

Mm,c =
40∑

b=1

X̂m,b cos
[
c

(
b− 1

2

)
π

40

]
, c = 1, 2, ..., 20

(1)

X̂m,b = log

(
fb[k]

∣∣∣∣∣
N−1∑
n=0

xm[n]e−j 2πnk
N

∣∣∣∣∣
)
, (2)

where m represents the current frame. Normally, MFCCs
are implemented over short-time segments, and accord-
ingly our implementation divides the audio into overlap-
ping segments and applies a Hanning window function to
reduce edge effects. The Discrete Fourier Transform (DFT)
of each short-time segment is computed using the FFT
algorithm. The magnitude of the frequency components
is determined and fb[k], the mel-spaced triangular filters
(Figure 3), are applied via multiplication in the frequency
domain. Continuing with the cepstrum calculation, the log
of the mel-filtered energies is calculated (X̂m,b), which to
some extent, serves to deconvolve the audio by transform-
ing multiplications in the frequency-domain (and thus, con-
volutions in the time-domain) into additions. As a final
step, the inverse DFT is applied to X̂m,b using the DCT
(sine components are not needed since the input is guaran-
teed to be real and even). This step is also used to reduce
the dimensionality of the data to the desired quantity, and
it has been shown that the DCT has the additional effect of
decorrelating the vector of feature components [8].
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Figure 3. 40-band mel-warped triangular filterbank

3.1.2 FPGA Implementation

Calculation of the MFCC features consists of applying the
mel-filterbank to the spectrum, taking the log, and com-
puting the DCT. Applying the mel-filterbank requires 40
read-only memory (ROM) elements, 40 multipliers, and
40 accumulators. A control register is placed on the out-
put which is triggered by FFT completion to only allow
the filterbank output to change once for every frame. To

minimize the size of the ROM elements and the number of
multiplies, the mel-filter coefficients are restricted to 16-
bits. This stage is the most resource intensive part of the
design due to the number of multipliers required.

Once the data is filtered, it is again serialized in order
to compute the log. This requires a wait of 512 samples
until the next FFT frame is supplied, therefore ample time
is available to serialize the 40 filter band values. Using a
single CORDIC log, all 40 values are computed and sub-
sequently quantized to 32-bits.

The final step involves computation of the DCT, where
the DCT coefficients are stored in 20 ROM units and have
been quantized to 16-bit resolution. In addition, this step
requires 20 multipliers and 20 accumulators. The output
is triggered using a simple control register such that the
output values change only once every 512 values. Since no
further processing is required, this data is decimated by a
factor of 512 and returned as the final output.

3.2 Statistical Spectrum Descriptors

In music and audio processing, Statistical Spectrum De-
scriptors (SSDs) are often related to timbral texture [9].
For each spectral shape function, we begin by dividing the
data into short-overlapping segments, applying a Hanning
window, and computing the magnitude DFT.

3.2.1 Spectral Centroid

Spectral centroid is defined as the weighted-average (cen-
ter of mass) of the spectrum,

Cm =
∑K−1

k=0 F [k]|Xm[k]|∑K−1
k=0 |Xm[k]|

, (3)

where Xm[k] is the DFT of short-time segment m, and
F [k] is a vector of frequencies corresponding to the bins
of the magnitude spectrum.

Computation of the spectral centroid requires a multi-
plication, two accumulators, and a division. Here the spec-
trum is summed with one accumulator and the spectrum,
multiplied by the respective spectral bin values, is summed
by the other accumulator. After passing a control register
to ensure only one value is returned for each frame, the re-
sult is divided by the CORDIC divider provided by XSG.

3.2.2 Spectral “Flux”

Spectral flux is defined as the Euclidean distance between
successive spectral frames. We compute the square of this
feature, which is defined as follows:

Fm =
K−1∑
k=0

(|Xm[k]| − |Xm−1[k]|)2. (4)

Again, Xm[k] is the discrete spectrum of the current anal-
ysis frame m and Xm−1[k] is the spectrum of the previous
frame.

Spectral flux is the simplest of all of the spectral shape
features to compute. The hardware consists of a 512 sam-
ple delay block to maintain a copy of the previous frame,
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an adder, a multiplier, and an accumulator. An important
note is that we are not computing the square root, but sim-
ply the sum of the squares as to avoid the use of additional
CORDIC functions.

3.2.3 Spectral Rolloff

Spectral rolloff is defined as the frequency beneath which a
given proportion of the total spectral energy lies, typically
85%:

Rm =
fs

K
rm =

fs

K

(
arg
rm

rm∑
k=0

|Xm[k]| = 0.85
K−1∑
k=0

|Xm[k]|

)
.

(5)

Here |Xm[k]| is the magnitude of the k-th frequency sam-
ple of the current frame and rm is the frequency sample
number that produces the desired 85% rolloff.

The core of the spectral rolloff implementation consists
of two accumulators. The first accumulator sums the spec-
trum to obtain the total energy and multiplies it by 0.85,
where as the second sums the delayed spectrum until the
total energy reaches 85%. Once this value is obtained, the
frequency value of the correspond spectral bin is returned.
Of these features, spectral rolloff is probably the most ro-
bust to quantization effects as it is returning values of an
already discretized function.

4. HARDWARE PERFORMANCE AND USAGE

The initial hardware target for this project is Digilent’s
Virtex-II Pro Development System. The Xilinx Virtex-II
FPGA on the board (XC2VP30) contains 13,969 slices,
136 18-bit multipliers, 2,448Kb of block RAM, and two
PowerPC Processors. While the available amount of FPGA
fabric is highly constrained, at an academic discounted cost
of $299.00 USD, the board is an attractive target, and its
widespread adoption in education creates greater opportu-
nities for algorithm experimentation and deployment.

Implementing only the ESD algorithm on this chip re-
quires 299 slices, 8 18-bit multipliers, and no block RAM.
Considering the total size and resource restrictions the most
limiting factor is the number of multipliers required. Us-
ing all 136 multipliers and 5,083 slices we could compute
the ESD for up to 17 analysis frames in parallel. For a
single FFT implementation, the first frame requires 1123
clock cycles to compute and subsequent frames require an
additional 512 cycles. With 17 in parallel, the first set of
frames will still need 1123 clock cycles, although we will
now output 17 frames at a time. Assuming the fabric is
clocked at 80MHz, a conservative clock speed, a break-
down of performance is shown in Table 1.

We compared the hardware performance using a sin-
gle FFT unit on an FPGA to that of the M2K toolkit [10]
and MATLAB on a set of 600 audio clips, each 30 sec-
onds in duration (the data set used in the classification task
is detailed in the next section). The M2K and MATLAB
features were calculated using a single processor core of
a 2.4 GHz Intel Core 2 CPU. Table 2 reveals the compu-
tation times for each feature set, averaged across all 600

First Subsequent Three Thirty
FFTs frame (µs) frames (µs) secs (ms) secs (ms)

1 14.04 6.400 3.316 33.08
17 14.04 0.376 0.206 1.953

Table 1. Performance of spectrogram calculation on sim-
ulated hardware.

clips, and we observe that there is more than an order of
magnitude difference between the hardware and software
implementations. While MATLAB and M2K each produce
results in just under a half second for each 30 second clip,
the hardware requires only around 33ms. Additionally, it
can be seen from Table 3 that as the number of FFT units
available on the FPGA increases, the hardware can achieve
sub 1ms computation times.

Toolkit Computation Time (s)

M2K 0.483
MATLAB 0.364
FPGA 0.033

Table 2. Comparison of feature computation times be-
tween software and hardware implementations.

In its current form, implementing the full system-on-
chip (including MFCC and SSD calculations) with a sin-
gle FFT unit requires 15,542 slices, 145 18-bit multipli-
ers, and 1,080 Kb of block RAM, which exceeds the ca-
pacity (in terms of slices and multipliers) of the hardware
target. With some additional optimization, perhaps trad-
ing off some parallelism to reduce hardware resource uti-
lization, we believe the full system could be implemented
on the targeted Virtex-II VC2VP30-based system. Other
products in the Virtex-II FPGA family provide additional
hardware resources, which offer the possibility of com-
bining multiple feature computation engines on a single
chip. For example, the Virtex-II XC2VP100 provides suf-
ficient slices and multipliers to easily accommodate 3 fea-
ture computation engines. Additionally, certain develop-
ment boards contain multiple FPGA chips, adding further
parallelization opportunities. With two FPGAs, we could
potentially accommodate 6-8 computation engines on a sin-
gle system board.

The current design requires 2048 clock cycles to pro-
duce the first output for the spectral shape features and
2560 for MFCCs. As with the ESD, each additional frame
takes 512 cycles and compute time decreases proportion-
ally with the addition of each parallel computational en-
gine. More specific timing results for a single computation
engine (again clocked at a conservative 80 MHz) are pro-
vided in Table 3, as well as theoretical performance num-
bers if six parallel feature computation engines could be
implemented on a single system. Although such develop-
ment hardware is currently quite expensive (approximately
$10K, on the order of a small cluster), the performance is
potentially faster by more than an order of magnitude.
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Comp. First Three Thirty
Feature Engines frame (µs) secs (ms) secs (ms)

S. Shape 1 25.60 3.328 33.09
S. Shape 6 25.60 0.576 5.536
MFCC 1 32.00 3.334 33.10
MFCC 6 32.00 0.582 5.542

Table 3. Performance of feature extraction on simulated
hardware.

5. CLASSIFICATION EXPERIMENT

In order to confirm the efficacy of the hardware extracted
features, we have conducted an evaluation of genre classi-
fication systems based on the features produced and com-
pared its performance to that of classifiers based on the
same features computed in MATLAB and the M2K toolkit
[10]. We conducted two experiments using a collection of
600 tracks drawn from the Magnatune collection of Cre-
ative Commons licensed music [11], divided into six gen-
res. An overview of the collection is given in table 4.

Genre Number of tracks

Ambient 100 tracks
Classical 100 tracks
Electronic 100 tracks
Ethnic 100 tracks
Jazz and Blues 100 tracks
Rock 100 tracks

Total 600 tracks

Table 4. Composition of dataset for genre classification
task.

Pampalk [12] identifies the potential for the over-fitting
of the characteristics of a particular artist to inflate accu-
racy scores in the evaluation of audio content-based genre
classification systems, particularly when evaluating sys-
tems on small collections. Hence, we have conducted both
artist-filtered and conventional cross-validated classifica-
tion experiments based on 5-fold random 80:20 splits and
5-fold stratified cross-validation, respectively.

5.1 Pre-processing of Features

The feature extractors yield a very large number of fea-
ture vectors for each track (based on 23 ms windows with
50% overlap), and in order to effectively and efficiently
classify tracks, the features must be summarised to pro-
duce a smaller number of more informative vectors. One
approach that has been effectively used by many authors
[12–15] is to summarise the distribution of feature frames
over the track. This may be performed by, for example,
estimating the parameters of a single Gaussian distribution
or a mixture of Gaussians. However, [16] and [12] pro-
vide experimental evidence that the performance of tech-
niques based on mixtures of Gaussian distributions are at
best equal to that of single Gaussian based approaches,
making their extreme additional computational cost im-

possible to justify. This lack of additional discriminative
power for the use of mixture distributions is at odds with
research in many other audio indexing problems [16]. Hence,
in our evaluation the feature stream is summarised as a flat-
tened single Gaussian distribution (mean vector and and
flattened upper triangular covariance matrix).

5.2 Classification Algorithms

The classification algorithms tested were drawn from the
M2K toolkit [10] and Weka [17] and include: Fisher’s Cri-
terion Linear Discriminant Analysis (LDA) [18], Classi-
fication and Regression Trees (CART) [19], a first-order
linear Support Vector Machine (based on John C. Platt’s
Sequential Minimal Optimisation, SMO, algorithm [20])
and the J48 decision tree algorithm [17].

5.3 Classification Results

The results of the artist-filtered and unfiltered classification
experiments are given in Tables 5 and 6, respectively. For
each classification method, the highest-performing feature
set is highlighted in bold.

Classifier CART J48 LDA Linear SMO
Feature set

M2K 36.43% 36.79% 35.70% 45.36%
Matlab 34.24% 35.15% 37.16% 46.63%
FPGA 34.24% 34.97% 37.89% 49.00%

Table 5. Artist-filtered classification results.

Classifier CART J48 LDA Linear SMO
Feature set

M2K 41.67% 44.50% 41.17% 59.17%
Matlab 38.83% 40.83% 40.67% 56.67%
FPGA 42.67% 39.83% 41.33% 57.50%

Table 6. Cross-validated classification results.

6. DISCUSSION AND FUTURE WORK

The results above demonstrate that the implementation of
acoustic feature computation in hardware can potentially
reduce computation times by orders of magnitude, accom-
panied, at worst, by a nearly negligible decrease in classifi-
cation accuracy. This initial implementation demonstrates
a potential pathway for migrating MATLAB feature ex-
traction code to the Xilinx Blockset in Simulink and ulti-
mately to hardware. The current implementation, however,
does not allow for easy deployment on FPGA hardware
and additional challenges lie in integrating FPGA-based
feature computation in a full MIR evaluation system.

Our next step is to create a custom platform for full
hardware deployment in a standalone system. In this sys-
tem, based on the Virtex-II Pro development board, the lo-
cal computer will communicate with the FPGA board via
gigabit ethernet. The onboard hardware PowerPC cores
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will ease development for the standalone platform by al-
lowing us to write C code to manage the communication
link with a host PC and the data flow in and out of the
feature extraction logic.

Such a custom FPGA platform would allow algorithms
to be quickly designed and tested in Simulink, and then
compiled into Verilog code to be synthesized into the larger
project. Given a full deployment system, it will be possi-
ble to run the system at much higher clock speeds than
in the Simulink simulation and hardware-in-the-loop co-
simulation. The fully deployed system will ultimately be
a massively parallel system where multiple analysis win-
dows are processed simultaneously.
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ABSTRACT

Searching for similarities in large musical databases has
become a common procedure. Local alignment methods,
based on dynamic programming, explore all the possible
matchings between two musical pieces; and as a result re-
turn the optimal local alignment. Unfortunately these very
powerful methods have a very high computational cost.
The exponential growth of musical databases makes exact
alignment algorithm unrealistic for searching similarities.
Alternatives have been proposed in bioinformatics either
by using heuristics or by developing faster implementation
of exact algorithm. The main motivation of this work is to
exploit the huge computational power of commonly avail-
able graphic cards to develop high performance solutions
for Query-by-Humming applications. In this paper, we
present a fast implementation of a local alignment method,
which allows to retrieve a hummed query in a database of
MIDI files, with good accuracy, in a time up to 160 times
faster than other comparable systems.

1. INTRODUCTION

One of the main goal of music retrieval systems is to find
musical pieces in large databases given a description or
an example. These systems compute a numeric score on
how well a query matches each piece of the database and
rank the music pieces according to this score. Computing
such a degree of resemblance between two pieces of mu-
sic is a difficult problem. Three families of methodologies
have been proposed [1]. Approaches based on index terms
generally considerN -grams techniques [2,3], which count
the number of common distinct terms between the query
and a potential answer. Geometric algorithms [4–6] con-
sider geometric representations of music and compute dis-
tances between objects. Techniques based on string match-
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c© 2009 International Society for Music Information Retrieval.

ing [7] are generally more accurate as they can take into
account errors in the query or in the pieces of music of
the database. This property is of major importance in the
context of music retrieval systems since audio analysis al-
ways induces approximations. Moreover, some music re-
trieval application require specific robustness. Query by
humming (QbH), a music retrieval system where the in-
put query is a user-hummed melody, is a very good ex-
ample. Since the sung query can be transposed, played
faster or slower, without degrading the melody, retrieval
systems have to be both transposition and tempo invariant.
Edit distance algorithms, mainly developed in the context
of DNA sequence recognition, have been adapted in the
context of music similarity [8]. These algorithms, based
on the dynamic programming principle, are generalisations
of a local sequence alignment method proposed by Smith
and Waterman [9] in the early 80’s. Applications relying
on local alignment are numerous and include cover detec-
tion [10], melody retrieval [8], Query-by-Humming [11],
Query-by-Tapping [12], structural analysis, comparison of
chord progressions [13], etc. Local alignment approaches
usually provide very accurate results as shown at the recent
editions of the Music Information Retrieval Evaluation eX-
change (MIREX) [14].

Alignment algorithms are powerful and optimal: they
always find the best alignment. However, they are also
very time consuming. This drawback considerably limits
their use for musical applications. For biological applica-
tions, heuristics such as BLAST and FASTA can be used
to speed-up local sequence alignment while allowing for
multiple regions of local similarity. These heuristics are
valuable, but they may fail to report hits or may report false
positives. In order to get more accurate results faster im-
plementations of exact alignment algorithms are therefore
of primary importance.

Graphics Processing Units (GPUs) have recently received
lots of attention thanks to their extensive computing re-
sources. Not only are the latest generations of GPUs very
powerful graphic engines, they can also be used for Gen-
eral Purpose computation (GPGPU) [15]. With the re-
cent evolutions of GPUs’ architecture into a unified, highly

279



Poster Session 2

parallel programmable processor, and the development of
programming tools and high-level programming languages
such as NVIDIA’s CUDA, GPUs have become a very at-
tractive, low-cost alternative to the traditional micropro-
cessors for computationally demanding applications that
can be expressed as data-parallel computations, i.e. the
same program is executed on many data elements in paral-
lel. This type of parallelism is well suited to the problem
of QbH on very large scale music databases, although it
also brings new challenges regarding memory operations
and computational resource allocations. In this paper, we
present an implementation of a variant of Smith-Waterman
based on local transpositions which illustrates the advan-
tages of recent graphic cards as computation platforms.

In Section 2 we present the general concepts of sequence
alignment and a variant based on local transpositions well
suited to musical applications. Our parallel implementa-
tion on GPU is detailed in Section 3. Several tests and
comparisons are presented in Section 4.

2. ALIGNING TWO MUSIC

In this section, we briefly present the QbH system experi-
mented. Following Mongeau and Sankoff [8], any mono-
phonic piece can be represented by a sequence of notes,
each given as a pair (pitch, length). Several alphabets and
sets of numbers have been proposed to represent pitches
and durations [3]. In the following, we are using the in-
terval relative representation, i.e. the number of semitones
between two successive notes reduced modulo 12. In the
context of QbH applications, this representation presents
the huge advantage to be transposition invariant.

2.1 General Sequence Alignment

Sequence alignment algorithms are widely used to com-
pare strings. They evaluate the similarity between two
strings t and q given on an alphabet A, and of respective
sizes |t| and |q|. Formally an alignment between t and q
is a string z on the alphabet of pairs of letters, more pre-
cisely on (A ∪ {ε})× (A ∪ {ε}), whose projection on the
first component is t and the projection on the second com-
ponent is q. The letter ε does not belong to the alphabet
A. It is often substituted by the symbol “-” and is called a
gap. An aligned pair of z of type (a, b) with a, b ∈ A de-
notes the substitution of the letter a by the letter b. A pair
of type (a, -) denotes a deletion of the letter a. Finally, an
aligned pair of type (-, b) denotes the insertion of the letter
b. A score σ(ti, qj) is assigned to each pair (ti, qj) of the
alignment. The score S of an alignment is then defined as
the sum of the costs of its aligned pairs. Computational
approaches to sequence alignment generally fall into two
categories: global alignments and local alignments. Cal-
culating a global alignment is a form of global optimiza-
tion that forces the alignment to span the entire length of
all query sequences. By contrast, local alignments identify
regions of similarity within long sequences that are often
widely divergent overall. In Query-by-Humming applica-
tions, since the query is generally much shorter than the

reference, one favours local alignment methods.
Both alignment techniques are based on dynamic pro-

gramming [9,16,17]. Given two strings t and q, alignment
algorithms compute a (|t| + 1) × (|q| + 1) matrix T such
that:

T [i, j] = S(t[0 . . . i], q[0 . . . j]),

where S(t[0 . . . i], q[0 . . . j]) is the optimal score between
the subsequences of t and q ending respectively in position
0 ≤ i ≤ |t| and 0 ≤ j ≤ |q|. Dynamic programming al-
gorithms can compute the optimal alignment (either global
or local) and the corresponding score in time O(|t| × |q|)
and memory O(min {|t|, |q|}) (see [9] for details).

2.2 Local Transposition

Queries produced by human beings can, not only be totally
transposed, but can also be composed of several parts that
are independently transposed. For example, if the original
musical piece is composed of different harmonic voices,
the user may sing different successive parts with differ-
ent keys. In the same way, pieces of popular music are
sometimes composed of different choruses sung based on
different tonic. A sung query may imitate these character-
istics. Moreover, errors in singing or humming may occur,
especially for users that are not trained to perfectly control
their voice like professional singers. From a musical point
of view, sudden tonal changes are disturbing. However, if
these changes last during a long period, they may not dis-
turb listeners. Figure 1 shows an example of query having
two local transpositions.

Figure 1. Example of a monophonic query not transposed
(top) and a monophonic query with two local transposi-
tions (bottom).

The two pieces in Figure 1 sound very similar, although
the two resulting sequences are very different. This prob-
lem has been addressed in [18] by defining a local trans-
position algorithm. It requires to compute multiple score
matrices simultaneously, one for each possible transposi-
tion value. The time complexity isO(∆×|q|× |t|), where
∆ is the number of local transposition allowed during the
comparison (for practical applications, ∆ is set up to 12).
Our experiments, presented in section 4, show that the lo-
cal transposition algorithm provides a much better result.

2.3 Pitch/Duration Scoring Scheme

The quality of an alignment-based algorithm heavily de-
pends on the scoring function. Results may differ signifi-
cantly whether one uses a basic scoring scheme or a more
sophisticated scoring function [7]. For our experiments,
we use the scoring schemes introduced in [8] and [7], where
the score between two notes depends on the pitch, the du-
ration and the consonance of both notes. For example,
the fifth (7 semitones) and the third major or minor (3 or
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4 semitones) are the most consonant intervals in Western
music [19]. The score function between two notes is then
defined as a linear combination of a function σp on pitches
(its values are coded into a matrix) and a function σd on
durations as:

σ(a, b) = α · σp(a, b) + β · σd(a, b).

The cost associated to a gap only depends on the note du-
ration. Finally a penalty (a negative score) is also applied
to each local transposition.

3. PARALLEL IMPLEMENTATION

3.1 GPU Architecture

Both AMD and NVIDIA build architectures with unified,
massively parallel programmable units, which allow pro-
grammers to target that programmable unit directly instead
of dividing work across multiple hardware units. More
precisely, a GPU contains many streaming multiproces-
sors (MPs) each containing several elements including sev-
eral cores, also called streaming processors (SPs), and var-
ious types of on-chip shared memories and registers. The
MPs also share some constant memory areas with very
fast access and a global uncached large memory with rel-
atively low throughput and long latency. For example, the
NVIDIA GeForce 9800 GX2 used for our experiments (see
Section 4) is a dual GPU engine with 256 cores (128 per
GPU) running at 1.5 GHz. These cores are regrouped into
2 × 16 MPs which share a global memory of 1GB with
a 512-bit interface width providing a throughput of 128
GB/sec (64 GB/sec per GPU).

The MPs creates, manages, and executes concurrent threads
in hardware with zero scheduling overhead. To manage
hundred of threads running several different programs, the
multiprocessor employs an architecture called SIMT (single-
instruction multiple-thread), which resembles SIMD (single-
instruction multiple-data) vector organizations, i.e., single
instruction controls multiple processing elements. Unlike
SIMD vector machines, SIMT enables programmers to write
thread-level parallel code for independent, scalar threads,
as well as data-parallel code for coordinated threads.

3.2 GPU Computing with CUDA

Our implementation uses CUDA, a general purpose par-
allel computing framework developed and distributed by
NVIDIA for use with their recent GPUs 1 . CUDA can be
seen as an extension of C that allows developers to de-
fine C functions, called kernels to be executed N times
in parallel by N different CUDA threads. CUDA threads
may access data from multiple memory spaces during their
execution. CUDA’s programming model assumes that the
CUDA threads execute on a separate device, whereas the
rest of the program runs on a CPU. In other words, the

1 CUDA was introduced in November 2006 along with the G80 se-
ries. CUDA can be downloaded for free from http://www.nvidia.
com/object/cuda_home.html. A list of CUDA-enabled prod-
uct is available at http://www.nvidia.com/object/cuda_
learn_products.html.

GPU operates as a coprocessor to the host running the C
program. Both the host and device maintain their own
memory areas, allowing for concurrent programming be-
tween the CPU and the GPU(s). CUDA kernels must be
compiled into binary code using nvcc, a C compiler for
CUDA. Note that nvcc supports C++ programming for
host functions but kernels must be written in C, possibly
with templates. nvcc also supports device emulation.

3.3 CUDA implementation of QbH

The process of evaluating how well each piece of music in
a database match a query (sung or hummed in the case of
QbH), and rank the music pieces according to this score
can be parallelized at different levels. As explained ear-
lier, our implementation uses a variant of Smith-Waterman.
Although it is possible to do so [20], our choice was not
to parallelize the implementation of Smith-Waterman it-
self, as this approach could only provide significant im-
provements for extremely large sequences. In contrast, our
CUDA implementation optimizes the arithmetic intensity
(the ratio of arithmetic operations to memory operations)
by computing in parallel all the scores of a query with ev-
ery piece of music in the database. If the database contains
N pieces of music, our program virtually launches N ker-
nels executing the Smith-Waterman algorithm in parallel.
The main challenges are therefore to optimize the resource
allocations and the memory operations.

After the query has been converted from its original
format (typically a wave audio file), we store it in a spe-
cial memory area called the texture memory, which allows
for very fast read/write operations. The texture memory is
shared among all threads (Fig. 2). The database usually
contain too many pieces of music to be stored in any of the
cached, fast memories (texture, constant, shared memory).
Therefore, all the pieces of music are stored in the global
memory. On a GPU, the global memory is not cached, so
it is extremely important to follow the right access pattern
to get maximum memory bandwidth. Throughput of mem-
ory operations is 8 operations per clock cycle, plus 400 to
600 clock cycles of memory latency. Under some size and
alignment conditions, the device is capable of reading data
from global memory in a single load instruction. More-
over, the memory bandwidth can be used most efficiently
when the simultaneous memory access by all the active
threads can be coalesced into a single memory transaction.
(For more details, see [21].)

In order to satisfy all these constraints, the pieces of
music of the database are store in an array of float2, a
CUDA structure containing two 32-bit floats, which stores
the pitch and duration of each note. Although the size and
alignment properties are fulfilled by this data type, storing
the pieces of music sequentially, one after the other, would
be very inefficient since simultaneous reading by all the
threads in a single transaction would be impossible. In-
stead, if the database contain N pieces of music, we orga-
nize the data in memory as a one dimensional array, such
that its firstN entries correspond to the first note (pitch, du-
ration) of each piece; then, the next N entries correspond
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to the second note of each piece, etc.
Each thread performs its computations on its own ma-

trix, more exactly on its ∆ = 12 transposition matrices. In
order to minimize the amount of required memory, we only
store the current row of each matrix. Moreover, to optimize
memory alignment, allocation is based on the query’s fixed
size rather than the pieces of music’s variable sizes. Fi-
nally, in order to allow simultaneous read/write operations
by the active threads, the matrices are not stored at con-
secutive addresses but rather using the same strategy as the
database. Fig. 2 describes the device architectures.

Figure 2. nVidia GPUs architecture. Each multi-processor
executes both the conversion of queries from audio files to
a vector of notes (stored in the texture memory) and the
comparison between the query and each reference (stored
in the device memory). Each processor store its interme-
diate Smith-Waterman matrices (only one row) in its own
shared memory space. Constants costs and intermediate
values are respectively stored in constant and shared mem-
ories.

4. TESTS AND RESULTS

4.1 Benchmark

Our experiments are based on the query data corpus pro-
posed for the QbH tasks at the MIREX 2007 and 2008
and three different noise databases. Roger Jang’s corpus
is composed of 2797 queries, along with 48 ground-truth
MIDI files 2 , with the particularity that all queries start at
the beginning of the references. The first database (called
DB1) consists of the 48 ground-truth MIDIs and a sub-

2 http://www.cs.nthu.edu.tw/˜jang

set of 2000 MIDI noise files from the Essen Collection 3 .
The whole Essen Collection, made of 5982 files together
with the 48 ground-truth MIDIs files, is called DB2. Fi-
nally, since the ground-truth MIDIs are rather short while
Essen collection mainly consists of long data files, we also
consider a third database, called DB3, proposed during the
MIREX 2005, which is a subset of the RISM A/II (Interna-
tional inventory of musical sources) collection, composed
of 17433 short excerpt of real world compositions.

We have tested our implementation on three different
platforms. Their characteristics are given in Table 1. For

OS CPU GPU
W1 NVidia Tesla

Worksta-
tion running
Linux, CUDA
v2.1

3GHz Intel
Core 2 Duo

NVidia
GeForce
9800 GX2, 512
MB memory

W2 Mac Pro
running Mac
OS X 10.5,
CUDA v2.2

Two 2.8GHz
Intel Xeon
Quad Core

NVidia
GeForce
8800 GT, 512
MB Memory

L1 MacBook Pro
running Mac
OS X 10.5,
CUDA v2.2

2.53 GHz
Intel Core 2
Duo

NVidia
GeForce
9400 M, shared
memory with
CPU

Table 1. Characteristics of our three platforms

each algorithm we have measured the time on both the
CPU alone and the CPU together with the GPU used as
a parallel coprocessor.

Regarding the algorithms, we have implemented the orig-
inal Smith-Waterman algorithm (SW) and our extension
based on local transposition alignment (LT). Since the queries
are known to be at the beginning of the references, we have
implemented variants of the above algorithms that only
compare the query with the beginning of each MIDI files
(in Table 2 we only report timings for size of the query plus
10 notes). These variants are respectively called SW10 and
LT10.

We evaluate the quality of our music retrieval system
using two measures. The Mean Reciprocal Rank (MRR),
i.e. the average of the reciprocal ranks of the first correct
answer, computed for a sample of N queries as

MRR =
1
N

N∑
i=1

1
ri
,

where ri is the rank of the first correct answer for the ith
query. And the top-X ratio which reports the proportion of
queries for which ri ≤ X .

4.2 Smith-Waterman vs Local Transposition
Alignment

We first evaluate the quality, given in terms of MRR and
top-5 ratio, of SW and LT on the three databases. For

3 http://www.esac-data.org/
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DB1, SW reaches a MRR of 0.274 and a top-5 ratio of
30.3%, while LT reaches a MRR of 0.684 and a top-5 ratio
of 75.4%. The MRR increases when the size of the query is
taken into account during the comparison: SW10 reaches
a MRR of 0.295 and a top-5 ratio of 32.3%, while LT10
reaches a MRR of 0.732 and a top-5 ratio of 79.4%. We ob-
serve the same behaviour for DB2 and DB3. Fig. 3 shows
that the MRRs obtained for databases of different sizes re-
mains roughly the same. The local transposition alignment
method provides better results than Smith-Waterman.

For a suggestive comparison, the method submitted by
Wu and Li, which performed best at MIREX 2008 reaches
a MRR of 0.9 on a well choosen subset of 2000 MIDI files
from the Essen collection. However, since we could not
find the original database used for the MIREX 2008 com-
petition, our DB1 consists of 2000 randomly chosen MIDI
files from the Essen collection. It therefore contains several
copies of the same noise files, which automatically impacts
the quality of our results.

0 5000 10000 15000 20000
Database size

0.0

0.2

0.4

0.6

0.8

1.0

M
R

R

Smith Waterman 10
Smith Waterman
Local Transposition 10
Local Transposition

Figure 3. MRRs obtained for SW, SW10, LT, LT10 on our
three databases

4.3 CPU vs GPU

Although LT provides very good results in terms of qual-
ity, it is very time consuming. On our fastest CPU (W2),
a Mac Pro equipped with two 2.8 GHz Intel Xeon Quad
Core processors, the analysis on DB1 takes more than 326
minutes with LT10 (∼ 7 sec. per query) and more than 595
minutes with LT (∼ 13 sec. per query). This computation
time even reaches 1282 minutes for LT10 (∼ 27.5 sec. per
query) on the largest database DB3, which contains more
than 17000 MIDI files.

As shown in Table 2, our CUDA implementations pro-
vide impressive speed-ups. The local transposition algo-
rithms (LT and LT10) which gives the highest MRRs and
top-X ratios, are up to 162 times faster than their CPU
counterpart. This is achieved for DB3 on our Mac Pro con-
figuration W2; the analysis of more than 17000 MIDI files
using LT10 was completed in 473 seconds (∼ 0.16 s per
query). Note also that the local transposition algorithm is

perfectly adapted to parallel implementations as it is only
slightly slower than SW.

It is important to remark that our CUDA implementa-
tion leads to significant improvements even on our lightest
configuration (L1), a laptop not designed to perform heavy
graphic computations and which embeds a cheap, on-chip
graphic card (NVidia 9400 M). The analysis of DB1 only
takes 470 seconds, i.e. ∼ 0.16 s per query. During the
MIREX 2008, the fastest implementation for the analy-
sis of a database similar to DB1 was performed in 1699
seconds on a AMD Athlon XP 2600+ running at 1.9GHz.
Our fastest implementation, running on W1, completed the
analysis of the 2797 queries in only 301 seconds, that is al-
most 6 times faster.

Config. SW10 SW LT10 LT

DB1
L1 7:33 7:33 7:50 40:54
W1 4:12 5:05 5:01 20:16
W2 6:00 6:00 6:01 14:42

DB2
L1 7:53 7:51 15:10 79:45
W1 6:55 6:54 6:10 25:46
W2 6:18 6:18 6:16 20:40

DB3
L1 9:20 9:19 41:31 44:48
W1 5:15 6:05 10:09 25:27
W2 7:25 7:27 7:53 21:15

Table 2. Timings of the different algorithms on various
GPUs and databases in mm:ss

5. CONCLUSIONS

Local transposition alignment algorithms are very power-
ful. Using QbH as an experimental application, our variant
of Smith-Waterman lead to very good results. We believe
that this type of algorithm would give even better results
for other music retrieval systems, such as cover detection,
where the query is significantly larger and contains fewer
errors than a sung or hummed query. Our implementation
takes advantage of the immense computing resources of-
fered by the most recent graphic cards. These low-cost de-
vices regroup hundreds of cores that can operate in parallel
and sufficient memory to store large musical databases. A
great care must be taken when programming memory op-
erations as a bad allocation strategy can have a significant
impact on the computation time. At this time, we have not
yet optimized the pre-processing phase of the system. In
particular, the analysis and conversion of the queries (wave
audio files) is running exclusively on the CPU and takes
between 75-90% of the overall computation time. Our
next task will be to implement this stage on GPU using
the CUDA CUFFT library. We anticipate significant im-
provements in terms of speed.

6. ACKNOWLEGMENT

This work has been partially sponsored by the French ANR
SIMBALS (JC07-188930) and ANR Brasero (ANR-06-BLAN-
0045) projects.

283



Poster Session 2

7. REFERENCES

[1] N. Orio. Music retrieval: A tutorial and review. Foun-
dations and Trends in Information Retrieval, 1(1):1–
90, 2006.
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ABSTRACT

The complexity of existing tools for mastering audio can
be daunting. Moreover, many people think about sound in
individualistic terms (such as “boomy”) that may not have
clear mappings onto the controls of existing audio tools.
We propose learning to map subjective audio descriptors,
such as “boomy”, onto measures of signal properties in or-
der to build a simple controller that manipulates an audio
reverberator in terms of a chosen descriptor. For example,
“make the sound less boomy”. In the learning process, a
user is presented with a series of sounds altered in differ-
ent ways by a reverberator and asked to rate how well each
sound represents the audio concept. The system correlates
these ratings with reverberator parameters to build a con-
troller that manipulates reverberation in the user’s terms.
In this paper, we focus on developing the mapping be-
tween reverberator controls, measures of qualities of re-
verberation and user ratings. Results on 22 subjects show
the system learns quickly (under 3 minutes of training per
concept), predicts users responses well (mean correlation
coefficient of system predictiveness 0.75) and meets users’
expectations (average human rating of 7.4 out of 10).

1. INTRODUCTION

In recent decades, many audio production tools have been
introduced to enhance and facilitate music creation. Of-
ten, these tools are complex and conceptualized in terms
(“high cut”,“density”) that are unfamiliar to many users.
This makes learning these tools daunting, especially for
inexperienced users.

One solution would be to redesign the standard inter-
faces to manipulate audio in terms of commonly used de-
scriptors (e.g. “warm” or “enveloping”). This can be prob-
lematic, since the meanings of many words used to de-
scribe sound differ from person to person or between dif-
ferent groups [1]. For example, the audio signal proper-
ties associated with “warm” and “clear” have been shown
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bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

to vary between English speakers from the UK and the
US [2]. Since it may not be possible to create general con-
trollers for terms whose meaning varies between groups,
we propose mapping descriptive terms onto the controls
for audio tools on a case-by-case basis.

While there has been much work on adaptive user inter-
faces [3], there has been relatively little on personalization
of audio tools. A previous study showed success in per-
sonalizing an equalization tool [4]. Here, we propose to
simplify and personalize the interface to one of the most
widely applied classes of audio effect: Reverberation.

Reverberation is created by the reflections of a sound
in an enclosed space causing a large number of echoes to
build up and then slowly decay as the sound is absorbed by
the walls and air [5]. The reflections modify the perception
of the sound, its loudness, timbre and spatial characteris-
tics [6]. Reverberation can be simulated using multiple
feedback delay circuits to create a large, decaying series
of “echoes” [7], and many reverberation tools have been
built. Fig. 1 shows the interface of a typical reverberation
tool. Note the 7 buttons and 14 sliders that control parame-
ters (such as “density”) whose meaning in this context are
unfamiliar to the average person and to many musicians.

Figure 1. Logic Audio’s Platinumverb complex interface.

We propose a system that learns an audio concept a user
has in mind (“boomy”, for example) and builds a simple
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reverberation controller to manipulate sound in terms of
that descriptor. By automatically adapting the interface to
an individual user’s conceptual space, we hope to bypass
the creative bottleneck caused by complex interfaces and
individual differences in the meaning of descriptive terms.

The paper is organized as follows. The method used to
map descriptive terms onto audio signal characteristics is
described in Section 2. Section 3 presents the reverbera-
tion control used to perceptually alter sound. Experimen-
tal evaluation of the approach is described in Section 4.
Finally, conclusions are given in Section 5.

2. LEARNING DESCRIPTIVE TERMS

We now give an overview of the process by which the sys-
tem learns to build a controller that controls the reverbera-
tion of a signal in terms of a user-defined descriptive word.

2.1 The Training Process

In the training process, the user is presented with the Per-
ceptual Learner interface shown in Fig. 2. The user selects
a descriptive word (such as “boomy” or “church-like”) to
teach the system. The user is then presented with a series of
audio examples generated from an original audio file and
processed by the reverberator using a variety of reverbera-
tion settings. The reverberation settings used are chosen to
explore the space of likely parameter settings for a digital
reverberator, as described in Section 4.

The user moves a slider to rate each audio example on
how well it represents the audio descriptor. Ratings range
from 1 (captures the concept perfectly) to -1 (does not cap-
ture it at all). Training typically takes about 30 ratings
(around two minutes for a five-second file). Fig. 3 illus-
trates the process.

Figure 2. Interface of the Perceptual Learner.

2.2 Mapping Signal Statistics to User Ratings

The system collects five impulse response measures (de-
scribed in Section 3.2) for the reverberation applied to each
example rated by the user. Once user ratings are collected,
the system relates user ratings to each of the five measures
using linear regression. This lets us build a model that
predicts the expected user rating, given a reverberation im-
pulse response signal characterized by these measures.

This mapping is used to build a controller that lets the
user easily manipulate the audio in terms of the descriptor

Figure 3. The training process: (1) audio examples are
generated from an original sound using a reverberator set to
a variety of parameter settings (5 control parameters shown
by 5 different bars); (2) the user listen to the audio exam-
ples and uses a slider to rate how well each one fits the
audio concept she/he has in mind.

(such as “boomy”) using a simple slider as shown in Fig.
4. This slider affects all five reverberation measures in par-
allel, although not necessarily in the same direction. For
example, “boomy” may be positively correlated with cen-
tral time and negatively correlated with spectral centroid.

Figure 4. Interface of the Perceptual Controller.

3. THE REVERBERATION CONTROL

To build the new interface, we must map human feedback
to reverberation controls. We do not, however, map user
feedback directly to parameters for a specific reverberator,
but onto measures of the reverberation (Section 3.2). This
lets us use mappings learned using one reverberator to con-
trol another one, chosen later. The only requirement is that
both reverberators have known mappings between control
parameters and reverberation measures.

3.1 The Digital Reverberator

The approach we describe, while not tied to any particular
reverberation approach, works best if the reverberator can
generate a wide variety of impulse response functions on
the fly. Thus, rather than use a convolution reverberator
that selects from a fixed library of impulse responses, we
have developed a digital stereo reverberation unit inspired
by Moorer’s work [8]. The reverberator, shown in Fig. 5,
is easy to manipulate through the control parameters. The
reverberation measures described in Section 3.2 can be de-
rived easily as functions of those parameters. This is im-
portant for learning a mapping between human feedback
and reverberator settings.
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Figure 5. The digital stereo reverberation unit.

The reverberator uses six comb filters in parallel to sim-
ulate the complex modal response of a room by adding
echoes together. Each comb filter is characterized by a
delay factor dk and a gain factor gk (k=1..6). The delay
values are distributed linearly over a ratio of 1:1.5 with a
range between 10 and 100 msec, so that the delay of the
first comb filter d1, defined as the longest one, determines
the other delays. The gain factor of the first comb filter g1

has the smallest gain and has a range of values between 0
and 1. Although a comb filter gives a non-flat frequency re-
sponse, a sufficient number of comb filters in parallel with
equal values of reverberation time helps to reduce the spec-
tral coloration.

An all-pass filter is added in series to increase the echo
density produced by the comb filters without introducing
spectral coloration, and doubled into two channels to sim-
ulate a more “natural sounding” reverberation in stereo.
The all-pass filter is characterized by a delay factor da of
6 msec and a gain factor ga fixed to 1√

2
. A small differ-

ence m is introduced between the delays to insure a dif-
ference between the channels, therefore the delays become
d7 = da + m

2 for the left channel and d8 = da − m
2 for

the right channel. The range of values for m = d7 − d8 is
then defined between 0 and 12 msec. Note that to prevent
exactly overlapping echoes, the delay values for the comb
and the all-pass filters are set to the closest inferior prime
number of samples.

To simulate air and walls absorption, a first-order low-
pass filter of gain gc defined from its cut-off frequency fc
is added at each channel [9]. fc ranges between 0 and half
of the frequency sampling fs. Finally, a gain parameter
G, whose range of values is between 0 and 1, controls the
wet/dry effect. In summary, a total of only five independent
parameters are needed to control the reverberator: d1, g1,
m, fc and G. The other parameters can be deduced from
them according to the relations above.

3.2 The Reverberation Measures

We now define five measures commonly used to character-
ize reverberation and describe formulae to estimate values
for these measures in terms of the parameters for our re-
verberator. For details on how we derive these formulae,
we refer the reader to [10].

• Reverberation Time (T60) is defined as the time in sec re-

quired for the reflections of a direct sound to decay by 60
dB below the level of the direct sound [5]. Based on the re-
verberation time of the comb filter and the other gains, we
estimated the reverberation time of the whole reverberation
unit as follows in Eq. 1.

T60 = max
k=1..6

(
dk log

(
10−3

ga (1− gc) G

)
/ log gk

)
(1)

• Echo Density (Dt) is defined as the number of echoes per
second at a time t. In practice, we computed the average
echoes per second between time 0 and time t. We estimated
the echo density of the whole reverberation unit at time t =
100 msec, as a combination of echo densities of the digital
filters, as follows in Eq. 2.

D =
t

da

6∑
k=1

1
dk

(2)

• Clarity (Ct) describes the ratio in dB of the energies in
the impulse response p before and after a given time t. It
provides indication of how “clear” the sound is [11]. The
definition of Ct in discrete time is given by Eq. 3.

Ct = 10 log10

(
t∑

n=0

p2[n]/
∞∑

n=t

p2[n]

)
(3)

We estimated the clarity of the whole reverberation unit at
t = 0, the arrival time of the direct sound, as shown in Eq.
4, assuming that the total energy of the reverberator is a
linear combination of the energies of its filters.

C = −10 log10

(
G2 1− gc

1 + gc

6∑
k=1

gk
2

1− gk
2

)
(4)

• Central Time (TC) is the “center of gravity” of the energy
in the impulse response p, [11], defined in discrete time by
Eq. 5.

TC =
∞∑

n=0

np2[n]/
∞∑

n=0

p2[n] (5)

Based on the same assumption as for clarity, we estimated
the central time of the whole reverberation unit as the com-
bination of central times of the filters, as follows in Eq. 6.

TC =
6∑

k=1

dkgk
2

(1− gk
2)2

/
6∑

k=1

gk
2

1− gk
2

+ da (6)

• Spectral Centroid (SC) is the “center of gravity” of the en-
ergy in the magnitude spectrum P of the impulse response
p, defined in discrete time by Eq. 7, where fs is the sam-
pling frequency.

SC =
fs/2∑
n=0

nP2[n]/
fs/2∑
n=0

P2[n] (7)

We estimated the spectral centroid of the whole reverber-
ation unit from the characteristics of its low-pass filter, as
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follows in Eq. 8.

SC =

fs/2∑
n=0

n

1 + gc
2 − 2 gc cos(2πn)

fs/2∑
n=0

1
1 + gc

2 − 2 gc cos(2πn)

(8)

Based on the relations between the parameters defined
in section 3.1, the measures can be redefined as five func-
tions of five independent parameters: T60(d1, g1, fc,G),
D(d1,m), C(g1, fc,G), TC(d1, g1,m) and SC(fc).

Note that these functions are not entirely invertible, es-
pecially for d1 and g1. When necessary, we estimate d1 and
g1 from a reverberation measure by using tables of values.

4. EVALUATION

We have implemented the system in Matlab on a PC with
an Intel Core2 Quad CPU of 2.66GHz and 6GB of RAM.
The system was evaluated by 22 participants, 14 males and
8 females, between the ages of 18 and 29. All reported
normal hearing and were native English speakers. 10 had a
little or no musical background and 12 had a strong musi-
cal background i.e. practicing one or several instruments,
more than 1 hour per week and for more than 10 years, or
more than 6 hours per week and for more than 6 years.

All audio examples created were based on a 5.5 sec ane-
choic recording of an unaccompanied singing male sam-
pled at 44,100 Hz. Prior to the study, a database of 1024
impulse response functions was generated using the rever-
berator described in Section 3.1. These impulse response
functions were selected to evenly cover a range of the five
reverberation measures (Section 3.2). The Reverberation
Time ranged from 0.5 to 8 sec, the Echo Density from 500
to 10,000 echoes/sec, the Clarity from -20 to 10 dB, the
Central Time from 0.01 to 0.5 sec, and the Spectral Cen-
troid from 200 to 11,025 Hz (no low-pass filtering). These
ranges were chosen by audio inspection so that they evenly
cover a range of “good” values in the space of reverbera-
tion measures leading to natural sounding reverberation.

4.1 Experiment

Study participants were seated in a quiet room with a com-
puter that controlled the experiment and recorded the re-
sponses. The stimuli were presented binaurally over head-
phones. Participants were allowed to adjust the sound level
prior to starting the study. Prior to beginning the study, par-
ticipants were quickly trained on the task. Each participant
participated in a single one-hour session.

Each participant was asked to rate the same five de-
scriptive words: bright, clear (two common audio descrip-
tors), boomy (often related to reverberation), church-like
and bathroom-like (related to models of space, respectively
a church and a bathroom). These words were presented to
each participant in a random order. For each descriptive
word, the participant was asked to perform three tasks.

First, the participant was asked to rate a series of 60 au-
dio examples. For each example the participant heard the

audio modified by an impulse response function. The par-
ticipant moved an on-screen slider (Fig. 2) to indicate the
extent to which each sound exemplified the current word
descriptor. Values ranged from 1 (captures the concept per-
fectly) to -1 (does not capture it at all). These 60 audio
examples contained 35 examples chosen randomly from
our database of 1024 examples. We then duplicated 25
of the 35 and added the duplicates to the set in random
order, for a total of 60 examples. The 25-example dupli-
cate set was used to measure consistency of user responses,
while the 35-example training set was for system training.
A previous study showed that around 25 examples are suf-
ficient to model a user’s preferences for an equalization
controller [4], which is a closely related task.

Once the first task was completed, the system created a
model of the effect of each reverberation measure on the
user ratings, as described in Section 2.2. The data set used
was the user ratings of the 35 non-duplicate examples in
the first task. The new model was used to select a new set
of audio examples. This set contained 11 audio examples
chosen to evenly cover the range of user ratings from -1 to
1 (as predicted by the learned model) and 14 audio exam-
ples selected at random, for a total of 25. The participant
was asked to rate the 25 new audio examples as she/he did
in the first part.

Finally, the system used the learned model to build a
slider (Fig. 4) that controls reverberation in terms of the
learned descriptor. The controller mapped 11 audio exam-
ples chosen to evenly cover the range of user ratings from
-1 to 1 onto slider positions. As the slider is moved to a new
location, a different variant of the sound is played. This let
the participant move the slider to change the degree of the
effect. The user was asked to play with the controller for
as long as neccesary to get a feel for how well it worked.
The user was then asked to rate how well it manipulated
the sound in terms of the learned descriptive word. Human
ratings ranged from 0 (really bad) to 10 (really good).

4.2 Results

The average training time, over all the descriptive words
and the participants, was 4 min 2 sec. Since only 35 of
the 60 user-ratings in the first task were actually used for
training the system, a model for a descriptive word was
learned in only 2 min 20 sec of training (the mean time for
a user to rate for 35 examples).

User consistency on a descriptive word was measured
by computing the within-user correlation coefficient on rat-
ing the 25 pairs of duplicate examples in the first task. Av-
erage user consistency over all words and users was 0.65.

System predictiveness (how well the system learned) for
a descriptive word was measured by computing the corre-
lation coefficient between the user’s observed ratings and
the system’s prediction of the user ratings on the second set
of user-rated examples. System predictiveness was 0.75,
averaged over all words and users.

System predictiveness was measured on a different data
set than user consistency, so the results are not directly
comparable. That said, the consistency of user ratings on
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matched pairs of stimuli gives an indication that one might
not be able to expect significantly better predictive power
than that shown by our approach.

Average human rating over all words and users given
to the final controller was 7.4 out of 10. This means that
overall, the participants felt the system succeeded in pro-
viding a controller that lets the user manipulate the sound
in terms of the descriptive words.

Mean correlation coefficients between user ratings and
each of the five control measures (Section 3.2) used to gen-
erate the audio examples are shown in Tables 1 and 2. Ta-
ble 1 shows values for the 10 participants with little or no
musical background. Table 2 shows these values for the 12
participants with strong musical background.

bright clear boomy bath’ church
training time 4’07” 3’34” 4’35” 4’29” 4’57”
Reverb. Time -0.02 0.19 -0.07 0.02 0.08
Echo Density -0.01 -0.10 0.13 0.06 0.03

Clarity 0.39 0.33 0.08 0.06 0.16
Central Time -0.45 -0.51 0.28 -0.22 0.52

Spec. Centroid 0.36 0.38 -0.23 0.08 0.02

Table 1. Average training time and correlation coefficients
of the measures for the five descriptive words over the par-
ticipants with little or no musical background.

bright clear boomy bath’ church
training time 3’14” 3’42” 4’17” 4’05” 3’36”
Reverb. Time 0.03 0.21 -0.04 -0.04 0.06
Echo Density -0.02 -0.06 0.06 0.01 0.02

Clarity 0.29 0.44 0.14 -0.08 -0.03
Central Time -0.17 -0.57 0.46 0.06 0.70

Spec. Centroid 0.42 0.29 -0.21 0.13 -0.03

Table 2. Average training time and correlation coefficients
of the measures for the five descriptive words over the par-
ticipants with strong musical background.

As we can see, participants with strong musical back-
ground completed the training more quickly. Both groups
showed similar results for the user consistency, the sys-
tem predictiveness and the human ratings. However there
are relevant differences between these two groups in which
signal measures most affect ratings of examples.

For both groups, bright and clear show overall a cor-
relation with the Clarity and the Spectral Centroid, and a
negative correlation with the Central Time. Table 1 indi-
cates that participants with little or no musical background
may have confounded bright and clear, while they seem
distinct to people with strong musical background. In-
deed, we should expect bright to be more correlated with
the Spectral Centroid and clear with the Clarity, as shown
in Table 2 by participants with strong musical background.

That said, user consistency, system predictiveness and
human ratings are reasonably high on these words for both
groups, even though the definitions of these words clearly
vary between groups. These results indicate people with

little musical experience can still define these terms with
enough consistency for the system to model their prefer-
ences and provide a useful controller.

Boomy shows a significant correlation with the Central
Time (in bold) and a negative correlation with the Spec-
tral Centroid. Participants with strong musical background
showed higher correlation with the Central Time. Further-
more, the distribution of the correlation coefficients of the
measures for participants with strong musical background
has a smaller standard deviation, which means that they
showed a common understanding of the concept, while the
standard deviation for participants with a little or no mu-
sical background is higher, especially for the Central Time
and the Spectral Centroid, which means that the definition
of the concept varied more greatly between them.

Table 3 highlights how well the system performs on a
descriptive word where there was substantial disagreement
between individuals. The table compares the correlation
coefficients of the measures, the system predictiveness cor-
relation coefficients, and the human ratings between four
participants with little or no musical background for the
descriptive word “boomy”.

boomy user 11 user 12 user 13 user 22
Reverb. Time 0.01 -0.04 -0.10 -0.18
Echo Density 0.26 -0.08 0.24 0.01

Clarity -0.43 0.10 0.14 0.36
Central Time -0.33 -0.17 0.69 -0.32

Spec. Centroid -0.74 -0.58 -0.15 0.17
predictiveness 0.90 0.77 0.86 0.79
human ratings 7.0 10.0 8.0 8.0

Table 3. Comparison of the results between four partici-
pants with little or no musical background for boomy (the
highest correlation coefficient is in bold and the highest
negative correlation coefficient is in italic, for each user).

We can see that the correlation coefficients of the audio
measures are very different from one participant to another,
and yet, the system predictiveness and the human ratings
are high. Again, this indicates our approach worked well
to personalize a controller for each of these individuals,
despite the variation in their personal definition of boomy.

Participants showed great variation in their responses
to bathroom-like and distributions of the correlation coef-
ficients between acoustic measures and user ratings show
high standard deviation, especially for the Clarity, the Cen-
tral Time and the Spectral Centroid. Table 4 compares
the results for bathroom-like between four different partic-
ipants: users 03 and 08 have a strong musical background,
and users 12 and 13 have little or no musical background.
Correlation coefficients of the measures are very different
between participants, yet the system predictiveness and the
human ratings are high.

Church-like shows overall a high correlation with the
Central Time (in bold), especially for participants with a
strong musical background. The distribution of the correla-
tion coefficients of the measures show also significant stan-
dard deviation, especially for participants with little or no
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bathroom-like user 03 user 08 user 12 user 13
Reverb. Time -0.14 0.13 0.05 0.07
Echo Density 0.10 -0.09 0.21 0.17

Clarity -0.02 0.12 0.25 -0.63
Central Time 0.78 -0.44 0.01 0.74

Spec. Centroid -0.27 0.47 0.60 -0.09
predictiveness 0.83 0.77 0.81 0.93
human ratings 7.0 8.0 10.0 7.0

Table 4. Comparison of the correlation coefficients of the
measures between four different users for bathroom-like.

musical background. The same conclusions can be drawn
here: participants have their own way of understanding the
concept, and overall the system succeeds in grasping it to
build a controller which meets participants’ expectations.

Overall, clear shows the best mean results across all
users: user consistency, 0.73, system predictiveness, 0.85,
and human rating, 8.5. Overall, bathroom-like shows the
worst results: user consistency, 0.62, system predictive-
ness, 0.62, and human rating, 6.8. Fig. 6 shows the dis-
tributions over all the participants of the user consistency
and system predictiveness correlation coefficients, and the
human ratings for clear and bathroom-like.

Figure 6. Left boxplot: distributions of user consistency
and system predictiveness correlation coefficients for the
best performing word: clear (left) and the worst perform-
ing word: bathroom (right) ; right boxplot: distributions of
human ratings for clear (left) and bathroom (right).

5. CONCLUSION

A method for mapping subjective terms onto perceptual
audio measures useful for digital reverberation control has
been presented. This lets us build a simple controller to
manipulate sound in terms of a subjective audio concept,
bypassing the bottleneck of complex interfaces and indi-
vidual differences in descriptive terms. The evaluation of
our system showed that audio descriptors can be effectively
and rapidly learned and controlled with this method.

Our study showed that people have different definitions
of the same descriptor, and yet our system succeeds in

learning an individual’s concept so that people are satis-
fied with the final controller. This supports our contention
that individualizing controllers is a useful approach.

There are a number of directions we expect to take in
this work. We wish to conduct a more grounded psychoa-
coustic study to determine meaningful ranges for the set of
reverberation measures. Finally, joint learning of controls
for multiple audio effects (reverberation and equalization,
for example) can be considered, to span a wider range of
possible manipulations of sound. This work was supported
by NSF grant number IIS-0757544.
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ABSTRACT 

We describe an interactive analyzer for the generative 

theory of tonal music (GTTM). Generally, a piece of mu-

sic has more than one interpretation, and dealing with 

such ambiguity is one of the major problems when con-

structing a music analysis system. To solve this problem, 

we propose an interactive GTTM analyzer, called an au-

tomatic time-span tree analyzer (ATTA), with a GTTM 

manual editor. The ATTA has adjustable parameters that 

enable the analyzer to generate multiple analysis results. 

As the ATTA cannot output all the analysis results that 

correspond to all the interpretations of a piece of music, 

we designed a GTTM manual editor, which generates all 

the analysis results. Experimental results showed that our 

interactive GTTM analyzer outperformed the GTTM ma-

nual editor without an ATTA. Since we hope to contri-

bute to the research of music analysis, we publicize our 

interactive GTTM analyzer and a dataset of three hundred 

pairs of a score and analysis results by musicologist on 

our website http://music.iit.tsukuba.ac.jp/hamanaka/gttm.htm, 

which is the largest database of analyzed results from the 

GTTM to date. 

1. INTRODUCTION 

We have been constructing a music analyzer based on 

the generative theory of tonal music (GTTM) [1]. The 

GTTM is composed of four modules, each of which as-

signs a separate structural description to a listener’s un-

derstanding of a piece of music. These four modules 

output a grouping structure, a metrical structure, a time-

span tree, and a prolongational tree. The main advan-

tage of implementing the GTTM on a computer is to ac-

quire tree structures called time-span and prolongational 

trees from the surface structure of a piece of music. The 

time-span and prolongational trees provide melody 

morphing, which generates an intermediate melody be-

tween two melodies with a systematic order [2]. It can 

also be used for performance rendering [3-5] and repro-

ducing music [6] and provides a summarization of the 

music. This summarization can be used as a representa-

tion of a search, resulting in music retrieval systems [7]. 

In computer implementation of music theory [1, 8-

10], we have to consider two types of ambiguity in mu-

sic analysis. One involves human understanding of mu-

sic, and the other concerns the representation of music 

theory. The former tolerates our subjective interpreta-

tion, while the latter is caused by the incompleteness of 

formal theory, and the GTTM is not an exception. 

Therefore, due to the former’s ambiguity, we assume 

there is more than one correct result.   

In our previous work, we proposed the exGTTM 

(machine-executable extension of GTTM) and con-

structed an automatic time-span tree analyzer (ATTA) 

to avoid the latter type of ambiguity, introducing as 

many parameters as possible [11, 12]. Whenever we 

find a correct result that the exGTTM cannot generate, 

we add new parameters with proper values to improve 

the result. 

However, the ATTA has been clumsy for the first 

type of ambiguity. Even an identical melody can be 

played in different ways to represent different feelings 

since the ATTA cannot output the different analysis re-

sults in the same melody repetition. To solve this prob-

lem, we developed a GTTM manual editor that manual-

ly alternates the analysis results of the ATTA, according 

to the user's interpretations of a piece of music. 

However, the ATTA still exhibits problems concern-

ing the latter type of ambiguity. For example, the 

GTTM consists of feed-back operations from higher- to 

lower-level in the tree structure; however, no detailed 

description and only a few examples are given. To solve 

this problem, we developed a GTTM process editor, 

which enables seamless change of the automatic analy-

sis process with an ATTA and the manual edit process 

with a GTTM manual editor. Therefore, a user can ac-

quire the target analysis results by iterating the automat-

ic and manual processes interactively and easily reflect 

his or her interpretations on a piece of music. 

This paper is organized as follows. We present an 

overview of our interactive GTTM analyzer, which con-

sists of the ATTA, GTTM manual editor, and GTTM 

process editor in Section 2, propose a manual editing 

method of the GTTM manual editor in Section 3, pro-

pose a process editing method of the GTTM process 

editor in Section 4, and present experimental results and 

conclusions in Sections 5 and 6, respectively. Finally, 

we provide in the appendix the data format of the ana-

lyzing results of the GTTM, which we publicize along 

with those of the interactive GTTM analyzer. 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies 

are not made or distributed for profit or commercial advantage and that 

copies bear this notice and the full citation on the first page. 
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2. INTERACTIVE GTTM ANALYZER 

Figure 1 is a screenshot of the viewer of our interactive 

GTTM analyzer. There is a sequence of notes displayed 

in a piano roll format. Below the notes is a grouping 

structure, which is graphically presented as several levels 

of arcs. The grouping structure is intended to formalize 

the intuitive belief that tonal music is organized into 

groups that are in turn composed of subgroups. Below 

the grouping structure is a metrical structure. The metric-

al structure describes the rhythmical hierarchy of the 

piece by identifying the position of strong beats at the 

levels of a quarter note, half note, one measure, two 

measures, four measures, and so on. Strong beats are illu-

strated as several levels of bars. Above the notes, there is 

a time-span tree. The time-span tree is a binary tree, 

which is a hierarchical structure describing the relative 

structural importance of notes that differentiate the essen-

tial parts of the melody from the ornamentation. Below 

the time-span tree is a prolongational tree, a binary tree 

that expresses the structure of tension and relaxation in a 

piece of music.  

Figure 2 is an overview of our interactive GTTM ana-

lyzer, consisting of an ATTA, a GTTM manual editor, 

and a GTTM process editor. The ATTA consists of a 

grouping structure, a metrical structure, and time-span 

tree analyzers. We have been developing a prolongation-

al tree analyzer. Hamanaka et al. explain the details of 

the ATTA [11]. 

The GTTM manual editor consists of grouping, me-

trical, time-span, prolongational, and Tonal Pitch Space 

editors. The Tonal Pitch Space [12] is a music theory for 

chord progression composed by Lerdhal, who is one of 

the authors of the GTTM. Although the GTTM includes 

rules that require the analysis results of chord progression, 

the ATTA uses such rules by adopting the results of the 

Tonal Pitch Space.  

The analyzing process with the ATTA and GTTM ma-

nual editor is complicated, and sometimes a user is con-

fused as to what he or she should do in the next process, as 

there are three analyzing processes in the ATTA and five 

editing processes in the GTTM manual editor. A user may 

iterate the ATTA and manual edit processes multiple times. 

To solve this problem, we propose a GTTM process editor, 

which presents candidates for the next process of analysis, 

and a user only needs to change the process, just by select-

ing the next process.  

We use an XML format for all the input and output da-

ta structures of our interactive GTTM analyzer. Each ana-

lyzer and editor of our analyzer works independently, but 

they are integrated with the XML-based data structure. 

3. GTTM MANUAL EDITOR 

In some cases, the ATTA may produce a preferable result, 

which reflects the user’s interpretation, but in other case it 

may not. When a user wants to change the analysis result 

according to his or her interpretation, he or she can use 

the GTTM manual editor. We describe the method for 

editing and constructing a musical structure of the GTTM 

using the GTTM manual editor. 

Figure 1. Screenshot of interactive GTTM analyzer. 

Grouping  
Structure 

Metrical  
Structure 

Prolongational  
Tree 

Time-span  
Tree 

Figure 2. Overview of interactive GTTM analyzer. 

Grouping structure analyzer

Metrical structure analyzer

Time-span tree analyzer

Prolongational tree analyzer

Grouping structure editor

Metrical structure editor

Time-span tree editor

Prolongational tree editor

Tonal Pitch Space editor

ATTA GTTM manual editorGTTM process editor
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3.1 Grouping structure editor 

Figure 3 is a screenshot of our interactive GTTM analyzer 

in editing a grouping structure. The color of the target 

group and all its subgroups turn red after selection with a 

mouse. Then we can open a popup menu by right clicking 

the mouse. There are four operations in the popup menu, 

divide this group and create subgroup, divide this group, 

delete, and delete descendant. 

 To change a position of a grouping boundary, a user 

first delete the groups which adjoin the boundary then di-

vide the upper level (global level) group and create new 

subgroups where he or she wants to create a boundary. By 

left clicking a grouping boundary, the user sees the rules 

that are applied to the boundary and he or she can add or 

delete these rules. 

3.2 Metrical structure editor 

Although the metrical structure analyzer in the ATTA 

performs fairly well [11], a user may want to slightly edit 

the metrical structure. In which case, he or she applies the 

metrical structure editor, and changes the strength level of 

a beat by dragging a bar up or down. At the same time, he 

or she sees the rules that are applied to the bar and can 

add or delete these rules. 

While editing beat strength, a user may break hierarchic-

al metrical structures. In other words, the results of the me-

trical structure editor sometimes do not hold for the metric-

al preference rules. This problem can be solved using the 

GTTM process editor, which we discuss in Section 4. 

3.3 Time-span tree editor 

In the time-span tree, each branch has a head repre-

sented by a square in the time-span tree editor, and a user 

can move the head by dragging another branch. Figure 4 

is a screenshot of dragging a head. The light blue branch 

is the former position, and the dark blue branch is the lat-

ter position. A user can select a type for each head by 

opening the popup menu among those four types, ordi-

nary, fusion, transformation, and cadential retention.   

3.4 Prolongational tree editor 

The process of the prolongational tree editor is the same 

as that for the time-span tree. The prolongational tree is 

constructed by reconnecting the heads based on the time-

span tree. There are head connection constraints of the 

prolongational tree. When a head connection of a prolon-

gational tree is ill -formed, the GTTM process editor au-

tomatically opens the popup menu and displays candi-

dates for a solution. 

3.5 Tonal Pitch Space editor 

The reason we include a Tonal Pitch Space editor in our 

interactive GTTM analyzer is that the editor provides quan-

titative grounds for the prolongational tree to be hierarchic-

al. Therefore, analyzing the Tonal Pitch Space with the pro-

longational tree improves analyzing performance. 

4. GTTM PROCESS EDITOR 

There are two types of rules in the GTTM, which are 

well-formedness and preference. Well-formedness rules 

are necessary conditions for the rules assignment of a 

structure as well as the restrictions on the structure. 

When more than one structure satisfies the well-

formedness rules, the preference rules indicate the supe-

riority of one structure over another.  

In the GTTM, the analysis sequence proceeds from the 

grouping structure, secondly to the metrical structure, next to 

the time-span tree, and finally to the prolongational tree. 

However, the GTTM contains feedback links from higher- to 

lower-level structures. For example, grouping preference 

rule 7 (GPR7) (time-span and prolongational stability) pre-

fers a grouping structure that results in a more stable time-

span and/or prolongation reduction. Therefore, to analyze 

with feedback link rules, we need to perform several analyz-

ing processes by trial and error. The GTTM process editor 

helps in this repetition by performing three functions, data 

inputting, history recording, and process controlling. 

4.1 Data inputting 

Data inputting helps with the input of analysis results, 

which are prepared by another user or analyzer. For ex-

ample, we do not have an automatic analyzer for the Ton-

al Pitch Space in our interactive GTTM analyzer; howev-

er, attempts have been made to implement the Tonal Pitch 

Space, so we can use those results [13].  

We can add new rules to the ATTA using data input-

ting. For example, grouping preference rule 6 (GPR6) is a 

rule for parallelism in a grouping structure; however, the 

GTTM does not define the decision criteria for construing 

Figure 4. Screenshot of when dragging head. 

Figure 3. Screenshot of grouping structure editor. 

293



Poster Session 2  

 

whether two or more segments are parallel or not. There-

fore, many implementations of GPR6 would be possible, 

although we propose only one of them. By adding a new 

rule to the ATTA, we can control a new adjustable para-

meter for the new rule, GPR6+, which is the new imple-

mentation of GPR6. 

4.2 History recording 

History recording records the operation of analysis, and a 

user can return to the previous phase of analysis. History 

recording enables the copying and pasting of several op-

erations of analysis while editing parallel phrases.  

In the GTTM, there are few descriptions of the reasoning 

and working algorithms needed to compute the analysis 

results, especially for the time-span and prolongational 

trees. By using history recording, we look forward to stor-

ing the analysis knowledge, which improves automatic 

analysis. 

4.3 Process controlling 

Process controlling enables seamless change of the analy-

sis process by using the ATTA and the manual edit 

process by using the GTTM manual editor, representing 

candidates for the next process of analysis. The represen-

tation method differs depending on the number of candi-

dates for the next process. 

4.3.1 One candidate 

When there is only one candidate process, the process-

controlling function automatically executes the process. 

For example, when a user edits the strongest beat in Fig-

ure 5a in the 2nd level, the hierarchical metrical structure 

is broken because in level 3 of Figure 5b there are three 

weak continuous beats, and the metrical well-formedness 

rule 2 (MWFW2) does not hold. MWFR2 requires that 

strong beats are spaced either two of three beats apart at 

each metrical level. The process editor automatically al-

ternately produces strong and weak beats in level 3 (Fig-

ure 5c). If there is a higher metrical structure than level 3, 

the metrical analyzer of the ATTA automatically analyzes 

after level 3 and constructs a hierarchical metrical struc-

ture reflecting the user’s intention. 

4.3.2 A few candidates 

When there are a few candidates, the process controlling 

function automatically opens the popup menu and shows 

the candidates. For example, if there is a grouping struc-

ture, as shown Figure 6a, and a user deletes a group at the 

upper left (Figure 6b), the grouping structure of Figure 6b 

is broken since grouping well-formedness rule 3 

(GWFR3) does not hold. GWFR3 requires constraints 

that a group may contain smaller groups. To solve this 

problem, there are only two processes: 

- Delete all the groups at the same level of the deleted 

group (Figure 6c). 

- Extend the grouping boundary of the left end of the 

right group of the deleted group to the left end of that 

deleted group (Figure 6d).  

The next process can be executed by selecting one of the 

two processes displayed in the popup menu. 

 

4.3.3 Many candidates 

When there are many candidates, the process-controlling 

function selects and shows the top-ten candidates from the 

history recording. The candidates are ordered depending 

on the similarity of the history. For example, after editing 

a time-span tree with the time-span tree editor, executing 

a grouping analyzer or metrical analyzer in the ATTA is 

ranked in the upper levels because there are rules for 

feedback link such as GPR7 or metrical preference rule 9 

(MPR9). GPR7 (time-span and prolongational stability) is 

a link from the time-span and prolongational trees to the 

grouping structure, and MPR9 (time-span interaction) is a 

link from the time-span tree to the metrical structure. 

We have not implemented the original ATTA on 

GPR7 and MPR9. In this paper, we omit the details of the 

implementation of these rules due to space limitations. 

5. EXPERIMENTAL RESULTS 

We asked a musicologist expert to manually analyze the 

score data faithfully with regard to the GTTM using our 

interactive GTTM analyzer. The musicologist collected 

three hundred 8-bar-long, monophonic, classical music 

pieces including notes, rests, slurs, accents, and articula-

tions entered manually with music notation software 

called Finale [14]. The musicologist needed ten to twenty 

minutes for analyzing a piece. Three other experts 

crosschecked these results. 

We measured the operating time for acquiring the tar-

get analysis results of our interactive GTTM analyzer and 

compared it with that of the GTTM manual editor without 

an ATTA. For the target analysis, we used one hundred 

pieces from the three hundred pairs of scores and correct 

data of grouping structure, metrical structure, and time-

span tree. We did not use the prolongational tree in this 

Figure 6. Two types of solutions for broken grouping 

structure. 

(a) Original structure (b) Structure broken
by user editing

(c) Solution 1

(d) Solution 2

: Deleted group

Figure 5. Automatically correct broken metrical structure. 

(a) Original structure (b) Structure broken 
by user editing

(c) Automatically 
solve using 
process controller  Strongest 

beet User editing
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Three weak continuous beat
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measurement since its analyzer is still under development. 

As a result, our interactive GTTM analyzer outperformed 

the GTTM manual editor without an ATTA (Table 1).   

 

Melodies Interactive GTTM ana-

lyzer 

GTTM manual 

editor 

1 Grande Valse Brillante 326 sec 624 sec 
2. Moments Musicaux 541 sec 791 sec. 
3. Turkish March 724 sec 1026 sec 
4. Anitras Tanz 621 sec 915 sec. 
5. Valse du Petit Chien 876sec. 1246 sec. 
 : : 

Total (100 melodies) 575 sec. 891 sec. 

Table 1. Operation time of interactive GTTM analyzer 

and GTTM manual editor. 

6. CONCLUSION 

We developed a music analyzer called the interactive 

GTTM analyzer, which derives the grouping structure, 

metrical structure, time-span tree, and prolongational tree 

of the GTTM. The analyzer also derives analysis results 

of chord progression based on the Tonal Pitch Space. The 

analyzer consists of an automatic GTTM analyzer, called 

an ATTA, a GTTM manual editor, and a GTTM process 

editor. By using the process editor, a user can seamlessly 

change the analysis process of the ATTA and that of the 

manual editor. The experimental results show that our in-

teractive GTTM analyzer outperformed the GTTM ma-

nual editor without an ATTA. 

Since the original grouping rules of GTTM are based 

on monophonic melodies, we have implemented our sys-

tem faithfully observing the theory. In the future, however, 

we plan to include harmonic analysis to complement the 

original theory and to target homophonic music. 
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APPENDIX: PUBLICLY AND DATA FORMAT  

We publicize our interactive GTTM analyzer and 

database of three hundred pairs of scores and correct data 

at the following URL. 

http://music.iit.tsukuba.ac.jp/hamanaka/gttm.htm 

We believe that the exhibition of this kind of resource 

is important for the music information-researching 

community. The interactive GTTM analyzer is the first 

application for acquiring time-span trees and 
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<ts timespan="3.0" leftend="0.0" rightend="3.0"> 
  <head> <note id="P1-1-4" /> </head> 
  <primary> 
    <ts timespan="1.0" leftend="2.0" rightend="3.0"> 
      <head> <note id="P1-1-4" /> </head> 
    </ts> 
  </primary> 
  <secondary> 
    <ts timespan="2.0" leftend="0.0" rightend="2.0"> 
      <head> <note id="P1-1-1" /> </head> 
      <primary> 
        <ts timespan="1.0" leftend="0.0" rightend="1.0"> 
          <head> <note id="P1-1-1" /> </head> 
        </ts> 
      </primary> 
      <secondary> 
        <ts timespan="1.0" leftend="1.0" rightend="2.0"> 
          <head> <note id="P1-1-2" /> </head> 
          <primary> 
            <ts timespan="0.5" leftend="1.0" rightend="1.5"> 
              <head> <note id="P1-1-2" /> </head> 
            </ts> 
          </primary> 
          <secondary> 
            <ts timespan="0.5" leftend="1.5" rightend="2.0"> 
              <head> <note id="P1-1-3" /> </head> 
            </ts> 
          </secondary> 
        </ts> 
      </secondary> 
    </ts> 
  </secondary> 
</ts> 

-<group> 

 -<group> 

+<note id="P1-1-1"/> 

+<note id="P1-1-2"/> 

+<note id="P1-1-3"/> 

+<note id="P1-1-4"/> 

 </group> 

 <applied  rule=” 2a” /> 

<applied  rule=” 3a” /> 

<applied  rule=” 6” /> 

 -<group> 

             

 

 </group> 

</group> 

<metric dot="6" at="0.0"> 
<applied level="0.5" rule="3"/> 
<applied level="0.5" rule="5c"/> 
<applied level="1.0" rule="3"/> 
<applied level="1.0" rule="5c"/> 
<applied level="3.0" rule="1"/> 
<applied level="3.0" rule="3"/> 
<applied level="3.0" rule="5c"/> 
<applied level="6.0" rule="3"/> 
+<note id="P1-1-1"/> 

</metric> 
<metric dot="1" at="0.5"/> 
<metric dot="2" at="1.0"> 

<applied level="0.5" rule="3"/> 
<applied level="1.0" rule="3"/> 
+<note id="P1-1-2"/> 

</metric> 
<metric dot="1" at="1.5"> 

<applied level="0.5" rule="3"/> 
+<note id="P1-1-3"/> 

</metric> 
<metric dot="2" at="2.0"> 

<applied level="0.5" rule="3"/> 
<applied level="1.0" rule="3"/> 
+<note id="P1-1-4"/> 

</metric> 
<metric dot="1" at="2.5"/> 

(a) GroupingXML (b) MetricalXML (c) Time-spanXML 

3,5c 

3,5c 

1, 3,5c 

3 

3 

3 

3 3 

3 

2a 

3a 

6 

Figure 7. GroupingXML, MetricalXML, and Time-spanXML 

prolongational trees. We hope to benchmark the analyzer 

to other systems, which will be constructed.  

We use the XML as the import and export format 

since the XML format is extremely qualified to express 

hierarchical musical structures. 

MusicXML 

As a primary input format, we chose MusicXML [15] 

because it provides a common ‘interlingua’ for music 

notation, analysis, retrieval, and other applications. For 

exporting MusicXML from finale we use a plug-in called 

Dolet [16]. 

GroupingXML 

We designed Grouping.XML as an import and export 

format for hierarchical grouping structures. The 

GroupingXML has group, note, and applied elements. All 

note elements are inside hierarchical group elements. The 

applied elements are located between the end of a group 

tag and the start of the next group tag, which is where the 

grouping preference rules (GPRs) are applied. Figure 7a 

shows a simple example of GroupingXML. 

MetricalXML 

We designed MetricalXML as an import and export 

format for metrical structures. MetricalXML has metric 

elements, which require a dot attribute, an at attribute, 

and applied elements. The dot attribute indicates the 

strength of each beat.  The at attribute indicates the time 

from the start of the piece. The applied element requires a 

level attribute and a rule attribute.  In the metrical 

structure analysis, metrical preference rules (MPRs) are 

applied to each hierarchy of a dot. The level attribute 

indicates the interval of dots. If there is an onset of a note 

at the beat position, the note element is inserted before the 

end of the metric element (Figure 7b) 

Time-spanXML, ProlongationalXML 

The Time-spanXML has ts, primary, and secondary 

elements. The ts element has a time-span attribute, a 

leftend attribute, and a rightend attribute. Therefore, the ts 

element indicates the length and position of the time-span 

in a piece of music. In the ts element, there is a head 

element, which requires a note element indicating the 

most salient note in the time-span tree. If there is more 

than one note in the time-span, we can divide the time-

span in two parts. One includes the head, and the other 

does not. The primary element in the ts element has a 

next-level ts element that corresponds to the time-span, 

which includes the upper level head. The secondary 

element in the ts element has a next-level ts element that 

corresponds to the time-span, which does not include the 

upper level head (Figure 7c).  

We do not explain ProlongationalXML because its 

structure is similar to that of the time-span tree. 

Tonal Pitch SpaceXML 

The Tonal Pitch SpaceXML has region elements. Inside 

the region elements there are chord elements, and inside 

the chord element there are note elements.  

Note that note elements in GroupingXML, 

MetricalXML, Time-spanXML, ProlongationalXML, and 

Tonal Pitch Space-XML are connected to note elements 

in MusicXML using Xpointer [17] and Xlink [18]. 
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ESTIMATING THE ERROR DISTRIBUTION OF A TAP SEQUENCE
WITHOUT GROUND TRUTH

Roger B. Dannenberg
Carnegie Mellon University
School of Computer Science

Larry Wasserman
Carnegie Mellon University

Department of Statistics

ABSTRACT

Detecting beats, estimating tempo, aligning scores to au-
dio, and detecting onsets are all interesting problems in
the field of music information retrieval. In much of this
research, it is convenient to think of beats as occuring at
precise time points. However, anyone who has attempted
to label beats by hand soon realizes that precise annotation
of music audio is not possible. A common method of beat
annotation is simply to tap along with audio and record the
tap times. This raises the question: How accurate are the
taps? It may seem that an answer to this question would re-
quire knowledge of “true” beat times. However, tap times
can be characterized as a random distribution around true
beat times. Multiple independent taps can be used to esti-
mate not only the location of the true beat time, but also
the statistical distribution of measured tap times around
the true beat time. Thus, without knowledge of true beat
times, and without even requiring the existence of precise
beat times, we can estimate the uncertainty of tap times.
This characterization of tapping can be useful for estimat-
ing tempo variation and evaluating alternative annotation
methods.

1. INTRODUCTION

Tempo estimation and beat tracking are considered to be
fundamental tasks of automatic music analysis and under-
standing. To evaluate machine performance in these sorts
of tasks, it is useful to have audio annotated with beat
times. We often assume that beat times are obvious and
easily measured, usually through manual annotation. In
some sense this is a fair assumption. Humans are good
at detecting beats, especially in popular music, and hu-
man performance is generally better than machine perfor-
mance. Most research simply accepts human-generated
data as correct.

In cases where the goal is simply to get close to “true”
beat times, or to estimate tempo (which can be a long-term
average), ignoring potential tapping errors might be rea-
sonable. However, it is troubling to assume errors do not

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

matter without any way to test this assumption. Further-
more, there are some cases where automated methods can
deliver quite precise results. For example, onset detection
and beat detection in piano music can rely on fast onsets
to obtain precise times in the millisecond range automati-
cally. It seems unlikely that humans can tap or otherwise
annotate beat times with this degree of precision, so how
can we evaluate automatic labels?

The main goal of this work is to characterize the quality
of human beat and tempo estimates in prerecorded audio
data. A simple approach to this problem is to synthesize
music from known control data such as MIDI, using con-
trol timing as the “ground truth” for beat times. This ap-
proach offers a clear connection to an underlying sequence
of precise times, and after a human taps along with the mu-
sic, some simple statistics can describe the distribution of
actual tap times relative to the “true” beats. The problem
here is that “real” music seems more complicated: Musi-
cians are somewhat independent, adding their own timing
variations, both intentional and unintentional. Musicians
play instruments with varying attack times and they some-
times place their note onsets systematically earlier or later
than the “true beat” times. How can we know that tapping
to carefully controlled synthesized music is indicative of
tapping to music in general?

We present an alternative approach in which multiple
independent taps to beat-based music are used to estimate
a distribution around the underlying “true” beat time. We
assume that a true but hidden beat time exists and that ob-
served tap times are clustered around these true times. In
addition, we assume “all beats are the same” in the sense
that observed tap times for one beat have the same distri-
bution as observed tap times around any other beat. (This
assumption will be discussed later.)

It should be apparent that different forms of tapping
(tapping with different kinds of audio feedback, tapping
with hands or feet, tapping by or while performing a mu-
sical instrument) will have subtle implications for the po-
sitioning and distribution of the tap times. Our techniques
enable us to explore these differences but say nothing about
whether one is more correct than another. In other words,
there may be different implied “true” beat times for differ-
ent tapping conditions.

In addition to estimating the distribution of tap times
from multiple independent taps, our technique can esti-
mate the distribution of another source of tap times. For
example, we will show how a single set of foot tap times
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captured in a live performance can be used to estimate the
accuracy of foot tapping, again without any ground truth.
Our technique is interesting because it does not require any
manual time estimation using visual editing, ground truth,
or acoustical analysis, yet it gives us the ability to describe
any sequence of estimated beat times as a probabilistic dis-
tribution around the underlying “true” beats.

By collecting data from real music audio examples, we
can get a sense not only of the location of beats but the
uncertainty of these locations. Since studies of expressive
timing and tempo are normally based on beat time esti-
mates, it is important to characterize uncertainty. In real-
time computer music performance, estimating tempo and
predicting the time of the next beat is an important prob-
lem. A good model of tapping and uncertainty can help to
clarify the problem and analyze proposed solutions. There
is also the potential to apply our model to the evaluation
of automated beat tracking systems and to compare their
performance to human tapping. Finally, models of timing
and tempo change can help to build better beat tracking
systems, which must reconcile prediction from past beat
estimates using a steady-tempo hypothesis with new but
uncertain beat estimates allowing the system to adapt to
tempo change.

2. RELATED WORK

Previous studies have looked directly at tapping and syn-
chronization. Michon [1] studied synchronization to se-
quences of clicks, and Mecca [2] studied human accom-
panists and how they adapt to tempo change. Wright [3]
studied perceptual attack time, the perceived time or dis-
tribution of times at which a tone is perceived to begin.
Dixon et al. [4] studied tapping to a short musical excerpt
with expressive timing. There is a substantial literature on
the perception of beats and rhythmic grouping [5]. The
automatic detection of beats and tempo also has a long his-
tory of study [6,7]. The Mazurka project [8] has published
beat times estimated using acoustic data from expressive
performances.

Computer accompaniment [9] is a popular topic in the
computer music literature and this work is closely related
to ours. Tempo change in computer accompaniment has
been modeled using Bayesian belief networks [10]. Our
study of beat estimation and tempo in fact addresses short-
comings of existing computer accompaniment systems. In
particular, computer accompaniment is usually based on
score following, which assumes that a score exists and that
there are audio signals to be matched to the score [9]. In re-
ality, popular music often involves improvisation and other
deviations from the score (if any), so the computer system
must be “aware” of beats, measures, and cues in order to
perform effectively with live players [11].

Conducting is another means for synchronizing com-
puters to live performers and another example of human
indication of beats. Various conducting systems have been
created using traditional conducting gestures as well as
simple tapping interfaces [12]. These studies are closely
related to our work because any conducting system must

sense beat times and make predictions about the tempo
and the next beat time. Our work extends previous work
by measuring human performance in tapping along to mu-
sic. The sequential drum [13] and radio drum [14] of Max
Mathews are also in the category of conducting systems.
These emphasize expressive timing and multidimensional
gestural control.

The “virtual orchestra” concept [15, 16] is also related.
Virtual orchestras have been created to accompany dance,
opera, and musical theater. Most if not all of this work is
commercial and proprietary, so it is not known what tech-
niques are used or how this work could be replicated, mak-
ing any comparative studies impractical. Certainly, a bet-
ter understanding of beat uncertainty and tempo estimation
could contribute to the performance of these systems.

3. THE MODEL AND ASSUMPTIONS

We are interested in characterizing information obtained
from tapping to music audio. In an ideal world, we would
first label the audio with precise beat times. For example,
we might ask a subject to tap by hand many times along
with the music, measure the tap times, and compute the
mean tap time θ̂1, θ̂2, . . . for each beat. Presumably, these
mean tap times estimate and converge to a precise under-
lying or “hidden” time θi for each beat. In this way, beat
times can be estimated with arbitrary precision given suf-
ficient data. Once beat times are estimated, we can study
other tap sequences. For example, given a sequence of foot
tap times Fi we might like to estimate the distribution of
timing errors: ∆i = Fi − θi. If we ignore the difference
between θ̂i and θi, it is simple to compute the mean and
standard deviation of ∆i or simply to plot a histogram to
characterize the distribution.

It should be noted that the outcome (the distribution of
∆i) is a distribution over timing errors throughout the en-
tire piece, not a distribution for a particular beat. Timing
errors and the distributions of individual beats might be in-
teresting things to study, but these are not considered by
our model.

Unfortunately, tapping along to music requires much
time, care, and concentration. We want to achieve the same
results without tapping along to music many times. In fact,
if we make a few assumptions about ∆i, we only need to
tap twice. Then, given a measured sequence of times Fi,
we can estimate the corresponding distribution ∆i.

The assumptions are that, first, ∆i is normal. We will
show some evidence that ∆i obtained from actual tap data
is in fact approximately normal. The second assumption is
that the sequence of true beat times θi is well defined and
the same for all tap sequences. So for example, if we want
to compare foot taps to hand taps, we need to assume that
the underlying “true” beats for each sequence are the same.
Alternatively, if we want to measure the tap distribution of
several subjects, we must assume they all share the same
true beats.

In practice, we are seldom concerned about absolute
shifts (subject A always perceives beats 10ms earlier than
subject B). But introducing a time offset to a collection of
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tap times, say from subject A, generally increases the esti-
mated variance of the tap times. If we believe that an offset
may reflect individual differences, sensors, or calibration
problems, then we can simply estimate and subtract off the
offset. (Details will follow.) In that case the only assump-
tion is that the “true” beat times for any two sequences of
taps are the same except for a constant (but unknown) time
offset.

4. ESTIMATING THE DISTRIBUTION

To estimate the distribution of actual tap times, let θ1, θ2, . . .
denote the true beat times. (These will remain unknown.)
Also, we will collect two sets of hand taps at times H1

i ,H2
i .

We assume that these times are normally distributed around
the true beat times:

H1
i ,H2

i ∼ Normal(θi, σ
2). (1)

An unbiased estimate of σ2 is

σ̂2 =
1
2n

n∑
i=1

(H1
i −H2

i )2. (2)

Thus, with only two sets of taps generated under the
same conditions, we can estimate the distribution of the
taps relative to the true beat times. It should be mentioned
that H1

i and H2
i must correspond to the same true beat. If,

for example, one tap is missing from H1, then some differ-
ences (H1

i −H2
i ) will be increased by one beat. In practice,

taps rarely differ by more than 150ms and beats are typi-
cally separated by 500ms or more (taps can be every 2, 3,
or 4 beats if the tempo is faster), so errors are simple to
find and correct.

What if H2 has a constant offset relative to H1? Since
we assume the distribution around the true beat should be
the same for both sequences, the mean of their differences
d̄:

d̄ =
1
n

n∑
i=1

(H1
i −H2

i ) (3)

should be zero. We can “correct” any constant offset (esti-
mated by d̄) by replacing H2

i by (H2
i + d̄).

Now suppose we have another set of tap times generated
by a different source, for example foot taps or taps from an-
other subject. What is the distribution of these taps? Given
H1

i and H2
i , we only need one set of taps (one tap per beat)

from the new source.
Let Fi be the new set of tap times, and let ∆i = Fi−θi.

The problem is to estimate the distribution of the ∆i’s. Let
us begin by defining

∆̂i = Fi − θ̂i (4)

where θ̂i is an estimate of θi. For these estimates, we will
use

θ̂i =
H1

i + H2
i

2
. (5)

From the assumption that Fi is normal, Fi ∼ N(θi, τ
2), it

follows that

∆̂i ∼ N

(
0, τ2 +

σ2

2

)
(6)

Here, τ2 is due to random variation in Fi and σ2

2 is due to
uncertainty in our estimates of the true beat times. Now,
if we let s2 be the expected sample variance of the ∆̂i, we
obtain

s2 = τ2 +
σ2

2
(7)

and hence

τ2 = s2 − σ2

2
(8)

Thus,

∆i ∼ N

(
0, s2 − σ2

2

)
(9)

We already have an estimate of σ2, and we can estimate
s2 using the sample variance ŝ2 of ∆̂i. Substituting σ̂2 for
σ2 and ŝ2 for s2, we can estimate the distribution of ∆i

and thus the accuracy of taps from the new source even
without any ground truth for beat times. All we need are
two additional sets of times obtained by tapping along with
the music.

5. GENERALIZATION TO N SEQUENCES

This approach can be generalized to multiple tap sequences.
For example, taps from many different subjects might be
combined. Suppose that N tap sequences, H1

i , . . . ,HN
i

are normally distributed with means θi and variance σ2.
We estimate means and variance as follows:

θ̂i =
1
N

N∑
j=1

Hj
i (10)

and

σ̂2 =
1
n

n∑
i=1

s2
i (11)

where

s2
i =

1
N − 1

N∑
j=1

(Hj
i − θ̂i)2. (12)

Defining ∆̂i again as in (4), we generalize (6) to

∆̂i ∼ N(0, τ2 +
σ2

N
). (13)

Letting S2 be the expected sample variance of the ∆̂i,

∆i ∼ N(0, τ2) = N

(
0, S2 − σ2

N

)
. (14)

Again, we can estimate S2 using the sample variance Ŝ2

of ∆̂i and estimate the variance of ∆i as Ŝ2 − bσ2

N .

6. IS ∆I NORMAL?

Our analysis assumes that the distribution of ∆i is nor-
mal. We collected some taps to music synthesized from
MIDI with note onsets quantized to exact beat times and
smoothly varying but mostly constant tempo. Figure 1
shows a histogram of differences between the 117 “true”
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beats and hand-tapped (by one of the authors) beats, cor-
responding to ∆i. To characterize the error, we use the
mean of the absolute difference (MAD) between tapped
beats and true beats after adjusting an absolute time offset
to obtain a mean difference of zero. For this condition, the
MAD is 16.13ms. Although the extreme values of +/-60ms
seem quite large, the MAD value of 16.13ms compares fa-
vorably to the typical value of 10ms cited as the just notice-
able difference (JND) for timing deviation [17]. (Since our
goal is to describe a representation and its theory, we show
only a couple of typical examples from data collected from
a growing collection of songs, performers, and tappers.)

taps ! beats

 

!60 !40 !20 0 20 40 60

0
2

4
6

8
1

0

Figure 1. Histogram of deviations (in ms) of hand tap
times from “true” (MIDI) beat times.

Using live acoustic music, two sets of hand tap times
were collected, and Figure 2 shows differences between
corresponding hand tap times. In this example, the music
was from a big-band jazz rehearsal. Again, the data is from
one of the authors, but it is typical of other data we have
collected. This differs from Figure 1 in that the time differ-
ences are between two tap times to acoustic music rather
than between a tap time and a known beat time in synthe-
sized music. The standard deviation is 26ms. As with the
MIDI-related data, the general shape of the histogram ap-
pears to be Gaussian, so the Normality assumption is at
least reasonable. A Shapiro-Wilks test of Normality on
data in Figures 1 and 2 yields values of W = 0.9829 (p-
value = .6445), and W = 0.9882 (p-value = .2625), sug-
gesting again that Normality is reasonable.

7. EXAMPLE

We are interested in characterizing foot tapping as an in-
dicator of beat times. For our data used in Figure 2, σ̂ =
32.77ms (standard error 2.006ms).

Even before collecting hand tap times, we recorded au-
dio and foot tap times from a live performance. The foot
taps are sensed by a custom pedal that uses a force-sensitive
resistor (FSR) to control the frequency of a low-power ana-
log oscillator [15]. The audio output from the pedal can be
sent to one channel of a stereo recording in synchrony with

difference between hand taps
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Figure 2. Histogram of differences (in ms) between two
sets of hand tap times to audio recording of a live perfor-
mance.

the live music on the other channel. Later, the “foot pedal
channel” can be analyzed to detect foot taps with precise
synchronization to the music audio. We then used Sonic
Visualizer [18] to record hand taps (twice) while listening
to the music channel of the recording.

Finally, using the analysis described in Section 4, we
obtain a mean of 0 and a standard deviation of 37.2ms.
This number reflects a particular condition involving the
type of music, the other players involved, the interference
task of performing, and possibly individual differences.
Thus, we are not suggesting that one can give meaningful
numbers for the accuracy of hand-tapped or foot-tapped
beats in general, only that for any given situation, the taps
can be accurately and efficiently characterized without a
ground truth for beat times.

This example is interesting because it is impossible to
obtain more than one set of foot taps or ground truth from
a live performance, yet our technique still provides an es-
timate of the foot tap error distribution.

8. DISCUSSION

Because beats are hidden and perceptual, there are multi-
ple ways to characterize beats. Just as there are differences
between pitch (a percept) and fundamental frequency (a
physical attribute), a distinction can be made between per-
ceived beat times and acoustic event times. Some research
relies on acoustic events to estimate beat times. While ob-
jective and often precise, these times are subject to various
influences including random errors and physical character-
istics of the instrument [19], so even acoustic times are the
result of human perception, cognition, and action. After
all, performing within an ensemble requires a perception
of the beat and precise timing, so it is not all that different
from tapping.

Furthermore, polyphony creates ambiguity because note
onsets are often not synchronized. In fact, there is good ev-
idence that note onsets are deliberately not placed on “the
beat,” at least in some important cases [20]. Therefore, this
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work attempts to identify and characterize perceptual beat
times through tapping.

Even this approach has limitations. As seen in our ex-
ample data, beat times are characterized as distributions
rather than precise times, reflecting the limited information
available from a small number of tap sequences. Moreover,
all distributions are assumed to have the same variance. In
music with a steady beat, this seems to be a reasonable as-
sumption. In music with expressive timing, rubato, etc.,
one would expect some beats to be more accurately tapped
than others. Learning from repeated listening can affect
tapping times [4]. We suspect learning is a bigger factor in
music with expressive timing where subjects might learn
to anticipate timing variations. In music with a steadier
tempo, any learning effect should be minimal.

The “meaning” of variance (τ2) merits discussion. One
interpretation is that the perceived beat time is very pre-
cise, but there are limitations in motor control that give
rise to variation in tap times. Another interpretation is that
the perception of beat times is not consistent from one lis-
tening to the next, resulting in different tap times. If dif-
ferent subjects tap, variance could arise from a difference
between subjects. Ultimately, τ2 models real data, so a
more detailed model may not be relevant. On the other
hand, experiments might be able isolate and characterize
different influences on tap timing.

Using a limited amount of “field recording” data, we
observed that foot tap timing can be approximated by a
normal (Gaussian) random distribution around the “true”
beat time. This is suggested by histograms as well as a
Shapiro-Wilks test of Normality. The observed variance is
almost certainly dependent upon the clarity of the beat, the
steadiness of tempo, the skill of the tapper, interference
tasks including playing an instrument while tapping, and
other factors. The good news is that the method is practical
and inexpensive, and the method can be used to study all
of these factors.

Many studies in Computer Music, Music Information
Retrieval, and Music Perception depend upon estimates of
beat times and tempo variation. The techniques described
here offer a principled way to go about characterizing the
uncertainty of beat times obtained by tapping.

9. APPLICATIONS AND FUTURE WORK

The goal of this paper is to describe a representation of
beat timing, the underlying estimation theory, and a practi-
cal way to use this representation. Current work is examin-
ing data from many sources with the goal of understanding
the range of uncertainty (τ2) observed under different con-
ditions, and perhaps factors that account for differences.
Also, experiments could study the degree to which tap time
variance results from perceptual uncertainty vs motor con-
trol.

One of our goals is to create music systems that perform
with live musicians using techniques based on work in Mu-
sic Information Retrieval. Beat tracking, gesture sensing,
analysis of mood, and other aspects of a performance all
provide important input to an automated music performer.

In the area of beats and tempo, the techniques presented
here are being used to analyze data from a variety of per-
formances. For synchronization to live performers, the
data will help us to tune systems that accurately predict the
next beat time, allowing an artificial performer to play ac-
curately on the beat. Beat timing variation implies tempo
change. Modeling tap times probabilistically can help to
distinguish between random timing errors and true tempo
change. For example, preliminary analysis has shown that,
depending upon the amount of tempo variation in a piece
of music, estimating tempo using the previous 6 to 18 beats
gives the best prediction of the next beat time. This work is
closely related to beat tracking systems where smoothing
over beats can help the system stay on track, but smooth-
ing over too many beats makes the system unable to follow
tempo changes.

Another application is in the construction and evalua-
tion of score-to-audio alignment systems. While scores
have precise beat times, audio recordings do not. By sub-
stituting alignment times for foot tap times (Fi in (4)), we
can measure score alignment quality without any ground
truth.

Audio labeling is another application. We might like
to compare beat labels based on audio features to percep-
tual beat times. Since tap times might have a large vari-
ance, one is tempted to conclude that precise audio-based
labels are more reliable. With our techniques, this can be
tested. Another issue with labeling is the reliability of
hand-labeled audio using an audio editor. This is a very
difficult task where one might expect to see individual dif-
ferences among human labelers. The lack of ground truth
makes it difficult to evaluate different labelers. Our method
might be useful because it does not need the ground truth
to provide an analysis.

Finally, it is interesting to study tempo in the abstract.
In live performances we have tapped to, we have found
substantial tempo changes (on the order of 10%) during
solos with a rhythm section where the tempo is nominally
steady. As with live synchronization, one must be care-
ful to avoid attributing tempo change to jitter in tap times,
and a characterization of the tap time distribution helps to
identify true tempo changes.

10. CONCLUSION

Our work concerns the analysis of beat times in music with
a fairly steady beat. Our live data collection and analy-
sis indicate that foot tap timing can be modeled well as
a Gaussian distribution around a “true” but unknown beat
time. We have introduced a new technique for estimating
tapping accuracy that does not require the accurate iden-
tification of underlying beats. By comparing foot tap data
(or data from other sources) to multiple hand taps on the
same music, we are able to estimate the standard deviation
and thus characterize the uncertainty in the tapping data. A
major strength of this approach is that a one-time, irrepro-
ducible sequence of taps such as from a live performance
can be analyzed in terms of accuracy without ground truth
for “true” beat times.

301



Poster Session 2

11. ACKNOWLEDGEMENTS

The authors would like to acknowledge the contributions
of Nathaniel Anozie to the initial exploration and analysis
of this data, and Cosma Shalizi for helpful consultation and
discussions. This work was supported in part by Microsoft
Research through the Computational Thinking Center at
Carnegie Mellon.

12. REFERENCES

[1] J. A. Michon. Timing in Temporal Tracking. Van Gor-
cum, Assen, NL, 1967.

[2] M. Mecca. Tempo following behavior in musical ac-
companiment. Carnegie Mellon University, Depart-
ment of Philosophy, Pittsburgh, PA, USA (Masters
Thesis), May 1993.

[3] Matt Wright. Computer-Based Music Theory and
Acoustics. PhD thesis, Stanford University, CA, USA,
March 2008.

[4] S. Dixon, W. Goebl, and E. Cambouropoulos. Percep-
tual smoothness of tempo in expressively performed
music. Music Perception, 23(3):195–21, 2006.

[5] P. Fraisse. Rhythm and tempo. In D. Deutsch, editor,
The Psychology of Music, pages 149–80. Academic
Press, New York, 1st edition edition, 1982.

[6] F. Gouyon and S. Dixon. A review of automatic
rhythm description systems. Computer Music Journal,
29(1):34–54, 2005.

[7] F. Gouyon, A. Klapuri, S. Dixon, M. Alonso, G. Tzane-
takis, C. Uhle, and P. Cano. An experimental compari-
son of audio tempo induction algorithms. IEEE Trans-
actions on Audio, Speech, and Language Processing,
14(5):1832–1844, September 2006.

[8] Craig. Sapp. Comparative analysis of multiple musi-
cal performances. In Proceedings of the 8th Interna-
tional Conference on Music Information Retrieval (IS-
MIR’07), pages 497–500, 2007.

[9] R. B. Dannenberg and C. Raphael. Music score align-
ment and computer accompaniment. Communications
of the ACM, 49(8):39–43, August 2006.

[10] C. Raphael. Synthesizing musical accompaniments
with bayesian belief networks. Journal of New Music
Research, 30:59–67, 2000.

[11] A. Robertson and M. D. Plumbley. B-keeper: A beat
tracker for real time synchronisation within perfor-
mance. In Proceedings of New Interfaces for Musical
Expression (NIME 2007), pages 234–237, 2007.

[12] R. B. Dannenberg and K. Bookstein. Practical aspects
of a midi conducting program. In ICMC Montreal 1991
Proceedings, pages 537–540, San Francisco, 1991. In-
ternational Computer Music Association.

[13] M. V. Mathews and C. Abbot. The sequential drum.
Computer Music Journal, 4(4):45–59, Winter 1980.

[14] M. V. Mathews and W. A. Schloss. The radio drum
as a synthesizer controller. In Proceedings of the 1989
International Computer Music Conference, San Fran-
cisco, 1989. Computer Music Association.

[15] Roger B. Dannenberg. New interfaces for popular mu-
sic performance. In NIME ’07: Proceedings of the 7th
International Conference on New Interfaces for Musi-
cal Expression, pages 130–135, New York, NY, USA,
2007. ACM.

[16] Gregory M. Lamb. Robo-music gives musicians the
jitters. The Christian Science Monitor, December 14,
2006.

[17] A. Friberg and J. Sundberg. Perception of just notice-
able time displacement of a tone presented in a metrical
sequence at different tempos. Technical report, STL-
QPSR, Vol. 34, No. 2-3, pp. 49–56, 1993.

[18] C. Cannam, C. Landone, M. Sandler, and J. P. Bello.
The sonic visualizer: A visualization platform for se-
mantic descriptors from musical signals. In ISMIR
2006, 7th International Conference on Music Informa-
tion Retrieval, pages 324–327, 2006.

[19] Patrik N. Juslin. Five facets of musical expression: A
psychologist’s perspective on music performance. Psy-
chology of Music, 31(3):273–302, 2003.

[20] A. Friberg and A. Sundstrom. Swing ratios and ensem-
ble timing in jazz performance: Evidence for a com-
mon rhythmic pattern. Music Perception, 19(3):333–
349, 2002.

302



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

  
 

USING ACE XML 2.0 TO STORE AND SHARE FEATURE, 
INSTANCE AND CLASS DATA FOR MUSICAL CLASSIFICATION 

Cory McKay John Ashley Burgoyne Jessica Thompson Ichiro Fujinaga 
CIRMMT 

McGill University 
cory.mckay@ 

mail.mcgill.ca 

CIRMMT 
McGill University 

ashley@ 
music.mcgill.ca 

Music Technology 
McGill University 

jessica.thompson@ 
mail.mcgill.ca 

CIRMMT 
McGill University 

ich@ 
music.mcgill.ca 

ABSTRACT 

This paper introduces ACE XML 2.0, a set of file formats 
that are designed to meet the special representational 
needs of research in automatic music classification. Such 
standardized formats are needed to facilitate the sharing 
and long-term storage of valuable research data. ACE 
XML 2.0 is designed to represent a broad range of musi-
cal information clearly using a flexible, extensible, self-
contained and formally structured framework. An empha-
sis is placed on representing extracted feature values, fea-
ture descriptions, instance annotations, class ontologies 
and related metadata. 

1. INTRODUCTION 

Many music information retrieval (MIR) research pro-
jects involve three core tasks: collecting and annotating 
ground-truth data; extracting feature values from in-
stances; and training classification models using machine 
learning. These tasks require well-designed data represen-
tations, as insufficiently expressive representations can 
prevent learning algorithms from accessing valuable in-
formation.  

Representational formats also have an important im-
pact on the ability of MIR researchers to share valuable 
data with one another, particularly since ground-truth 
datasets can be expensive to acquire. Legal restrictions on 
distributing such datasets make the ability to share ex-
tracted feature values and ground-truth annotations par-
ticularly valuable. The absence of expressive, flexible, 
well-defined and well-supported standardized representa-
tional formats tends to result in individual research labo-
ratories generating their own in-house data, with conse-
quent wasteful repeated effort and lower quality data. 

Standardized file formats are also needed to facilitate 
compatibility of MIR toolkits such as CLAM, jMIR, 
Marsyas, MIRtoolbox and Sonic Visualiser. Powerful 
packages such as these each have their own advantages, 
and a common representational format is needed if re-
search performed using different toolkits is to be com-
bined. 

Standardized file formats are also needed to facilitate 
the evaluation and comparison of techniques from differ-
ent research groups, something that has become apparent 
in the yearly Music Information Retrieval Evaluation Ex-
change (MIREX) competition [1]. The lack of an ac-
cepted standardized representational format necessitates 
the development of custom formats for each sub-task, 
which results in compromises with respect to expressivity 
and longevity. For example, the MIREX audio genre 
classification competition is carried out each year using 
ground-truth where each piece is labeled with only one 
genre label, despite general recognition that this is an un-
realistic limitation that compromises results. The avail-
ability of standardized formats such as ACE XML that 
can be easily used to associate multiple classes with each 
instance could help to address such problems. 

ACE XML 2.0 is proposed as a standard for represent-
ing information associated with the application of ma-
chine learning to music, including feature values, instance 
labels, class ontologies and associated metadata. ACE 
XML 2.0 has been developed as part of the Networked 
Environment for Musical Analysis (NEMA) [2] project, a 
multinational and multidisciplinary effort to create a gen-
eral music information processing infrastructure.  

2. ALTERNATIVE REPRESENTATIONS 

There are a number of existing approaches that can be 
used to represent information related to automatic music 
classification. One is to simply store such information as 
raw binary data, such as Matlab [3] MAT files. Although 
this can be an easy and efficient way of storing data, it 
has problems with respect to portability, readability and 
longevity. Customized software is needed to parse or 
write each binary file type, and such software is often 
proprietary and can only be expected to have a limited 
life span. 

Text files are an alternative to binary files. Although 
they are usually less space efficient, they address the 
weaknesses of binary files with respect to longevity, port-
ability and readability. They can also be structured in a 
variety of standardized ways, ranging from simple delim-
ited formats like CSV to markup languages like XML [4]. 

Weka ARFF [5] is a text-based format designed for 
general machine learning. Although ARFF files are cur-
rently the closest thing to a standard in the MIR commu-
nity, they do have some significant limitations, such as 
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inabilities to associate windows with instances, to group 
the values of a feature array, to store important metadata 
and to associate multiple classes with a single instance. 

Another approach is to store feature values in audio 
files themselves, such as SDIF [6]. This technique can 
have a limited expressivity with respect to pertinent 
metadata, however, and is not appropriate for dealing 
with mixtures of cultural, symbolic and audio data. 

Music Ontology [7] is one of the few representational 
frameworks designed specifically with MIR in mind, and 
it has many admirable strengths. It can represent musical 
ontologies of essentially any kind using RDF [8]. 

Music Ontology has a much broader scope than ACE 
XML, but is arguably less suited specifically to machine 
learning and automatic music classification, despite its 
advantages over ACE XML in other MIR domains. The 
advantages of ACE XML relative to semantic web solu-
tions in general include greater conciseness; a reduced 
need for markup not directly relevant to the core problem 
domain; a lower barrier to entry for non-ontologists, par-
ticularly with respect to simplicity and convenience; a 
cleaner and more explicit structuring that is advantageous 
from a machine learning perspective; human readability, 
which is useful for application debugging and develop-
ment; a self-contained nature that avoids the network de-
pendence of RDF that can cause problems with respect to 
data integrity, robustness and accessibility, particularly 
considering the typically large size of feature data; and 
the simplicity of relying on only a single technology that 
is well-known in the MIR community (i.e., XML).  

3. AN OVERVIEW OF ACE XML 

3.1 General Overview 
The primary design priorities behind ACE XML 2.0 are 
the maximization of expressivity, flexibility and extensi-
bility while at the same time maintaining as much sim-
plicity, accessibility and structure as possible. 

There are four core ACE XML file types: Feature 
Value, Feature Description, Instance Label and Class 
Ontology. These file types hold, respectively, feature val-
ues extracted from instances; abstract information about 
features and their extraction parameters; class labels as-
sociated with particular instances and their subsections, 
as well as general metadata about instances; and onto-
logical relationships between abstract classes. These 
XML file types may each be used independently, or they 
may be packaged with one another if desired (see Section 
3.5).  

The ACE XML file types are explained individually in 
Section 4, although space constraints prohibit more de-
tailed descriptions. The XML DTDs shown in Figures 1 
to 4 do specify their functionality in greater detail, how-
ever. Sample code excerpts for each of the four core ACE 
XML file types are also provided in Figures 5 to 8. It is 
important to note that these excerpts only demonstrate a 

reduced subset of ACE XML’s expressivity, however, as 
many of the ACE XML elements and attributes are op-
tional so that they can be included only when appropriate. 
This makes it possible to use simple and concise files by 
default, while maintaining the potential for much greater 
expressivity when needed.  

ACE XML consists of multiple file types rather than 
just one because of the advantages, with respect to data 
portability and reusability, of explicitly separating fun-
damentally different types of information. One might, for 
example, extract features once from a large number of 
recordings and then reuse the resulting Feature Value file 
for multiple purposes, such as classification by per-
former, composer, genre and mood.  

ACE XML is implemented in XML partly because it is 
a standardized format for which parsers are widely avail-
able. XML is also very flexible while maintaining the 
ability to structure data formally and clearly. XML is also 
relatively easily readable by both humans and machines. 

ACE XML 2.0 is a significantly updated and expanded 
version of the earlier ACE XML 1.1, which was origi-
nally designed specifically for use with ACE [9]. It be-
came apparent that certain important types of information 
could not be expressed with ACE XML 1.1, so ACE 
XML 2.0 was developed in order to address these needs 
and to make ACE XML useful to the MIR community 
outside the specific scope of ACE.  

3.2 jMIR Support 
jMIR [10] is a powerful suite of software applications 

developed for use as MIR research tools. Each of the 
jMIR applications reads and writes ACE XML, some-
thing that provides ACE XML early adopters with a pow-
erful set of tools that are ready for immediate use:  

 

• jAudio: An audio feature extractor. 
• jSymbolic: A MIDI feature extractor. 
• jWebMiner: A feature extractor that extracts cultural 

and demographic information from the web. 
• ACE: A meta-learning system for machine learning. 
• jMusicMetaManager: Software for managing and 

cataloguing large musical datasets. 
• Codaich, Bodhidharma MIDI, SAC: research datasets. 

3.3 Incorporating ACE XML into Other Software 
A key factor in the effectiveness of any effort to encour-
age researchers to adopt new file formats is the ease with 
which they can incorporate the formats into their own 
software. Open-source code libraries are therefore cur-
rently in the process of being implemented to support 
ACE XML 2.0. These libraries are implemented in Java 
in order to increase portability, and do not rely on any 
additional technologies that might require special installa-
tion. They will provide functionality for parsing, writing 
and merging ACE XML files; for submitting search que-
ries in JDOQL or SQL; and for performing various utility 
functions such as translating ACE XML data to and from 
Weka data. They will also include standard data struc-
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tures that external code can access via a simple and well-
documented API or a GUI ACE XML editor. 

3.4 Linking ACE XML 2.0 to External Resources 
It can be advantageous to associate instances, features or 
classes with various types of external information. Al-
though ACE XML 2.0 can represent a broad range of 

metadata internally, the strong structuring that makes 
ACE XML advantageous for machine learning ultimately 
imposes limitations relative to the much more freely 
structured RDF, for example. 

ACE XML addresses this issue by permitting the use 
of RDF-like triples via the optional uri XML element and

 
 
<!ELEMENT ace_xml_feature_value_file_2_0 (comments?, 
             related_resources?, instance+)> 
<!ELEMENT comments (#PCDATA)> 
<!ELEMENT related_resources (feature_value_file*, 
             feature_description_file*, instance_label_file*, 
             class_ontology_file*, project_file*, uri*)> 
<!ELEMENT feature_value_file (#PCDATA)> 
<!ELEMENT feature_description_file (#PCDATA)> 
<!ELEMENT instance_label_file (#PCDATA)> 
<!ELEMENT class_ontology_file (#PCDATA)> 
<!ELEMENT project_file (#PCDATA)> 
<!ELEMENT uri (#PCDATA)> 
<!ATTLIST uri predicate CDATA #IMPLIED> 
<!ELEMENT instance (instance_id, uri*, extractor*, coord_units?, 
                    s*, precise_coord*, f*)> 
<!ELEMENT instance_id (#PCDATA)> 
<!ELEMENT extractor (#PCDATA)> 
<!ATTLIST extractor fname CDATA #REQUIRED> 
<!ELEMENT coord_units (#PCDATA)> 
<!ELEMENT s (uri*, f+)> 
<!ATTLIST s b CDATA #REQUIRED e CDATA #REQUIRED> 
<!ELEMENT precise_coord (uri*, f+)> 
<!ATTLIST precise_coord coord CDATA #REQUIRED> 
<!ELEMENT f (fid, uri*, (v+ | vd+ | vs+ | vj))> 
<!ATTLIST f type (int | double | float | complex | string) 
            #IMPLIED> 
<!ELEMENT fid (#PCDATA)> 
<!ELEMENT v (#PCDATA)> 
<!ELEMENT vd (#PCDATA)> 
<!ATTLIST vd d0 CDATA #REQUIRED d1 CDATA #IMPLIED  
             d2 CDATA #IMPLIED d3 CDATA #IMPLIED  
             d4 CDATA #IMPLIED d5 CDATA #IMPLIED 
             d6 CDATA #IMPLIED d7 CDATA #IMPLIED 
             d8 CDATA #IMPLIED d9 CDATA #IMPLIED> 
<!ELEMENT vs (d+, v)> 
<!ELEMENT d (#PCDATA)> 
<!ELEMENT vj (#PCDATA)> 

Figure 1: XML DTD for the ACE XML 2.0 Feature Value file 
format.  

 
 
<!ELEMENT ace_xml_feature_description_file_2_0 (comments?, 
             related_resources?, global_parameter*, feature+)> 
<!ELEMENT comments (#PCDATA)> 
<!ELEMENT related_resources (feature_value_file*, 
             feature_description_file*, instance_label_file*, 
             class_ontology_file*, project_file*, uri*)> 
<!ELEMENT feature_value_file (#PCDATA)> 
<!ELEMENT feature_description_file (#PCDATA)> 
<!ELEMENT instance_label_file (#PCDATA)> 
<!ELEMENT class_ontology_file (#PCDATA)> 
<!ELEMENT project_file (#PCDATA)> 
<!ELEMENT uri (#PCDATA)> 
<!ATTLIST uri predicate CDATA #IMPLIED> 
<!ELEMENT feature (fid, description?, related_feature*, uri*, 
             scope, dimensionality?, data_type?, parameter*)> 
<!ELEMENT fid (#PCDATA)> 
<!ELEMENT description (#PCDATA)> 
<!ELEMENT related_feature (fid, relation_id?, uri*,  
                           explanation?)> 
<!ELEMENT relation_id (#PCDATA)> 
<!ELEMENT explanation (#PCDATA)> 
<!ELEMENT scope (#PCDATA)> 
<!ATTLIST scope overall (true|false) #REQUIRED 
                sub_section (true|false) #REQUIRED 
                precise_coord (true|false) #REQUIRED> 
<!ELEMENT dimensionality (uri*, size*)> 
<!ATTLIST dimensionality orthogonal_dimensions CDATA #REQUIRED> 
<!ELEMENT size (#PCDATA)> 
<!ELEMENT data_type (#PCDATA)> 
<!ATTLIST data_type type (int | double | float | complex | 
                          string) #REQUIRED> 
<!ELEMENT global_parameter (parameter_id, uri*, description?, 
                            value?)> 
<!ELEMENT parameter (parameter_id, uri*, description?, value?)> 
<!ELEMENT parameter_id (#PCDATA)> 
<!ELEMENT value (#PCDATA)> 

Figure 2: XML DTD for the ACE XML 2.0 Feature De-
scription file format.  

<!ELEMENT ace_xml_instance_label_file_2_0 (comments?, 
             related_resources?, instance+)> 
<!ELEMENT comments (#PCDATA)> 
<!ELEMENT related_resources (feature_value_file*, 
             feature_description_file*, instance_label_file*, 
             class_ontology_file*, project_file*, uri*)> 
<!ELEMENT feature_value_file (#PCDATA)> 
<!ELEMENT feature_description_file (#PCDATA)> 
<!ELEMENT instance_label_file (#PCDATA)> 
<!ELEMENT class_ontology_file (#PCDATA)> 
<!ELEMENT project_file (#PCDATA)> 
<!ELEMENT uri (#PCDATA)> 
<!ATTLIST uri predicate CDATA #IMPLIED> 
<!ELEMENT instance (instance_id, misc_info*, related_instance*, 
                    uri*, coord_units?, section*, 
                    precise_coord*, class*)> 
<!ATTLIST instance role (training | testing | predicted)  
                        #IMPLIED> 
<!ELEMENT instance_id (#PCDATA)> 
<!ELEMENT related_instance (instance_id, relation_id?, uri*, 
                            explanation?)> 
<!ELEMENT relation_id (#PCDATA)> 
<!ELEMENT explanation (#PCDATA)> 
<!ELEMENT misc_info (info_id, uri*, info)> 
<!ELEMENT info_id (#PCDATA)> 
<!ELEMENT info (#PCDATA)> 
<!ELEMENT coord_units (#PCDATA)> 
<!ELEMENT section (uri*, class+)> 
<!ATTLIST section begin CDATA #REQUIRED 
                  end CDATA #REQUIRED> 
<!ELEMENT precise_coord (uri*, class+)> 
<!ATTLIST precise_coord coord CDATA #REQUIRED> 
<!ELEMENT class (class_id, uri*)> 
<!ATTLIST class weight CDATA "1"> 
<!ATTLIST class source_comment CDATA #IMPLIED>  
<!ELEMENT class_id (#PCDATA)> 

Figure 3: XML DTD for the ACE XML 2.0 Instance Label 
file format.  

 
 
 
<!ELEMENT ace_xml_class_ontology_file_2_0 (comments?, 
             related_resources?, class+)> 
<!ATTLIST ace_xml_class_ontology_file_2_0 weights_relative 
             (true|false) #REQUIRED> 
<!ELEMENT comments (#PCDATA)> 
<!ELEMENT related_resources (feature_value_file*, 
             feature_description_file*, instance_label_file*, 
             class_ontology_file*, project_file*, uri*)> 
<!ELEMENT feature_value_file (#PCDATA)> 
<!ELEMENT feature_description_file (#PCDATA)> 
<!ELEMENT instance_label_file (#PCDATA)> 
<!ELEMENT class_ontology_file (#PCDATA)> 
<!ELEMENT project_file (#PCDATA)> 
<!ELEMENT uri (#PCDATA)> 
<!ATTLIST uri predicate CDATA #IMPLIED> 
<!ELEMENT class (class_id, misc_info*, uri*, related_class*, 
                 sub_class*)> 
<!ELEMENT class_id (#PCDATA)> 
<!ELEMENT misc_info (info_id, uri*, info)> 
<!ELEMENT info_id (#PCDATA)> 
<!ELEMENT info (#PCDATA)> 
<!ELEMENT related_class (class_id, relation_id?, uri*, 
                         explanation?)> 
<!ATTLIST related_class weight CDATA "1"> 
<!ELEMENT relation_id (#PCDATA)> 
<!ELEMENT explanation (#PCDATA)> 
<!ELEMENT sub_class (class_id, relation_id?, uri*, 
                     explanation?)> 
<!ATTLIST sub_class weight CDATA "1"> 

Figure 4: XML DTD for the ACE XML 2.0 Class On-
tology file format.  
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its associated predicate attribute. This enables links to be 
specified to external resources of essentially any kind 
without compromising ACE XML’s structured and self-
contained design philosophy. In particular, it makes it 
easy to link ACE XML files to large RDF ontologies. 

3.5 ACE XML 2.0 Project and ZIP Files 
Although it is beneficial to be able to specify the informa-
tion encapsulated in each of the four ACE XML formats 
in separate files, in practice users will want to use multi-
ple ACE XML files together. The ACE XML 2.0 Project 
file format facilitates this by providing functionality for 
linking ACE XML (and other) resources together. 

 It is also possible to package multiple associated ACE 
XML files together into a single ACE XML 2.0 ZIP file 
for simplified storage and distribution. This is also advan-
tageous because of the reduced file sizes resulting from 
data compression. Of course, the original ACE XML files 
may be extracted from this ACE XML ZIP file whenever 
desired. The supporting ACE XML software includes 
functionality for automatically generating, accessing and 
otherwise processing ACE XML Project and ZIP files. 

4. THE CORE ACE XML 2.0 FILE FORMATS 

This section provides descriptions of each of the four core 
ACE XML file formats: Feature Value, Feature Descrip-
tion, Instance Label and Class Ontology.  

4.1 Feature Value Files 
Feature Value files are used to express feature values that 
have been extracted from instances that are to be classi-
fied or used as training data. There is no assumed associa-
tion with any specific kind of data, and so features may 
be extracted from audio recordings, symbolic recordings, 
textual or numeric cultural data, images of album art, etc.  

Features may be extracted from instances as a whole 
(e.g., an entire score), from subsections of instances (e.g., 
audio analysis windows) or from a mixture of the two. 
Subsections may or may not overlap, may or may not be 
of equal size and may or may not cover an instance com-
prehensively. Each instance or subsection may also con-
tain an arbitrary and potentially differing number of fea-
tures, which makes it possible to omit features when ap-
propriate or if they are unavailable. 

Each instance in a Feature Vector file has an in-
stance_id tag that may be used to associate it with class 
labels and metadata stored in an Instance Label file. Simi-
larly, each feature has an fid tag that may be used to asso-
ciate it with feature metadata stored in a Feature Descrip-
tion file. Other information that can be represented in a 
Feature Value file includes the data type (integer, double, 
string, etc.) of the feature, the feature extractor used to 
extract the feature values and links to external resources. 

ACE XML 2.0 allows feature values to be expressed 
using any one of four methodologies, including one that 
is based on JavaScript Object Notation (JSON) [11]. 
Each such representation has its own advantages with re-
spect to the maximum dimensionality of feature arrays, 

the ability to represent sparse feature arrays, human read-
ability and space efficiency. An example of the most 
flexible (but not most space efficient) of these options is 
shown in Figure 5. This option allows feature arrays of 
any dimensionality and size to be represented, including 
sparse arrays and arrays that vary in size. 

4.2 Feature Description Files 
Feature Description files are used to express abstract in-
formation about features. These files do not specify actual 
feature values, as this information is instead specified in 
Feature Value files.  

The information that may be represented in Feature 
Description files includes: details of pre-processing re-
quired before feature extraction (e.g., downsampling); 
feature extraction parameters; notations as to whether fea-
tures are associated with instances as a whole or only 
with instance subsections; the dimensionality and size of 
each feature (i.e., a single-value feature, a feature vector 
or a feature array); the data type of each feature; qualita-
tive feature descriptions; relationships between different 
features; and links to external resources. 

There are other possible applications for Feature De-
scription files beyond simply using them to represent in-
formation associated with Feature Value files. Examples 
include catalogues of features that can be extracted by 
particular feature extraction applications and lists of fea-
tures and associated parameters that have been found to 
be useful for particular music classification applications. 

4.3 Instance Label Files 
Instance Label files are used to specify class labels and 
miscellaneous metadata about instances. These files are 
typically used to express ground-truth annotations or pre-
dicted labels, but there are certainly other uses as well. 

Class labels may be assigned to instances as a whole, 
to subsections of instances, or to both. Subsections may 
be overlapping and may be of varying sizes. Weighted 
multi-class membership is also permitted. Additional in-
formation that may be associated with instances and their 
subsections includes the source of the class labels (e.g., a 
listener survey); whether the class label(s) for an instance 
are predicted labels or ground-truth; relationships of any 
kind between instances (e.g., one is a cover song of an-
other); miscellaneous field-labeled qualitative metadata 
(e.g., the performer or composer of a piece); and links to 
external resources. Instance Label files may be linked 
with Feature Value files using matching instance_id tags 
and with Class Ontology files using matching class tags. 
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<instance> 
   <instance_id>An Artificial Instance</instance_id> 
   <f> 
      <fid>A Single Value Feature</fid> 
      <v>1</v> 
   </f> 
   <f> 
      <fid>Feature Array of Value</fid> 
      <vs><d>0</d><d>0</d><v>1</v></vs> 
      <vs><d>0</d><d>1</d><v>2</v></vs> 
      <vs><d>0</d><d>2</d><v>3</v></vs> 
      <vs><d>1</d><d>0</d><v>11</v></vs> 
      <vs><d>1</d><d>1</d><v>22</v></vs> 
      <vs><d>1</d><d>2</d><v>33</v></vs> 
   </f> 
</instance> 

Figure 5: An excerpt from a sample ACE XML 2.0 Fea-
ture Value file indicating two artificial features extracted 
from a single instance. The first feature has a value of 1, 
and the second is the 2 by 3 feature array: 
[[1,2,3],[11,22,33]]. In practice, a Feature Value file 
could contain multiple such instances as well as features 
extracted from subsections of instances. 

 
 
 
 
 
 
 
 
 

 
<feature> 
   <fid>Beat Histogram</fid> 
   <description>Tempo histogram calculated using  
                Autocorrelation.</description> 
   <related_feature> 
      <fid>Tempo Peak</fid> 
      <relation_id>derivative feature</relation_id> 
   </related_feature> 
   <scope overall="true" sub_section="false" 
          precise_coord="false"></scope> 
   <dimensionality orthogonal_dimensions="1"> 
      <size>161</size> 
   </dimensionality> 
   <data_type type="double"></data_type> 
   <parameter> 
      <parameter_id>normalized</parameter_id> 
      <value>true</value> 
   </parameter> 
</feature> 

Figure 6: An excerpt from a sample ACE XML 2.0 Fea-
ture Description file indicating information about a sin-
gle feature called Beat Histogram. It is noted that Beat 
Histogram is related to another feature called Tempo 
Peak that can be calculated from the Beat Histogram 
feature, that Beat Histogram is configured to be ex-
tracted only for files as a whole, that it consists of a sin-
gle vector of size 161, that feature values are stored as 
doubles and that the values are normalized. In practice, a 
Feature Description file would contain multiple such 
feature clauses, each for a different feature. 

 
<instance role="predicted"> 
   <instance_id>C:\Symbolic\piece_42.midi</instance_id> 
   <coord_units>ms</coord_units> 
 
   <section begin="0" end="85673"> 
      <class> 
         <class_id>Sonata Exposition</class_id> 
      </class> 
   </section> 
   <section begin="85674" end="278894"> 
      <class> 
         <class_id>Sonata Development</class_id> 
      </class> 
   </section> 
   <section begin="278895" end="525419"> 
      <class> 
         <class_id>Sonata Recapitulation</class_id> 
      </class> 
   </section> 
 
   <class weight="3"> 
      <class_id>Haydn</class_id> 
   </class> 
   <class weight="1"> 
      <class_id>Mozart</class_id> 
   </class> 
</instance> 

Figure 7: An excerpt from a sample ACE XML 2.0 In-
stance Label file specifying class labels for a MIDI file. 
As indicated by the role attribute, the labels are pre-
dicted classifier outputs. The subsections are classified 
by form and the overall instance is classified by com-
poser. The classification system has expressed that this 
piece is three times as likely to be by Haydn than by 
Mozart. In practice, an Instance Label file would contain 
multiple such instance clauses. 

 
<class> 
   <class_id>Robert Johnson</class_id> 
</class> 
 
<class> 
   <class_id>Muddy Waters</class_id> 
   <related_class weight="10"> 
      <class_id>Robert Johnson</class_id> 
      <relation_id>Influenced By</relation_id> 
   </related_class> 
   <related_class weight="1"> 
      <class_id>Eric Clapton</class_id> 
      <relation_id>Influenced By</relation_id> 
   </related_class> 
</class> 
 
<class> 
   <class_id>Eric Clapton</class_id> 
   <related_class weight="30"> 
      <class_id>Robert Johnson</class_id> 
      <relation_id>Influenced By</relation_id> 
   </related_class> 
   <related_class weight="10"> 
      <class_id>Muddy Waters</class_id> 
      <relation_id>Influenced By</relation_id> 
   </related_class> 
</class> 

Figure 8: An excerpt from an artificial ACE XML 2.0  

Class Ontology file indicating class labels consisting of 
names of Blues musicians. A type of relationship be-
tween classes is also specified, namely musicians influ-
enced by other musicians. In this example, there is no 
relationship from Robert Johnson to the other musicians 
because he was not influenced by them. Both of the 
other musicians are influenced by Johnson, however. 
Clapton is more influenced by Johnson than by Muddy 
Waters, and Muddy Waters is strongly influenced by 
Johnson but only slightly influenced by Clapton, as indi-
cated by the weight values.  
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4.4 Class Ontology Files 
Class Ontology files are used to specify candidate class 
labels for a particular classification domain as well as 
weighted ontological relationships between classes. 
These files do not, however, specify the labels of any 
actual instances, as this is the domain of Instance Label 
files.  

The ability to specify ontological class structuring has 
several important benefits. From a musicological perspec-
tive, it provides a simple, machine-readable way of speci-
fying a variety of musical relationships. From a machine 
learning perspective, it has the dual advantages of ena-
bling the use of powerful hierarchical classification meth-
odologies that exploit this structuring, as well as learning 
schemes that utilize weighted penalization to punish 
“better” misclassifications less severely as training 
proceeds. 

The information that may be expressed in Class Ontol-
ogy files includes weighted taxonomical links to other 
classes; weighted general ontological links to other 
classes; structured or unstructured descriptions of such 
links; miscellaneous qualitative structured metadata (e.g., 
the birthplace of a composer if music is being classified 
by composer); and links to external resources. 

5. CONCLUSIONS 

This paper has emphasized the need for more effective 
representational formats for use in MIR and automatic 
music classification research. ACE XML 2.0 was pre-
sented as a solution to these needs. It is hoped that ACE 
XML will help to facilitate communication and data shar-
ing between research groups involved in the computa-
tional study of music and correspondingly increase the 
efficiency and quality of research. 

Much more detailed information, including sample 
ACE XML 2.0 files and an in-depth ACE XML 2.0 man-
ual, are available at jmir.sourceforge.net. 

6. FUTURE RESEARCH 

Future work will focus on continuing to produce devel-
oper tools to help facilitate the integration of ACE XML 
functionality into other software. Once work is completed 
on implementing the ACE XML 2.0 support software 
(the ACE XML 1.1 software is already complete) in Java 
it will then be ported to other languages, such as Python, 
C++ and Matlab. There are also plans to write ACE XML 
2.0 plug-ins for the popular MIR software toolkits and to 
implement tools for translating ACE XML to other repre-
sentational formats. The upgrading of all jMIR compo-
nents from ACE XML compatibility 1.1 to ACE 2.0 com-
patibility is a particular priority.  

Another priority is the continuing extension and over-
all improvement of the ACE XML standard. This will 
include the expression of more strictly constrained rules 
specified using XSD or Relax NG schemas. 

The publication of a common repository for data 
stored in ACE XML files is another key goal. This will 

enable such data to be posted and shared amongst re-
searchers. This will also be a forum where best practices 
and extensions to the ACE XML standard can be dis-
cussed and agreed upon by the MIR community. Indeed, 
ideas from the MIR community for future improvements 
to ACE XML in general are very welcome, and upgrades 
to the file formats will continue, with the provision that 
backwards compatibility is maintained. 
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ABSTRACT

In this paper we focus on multi-resolution spectral anal-
ysis algorithms for music signals based on the FFT. Two
previously devised efficient algorithms (efficient constant-
Q transform [1] and multiresolution FFT [2]) are reviewed
and compared with a new proposal based on the IIR fil-
tering of the FFT. Apart from its simplicity, the proposed
method shows to be a good compromise between design
flexibility and reduced computational effort. Additionally,
it was used as a part of an effective melody extraction al-
gorithm.

1. INTRODUCTION

Many automatic music analysis algorithms, such as those
intended for melody extraction or multiple pitch estima-
tion, rely on a spectral representation of the audio sig-
nal, typically the discrete Short Time Fourier Transform
(STFT). A key issue that arises is the compromise between
time and frequency resolution. The frequency components
of a Discrete Fourier Transform (DFT) are equally spaced
and have a constant resolution. However, in polyphonic
music a higher frequency resolution is needed in the low
and mid frequencies where there is a higher density of har-
monics. On the other hand, frequency modulation gets
stronger as the number of harmonic is increased, requir-
ing shorter windows for improved time resolution. Thus,
a multi resolution spectral representation is highly desired
for the analysis of music signals. In addition, computa-
tional cost is a critical issue in real time or demanding ap-
plications so efficient algorithms are often needed.

In this context several proposals have been made to cir-
cumvent the conventional linear frequency and constant
resolution of the DFT. The constant-Q transform (CQT) [3]
is based on a direct evaluation of the DFT but the chan-
nel bandwidth∆fk varies proportionally to its center fre-
quencyfk, in order to keep constant its quality factorQ =
fk/∆fk (as in Wavelets). Center frequencies are distributed
geometrically, to follow the equal tempered scale used in
Western music, in such a way that there are two frequency
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components for each musical note (although higher values
of Q provide a resolution beyond the semitone). Direct
evaluation of the CQT is very time consuming, but fortu-
nately an approximation can be computed efficiently tak-
ing advantage of the Fast Fourier Transform (FFT) [1].

Various approximations to a constant-Q spectral repre-
sentation have also been proposed. The bounded-Q trans-
form (BQT) [4] combines the FFT with a multirate filter-
bank. Octaves are distributed geometrically, but within
each octave, channels are equally spaced, hence the log
representation is approximated but with a different num-
ber of channels per octave. Note that the quartertone fre-
quency distribution, in spite of being in accordance with
Western tuning, can be too scattered if instruments are not
perfectly tuned, exhibit inharmonicity or are able to vary
their pitch continuously (e.g. glissando or vibrato). Re-
cently a new version of the BQT with improved channel
selectivity was proposed in [5] by applying the FFT struc-
ture but with longer kernel filters, a technique called Fast
Filter Bank. An approach similar to the BQT is followed
in [6] as a front-end to detect melody and bass line in real
recordings. Also in the context of extracting the melody
of polyphonic audio, different time-frequency resolutions
are obtained in [2] by calculating the FFT with different
window lengths. This is implemented by a very efficient
algorithm, named the Multi-Resolution FFT (MR FFT),
that combines elementary transforms into a hierarchical
scheme.

In this paper we focus on multi-resolution spectral anal-
ysis algorithms for music signals based on the FFT. Two
previously devised efficient algorithms that exhibit differ-
ent characteristics are reviewed, namely, the efficient CQT
[1] and the MR FFT [2]. The former is more flexible re-
garding Q design criteria and frequency channel distribu-
tion while the latter is more efficient at the expense of de-
sign constrains. These algorithms are compared with a new
proposal based on the Infinite Impulse Response (IIR) fil-
tering of the FFT (IIR CQT), that in addition to its simplic-
ity shows to be a good compromise between design flexi-
bility and reduced computational effort.

2. FIR Q TRANSFORM IMPLEMENTATIONS

2.1 Efficient constant Q transform

As stated in [3] a CQT can be calculated straightforwardly
based on the evaluation of the DFT for the desired compo-
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nents. Consider thekth spectral component of the DFT:

X[k] =
N−1
∑

n=0

w[n]x[n]e−j2πkn/N

wherew[n] is the temporal window function andx[n] is
the discrete time signal. In this case the quality factor for
a certain frequencyfk equalsk, sinceQk = fk/∆f =
fkN/fs = k. This corresponds to the number of peri-
ods in the time frame for that frequency. The digital fre-
quency is2πk/N and the period in samples isN/k. In the
CQT the length of the window function varies inversely
with frequency (but the shape remains the same), so thatN
becomesN [k] andw[n] becomesw[n, k]. For a given fre-
quencyfk, N [k] = fs/∆fk = fsQk/fk. The digital fre-
quency of thekth component is then given by2πQ/N [k],
the period in samples isN [k]/Q and alwaysQ cycles for
each frequency are analyzed. The expression for thekth
spectral component of the CQT is then1 ,

Xcq[k] =
1

N [k]

N [k]−1
∑

n=0

w[n, k]x[n]e−j2πQn/N [k]. (1)

Direct evaluation of equation (1) is time consuming, so
an efficient algorithm for its computation has been pro-
posed in [1]. The CQT can be expressed as a matrix multi-
plication,Xcq = x ·T ∗, wherex is the signal row vector of
lengthN (N ≥ N [k] ∀k) andT ∗ is the complex conjugate
of the temporal kernel matrixT whose elementsT [n, k]
are,

T [n, k] =

{ 1
N [k]w[n, k]e−j2πQn/N [k] if n < N [k]

0 otherwise

Computational effort can be improved if the matrix multi-
plication is carried out in the spectral domain. Using Par-
seval’s relation for the DFT, the CQT can be expressed as,

Xcq[k] =
N−1
∑

n=0

x[n]T ∗[n, k] =
1

N

N−1
∑

k′=0

X[k′]K∗[k′, k] (2)

whereX[k′] andK[k′, ·] are the DFT ofx[n] andT [n, ·]
respectively. Spectral kernels are computed only once tak-
ing full advantage of the FFT. In the case of conjugate
symmetric temporal kernels, the spectral kernels are real
and near zero over most of the spectrum. For this rea-
son, if only the spectral kernel values greater than a certain
threshold are retained, there are few products involved in
the evaluation of the CQT (almost negligible compared to
the computation of the FFT ofx[n]).

It is important to notice that although the original deriva-
tion of the CQT implies a geometrical distribution of fre-
quency bins, it can be formulated using other spacing, for
instance a constant separation. In the following, linear
spacing is used to put all the compared algorithms under
an unified framework.

1 A normalization factor1/N [k] must be introduced since the number
of terms varies withk.

2.2 Multi-resolution FFT

A simple way to obtain multiple time-frequency resolu-
tions is through the explicit calculation of the DFT us-
ing different frame lengths. In [2], an efficient technique
is proposed where the DFT using several frame lengths
is computed by means of the combination of the DFT of
small number of samples, called elementary transforms.
The idea arises from the observation that a transform of
frame lengthN can be split into partial sums ofL terms
(assumingN/L ∈ N),

X[k] =

N−1
∑

n=0

x[n]e−
j2πkn

N =

N
L
−1

∑

c=0

(c+1)L−1
∑

n=cL

x[n]e−
j2πkn

N . (3)

Each inner sum in equation 3 corresponds to the DFT of
lengthN of a sequencexc[n], wherexc[n] is anL samples
chunk ofx[n], time-shifted and zero padded,

xc[n] =

{

x[n], cL ≤ n < (c + 1)L
0, otherwise.

So, it is possible to obtain a DFT of a frame of sizeN from
N/L elementary transforms of frame sizeL, defined as

Xl[k] =

L−1
∑

n=0

x[n + lL]e−j2πkn/N , l = 0, ...,
N

L
− 1.

To that end, it is enough to add the elementary transforms
modified with a linear phase shift to include the time shift
of xc[n], as stated by the shifting theorem of the DFT,

X[k] =

N
L
−1

∑

l=0

Xl[k]e−j2πkl/N . (4)

This procedure can be generalized to compute the DFT of
any frame of lengthM = rL by addingr elementary trans-
forms (r = 1, ..., N/L) in the equation 4, which results in
N/L possibles spectral representations with frequency res-
olutions offs/(rL).

The computation of the multi-resolution spectrum from
a combination of elementary transforms requires the win-
dowing process to be done by means of convolution prod-
uct in the frequency domain. Temporal windows of the
form

w[n] =

M
2

∑

m=0

(−1)mam cos

(

2π

M
mn

)

(5)

are suitable for this purpose because its spectrum has only
few non-zero samples. Due to the fact that windowing is
applied over zero-padded transforms, it is convenient to
consider a periodic time window of the same length of the
DFT to avoid the appearance of new non-zero samples of
the window spectrum. In this case, the spectrum of a win-
dow of the form of equation 5 results in

W [k] =

M
2

∑

m=0

(−1)m am

2

(

δ

[

k −m
N

M

]

+ δ

[

k + m
N

M

])

310



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

Figure 1. Zero-Pole diagram and IIR filters responses for
three different input sinusoids of frequenciesf1 = 0.11,
f2 = 0.30 andf3 = 0.86 radians.

For example, in Hann and Hamming windows onlya0 and
a1 are not zero and so its DFT contains solely three non-
zero samples. As a counterpart, the restriction thatN/M =
N/(rL) ∈ N must be imposed, reducing the possible num-
ber of resolutions tolog2(N/L) + 1.

3. IIR Q TRANSFORM

3.1 FIR/IIR Filterbank

The proposed methods define a Finite Impulse Response
(FIR) filterbank with different impulse responses for differ-
ent frequencies. The result of applying one of these filters
can be regarded as multiplying the frame with a time win-
dow, which defines the time/frequency resolution. Variable
windowing in time can also be achieved applying an IIR
filterbank in the frequency domain. Let us define thekth

filter as a first order IIR filter with a polepk, and a zerozk,
as,

Yk[n] = X[n]− zkX[n− 1] + pkYk[n− 1] (6)

Its Z transform is given by,

Hfk
(z) =

z − zk

z − pk
.

Here,Hfk
(z) evaluated in the unit circlez = ejτ repre-

sents its time response, withτ ∈ (−π, π] being the nor-
malized time within the frame. A different time window
for each frequency bin is obtained by selecting the value of
thekth bin as the output of thekth filter.

The design of these filters involves finding the zero and
pole for eachk such thatwk(τ) = |Hfk

(ejτ )|, where
τ ∈ (−π, π] andwk(τ) is the desired window for the bink.
When a frame is analyzed, it is desirable to avoid disconti-
nuities at its ends. This can be achieved by placing the zero
in τ = π, that iszk = −1. If we are interested in a sym-
metric window,wk(τ) = wk(−τ), the pole must be real.
Considering a causal realization of the filter,pk must be
inside the unit circle to assure stability, thuspk ∈ (−1, 1).
Figure 1 shows the frequency and time responses for the
poles depicted in the zero-pole diagram.

This IIR filtering in frequency will also distort the phase,
so a forward-backward filtering should be used to obtain a

zero-phase filter response. Then, the set of possible win-
dows that can be represented with these values ofpk is,

wk(τ) =
(1−pk)2

4

[

A(τ)

B(τ)

]2

=
(1− pk)2(1 + cos τ)

2(1 + p2
k − 2pk cos τ)

(7)

whereA(τ) andB(τ) are the distances to the zero and the
pole, as shown in Figure 1, andgk = (1 − pk)2/4 is a
normalization factor2 to have 0 dB gain at timeτ = 0,
that is,wk(0) = 1.

While this filter is linear and time invariant (in fact fre-
quency invariant3 ) a different time window is desired for
each frequency component. Computing the response of the
whole bank of filters for the entire spectrum sequence and
then choosing the response for only one bin is computa-
tionally inefficient. For this reason, a Linear Time Variant
(LTV) system, that consists in a Time Varying (TV) IIR
filter, is proposed as a way to approximate the filterbank
response at the frequency bins of interest. It will no longer
be possible to define the filter impulse response, as this
could only be done if the filters were invariant to frequency
shifts.

3.2 LTV IIR System

Selecting a different filter response of the filterbank for
each frequency bin can be considered as applying an LTV
system to the DFT of a frame. The desired response of the
LTV for a given frequency bin is the impulse response of
the correspondent filter.

Any LTV system can be expressed in the matrix form,
Y = K.X whereK is the linear transformation matrix
(also referred as Greens matrix) and, in this case,X is the
DFT of the signal frame. A straightforward way to con-
structK for any LTV system is to set itsith column as the
response to a shifted deltaδ[n− i], which is named Steady
State Response (SSR).

The approach followed in this work consists in approxi-
mating the LTV system by a single TV IIR filter, assuming
that the LTV system has a slow time varying behavior and
that its SSR can be implemented by an IIR filterbank. Then
it is verified that the approximation is sufficiently good for
our purposes. In the case of variable windowing to ob-
tain a constant Q, these assumptions hold, as time windows
for two consecutive frequency bins are intended to be very
similar, and the LTV system can be implemented by an IIR
filterbank as seen before.

A direct way of approximating the IIR filterbank is by
a first order IIR of the form of equation 6, but in which the
pole varies with frequency (p = p[n]),

Y [n] = X[n] + X[n− 1] + p[n]Y [n− 1]. (8)

With an appropriate design, it reasonably matches the de-
sired LTV IIR filterbank response, and its implementation
has low computational complexity.

2 This normalization factor can be calculated from the impulse re-
sponse evaluated atn = 0, or by the integral of the time window function.

3 Note that we will use the usual time domain filtering terminologyin
spite of the fact that filtering is performed in the frequency domain.
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3.3 Time Varying IIR filter design

A question that arises is how to design the TV IIR filter
in order to have a close response to that of the LTV IIR
filterbank. Several design criteria have been proposed in
the literature [7], that may depend on the problem itself.

The TV IIR can also be represented by a matrixKv in
a similar way as the LTV filterbank, so the design can be
done as in [7], by minimizing the normalized mean square
error,E = ||K − Kv||2/||K||2. In this work, the adopted
design criteria is to impose the windows behavior in time
in order to obtain the desired constant Q. Then, the error is
regarded as the difference between the desired Q and the
effective obtained value. It becomes necessary to define
an objective measure of Q. Usually the quality factor of a
passband filter is defined as the ratio between the center
frequency and the bandwidth at 3 dB gain drop. In our
case the filtering is done in the frequency domain, so it is
reasonable to measure Q in the time domain. Given that Q
represents the number of cycles of an analyzed frequency
component in the frame, it makes sense to define Q as the
number of cycles within the window width at a certain gain
drop, for example 3 dB. Ifτ ′k is the time at this drop for
frequencyfk, wk(τ ′k) = 10−

3

20 w(0) , w′

k, thenτ ′k =
Q/(2fk). This definition allows the comparison of Q for
methods with different window shapes. Note however, that
a similar measure of Q can be formulated in the frequency
domain.

In the proposed approach the first step is to design an
IIR filterbank that accomplishes the constant Q behavior.
Then, a TV IIR filter is devised based on the poles of the
filterbank. Finally a fine tuning is performed to improve
the steadiness of the Q value for the TV IIR filter. In the
following section, this procedure is described in detail.

3.3.1 Proposed design

Following the definition of Q in time, the poles of the IIR
filterbank can be calculated from equation 7 as the solution
of a second order polynomial:(2w′

k − cos(τ ′k)− 1)p2
k+

(2+2 cos(τ ′k)−4w′

k cos(τ ′k))pk +2w′

k−cos(τ ′k)−1 = 0.
Then, a simple and effective design of the TV IIR fil-

ter consists in choosing for each frequency bin the corre-
sponding pole of the IIR filterbank, that isp[n] = pk, with
k = n. The Q factors obtained with this approach are close
to the desired constant value but with a slight linear drift.
This result shows that the slow variation of the LTV system
allows an approximation by a single TV IIR with a little de-
viation that can be easily compensated by adding the same
slope to the desired Q value at each bin. Figure 3 shows
the Q curve for the original and compensated designs.

Another design consideration is that for low frequencies
a constant Q would imply a longer window support than
the frame time. It becomes necessary to limit the timeτ ′k to
a maximum timeτmax, such that2 τmax is smaller than the
frame time. This limitation ofτ ′k to a maximum value must
be done in a smooth way. Let̄τ ′k be a new variable that
represents the result of saturatingτ ′k. The transition can
be implemented with a hyperbola whose asymptotes are
τ̄ ′k = τ ′k andτ̄ ′k = τmax, so that(τ̄ ′k− τmax)(τ̄ ′k− τ ′k) = δ,
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Figure 2. Detail of poles design. Pole locations for the
ideal and saturated design. Impulse responses at low fre-
quencies for the TV IIR and the Steady State, along with
corresponding TV IIR time windows.

whereδ is a constant that determines the smoothness of the
transition.

The selection ofτmax, affects the behavior of the trans-
form in low frequencies. Choosing a smallτmax compared
to the frame time gives poor frequency resolution. On the
contrary, ifτmax is set to a value close to the frame time, a
better resolution is expected, but some distortion appears.
This is because the time windows get close to a rectan-
gular window for low frequencies. The spectrum of these
windows has big side lobes, introducing Gibbs oscillations
in the representation. Additionally, as a time window for
low frequency approaches to a rectangular shape, its re-
sponse to an impulse vanishes more slowly, so it becomes
necessary to calculate the response for some negative fre-
quency bins, adding extra complexity. In practice it is
reasonable to choose an intermediate value ofτmax, e.g.
τmax ≈ 0.7π, such that only for very low frequencies the
transform exhibits non constant Q. Figure 2 shows details
of the described poles design.

3.3.2 TV IIR filtering and zero-padding in time

It is common practice to work with a higher sampling fre-
quency of the spectrum, typically obtained by zero-padding
in time. In this case the TV IIR filter design changes, as the
signal support becomes(−τ1, τ1] with 0 < τ1 < π. Then,
the discontinuity to be avoided at the ends of the frame ap-
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p = design_poles (NFFT, Q) ;
X = f f t ( f f t s h i f t (s ) ) ;
Y ' ( 1 ) = X( 1 ) ;
f o r i = 2 :NFFT/ 2

Y ' ( n ) = X(n−1) + X(n ) + p (n )Y ' ( n−1) ;
end
Y(n ) = Y ' ( NFFT/ 2 ) ;
f o r i = NFFT/2−1:−1:1

Y(n ) = Y ' ( n +1) + Y ' ( n ) + p (n )Y(n +1) ;
end

Table 1. Pseudocode of the TV IIR filter. First, the poles
and normalization factor are designed given the number of
bins (NFFT) and the Q value. Then the FFT of the signal
frames is computed after centering the signal at time 0. Fi-
nally the forward-backward TV IIR filtering is performed
for that frame.

pears at±τ1, so a couple of zeros at±τ1 have to be placed
instead of the zero atπ. Window properties outside this
support are irrelevant, as windowed data values are zero.
The design of poles has to take into account the new zeroes
and the time re-scaling, but windows with similar proper-
ties are obtained.

3.3.3 Implementation

The method implementation4 is rather simple, as can be
seen in the pseudocode of Table 1. A function to design the
poles is called only once and then the forward-backward
TV IIR filtering is applied to the DFT of each signal frame.
The proposed IIR filtering applies a window centered at
time 0, so the signal frame has to be centered before the
transform. To avoid transients at the ends, the filtering
should be done circularly using a few extra values of the
spectrum as prefix and postfix. Their lengths can be cho-
sen so as truncation error lies below a certain threshold, for
instance 60 dB.

4. METHODS COMPARISON

4.1 Frequency scale

Depending on the context of the music analysis application
different frequency grids may be preferred. To this respect,
the efficient CQT method can be designed for any arbitrary
frequency spacing. On the contrary, the MR FFT and the
IIR CQT are constrained to a linear frequency scale be-
cause they rely on the DFT. This spacing typically implies
an oversampling at high frequencies to conform with the
minimum spacing at low frequencies.

4.2 Effective quality factor

The analyzed methods have different flexibility to define
an arbitrary Q at each frequency. The efficient CQT offers
the freedom to set any possible Q for every bin. The MR
FFT allows choosing the resolution for every bin from a
reduced set not enabling an arbitrary Q. On the other hand,

4 The complete code is available athttp://iie.fing.edu.uy/
˜ pcancela/iir-cqt .

Figure 3. Comparison of the effective Q for a target value
of 12.9 given the definition of 3.3. This value gives 34
cycles within the window, as commonly used in the CQT.

Figure 4. Windows comparison at frequenciesf1, f2 and
f3 for the different methods. Atf1 andf3 the three meth-
ods have the same Q, while atf2 the MR FFT can not
achieve the desired Q. For this reason, the two nearest MR
FFT windows are considered atf2. CQT and MR FFT are
computed using a Hamming and Hann windows respec-
tively.

the TV IIR filter allows any Q value for any frequency but
with the constraint that it evolves slowly with frequency.
This holds particularly well in the case of a constant Q
transform, so the IIR CQT can give any constant Q with
a fairly simple design. Figure 3 shows the obtained Q with
the different methods. It can be observed that the MR FFT
has a bounded Q due to the resolution quantization.

4.3 Windows properties

The spectral and temporal characteristics of windows at
three different frequencies are shown in Figure 4 for each
method. At frequencyf1, IIR CQT time window behaves
like a Hann window. For lower frequencies it exhibits a
flatter shape to extend the range of constant Q (see Figure
2). For higher frequencies, the main lobe of the obtained
windows has a steeper drop up to -50 dB compared to a
conventional Hann or Hamming window. As a counter-
part, time resolution is slightly diminished. Note that the
selected drop value in the definition of Q sets the location
in this compromise.
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4.4 Computational complexity

The three algorithms are compared based on the number of
real floating point operations performed in mean for each
frequency bin. All of them compute the DFT of a non win-
dowed frame, so these operations are not considered.

The number of operations in the efficient CQT depends
on the length of the frequency kernels. This length varies
with Q and is different for different frequency bins. For
the Q and threshold values used in Figures 3 and 4 (QCQT

= 34, Q = 12.9, th = 0.0054),NFFT= 2048 and fs = 44100
Hz, the frequency kernel length varies from 1 to 57 coef-
ficients, which implies a mean number of 27 real multi-
plications and 27 real additions. This result depends on
the threshold and inversely on Q. The MR FFT takes ad-
vantage of the hierarchical implementation of the FFT to
compute the transform, so the windowing in the frequency
domain needs only 3 complex sums and 2 multiplications
for each bin. The total number of real floating point oper-
ations is then, 4 multiplications and 6 additions. The IIR
CQT involves a forward and backward IIR filtering with a
variable real pole and a zero, followed by a real normaliza-
tion (see Table 1 for a pseudocode). As the frequency com-
ponents are complex values, the necessary number of real
operations to compute each bin is 6 multiplications and 8
additions (plus a negligible number of extra operations due
to the circularly filtering approximation).

5. APPLICATIONS AND RESULTS

Finally, two different examples of the spectral analysis of
polyphonic music using the proposed IIR CQT method
are shown in Figure 5 together with conventional spectro-
grams. As it is expected in a constant Q transform, it can
be noticed that singing voice partials with high frequency
slope tend to blur in the spectrogram but are sharper in
the IIR CQT. This improved time resolution in high fre-
quencies also contributes to define more precisely the note
onsets, as can be seen in the second example (e.g. the
bass note at the beginning). Moreover, in the low fre-
quency band, where there is a higher density of compo-
nents, the IIR CQT achieves a better discrimination, due to
the fact that its time windows are flatter than typically used
windows. At the same time, frequency resolution for the
higher partials of notes with a steady pitch is deteriorated.

The proposed IIR CQT method was used as part of the
spectral analysis front-end of a melody extraction algo-
rithm submitted to the MIREX Audio Melody Extraction
Contest 2008, performing best on Overall Accuracy5 . Al-
though the constant Q behavior of the spectral representa-
tion is just a small component of the algorithm, the results
may indicate that the usage of the IIR CQT is appropriate.

6. CONCLUSIONS

In this work a novel method for computing a constant Q
spectral transform is proposed and compared with two ex-

5 The MIREX 2008 evaluation procedure and results are available
at http://www.music-ir.org/mirex/2008/index.php/
Audio_Melody_Extraction .

Figure 5. STFT and IIR CQT for two audio excerpts, one
with a leading singing voice and the other, instrumental
music.

isting techniques. It shows to be a good compromise be-
tween the flexibility of the efficient CQT and the low com-
putational cost of the MR FFT. Taking into account that it
was used in the spectral analysis of music with encourag-
ing results and that its implementation is rather simple, it
seems to be a good spectral representation tool for audio
signal analysis algorithms.
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ABSTRACT

Multi-pitch estimation of sources in music is an ongoing
research area that has a wealth of applications in music in-
formation retrieval systems. This paper presents the sys-
tematic evaluations of over a dozen competing methods
and algorithms for extracting the fundamental frequencies
of pitched sound sources in polyphonic music. The eval-
uations were carried out as part of the Music Information
Retrieval Evaluation eXchange (MIREX) over the course
of two years, from 2007 to 2008. The generation of the
dataset and its corresponding ground-truth, the methods by
which systems can be evaluated, and the evaluation results
of the different systems are presented and discussed.

1. INTRODUCTION

A key aspect of many music information retrieval (MIR)
systems is the ability to extract useful information from
complex audio, which may then be used in a variety of
user scenarios such as searching and organizing music col-
lections. Among these extraction techniques, the goal of
multiple fundamental frequency (multi-F0) estimation is
to extract the fundamental frequencies of all (possibly con-
current) notes within a polyphonic musical piece. The ex-
tracted representations usually either take the form of a
1) list of pitches vs. time; or, 2) a MIDI-like representa-
tion that contains individual notes and their onset and off-
set times. These representations represent an intermediary
between the audio and the score. While automatic tran-
scriptions systems concern themselves with generating the
actual score of music being analyzed, the intermediate rep-
resentation generated by multi-F0 systems is useful in its
own right. Such information can be very useful for other
MIR systems as higher level features: to define the struc-
ture of the song, to make a better search or recommenda-
tion based on the score, or for F0-guided source separation.
Recently, there has been great interest in multi-F0 estima-
tion.

To understand the current state of art, starting in 2007,

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
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the MIREX [3] organized a multi-F0 evaluation task. This
task can be considered as an evolution and superset of the
previous MIREX audio melody extraction tasks. For more
information on audio melody extraction, we refer the reader
to [13]. The MIREX multiple-F0 task consists of two sub-
tasks built around the two pitch representations mentioned
earlier. The first subtask is called Multiple-F0 Estimation
(MFE). In MFE, systems are required to return a list of
active pitches at fixed time steps (analysis frames) of a
polyphonic recording. The second subtask is called Note
Tracking (NT). In the NT subtask, systems are required to
return the note F0, onsets and offsets of note events in the
polyphonic mixture, similar to a piano-roll representation.

The MIREX multiple-F0 task attracted many researchers
from around the world. In the 2007 MFE subtask, there
were a total of 16 algorithms from 12 labs. For the NT
subtask, there were 11 algorithms from 7 labs. In 2008,
there were a total of 15 algorithms from 10 labs for MFE
and 13 algorithms from 8 labs for NT.

This paper serves to discuss the current performance of
multi-F0 systems and to analyze the results of the MIREX
algorithm evaluations. The paper is organized as follows.
The rest of Section 1 describes the main approaches and
challanges to MFE and NT. Section 2 describes the eval-
uation process. Section 2.1 describes the dataset and Sec-
tion 2.2 defines the evaluation metrics. Section 3 discusses
the results and some approaches from the MIREX 2007
and 2008 MFE and NT subtasks. Section 4 provides some
concluding remarks.

1.1 An Overview of Multiple-F0 Estimation and Note
Tracking Methods

There are many methods for F0 estimation and note track-
ing and an in-depth coverage of the many possible tech-
niques is beyond the scope of this paper. Instead, we will
provide a very brief overview of methods. Table 1 shows
the participants of the MIREX 2007 and 2008 MFE and
NT subtasks and their proposed methods. All systems use
a time-frequency representation of the input signal as a
front-end. The time-frequency representations include short-
time Fourier transforms [1,2,6,10,11,13,15], auditory filter
banks [16, 17], wavelet decompositions [5] and sinusoidal
analysis [18]. Characteristics of the spectrum such as har-
monicity [5,10,14,17,19], spectral smoothness [11], onset
synchronicity of harmonics [18] are often used to extract
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F0s either by grouping harmonics together or calculating
scores for different F0 hypotheses.

A large cross-section of techniques use nonnegative ma-
trix factorization (NMF) to decompose the observed mag-
nitude spectrum into a sparse basis. Fundamental frequen-
cies can then be determined for each basis vector, and the
onsets/offsets are computed from the amplitude weight of
each basis throughout a piece. Some systems follow classi-
fication approaches which attempt to find pre-trained notes
in the mixture. In general, it is possible to categorize the
methods used into two groups in terms of how they ap-
proach polyphony. In the first group, systems extract F0s
for the predominant source in the polyphonic mixture. The
source is subsequently canceled or suppressed and the next
predominant F0 is estimated. This procedure goes on iter-
atively until all sources are estimated. In the second group,
systems attempt to estimate all F0s jointly.

2. EVALUATION

Extracting pitch information from polyphonic music is a
difficult problem. This is why we choose to subdivide the
task into the two MFE and NT subtasks. MFE defines a
lower level representation for multiple-F0 systems. In this
subtask, the systems estimate the F0s of active sources for
each analysis frame.In many multi-F0 systems, frame-level
F0 estimation is a precursor to the NT subtask. In the NT
subtask, the systems are required to report the F0, onset
and offset times of every note in the input mixture. Origi-
nally, additional timbre-tracking subtasks were envisioned
for the MIREX multi-F0 task. Timbre tracking requires
that the systems return the F0 contour and the notes of
each individual source (e.g., oboe, flute, etc.) separately.
However these subtasks were canceled due to lack of par-
ticipation.

2.1 Creating the Dataset and the Ground-truth

The MIREX multi-F0 dataset consists both of recordings
of a real-world performance and pieces generated from
MIDI. The real-world performance is a recording of L.
van Beethoven Variations from String Quartet Op.18 N.5.
which is adapted and arranged for a woodwind quintet which
consists of bassoon, clarinet, flute, horn and oboe. The
piece was chosen due to its highly contrapuntal nature where
the lines of each instrument are fairly different but sound
harmonious when played together. Also, the predominant
melodies alternate between instruments. The recording was
done at the School of Music at the University of Illinois at
Urbana-Champaign. First, the members of the quintet were
recorded playing together where each performer was close
mic‘ed. Second, each part was then recorded in complete
isolation while the performer listened to and played along
with the other parts previously recorded through headphones.
The rerecording was done in isolation because there was
significant bleed through of other sources into each instru-
ments microphone during the ensemble recording. The
MIREX 2007 dataset consisted of five different 30-second
sections that were chosen from the nine minute recording.

The MIREX 2008 data set added two more 30-second sec-
tions for a total of seven. The sections were chosen based
on high activity of all sources. The isolated instruments
from those sections were mixed to form mixtures start-
ing from duet (two polyphony) to quintet (five polyphony).
This results in four clips per section where each clip is
generated by introducing an extra instrument to the mix-
ture. There was no normalization during mixing, so each
source‘s loudness in the mixture depends on how it was
performed by the musician.

To create the ground-truth set, monophonic pitch detec-
tors were used on the isolated instrument tracks using a 46
ms window and a 10 ms hop size. The pitch detectors used
were Wavesurfer, Praat and YIN. The pitch contours gen-
erated were manually inspected and corrected by experts to
get rid of common monophonic pitch detector errors such
as voiced / unvoiced detection and octave errors. To cre-
ate the ground-truth for the NT subtask, the isolated instru-
ment recordings were annotated by hand to determine each
note’s onset, offset and its F0 by inspecting the extracted
monophonic pitch contour, the time domain amplitude en-
velope and the spectrogram of the recording.

The second, MIDI-based, portion of the dataset comes
from two different sources. The first set was generated
by [18] by creating monophonic tracks rendered and syn-
thesized from MIDI files using real instrument samples
from the RWC database [8]. The monophonic tracks were
created such that no notes overlap so that each frame in the
track is strictly monophonic. The ground-truth for MFE
was extracted using YIN. The ground-truth for the NT sub-
task was generated using the MIDI file. Two 30-seconds
sections with 4 clips from two to five polyphony were used
from this data. The second set, which was used only for the
note tracking subtask, was generated by [12] by record-
ing a MIDI-controlled Disklavier playback piano. Two
one-minute clips were used from this dataset for the note
tracking subtask. The ground-truth was generated using
the MIDI files.

2.2 Evaluation Methods and Metrics

This section describes the evaluation methods used in MIREX
2007 and 2008. The MFE and NT subtasks have different
methods for evaluation.

2.2.1 Multi-F0 Estimation Evaluation

As mentioned earlier, the multi-F0 task represents a frame-
level estimation of F0s where submitted systems were re-
quired to report active F0s every 10 ms. Many different
metrics are used to evaluate this subtask. We begin by
defining precision, recall and F-Measure as:

Precision =
∑T

t=1 TP (t)∑T
t=1 TP (t) + FP (t)

(1)

Recall =
∑T

t=1 TP (t)∑T
t=1 TP (t) + FN(t)

(2)

F-measure =
2× precision× recall

precision + recall
(3)
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Systems Code Front End F0-Est Method Note Tracking method Ref
Cont AC STFT NMF with sparsity constraints NMF with sparsity constraints [2]
Cao, Li CL STFT Subharmonic sum, cancel-iterate N/A [1]
Yeh et al. YRC Sinusoidal an. Joint Estimation based on spectral features HMM tracking [18]
Poliner, Ellis PE STFT SVM classification HMM tracking [13]
Leveau PL Matching pursuit Matching Pursuit with harmonic atoms N/A [10]
Raczyński et al. SR Constant-Q trans. Harmonicity constrained NMF N/A [14]
Durrieu et al. DRD STFT GMM source model, cancel-iterate N/A [4]
Emiya et al. EBD STFT Derived from note tracking HMM Tracking [6]
Egashira et al. EOS Wavelets Derived from note tracking EM fit of Harmonic Temp. Models [5]
Groble STFT MG Scoring on pre-trained pitch models. N/A [9]
Pertusa, Iñesta PI STFT Joint Estimation based on spectral features Merge notes [11]
Reis et al. RFF STFT Derived from note tracking Genetic Alg. [15]
Ryynänen, Klapuri RK Auditory model Derived from note tracking HMM note and key models [16]
Vincent et al. EBD ERB filter-bank Derived from note tracking Harmonicity constrained NMF [17]
Zhou, Reiss ZR RTFI N/A Harmonic grouping, onset detection [19]

Table 1. Summary of submitted multi-F0 and note tracking systems.

Since not all sources are active during any given analysis
frame, the number of F0s in each time step of the ground-
truth varies with time. For that reason, TP , FP and FN
are defined as a function of time (frame index, t) as fol-
lows: “true positives” TP (t) are calculated for frame t,
based on the number F0s that correctly correspond between
the ground-truth F0 set and the reported F0 set for that
frame. “False positives” FP (t) are calculated as the num-
ber of F0s detected that do not exist in the ground-truth
set for that frame. The notion of “false negatives” FN(t)
however, becomes more problematic. We first begin by
defining the notion of a negative. We define negatives
based on the maximum polyphony of a each musical clip.
Therefore, a quartet clip has a polyphony of four. Nega-
tives in the ground-truth for each frame are calculated as
the difference of the total polyphony and the number of
F0s in the ground-truth. Similarly, the number of negatives
for each frame in the reported F0 transcriptions are the dif-
ference between the total polyphony and the number of re-
ported F0s. Therefore, the false negatives for each frame,
FN(t), is calculated as the difference between the number
of reported negatives at frame t and the number of nega-
tives in the ground-truth at frame t. Therefore, false nega-
tives represent the number of active sources in the ground-
truth that are not reported. The TP (t),FP (t) and FN(t)
are summed across all frames to calculate the total num-
ber of TP s, FP s and FNs for a given musical clip. From
these measures, we can calculate an overall accuracy score
as:

Accuracy =
∑T

t=1 TP (t)∑T
t=1 TP (t) + FP (t) + FN(t)

(4)

This is a measure of overall performance bounded be-
tween 0 and 1 where 1 corresponds to perfect transcrip-
tion. However, it does not explain the types of errors that
can happen. Therefore, we turn our attention to measures
which better identify the types of errors multi-F0 systems
make. We first note that not every instrument is active
at every time frame. For example, an instrument in the
mixture might be inactive through most of a piece’s dura-
tion and active for only a relatively short amount of time.

There are different kind of errors that can happen in es-
timating and reporting F0 candidates. An F0 of a source
can be missed altogether, substituted with a different F0,
or an extra F0 can be inserted (“false alarm” or false pos-
itive). To explain these types of errors, a measure called
the frame-level transcription error score defined by [7] and
used for music transcription by [12] is used. The benefit
of this error measure is that this single error score can be
decomposed into the three aforementioned types of errors,
namely a miss, substitution, or false alarm. The total error
score is defined as

Etot =
∑T

t=1 max(Nref (t), Nsys(t))−Ncorr(t)∑T
t=1 Nref (t)

(5)

where Nref (t) is the number of F0s in the ground-truth
list for frame t, Nsys(t) is the number of reported F0s and
Ncorr(t) is the number of correct F0s for that frame. This
error counts the number of returned F0s that are not correct
(they are either extra or substituted F0s) and the number of
F0s that are missed. The total error is calculated by sum-
ming the frame level errors and normalizing by the the total
number of F0s in the ground-truth. The maximum bound
of this error score is directly correlated with the number
of F0s returned. Not returning anything will result in a
score of 1 while perfect transcription will yield a score of
0. However, the total error is not necessarily bounded by
1. This total error can be decomposed into the sum of three
sub-errors. The substitution error is defined as

Esub =
∑T

t=1 min(Nref (t), Nsys(t))−Ncorr(t)∑T
t=1 Nref (t)

(6)

The substitution error counts the number of ground-truth
F0s for each frame that were not returned, but some other
incorrect F0s were returned instead. These types of errors
can be considered substitutions. This score is bounded be-
tween 0 and 1.

Missed errors are defined as

Emiss =
∑T

t=1 max(0, Nref (t)−Nsys(t))∑T
t=1 Nref (t)

(7)
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which counts the number of F0s in the ground-truth that
were missed by the system with no substitute F0s being
returned. This error is also bounded between 0 and 1.

False alarms are defined as

Efa =
∑T

t=1 max(0, Nsys(t)−Nref (t))∑T
t=1 Nref (t)

(8)

which counts the number of extra F0s returned that are
not substitutes. Every extra F0 after the number of F0s in
the ground-truth list is counted as false alarm. The upper
bound of this error depends on the number of F0s returned.
All errors are normalized by the total number of F0s in the
ground-truth. The error is good measure for this task be-
cause it enables us to explain different types of errors and
can also provide a single measure for comparison.

2.2.2 Note Tracking Evaluation

In the note tracking subtask, systems are required to return
a list of notes where each note is designated by its F0, on-
set and offset time. The evaluation of this subtask is more
straightforward then the frame-level subtask. We can think
of the ground-truth list as a fixed collection of events where
each event is defined by three variables, F0, onset and off-
set. Due to the difficulty of detecting offsets in a highly
polyphonic mixture, the evaluations were calculated using
two different scenarios. In the first scenario, a returned
note event is assumed to be correct if its onset is within
a +/-50 millisecond range of a ground-truth onset and its
F0 is within +/- a quarter tone (3%) of the ground-truth
pitch. Here, the offset times are ignored. In the second sce-
nario, in addition to the previous onset and pitch require-
ments, the correct returned note is required to have an off-
set time within 20% of ground-truth note’s duration around
the ground-truth note’s offset value, or within 50 millisec-
onds of the ground-truth note’s offset, whichever is larger.
For these two cases, precision, recall and F-measure are
calculated where true positives are defined as the returned
notes that conform to the previously mentioned require-
ments and false positives were defined as the ones that do
not. We also define an additional measure called Overlap
Ratio (OR). The OR for a ith correct note in the returned
list is defined as

ORi =
min(tref

i,off , tsys
i,off )−max(tref

i,on, tsys
i,on)

max(tref
i,off , tsys

i,off )−min(tref
i,on, tsys

i,on)
(9)

where tsys
i,off and tsys

i,on are the offset and the onset times
of the correctly returned note and tref

i,off and tref
i,on are the

offset and onset times of the corresponding ground-truth
note. An average OR score is a good measure of how much
the correct returned note overlaps with the corresponding
ground-truth note. This information is especially useful
when the correct notes are calculated based on the onset
only.

3. RESULTS AND DISCUSSION

The evaluation results of two iterations of the MIREX multi-
F0 estimation task (2007-2008) are presented here. We
first turn our attention to the frame-level MFE subtask.
Figure 1 shows the precision, recall, and accuracy scores
for all submitted MFE systems over the two years. In gen-
eral, systems have improved in accuracy over the course of
the two years.

In Figure 2, a bar graph of the total error is shown for
each of the systems. Each total error bar is subdivided into
the three types of errors that constitute it namely, miss er-
rors, substitution errors, and false alarm errors. It is evident
that different systems present different trade-offs in terms
of the types of errors. Referring back to Fig. 1, one can see
that some systems have a very high precision compared to
their accuracy such as those by PI, EBD and PE [6,11,13].
PI has the highest precision in both years. The reason be-
hind this is that most of the F0s reported by these systems
are correct, but they tend to under-report and miss a lot of
active F0s in the ground-truth. This type of behavior is also
evident in Fig. 2. While PI systems have the lowest total
error score, there are very few false alarms compared to
miss errors. PI achieves a low number of local false pos-
itives by taking into account a temporal salience of each
combination of pitches. The results are post-processed by
either merging/ignoring note events or using a weighted
directed acyclic graph (wDAG).

Similarly, EBD and PE use hidden Markov models for
temporal smoothing, and also have a relatively high miss
error. RK [16] and YRC [18] have balanced precision, re-
call, as well as a balance in the three error types, and as
a result, have the highest accuracies for MIREX 07 and
MIREX 08, respectively. On the other hand, some sys-
tems like half of the CL submissions, have a high recall
compared to their precision accuracy. CL returned a fixed
(maximum) number of F0s for every frame regardless of
the input polyphony in order to maximize recall.

The top two submissions share similar approaches. Both
YRC and PI(1,2) generate a pool of candidate F0s for each
frame and combine the candidates into hypotheses to jointly
evaluate the present F0s. YRC first estimates an adap-
tive noise level, and extracts sinusoidal components. The
algorithm then extracts F0 candidates until all the sinu-
soidal components are explained in the signal, as well as
a polyphony inference stage that estimates the number of
concurrent sources. All combinations of F0 candidates
are evaluated by a score function based on smoothness
and harmonicity, among others, and the best set is cho-
sen. Finally, a tracking method is performed by first con-
necting F0 candidates across frames to establish candidate
trajectories and then pruning them using HMMs. PI takes
a similar approach in that, once again, joint F0 hypothe-
ses are evaluated using saliency scores based on properties
such as spectral smoothness and candidate loudness. Post-
processing either takes into account local signal character-
istics taken from adjacent frames or uses wDAGs for F0
note merging or pruning. The top performing algorithm
from 2007, RK uses an auditory inspired model for anal-
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Figure 1. Precision, recall and accuracy for MIREX 07 and MIREX 08 MFE subtask ordered by accuracy.

ysis, and uses HMMs for note models and for note transi-
tions, after a musical key estimation stage, in an attempt to
incorporate some musicological information into the pro-
cess.

For the NT subtask, Fig. 3 shows the precision, recall,
and F-measures of the onset-offset based evaluation of the
note tracking systems. We notice that in the NT onset-
offset evaluation, performance is relatively poor. The likely
explanation of this performance stems from the difficulty
in properly defining an offset ground-truth in the data sets.
In the woodwind data set, offset ground-truth was defined
on the monophonic recordings of each track where the off-
set was labeled at very low loudness. Once mixed, other
signals can dominate the low level of a source at the tail
end of its decay such that the offset within the mixture
is somewhat ambiguous. For the MIDI-generated piano
dataset, offset is defined based on the MIDI file, and does
not take into account the natural decay and the reverbera-
tion of the piano. Therefore, in the woodwind dataset, the
offset time may be overestimated, whereas in the MIDI-
generated dataset, the offset may be underestimated. Due
to the inherent difficulty of properly defining offset, we
also evaluate based strictly on note onset. The onset-based
evaluation results of the NT subtask can be seen in Fig. 4.
More detailed results and significance tests can be found at
the MIREX wiki pages. 1

4. CONCLUSION

Inspecting the methods used and their performances, we
cannot make generalized claims as to what type of ap-
proach works best. In fact, statistical significance testing
showed that the top three methods were not significantly
different. However, systems that go beyond simple frame-
level estimation methods and incorporate temporal con-
straints or other note tracking methods seem to perform
better. It is plausible that timbral/instrument tracking can
improve MFE even more. A future direction for evaluation
would then be to add an instrument tracking subtask that

1 http://www.music-ir.org/mirex/2007/index.php/MIREX2007 Results
http://www.music-ir.org/mirex/2008/index.php/MIREX2008 Results
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Figure 2. Error scores for MIREX 07 and MIREX 08 MFE
subtask ordered by total error.
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Figure 4. Precision, recall and F-measure based on note
onset only for the MIREX 07 and MIREX 08 NT subtask.

would lead to a more complete music transcription task.
The music transcription field is advancing but the problem
is still far from being solved and there is a great room for
improvement.
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ABSTRACT

In this paper we present an approach towards the classifi-
cation of pitched and unpitched instruments in polyphonic
audio. In particular, the presented study accounts for three
aspects currently lacking in literature: model scalability
to polyphonic data, model generalisation in respect to the
number of instruments, and incorporation of perceptual in-
formation. Therefore, our goal is a unifying recognition
framework which enables the extraction of the main in-
struments’ information. The applied methodology consists
of training classifiers with audio descriptors, using exten-
sive datasets to model the instruments sufficiently. All
data consist of real world music, including categories of
11 pitched and 3 percussive instruments. We designed our
descriptors by temporal integration of the raw feature val-
ues, which are directly extracted from the polyphonic data.
Moreover, to evaluate the applicability of modelling tem-
poral aspects in polyphonic audio, we studied the perfor-
mance of different encodings of the temporal information.
Along with accuracies of 63% and 78% for the pitched and
percussive classification task, results show both the impor-
tance of temporal encoding as well as strong limitations of
modelling it accurately.

1. INTRODUCTION

Instrument recognition is one of the big problems of cur-
rent research in music information retrieval (MIR). Auto-
matic indexing and retrieval of audio data are basic con-
cepts to efficiently administrate and navigate through big
datasets. Providing the information about the instrumen-
tation of audio tracks via an automatic recognition sys-
tem can highly facilitate these operations. Besides, such
a system provides higher-level musical information, which
helps to narrow the well-known semantic gap [1].

Computational recognition of musical instruments makes
use of the intrinsic properties of, and differences between,
each of the target categories. In the case of pitched in-
struments, where the sound is mostly composed of quasi-

Permission to make digital or hard copies of all or part of this work for
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not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

harmonic components, these are the amplitudes and fre-
quency positions of the components and their evolution
in time. The time-varying spectral envelope, an eminent
feature for pitched instrument recognition [2], can be es-
timated out of them. For percussive instruments, proper-
ties such as attack and decay time, or frequency coverage,
are properties which allow to distinguish between them
[3]. While these specific characteristics can be determined
without big problems in the case of a monophonic record-
ing, the problem gets harder in polyphonic audio. Since
the co-occurrence of multiple sound sources is producing
overlapping frequency components, information extracted
from the raw audio is often ambiguous and only partially
useful for discriminating between several musical instru-
ments. Without any preprocessing based on source sepa-
ration, which is still not mature enough, models derived
from simplified scenarios seem to imply strong limitations
for the use on polyphonic audio. However, we hypoth-
esize that, by providing a well suited dataset, a coarse –
but MIR useful – modelling of predominant instruments
directly from polyphonic audio is possible.

Below follows a short review of the current state of the
art in computational musical instrument recognition. In
Sec. 3 we substantiate our work and provide details about
the general concepts we used for tackling the problem.
Sec. 4 gives insights in the used data, the developed al-
gorithms, and shows the experimental results. In the sub-
sequent discussion we point out capacities as well as lim-
itations of the chosen techniques and, finally, Sec. 6 con-
cludes this article.

2. RELATED WORK

In current literature there exists a great unbalance between
the amount of studies dealing with recognition of pitched
instruments from polyphonic data and the amount of pub-
lications studying the monophonic case. Since the latter is
not addressed in this paper, we refer to [4] for a compre-
hensive overview. Regarding the scarce publications ad-
dressing the more complex scenario, Kitahara et al. [5] pre-
sented a method to eliminate unreliable feature data caused
by source inference for instrument recognition in artifi-
cial polyphonic mixtures. Linear discriminative analysis
(LDA) was used to enhance features which discriminate
best the five categories. The features were extracted from
the harmonic structures of the corresponding instruments
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and used to train multivariate gaussian prototypes. Addi-
tional post-processing was applied by integrating the frame-
wise a-posteriori probabilities and incorporating higher-
level musical knowledge to get the final classification. In
a more recent work, Every [6] manually annotated songs
from a commercially available collection according to per-
ceptually dominant instruments along with their correspond-
ing pitches. A great set of audio descriptors was extracted
from the raw audio in an unsupervised system, where the
feature vectors were clustered and the resulting accuracies
were measured. A strategy for tackling the problem at hand
from a complete different direction was presented by Essid
et al. [7]. Unlike trying to isolate the instruments present
in the mixture, the whole audio was classified consider-
ing the more frequent combinations of them. Therefore,
a suitable taxonomy was automatically generated by clus-
tering a training corpus. Statistical models were built for
each of the derived categories and used to classify unseen
instances.

Regarding the recognition of percussive events in poly-
phonic music, work has focused on transcription of most
common drum kit sounds (i.e. Bass Drum, Snare Drum
and Hi-Hat sounds). For an excellent overview of studies
on drum transcription up to 2006 see [3]. In a more recent
work Paulus and Klapuri [8] evaluated a system based on
Hidden Markov Models (HMM). In addition to standard
spectral features, temporal features were derived from sub-
band envelopes using 100 ms windows. Slight improve-
ments in transcription accuracy were reported by incorpo-
rating this temporal information. Gillet and Richard [9]
used source separation as preprocessing to obtain a drum-
enhanced signal. A set of features was computed from
both original and “enhanced” signals. Classification was
derived from previously trained support vector machines
(SVM) on an experimental database consisting of 28 songs
from the ENST database (see Sec. 4.1 for an overview of
this database).

Examining the literature review above we detect three
main gaps in which we substantiate our present work. More
precisely, we miss the aspect of polyphonic scalability, i.e.
a detailed research about the application of current meth-
ods for instrument recognition to highly polyphonic audio.
Second, there does not exist, to our knowledge, a study ac-
counting for instrument generality, i.e. presenting a consis-
tent methodology incorporating multiple instruments from
different musical styles for tackling this problem. Finally,
we see a clear need for incorporating temporal character-
istics within the recognition process when working with
statistical models, as this information is known to be im-
portant but often neglected.

3. CONCEPTUAL OVERVIEW

The present study is thought as a first step towards assess-
ing the aforementioned gaps. We propose a methodology
using statistical recognition techniques to build indepen-
dent classification systems for 11 pitched and 3 unpitched
instruments. Ground truth obtained from mostly manually
created collections is used for training the models, gathered

only from real world music. Additionally, we evaluate the
importance and modelling accuracy of temporal aspects by
comparing systems using different encodings of temporal
information. What follows is a more detailed description
of the concepts addressed within this work.

Polyphonic scalability. In this paper we are taking an
approach of learning the time-frequency characteristics of
musical instruments directly from polyphonic data. Our
aim is to label a given audio excerpt with the name(s) of
the most salient instrument(s). There exist some evidence
that the performance of a recognition system is improved
when the polyphonic context is incorporated into the train-
ing process [10]. As we focus on the application of a recog-
nition algorithm on commercially available music, we in-
troduce the least simplified conditions and work directly
with real world data, all containing predominant instru-
ments plus accompaniment.

Instrument generality. We included the recognition of
pitched as well as unpitched (percussive) instruments in
our study. As they imply obvious differences in their sound
characteristics, both groups have to be treated in a slightly
different way for computational processing. Percussive in-
struments produce a high energetic, impulsive sound and
carry the main information in a relative short time interval
(typically between 100 and 200 ms), whereas pitched in-
struments tend to have a quasi-harmonic and continuous
tone ranging from very short to medium long durations
(several seconds). Moreover, percussive sounds produce
a spectrum in which their energy is scattered among the
frequency bins, whereas pitched instruments have a fre-
quency representation with peaks at quasi-integer multi-
ples of their fundamental. Furthermore, a clear pitch de-
pendency of the spectrum can be observed with pitched in-
struments unlike the more fixed spectral patterns of drum
sounds.

Pitched Instruments: We consider an instrument to be
“pitched” if it is able to produce a continuous, quasi-
harmonic sound. Ten pitched instruments (Cello, Clar-
inet, Flute, acoustic and electric Guitar, Hammond Organ,
Piano, Saxophone, Trumpet and Violin) are used in this
study, being a good representation for most of the possible
instrumentations in real world music of Western culture.
We also include the human singing voice as an extra cat-
egory in the corpus, as it can bee seen as frequently used
pitched instrument in pop and rock music.

Unpitched Instruments: Due to the importance of the
drum kit in Western popular music we decided to con-
centrate our research efforts on this particular set of per-
cussive instruments. Likewise, because of the number of
available instances and the musical relevance of each in-
strument within the drum kit, we work with the following,
most common in literature, instrument classes: Bass Drum
(BD), Snare Drum (SD) and Hi-Hat (HH).

Temporal characteristics. We incorporate temporal in-
formation in our statistical modelling process. According
to experimental findings in literature, the human auditory
system uses temporal aspects as an important cue for the
recognition of musical instruments [2], but this informa-
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tion is often neglected in related studies. Together with
quasi static properties of the sound, its evolution in time
shapes the basics of human timbre perception. Therefore
we directly compare different encodings of the temporal
information in our statistical models. Doing that, we do
not only examine the applicability of these aspects to com-
putational musical instrument recognition. We also study
how far they can be modelled directly from the polyphonic
audio.

In [11] the modelling of temporal aspects was already
analyzed by comparing the performance of a monophonic
to a polyphonic similarity task. Timbre similarity was eval-
uated by both static systems, ignoring temporal aspects,
and algorithms incorporating temporal behaviour. The used
data consisted of isolated sound samples for the mono-
phonic similarity task, and one song from The Beatles, seg-
mented into its individual notes, for the polyphonic case.
The authors concluded their work by stating that the frame-
based analysis of polyphonic audio is not suited for mod-
elling any temporal related properties. Moreover, as the
performance of the dynamic systems was superior for the
monophonic analysis and the same amount inferior for the
polyphonic scenario, they identified the polyphony itself
to be the root of all evil. However, we try to tackle this
problem of polyphony by using big, diverse datasets and
show that there still remain temporal aspects which can be
modelled, if not for similarity retrieval, at least for sound
source recognition.

4. METHOD

4.1 Data

A key concept for a successful modelling of musical in-
struments from polyphonic audio is the quality and the
representativeness of the used data. We used two public
available datasets to form the corpus for the recognition of
percussive instruments, and developed our own collection
for the pitched instrument identification task. Therefore
we manually gathered sound samples from the three con-
sidered super-genres of Western music (jazz, classical and
pop/rock), all extracted from commercial available record-
ings.

The objective for the creation of the dataset for the
pitched instruments was to assemble excerpts of poly-
phonic audio in which the target instrument is playing con-
tinuously and is easily audible for a human listener. Each
audio excerpt was then labelled with its predominating in-
strument (double-checked by two human experts), thus as-
signing more than one instrument to an audio excerpt was
not allowed. After all, a corpus containing about 2,500
audio files was created, each one taken from a different
recording. We tried to equally distribute the data among
the three above-mentioned super-genres in order to cover
most musical styles and combinations of instruments.

In the case of percussive instruments we used two pub-
licly available collections with proper annotations of per-
cussive events, namely the ENST-Drums database [12] and
the MAMI database [13]. The first one is the largest pub-

licly available drum database which provides “wet” and
“dry” (see [12] for detailed information) drum tracks, as
well as the respective accompaniment tracks. We decided
to work with the “wet” drums and their accompaniment.
From the obtained collection of 64 songs we randomly
selected 30 second excerpts of every song and its labels.
The MAMI database is a collection of 52 annotated mu-
sic fragments extracted from commercial audio recordings.
We managed to gather 48 songs and aligned them with the
provided annotations. Finally, we mixed the ENST and the
MAMI databases in order to have a representative database
for training purposes. Thus we obtained a large set of poly-
phonic music excerpts adding up a total of 112 songs la-
belled with three, possibly concurrent, tags.

4.2 Algorithm Processing

Our approach towards assessing the information encoded
by the different instruments and developing suitable mod-
els is based on classical pattern recognition techniques.
First, we extract segments from the audio file containing
the target instrument. For the drum recognition algorithm
we generate excerpts based on onset detection: either we
take a segment starting from the onset and lasting for 150
ms or, if the next onset falls within the following 150 ms,
we take the inter-onset-interval. In the end, we include ev-
ery so-generated excerpt in the dataset. For the pitched in-
struments we randomly extract a maximum of four 2.5 s
long segments from each audio file. This grants a big
amount of variability in the polyphonic background, which
accompanies the main instrument. The length of 2.5 s
was empirically determined and showed superior perfor-
mance over shorter durations, whereas no significant im-
provement could be observed by using longer excerpts.

These segments are then framed with a fixed framesize
of 46 ms and hopsize of 12 ms using a Blackman-Harris
windowing function and audio features are extracted for
every frame. We use a big amount of spectral, cepstral, and
tonal features, all of them are well known audio descrip-
tors and will not be discussed here. For a comprehensive
overview of standard audio features we refer the interested
reader to [14].

The frame-wise extraction results in a time series of fea-
ture vectors, consisting of the raw feature values. This two
dimensional representation (features versus frames) is fur-
ther processed by describing the evolution in time of each
audio feature. We compute standard statistical measures
like mean, variance from both the actual and the delta val-
ues, as well as more specific quantities accounting for the
temporal information. The full set of the applied functions
together with a short description is listed in Table 1. Fi-
nally, we derive one vector with a dimension of 2,023 rep-
resenting the audio content of the extracted segment.

To decrease the complexity of the problem we perform
feature selection on our data. For our experiments we
search for the best subset of descriptors in the feature space,
taking their correlation with the respective classes and their
intercorrelation inside the subset into account [16]. We
apply a 10 fold cross-validated feature selection to return
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name description
mean mean of the values

var variance of the values
dmean mean of the delta values

dvar variance of the delta values
max-norm-pos location of the maximum
min-norm-pos location of the minimum

attack slope of the attack
decay slope of the decay
slope overall slope

t-centroid temporal centroid of the values
t-skewness temporal skewness of the values

t-kurtosis temporal kurtosis of the values

Table 1. Applied functions to describe temporal aspects of
the raw feature values. See [15] for details on their imple-
mentation.

Figure 1. Block diagram of the training and recognition
process. Black arrows indicate the training process while
white ones show the prediction cycle. Note the decoupled
modules of extraction, temporal integration and selection
in the feature processing stage.

both a discriminative and compact set of descriptors. This
procedure reduces the dimensionality of the vectors by a
factor of 20, which significantly lowers the computation
time of the following steps.

The feature vectors are then used to train SVMs, pow-
erful classifiers for complex classification tasks. As the
SVM is a binary classifier by definition, different strategies
for combining the data and training the SVMs were tested
to apply them to the multi-class problem. For our drum
recognition system we utilized a balanced one–versus–all
schema, where one SVM discriminates between the target
category and an artificial one, consisting of a mixture of
the remaining classes. Hence, each classifier determines
the presence or absence of the respective class. In the
case of pitched instruments we use a balanced one–versus–
one algorithm with pair-wise coupling (PWC) [17], which
performed superior than the one–versus–all approach in
preceding experiments. Here, the final decision about the
class membership is made by combining the output prob-
abilities of all binary SVMs. The so generated models are
then used to predict the labels of new data, represented as
feature vectors. Fig. 1 shows an overview of the presented
algorithm with a detailed view on the feature processing
stage.

Figure 2. Relative occurrences of different feature cate-
gories in the final feature selection, applied to the full set
of descriptors. The categories are derived in respect to the
acoustic facets the features represent. See text for a de-
tailed description.

4.3 Experiments and Results

First we evaluated the application of our features in the
context of the pitched and the unpitched classification tasks.
We grouped all selected descriptors in respect to the acous-
tic facets they represent: 8 categories were derived to eval-
uate the relative importance of the raw features when ex-
tracted from polyphonic data. In particular, the categories
included ton (HPCPs, pitch salience), bar (Barkband en-
ergies), cep (MFCCs), lpc (LPCs), har (tristimuli, inhar-
monicity, odd2even), sp1 (the four spectral moments), sp2
(crest, rolloff,...), and pow (RMS, 3-bandenergies). Their
relative occurrences are shown in Fig. 2. Furthermore, to
assess the importance of temporal information encoded in
the selected descriptors, we again grouped all of them into
three new subsets. According to their modelling of the
temporal information we derived the categories µ/σ2 (only
the average and deviation of the values), ∆ (coarse encod-
ing of the temporal characteristics in the delta descriptors),
and time (detailed modelling of temporal aspects). Fig. 3
shows the results.

For the final evaluation of the recognition systems we
split our data into two sets of 90 and 10% of their sizes.
10 fold cross validation was performed on the 90% dataset
while the remaining 10% were used as an independent hold-
out test set. Performance was measured by the resulting
classification accuracy. Furthermore, to evaluate the ef-
fectiveness of the descriptors derived by the temporal in-
tegration of the raw feature values, we compared the per-
formance of 3 different feature subsets. The first subset
consisted of the full set of features, the second contained
the average and the variance of both the actual and the delta
feature values and subset 3 only included the mean and the
variance of the raw values. Hence, we look at different
encodings of the temporal information and their applica-
tion for the recognition process. For all three groups we
performed the above described feature selection procedure
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Figure 3. Relative occurrences of different descriptor cate-
gories in the final feature selection, applied to the full set of
descriptors. The categories represent increasing encodings
of the temporal information.

data full set µ/σ2+∆ µ/σ2

Pitched 63.1 / 50.3% 63.4 / 50.3% 61.1 / 47.2%
Drums 77.8 / 78.1% 77.6 / 82.6% 74.7 / 78%

Table 2. Performance comparison of different feature sub-
sets with decreasing incorporation of temporal informa-
tion. Accuracy of 10 fold cross validation (left values) and
the hold-out set (right values) is shown (values for drums
represent averaged individual accuracies).

before classification. The resulting accuracies can be seen
in Table 2. Additionally, Fig. 4 provides details about the
system performance in correctly identifying the individual
classes on subset 2.

A binomial test [18, p. 37] revealed a significant dif-
ference between the cross-validated accuracies in the first
two columns of Table 2 and those from the third column,
for both pitched and unpitched instruments (p-value of the
null hypothesis ≤ 10−3). Obviously, no statistical signif-
icance was found by comparing the first two columns for
both recognition algorithms.

5. DISCUSSION

The above presented results show the capacities of the cho-
sen approach as well as some clear limitations. By using a
big, well suited dataset covering all relevant musical styles
and a selected set of audio descriptors, the algorithm is able
to learn the time-frequency characteristics of different mu-
sical instruments even from polyphonic data to a certain
degree. This indicates that, although the target instrument
is partly masked by various accompanying sounds, there
still exist information in the audio data which is correlated
with the main instrument. Moreover, our selected audio
features can be used for extracting this intrinsic informa-
tion from complex mixtures.

Looking at the results of the grouping experiment pre-

Figure 4. System performance in correctly identifying in-
dividual instrument categories. F-measures of the 10 Fold
Cross Validation on the µ/σ2 + ∆ feature subset.

sented in Fig. 2 we can infer that both Barkband ener-
gies and cepstral features play a major role in discriminat-
ing between instrument classes. In particular, in the drum
recognition the Barkbands form about 60% of all selected
descriptors. This confirms that the spectral energy distri-
bution is an important characteristic of percussive instru-
ments. In the case of pitched instruments, the number of
cepstral and spectral descriptors selected indicates the im-
portance of the spectral envelope for recognition.

However, apart from the imbalance of categories (11 vs.
3), the performance differences between the pitched and
percussive recognition indicate that the former task is more
complex than the latter. This can also be derived from the
fact that the characteristics of pitched instruments are more
difficult to capture with the current audio features. As the
required information is carried in a few frequency bins, a
lot of noise due to overlapping components is incorporated
into the feature values. Furthermore, percussive sounds
generally carry more energy at the same time scale and
therefore exhibit a more robust feature extraction.

Examining the performance of the individual instru-
ments (Fig. 4), we can observe that the Snare Drum per-
forms worse in respect to Bass Drum and Hi-Hat. As the
latter ones only cover the very low and high frequency re-
gions respectively, the Snare Drum has to compete with
several other instruments in the same region, which de-
grades the systems’ performance in correctly labelling
Snare Drum sounds. Regarding pitched instruments, the
weakness of the saxophone can be explained by its variety
inside the class (e.g. Bass, Baritone, Tenor, and Alto), in
contrary to other classes (e.g. hammond organ). Interest-
ingly, the singing voice performs best among the pitched
instruments, which was not expected. As an additional
support of these observations, it is worth mentioning that
similar results were obtained by the hold-out test set.

Nevertheless, compared to the human ability to recog-
nize sounds, which is still the measure of all things, the
results clearly indicate an inferior performance of our ap-
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proach. First, the evaluation of the detailed temporal mod-
elling of our audio features shows that, when extracted
from polyphony, the resulting descriptors are not very dis-
criminative between different instruments. We could not
observe any improvement in performance when they were
incorporated for the drum recognition task, even if a major-
ity of the selected descriptors are describing fine temporal
characteristics (see Fig. 3). Moreover, hardly any of these
descriptors are selected for the pitched model. This im-
plies that in the context of polyphony a detailed modelling
becomes impossible for both short (percussive) and longer
time-scale analysis (pitched), and that the remaining tem-
poral aspects are best encoded in the coarse delta descrip-
tors. That all strengthens the fact that temporal information
is important for recognition but also shows the problems
of modelling it accurately. These outcomes partly conform
with the results presented in [11] by identifying fine tempo-
ral modelling of polyphonic audio as very fragile descrip-
tors but proving the more coarse delta coefficients to be
powerful, even when extracted from polyphonic data. Sec-
ondly, even if there would be some headroom for improve-
ments, the algorithm will never be able to solve certain,
dead-easy for humans, recognition tasks. Therefore we
clearly see the need for different approaches in this area,
starting from new audio representations to new algorithms
for polyphonic processing. Enhanced signal processing as
a front end system coupled with a complete probabilistic
architecture (both bottom-up and top-down) could help to
discover new paths, where an explicit source separation is
not needed. Moreover, the integration of different knowl-
edge sources could increase performance, as one solution
might not always be applicable to all problems at hand.

6. CONCLUSIONS

In this paper we addressed three open gaps in automatic
recognition of instruments from polyphonic audio. First
we showed that by providing extensive, well designed data-
sets, statistical models are scalable to commercially avail-
able polyphonic music. Second, to account for instrument
generality, we presented a consistent methodology for the
recognition of 11 pitched and 3 percussive instruments in
the main western genres classical, jazz and pop/rock. Fi-
nally, we examined the importance and modelling accuracy
of temporal characteristics in combination with statistical
models. Thereby we showed that modelling the temporal
behaviour of raw audio features improves recognition per-
formance, even though a detailed modelling is not possible.
Results showed an average classification accuracy of 63%
and 78% for the pitched and percussive recognition task,
respectively. Although no complete system was presented,
the developed algorithms could be easily incorporated into
a robust recognition tool, able to index unseen data or label
query songs according to the instrumentation.
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ABSTRACT

This paper proposes a novel approach to musical instru-
ment recognition in polyphonic audio signals by using a
source-filter model and an augmented non-negative matrix
factorization algorithm for sound separation. The mixture
signal is decomposed into a sum of spectral bases modeled
as a product of excitations and filters. The excitations are
restricted to harmonic spectra and their fundamental fre-
quencies are estimated in advance using a multipitch esti-
mator, whereas the filters are restricted to have smooth fre-
quency responses by modeling them as a sum of elemen-
tary functions on the Mel-frequency scale. The pitch and
timbre information are used in organizing individual notes
into sound sources. In the recognition, Mel-frequency cep-
stral coefficients are used to represent the coarse shape of
the power spectrum of sound sources and Gaussian mix-
ture models are used to model instrument-conditional den-
sities of the extracted features. The method is evaluated
with polyphonic signals, randomly generated from 19 in-
strument classes. The recognition rate for signals having
six note polyphony reaches 59%.

1. INTRODUCTION

The majority of research on the automatic recognition of
musical instruments until now has been made on isolated
notes or on excerpts from solo performances. A compre-
hensive review of proposed approaches on isolated note
based recognition can be found in [1]. In recent years,
there has been increasing research interest on more de-
manding and realistic multi-instrumental polyphonic au-
dio. Most of the proposed techniques extract acoustic fea-
tures directly from the signal, avoiding the source separa-
tion [2, 3].

In polyphonic mixtures consisting of multiple instru-
ments, the interference of simultaneously occurring sounds
is likely to limit the recognition performance. The inter-
ference can be reduced by first separating the mixture into
signals consisting of individual sound sources. In addition
to the analysis of mixtures of sounds, sound source sepa-
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ration has applications in audio manipulation and object-
based coding.

Many sound source separation algorithms aim at sepa-
rating the most prominent harmonic sound from the mix-
ture. Usually they first track the pitch of the target sound
and then use the harmonic structure and sinusoidal model-
ing in the separation. A separation system based on this ap-
proach has been found to improve the accuracy of a singer
identification in background music [4, 5]. Sinusoidal com-
ponents can also be grouped based on grouping cues such
as common onset times, and the recognition can be done
using the amplitudes of the grouped sinusoidal partials [6].
Instrument-specific harmonic models trained
using instrument-specific material can achieve separation
and recognition simultaneously [7].

Recently, many separation algorithms have been pro-
posed which are based on matrix factorization of the mix-
ture spectrogram. The methods approximate the magni-
tude xt(k) of the mixture spectrum in frame t and at fre-
quency k as a weighted sum of basis functions as

x̂t(k) =
M∑

m=1

gm,tbm(k), (1)

where gm,t is the gain of basis function m in frame t, and
bm(k), m = 1, . . . ,M are the bases. This means that
the signal is represented as a sum of components having
a fixed spectrum and a time-varying gain. The decomposi-
tion can be done, e.g., using independent component anal-
ysis (ICA) or non-negative matrix factorization (NMF), the
latter usually leading to a better separation quality [8]. The
advantage of the methods is their ability to learn the spec-
tral characteristics of each source from a mixture, enabling
separation of sources which overlap in time and frequency.
Instrument recognition systems based on the decomposi-
tion obtained with ICA have extracted the features from
the estimated spectral basis vectors [9] or from the recon-
structed time-domain signals [10].

A shortcoming of the basic spectrogram decompositions
is that each pitch of each instrument has to be represented
with a unique basis functions. This requires a large amount
of basis functions, making the separation and classifica-
tion difficult. Virtanen and Klapuri [11] proposed to model
each spectral basis vector as a product of an excitation and
a filter. The excitation models the time-varying pitch pro-
duced by a vibrating element such as a string, which can
be shared between instruments, whereas the filter models

327



Oral Session 3: Musical Instrument Recognition and Multipitch Detection

Figure 1. System overview.

the unique resonant structure of each instrument. To im-
prove the performance of the method, FitzGerald proposed
to model the excitations of different fundamental frequen-
cies explicitly as a sum of sinusoids at the harmonic fre-
quencies [12]. Badeau et al. [13] used also a harmonic
model for the excitation, but they modeled the filter us-
ing a moving-average model, resulting in a smooth fre-
quency response. Vincent et al. [14] modeled the spec-
tral basis vectors as a weighted sum of harmonically con-
strained spectra having a limited frequency support. In this
model the weights of each frequency band parametrized
the rough spectral shape of the instrument.

In this paper, we present a novel approach to sound sep-
aration by using source-filter model in the context of mu-
sical instrument recognition. The mixture signal is decom-
posed into a sum of spectral bases modeled as a product of
excitations and filters. The excitations are restricted to har-
monic spectra and their fundamental frequencies are esti-
mated in advance using a multiple pitch estimator, whereas
the filters are restricted to have smooth frequency responses
by modeling them as a sum of elementary functions on
Mel-frequency scale. The pitch and timbre information
are used in organizing individual notes into sound sources
(“streaming”). Separated streams are recognized with a
Gaussian mixture model (GMM) classifier. The system
is evaluated with randomly mixed polyphonic signals us-
ing the Real World Computing (RWC) database [15] and
sounds from 19 different instruments.

2. METHOD

An overview of the system is shown in Figure 1. Multi-
pitch estimation is first employed to estimate the pitches
in each analysis frame. The estimated pitches are used
in the streaming algorithm to form temporally continuous
streams of notes. Signals corresponding to individual
sources are estimated using NMF for source-filter model.
Features are extracted from the signals and they are clas-
sified using a GMM classifier. These processing steps are
explained in detail in the following.
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Figure 2. An example excitation spectrum en,t(k) corre-
sponding to pitch value 800 Hz. The entire spectrum is
shown on the left and a closer view of a small portion of it
on the right.

2.1 Signal model

In the proposed signal model, each basis bm(k) in (1) is
expressed as a product of an excitation spectrum en,t(k)
and a filter hi(k). This leads to the model

x̂t(k) =
N∑

n=1

I∑
i=1

gn,i,ten,t(k)hi(k) (2)

for the magnitude xt(k) of the discrete Fourier transform
xt(k) of Hamming-
windowed signal in frame t. The excitations en,t(k) are as-
sumed to correspond to the pitch values of individual notes
n = 1, . . . , N at times t = 1, . . . , T , and the filters hi(k)
are assumed to correspond to the spectral shapes of instru-
ments i = 1, . . . , I . We model only magnitude spectra of
the excitations and filters, and therefore they restricted to
non-negative real values. All combinations of excitations
and filters are allowed, since we do not know in advance
which instrument has produced which note. A polyphonic
signal consists of several excitation and filter combinations
occurring simultaneously or in sequence.

The excitations en,t(k) are generated based on pitch
values obtained from a multipitch estimator. For simplic-
ity, we assume that the number of notes (pitch values) N is
the same in all frames t. The multipitch estimator finds the
pitches Ft(n), n = 1, . . . , N in each frame t, and based on
these, the corresponding excitation spectra en,t(k) are cal-
culated which consist of sinusoidal components with unity
amplitudes at integer multiples of the corresponding pitch,
Ft(n). Figure 2 shows the excitation spectrum correspond-
ing to pitch 800 Hz. Variation in amplitude appears in the
figure since the partial frequencies do not fall exactly on
spectral bins.

The filter hi(k) is further represented as a linear combi-
nation of fixed elementary responses:

hi(k) =
J∑

j=1

ci,jaj(k) (3)

where we chose the elementary responses aj(k) to con-
sist of triangular bandpass magnitude responses, uniformly
distributed on the Mel-frequency scale fMel = 2595 log10(1+
fHz/700). The bases are illustrated in Fig. 3.
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Figure 3. The elementary responses used to represent
the filters hi(k). Triangular responses are uniformly dis-
tributed on the Mel-frequency scale.

Substituting (3) to (2) gives the final signal model

x̂t(k) =
N∑

n=1

I∑
i=1

gn,i,ten,t(k)
J∑

j=1

ci,jaj(k) (4)

In this model, en,t(k) are obtained as described above,
aj(k) are fixed in advance, and therefore only gn,i,t and
ci,j remain to be estimated using the proposed augmented
NMF algorithm. The coefficients ci,j determine the spec-
tral shape (filter) of instrument i, i = 1, . . . , I , and the
gains gn,i,t determine the amount of contribution from in-
strument i to note n at time t. Note that all instruments
are allowed to play the same note simultaneously. Further
constraints to associate each excitation with only one filter
(instrument) are described in Sec. 2.3.

The amount of parameters to estimate is much smaller
in the proposed model (4) than in the traditional model (1).
This is because the traditional model practically requires a
separate basis spectrum for each pitch/instrument combi-
nation. In the proposed model, the different notes coming
from instrument i are represented by a single basis function
(filter) hi(k), multiplied by the excitation spectra en,t(k)
to produce different pitch values. The smaller amount of
parameters improves the reliability of the estimation. Fur-
thermore, in the traditional model, the bases bm(k) have to
be clustered to their respective sources after the estimation,
whereas in the proposed model this takes place automati-
cally.

2.2 Estimating the excitation spectra en,t(k)

The multipitch estimator proposed by Klapuri in [16] is
used to estimate the note pitches Ft(n), n = 1, . . . , N in
each analysis frame t. Figure 4 illustrates the output of
the multipitch estimator for a polyphonic signal consist-
ing of four simultaneous sounds. Based on the pitch value
Ft(n), the corresponding excitation en,t(k) is constructed
which consists of Hamming-windowed sinusoidal compo-
nents at integer multiples of the pitch value Ft(n). These
“harmonic combs” extend over the entire frequency range
considered and have a unity magnitude for all the harmon-
ics. An example excitation spectrum is shown in Figure 2.

2.3 Streaming algorithm to link excitations with filters

In the described model, all combinations of excitations and
filters are allowed. In other words, all instruments (filters)
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Figure 4. Output of the multipitch estimator for a mixture
signal consisting of four simultaneous sounds.

i can play all the detected notes (excitations) n simultane-
ously. In a realistic situation, however, it is more likely that
each note is played by one instrument and only occasion-
ally two or more instruments play the same note.

Parameter gn,i,t controls the salience of each excitation
and filter combination in each frame. Robustness of the
parameter estimation can be improved if the excitations
en,t(k) can be tentatively organized into “streams”, where
a stream consists of the successive notes (excitations) com-
ing from a same instrument (filter). Here stream i corre-
sponds to the instrument i and we assume that the number
of simultaneous notes N is equal to the number of filters
I . The output of the streaming is a label sequence `t(n),
where `t(n) = i indicates that the note (excitation) n at
time t comes from instrument i. Even though the stream
formation algorithm described here is imperfect, it is very
helpful in initializing the augmented NMF algorithm that
will be described in Sec. 2.4.

Let us introduce a state variable qt that corresponds to
a certain stream-labelling of the excitations en,t(k), n =
1, . . . , N at time t. The number of different labellings (and
states) is equal to I!, that is, the number of different permu-
tations of numbers 1, . . . , I . For convenience, the different
permutations of numbers 1, . . . , I are stored as columns in
a matrix [U]n,q of size (N × I!).

A candidate solution to the streaming problem can be
represented as a sequence of states Q = (q1q2 . . . qT ).
The goodness of a candidate state sequence Q is defined
so that it is proportional to the cumulative frame-to-frame
variation of acoustic features extracted within each stream.
Two types of acoustic feature vectors zt(n) were investi-
gated: pitch (zt(n) ≡ Ft(n)) and Mel-frequency cepstral
coefficients (MFCCs) calculated from a spectrum that was
constructed by picking only the spectral components corre-
sponding to the harmonic partials of excitation n from the
mixture spectrum xt(k). More exactly, the goodness Γ of
a candidate solution Q given the features zt(n) is defined
by

Γ(Q| {zt (n)}1:T,1:N ) = γ(q1)
T∏

t=2

γ(qt|qt−1) (5)

where the frame-to-frame feature similarity is calculated
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by

γ(qt|qt−1) = −
N∑

n=1

∥∥zt([U]n,qt
)− zt−1([U]n,qt−1)

∥∥ .
(6)

The above goodness measure basically assumes that F0s of
consecutive sounds coming from the same instrument usu-
ally have only small variations, or using MFCC features,
that the spectral shapes of consecutive sounds from a same
instrument are similar. Initial goodness values γ(q1) are
defined to be zero for all other states except for q1 = 1 for
which we set γ(q1 = 1) = 1. This removes the ambiguity
related to the ordering of different streams.

The most likely sequence Q = (q1q2 . . . qT ) given the
observed features zt (n) is a search problem

Q̂ = arg max
Q

Γ(Q| {zt (n)}1:T,1:N ) (7)

which can be straightforwardly solved using the Viterbi al-
gorithm. The output of the streaming (associating each ex-
citation with only one filter) is not fixed rigidly, but is used
in initializing the NMF parameter estimation algorithm, as
will be described below.

2.4 NMF algorithm for parameter estimation

The spectra hi(k) can be viewed as the magnitude responses
of the filters, and therefore it is natural to restrict them to
be entrywise non-negative. This is achieved using non-
negative coefficients ci,j . Furthermore, the model can be
restricted to be purely additive by limiting the gains gn,i,t

to be non-negative. NMF estimates the bases and their
gains by minimizing the reconstruction error between the
observed magnitude spectrogram xt(k) and the model x̂t(k)
while restricting the parameters to non-negative values.

Commonly used measures for the reconstruction error
are the Euclidean distance, and divergence d, defined as

d(x, x̂) =
∑
k,t

xt(k) log
xt(k)
x̂t(k)

− xt(k) + x̂t(k) (8)

The divergence is always non-negative, and zero only when
xt(k) = x̂t(k) for all k and t. An algorithm that minimizes
the divergence for the traditional signal model (1) has been
proposed by Lee and Seung [17]. In their algorithm, the
parameters are initialized to random non-negative values,
and updated by applying multiplicative update rules itera-
tively. Each update decreases the value of the divergence.

We propose an augmented NMF algorithm for estimat-
ing the parameters of the model (4). Multiplicative updates
which minimize the divergence (8) are given by

ci,j ←ci,j

∑
n,t,k rt(k)gn,i,ten,t(k)aj(k)∑

n,t,k gn,i,ten,t(k)aj(k)
(9)

gn,i,t ←gn,i,t

∑
j,k rt(k)en,t(k)ci,jaj(k)∑

j,k en,t(k)ci,jaj(k)
(10)

where rt(k) = xt(k)
x̂t(k) is evaluated using (4) before each up-

date. The overall estimation algorithm is given as follows:

1. Estimate excitations en,t(k) using multipitch esti-
mator and the procedure explained in Sec.2.2. Ini-
tialize the gains gn,i,t and the filter coefficients ci,j
with absolute values of Gaussian noise.

2. Update the filter coefficients ci,j using (9).

3. Update the gains gn,i,t using (10)

4. Repeat steps 2-3 until the changes in parameters are
sufficiently small.

In our experiments we observed that the divergence (8) is
non-increasing under each update. If streaming is used,
initial gn,i,t are multiplied with small factor 0.001 for n
that do not belong to stream i. Using a small non-zero
value favours the streamed excitations to be associated with
the filter i, but this does not exclude the possibility of that
the NMF algorithm will “correct” the streaming when the
gains are updated during the algorithm. The streaming
based on F0 values or MFCC values is far from perfect
but yet improves the robustness of the parameter estima-
tion with the NMF algorithm.

2.5 Reconstruction of instrument-wise spectrograms

Spectrograms corresponding to a certain instrument i can
be reconstructed by using (4) and limiting the sum over i
to one value only:

x̂i,t(k) =
N∑

n=1

gn,i,ten,t(k)
J∑

j=1

ci,jaj(k) (11)

Spectrogram of instrument i is reconstructed as

yi,t(k) =
x̂i,t(k)
x̂t(k)

xt(k) (12)

where the denominator is calculated using (4) and sum-
ming over all i.

Time-domain signals are generated by using phases of
the mixture signal and inverse discrete Fourier transform.

2.6 Classification

Mel-frequency cepstral coefficients (MFCC) are used to
represent the coarse shape of the power spectrum of the
separated instrument-wise signals. MFCCs are calculated
from the outputs of a 40-channel filterbank which occupies
the band from 30Hz to half the sampling rate. In addition
to the static coefficients, their first time derivatives approx-
imated with a three-point first-order polynomial fit are used
to describe the dynamic properties of the cepstrum.

Gaussian mixture models are used to model instrument-
conditional densities of the features. The parameters for
the GMM are estimated with Expectation Maximization
(EM) algorithm from the training material. Amount of
Gaussian distributions in the mixture model was fixed to 32
for each class. In order to prevent acoustic mismatch be-
tween the training material and the testing material, models
are trained with the separated signals. In the training stage,
the perfect streaming is used with a prior knowledge about
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the sources in the signals. In the classification stage, like-
lihoods of the features are accumulated over the signal for
the instrument classes, energy weighting the likelihoods
with the RMS energy in the corresponding
frame, and the classification is performed with maximum-
likelihood classifier.

3. EXPERIMENTS

The proposed algorithm is evaluated in the musical instru-
ment recognition task with generated polyphonic signals.
The streaming algorithm is evaluated using both the pitch
and the timbre information. “no separation” denotes a sys-
tem where instrument recognition is done without sepa-
ration directly from the mixture signal. “no streaming”
denotes a system where the NMF is initialized (step 1 in
Section 2.4) with random values gn,i,t. “streaming (given
F0s)” denotes system where time-varying pitches of sources
were given in advance. “streaming (est. F0s)” denotes
system where the pitches were estimated with the multi-
pitch estimator and used in automatic streaming. “stream-
ing (timbre)” uses timbre information in streaming and the
F0s used for estimating the timbre were given in advance.
Prior information of polyphony is used in all systems.

3.1 Acoustic Data

Polyphonic signals are generated by linearly mixing sam-
ples of isolated notes from the RWC musical instrument
sound database. Nineteen instrument classes are selected
for the evaluations (accordion, bassoon, clarinet, contra-
bass, electric bass, electric guitar, electric piano, flute, gui-
tar, harmonica, horn, oboe, piano piccolo, recorder, sax-
ophone, trombone, trumpet, tuba) and the instrument in-
stances are randomized either into training (70%) or testing
(30%) set. The polyphonic signals are generated from these
sets, 500 cases for the training and 100 cases for the test-
ing.

Four-second polyphonic signals are generated by ran-
domly selecting instrument instances and generating ran-
dom note sequences for them. For each instrument, the
first note in a note sequence is taken randomly from the
uniform distribution specified by the available notes in the
RWC database for the instrument instance. The next notes
in the sequence are taken from a normal distribution having
a previous note as the mean and the standard deviation σ
(being 6 semitones if not mentioned otherwise). Unisonal
notes are excluded from the note sequence. The notes are
randomly truncated to have length between 100 ms and one
second. Signals from each instrument are mixed with equal
mean-square levels. Examples of test signals are available
at www.cs.tut.fi/~heittolt/ismir09/.

3.2 Evaluation Results

The separation quality was measured by comparing the
separated signals with the reference ones. The signal-to-
noise ratio (SNR) of a separated signal is estimated as

Polyphony
2 3 4 5 6

no
streaming

4.9 2.6 2.1 1.5 1.2

streaming
(est. F0s)

7.2 4.0 2.5 1.7 1.2

streaming
(timbre)

7.6 4.4 3.3 2.4 1.9

Table 1. Average signal-to-noise rations (in dB) for differ-
ent system configurations.

Polyphony
1 2 3 4 5 6

no
separation

62.0 18.7 12.1 13.7 24.4 29.5

no
streaming

62.0 49.5 42.1 42.6 39.3 42.7

streaming
(given F0s)

62.0 59.0 58.0 57.9 57.8 56.0

streaming
(est. F0s)

61.0 60.2 53.5 56.7 55.2 53.8

streaming
(timbre)

62.0 57.6 51.9 57.0 55.9 59.1

Table 2. F-measures (%) for different system configura-
tions.

SNR = 10 log10

Σts(t)2

Σt(s(t)− ŝ(t))2
, (13)

where s(t) is the reference signal and ŝ(t)is the separated
signal. The average signal-to-noise ratios obtained for dif-
ferent system configurations are given in Table 1.

In instrument recognition, balanced F-measure is used
as metric in the evaluations. The recall R is calculated as
the ratio of correctly recognized instrument labels to sum
of the correctly recognized instrument labels and unrecog-
nized instrument labels. The precision P is calculated as
the ratio of correctly recognized instrument labels to all in-
strument labels produced by the system. The F-measure is
calculated from these two values as F = 2RP/(R+ P ).

The evaluation results for different system configura-
tions are given in Table 2. The system without separation
uses the prior knowledge about the polyphony of the sig-
nal to find same amount of instruments directly from the
mixture signal. This increases the random guess rate as
the polyphony increases. The proposed approach using
separation as a pre-processing gives rather steady perfor-
mance regardless of the polyphony and gives reasonable
performance already without the streaming algorithm. The
streaming algorithm improves the results evenly, giving
10-15% increase in performance. The pitch and the timbre
information based streaming gives same level of accuracy,
though the pitch information seems to give slightly more
robust performance. The estimated fundamental frequen-
cies work almost as well as the given frequencies. The
evaluation results for different types of polyphonic signals
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Polyphony
σ 1 2 3 4 5 6
3 51.0 59.9 53.5 57.3 57.6 54.6
6 62.0 57.6 51.9 57.0 55.9 59.1
12 72.0 63.1 53.7 57.5 55.4 57.8

Table 3. F-measures (%) for different polyphonic signal
conditions with the timbre based streaming.

are given in Table 3. The proposed system gives quite con-
sistent results with all levels of the polyphony and when
varying the standard deviation σ from 3 to 12 semitones.
The slight variations in some cases are due to the random-
ization of used instruments for different polyphony levels.

4. CONCLUSIONS

In this paper, we proposed a source-filter model for sound
separation and used it as a preprocessing step for musical
instrument recognition in polyphonic music. The experi-
mental results with the generated polyphonic signals were
promising. The method gives good results when classify-
ing into 19 instrument classes and with the high polyphony
signals, implying a robust separation even with more com-
plex signals. When recognizing the instrument from a se-
quence of several notes, it seems that the remaining slight
separation artefacts average out to quite neutral noise,
whereas the information related to the target instrument is
consistent and leads to a robust recognition. Even when the
F0s are estimated automatically, they provide sufficiently
accurate information to get reasonable results. 1
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ABSTRACT

This paper presents a novel system for multi-pitch track-
ing, i.e. estimate the pitch trajectory of each monophonic
source in a mixture of harmonic sounds. The system con-
sists of two stages: multi-pitch estimation and pitch tra-
jectory formation. In the first stage, we propose a new
approach based on modeling spectral peaks and non-peak
regions to estimate pitches and polyphony in each single
frame. In the second stage, we view the pitch trajectory
formation problem as a constrained clustering problem of
pitch estimates in all the frames. Constraints are imposed
on some pairs of pitch estimates, according to time and
frequency proximity. In clustering, harmonic structure is
employed as the feature. The proposed system is tested on
10 recorded four-part J. S. Bach chorales. Both multi-pitch
estimation and tracking results are very promising. In ad-
dition, for multi-pitch estimation, the proposed system is
shown to outperform a state-of-the-art multi-pitch estima-
tion approach.

1. INTRODUCTION

Multi-pitch analysis is a fundamental research problems in
music information retrieval (MIR). Pitch analysis results
can provide helpful information for many other applica-
tions, such as automatic music transcription, audio source
separation, content-based music search, etc. This task,
however, remains challenging and existing methods do not
match human ability in either accuracy or robustness.
Due to the complexity of multi-pitch analysis, researchers

try to break it into different subproblems. Multi-pitch Es-
timation (MPE) [1, 2] usually refers to estimating pitches
and the number of concurrent pitches (polyphony) in each
single time frame. Based on MPE, Note Formation [3, 4]
forms notes using pitch estimates in adjacent frames.
These two subproblems are important, however, they do

not constitute the whole multi-pitch analysis problem. In
a piece of polyphonic music consisting of several sound
sources (usually different instruments), estimating pitches
and finding the pitch trajectory for each underlying source,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

is a more advanced problem, which we call Multi-pitch
Tracking (MPT).
Multi-pitch tracking is similar to stream organization in

Auditory Scene Analysis (ASA) [5], which is described as
a grouping process of distinct acoustic events into a sin-
gle perceptual entity, i.e. a stream. In [5], Bregman de-
scribes two main grouping processes in stream organiza-
tion. Simultaneous grouping is to “integrate components
that occur at the same time in different parts of the spec-
trum”. Sequential grouping is to “put together events that
follow one another in time”. It is noted that MPE involves
only simultaneous grouping, where harmonics of a sound
source are integrated into a single pitch. Based on MPE,
note formation also involves sequential grouping, where
proximate pitches are integrated in a small time scale into
notes. MPT also involves sequential grouping, but in a
much larger time scale, i.e. the whole music piece.
Multi-pitch tracking is closely related to monaural source

separation, which in fact estimates more information, i.e.
the timbre of each source. A number of source separation
systems [6–8] are built on multi-pitch estimation results.
Other methods [9] usually train prior source models from
solo excerpts. Those methods [10, 11] not relying on pitch
estimation results nor prior source models utilize the same
amount of information as MPT, but they are only tested on
mixtures of two or three sounds.
Multi-pitch tracking is a difficult problem. Even for

humans, only highly trained musicians have the ability to
track concurrent pitch trajectories in listening. Therefore,
some researchers proposed to only detect the main melody
line and bass line of a polyphonic music [12, 13].
To our knowledge, few systems address the multi-pitch

tracking problem. Kameoka et al. [14] proposed a multi-
pitch analyzer based on harmonic temporal structured clus-
tering that jointly estimates pitch, intensity, onset and dura-
tion of each underlying source. Chang et al. [15] presented
a multi-pitch tracking system that and tracks pitches into
note contours using Hidden Markov Models. Although
these methods track concurrent pitch trajectories of mul-
tiple sound sources, they are only evaluated in the multi-
pitch estimation and note formation level [14, 15]. La-
grange and Tzanetakis [16] proposed a sound source sepa-
ration method that streams spectral peaks. It was not, how-
ever, evaluated on pitch tracking performance [16].
In this paper, we propose a system to address the MPT

problem. Our system differs from previous systems in sev-
eral ways. We start with multi-pitch estimation, where we
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Figure 1. System overview.

propose a new method that models spectral peaks and non-
peak regions. Given pitch estimates for individual frames,
we cast pitch trajectory formation as a constrained clus-
tering problem, where each cluster corresponds to a trajec-
tory. Harmonic structure is used as the feature of each pitch
in clustering. Finally, note formation happens after pitch
trajectories are formed, instead of forming notes and then
placing them in streams, as previous systems have done.
Figure 1 shows the system structure. We address the

MPT problem in two stages. The first stage is multi-pitch
estimation (Section 2), where pitches and polyphony in
each frame are estimated, and then refined using estimates
in neighboring frames. The second stage is pitch trajec-
tory formation (Section 3). Initial pitch trajectories are
formed by grouping pitch estimates across frames accord-
ing to pitch height. Within each initial trajectory, pitch es-
timates that are close in frequency and contiguous in time
are grouped to form notelets. Final pitch trajectories are
obtained through constrained clustering of pitch estimates,
where must-link constraints are imposed on pitch pairs in
each notelet and cannot-link constraints are imposed on
pitch pairs of concurrent notelets. From the view of Audi-
tory Scene Analysis, the first stage is simultaneous group-
ing and the second stage is sequential grouping.

2. MULTI-PITCH ESTIMATION

2.1 Multi-pitch Estimation In A Single Frame

In multi-pitch estimation, we break the music audio into 46
ms frames with a 10 ms hop size. We estimate polyphony
and pitches in each time frame, but do not group estimates
across adjacent frames into notes or trajectories. We view
this problem (given polyphony N ) as a Maximum Likeli-
hood parameter estimation problem in the frequency do-
main. The parameters to be estimated are the set of pitches

θ = {F 10 , · · · , FN0 }. The observation is the spectrum,
which is represented as spectral peaks and non-peak re-
gions. Peaks are detected using the peak detection algo-
rithm in [10]. The non-peak region is defined as the set
of frequencies falling more than a quarter-tone from any
observed peak.
For harmonic sounds, peaks typically appear only near

integer multiples of F0s. We try to find the set of F0s with
harmonics that maximize the probability of the occurrence
of observed peaks, and minimize the probability that they
have harmonics in non-peak regions.
Thus, the likelihood function can be defined as follows:

L(θ) = Lpeak(θ) · Lnon-peak region(θ) (1)

To model Lpeak(θ), each detected peak k is represented
by its frequency fk and amplitude ak. We assume condi-
tional independence between peaks, given a set of F0s. In
addition, we consider the probability that a peak is normal
(caused by some harmonic) or spurious (caused by other
reasons). Then the peak likelihood is defined as

Lpeak(θ) =

K∏
k=1

p (fk, ak|θ) (2)

=

K∏
k=1

∑
sk

p (fk, ak|sk,θ)P (sk|θ) (3)

where K is the number of detected peaks; sk is the binary
variable to indicate whether the k-th peak is normal (sk =
0) or spurious (sk = 1).
In modeling p (fk, ak|sk = 0,θ), we notice that a nor-

mal peak may be generated by several F0s when their har-
monics overlap at the peak position. In this case, how-
ever, the probability is conditioned on multiple F0s, which
leads to a combinatorial problem in training we wish to
avoid. Instead, we adopt the binary masking assumption
[17], i.e. each peak is generated by only one F0, the one
having the largest likelihood to generate the peak. Thus
p (fk, ak|sk = 0,θ) is approximated bymaxF0∈θ p(fk, ak|F0).
For each F0 ∈ θ, a harmonic number hk is calculated as
the nearest harmonic position of F0 from fk. Then,

p (fk, ak|F0) = p (fk|F0) p (ak|fk, F0) (4)
= p (dk|F0) p (ak|fk, hk) (5)

where dk = fk − F0 − 12 log2 hk, is the frequency de-
viation of the k-th peak from its corresponding harmonic
position in the logarithmic frequency domain.
In modeling p (fk, ak|sk = 1,θ), θ can be ignored, since

spurious peaks are assumed to be unrelated to F0s:

p (fk, ak|sk = 1,θ) = p (fk, ak|sk = 1) (6)

To model Lnon-peak region(θ), it is noted that instead of
telling us where F0s or their ideal harmonics should be,
the non-peak regions tell us where they should not be. A
good set of F0s would predict as few harmonics as pos-
sible in the non-peak regions. Therefore, we define the
non-peak region likelihood in terms of the probability of
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From polyphonic (random chord) data
P (sk|θ) approximated with P (sk), then learned as the proportion of spurious peaks
p(dk|F0) approximated with p(dk), then learned as a GMM from normal peaks
p(ak|fk, hk) learned non-parametrically from normal peaks
p(fk, ak|sk = 1) learned as a 2-D single Gaussian from spurious peaks
From monophonic (individual note) data
P (eh = 1|F0) learned non-parametrically from normal peaks

Table 1. Model parameters that are learned from the training data.

not detecting any harmonic in the non-peak regions, given
an assumed set of F0s. Again, with the conditional inde-
pendence assumption of non-peak regions, the likelihood
can be defined as:

Lnon-peak region(θ) =
∏
F0∈θ

∏
hF0∈Fnp
h∈1..H

1− P (eh = 1|F0) (7)

where N is the polyphony; eh is a binary variable that in-
dicates whether the h-th harmonic of F0 is detected; Fnp
is the set of frequencies in the non-peak regions; H is the
largest harmonic number we consider.
A harmonic not being detected in the non-peak region

is because the corresponding peak in the source signal was
weak or not present (e.g. even harmonics of clarinet). There-
fore, this probability can be learned frommonophonic train-
ing data, i.e. the monophonic notes used to generate the
polyphonic training data.
The above probabilities are learned in monophonic or

polyphonic training data, as described in Table 1. The
monophonic training data are monophonic notes selected
from the University of Iowa data set 1 . The polyphonic
training data are randomly mixed chords of polyphony from
2 to 6, generated by mixing the above mentioned mono-
phonic notes. Spectral peaks and non-peak regions are de-
tected and collected in all the frames of the training data.
Ground-truth F0s are obtained by YIN [18], a single pitch
detection algorithm, on each note prior to mixing. The fre-
quency deviation of each peak from the nearest harmonic
of any ground-truth F0 is calculated. If the deviation is less
than a quarter-tone, the peak is labeled normal, otherwise
spurious. The “a quarter-tone” threshold is used here was
selected in accordance with the standard tolerance used in
measuring correctness of F0 estimation.
So far, given a set of F0s θ, its likelihood L(θ) can be

calculated in Eq. (1). The search space of the maximum
likelihood solution θ̂, however, is very large. We constrain
this problem with a greedy search strategy. We start from
an empty set θ̂

0
. In each iteration, we add an F0 estimate

to θ̂
n
to get a new set θ̂

n+1
that gets maximum likelihood

among all the possible values of the newly added F0. This
iteration terminates when n = N , the given polyphony.
If the polyphony is not given, we need to decide when

to terminate. Since L(θ̂n) increases with n, we propose a
simple threshold-based method. The minimum number of
F0s that achieves a likelihood greater than the threshold is

1 http://theremin.music.uiowa.edu/

returned as the polyphony estimate:

N = min
1≤n≤M

n,

s.t. Δ(n) ≥ T ·Δ(M) (8)

where Δ(n) = L(θ̂n) − L(θ̂1) is the maximum increase
of likelihood that could be achieved when the polyphony is
set to be n. M is the maximum allowed polyphony which
is set to 9 in all experiments; T is a learned threshold which
is set to 0.88 ( a value chosen by a machine learner us-
ing the monophonic and polyphonic training data). This
polyphony estimation method works well on a large data
set containing both music pieces and block musical chords
with polyphony from 1 to 6.

2.2 Refine Pitch Estimates Using Neighboring Frames

There are often insertion, deletion and substitution errors
in the multi-pitch estimation of a single frame. We pro-
pose a refinement method using estimates in neighboring
frames: For each frame t, we build a weighted histogram
in the frequency domain, where each bin corresponds to
a semitone in the pitch range. Then, a triangular weight-
ing function centered at t is imposed on a neighborhood
of t, whose radius is r frames. The refined polyphony esti-
mateN is calculated as the weighted average of polyphony
estimates in all the frames in this neighborhood. The N
bins with the highest histogram values are selected to re-
construct refined pitch estimates. For each of these bins, if
there is an original pitch estimate in frame t that falls inside
this bin, the original pitch estimate is used as the refined
pitch estimate. Otherwise, the refined pitch estimate is cal-
culated as the weighted average frequency of all the pitch
estimates in this neighborhood that fall inside this bin. In
our system, the radius r is set to 9 frames. This method
removed a number of inconsistent estimation errors.

3. PITCH TRAJECTORY FORMATION

Given pitch estimates in all frames, we view pitch trajec-
tory formation as a constrained clustering problem, where
each pitch trajectory corresponds to a cluster.

3.1 Constrained Clustering

Constrained clustering [19,20] is a class of semi-supervised
learning algorithms that make use of domain knowledge
during clustering. Constraints can be imposed on different
levels, where the instance level is the simplest and most
common one. In instance-level constraints, there are two
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basic forms: must-link and cannot-link. A must-link con-
straint specifies that two instances should be assigned to
the same cluster. A cannot-link constraint specifies that
two instances should not be assigned to the same cluster.
For our pitch trajectory formation problem, we adopt

these two constraints. A must-link is imposed between two
similar pitches in adjacent frames, since they probably be-
long to the same trajectory. A cannot-link is imposed be-
tween two pitches within a frame, due to our assumption
that sources are monophonic. We then formulate the clus-
tering problem to minimize the intra-class distance J , as
the K-means algorithm does:

J =

K∑
k=1

∑
xi∈Tk

‖xi − ck‖2 (9)

whereK is the number of pitch trajectories; xi is a feature
vector in trajectory Tk and ck is the mean feature vector in
trajectory Tk; ‖ · ‖ denotes the Euclidean distance.
Wagstaff et al. [19] proposed a constrained K-means

clustering algorithm, which iteratively changes the cluster
labels of all points, without violating any constraint. For
our multi-pitch tracking problem, however, this algorithm
does not work. The reason is that almost every pitch es-
timate has must-links or cannot-links to other points, so it
is almost impossible to change a pitch’s label without vio-
lating any constraint. In addition, Davidson and Ravi [20]
proved that finding a feasible solution, i.e. a label assign-
ment without violating any constraint, of a clustering prob-
lem containing cannot-link constraints is NP-complete.
We now propose an iterative greedy algorithm that finds

a low-cost (in terms of Eq. (9)) assignment of pitches to
trajectories within a reasonable time.

3.2 Initial Pitch Trajectory Formation

Although the general problem is NP-complete, we can re-
move some constraints to make it tractable. A trivial ex-
ample is to remove all constraints, where random label as-
signment can be a solution.
Instead of random assignment, we utilize the intrinsic

structure of polyphonic music to assign initial labels. Note
that pitch trajectories (e.g. melody and baseline) are roughly
ordered in pitch, although sometimes they interweave. Since
there are at most K pitches in each frame, we sort them
from high to low and assign labels from 1 toK.
Then must-links are imposed on similar pitches that are

in adjacent frames and have the same initial trajectory la-
bel. The maximal must-link difference between pitches in
adjacent frames is set to 0.3 semitones (30 cents). Pitches
connected by must-links form a short trajectory, which we
call a notelet, since it is supposed to be some part of a
note. Once notelets are formed, cannot-links are imposed
between all pitches in two notelets that overlap more than
30ms. We say that two such notelets are in a cannot-link
relation. We allow the 30ms overlap within a melodic line
as it may be reverberation or ringing of a string. We chose
conservative values for these parameters to ensure that they
are reasonable for common real-world scenarios.

This results in an initial set of track assignments that
is reasonably correct. By assigning trajectory labels on a
frame-by-frame basis, assuming a fixed small number of
trajectories, and only forming notelets from within sets of
adjacent pitch estimates of the same trajectory, we greatly
reduce the space searched. This provides a reasonable start-
ing point and bypasses the NP-completeness problem.
Before showing how we improve on this initial solution

by minimizing Eq. (9), we first explain the feature we use.

3.3 Harmonic Structure

Feature vectors in Eq. (9) should have the property that
they are close in the same trajectory and far in different tra-
jectories. Pitch height is not suitable because the underly-
ing pitch estimates may show octave errors and the melodic
lines overlap in range. Harmonic structure has been proven
to be a good choice [10, 11] for music played by harmonic
instruments, which is defined as the vector of relative am-
plitudes of harmonics of a pitch. Harmonic structures of
the same instrument are similar, even if their pitches and
loudness are different. On the other hand, different instru-
ments usually have very different harmonic structures [10].
We calculate harmonic structure as follows: First, har-

monics of each pitch are found from spectral peaks. For
overlapping harmonics of different pitches, the peak like-
lihood in Eq. (4) is used to distribute energy to each pitch.
Harmonic structures are then normalized to have the same
total energy. The first fifty harmonics are used here.

3.4 Final Pitch Trajectory Formation

We start from the initial set of pitch trajectories created in
Section 3.2, where pitches are assigned trajectory labels
based on pitch height, and then placed into notelets based
on time and pitch proximity. All pitch estimates compris-
ing a notelet share the same trajectory label. All notelets
that share a label form a trajectory. We now consider re-
assigning notelets to different trajectories to minimize the
cost function in Eq. (9).

Figure 2. Illustration of a swap-set (the rounded rectan-
gle) for a notelet (the bold solid line). Solid and dashed
lines represent notelets in trajectory Tk and Tl, respec-
tively. Cannot-link relations are indicated by arrows.
Suppose we want to change the trajectory of a notelet n

from Tk to Tl. We cannot do this in isolation, since there
may be a notelet in Tl that overlaps n and we assumemono-
phonic pitch trajectories. We could simply swap the tra-
jectories for two overlapping notelets. This, however may
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For each notelet n, with trajectory Tk
J0 = cost of current trajectory assignments (Eq. (9))
Jbest = J0
For each trajectory Tl, such that Tl �= Tk
Find the swap-set between Tl and Tk containing n
J = (Eq. (9)) if we swap every notelet in the swap-set
If J < Jbest, Jbest = J , End

End
If Jbest < J0, Perform swap that produces Jbest, End

End

Table 2. The pitch trajectory formation algorithm.

cause a chain reaction, since the swap may cause new over-
laps within a trajectory. Instead, we select two trajectories
and pick a notelet n from one of the trajectories. We then
find all notelets in these two trajectories, Tk and Tl that
connect to n via a path of cannot-link relations (defined in
Section 3.2). We call this the swap-set, as illustrated in
Figure 2. These are the notelets affected by a potential tra-
jectory swap between two notelets. All notelets in a swap
set are swapped together, rather than individually, and the
new trajectory are evaluated with the cost function in Eq.
(9). Table 2 describes the process we use to swap trajec-
tories for notelets until the trajectories of all notelets reach
fixed points. In our experiment, this usually takes 3 to 4
rounds (where a round is a traversal of all notelets).

3.5 Note Formation

After pitch trajectories are formed, we form notes in each
trajectory from the notelets. Two notelets are considered
to be in the same note if the time gap between them is less
than 100ms and their frequency difference is less than 0.3
semitone. Then the pitches in the gap are reconstructed
using the average frequency of the note. Notes of length
less than 100ms are considered spurious and removed. The
0.3 semitone parameter is the same as the one in imposing
must-links. The 100ms parameter is set without tuning to
adapt to the tempo and note lengths of the test music.

4. EXPERIMENT

The proposed system was tested on 10 real music perfor-
mances, totaling 330 seconds of audio. Each performance
was of a four-part Bach chorale, performed by a quartet
of instruments: violin (Track 1), clarinet (Track 2), tenor
saxophone (Track 3) and bassoon (Track 4). Each musi-
cian’s part was recorded in isolation at 44.1 kHz, while the
musician listened to the others through headphones. Audio
mixtures were created by summing the four tracks. In test-
ing, each piece was broken into 46 ms frames with center
times spaced every 10 ms.
The ground-truth pitch trajectories of each testing piece

were estimated using YIN [18] with manual corrections on
monophonic sound tracks prior to mixture. The ground-
truth notes (frequency, onset and offset) for each source
were obtained by segmenting its pitch trajectory manually.
We evaluate the proposed system at the frame-level. For

each estimated pitch trajectory, a pitch estimate in a frame

% Initial Final
No. Precision Recall Precision Recall
1 66.9±3.2 66.9±3.2 82.7±4.9 71.3±5.5
2 52.3±6.5 52.1±6.5 64.1±8.8 52.4±7.9
3 61.0±8.5 59.3±8.7 78.3±11.5 70.8±12.7
4 81.8±5.0 65.3±7.4 82.6±5.4 73.9±5.8
Table 3. Frame-level evaluation results (Mean±Std) for
each pitch trajectory. Track No. from 1 to 4 corresponds
to the 4 parts of the quartets. “Initial” refers to the initial
pitch trajectory formation (Section 3.2); “Final” refers to
the final pitch trajectory formation (Section 3.4)

% Precision Recall
Klapuri06 [1] 87.2±2.0 66.2±3.4
Multi-pitch estimation (MPE) 84.9±1.7 79.9±2.9
Multi-pitch tracking (MPT) 88.6±1.7 77.0±3.5
Table 4. Frame-level evaluation results in the mixture in-
stead of each trajectory.

is called correct if it deviates less than a quarter-tone from
the pitch in the ground-truth pitch trajectory. Then preci-
sion and recall are calculated for each pitch trajectory by

Precision =
#cor
#est

Recall =
#cor
#ref

(10)

where #cor, #est and #ref are the number of correctly esti-
mated, estimated and reference pitches, respectively.
Table 3 presents the average frame-level evaluation re-

sults on the 10 pieces. The final tracking results are com-
pared with the initial tracking results obtained from Sec-
tion 3.2, which serves as a baseline obtained from multi-
pitch estimation. For all four tracks, the proposed pitch
trajectory formation method significantly improves either
precision or recall from the baseline method. For Track 3,
this improvement is up to 17.3% in precision and 11.5%
in recall. In addition, in both initial and final tracking, re-
sults of Track 1 and 4 are better than Track 2 and 3. This
is in accordance with previous researchers’ observations
that melody and baseline are easier to transcribe than other
source streams [12].
Table 4 presents the frame-level evaluation results. We

compare our system with Klapuri06 [1], a state-of-the-art
multi-pitch estimation approach. We used Klapuri’s code
and suggested parameter settings. We can see that the best
precision is obtained by MPT (Section 2+3), while the best
recall is obtained by MPE (Section 2). Klapuri06 gets a
high precision, which is indistinguishable from MPT, but
its recall is much lower than both MPE and MPT. From
MPE to MPT, precision has a significant improvement of
3.7%, while the two recalls are indistinguishable, consid-
ering the variances. It indicates that pitch trajectory forma-
tion improves the multi-pitch estimation results.
We also evaluate our system at the note-level in the mix-

ture, as other researchers do [3,4,15]. It is evaluated in two
ways. In the first way (Onset), a note estimate is correct if
its frequency (average over all pitch estimates in this note)
deviates less than a quarter-tone from a ground-truth note,
and its onset time differs less than 50ms/100ms from the
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% Precision Recall AOR
Onset(50ms) 49.1±4.8 58.0±4.8 76.7±2.8
Onset(50ms)+Off 34.9±5.3 41.2±5.8 87.8±1.8
Onset(100ms) 65.5±4.7 77.4±3.1 73.7±3.1
Onset(100ms)+Off 46.0±5.5 54.3±5.5 85.1±2.3
Table 5. Note-level evaluation results in the mixture in-
stead of each trajectory.

ground-truth onset time. The second way (Onset+Off) has
the same requirements for frequency and onset time, but
also requires that each offset time estimate deviate from the
true offset time by less than 20% of the true note duration.
Precision and recall are calculated by Eq. (10), where #cor,
#est and #ref are the number of correctly estimated, esti-
mated, and reference notes, respectively. Average Overlap
Ratio (AOR) between correctly estimated notes and their
ground-truth notes is calculated as

AOR = Average
(
min{offsets} −max{onsets}
max{offsets} −min{onsets}

)
(11)

Given a correctly estimate note and its corresponding ground
truth note, “onsets” is the set of onset times for both the es-
timated and the and the true note and ”offsets” is similarly
defined. “Average” is over all correctly estimated notes.
Table 5 shows the note-level evaluation results. In Onset

(100ms), both precision and recall are promising, and AOR
value is high. This indicates that our system outputs good
note estimates in both frequency and duration (offset sub-
tracts onset). However, either reducing the onset thresh-
old from 100ms to 50ms or adding the offset criterion de-
creases precision and recall significantly. This indicates
that our system does not estimate the absolute onset/offset
times precisely. This is not a surprise, since our current
system does not have an onset/offset detection module.

5. CONCLUSION

Wee presented a novel system for multi-pitch tracking. Our
system first estimates pitches and polyphony in each time
frame. Then pitch trajectories are formed by constrained
clustering pitch estimates across frames. Our system achieved
promising results on ten real music pieces.
Currently, when clustering the pitches into trajectories,

only harmonic structure is used. Future work includes in-
corporating musicological information into clustering.
This work was supported by National Science Founda-

tion grant IIS-0643752.
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ABSTRACT

This paper presents an extended probabilistic latent seman-
tic indexing (pLSI) for hybrid music recommendation that
deals with rating data provided by users and with content-
based data extracted from audio signals. The original pLSI
can be applied to collaborative filtering by treating users
and items as discrete random variables that follow multi-
nomial distributions. In hybrid recommendation, it is nec-
essary to deal with musical contents that are usually repre-
sented as continuous vectorial values. To do this, we pro-
pose a continuous pLSI that incorporates Gaussian mix-
ture models. This extension, however, causes a severe lo-
cal optima problem because it increases the number of pa-
rameters drastically. This is considered to be a major fac-
tor generating “hubs,” which are items that are inappropri-
ately recommended to almost all users. To solve this prob-
lem, we tested three smoothing techniques: multinomial
smoothing, Gaussian parameter tying, and artist-based item
clustering. The experimental results revealed that although
the first method improved nothing, the others significantly
improved the recommendation accuracy and reduced the
hubness. This indicates that it is important to appropriately
limit the model complexity to use the pLSI in practical.

1. INTRODUCTION

The musical tastes of users of online music distribution ser-
vices that provide millions of items are strongly influenced
by the characteristics of the music automatically recom-
mended by those services. Users often have difficulty re-
trieving unknown items they might like. In such case, users
consider recommendations and get aware of what kinds of
items are their favorites. When only popular items are al-
ways recommended, users are not exposed to items they
might enjoy more and get used to enjoying only the “safe”
recommendations. This in turn strengthens the tendency to
recommend only popular items. In other words, there is a
severe limitation in serendipity of music discovery. In fact,
this negative-feedback phenomenon has been observed in
many services based on collaborative filtering.

We aim to enhance the serendipity by transforming the
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Figure 1. Hybrid recommender based on continuous pLSI.

passive experience in which users only receive “default”
recommendations into an interactive experience in which
users can freely customize (personalize) those recommen-
dations. To achieve this, it is necessary to let users clearly
understand and express their own musical tastes that are es-
timated as bases of making default recommendations. The
conventional reasoning like “You like A, so you would like
B because other users who like like A also like B” is a rela-
tive expression of musical tastes. We aim to obtain a direct
expression of each user’s musical tastes that is easy to use
as a basis for interactive recommendation.

A promising way to do this is to use probabilistic latent
semantic indexing (pLSI) based on a multi-topic model,
which has been originally used for document modeling [1].
The model includes latent variables corresponding to the
concepts of topics. How likely a document and a word co-
occur is predicted by stochastically associating each docu-
ment and word with a topic. Documents and words that are
strongly associated with the same topic are likely to occur
jointly. The model can be applied to collaborative filtering
based on rating histories by treating documents and words
as users and items [2]. Given a user, we can predict how
likely each item is purchased by estimating how likely the
user chooses each topic. The musical tastes of users can be
expressed as the strength of user-topic associations.

As shown in Figure 1, we propose continuous pLSI for
hybrid recommendation that enhances serendipity by com-
bining rating data with content-based data extracted from
musical audio signals. Specifically, Gaussian mixture mod-
els (GMMs) are built into the collaborative filtering model
of pLSI in order to address continuous vectorial data. Un-
like the major collaborative methods relying on heuristics
[3,4], the pLSI model can be extended in a consistent man-
ner because it is flexible and has a theoretical basis.
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The continuous pLSI, however, suffers from a serious
local optima problem because a number of parameters lin-
early increases according to data size. This causes the hub
phenomenon [5], in which specific items are almost always
recommended to users regardless of their rating histories.
Thus, the serendipity of recommendations is insufficient.
Although a similar probabilistic model was proposed for
genre classification [6], this problem was not addressed.

To solve this problem, we propose three smoothing tech-
niques: multinomial smoothing, Gaussian parameter tying,
and artist-based item clustering. The first technique is ex-
pected to avoid overfitting and the other two reduce the
model complexity. We compared the effectiveness of these
techniques experimentally.

The rest of this paper is organized as follows. Section 2
introduces related work. Section 3 explains a model of the
continuous pLSI. Section 4 describes the three smoothing
techniques. Section 5 reports our experiments. Section 6
summarizes the key findings of this paper.

2. RELATED WORK

Music recommendation is an important topic today in the
field of music information processing. Conventional stud-
ies on recommendation have been intended to deal with
textual data (documents and words). In addition, many re-
searchers have proposed various ideas to make the most
of content-based data that is automatically extracted from
musical audio signals. For example, Logan [7] proposed a
content-based recommender based on the cosine distance
between a user’s favorite items and non-rated items. Magno
and Sable [8] reported subjective experiments showing that
a content-based recommender competes against Last.fm (a
collaborative recommender) and Pandora (a recommender
based on manual annotations) in terms of user satisfaction.
These reports indicate the synergistic effect of integrating
rating data with content-based data. Hybrid recommenders
have been actively investigated recently. Celma et al. [9]
used both content-based similarity and user profiles given
in RSS feeds to choose suitable items. Tiemann et al. [10]
integrated two weak learners (social and content-based rec-
ommenders) by using an ensemble learning method.

Another important issue is how to present recommenda-
tions to users. Donaldson and Knopke [11] visualized the
relationships of recommended items in a two dimensional
space. Lamere and Maillet [12] proposed a transparent and
steerable interface for a recommender based on crowds of
social tags. A common concept of these studies seems to
be that users had better actively explore or control recom-
mendations. This would result in enhanced serendipity.

The existence of hubs has recently been recognized as
a serious problem. Interestingly, this problem was not re-
ported in the field of text-based recommendation. In music
recommendation and retrieval, GMMs are generally used
to represent the distributions of acoustic features. Aucou-
turier et al. [5] pointed out that this kind of modeling tends
to create hubs that are wrongly evaluated as similar to all
other items. Berenzweig [13] concluded that the hub phe-
nomenon is related to the curse of dimensionality. Chordia

et al. [14] discussed content-based recommendation based
on the Earth-Movers distance between GMMs of individ-
ual items. They empirically found that a homogenization
method can improve performance [15]. Hoffman et al. [16]
tried to solve this problem by using the hierarchical Dirich-
let process (HDP) for modeling content-based data. Unlike
the GMM, the HDP represents each item as a mixture of
an unfixed number of Gaussians. The number is automat-
ically adjusted to match the data complexity. In addition,
the same set of Gaussians is used to model all items, with
only the mixture weights varying from item to item. This
is similar to Gaussian parameter tying.

3. CONTINUOUS PLSI
This section explains a continuous pLSI model and a train-
ing method suitable for efficient parallel processing.

3.1 Problem Statement
We define several symbols from a probabilistic viewpoint.
Let U = {u1, u2, · · · , u|U|} be the set of all users, where
|U | is the number of them, and let V = {v1, v2, · · · , v|V |}
be the set of all items, where |V | is the number of them. Let
u and v be discrete random variables respectively taking
the values of one member of U and one member of V . Let
X = {x1, x2, · · · , x|V |} denote content-based data that
is a set of D-dimensional feature vectors extracted from
individual items. Let x be a continuous random variable
in the D-dimensional space. Probabilistic distributions are
represented as p(variable) or p(variable1|variable2), e.g., a
discrete distribution p(u) or a conditional continuous dis-
tribution p(x|u). For example, probabilities or probability
densities are given by p(u = ui) or p(x = xj |u = ui),
which are simply described as p(ui) or p(xj |ui).

As to available rating data, we mainly assume implicit
ratings such as purchase histories or listening counts, which
are recorded automatically even when users do not explic-
itly express their preferences for individual items. In gen-
eral, the number of implicit ratings tends to be much larger
than that of explicit ratings. We thus think that the former
are more suitable to probabilistic approaches because for
them the sparseness problem is less serious.

The total available data (combinations of rating data and
content-based data) is given by O = {(u(1), v(1), x(1)),
· · · , (u(N), v(N), x(N))}, where (u(n), v(n), x(n)) (1 ≤ n
≤ N) is a user-item-feature co-occurrence that user u(n)

has purchased (viewed or listened to) item v(n) with fea-
ture x(n) and N is the number of co-occurrences. Let
c(u, v) be the number of times that co-occurrence (u, v, x)
was observed. Obviously, N =

∑
u,v c(u, v). An easy

way to utilize explicit ratings (e.g., numerical rating scores
such as the numbers of “stars” in an one-to-five scale rat-
ing system adopted by Amazon.com) is to set the value of
c(u, v) to one if a user u likes item v, i.e., the rating score
is greater than a neutral score (three stars). Alternatively,
we could use rating scores for weighting c(u, v).

The final objective is to estimate the probabilistic distri-
bution p(v|u), which indicates how likely it is that user u
likes item v. Recommendations are then made by ranking
items not rated by user u in a descending order of p(v|u).
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3.2 Model Formulation
The graphical representation of a continuous pLSI model
is shown in Figure 2. This is an extended version of three-
way aspect models [17, 18] in which all variables are dis-
crete. We assume that users, items, and features are condi-
tionally independent through latent topics. In other words,
once a latent topic is specified, there is no mutual informa-
tion between three kinds of variables. Although this seems
a strong assumption, it is a reasonable way to avoid the lo-
cal optima problem. Introducing a dependency edge from
items to features in order to model the real world accurately
would increase the number of parameters drastically.

The pLSI model can explain the process generating co-
occurrence (u(n), v(n), x(n)). Let Z = {z1, · · · , z|Z|} be
a set of topics, where |Z| is the number of them. Let z be a
latent variable that takes the value of one of Z . Each topic
can be regarded as a soft cluster that is simultaneously as-
sociated with users and items. That is, each user and each
item stochastically belong to one of the topics. The model
thus treats triplet (u(n), v(n), x(n)) as incomplete data that
is latently associated with z(n) ∈ Z . The complete data is
given by quartet (u(n), v(n), x(n), z(n)). An interpretation
of the generative process is that user u(n) stochastically se-
lects topic z(n) according to his or her taste p(z(n)|u(n)),
and z(n) stochastically generates item v and its features x
in turn. For convenience, we let S be {z(1), · · · , z(n)}.

A unique feature of the continuous pLSI is that p(x|z)
is modeled with a Gaussian mixture model (GMM) in or-
der to deal with continuous observation x. Let M be the
number of mixtures (Gaussian components). Each topic
zk ∈ Z has a GMM defined by the mixing proportions
of Gaussians {wk,1, · · · , wk,M} and their means and co-
variances {μk,1, · · · , μk,M} and {Σk,1, · · · ,Σk,M}. As
in the original pLSI, p(u), p(z|u), and p(v|z) are multino-
mial distributions. We practically use an equivalent defi-
nition of the model obtained by focusing on p(z), p(u|z),
and p(v|z). The parameters of these multinomial distribu-
tions are simply given by (conditional) probability tables
of target variables. Let θ be the set of all parameters of |Z|
GMMs and |Z|(1 + |U |+ |V |) multinomial distributions.

3.3 Model Training
The training method we explain here uses the Expectation-
Maximization (EM) algorithm [19] and is a natural exten-
sion of previous methods [17, 18] (c.f., discrete HMM v.s.
continuous HMM). Instead of maximizing the incomplete
log-likelihood, log p(O), the EM algorithm maximizes the
expected complete log-likelihood ES [log p(S, O)] itera-
tively, where Ez[f(z)] means an expected value of func-
tion f(z) with respect to p(z); Ez [f(z)] =

∑
z p(z)f(z).

The complete likelihood of (u, v, x, z) is given by

p(u, v, x, z) = p(z)p(u|z)p(v|z)p(x|z). (1)

This can be easily calculated for given observations when
parameters θ are obtained.

In the E-step we define a Q function as

Q(θ|θcurrent) = ES [log p(S, O)] (2)

=
∑
u,v

c(u, v)
∑

z

p(z|u, v, x) log p(u, v, x, z), (3)

u

xv

z

)|( zup

)|( zvp )|( zxp

User

Item Feature

Topic

(continuous)(discrete)

(discrete)

Multinomial

Multinomial Gaussian mixture model

User’s taste

Figure 2. Graphical representation of continuous pLSI.

where p(z|u, v, x) is a posterior distribution of latent vari-
able z and can be calculated by using the current parame-
ters θcurrent as follows:

p(z|u, v, x) =
p(u, v, x, z)∑
z p(u, v, x, z)

. (4)

In the M-step we update the current parameters by max-
imizing Eqn. (3). Note that log p(u, v, x, z) can be decom-
posed into log p(z)+ log p(u|z)+ log p(v|z)+ log p(x|z).
This means that the parameters of each distribution can be
updated independently. To update p(z), for example, we
only focus on a term related to p(z) as follows:

Qp(z) =
∑
u,v

c(u, v)
∑

z

p(z|u, v, x) log p(z). (5)

Using a Lagrange multiplier λ for a constraint of probabil-
ity standardization, we define a new function Fp(z) as

Fp(z) = Qp(z) + λ

(
1−

∑
z

p(z)

)
. (6)

We then calculate the differential of Eqn. (6) with respect
to p(z) and set it to zero as follows:

∂Fp(z)

∂p(z)
=

1
p(z)

∑
u,v

c(u, v)p(z|u, v, x)− λ ≡ 0. (7)

The updated distribution p(z) can be obtained by

p(z) =

∑
u,v c(u, v)p(z|u, v, x)∑

u,v,z c(u, v)p(z|u, v, x)
. (8)

The other two multinomial distributions p(u|z) and p(v|z)
can be similarly updated as follows:

p(u|z) =
∑

v c(u, v)p(z|u, v, x)∑
u,v c(u, v)p(z|u, v, x)

, (9)

p(v|z) =
∑

u c(u, v)p(z|u, v, x)∑
u,v c(u, v)p(z|u, v, x)

. (10)

To update continuous distribution p(x|z), we focus on

Qp(x|z) =
∑
u,v

c(u, v)
∑

z

p(z|u, v, x) log p(x|z) (11)

=
∑
u,v

c(u, v)

K∑
k=1

p(zk|·) log

M∑
m=1

p(yk,m)p(x|zk, yk,m), (12)

where to improve legibility we wrote p(z|u, v, x) as p(z|·).
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yk ∈ {yk,1, · · · , yk,M} is a latent variable that indicates
which Gaussian in the GMM of topic zk generates x. p(yk)
represents a probability distribution over M Gaussians, i.e.,
p(yk,m) = wk,m, and p(x|zk, yk,m) is the likelihood that
feature x is generated from a Gaussian indicated by yk,m.
Because the logarithmic operation for the summation makes
Eqn. (12) hard to maximize directly, we focus on the ex-
pected value of Qp(x|z) with respect to yk:

Eyk [Qp(x|z)] =
∑
u,v

c(u, v)

K∑
k=1

p(zk|·)
M∑

m=1

p(yk,m|x, zk)
(

log wk,m + logN (x|µk,m,Σk,m)
)
, (13)

where p(yk,m|x, zk) is a posterior probability given by

p(yk,m|x, zk) =
p(yk,m)p(x|zk, yk,m)∑M

m=1 p(yk,m)p(x|zk, yk,m)
. (14)

To obtain optimized wk,m, we define the following func-
tion by introducing a Lagrange multiplier β:

Fwk
= Eyk

[Qp(x|z)] + β

(
1−

M∑
m=1

wk,m

)
. (15)

Calculating the partial partial differential of Eqn. (15) with
respect to wk,m and setting it to zero, we obtain

wk,m =

∑
u,v c(u, v)p(zk|·)p(yk,m|x, zk)

∑M
m=1

∑
u,v c(u, v)p(zk|·)p(yk,m|x, zk)

. (16)

Setting the partial differential of Eqn. (13) to zero, the mean
and variance μk,m and Σk,m are obtained by

µk,m =

∑
u,v c(u, v)p(zk|·)p(yk,m|x, zk)x∑
u,v c(u, v)p(zk|·)p(yk,m|x, zk)

, (17)

Σk,m =

∑
u,v c(u, v)p(zk|·)p(yk,m|x, zk)(x− µk,m)2∑

u,v c(u, v)p(zk|·)p(yk,m|x, zk)
. (18)

Given a user ui, recommendations are made by evalu-
ating p(v|ui) =

∑
z p(v|z)p(z|ui), where p(z|ui) is pro-

portional to p(z)p(ui|z) and indicates the musical tastes of
user u: how likely it is user ui selects (likes) topic z.

3.4 MapReducing EM Algorithm
Computational efficiency, a very important issue in mu-
sic recommendation when the database and model become
large, is especially critical when used data cannot be loaded
on the memory of a single machine. Elegant implementa-
tions, however, have scarcely been addressed.

A remarkable advantage of pLSI-based recommenders
is that we can easily implement them in parallel process-
ing environments that consist of multiple machines such
as clusters. Google News, for example, uses a distributed
computation framework called MapReduce [20].

We can implement the continuous pLSI by using MPI or
Hadoop [21]. Suppose we have GUGV machines (CPUs).
Let {U1, · · · , UGU} and {V1, · · · , VGV } be exclusive sets
of users and items, where U1 ∩ · · · ∩ UGU = U and V1 ∩
· · · ∩VGV = V . To update p(z), for example, we calculate

cz(Ui, Vj) =
∑

u∈Ui,v∈Vj

c(u, v)p(z|u, v, x). (19)

This can be separately calculated in each machine. To cal-
culate p(z|u, v, x), we need only p(z), p(u|z) (u ∈ Ui),
p(v|z) (v ∈ Vj), and p(x|z). The number of parameters of
these distributions is much smaller than the total number
of parameters. Finally, we can get an integrated result by

p(z) ∝
∑

1≤i≤GU ,1≤j≤GV

cz(Ui, Vj). (20)

4. SMOOTHING TECHNIQUES
To avoid overfitting, one needs to use appropriate smooth-
ing techniques. In our study, we use three techniques to im-
prove accuracy and reduce hubness: multinomial smooth-
ing, Gaussian parameter tying, and artist-based item clus-
tering. The first relaxes the excessive inclination of multi-
nomial parameters, and the others limit model complexity.

4.1 Multinomial Smoothing
We add a conjugate prior called a Dirichlet distribution to
a Q function as a regularization term. To estimate p(z), for
example, we consider the following function:

Q′
p(z) = Qp(z) + Dir(α), (21)

where α is a set of K parameters of a Dirichlet distribution.
This results in the additive smoothing method. We set all
parameters to 1.0001. Maximizing Q′

p(z), we get

p(z) =

∑
u,v c(u, v)p(z|u, v,x) + α − 1

∑
z

(∑
u,v c(u, v)p(z|u, v,x) + α − 1

) . (22)

The updating formulas of the other multinomial distribu-
tions are similarly given by

p(u|z) =

∑
v c(u, v)p(z|u, v,x) + α − 1∑

u

(∑
v c(u, v)p(z|u, v,x) + α − 1

) , (23)

p(v|z) =

∑
u c(u, v)p(z|u, v,x) + α − 1∑

v

(∑
u c(u, v)p(z|u, v,x) + α − 1

) . (24)

4.2 Gaussian Parameter Tying
We force all GMMs to share the same set of Gaussians and
differ from each other in the mixing proportions of those
Gaussians. In the context of HMMs, this is called a tied
mixture model. The new updating formulas are given by

µk,m =

∑
u,v,m c(u, v)p(zk|·)p(yk,m|x, zk)x∑
u,v,m c(u, v)p(zk|·)p(yk,m|x, zk)

, (25)

Σk,m =

∑
u,v,m c(u, v)p(zk|·)p(yk,m|x, zk)(x− µk,m)2∑

u,v,m c(u, v)p(zk|·)p(yk,m|x, zk)
. (26)

4.3 Artist-based Item Clustering
We replace item-based distribution p(v|z) with artist-based
distribution p(a|z), where variable a represents one of the
artists in the database. Let A be a set of items sung by artist
a, That is, let all items be grouped according to their artist
names. We train an artist-based model for users, artists,
and features by iteratively updating p(a|z) as follows:

p(a|z) =

∑
u,v∈A c(u, v)p(z|u, v, x)∑

u,v c(u, v)p(z|u, v, x)
. (27)
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Score 5 4 3 2 1
Counts 5336 1458 457 211 333
Ratio 68.5% 18.7% 5.86% 2.71% 4.27%

Table 1. Distribution of rating scores.

To recommend items rather than artists, we then con-
struct an item-based model by replacing p(a|z) with p(v|z).
To do this, we use an incremental training method [18] that
re-estimates a distribution of unknown items p(v|z) with-
out affecting other trained distributions p(z), p(u|z),(x|z):

p(v|z) =

∑
u c(u, v) p(z)p(u|z)p(x|z)∑

z p(z)p(u|z)p(x|z)∑
u,v c(u, v) p(z)p(u|z)p(x|z)∑

z p(z)p(u|z)p(x|z)

. (28)

5. EVALUATION

We experimentally evaluated the continuous pLSI in terms
of accuracy and hubness by using various combinations of
the smoothing techniques.

5.1 Data
The music items we used were Japanese songs recorded in
single CDs that were ranked in weekly top-20 sales rank-
ings from Apr. 2000 to Dec. 2005. To use these items,
we need real implicit ratings c(u, v) such as purchase his-
tories and listening counts, but most online services do
not release such data to the public. We therefore instead
collected explicit ratings (numbers of “stars” ranging from
one to five) from Amazon.co.jp by using official APIs [22]
that let us download almost all the information available
from Amazon.co.jp [22]. For reliable evaluation, we ex-
cluded users who had rated fewer than two items and ex-
cluded items that had been rated less than two times. As
a result, |U | was 1872 and |V | was 1400. The number of
artists was 471. If a rating score given to item vj by user ui

was greater than three (the neutral score), we set c(ui, vj)
to the score. Otherwise, we set c(ui, vj) to zero. In other
words, we considered only positive ratings. A similar ap-
proach has been used previously [23]. Note that, as shown
in Table 1, the distribution of rating scores was strongly
skewed. The density of 6794 positive ratings (scores 4 and
5) was 0.259% in the user-item co-occurrence table.

With regard to the content-based data, we focused on
vocal features because all the items included singing voices
that strongly affected the musical tastes of users. To extract
these features from polyphonic audio signals, we used a
method proposed by Fujihara et al. [24]. We calculated a
13-dimensional feature vector at each frame where singing
voices were highly likely to be included, concatenated the
mean and variance of the feature vectors in each item into a
26-dimensional vector, and then used principal component
analysis to compress the dimensionality to 20 (D = 20).

5.2 Protocols
To test all combinations of the three smoothing techniques,
we prepared eight models of the continuous pLSI. For con-
venience, throughout Section 5, the multinomial smooth-

Disabled SM1 SM2 SM1&2
Disabled 4.65 4.29 6.18 6.57

SM3 7.10 6.72 19.4 19.3

Table 2. Expected utility of recommendations: Higher
scores indicate better performance.

Disabled SM1 SM2 SM1&2
Disabled 5.94 5.81 6.39 6.36

SM3 5.98 5.81 6.36 6.34

Table 3. Entropy of recommendations: Higher scores in-
dicate better performance (fewer hubs).

ing, Gaussian parameter tying, and item clustering are re-
spectively called SM1, SM2, and SM3. The number of
latent variables was 256 (|Z| = 256). Although the num-
ber of mixtures was 32, when SM1 was disabled it was set
to 1 in order to avoid overfitting.

We conducted 10-fold cross validation by splitting the
positive explicit ratings into ten groups. Nine groups were
used for making recommendations with the eight models.
The other group was considered to be not observed and
was used for evaluating the recommendations.

5.3 Measures
Recommendation results given as ranked lists of items were
evaluated in terms of accuracy and hubness.

To calculate accuracy, we used the expected utility of a
ranked list [25], which for each user is defined as

Ru =
|V |−#(rated items)∑

r=1

max(scoreu,r − 3, 0)
2(r−1)/(γ−1)

, (29)

where scoreu,r is the rating score that user u actually gave
the r-th ranked item although the item was considered a
non-rated item (the score was hidden) in model training.
When scoreu,r was not available, its value was set to 3.
γ is a viewing half-life based on the assumption that the
probability that a user views an r-th ranked item is twice
the probability that the user views an (r + γ)-th ranked
item. We set γ to 5 as in the literature [25]. Ru was not
sensitive to the value of γ. The total score is given by

R = 100
∑

u Ru∑
u Rmax

u

(0 ≤ R ≤ 100), (30)

where Rmax
u is the maximum achievable utility if all items

with available scores given by user u had been at the top of
the ranked list in order of those scores. Basically, higher
values indicate better performance, but note that the prob-
ability of recommending known items is high.

We propose the following hubness measure based the
entropy of recommendations:

H = −
|V |∑
j=1

t(j)
|U | log

(
t(j)
|U |

)
, (31)

where t(j) is the number of times that item vj was rec-
ommended with the highest (top 1) ranking. A larger H
(higher entropy) indicates a smaller bias in how many times
each item is recommended.
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5.4 Results
As shown in Table 2, the accuracies of recommendations
were greatly improved by using SM3. This can be ex-
plained from two aspects: the relationship between items
and features and that between items and users. First, the
items of each artist tend to be similar to each other in their
musical features. Second, most users of Amazon.co.jp tend
to like any of the items of the few artists they like. This
would be a common tendency of the users of many online
music distribution services. Therefore, SM3 reduced the
complexity of the model while preserving almost all the
information of the rating data.

SM2 improved the accuracy of recommendations made
regardless of the combinations in which it was used. Inter-
estingly, recommendations obtained by jointly using SM2
and SM3 were much more accurate than those made when
these techniques were used independently. SM1, on the
other hand, slightly reduced the accuracy because it is based
on additive smoothing. It is known that its approximation
errors are larger than those of the other smoothing methods
such as the Good-turing method.

Table 3 shows hubness of recommendations. SM2 sig-
nificantly reduced the hubness while the SM1 and SM3
had no gains. This is consistent with the results reported
by Hoffman et al. [16], who found that HDP and vector
quantization (VQ) did not produce many hubs. VQ can be
considered as a hard clustering version of the tied GMM,
which is a soft clustering model.

We conclude that combining SM2 and SM3 is the best
approach to improving performance. In our experiments,
it yielded accuracy comparable with that of conventional
methods of collaborative filtering.

6. CONCLUSION
This paper has presented a continuous-pLSI-based model
for hybrid music recommendation. The model uses GMMs
to represent distributions of acoustic features extracted from
musical audio signals. As in the original pLSI, users and
items are assumed to follow multinomial distributions. We
developed an algorithm for parameter estimation and im-
plemented it in a parallel processing environment. Experi-
mentally testing the abilities of three smoothing techniques
—multinomial smoothing, Gaussian parameter tying, and
artist-based item clustering—, we found that using the sec-
ond and third techniques to adjust model complexity sig-
nificantly improved the accuracy of recommendations and
that the second technique could also reduce hubness.

In the future, we plan to introduce conjugate priors of all
distributions (GMMs and multinomial distributions) into
the continuous pLSI to enable full Bayesian estimation.
Extending latent Dirichlet allocation (LDA) [23] and HDP-
LDA [26] are worth considering.
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ABSTRACT

This paper presents an approach to generating steerable
playlists. We first demonstrate a method for learning song
transition probabilities from audio features extracted from
songs played in professional radio station playlists. We
then show that by using this learnt similarity function as a
prior, we are able to generate steerable playlists by choos-
ing the next song to play not simply based on that prior,
but on a tag cloud that the user is able to manipulate to ex-
press the high-level characteristics of the music he wishes
to listen to.

1. INTRODUCTION

The celestial jukebox is becoming a reality. Not only are
personal music collections growing rapidly, but online mu-
sic streaming services like Spotify 1 or Last.fm 2 are get-
ting closer everyday to making all the music that has ever
been recorded instantly available. Furthermore, new play-
back devices are revolutionizing the way people listen to
music. For example, with its Internet connectivity, Apple’s
iPhone gives listeners access to a virtually unlimited num-
ber of tracks as long as they are in range of a cellular tower.
In this context, a combination of personalized recommen-
dation technology and automatic playlist generation will
very likely form a key component of the end user’s listen-
ing experience.

This work’s focus is on providing a way to generate
steerable playlists, that is, to give the user high-level con-
trol over the music that is played while automatically choos-
ing the tracks and presenting them in a coherent way. To
address this challenge, we use playlists from professional
radio stations to learn a new similarity space based on song-
level audio features. This yields a similarity function that
takes audio files as input and outputs the probability of
those audio files being played successively in a playlist.
By using radio station playlists, we have the advantage of

1 http://www.spotify.com
2 http://www.last.fm
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having a virtually unlimited amount of training data. At
the same time, we are able to generalize the application of
the model to any song for which we have the audio files.
We believe this will be the case in any real-life application
we can foresee for the model.

Furthermore, we use the concept of a steerable tag cloud
[2] to let the user guide the playlist generation process.
Tags [6], a type of meta-data, are descriptive words and
phrases applied to any type of item; in our case, music
tracks. Tags are words like like chill, violin or dream pop.
They have been popularized by Web 2.0 websites like Last.fm,
where users can apply them to artists, albums and tracks.
The strength of tags, especially when used in a social con-
text, lies in their ability to express abstract concepts. Tags
communicate high-level ideas that listeners naturally use
when describing music. We tag all tracks in our playlists
using an automatic tagging system [7] in order to ensure
that they are all adequately tagged. Then, given a seed
song, the learnt similarity model is used to preselect the
most probable songs to play next, after which the similar-
ity between the user’s steerable tag cloud and each of the
candidate songs’ cloud is used to make the final choice.
This allows users to steer the playlist generator to the type
of music they want to hear.

The remainder of this paper is organized as follows.
Section 2 gives a brief overview of related work in music
similarity and playlist generation. Section 3 explains how
the radio station playlists data set was collected and assem-
bled. Section 4 presents the creation and evaluation of our
new similarity space. Section 5 explains how we propose
implementing a steerable playlist generator. Finally, sec-
tion 6 explores future research avenues.

2. PREVIOUS WORK

An increasing amount of work is being conducted on au-
tomatic playlist generation, with considerable focus being
placed on the creation of playlists by means of acoustic or
meta-data similarity [10–14].

More recently, connectivity graphs derived from mu-
sic social networks are being used to measure similarity.
For example, [5] uses network flow analysis to generate
playlists from a friendship graph for MySpace 3 artists.
In [4], the authors use Last.fm collaborative filtering data

3 http://www.myspace.com
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to create a similarity graph considering songs to be sim-
ilar if they have been listened to by similar users. They
then embed the graph into a Euclidean space using LMDS,
where similar artists would appear near one another.

Another approach [3] uses a case-based reasoning sys-
tem. From its pool of real human-compiled playlists, the
system selects the most relevant ones in regards to the user’s
one song query and mixes them together, creating a new
playlist.

We are aware of only one other attempt to use radio
station playlists as a source of data. In [1] radio station
playlists are used to construct a weighted graph where each
node represents a song and each arc’s weight is the num-
ber of times the two songs are observed one after the other.
From the graph, the authors are able to infer transition
probabilities between songs by creating a Markov random
field. Our approach is similar, with the advantage that we
can generalize to songs not observed in the training data.

3. CONSTRUCTING THE DATA SET

Our model is trained on professional radio station playlists.
For this experiment, we consider a playlist to be a sequence
of 2 or more consecutive plays uninterrupted by a commer-
cial break. Suppose a radio station plays the tracks ta, tb
and tc one after the other, we will consider {ta, tb} and
{tb, tc} as two 2-song sequences ∈ S2, and {ta, tb, tc} as
one 3-song sequence ∈ S3. We consider the sequences
{ta, tb} and {tb, ta} as two distinct sequences. The model’s
output will thus be non-symmetric in regards to the order
in which the songs are presented.

The playlist data we used came from two sources which
we will cover in section 3.1.

3.1 Playlist sources

3.1.1 Radio Paradise

Radio Paradise 4 (RP) is a free Internet-streamed radio sta-
tion that defines its format as “eclectic online radio.” RP
provided us with playlist data including every play from
January 1st 2007 to July 28th 2008 (575 days). The data
consists of 195,692 plays, 6,328 unique songs and 1,972
unique artists.

3.1.2 Yes.com

Yes.com is a music community web site that provides, among
other things, the playlists for thousands of radio stations
in the United States. Developers are able to access the
playlist data via a free web based API 5 that returns the
data in JSON format. One API call allows the developer to
get a list of radio stations, either by searching by genre, by
name or even by proximity to a given ZIP code. Then, for
each retrieved station, the API provides access to that sta-
tion’s play history for the last 7 days. The self-assigned and
non-exclusive genres of the available radio stations cover
all major musical styles. The stations we used to build
our own dataset were not chosen for any particular reason.

4 http://www.radioparadise.com
5 http://api.yes.com

Rather, we made a few searches with the API by genre until
we obtained enough data for our work, that is 449 stations.
The proportion of stations’ non-exclusive association with
the different genres is detailed in Table 1.

Table 1. Proportion of the 449 Yes radio stations associ-
ated with each genre. Because the genres are non-exclusive
the sum of the percentages is > 100.

Latin 11.2% Christian 11.4%
Country 20.6% Hip-Hop 17.2%

Jazz 4.3% Metal 14.1%
Pop 23.3% Punk 1.6%

Rock 39.4% R&B/Soul 13.6%

We used data mined from the Yes API from Novem-
ber 13th 2008 to January 9th 2009 (57 days), totaling 449
stations, 6,706,830 plays, 42,027 unique songs and 9,990
unique artists.

Unlike RP, Yes did not provide any indication of where
the commercial breaks were located in the list of plays.
We inferred where they were by looking at the interval
between the start time of every pair of consecutive songs.
As we will explain in section 4.1, we only used sequences
made of tracks for which we had the audio files. This al-
lowed us to calculate song length and to infer when com-
mercials were inserted. Specifically, if the second of the
two songs did not start within ±20 seconds of the end of
the first one, we assumed that a commercial break had been
inserted and thus treated the two songs as non-sequential.
This approach is more precise than the method used in [1],
where breaks were inserted if the elapsed time between two
songs was greater than 5 minutes.

3.2 Putting the data together

Combining all the data yielded 6,902,522 plays, with an
average of 15,338 plays per station. As we will explain in
4.1, the features we used as input to our model required
us to have access to each of the songs’ audio file. Of the
47,044 total songs played in the playlists we used, we were
able to obtain the audio files for 7,127 tracks. This reduced
the number of distinct usable song sequences to 180,232
and 84,668 for the 2 and 3-song sequence case respectively.
The sequences for which we had all the audio files were
combinations from 5,562 tracks.

Finally, we did not possess a set of explicit negative ex-
amples (i.e. two-song sequences that a radio station would
never play). In order to perform classification we needed
examples from both the positive and negative class. To ad-
dress this, we considered any song sequence that was never
observed in the playlist as being a negative example. Dur-
ing training, at each new epoch, we randomly sampled a
new set of negative examples matched in size to our pos-
itive example set. With this strategy it is possible that we
generated false-negative training examples (i.e. two-song
sequences that we didn’t see as positive examples in our
data set but that in fact a radio station would play). How-
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ever, since we resample new negative examples after every
training epoch, we do not repeatedly show the model the
same false-negative pair, thus minimizing potential impact
on model performance.

4. SONG SIMILARITY MODEL

4.1 Features

We use audio-based features as input to our model. First,
we compute 176 frame-level autocorrelation coefficients
for lags spanning from 250ms to 2000ms at 10ms intervals.
These are aggregated by simply taking their mean. We then
down sample the values by a factor of two, yielding 88 val-
ues. We then take the first 12 Mel-frequency cepstral co-
efficients (MFCC), calculated over short windows of audio
(100ms with 25ms overlaps), and model them with a sin-
gle Gaussian (G1) with full covariance [16]. We unwrap
the values into a vector, which yields 78 values.

We then compute two song-level features, danceability
[9] and long-term loudness level (LLML) [8]. Danceabil-
ity is a variation of detrended fluctuation analysis, which
indicates if a strong and steady beat is present in the track,
while the LLML gives an indication of the perceived loud-
ness of the track. Both of these features yield a single nu-
meric value per song.

These 4 audio features are concatenated to form an 180
dimensional vector for each track.

4.2 Learning models

We formulate our learning task as training a binary clas-
sifier to determine, given the features for a sequence of
tracks, if they form a song sequence that has been observed
in our radio station playlists. If a sequence has been ob-
served at least once, it is considered a positive example.
As mentioned above, the negative examples are randomly
sampled from the pool of all unseen sequences.

We use three types of learning models in our experi-
ments: logistic regression classifiers, multi-layer percep-
trons (MLP) and stacked denoising auto-encoders (SdA).
Logistic regression, the simplest model, predicts the prob-
ability of a song-sequence occurrence as a function of the
distance to a linear classification boundary. The second
model, a multi-layer perceptron, can also be interpreted
probabilistically. It adds an extra “hidden” layer of non-
linearity, allowing the classifier to learn a compact, nonlin-
ear set of basis functions.

We also use a type of deep neural network called a stacked
denoising auto-encoder (SdA) [17]. The SdA learns a hi-
erarchical representation of the input data by successively
initializing each of its layers according to an unsupervised
criterion to form more complex and abstract features. The
goal of this per-layer unsupervised learning is to extract
an intermediate representation which preserves informa-
tion content whilst being invariant to certain transforma-
tions in the input. SdAs are exactly like neural networks
with the exception that they have multiple hidden layers
that are initialized with unsupervised training.

In our experiments, the models operated directly on pairs
(or 3-tuples in the case of predicting sequences of length 3)
of audio features. The input x of our model is thus a vector
of length 180·n, with n ∈ {2, 3}, formed by concatenating
the features of each track into a single vector.

We used 75% of our unique pairs/triplets for training,
keeping 12.5% for validating the hyper-parameters and 12.5%
for testing. We did not perform any cross-validation.

4.3 Similarity evaluation

Measuring the quality of the similarity space induced by
the model is not easy and highly subjective. We will first
look at its performance on the learning task (4.3.1), and
then try to evaluate it in a more qualitative way (4.3.2).

4.3.1 Learning performance

Classification errors for the different models we trained are
presented in Table 2. The errors represent the proportion
of real sequences that were classified as false sequences
by each model, or vice versa, on the test set, for the best
combination of hyper-parameters.

While the logistic regression clearly lacks learning ca-
pacity to adequately model the data, the MLPs and SdAs
have similar performance. SdAs have been shown to out-
perform MLPs in complex image classification tasks ( [17])
but were unable to learn a significantly better representa-
tion of the features we are using for this task. This could
mean that the feature set was not sufficiently rich or that
the task was simply too difficult for the hierarchical model
to find any kind of compositional solution to the problem.

Table 2. Classification errors on the test set for the differ-
ent models we trained as well as a random baseline. SdA-n
represents an SdA with n hidden layers.

Model 2-song seq. 3-song seq.
random 50.00% 50.00%

logistic regression 31.73% 21.08%
MLP 8.53% 5.79%

SdA-2 8.38% 5.58%
SdA-3 8.62% 5.78%

4.3.2 Retrieval evaluation

By using the original radio station playlists as the ground
truth, we can evaluate the retrieval performance of our model.
The evaluation is done using TopBucket (TB) [7], which is
the proportion of common elements in the two top-N lists.

Constructing the ground truth from the playlists is done
as follows. Each 2-song sequence S2

n ∈ S2 is made up
of tracks {t1n, t2n} and has been observed |S2

n| times. We
construct one top listLti∀ti ∈ T, as the set of all sequences
S2

n for which t1n = ti, ordered by |S2
n|. Lti

essentially
gives a list of all the tracks that have followed ti ordered
by their occurrence count. In the 3-song sequence case,
we construct a top list L{ti,tj} for pairs of tracks since in
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Table 3. Retrieval performance based on the TopBucket (TB) measure of our models compared to random, popularity-
biased random, acoustic similarity and autotags similarity. Each score represents the average percentage (and standard
deviation) of songs in the ground truth that were returned by each model.

2-song sequences 3-song sequences
Model TB10 TB20 TB5 TB10
random 0.25%±0.16% 0.58%±1.75% 0.11%±1.45% 0.25%±1.52%

popularity-biased random 1.01%±3.15% 2.19%±3.34% 0.51%±3.17% 0.96%±3.15%
acoustic (G1C) 1.37%±3.80% 2.37%±3.73% 0.63%±3.48% 1.61%±4.01%

autotags (Cosine distance) 1.43%±3.98% 2.34%±3.86% 0.58%±3.34% 2.26%±4.89%
logistic regression 2.47%±5.08% 6.41%±6.40% 0.20%±2.00% 1.16%±3.40%

MLP 16.61%±14.40% 23.48%±13.17% 7.72%±13.92% 20.26%±17.85%
SdA-2 13.11%±12.05% 19.13%±11.19% 7.25%±13.66% 21.74%±19.75%
SdA-3 13.17%±11.31% 18.22%±10.04% 9.74%±18.00% 26.39%±22.74%

practice, a playlist generation algorithm would know the
last two songs that have played.

For our experiments, we used the top 10 and 20 ele-
ments and 5 and 10 elements for the 2 and 3-song sequence
case respectively. The results, shown in Table 3, represent
the average number of common elements in the ground
truth’s top list and each of the similarity models’ for ev-
ery song.

Because most sequences were only observed once (|S2
n| =

1), we were often in the situation where all the sequences
in Lti had an occurrence of 1 (∀S2

n ∈ Lti : |S2
n| = 1) and

the number of sequences in Lti
was greater than N for a

top-N list. Because in such a situation there was no way
to determine which sequences should go in the top-list, we
decided to extend the top-N list to all the sequences that
had the same occurrence count as the N th sequence. In
the 2-song sequence case, we also ignored all sequences
that had |S2

n| = 1 to keep the top-N lists from growing a
lot larger than N . Ignoring as well all the songs that did
not have at least N tracks in their top-list, we were left,
in the 2-song sequence case, with 834 songs that had an
average of 14.7 songs in their top-10 list and 541 songs
with an average of 28.8 songs in their top-20 list. In the
3-song sequence case, the top-5 list was made up of 1,181
songs with a 6.6 top songs average and the top-10 list was
composed of 155 songs with an average of 13.8 top songs.

We compared our model’s retrieval performance to two
other similarity models. First, we computed the similarity
in the space of autotags [7] from the cosine distance over
song’s tags vector [2]. The second comparison was per-
formed by retrieving the most acoustically similar songs.
Acoustic similarity was determined by using G1C [15] which
is a weighted combination of spectral similarity and in-
formation about spectral patterns. We also compared our
model to a popularity-biased random model that proba-
bilistically chooses the top songs based on their popular-
ity. Each song’s popularity was determined by looking at
the number of sequences it is part of.

In the 3-song sequence case, for the autotag and acous-
tic similarity, we represent the similarity sim({t1, t2}, t3)
as the mean of sim(t1, t3) and sim(t2, t3).

The results of Table 3 clearly show that there is more

involved than simple audio similarity when it comes to re-
constructing sequences from radio station playlists. The
performance of the audio and autotag similarity are indeed
significantly lower than models that were trained on actual
playlists.

Furthermore, the TB scores of Table 3 are from the
models that have the best classification error (see Table 2).
It is interesting to note that some models with a worst clas-
sification error have better TB scores. While classification
is done by thresholding a model’s certainty at 50%, TB
gives an indication of the songs for which a model has the
highest certainty. Since these are the songs that will be
used when generating a playlist, this metric seems more
appropriate to judge the models. The relation between
classification error and TB scores is a topic for further in-
vestigation.

5. STEERABLE PLAYLIST GENERATION

While the model presented above is able to build a sim-
ilarity space in which nearby songs fit well together in a
playlist, it does not provide a mechanism for allowing the
user to personalize the sequence for a given context. To ad-
dress this, final song selection was done using the Aura 6

[2] recommendation engine from Sun Microsystems Labs.
Aura is able to generate transparent and steerable recom-
mendations by working with a textual representation —
a tag cloud — of the items it is recommending. Specifi-
cally it finds the most similar items to any other in its pool
by computing the cosine distance on their respective tag
clouds. It can also explain to the user why an item is rec-
ommended by showing the overlap between tag clouds.

We use Aura as a means to allow users to personal-
ize (“steer”) the playlist generation by allowing them to
create a personal tag cloud that represents the music they
wish to listen to. In order to generate tag clouds for our
tracks, we used Autotagger [7], a content-based machine
learning model. This model is designed to generate a tag
cloud (specifically a weighted vector of 360 music-relevant
words) from an audio track, thus allowing us to use Aura’s
cosine distance measure to compute the similarity between

6 http://www.tastekeeper.com
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each track and the user’s personal cloud.

5.1 Steps for generating a steerable playlist

Our playlist generation algorithm works as follows :
1. A seed track ts ∈ T is selected amongst all possible

tracks.
2. The similarity model is used to compute transitional

probabilities between the seed song and all other ones (with
more similar songs having higher transition probabilities),
keeping only the top ϕ, or thresholding at a certain transi-
tion probability ρ. Let T be the group of these top songs:

T = arg max
ti∈T\ts

ϕM(ts, ti) (1)

3. The user is then invited to create a tag cloud CU by
assigning weights to any of the 360 tags in the system. In
this way the cloud is personalized to represent the mood or
type of songs the user would like to hear. The higher the
weight of a particular tag, the more impact it will have on
the selection of the next song.

4. Autotagger is used to generate a tag cloud Ctj for all
tracks tj ∈ T . The cosine distance (cd(·)) between these
tag clouds and CU is used to find the song that best matches
the abstract musical context the user described with his or
her cloud:

tmin = arg min
tj∈T

cd(CU , Ctj ) (2)

5. The track tmin is selected to play next. Since the sys-
tem is transparent, we can tell the user we chose the song
tmin because it has a certain transition probability from
the seed song but also because its tag cloud overlapped
with CU in a particular way. The user can then go back
and modify the tag cloud CU to influence how subsequent
songs will be selected.

Naturally, a lot of extra factors can be used when de-
termining which song to play in step 4. For instance, we
could consider the user’s taste profile to take into account
what types of songs he normally likes, mixing his current
steerable cloud to the one representing his musical tastes.
We could also include a discovery heuristic to balance the
number of novel songs selected as opposed to ones the user
already knows.

5.2 Example playlists

To illustrate the effect of the steerable tag cloud, we gener-
ate two playlists seeded with the same song but with very
different steerable clouds. The first 9 iterations of both
playlists are shown in Table 4. The effect of the cloud is
clearly visible by the different direction each playlist takes.
In our view, this transition is done smoothly because it is
constrained by the underlying similarity model.

To visualize the similarity space and the playlist gener-
ating algorithm, we compute a full track-to-track similarity
matrix and reduce its dimensionally using the t-SNEE [18]
algorithm (see Figure 1). We chose t-SNEE because it
tends to retain local distances while sacrificing global dis-
tances, yielding an appropriate two-dimensional visualiza-
tion for this task (i.e. the distance between very similar

Table 4. Both the following playlists are seeded with the
song Clumsy by Our Lady Peace. To give a clear point
of reference, we use the tag clouds of actual songs as the
steerable cloud. The soft tag cloud is made up of the tags
for Imagine by John Lennon and the hard tag cloud with
the tags for Hypnotize by System of a Down.

Soft tag cloud
Viva la Vida by Coldplay

Wish You Were Here by Pink Floyd
Peaceful, Easy Feeling by Eagles

With or Without You by U2
One by U2

Fields Of Gold by Sting
Every Breath You Take by The Police
Gold Dust Woman by Fleetwood Mac
Enjoy The Silence by Depeche Mode

Hard tag cloud
All I Want by Staind

Re-Education (Through Labor) by Rise Against
Hammerhead by The Offspring
The Kill by 30 Seconds To Mars

When You Were Young by The Killers
Hypnotize by System of a Down

Breath by Breaking Benjamin
My Hero by Foo Fighters

Turn The Page by Metallica

songs is more important to us than the relative global place-
ment of, e.g., jazz with respect to classical). We have over-
laid the trajectory of the two playlists in Table 4 to illustrate
their divergence.

6. CONCLUSIONS

We have demonstrated a method for learning song simi-
larity based on radio station playlists. The learnt model
induces a new space in which similar songs fit well when
played successively in a playlist. Several classifiers were
evaluated on a retrieval task, with SdAs and MLPs per-
forming better than other similarity models in reconstruct-
ing song sequences from professional playlists. Though
we were unable to show that SdAs outperform MLPs, we
did show much better performance than logistic regres-
sion and measures such as G1C over standard audio fea-
tures. Furthermore we argue that our model learns a direct
similarity measure in the space of short song sequences
rather than audio or meta-data based similarity. Finally,
we showed a way of doing steerable playlist generation by
using our similarity model in conjunction with a tag-based
distance measure.

Though this model is only a first step, its power and sim-
plicity lie in the fact that its two components play very dif-
ferent but complementary roles. First, the similarity model
does the grunt work by getting rid of all unlikely candi-
dates, as it was trained specifically for that task. This then
greatly facilitates the steerable and fine-tuned selection of
the subsequent track based on the textual aura, as most of
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Figure 1. Part of the 2-d representation of the track-to-
track similarity matrix generated by a 2-song sequence
SdA model. The trajectories of the two playlists described
in Table 4 are overlaid over the tracks. Both playlists are
seeded with the same song, which is represented by the
bigger dot. Each playlist diverges because of the steerable
tag cloud that is guiding its generation.

the obvious bad picks have already been removed.
Future work should attempt to use the number of occur-

rences of each sequence to give more importance to more
reliable sequences. Also, the model might learn a better
similarity space by being trained with richer features as in-
put. For example, adding meta-data such as tags, a measure
of popularity, the year the song was recorded, etc., might
prove helpful. Such a richer input space is likely necessary
to show a performance gain for SdAs over competing prob-
abilistic classifiers. Our experiments also led us to believe
that an increase in the quality of the learnt similarity could
probably be attained by simply adding more training data,
something that can be easily accomplished as thousands of
songs are played on the radio everyday.
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ABSTRACT

In this paper, we analyse and evaluate several heuristics
for adding songs to a dynamically generated playlist. We
explain how radio logs can be used for evaluating such
heuristics, and show that formalizing the heuristics using
fuzzy set theory simplifies the analysis. More concretely,
we verify previous results by means of a large scale eval-
uation based on 1.26 million listening patterns extracted
from radio logs, and explain why some heuristics perform
better than others by analysing their formal definitions and
conducting additional evaluations.

1. INTRODUCTION

In January 2009, Arbitron and Edison Research measured
the popularity of digital music platforms by means of a
survey of 1,858 American people aged 12+ . 1 They esti-
mated that 42 million Americans tune to online radio on a
weekly basis, which is more than twice their number from
2005, and claim that the number of 12+ year old Ameri-
cans owning a digital music player increased from 14% in
2005 to 42% in 2009. They also found that the vast ma-
jority of these people own an Apple iPod or iPhone. Ev-
idently, the Apple products dominate their market, which
is commonly attributed to their innovating design and user
interfaces. The recent “Genius” feature is a nice example
of such innovation. Using this feature, users can automat-
ically create coherent playlists by selecting a seed song,
i.e., an example of a song of interest, and pressing a sin-
gle button. Many of the popular online radio stations are
similar in concept. The user supplies one or more seeds,
and the system generates a corresponding list of tracks that
is turned into a custom radio station. Hence, automatic
playlist generation can be seen as a technology that is, to
some extent, responsible for the recent growth established
by certain digital music platforms, and its commercial im-
portance is likely to increase further in the near future.

This paper is about simple heuristics for automatically
generating playlists. More precisely, we will discuss sim-

1 http://www.arbitron.com/study/digital_radio_
study.asp
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ple rules of thumb for choosing the song to be played next,
given a set of candidate songs. This set of candidates can
consist of all available tracks, but usually it is restricted to
a limited subset. In order to avoid repetition, for instance,
the set of candidates has to be restricted to the songs that
have not been played yet. A realistic scenario is to select
the candidates using some other method, effectively turn-
ing the heuristic into an enhancement rather than a playlist
generation method on its own.

A very simple way to improve upon random selection,
is to repeatedly choose the candidate that is most similar to
a given seed song [1]. This playlist generation heuristic is
said to be static because the song sequence is completely
determined from the seed, without taking any additional
user input into account. Dynamic heuristics, on the other
hand, rely on user feedback to dynamically improve the se-
lection process [2]. For example, the aforementioned static
heuristic can be made dynamic by letting it pick the song
that is most similar to any of the accepted songs, where
the set of accepted songs consists of the seed song as well
as all tracks that were not skipped [3]. When there is no
given seed, the set of accepted songs can initially be empty
and the next track can be chosen at random until there is
at least one accepted song. This latter heuristic could eas-
ily be added to any system that returns multiple candidate
songs for being played next.

Putting it in one sentence, we discuss simple dynamic
playlist generation heuristics in this paper. In comparison
with alternative techniques, such heuristics are interesting
because they (i) are simple and thus easy to compute and
implement, and (ii) can easily be added as an enhancement
to many existing playlist generation systems.

2. RELATED WORK

Dynamic playlist generation can be seen as a special case
of the well-known relevance feedback paradigm from in-
formation retrieval [4]. In this paradigm, the user is asked
to give explicit feedback by labeling results as either rel-
evant or irrelevant, which leads to additional information
that can be used by the system to refine the search strat-
egy and generate a better list of results. Several rounds
of feedback can be conducted, each bringing the results
closer to the user’s implicit target concept. Hence, dy-
namic playlist generation is basically relevance feedback
with the returned set of results restricted to one item. In
case of this paper, the feedback taken into account is also
implicit rather than explicit, but there is no reason to as-
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sume that dynamic playlist generation heuristics could not
be based on more explicit feedback like “thumbs up/down”
buttons instead of skipping behavior.

Over the past few years, relevance feedback has received
quite a lot of research attention. In particular, some rele-
vance feedback techniques have already been applied to
music information retrieval, including training a decision
tree [5], a vector quantizer [6], and an SVM [7]. Since
the number of examples is very low when the returned
set of results is restricted to one item [2], using these ma-
chine learning techniques for dynamic playlist generation
might be problematic, however. For the custom-tailored
heuristics described in this paper, this is less of a prob-
lem. Moreover, their simplicity can be considered an addi-
tional advantage from a computational and implementation
point of view. Furthermore, as we already mentioned in
the introductory section, the described heuristics can also
be thought of as a refinement that can be added to a more
complex relevance feedback system.

3. FORMALIZATION

The definition of playlist generation heuristics can be for-
malized using fuzzy set theory [8]. In this section, we ex-
plain this formalization in detail, since we rely on it exten-
sively in the subsequent sections.

3.1 Fuzzy Sets

Let U denote a universe, i.e., a (crisp) set of considered
objects. A fuzzy set F in U is a U → [0, 1] mapping that
associates a degree of membership F (u) with each element
u from U [9]. The higher F (u), the more u is a member
of F . In particular, u fully belongs to F when F (u) = 1,
and F (u) = 0 implies that u is not at all an element of F .
We use the notation F(U) for the class of fuzzy sets in U ,
which can be regarded a superclass of P(U), the class of
crisp sets in U . A (binary) fuzzy relation L in U is a fuzzy
set in U × U , i.e., L ∈ F(U × U) [9].

The fuzzy set SimX , with X a crisp set in the (finite)
universe C of songs to be explored, is the main stepping
stone towards the fuzzy formalization. It is given by

SimX(u) = max
x∈X

M(u, x) (1)

for all u ∈ U , where U is the subset of C consisting of all
candidate songs. In this definition, M is a fuzzy relation in
C such that each relationship degreeM(c, d), with (c, d) ∈
C2, corresponds to the degree to which c is similar to d.
Putting it in words, SimX is a fuzzy set in U such that
SimX(u) can be interpreted as the degree to which u is
similar to any song in X .

In order to obtain a crisp set of tracks from a fuzzy song
set, we rely on the following formal operator:

XeF =
{
x ∈ X | F (x) = max

y∈X
F (y)

}
(2)

for allX ∈ P(C) and F ∈ F(C), i.e.,XeF is the crisp set
consisting of the elements from X with the greatest mem-
bership degree in F . Using this operator, we can formally

define the dynamic heuristic discussed in the introductory
section of this paper as UeSimA, with A the set of all ac-
cepted songs. In practice, the set UeSimA will be a sin-
gleton most of the time, but theoretically speaking it can
contain up to |U | elements. We can choose one element at
random when |UeSimA| > 1, however, since each song
from the set can be considered equally suitable for being
played next. In the remainder of this paper, we silently
assume that this procedure is followed for all introduced
heuristics, i.e., we will define the heuristics as crisp sets
and assume that one element is chosen at random when
this set has several members.

3.2 Operations on Fuzzy Sets

The set-theoretic operations complement, intersection, and
union can be generalized to fuzzy sets as follows:

(coNF )(u) = N (F (u)) (3)

(F ∩T G)(u) = T (F (u), G(u)) (4)

(F ∪SG)(u) = S(F (u), G(u)) (5)

for each u ∈ U , with F,G ∈ F(U), N a negator, T a
t-norm, and S a t-conorm. We restrict the sheer number of
possibilities by only considering the widely-used standard
negator NS given by NS(x) = 1 − x for all x ∈ [0, 1], the
three prototypical t-norms [10] given by

TM(x, y) = min(x, y) (6)

TP(x, y) = x · y (7)

TL(x, y) = max(x+ y − 1, 0) (8)

for all x, y ∈ [0, 1], and their duals

SM(x, y) = max(x, y) (9)

SP(x, y) = x+ y − x · y (10)

SL(x, y) = min(x+ y, 1) (11)

for all x, y ∈ [0, 1]. In the remainder, we will abbreviate
coNS by co since NS is the only negator we consider.

For this paper, however, we mainly need a generalized
set-theoretic difference, which can be obtained by defining

(F \I G)(u) = NS(I(F (u), G(u))) (12)

for every u from U , with F,G ∈ F(U) and I an impli-
cator. We consider two ways of generating implicators in
this paper, namely, S-implicators and R-implicators. The
S-implicator induced by a t-conorm S and the standard
negator NS is the [0, 1]2 → [0, 1] mapping IS defined as
IS(x, y) = S(NS(x), y), for all x, y ∈ [0, 1], and the R-
implicator induced by a t-norm T is the [0, 1]2 → [0, 1]
mapping IT given by, for all x, y ∈ [0, 1], IT (x, y) =
sup{γ ∈ [0, 1] | T (x, γ) ≤ y}. For the above-mentioned
prototypical t-norms and the corresponding t-conorms, this
leads to the following implicators:

ISM(x, y) = max(1− x, y) (13)

ISP(x, y) = 1− x+ x · y (14)

ISL(x, y) = min(1− x+ y, 1) (15)
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ITM(x, y) =

{
1 if x ≤ y
y otherwise

(16)

ITP(x, y) =

{
1 if x ≤ y
y
x otherwise

(17)

ITL(x, y) = ISL,NS(x, y) (18)

for all x, y ∈ [0, 1].

3.3 Formal Heuristics

Having the operations on fuzzy sets at our disposal, we
can incorporate the set R of all rejected songs by replac-
ing SimA in UeSimA with a set-theoretic expression in
terms of both SimA and SimR. The heuristic defined as
Ue(SimA \I SimR), for instance, selects the songs that
are similar to an accepted song but not similar to any re-
jected ones, as illustrated by Fig. 4(a). By taking into ac-
count the fact that (UeF )eF = UeF for each F ∈ F(U),
we can easily define slightly more fine-grained heuristics,
however. Instead of replacing SimA in UeSimA, we can
first rewrite UeSimA as (UeSimA)eSimA and then re-
place only the first occurrence of SimA, which effectively
leads to heuristics of the form (UeP )eSimA, where P is a
set-theoretic expression in SimA and SimR. We call this
expression P the preselection expression, since it imple-
ments a preselection step that precedes further filtering by
SimA. As values for P , we consider the set-theoretic ex-
pressions illustrated by Fig. 4(a), Fig. 4(b), Fig. 4(c), which
leads to the following heuristics:

HI
a = (Ue(SimA \I SimR))eSimA (19)

Hb = UeSimA (20)

HI
c = (Ueco(SimR \I SimA))eSimA (21)

For the value of the parameter I in HI
a and HI

c , we will
consider the five different implicators discussed in the pre-
vious subsection, namely, ISM , ISP , ISL , ITM , and ITP .

The contour plots in Fig. 1 show how the implemented
preselection strategy varies for the considered implicators.
For each preselection expression P , there exists a corre-
sponding [0, 1]2 → [0, 1] mapping p such that P (u) =
p(SimA(u),SimR(u)) for all u ∈ U . Table 1 lists these
mappings for all considered (non-trivial) preselection ex-
pressions, and the plots in Fig. 1 each illustrate one of these
mappings. Essentially, these plots provide a top view of
the three-dimensional plots for the [0, 1]2 → [0, 1] map-
pings. More precisely, the lines connect points for which
the illustrated mapping yields the same value, leading to a
partitioning of the [0, 1]2 square into different areas. The
darker the area, the higher the values returned by the map-
ping in this area. Hence, songs u for which the point
(SimA(u),SimR(u)) is in a dark area are given preference
by the preselection strategy in question.

All previously-introduced playlist generation heuristics
can be formalized in this way [8]. In particular, the well-
performing heuristic defined as

For each candidate song, let da be the distance to
the nearest accepted, and let ds be the distance to

preselection expression [0, 1]2 → [0, 1] mapping

SimA \ISM
SimR min(x, 1− y)

SimA \ISP
SimR x− x · y

SimA \ISL
SimR max(x− y, 0)

SimA \ITM
SimR

{
0 if x ≤ y
1− y otherwise

SimA \ITP
SimR

{
0 if x ≤ y
1− y

x otherwise
co(SimR \ISM

SimA) max(1− y, x)
co(SimR \ISP

SimA) 1− y + y · x
co(SimR \ISL

SimA) min(1− y + x, 1)

co(SimR \ITM
SimA)

{
1 if y ≤ x
x otherwise

co(SimR \ITP
SimA)

{
1 if y ≤ x
x
y otherwise

Table 1. Corresponding [0, 1]2 → [0, 1] mappings for the
considered (non-trivial) preselection expressions.

(a) H
ISM
a (b) H

ISP
a (c) H

ISL
a (d) H

ITP
a (e) H

ITM
a

(f) H
ISM
c (g) H

ISP
c (h) H

ISL
c (i) H

ITM
c (j) H

ITP
c

Figure 1. Contour plots illustrating the preselection strate-
gies of the considered instances ofHI

a andHI
c . Every can-

didate song u corresponds to a point (SimA(u),SimR(u))
in each of these plots, and the points in the darker areas are
given preference by the strategy in question.

the nearest skipped. If da < ds, then add the candi-
date to the set S. From S play the song with small-
est da. If S is empty, then play the candidate song
which has the best (i.e. the lowest) da/ds ratio.

in [2], is equivalent to H
ITP
c . In addition to being more

concise and precise, the formal definition of this heuris-
tic was also obtained more systematically and is easier to
analyse, as we will demonstrate later on in this paper.

4. BASIC EVALUATION

The evaluations described in [2] and [8] are all based on
the fairly simplistic assumption that a song is a good ad-
dition to a playlist when it is from the same genre as the
seed. For this paper, however, we evaluated the considered
heuristics using patterns extracted from Last.fm radio logs.
More precisely, we looked for sequences of 22 tracks for
which the last two tracks did not both get accepted or re-
jected, i.e., one of them got accepted while the other got
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rejected. Tracks were considered accepted when the user
listened to more than 50% of them. In order to make sure
that the extracted patterns represent genuine user interac-
tions, we imposed two additional restrictions: (i) at least
5 and at most 15 of the first 20 tracks got accepted, and
(ii) the last song of the sequence was not the last song of a
listening session. In this way, we avoid problems like, e.g.,
the user falling asleep or getting distracted while listening
to the radio station, or the last song being considered a skip
whereas the user really just turned off the radio while this
song was playing.

All of the patterns used for our evaluation were extrac-
ted from log files produced by Last.fm “playlist” radio sta-
tions, which basically shuffle randomly through user-gene-
rated lists of tracks. Last.fm provides its users the abil-
ity to create and share playlists, and subscribers can listen
to these playlists in random shuffle mode when they con-
tain at least 45 playable tracks by 15 different artists. We
considered 1,260,271 patterns extracted from log files gen-
erated by such stations, involving 53,768 unique listeners
and 516,261 different tracks from 70,306 artists.

The similarity values used for our evaluation were de-
rived from tag data using the well-known cosine similarity
measure [4], i.e., songs to which Last.fm users applied the
same tags were considered similar to each other. Since the
values from [0, 1] obtained in this way can directly be in-
terpreted as membership degrees, we did not have to apply
any normalization procedures in order to obtain the fuzzy
relation M on which the definition of SimX is based.

For each considered pattern, we made every heuristic
choose between the last two tracks based on the acceptance
history for the 20 previous tracks, and counted how many
times they picked the wrong one. More formally, each pat-
tern corresponds to a (A,R, r, w) tuple, where A and R
are the sets of accepted and rejected songs, respectively,
and r and w are the right and the wrong choice. The fail-
ure rate for a given heuristic is then obtained by putting
U = {r, w} for each pattern and counting how many times
w is returned by the heuristic.

Fig. 2 shows the results of our basic evaluation. The
circles mark the failure rates, and the lines through them
represent the 95% binomial confidence intervals computed
by approximating the binomial distribution with a normal
distribution. These results roughly confirm the findings ob-
tained in [8]. Again, H

ISL
c andH

ITP
c perform significantly

better than the other heuristics, although the difference be-
tweenH

ITP
c andH

ISP
c is just barely significant in this case.

It still remains unclear why exactly these two heuristics
perform best, however, which is precisely the motivation
for the subsequent sections of this paper.

5. INCONSISTENT USER PREFERENCES

With each pattern considered for our basic evaluation, we
can associate two pairs of the form (similarity with ac-
cepted tracks, % listened), one for the right choice and an-
other for the wrong one. Similarly, we can also associate
two pairs of the form (similarity with rejected tracks, % lis-
tened) with each pattern. Fig. 3 shows the distribution of

43.5 44 44.5 45 45.5 46

H
ITP
c

H
ITM
c

H
ISL
c

H
ISP
c

H
ISM
c

Hb

H
ITP
a

H
ITM
a

H
ISL
a

H
ISP
a

H
ISM
a

failure rate (%)

Figure 2. Results of the basic evaluation. The circles mark
the failure rates, and the lines represent the 95% binomial
confidence intervals.
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Figure 3. Two-dimensional histograms for the (similar-
ity with accepted tracks, % listened) and (similarity with
rejected tracks, % listened) pairs corresponding to the con-
sidered patterns. Darker regions contain more pairs, and
the thick black lines were obtained using linear regression.

these pairs for the considered patterns. The two thick black
lines in this figure are the linear regression lines, i.e., the
best-fitting straight lines through all of the points in terms
of least squares. As illustrated by these regression lines,
users apparently tend to avoid songs that are similar to the
skipped tracks in favor of the ones similar to the tracks that
were not skipped, which is the main assumption behind
the dynamic heuristics discussed in this paper. However,
the regression lines are only slightly tilted, suggesting that
the user preferences are often driven by reasons unrelated
to the (computed) similarity with the accepted or rejected
tracks. We say such preferences are inconsistent, and dis-
tinguish the resulting inconsistent skipping behavior into
two categories: (i) an inconsistent accept occurs when an
accepted song is either similar to a rejected track, or not
similar to any of the accepted ones, and (ii) an inconsistent
reject occurs when a rejected song is similar to an accepted
track or not similar to any rejected tracks. In the context
of a radio station, for instance, an eclectic user might not
mind when a song is not similar to any of the already ac-
cepted songs, leading to an inconsistent accept. On the
other hand, the user might reject a particular track because
she happens to dislike the corresponding artist for certain
(unmeasurable) reasons, even though the track is very sim-
ilar to the already accepted songs, resulting in an inconsis-
tent reject which might in turn lead to inconsistent accepts,
since the user is likely to accept songs that are similar to
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SimA SimR
U

(a) SimA \ SimR

SimA SimR
U

(b) SimA

SimA SimR
U

(c) co(SimR \ SimA)

SimA SimR
U

(d) co(SimA) ∪ SimR

SimA SimR
U

(e) SimA ∪ co(SimR)

Figure 4. The dark areas in these Venn diagrams depict the main set-theoretic expressions considered in this paper.

selections non-selections

HI
a

SimA SimR
U SimA SimR

U

Hb

SimA SimR
U SimA SimR

U

HI
c

SimA SimR
U SimA SimR

U

Figure 5. The inconsistent selections and non-selections
area for all considered heuristics.

the inconsistently rejected track.
Now, by thinking of the fuzzy sets as if they were crisp

sets, we can intuitively determine how well the preselec-
tion expressions from the heuristics comply with inconsis-
tent user preferences. A song u from U selected by a crisp
preselection expression P can lead to an inconsistent ac-
cept when either u /∈ SimA or u ∈ SimR. Hence, the
area corresponding to potential inconsistent accepts for a
preselection expression P is the intersection of P with the
set-theoretic expression shown by Fig. 4(d). We call this
area the inconsistent selections area. Similarly, we can de-
fine the inconsistent non-selections area as the intersec-
tion of co(P ) and the expression shown by Fig. 4(e). The
larger the inconsistent selections area, the better the prese-
lection expression complies with inconsistent accepts, and
the larger the inconsistent non-selections area, the better it
complies with inconsistent rejects.

Fig. 5 shows the inconsistent selections and non-selec-
tions area for all considered heuristics. Judging from this
figure, HI

a should perform best when inconsistent rejects
occur more frequently than inconsistent accepts, HI

c is ex-
pected to perform best when inconsistent accepts are more
common, and HI

b should perform similarly under both cir-
cumstances. In order to verify these theoretical insights,
we conducted some additional evaluations.

6. ADDITIONAL EVALUATIONS

By disregarding some of the extracted patterns, we can
control the level of inconsistent accepts and rejects. As
illustrated by Fig. 6(a), for example, the relative number
of inconsistent accepts can be increased by ignoring all
patterns for which either sA − lA > 0.6 or 1 − sR −
lR > 0.6 holds, with (sA, lA) and (sR, lR) a (similarity
with accepted tracks, % listened) and a (similarity with re-

jected tracks, % listened) pair, respectively, corresponding
to the pattern in question. Disregarding patterns in this
way actually removes inconsistent rejects, but this effec-
tively leads to a higher percentage of inconsistent accepts
in the obtained dataset. Increasing the level of inconsistent
rejects can be done analogously. By considering several
cut-off values, we generated 9 different datasets that grad-
ually move from a high level of inconsistent accepts to a
high level of inconsistent rejects, as illustrated by Fig. 6.

We conducted the basic evaluation for every generated
dataset, which led to the plots shown in Fig. 7. In accor-
dance with Fig. 5, the dash-dotted line is below the dashed
one in the left part of each of these plots, whereas it is al-
ways above the dashed one in the right part. The solid line,
on the other hand, is roughly symmetrical along the dotted
vertical divider, which also complies nicely with Fig. 5.
Although their magnitudes vary a lot depending on the
used value for the implicator I, the differences in perfor-
mance are clearly visible in each subfigure, confirming the
insights we obtained by analysing the formal definitions of
the heuristics.

Now that we linked the performance of the heuristics to
inconsistent user preferences, we can finally explain why
the failure rate for the best performing instance of HI

c is
significantly smaller than those for all instances of HI

a in
Fig. 2. The reason for this is simply that the full collec-
tion of extracted listening patterns contains more incon-
sistent accepts than inconsistent rejects, which can easily
be demonstrated by reducing the granularity of the two-
dimensional histograms from Fig. 3 and summing up the
counts for certain bins. For instance, we can get a rough
idea of the number of inconsistent accepts by considering
merely four bins and summing up the counts for the bins
highlighted in Fig. 8(a). Similarly, we can roughly deter-
mine the number of inconsistent rejects by summing up the
counts for the bins highlighted in Fig. 8(b). The following
numbers were obtained in this way: 1,222,094 inconsistent
accepts and 1,186,155 inconsistent rejects. Moreover, the
dataset illustrated by Fig. 6(a) consists of 554,614 patterns,
while the one corresponding to Fig. 6(e) is made up of only
440,171 patterns. Hence, the original dataset indeed seems
to contain more inconsistent accepts than inconsistent re-
jects. The difference is not that large, however, which ex-
plains why there is only a very small gap between the per-
formance of H

ISL
c and H

ISP
a in Fig. 2.

Note that Fig. 7 also illustrates that ISL can be seen as a
balanced compromise between the extremes ISM and ITM .
For the other implicators, the measured performance tends
to vary a lot for different heuristics, but ISL rarely leads
to significantly worse performance than any of the other
considered implicators. In Fig. 2 as well in as all empirical
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(a) dataset 1 (b) dataset 3 (c) dataset 5 (d) dataset 7 (e) dataset 9

Figure 6. Two-dimensional histograms that illustrate how the 9 generated datasets gradually move from a high level of
inconsistent accepts to a high level of inconsistent rejects.
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Figure 7. Results of the additional evaluations for HI
a (- -), Hb (–), and HI

c (-·-). The numbers along the horizontal axis
are dataset identifiers, while the vertical axis shows failure rate percentages.

results described in [8], H
ISL
a and H

ISL
c perform at least

as well as all other instances of HI
a and HI

c , respectively.

7. CONCLUSION AND FUTURE WORK

The mathematical apparatus from the theory of fuzzy sets
proves to be very convenient for defining dynamic playlist
generation heuristics. Using the described fuzzy frame-
work, we obtained definitions that are not only systematic
and both concise and precise, but also intuitively clear and
easy to analyse. We relied on this latter benefit to relate the
performance of the considered heuristics to inconsistent
user preferences. More precisely, we established that HI

a

performs best when inconsistent rejects occur more fre-
quently than inconsistent accepts, thatHI

c can be expected
to perform best when inconsistent accepts are more com-
mon, and that HI

b performs similarly under both circum-
stances. We clearly confirmed these theoretical insights by
means of a new methodology for evaluating playlist gener-
ation heuristics based on listening patterns extracted from
radio logs, which allowed us to conduct accurate experi-
ments using massive amounts of data.

Since we mainly focussed on comparing the heuristics
with each other in this paper, it still remains largely un-
clear to what extent they can improve the performance of a
particular playlist generation system. Future work should
try to measure the performance impact of the considered
heuristics on specific playlist generations systems, and com-
pare them with potential alternatives. In order to obtain a
fairer comparison, the underlying fuzzy relation M could
then be based on a more advanced similarity measure than
simple tag-based cosine similarity.
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ABSTRACT
Genius is a popular commercial music recommender sys-
tem that is based on collaborative filtering of huge amounts
of user data. To understand the aspects of music similarity
that collaborative filtering can capture, we compare Genius
to two canonical music recommender systems: one based
purely on artist similarity, the other purely on similarity of
acoustic content. We evaluate this comparison with a user
study of 185 subjects. Overall, Genius produces the best
recommendations. We demonstrate that collaborative filter-
ing can actually capture similarities between the acoustic
content of songs. However, when evaluators can see the
names of the recommended songs and artists, we find that
artist similarity can account for the performance of Genius.
A system that combines these musical cues could generate
music recommendations that are as good as Genius, even
when collaborative filtering data is unavailable.

1. INTRODUCTION

The popularity of the online radio station Pandora.com (20
million users) and Apple iTunes’ “Genius” feature (released
in September 2008 and available to over 10 million regis-
tered iTunes users) has brought the perennial MIR research
topic of music similarity and recommender systems into
the public spotlight. Apple, the largest music retailer in
the world, collects massive amounts of data about music
purchase and listening habits of its users. Our experiments
demonstrate that collaborative filtering of this data allows
Genius to produce better music recommendations than sys-
tems based on simple metadata- or content-based analysis.
However, Genius fails on music for which collaborative
filtering data is unavailable, such as the huge volume of
undiscovered content in the “long tail” of the music market.

In this paper, we seek to understand the musical cues that
Genius’ collaborative filtering identifies to capture music
similarity. We can then develop MIR recommender sys-
tems that use the same cues, without the need for massive
amounts of user data. Since we do not have access to the
collaborative filtering input to the Genius algorithm, we
compare its output to two canonical recommender systems

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

where we have complete knowledge of their available musi-
cal information. We discover that, despite not basing its rec-
ommendations directly on the audio content, collaborative
filtering can capture information about acoustic similarity,
as well as metadata similarity, for playlist generation. Us-
ing a blind user study, we determine the influence of certain
metadata (e.g., familiarity, affinity, visibility) and musical
factors (e.g., styles, sounds, artists) on playlist evaluation .

2. THE BLACK ART OF PLAYLIST GENERATION

A playlist is a collection of songs grouped together under a
particular principle. The principle could be general, such
as “rock songs from the 70’s” or personal like “songs that
remind me of Melanie”. Cunningham et al.[1] make the
distinction between playlists and “mixes”. While a mix can
have abstract themes and the sequence of songs is important,
a playlist simply embodies a mood or desired emotional
state or acts as a background to an activity (work, romance,
sports, etc.). The order of songs in a playlist is not impor-
tant and it is often played on shuffle. Cunningham et al.’s
user study reports that 50 percent of requests for help in
creating a playlist included a song as an example. Our work
focuses on this “query by example” paradigm where the
user provides a song as a query or “seed” and the recom-
mender system’s task is to generate a playlist of more music
that somehow “fits well” with the seed song. The meaning
of “fits well” may depend on a variety of the factors below.

2.1 Factors that impact playlist generation
Playlists may be generated (either automatically or by hand)
to reflect a mood, accompany an activity or explore novel
songs for music discovery. Recommendations can be based
on similarity to one or more seed examples or songs may
be grouped based on semantic descriptions. The top orga-
nization schemes for playlists in [1] were similar artists,
genres and styles so we focus on the impact of these factors
for automating playlist generation.

2.2 Factors that influence playlist evaluation
It is rare that a playlist is rated explicitly by the conditions
used to generate it. The playlist’s purpose plays a large role
in evaluating it. Since music is often experienced within
a social context[2], factors such as song popularity, famil-
iarity and the perception of the recommender system as an
expert can play a large role in the perceived quality of the
playlist. Even systems that generate novel or serendipitous
playlists for song discovery must include some familiar and
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relevant items to inspire users to trust the recommender
system[3]. This may be achieved by offering some trans-
parency of the recommendations, e.g., by showing matching
artists or using descriptive tags.

3. MUSIC RECOMMENDER SYSTEMS

A variety of approaches to music recommendation and
playlist generation have been proposed by the MIR commu-
nity. Aucouturier and Pachet [4] used acoustic similarity
to group songs together. Flexer et al. [5] propose using
KL divergence between acoustic song models to make a
playlist that transitions coherently from a start to an end
song. Xiao et al.[6] describe songs’ acoustic content using
automatically generated tags drawn from a variety of se-
mantic categories. They derive a music similarity metric
by learning the optimum weighting of these categories and
find genre similarity to be the most important predictor of
subjective evaluations.

Fields et al.[7] extract social-network flow between
artists on MySpace and use the resulting artist association
metadata to build playlists. Vignoli and Pauws [8] designed
a recommender system that allows users to control how
acoustic timbre information is combined with genre, mood,
year and tempo metadata. The resulting playlists rated
higher than less transparent controls in a user evaluation.

3.1 Two Types of Recommender System
Section 2 details a variety of influences that may be used
by music recommender systems but they can be broadly
categorized into two different approaches:
Content-based systems “listen” to the audio content of the
music and build playlists by finding songs that sound similar
(e.g., [4, 5]) or that have similar semantic descriptions (e.g.,
[9, 6]). For example, the popular online radio station Pan-
dora.com 1 employs professional musicologists to listen to
each of the 1 million songs in its “music genome” database
and objectively characterize their acoustic content using
400 semantic descriptors (e.g., major or minor tonality, the
amount of syncopation, the gender of the vocalist, etc.).
Metadata-based systems use information associated with
the music that is not directly related to the acoustic content
such as artist names (e.g., [7]), genre or other tag infor-
mation, purchase data, popularity, etc. For example, the
Genius playlist algorithm uses collaborative filtering based
on the purchase history of millions of iTunes users (i.e.,
listeners who bought this song also bought that song).

For this paper, we evaluate the Genius recommender
system against one content-based and one metadata-based
approach to generating playlists, as well a system that gen-
erates playlists randomly. All systems take a seed song
and return a playlist of five recommended songs. Each
algorithm that we consider is described in detail below.

3.2 Genius
The iTunes Genius recommender system 2 uses the Gra-
cenote MusicID service[10] to fingerprint songs in a user’s

1 www.Pandora.com
2 Our experiments use Genius incorporated in iTunes version 8.0.

music library and identify the name of the song, artist, al-
bum, etc. This metadata is then used to identify the songs
in Genius’ database. Although the exact details of the algo-
rithm are a trade-secret of Apple Inc., Genius appears to use
collaborative filtering to compare the seed song’s metadata
to iTunes’ massive database of music sales (over 50 million
customers who have purchased over 5 billion songs), as well
as play history and song rating data collected from iTunes
users 3 . When it is first initialized, Genius analyzes a user’s
music library and compiles all of the collaborative filtering
data necessary to build playlists from the library, based on
any given seed song. While this fingerprinting and database
communication takes some time (∼ 1 hour for our 12,000-
song library), the only acoustic analysis involved seems to
be fingerprinting for the purpose of metadata information
and not content-based recommendation.

Informal experiments with Genius give some clues into
its operation and verify that it does not use content anal-
ysis directly. For example, if we delete the ID3 metadata
information associated with a given MP3 file, or add a song
to the library which is unknown to Gracenote (e.g., a new
recording by an obscure band), Genius fails to recommend
any music. Furthermore, if we choose a seed song that is
very atypical of the style of the artist or album that features
the song, Genius recommends music that represents the
more common aspects of the artist. For example, using
the seed song “Beautiful World”, a country-folk ballad that
is an outlying anomaly on the album “Renegades” by the
metal band “Rage Against the Machine”, Genius recom-
mends a playlist of aggressive, thrash-metal songs by bands
such as “Incubus” and “Nirvana”. Although these artists are
related to the seed artist, the sound and style of the resulting
playlist is very dissimilar to that of the seed song. Based
on this analysis, we expect Genius to perform well when
recommending playlists based on popular seed songs but to
suffer when analyzing less well-known music.

3.3 Artist Similarity
To provide a second, more transparent playlist algorithm
that, like Genius, is not based on acoustic analysis, we
consider building playlists based on artist similarity. The
social music-streaming website last.fm offers lots of user-
generated information about songs and artists 4 . In particu-
lar, for any given artist, our artist similarity system retrieves
a ranked list of the 100 most similar artists to the seed song’s
artist. We use this last.fm metadata to build a playlist by
moving down the ranked list and choosing a random song
by each artist that we find in our library. Comparisons be-
tween these music recommendations and Genius’ playlists
will illuminate the degree to which collaborative filtering
captures artist similarity.

3.4 Semantic Similarity of Automatic Tags
To examine Genius’ ability to capture acoustic similarity
between songs, we compare it to a purely content-based
approach. This recommender system is modeled on Pan-
dora.com in that it finds similar songs by matching semantic

3 Based on http://www.apple.com/pr/ as well as a meeting
between the authors and iTunes in January 2009.

4 www.last.fm/api
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descriptions of the audio content. Pandora’s semantic data
and its music library are proprietary, so we recreate a similar
system using computer audition.

We use an automatic tagging algorithm, described in
detail in [11], to describe any song using 149 different se-
mantic tags. These tags include descriptors of the genre,
emotion, instruments, vocals and usages of the song. For a
given song, the output of this “auto-tagger” is a set of prob-
abilities that indicate the relevance of each tag to the song.
These probabilities may be interpreted as the parameters of
a “semantic” multinomial distribution that characterizes the
song, just as a human listener might use words to describe
a song’s acoustic content (e.g., “very jazzy, features a lot of
saxophone and piano, and good to listen to on a date”).

The auto-tag system computes similarity between two
songs by comparing the Kullback-Liebler (KL) divergence
between their semantic multinomial distributions. To build
a playlist, we return songs with minimum KL-divergence
from the seed song. Abstracting multimedia representa-
tions using semantics has shown improvements over di-
rect feature-based similarity for retrieval of images[12],
video[?] and sound effects[9] and this system was among
the top four performing algorithms in the 2007 MIREX
audio similarity challenge [13].

4. PLAYLIST EVALUATION EXPERIMENT

One of the biggest challenges when designing music recom-
mendation systems lies in evaluating any proposed method.
There is no standard “ground truth” data set on which to
test, let alone train, music similarity algorithms. Widely
available surrogates for similarity exist, such as deciding
that songs should be deemed “similar” if they come from
similar genres [6, 14], artists [15] or albums [9]. Playlists
can be evaluated by examining their intersection with exist-
ing, human-generated playlists [16, 6] but this requires that
the same music libraries be used to generate both the new
and the reference playlists.

A more accurate, but less scalable or flexible approach
uses humans to evaluate music recommendations. This was
the approach taken in the 2007 MIREX contest[13] and,
though great effort was required to collect this information,
the resulting evaluation was very rich. This data has not
been released to the MIR community. Human computation
games such as Tag-A-Tune[17] may provide another source
of human-derived music similarity data.

Since the goals of this paper are both to evaluate the
performance of different music recommender systems in
various simulated scenarios and determine the factors that
influence these evaluations, we built a new platform for
humans to evaluate playlists as well as collect information
about the strengths and weaknesses of each system.

4.1 The Interface
A new subject arriving at the experiment website sees brief
instructions explaining the task and the playlist evaluation
procedure. The subject then logs in, so that they can return
to the experiment at a later date and not repeat trials.

A single evaluation or “trial” consists of three stages: 1)
Listen to and evaluate a seed song. 2) Listen to and evaluate

2 playlists. 3) Indicate factors that influenced the playlist
evaluation. 50 seed songs were chosen in advance and, on
each trial, one seed song is randomly assigned to a subject
(without repetition). In the first stage, the subject listens to
the seed song and rates how familiar they are with the song
and how much they like the song, both on a 5-point scale.

Once the subject rates the seed song, stage 2 displays two
playlists, each containing 5 songs, generated by one of the
4 possible recommender systems (Genius, Artist Similarity,
Similar Tags or a random playlist). The two systems in
a given trial are randomly chosen but not the same. The
subject can listen to the songs from each playlist in any
order or re-listen to the seed song by pressing corresponding
play buttons. Beside each song is a button to indicate any
bad song that “doesn’t fit” in the playlist. After listening to
the playlists, the subject evaluates which playlist is better,
on a 5-point scale: “Playlist 1 much better”, “Playlist 1
somewhat better”, “Equal”, “Playlist 2 somewhat better”,
“Playlist 2 much better”.

After choosing the winning playlist, stage 3 asks the sub-
ject to indicate factors that influenced their evaluation. Six
factors are presented that may have affected the subject’s
evaluation of why either playlist was a good match with
the seed song: similar sounds, genres, artists, energy, in-
strumentation and lyrics. These factors only examine the
relationship between the seed song and the playlists. Other
factors (e.g., usage, time) are assumed to be implicit in the
choice of the seed song and are not tested in this work. The
subject can select as many factors as they deem relevant or
indicate that the factor was not relevant (this choice was not
pre-selected) before continuing on to the next trial. Subjects
can quit at any stage and their progress is saved.

4.2 The Music
The playlists are built from the authors’ personal music
library of over 12,000 relatively popular songs that span the
most common genres of Western popular music, with very
little music outside these genres. The genres include rock,
alternative, punk, soft rock, classic rock, folk, pop, elec-
tronica, experimental, blues, jazz, soul and hip-hop. The 50
seed songs were chosen to represent these genres in propor-
tions roughly equal to those observed in the library 5 . For
each seed song, we pre-calculate a five-song playlist using
each of the recommender systems described in Section 3.

We used 30-second song clips, beginning 30 seconds
from the start of the song. 30 seconds is generally enough
to give a good impression of a song (e.g., it is a standard
length for previewing songs in online music stores) while
being sufficiently short to make each trial manageable, since
subjects are required to listen to 11 clips.

In half the trials, song and artist names for both the seed
song and the playlist songs are hidden from subjects. This
allows us to investigate the influence of the song and, in
particular, artist names on subjects’ evaluation of playlists.
In certain music recommendation scenarios, listeners may
read the names of the songs they hear (e.g., album track-
lists, record stores, music players such as iTunes, WinAmp,

5 The list of seed songs and music library can be found at
http://cosmal.ucsd.edu/cal/projects/playlist/
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Figure 1. Percent wins for each music recommender sys-
tem, divided over trials where the song names were hidden
or shown. X-axis displays the system (and number of tri-
als where this system was presented). Y-axis displays the
percentage of trials where the system was the winner.

and last.fm) while in other cases, they only hear - and do
not see - the playlist (e.g., most stereos, iPods on shuffle
mode, on the radio, at parties or clubs).

5. RESULTS

Experimental subjects were recruited from psychology and
engineering classes at UCSD, via email to friends, col-
leagues and the Music-IR mailing list and from online blogs
and social networks. During the three week experiment,
185 subjects completed 894 trials with, on average, 4.8 tri-
als per subject, including a maximum of 44 trials by one
user. Seed songs were chosen randomly (without repeating
a seed for any subject) and each of the 50 seed songs was
presented an average of 18 times with a minimum of 11 and
a maximum of 30 trials. Each of the three playlist genera-
tion methods was presented in at least 638 trials and each
of the 150 playlists (a {seed song, playlist method} pair)
was presented in, on average, 11.8 trials.

Figure 1 displays how often each recommender system
won, as a proportion of all the trials in which it appeared.
Figure 2 indicates how each system fared against the others,
in head-to-head comparisons. The fading between colors
in Figures 2-4 indicates the variance over 50 random sub-
samplings of 75% of the data for each condition. It is clear
that Genius outperforms both the Artist Similarity and Sim-
ilar Tags methods in most cases although a more detailed
examination is given below.

5.1 Trial Lengths

Table 1 demonstrates that subjects spent, on average, 226
seconds on each trial, indicating that they listened to almost
all of each 30-second song clip (11 songs x 30 seconds =
330 seconds). This time was significantly less for trials
where the song and artist names were visible (196 seconds)
and significantly longer when the names were hidden (258
seconds), indicating that subjects were often able to evaluate

genius
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31.2%

(a)

genius
53.1%

equal
13.8%

auto−tags
33.2%

(b)

artist
42.3%

equal
14.4%

auto−tags
43.3%

(c)

Figure 2. Head-to-head playlist comparisons over all condi-
tions. Ignoring the equal votes, all systems are significantly
better than random and Genius is significantly better than
the content-based system using similar tags (Chi-square
test for fit to a uniform distribution, α = 0.05). All other
differences are not significant.

playlists (or, at least, some of the songs in a playlist) simply
by looking at the names of the song and artist. Thus, we
expect trials where the names were hidden to estimate better
the impact of the “sounds” of the songs while those with
names shown will demonstrate the impact of artist similarity.

Trial Length (sec) Mean Median
All Trials 226 150
Names Shown 258 165
Names Hidden 196 139

Table 1. Average seconds spent per trial as well as for trials
where the song and artist names were shown or hidden.

5.2 Knowing the Names

Visibility of song and artist names had a large influence on
how subjects evaluated each playlist. Showing the names
benefited the metadata-based systems where, as evidenced
by the shorter time spent on these trials, subjects made
use of this metadata information to make their evaluations.
Comparisons between each pair of algorithms are summa-
rized in Figure 3. Of particular note is the comparison
between the two metadata-based systems. When the names
are shown, we see in Figure 3(a) that subjects actually rate
the Artist Similarity playlists slightly better than the Genius
playlists. This may indicate that social or visual cues are,
at times, more salient than acoustic similarity or that, given
some “explanation” of how a playlist is built, listeners are
more forgiving of acoustic mismatches [3]. However, when
the names are hidden, and subjects must base their judge-
ments on the acoustics alone, Genius is overwhelmingly
superior (Figure 3(b)).

5.3 Familiar and Liked Songs

The effects of subjects’ familiarity with the seed song is
shown in Figure 5. The effect of affinity for the seed song
was qualitatively almost identical and is not shown. In both
cases, Genius benefits from decreased familiarity or affinity
while the Artist Similarity method suffers. In other words,
when subjects did not know (or like) a song, and presumably
could make less use of artist associations, they preferred
Genius’ recommendations. This is a strong indication that
Genius does not just average over artists but determines
song-specific similarities. The only statistically-significant
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Figure 3. Head-to-head playlist comparisons over the con-
dition where song and artist names are shown (a),(c)&(e)
or hidden (b),(d)&(f). When names are shown (a), Artist
Similarity outperforms Genius, but suffers significantly
when names are hidden (b) (Chi-square test for indepen-
dence, α = 0.05). The content-based system always ben-
efits when names are hidden (d),(f), forcing subjects to
consider acoustics.

change between these conditions (familiar / unfamiliar or
liked / not liked) is the reversal in ratings for the Artist
and Tag Similarity methods. When familiar with the seed
song, subjects were able to appreciate similar artists in the
Artist Similarity playlists but, in the absence of this prior
knowledge, acoustic similarity prevailed.

5.4 Content Similarity from Collaborative Filtering

We have seen that collaborative filtering finds similarities
between songs, not just artists. Can collaborative filtering
based on usage and purchase metadata actually capture
similarity in acoustic content? To answer this question,
we consider trials where subjects were unfamiliar with the
seed song and where the names of the songs and artists were
hidden. This removes the influence of song familiarity and
artist associations so that subjects’ evaluations are based
only on acoustic similarity. We also required that subjects
like the seed song so that they had sufficient motivation
and experience with the genre to make relevant evaluations
(many subjects reported that they felt unwilling or unable
to evaluate songs they disliked). The outcome is shown in
Figure 4 where it can be seen that Genius now performs
at the same level as the system based solely on acoustic
content. This agrees with the findings of Baccigalupo et
al.[16] who provide evidence that information about song
associations discovered from social playlists can be used to
derive genre affinities i.e., collaborative filtering data can
be used to derive aspects of acoustic similarity.
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Figure 4. Genius captures content. When subjects were
unfamiliar with a seed song that they liked and had no
information about song and artist names (26 trials), Genius
matches the performance of the content-based system.
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Figure 5. Head-to-head playlist comparisons over the con-
dition where subjects are familiar (a),(c),&(e) or unfamil-
iar (b),(d)&(f) with the seed song. There is a significant
difference between (e) and (f) where the content-based Tag
Similarity system is more effective than Artist Similiarity
when the seed song is not familiar. (Chi-square test for
independence, α = 0.05).

5.5 Bad Songs

Table 2 examines the “bad songs” in each playlist that sub-
jects felt did not fit well with the seed song. Overall, the
playlist with fewer bad songs won in 81% of trials.

Genius 1.30
Similar Artist 1.18
Similar Tags 1.33
Random 2.56

Trial Winner 1.20
Trial Loser 1.80

Table 2. Average “bad songs” in playlists from each system
as well as the average for the winner and loser of each trial.

6. SMARTER THAN GENIUS

While Genius performs as well or better than the metadata-
and content-based systems on our test collection of popular
music, it is unable to make recommendations from the large
“long tail” of new, undiscovered music. We now consider
how a music recommender system could take advantage of
both content-based information and metadata, when avail-
able, to perform as well or better than Genius, without the
need for massive amounts of user data.

6.1 Balancing Content and Metadata

Table 3 quantifies the competing influences of artist and
acoustic similarity. We show the average artist similarity
and auto-tag KL divergence between the seed songs and all
the songs from playlists generated by each recommender
system. These measures are also shown for all the bad
songs. By design, the content-based system has minimum
KL and, although it can only access artist information in-
directly through acoustics, it captures artist similarity at
a better-than-random level. Though they produce good
recommendations, both Genius and the Artist Similarity
systems have significantly higher KL. This indicates that
simply minimizing divergence between semantic descrip-
tions will not produce perfect recommendations. Likewise,
recommending similar artists is not sufficient as many bad
songs had high artist similarity. Table 2 indicates that a rec-
ommender should avoid bad songs with very large semantic
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Artist Similarity Tag KL Divergence
Genius 19.8 0.81
Similar Artists 44.5 0.89
Similar Tags 5.0 0.14
Random 1.1 1.15
Bad Songs 16.9 1.20

Table 3. Average artist similarity (between 0 and 100) and
auto-tag KL divergence (larger means less similar) between
a seed song and playlist songs recommended by each system
as well as for bad songs produced by all systems.

differences (high KL divergence) while also making sure
to include some clearly similar artists. For example, in 14
of the 50 playlists tested, Genius recommended a song by
the same artist as the seed song, a simple way to enhance
perception of the relevance of the recommendations.

6.2 Musical factors influencing playlist evaluations

Stage 3 of our experiment asked subjects to indicate how
well the playlist songs matched the seed song on six differ-
ent musical cues: similar style (genre), sound, artist, energy,
instruments and lyrics. Subjects could indicate that a par-
ticular factor was most relevant to either playlist, even the
one they had deemed inferior in stage 2. Figure 6 displays
the percentage of trials where each system best manifested
these factors. Genius playlists often match the styles (47%)
and sounds (53%) of the seed song while, predictably, the
content-based Similar Tags system rarely returns similar
artists (26%). The percentages below the x-axis in Figure
6 indicate how often each factor was cited as a favorable
influence (subjects were not required to mark these influ-
ences). Similarity between the sound of the seed and the
playlist was the most frequently cited factor (82%) while
similar lyrics rarely influenced playlist evaluation (36%).

7. CONCLUSIONS

We find that Genius’ collaborative filtering approach, which
essentially captures the wisdom of the crowds, performs
well on a test collection of popular music. By removing
evaluator bias resulting from artist names and song familiar-
ity, we show that Genius captures song-specific aspects of
acoustic similarity, as can be derived from a purely content-
based system. Thus, for exploring the long tail, a content-
based recommender can be expected to perform similarly
to Genius, if collaborative filtering data were available.

We discover that seeing song and artist names has a
significant effect on how a playlist is evaluated, indicating
that recommender systems must be designed with appli-
cations in mind. We highlight the most influential factors
on similarity evaluation and suggest that balancing content
analysis to avoid bad songs with metadata similarity to pro-
vide transparent recommendations can help build smarter
music recommender systems.
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Figure 6. Musical factors influence song similarity. Y-axis
shows how often each recommender system best matched
musical factors of the seed song, averaged over trials eval-
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percentage of total trials where each factor was an influence.
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ABSTRACT

Automatic music style classification is an important, but
challenging problem in music information retrieval. It has
a number of applications, such as indexing of and search-
ing in musical databases. Traditional music style classifi-
cation approaches usually assume that each piece of music
has a unique style and they make use of the music con-
tents to construct a classifier for classifying each piece into
its unique style. However, in reality, a piece may match
more than one, even several different styles. Also, in this
modern Web 2.0 era, it is easy to get a hold of additional,
indirect information (e.g., music tags) about music. This
paper proposes a multi-label music style classification ap-
proach, called Hypergraph integrated Support Vector Ma-
chine (HiSVM), which can integrate both music contents
and music tags for automatic music style classification.
Experimental results based on a real world data set are pre-
sented to demonstrate the effectiveness of the method.

1. INTRODUCTION

Music styles (e.g., Dance, Urban, Pop, and Country) are
one of the top-level descriptions of music content. Con-
sequently, automatic Music Style Classification (MSC for
short) is a key step for modern music information retrieval
systems [7]. There has already been some work toward
automatic music style classification. For example, Qin
and Ma [10] introduce an MSC system that takes MIDI
as data source and mines frequent patterns of different mu-
sic. Zhang and Zhou [18] present a study on music clas-
sification using short-time analysis along with data mining
techniques to distinguish among five music styles. Zhou et
al. [19] propose a Bayesian inference based decision tree
model to classify the music into pleasurable and sorrowful
music. Although these methods are highly successful, two
major limitations exist.

• These are single-label methods in that they can as-
sign only one style label, but many pieces of music
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0546280, DMS-0844513, AND CCF-0830659.
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may map to more than one style.

• They only make use of the music content informa-
tion. However, with the rapid development of web
technologies, we can easily obtain much richer in-
formation of the music (e.g., tags, lyrics, and user
comments). How to incorporate these pieces of
information into the MSC process effectively is a
problem worthy of researching.

In this paper, we propose a multi-label MSC method that
can integrate three types of information: (1) audio sig-
nals (MFCC coefficients, STFT, DWCH); (2) music style
correlations; (3) music tag information and correlations.
Specifically, we construct two hyper-graphs, one on music
style labels and the other on music tags, where the vertices
on the hypergraphs correspond to the data points, and the
hyperedges correspond to the music styles and the tags,
respectively. We first integrate those two hypergraphs to
obtain a unified hypergraph. Next, assuming that similar
music tends to have similar style labels on the hypergraph,
we propose a new, SVM-like multilabel ranking algorithm.
The algorithm uses a hypergraph Laplacian regularizer and
can be efficiently solved by the dual coordinate descent
method. Finally, we propose a predictor of the size of la-
bel set to determine the number of labels assigned to for
each piece of music independently. To demonstrate the
efficiency and effectiveness of our proposed method, we
conducted a set of experiments applying the method to a
real world data.

The rest of this paper is organized as follows. In Sec-
tion 2 we briefly introduce preliminaries on our key con-
cept, the hypergraph. In Section 3 we describe our HiSVM
algorithm. We describe in Section 4 the audio features ex-
tracted from the data set as well as the style and tag infor-
mation of the data set. We present the results of experi-
ments in Section 5 and conclude the paper in Section 6.

2. PRELIMINARIES

A hypergraph is a generalization of a graph, in which
edges, called hyperedges, may connect any positive num-
ber of vertices [1, 11]. Formally, a hypergraph G is a pair
(V, E) where V is a set of vertices and E ⊆ 2V − ∅ is a
set of hyperedges. An edge-weighted hypergraph is one in
which each hyperedge is assigned a weight. We use w(e)
to denote the weight given to e. The degree of a hyperedge
e, denoted as δ(e), is the number of vertices in e. For a
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standard graph (sometimes called a “2-graph”) the value
of δ is 2 for all edges. The degree d(v) of a vertex v is
d(v) =

∑
v∈e,e∈E w(e). The vertex-edge incidence matrix

H ∈ R|V |×|E| is defined as: h(v, e) = 1 if v ∈ e and 0
otherwise. We thus have

d(v) =
∑

e∈E
w(e)h(v, e) (1)

δ(e) =
∑

v∈V
h(v, e). (2)

Let De (respectively, Dv and W) be the diagonal matrix
whose diagonal entries are d(v) (respectively, δ(e), and
w(e)).

The graph Laplacian is the discrete analog of the
Laplace-Beltrami operator on compact Riemannian man-
ifolds [12]. The graph Laplacian has been widely used
in unsupervised learning (e.g., spectral clustering [9]) and
semi-supervised learning (e.g. [16, 20]). Below we will
sketch a commonly used algorithm by Chung [3], called
the Clique Expansion Algorithm, for constructing the hy-
pergraph Laplacian.

The Clique Expansion Algorithm constructs a tradi-
tional 2-graph Gc = (Vc, Ec) from the original hypergraph
G = (V, E) and views the Laplacian of Gc to be the Lapla-
cian of G. Suppose Vc = V and Ec = {(u, v)|u, v ∈ e, e ∈
E}. The edge weight wc(u, v) of Gc is defined by

wc(u, v) =
∑

u,v∈e,e∈E
w(e) (3)

An interpretation of this definition is that the edge weight
matrix, Wc, of Gc can be expressed as

Wc = HWHT (4)

Let Dc be the diagonal matrix such that

Dc(u, u) =
∑

v

wc(u, v).

Then the combinatorial Laplacian, Lc, of Gc is given by

Lc = Dc −Wc = Dc −HWHT (5)

and the normalized Laplacian, Ln, is given by

Ln = I−D−1/2
c HWHT D−1/2

c . (6)

From Eq. (5) and (6), we have

Ln = D−1/2
c LcD−1/2

c . (7)

In our music style classification, we construct two hyper-
graphs: the style hypergraph Gs and the tag hypergraph Gt.
The vertices of Gs and Gt are simply the data points. The
hyperedges of Gs correspond to the style labels, i.e., each
hyperedge in Gs contains all the data points that belong to
a specific style category. Similarly, each hyperedge of Gt

contains all the data points that own the corresponding tag.
Figure 1 shows an intuitive example on the music style and
tag hypergraphs.

"Who is he"

"Strip"

Soul

Figure 1. An example of the music style (left) and tag
(right) hypergraph. The nodes on the hypergraphs corre-
spond to the music “Angola Bond”, “Who is he”, “Dan-
gerous”, “Pleasure”, and “Strip”. The regions of different
colors correspond to the different hyperedges. The hyper-
edges correspond to music styles in the left panel and to
music tags in the right panel.

3. MULTI-LABEL LEARNING WITH
HYPERGRAPH REGULARIZATIONS

In this section we will present in detail our proposed multi-
label classification algorithm with hypergraph regulariza-
tion. Suppose there are n training samples {(xi, yi)}n

i=1,
where each instance xi is drawn from some domain X ⊆
Rm and its label yi is a subset of the output label set Y =
{1, · · · , k}. For example, if xi belongs to categories 1, 3,
and 4, then yi = {1, 3, 4}. We use X = (x1, · · · ,xn)T to
represent the data feature matrix.

Our basic strategy is to solve the multi-label learning by
combing a label ranking problem and a label number pre-
diction problem. That is, for each instance we produce a
ranked list of all possible labels, estimate the number of la-
bels for the instance, and then select the predicted number
of labels from the list.

Label ranking is the task of inferring a total order over
a predefined set of labels for each given instance [5].
Generally, for each category, we define a linear function
fi(x) = 〈wi,x〉 + bi (i = 1, · · · , k), where 〈·, ·〉 is the
inner product and bi is a bias term. One often deals with
the bias term by appending to each instance an additional
dimension

xT ← [xT , 1], wT
i ← [wT

i , bi] (8)

then the linear function becomes fi(x) = 〈wi,x〉. The
goal of label ranking is to order {fi(x), i = 1, · · · , k} for
each instance x according to some predefined empirical
loss function and complexity measures. Elisseeff and We-
ston [6] apply the large margin idea to multi-label learn-
ing and present an SVM-like ranking system, called Rank-
SVM, given as follows:

min
1
2

k∑

i=1

‖wi‖2 + C
n∑

i=1

1
|yi||yi|

∑

(p,q)∈yi×yi

ξipq

s.t. 〈wp −wq,xi〉 ≥ 1− ξipq, (p, q) ∈ yi × yi

ξipq ≥ 0 (9)
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where C ≥ 0 is a penalty coefficient that trades off the
empirical loss and model complexity, yi is the comple-
mentary set of yi in Y , |yi| is the cardinality of the set
yi, i.e., the number of elements of the set yi, and ξipq(i =
1, · · · , n; (p, q) ∈ yi × yi) are slack variables. The margin
term

∑k
i=1 ‖wi‖2 controls the model complexity and im-

proves the model generalization performance. Although
this approach performs better than Binary-SVM in many
cases, it still does not model the category correlations
clearly. Next, we will describe how to construct a hyper-
graph to exploit the category correlations and how to in-
corporate the hypergraph regularization into the problem
in the form of Eq. (9).

3.1 Basic Framework

To model the correlations among different categories effec-
tively, a hypergraph is built where each vertex corresponds
to one training instance and a hyperedge is constructed for
each category which includes all the training instances rel-
evant to the same category. Here, we apply the Clique Ex-
pansion algorithm to construct the similarity matrix of the
hypergraph. It means that the similarity of two instances
is proportional to the sum of the weights of their com-
mon categories, thereby captures the higher order relations
among different categories. This kind of hypergraph struc-
ture was used in the feature extraction by spectral learn-
ing [13]. However, we consider how to apply the relation
information encoded in the hypergraph to directly design
the multi-label learning model. Intuitively, two instances
tend to have a large overlap in their assigned categories if
they share high similarity in the hypergraph. Formally, this
smoothness assumption can be expressed using the hyper-
graph Laplacian regularizer, trace(F̂T LF̂). Therefore we
can introduce the smoothness assumption into problem Eq.
(9) and obtain

min
1
2

k∑

i=1

‖wi‖2 +
1
2
λtrace(F̂T LF̂) +

C

n∑

i=1

1
|yi||yi|

∑

(p,q)∈yi×yi

ξipq

s.t. 〈wp −wq,xi〉 ≥ 1− ξipq, (p, q) ∈ yi × yi

ξipq ≥ 0 (10)

Here F̂ is the matrix of label prediction; that is, it is the
n × k matrix (fj(xi)), 1 ≤ i ≤ n, 1 ≤ j ≤ k. Also, L is
the n×n hypergraph Laplacian and λ > 0 is a constant that
controls the model complexity in the intrinsic geometry of
input distribution.

3.2 Optimization Strategy

Problem (10) is a linearly constrained quadratic convex op-
timization problem. To solve it, we first introduce a dual
set of variables, one for each constraint, i.e., αipq ≥ 0 for
〈wp −wq,xi〉 − 1 + ξipq ≥ 0 and ηipq for ξipq ≥ 0. Af-
ter some linear algebraic derivation, we obtain the dual of

Problem (10) as

min g(α) =
1
2

k∑
p=1

n∑

h,i=1

βphβpix
T
h (I + λXT LX)−1xi

−
n∑

i=1

∑

(p,q)∈yi×yi

αipq

s.t. 0 ≤ αipq ≤ C

|yi||yi|
(11)

where α denotes the set of dual variables αipq and I is the
(m + 1)× (m + 1) identity matrix.

Once the variables αipq that minimize g(α) are ob-
tained, we can compute wp by

wp = (I + λXT LX)−1
n∑

i=1

βpixi (12)

where

βpi =
∑

(j,q)∈yi×yi

tpijqαijq (13)

tpijq =





1
−1
0

j = p
q = p

if j 6= p and q 6= p
(14)

Compared to the primal optimization problem, the dual
has k(m + 1) less variables and includes simple box con-
straints. The dual can be solved by the dual coordinate
descent algorithm shown in Algorithm 1.

Algorithm 1 A dual coordinate descent method for
HiSVM

Start with α = 0 ∈ Rnα (nα =
∑n

i=1 |yi||yi|), and the
corresponding wi = 0 (i = 1, · · · , k)
while 1 do

for i = 1, · · · , n and (j, q) ∈ yi × yi do
1. G = (wp −wq)T xi − 1

2. PG =





G
min(0, G)
max(0, G)

if 0 < αipq < C
|yi||yi|

if αipq = 0
if αipq = C

|yi||yi|
3. If |PG| 6= 0,

α∗ipq ← min
(
max

(
αipq − G

2Aii
, 0

)
, C
|yi||yi|

)

wp ← wp + (α∗ipq − αipq)(I + λXT LX)−1xi

wq ← wq − (α∗ipq − αipq)(I + λXT LX)−1xi

end for
if ‖α∗ −α‖/‖α‖ < ε(e.g. ε = 0.01) then

Break
end if
α = α∗

end while

3.3 Predicting the Size of Label Set

So far we have only provided a label ranking algorithm. To
identify the final labels of data, we need to design an ap-
propriate threshold for each instance to determine the size
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of its corresponding label set. Here, we adopt the strategy
proposed by Elisseeff and Weston [6], which treats thresh-
old designing as a supervised learning problem. More con-
cretely, for each instance x, define a threshold function
h(x) and the size of label set s(x) = ‖{j | fj(x) >
h(x), j = 1, · · · , k}‖. Our goal is to obtain h(x) through
a supervised learning method. For the training data xi,
its label ranking values, f1(xi), · · · , fk(xi), can be given
by the foregoing ranking algorithm, and its corresponding
threshold h(xi) is simply defined by

h(xi) =
1
2
(min
j∈yi

{fj(xi)}+ max
j∈yi

{fj(xi)})

Once the training data (x1, h(x1)), · · · , (xu, h(xu))
are generated, we can use off-the-shelf learning methods
to learn h(x). In this paper, Linear Support Vector Regres-
sion [15] has been adopted to solve h(x). We note there
that all the label ranking based algorithms toward multi-
label learning can use this postprocessing approach to pre-
dict the size of label set.

4. DATA DESCRIPTION

For experimental purpose, we created a data set consisting
of 403 artists. For each artist, we include a representative
song and also obtain the style and tag description.

4.1 Music Content Features

For each song, a single vector of 80 components is ex-
tracted. The single vector contains the following audio
features:

1) Mel-Frequency Cepstral Coefficients (MFCC): Mel-
Frequency Cepstral Coefficients (MFCC) is a feature set
that is very popular in speech processing. MFCC is de-
signed to capture short-term spectral based features. The
features of MFCC are computed as follows: First, for
each frame, the logarithm of the amplitude spectrum based
on short-term Fourier transform is calculated, where the
frequencies are divided into thirteen bins using the Mel-
frequency scaling. Next, this vector is decorrelated using
discrete cosine transform. The resulting vector is called the
MFCC vector. In our experiments, we compute the mean
and variance of each bin over the frame for the two vectors
(before and after decorrelation). Thus, for each sample,
MFCC occupies 52 components.

2) Short-Term Fourier Transform Features (STFT): This
is a set of features related to timbral textures and is not
captured using MFCC. It consists of the following types
of features: Spectral Centroid, Spectral Rolloff, Spectral
Flux, Zero Crossings, and Low Energy. More detailed de-
scriptions of STFT can be found in [14]. In our experi-
ments, we compute the mean for all types and the variance
for all but zero crossings. STFT thus occupies 12 compo-
nents.

3) Daubechies Wavelet Coefficient Histograms
(DWCH): Daubechies wavelet filters are a set of fil-
ters that are popular in image retrieval (see [4]). The
Daubechies Wavelet Coefficient Histograms, proposed

in [8], are features extracted in the following manner:
First, the Daubechies-8 (db8) filter with seven levels of
decomposition (or subbands) is applied to 30 seconds
of monaural audio signals. Then, the histogram of the
wavelet coefficients is computed for each subband. Then
the first three moments of each histogram, i.e., the average,
the variance, and the skewness, are calculated from each
subband. In addition, the subband energy, defined as the
mean of the absolute value of the coefficients, is computed
from each subband. More details of DWCH can be found
in [8].

4.2 Music Tag Information

Music tags are descriptions given by visitors or music tag
editors from the website to express their idea on the mu-
sic artists. Tags can be as simple as a word or as com-
plicated as a whole sentence. Popular tags are terms like
“rock,” “black metal,” and “indie pop.” Long tags are like
“I love you baby can I have some more.” The tags are
not as formal as style description created by music experts,
but they give us ideas of how large population music lis-
teners think about the music artists. In our experiments,
tag data was collected from the popular music website
http://www.last.fm. In order to understand how important
a tag is, and how accurately it reflects the characteristics
of an artist, the frequencies of all the tags to describe the
artists (tag counts) were also used in the experiments.

A total of 8,529 tags were collected. Each artist has at
most 100 tags and at least 3 tags. On average, each artist
is associated with 89.5 tags. Note that, each artist may be
described by some tags for more than once, for example,
Michael Jackson has been tagged with “80s” for 453 times.

4.3 Music Style Information

Style data were collected from All Music Guide
(http://www.allmusic.com). These data are created by mu-
sic experts to describe the characteristics of music artists.
Style terms are nouns like Rock & Roll, Greek Folk, and
Chinese Pop as well as adjectives like Joyous, Energetic,
and New Romantic. Styles for each artist/track are differ-
ent from the music tags described in the above, since each
style name for one artist appears only once.

A total of 358 styles were found. Each artist has at most
12 and at least one style type. On average, every artist is
associated with 4.7 style labels.

5. EXPERIMENTS

We performed experiments on HiSVM and four real-world
multi-label learning models arising in text categorization,
image classification, video indexing and gene function pre-
diction. Comparisons are made with Binary-SVM and
Rank-SVM [6].

5.1 Methods and Experimental Setup

The data set information we used to evaluate our pro-
posed approach has been introduced in the previous sec-
tion, where we use 70% of the data for training (282 pieces
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total), and the remaining 30% for testing (121 pieces total).
Here, the four models used for multi-label learning are as
follows:

• Binary-SVM. In this model, first, for each category,
train a linear SVM classifier independently. Then,
the labels for each test instance can be obtained by
aggregating the classification results from all the bi-
nary classifiers. Here, we use LIBSVM [2] to train
the linear SVM classifiers.

• Rank-SVM [6]. In this model, first, using Eq. (9),
we implement Algorithm 1 (λ = 0) to train a lin-
ear label ranking system. We then apply the pre-
diction method for the size of label set described in
Section 3.3 to design the threshold model. Finally,
for each test instance, we combine the label ranking
and threshold models, thereby infer its labels.

• HiSVM. This is our proposed algorithm. The algo-
rithm is composed of three steps: (1) we implement
Algorithm 1 to achieve a linear label ranking system;
(2) we apply the method in Section 3.3 to design the
threshold model; (3) for each test instance, we com-
bine the label ranking and threshold models to infer
its labels.

• HSVM. HSVM is the style Hypergraph regularized
SVM method, which is the same as the HiSVM
method except that it only makes use of the style
hypergraph and does not use the tag hypergraph.

• GSVM. GSVM is similar to HiSVM except we con-
struct a traditional 2-graph where each vertex repre-
sents one training instance in GSVM rather than a
hypergraph. In order to compute the Laplacian, the
weight wij of the edge between xi and xj is defined
as follows

wij = exp(−ρ‖xi − xj‖2) (15)

where ρ is a nonnegative constant. Apparently, the
category correlation information is not used during
the construction of 2-graph in GSVM.

Some details of HiSVM are in order. We use Eq. (5) to
construct both the style hypergraph Laplacian Ls and the
tag hypergraph Laplacian Lt, where the weight w(e) of the
hyperedge is calculated by

w(e) = exp(−νde) (16)

Here ν is a nonnegative constant, and de is the average
intra-class distance (N.B. Each hyperedge corresponds to
one specific style or tag):

de =

∑
u,v∈e ‖xu − xv‖2
δ(e)(δ(e)− 1)

(17)

The smaller the average intra-class distance, the larger the
corresponding hyperedge weight. Finally we combine Ls

and Lt to obtain a unified hypergraph Laplacian L by

L =
1
2
(Ls + Lt)

Table 1. A contingency table
YES is correct NO is correct

Assigned YES a b

Assigned NO c d

which is used in the rest of the inferences and experiments.
In the above four models, it is necessary to iden-

tify the best value of model parameters such as C,
λ and ν on the training data. Here, the grid search
method with 5-fold cross validation is used to de-
termine the best parameter values. For the penalty
coefficient C in the Linear SVM, we tune it from
the grid points {10−6, 10−5, · · · , 100, 101, · · · , 106}; for
the tradeoff parameter λ, we tune it from the grid
points {10−6, 10−5, · · · , 100, 101, · · · , 106}; the scale
parameter ν and ρ are tuned from the grid points
{2−6, 2−5, · · · , 20, 21, · · · , 26}.

5.2 Evaluation Metrics

We choose two measures, F1 Macro and F1 Micro [17],
as the evaluation metrics for multi-label learning. Suppose
there are a total of S style categories. Then for each cate-
gory, we can construct a contingency table as follows: Let
a (respectively, b) be the number of pieces that are cor-
rectly assigned (respectively, not correctly assigned) to this
style category, and let c (respectively, d) be the number
of pieces that are incorrectly rejected (respectively, cor-
rectly rejected) by this style category (see Table 1). Let
r = a/(a + c) and p = a/(a + b), where the former is
called the recall and the latter the precision. Then the F1

score of this style category can be computed as

F1 =
2pr

p + r
(18)

The F1 Macro can be computed by first calculating the
F1 scores for the per-category contingency tables and then
averaging these scores to compute the global means. F1

Micro can be computed by first constructing a global con-
tingency table, each of whose cell value is the sum of the
corresponding cells in the per-category contingency tables,
and then use this global contingency table to compute the
Micro F1 score.

5.3 Experimental Results

Table 2 illustrates the experimental results on our HiSVM
algorithm along with the four other methods on the data
set. The values in Table 2 are the F1 Micro values and
F1 Macro values averaged over 50 independent runs to-
gether with their standard deviations. From the table we
can clearly observe the following:

• Multi-label methods perform better than the simple
Binary-SVM method.

• The consideration of label correlations is helpful for
the final algorithm performance.
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Figure 2. The relative error ‖α∗ − α‖/‖α‖ vs. itera-
tion step plot of our proposed dual coordinate descent al-
gorithm for solving HiSVM.

Table 2. Performance comparisons of four models on the
Last.fm dataset

Methods F1 Macro F1 Micro
Binary-SVM 0.4231± 0.0025 0.4317± 0.0103
Rank-SVM 0.4526± 0.0114 0.4733± 0.0036

GSVM 0.5018± 0.0054 0.5244± 0.0103
HSVM 0.5365± 0.0120 0.5509± 0.0072
HiSVM 0.5613± 0.0069 0.5802± 0.0116

• Hypergraph regularization is better than flat two-
graph regularization because it can incorporate the
high-order label relationships naturally.

• The incorporation of tag information is helpful for
the final classification performance.

Figure 2 shows how the relative error ‖α∗ − α‖/‖α‖
varies with the process of iteration using the dual coordi-
nate descent method introduced in Algorithm 1. From the
figure we clearly see that with the process of coordinate de-
scent, the relative error will decrease and it takes approxi-
mately 30 steps to converge. This validates the correctness
of our algorithm experimentally.

6. CONCLUSION

We propose a novel multi-label classification method
called Hypergraph integrated SVM (HiSVM) for music
style classification. Our method can not only take into ac-
count the music style correlations, but also the music tag
correlations. We also propose an efficient dual coordinate
descent algorithm to solve it, and finally experimental re-
sults on a real world data set are presented to show the
effectiveness and correctness of our algorithm.
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ABSTRACT

Many songs in large music databases are not labeled with
semantic tags that could help users sort out the songs they
want to listen to from those they do not. If the words that
apply to a song can be predicted from audio, then those
predictions can be used both to automatically annotate a
song with tags, allowing users to get a sense of what qual-
ities characterize a song at a glance. Automatic tag predic-
tion can also drive retrieval by allowing users to search for
the songs most strongly characterized by a particular word.
We present a probabilistic model that learns to predict the
probability that a word applies to a song from audio. Our
model is simple to implement, fast to train, predicts tags
for new songs quickly, and achieves state-of-the-art per-
formance on annotation and retrieval tasks.

1. INTRODUCTION

It has been said that talking about music is like dancing
about architecture, but people nonetheless use words to de-
scribe music. In this paper we will present a simple system
that addresses tag prediction from audio—the problem of
predicting what words people would be likely to use to de-
scribe a song.

Two direct applications of tag prediction are semantic
annotation and retrieval. If we have an estimate of the
probability that a tag applies to a song, then we can say
what words in our vocabulary of tags best describe a given
song (automatically annotating it) and what songs in our
database a given word best describes (allowing us to re-
trieve songs from a text query).

We present the Codeword Bernoulli Average (CBA)
model, a probabilistic model that attempts to predict the
probability that a tag applies to a song based on a vector-
quantized (VQ) representation of that song’s audio. Our
CBA-based approach to tag prediction

• Is easy to implement using a simple EM algorithm.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

• Is fast to train.

• Makes predictions efficiently on unseen data.

• Performs as well as or better than state-of-the-art ap-
proaches.

2. DATA REPRESENTATION

2.1 The CAL500 data set

We train and test our method on the CAL500 dataset [1,
2]. CAL500 is a corpus of 500 tracks of Western popular
music, each of which has been manually annotated by at
least three human labelers. We used the “hard” annotations
provided with CAL500, which give a binary value yjw ∈
{0, 1} for all songs j and tags w indicating whether tag w
applies to song j.

CAL500 is distributed with a set of 10,000 39-dimensional
Mel-Frequency Cepstral Coefficient Delta (MFCC-Delta)
feature vectors for each song. Each Delta-MFCC vector
summarizes the timbral evolution of three successive 23ms
windows of a song. CAL500 provides these feature vec-
tors in a random order, so no temporal information beyond
a 69ms timescale is available.

Our goals are to use these features to predict which tags
apply to a given song and which songs are characterized by
a given tag. The first task yields an automatic annotation
system, the second yields a semantic retrieval system.

2.2 A vector-quantized representation

Rather than work directly with the MFCC-Delta feature
representation, we first vector quantize all of the feature
vectors in the corpus, ignoring for the moment what feature
vectors came from what songs. We:

1. Normalize the feature vectors so that they have mean
0 and standard deviation 1 in each dimension.

2. Run the k-means algorithm [3] on a subset of ran-
domly selected feature vectors to find a set of K
cluster centroids.

3. For each normalized feature vector fji in song j, as-
sign that feature vector to the cluster kji with the
smallest squared Euclidean distance to fji.
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This vector quantization procedure allows us to represent
each song j as a vector nj of counts of a discrete set of
codewords:

njk =
Nj∑
i=1

1(kji = k) (1)

where njk is the number of feature vectors assigned to
codeword k, Nj is the total number of feature vectors in
song j, and 1(a = b) is a function returning 1 if a = b and
0 if a 6= b.

This discrete “bag-of-codewords” representation is less
rich than the original continuous feature vector representa-
tion. However, it is effective. Such VQ codebook represen-
tations have produced state-of-the-art performance in im-
age annotation and retrieval systems [4], as well as in sys-
tems for estimating timbral similarity between songs [5,6].

3. THE CODEWORD BERNOULLI AVERAGE
MODEL

In order to predict what tags will apply to a song and what
songs are characterized by a tag, we developed the Code-
word Bernoulli Average model (CBA). CBA models the
conditional probability of a tag w appearing in a song j
conditioned on the empirical distribution nj of codewords
extracted from that song. One we have estimated CBA’s
hidden parameters from our training data, we will be able
to quickly estimate this conditional probability for new
songs.

3.1 Related work

One class of approaches treats audio tag prediction as a
set of binary classification problems to which variants of
standard classifiers such as the Support Vector Machine
(SVM) [7,8] or AdaBoost [9] can be applied. Once a set of
classifiers has been trained, the classifiers attempt to pre-
dict whether or not each tag applies to previously unseen
songs. These predictions come with confidence scores that
can be used to rank songs by relevance to a given tag (for
retrieval), or tags by relevance to a given song (for anno-
tation). Classifiers like SVMs or AdaBoost focus on bi-
nary classification accuracy rather than directly optimiz-
ing the continuous confidence scores that are used for re-
trieval tasks, which might lead to suboptimal results for
those tasks.

Another approach is to fit a generative probabilistic
model such as a Gaussian Mixture Model (GMM) for each
tag to the audio feature data for all of the songs manifest-
ing that tag [2]. The posterior likelihood p(tag|audio) of
the feature data for a new song being generated from the
model for a particular tag is then used to estimate the rel-
evance of that tag to that song (and vice versa). Although
this model tells us how to generate the audio feature data
for a song conditioned on a single tag, it does not define
a generative process for songs with multiple tags, and so
heuristics are necessary to estimate the posterior likelihood
of a set of tags.

Rather than assuming that the audio for a song depends
on the tags associated with that song, we will assume that

njk βkwzjw yjw
K

J K
W

Figure 1. Graphical model representation of CBA. Shaded
nodes represent observed variables, unshaded nodes repre-
sent hidden variables. A directed edge from node a to node
b denotes that the variable b depends on the value of vari-
able a. Plates (boxes) denote replication by the value in
the lower right of the plate. J is the number of songs, K is
the number of codewords, and W is the number of unique
tags.

the tags depend on the audio data. This will yield a proba-
bilistic model with a discriminative flavor, and a more co-
herent generative process than that in [2].

3.2 Generative process

CBA assumes a collection of binary random variables y,
with yjw ∈ {0, 1} determining whether or not tag w ap-
plies to song j. These variables are generated in two steps.
First, a codeword zjw ∈ {1, . . . ,K} is selected with prob-
ability proportional to the number of times njk that that
codeword appears in song j’s feature data:

p(zjw = k|nj , Nj) =
njk
Nj

(2)

Then a value for yjw is chosen from a Bernoulli distribu-
tion with parameter βkw:

p(yjw = 1|zjw,β) = βzjww (3)

p(yjw = 0|zjw,β) = 1− βzjww

The full joint distribution over z and y conditioned on
the observed counts of codewords n is:

p(z,y|n) =
∏
w

∏
j

njzjw

Nj
βzjww (4)

The random variables in CBA and their dependencies
are summarized in figure 1.

3.3 Inference using expectation-maximization

We fit CBA with maximum-likelihood (ML) estimation.
Our goal is to estimate a set of values for our Bernoulli
parameters β that will maximize the likelihood p(y|n,β)
of the observed tags y conditioned on the VQ codeword
counts n and the parameters β. Analytic ML estimates
for β are not available because of the latent variables z.
We use the Expectation-Maximization (EM) algorithm, a
widely used coordinate ascent algorithm for maximum-
likelihood estimation in the presence of latent variables
[10].

Each iteration of EM operates in two steps. In the ex-
pectation (“E”) step, we compute the posterior of the latent
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variables z given our current estimates for the parameters
β. We define a set of expectation variables hjwk corre-
sponding to the posterior p(zjw = k|n,y,β):

hjwk = p(zjw = k|n,y,β) (5)

=
p(yjw|zjw = k,β)p(zjw = k|n)

p(yjw|n,β)
(6)

=


njkβkwPK
i=1 njiβiw

if yjw = 1
njk(1−βkw)PK
i=1 nji(1−βiw)

if yjw = 0
(7)

In the maximization (“M”) step, we find maximum-
likelihood estimates of the parameters β given the ex-
pected posterior sufficient statistics:

βkw ← E[yjw|zjw = k,h] (8)

=

∑
j p(zjw = k|h)yjw∑
j p(zjw = k|h)

(9)

=

∑
j hjwkyjw∑
j hjwk

(10)

By iterating between computing h (using equation 7)
and updating β (using equation 10), we find a set of values
for β under which our training data become more likely.

3.4 Generalizing to new songs

Once we have inferred a set of Bernoulli parameters β
from our training dataset, we can use them to infer the
probability that a tag w will apply to a previously unseen
song j based on the counts nj of codewords for that song:

p(yjw|nj ,β) =
∑
k

p(zjw = k|nj)p(yjw|zjw = k)

p(yjw = 1|nj ,β) =
1
Nj

∑
k

njkβkw (11)

As a shorthand, we will refer to our inferred value of
p(yjw = 1|nj ,β) as sjw.

Once we have inferred sjw for all of our songs and
tags, we can use these inferred probabilities both to re-
trieve the songs with the highest probability of having a
particular tag and to annotate each song with a subset of
our vocabulary of tags. In a retrieval system, we return the
songs in descending order of sjw. To do automatic tag-
ging, we could annotate each song with the M most likely
tags for that song. However, this may lead to our annotat-
ing many songs with common, uninformative tags such as
“Not Bizarre/Weird” and a lack of diversity in our annota-
tions. To compensate for this, we use a simple heuristic:
we introduce a “diversity factor” d and discount each sjw
by d times the mean of the estimated probabilities s·w. A
higher value of d will make less common tags more likely
to appear in annotations, which may lead to less accurate
but more informative annotations. The diversity factor d
has no impact on retrieval.

The cost of computing each sjw using equation 11 is
linear in the number of codewords K, and the cost of vec-
tor quantizing new songs’ feature data using the previously

computed centroids obtained using k-means is linear in the
number of features, the number of codewords K, and the
length of the song. For practical values of K, the total cost
of estimating the probability that a tag applies to a song is
comparable to the cost of feature extraction. Our approach
can therefore tag new songs efficiently, an important fea-
ture for large commercial music databases.

4. EVALUATION

We evaluated our model’s performance on an annotation
task and a retrieval task using the CAL500 data set. We
compare our results on these tasks with two other sets
of published results for these tasks on this corpus: those
obtained by Turnbull et al. using mixture hierarchies
estimation to learn the parameters to a set of mixture-
of-Gaussians models [2], and those obtained by Bertin-
Mahieux et al. using a discriminative approach based on
the AdaBoost algorithm [9]. In the 2008 MIREX audio tag
classification task, the approach in [2] was ranked either
first or second according to all metrics measuring annota-
tion or retrieval performance [11].

4.1 Annotation task

To evaluate our model’s ability to automatically tag unla-
beled songs, we measured its average per-word precision
and recall on held-out data using tenfold cross-validation.

First, we vector quantized our data using k-means. We
tested VQ codebook sizes fromK = 5 toK = 2500. After
finding a set of K centroids using k-means on a randomly
chosen subset of 125,000 of the Delta-MFCC vectors (250
feature vectors per song), we labeled each Delta-MFCC
vector in each song with the index of the cluster centroid
whose squared Euclidean distance to that vector was small-
est. Each song j was then represented as a K-dimensional
vector nj , with njk giving the number of times label k ap-
peared in song j, as described in equation 1.

We ran a tenfold cross-validation experiment modeled
after the experiments in [2]. We split our data into 10 dis-
joint 50-song test sets at random, and for each test set

1. We iterated the EM algorithm described in section
3.3 on the remaining 450 songs to estimate the pa-
rameters β. We stopped iterating once the negative
log-likelihood of the training labels conditioned on
β and n decreased by less than 0.1% per iteration.

2. Using equation 11, for each tag w and each song j
in the test set we estimated p(yjw|nj ,β), the prob-
ability of song j being characterized by tag w con-
ditioned on β and the vector quantized feature data
nj .

3. We subtracted d = 1.25 times the average condi-
tional probability of tag w from our estimate
of p(yjw|nj ,β) for each song j to get a score sjw
for each song.

4. We annotated each song j with the ten tags with the
highest scores sjw.
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Model Precision Recall F-Score AP AROC
UpperBnd 0.712 (0.007) 0.375 (0.006) 0.491 1 1
Random 0.144 (0.004) 0.064 (0.002) 0.089 0.231 (0.004) 0.503 (0.004)
MixHier 0.265 (0.007) 0.158 (0.006) 0.198 0.390 (0.004) 0.710 (0.004)

Autotag (MFCC) 0.281 0.131 0.179 0.305 0.678
Autotag (afeats exp.) 0.312 0.153 0.205 0.385 0.674

CBA K = 5 0.198 (0.006) 0.107 (0.005) 0.139 0.328 (0.009) 0.707 (0.007)
CBA K = 10 0.214 (0.006) 0.111 (0.006) 0.146 0.336 (0.007) 0.715 (0.007)
CBA K = 25 0.247 (0.007) 0.134 (0.007) 0.174 0.352 (0.008) 0.734 (0.008)
CBA K = 50 0.257 (0.009) 0.145 (0.007) 0.185 0.366 (0.009) 0.746 (0.008)
CBA K = 100 0.263 (0.007) 0.149 (0.004) 0.190 0.372 (0.007) 0.748 (0.008)
CBA K = 250 0.279 (0.007) 0.153 (0.005) 0.198 0.385 (0.007) 0.760 (0.007)
CBA K = 500 0.286 (0.005) 0.162 (0.004) 0.207 0.390 (0.008) 0.759 (0.007)

CBA K = 1000 0.283 (0.008) 0.161 (0.006) 0.205 0.393 (0.008) 0.764 (0.006)
CBA K = 2500 0.282 (0.006) 0.162 (0.004) 0.206 0.394 (0.008) 0.765 (0.007)

Table 1. Summary of the performance of CBA (with a variety of VQ codebook sizes K), a mixture-of-Gaussians model
(MixHier), and an AdaBoost-based model (Autotag) on an annotation task (evaluated using precision, recall, and F-score)
and a retrieval task (evaluated using average precision (AP) and area under the receiver-operator curve (AROC)). Autotag
(MFCC) used the same Delta-MFCC feature vectors and training set size of 450 songs as CBA and MixHier. Autotag
(afeats exp.) used a larger set of features and a larger set of training songs. UpperBnd uses the optimal labeling for each
evaluation metric, and shows the upper limit on what any system can achieve. Random is a baseline that annotates and
ranks songs randomly.

To evaluate our system’s annotation performance, we
computed the average per-word precision, recall, and F-
score. Per-word recall is defined as the average fraction
of songs actually labeled w that our model annotates with
label w. Per-word precision is defined as the average frac-
tion of songs that our model annotates with label w that are
actually labeled w. F-score is the harmonic mean of pre-
cision and recall, and is one metric of overall annotation
performance.

Following [2], when our model does not annotate any
songs with a label w we set the precision for that word to
be the empirical probability that a word in the dataset is
labeled w. This is the expected per-word precision for w
if we annotate all songs randomly. If no songs in a test set
are labeled w, then per-word precision and recall for w are
undefined, so we ignore these words in our evaluation.

4.2 Retrieval task

To evaluate our system’s retrieval performance, for each
tag w we ranked each song j in the test set by the prob-
ability our model estimated of tag w applying to song j.
We evaluated the average precision (AP) and area under
the receiver-operator curve (AROC) for each ranking. AP
is defined as the average of the precisions at each possi-
ble level of recall, and AROC is defined as the area under
a curve plotting the percentage of true positives returned
against the percentage of false positives returned. As in the
annotation task, if no songs in a test set are labeled w then
AP and AROC are undefined for that label, and we exclude
it from our evaluation for that fold of cross-validation.

4.3 Annotation and retrieval results

Table 1 and figure 2 compare our CBA model’s average
performance under the five metrics described above with
other published results on the same dataset. MixHier is
Turnbull et al.’s system based on a mixture-of-Gaussians
model [2], Autotag (MFCC) is Bertin-Mahieux’s AdaBoost-
based system using the same Delta-MFCC feature vec-
tors as our model, and Autotag (afeats exp.) is Bertin-
Mahieux’s system trained using additional features and
training data [9]. Random is a random baseline that re-
trieves songs in a random order and annotates songs ran-
domly based on tags’ empirical frequencies. UpperBnd
shows the best performance possible under each metric.
Random and UpperBnd were computed by Turnbull et al.,
and give a sense of the possible range for each metric.

We tested our model using a variety of codebook sizes
K from 5 to 2500. Cross-validation performance improves
as the codebook size increases until K = 500, at which
point it levels off. Our model’s performance does not de-
pend strongly on fine tuning K, at least within a range of
500 ≤ K ≤ 2500.

When using a codebook size of at least 500, our CBA
model does at least as well as MixHier and Autotag under
every metric except precision. Autotag gets significantly
higher precision than CBA when it uses additional training
data and features, but not when it uses the same features
and training set as CBA.

Tables 2 and 3 give examples of annotations and re-
trieval results given by our model during cross-validation.
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CBA MixHier Autotag (MFCC) Autotag (afeats exp.) Random
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Figure 2. Visual comparison of the performance of several models evaluated using F-score, mean average precision, and
area under receiver-operator curve (AROC).

4.4 Computational cost

We measured how long it took to estimate the parame-
ters to CBA and to generalize to new songs. All experi-
ments were conducted on one core of a server with a 2.2
GHz AMD Opteron 275 CPU and 16 GB of RAM running
CentOS Linux.

Using a MATLAB implementation of the EM algorithm
described in 3.3, it took 84.6 seconds to estimate CBA’s pa-
rameters from 450 training songs vector-quantized using a
500-cluster codebook. In experiments with other codebook
sizes K the training time scaled linearly with K. Once
β had been estimated, it took less than a tenth of a mil-
lisecond to predict the probabilities of 174 labels for a new
song.

We found that the vector-quantization process was the
most expensive part of training and applying CBA. Finding
a set of 500 cluster centroids from 125,000 39-dimensional
Delta-MFCC vectors using a C++ implementation of k-
means took 479 seconds, and finding the closest of 500
cluster centroids to the 10,000 feature vectors in a song
took 0.454 seconds. Both of these figures scaled linearly
with the size of the VQ codebook in other experiments.

5. DISCUSSION AND FUTURE WORK

We introduced the Codeword Bernoulli Average model,
which predicts the probability that a tag will apply to a
song based on counts of vector-quantized feature data ex-
tracted from that song. Our model is simple to implement,
fast to train, generalizes to new songs efficiently, and yields
state-of-the-art performance on annotation and semantic
retrieval tasks.

We plan to explore several extensions to this model in
the future. In place of the somewhat ad hoc diversity fac-
tor, one could use a weighting similar to TF-IDF to choose
informative words for annotations. The vector quantiza-
tion preprocessing stage could be replaced with a mixed-
membership mixture-of-Gaussians model that could be fit
simultaneously with β. Also, we hope to explore princi-
pled ways of incorporating song-level feature data describ-
ing information not captured by MFCCs, such as rhythm.

Query Top 5 Retrieved Songs
John Lennon—Imagine

Shira Kammen—Music of Waters
Tender/Soft Crosby Stills and Nash—Guinnevere

Jewel—Enter From the East
Yakshi—Chandra

Tim Rayborn—Yedi Tekrar
Solace—Laz 7 8

Hip Hop Eminem—My Fault
Sir Mix-a-Lot—Baby Got Back

2-Pac—Trapped
Robert Johnson—Sweet Home Chicago

Shira Kammen—Music of Waters
Piano Miles Davis—Blue in Green

Guns n’ Roses—November Rain
Charlie Parker—Ornithology
Tim Rayborn—Yedi Tekrar

Monoide—Golden Key
Exercising Introspekt—TBD

Belief Systems—Skunk Werks
Solace—Laz 7 8

Nova Express—I’m Alive
Rocket City Riot—Mine Tonite

Screaming Seismic Anamoly—Wreckinball
Pizzle—What’s Wrong With My Footman

Jackalopes—Rotgut

Table 3. Examples of semantic retrieval from the CAL500
data set. The left column shows a query word, and the right
column shows the five songs in the dataset judged by our
system to best match that word.
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Give it Away Fly Me to the Moon Blue Monday Becoming
the Red Hot Chili Peppers Frank Sinatra New Order Pantera

Usage—At a party Calming/Soothing Very Danceable NOT—Calming/Soothing
Heavy Beat NOT—Fast Tempo Usage—At a party NOT—Tender/Soft

Drum Machine NOT—High Energy Heavy Beat NOT—Laid-back/Mellow
Rapping Laid-back/Mellow Arousing/Awakening Bass

Very Danceable Tender/Soft Fast Tempo Genre—Alternative
Genre—Hip Hop/Rap NOT—Arousing/Awakening Drum Machine Exciting/Thrilling

Genre (Best)—Hip Hop/Rap Usage—Going to sleep Texture Synthesized Electric Guitar (distorted)
Texture Synthesized Usage—Romancing Sequencer Genre—Rock
Arousing/Awakening NOT—Powerful/Strong Genre—Hip Hop/Rap Texture Electric

Exciting/Thrilling Sad Synthesizer High Energy

Table 2. Examples of semantic annotation from the CAL500 data set. The two columns show the top 10 words associated
by our model with the songs Give it Away, Fly Me to the Moon, Blue Monday, and Becoming.
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ABSTRACT

Tags are useful text-based labels that encode semantic
information about music (instrumentation, genres, emo-
tions, geographic origins). While there are a number of
ways to collect and generate tags, there is generally a data
sparsity problem in which very few songs and artists have
been accurately annotated with a sufficiently large set of
relevant tags. We explore the idea of tag propagation to
help alleviate the data sparsity problem. Tag propagation,
originally proposed by Sordo et al., involves annotating a
novel artist with tags that have been frequently associated
with other similar artists. In this paper, we explore four
approaches for computing artists similarity based on dif-
ferent sources of music information (user preference data,
social tags, web documents, and audio content). We com-
pare these approaches in terms of their ability to accurately
propagate three different types of tags (genres, acoustic de-
scriptors, social tags). We find that the approach based
on collaborative filtering performs best. This is somewhat
surprising considering that it is the only approach that is
not explicitly based on notions of semantic similarity. We
also find that tag propagation based on content-based mu-
sic analysis results in relatively poor performance.

1. INTRODUCTION

Tags, such as “hair metal”, “afro-cuban influences”, and
“grrl power”, are semantic labels that are useful for seman-
tic music information retrieval (IR). That is, once we anno-
tate (i.e., index) each artist (or song) in our music database
with a sufficiently large set of tags, we can then retrieve
(i.e., rank-order) the artists based on relevance to a text-
based query.

The main problem with tag-based music IR is data
sparsity (sometimes referred to as the cold start problem
[1]). That is, in an ideal world, we would know the rele-
vance (or lack thereof) between every artist and every tag.
However, given that there are millions of songs and poten-
tially thousands of useful tags, this is an enormous anno-
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c© 2009 International Society for Music Information Retrieval.

tation problem. For example, Lamere [2] points out that
Last.fm, a popular music-oriented social network, has a
database containing over 150 millions songs each of which
have been tagged with an average of 0.26 tags. This prob-
lem is made worse by popularity bias in which popular
songs and artists tend to be annotated with a heavily dis-
proportionate number of tags. This is illustrated by the fact
that Lamere found only 7.5% of artists in his corpus of
280,000 artists had been annotated with one or more tags.

One potential solution to the data sparsity problem is
to propagate tags between artists based on artist similarity.
To annotate tags for an artist a, we find the most similar
artists to a (referred to as neighbors) and transfer the most
frequently occurring tags among the neighbors to artist a.
Note that while we focus on artist annotation in this pa-
per, our approach is general in that it could also be use to
propagate tags between songs as well as other non-music
related items such as movies and books.

Tag propagation has two potential uses. First, it allows
us to index an unannotated artist if we can calculate the
similarity between the artist and other annotated artists.
Second, tag propagation allows us to augment and/or im-
prove an existing annotation for an artist.

This idea was originally proposed by Sordo et al. who
explore tag propagation of social tags based on acoustic
similarity [3]. This content-based approach is compelling
because we can automatically calculate artist similarity
without relying on human input. However, as we will show
in Section 5, the content-based tag propagation performs
poorly relative to other music information sources.

In this paper, we extend their initial exploration by com-
paring alternative approaches to compute similarity: col-
laborative filtering of user preference data, similarity based
on social tags, text-mining of web documents, and content-
based analysis of music signals. In addition, we experi-
ment with tag propagation on three different types of tags:
acoustic descriptors, genres, and social tags.

While our focus is on the use of tag propagation for text-
based music IR, we can also view our system as a way to
evaluate artist similarity metric. That is, the approach that
results in the best transfer of semantic information between
artists may be considered a good approach for accessing
artist similarity. Since artist similarity is often used for
music recommendation, evaluating tag propagation perfor-
mance is an automatic alternative to using labor-intensive
human surveys when determining the quality of a music
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recommendation system.

1.1 Related Work

The importance of annotating music with tags is under-
scored by large investments that have been made by var-
ious companies in recent years. Companies like Pandora
and AMG Allmusic employ dozens of professional mu-
sic editors to manually annotate music with a small and
structured vocabulary of tags. While this approach tends to
produce accurate and complete characterizations of some
songs, this labor-intensive approach does not scale with the
rapidly increasing amount of available music online. For
example, 50 Pandora experts annotate about 15,000 songs
per month and would take over 83 years to annotate the
15 million songs that are currently in the AMG Allmusic
database 1

Last.fm and MyStrands use an alternative “crowdsourc-
ing” approach in which millions of registered users are en-
couraged to label songs with any open-end free-text tags.
As of September 2008, Last.fm had collected over 25 mil-
lion song-tag annotations and 20 million artist-tag anno-
tations using a vocabulary of 1.2 million unique tags (al-
though only about 11% had been used more than 10 times)
[4]. Each month, about 300 thousand unique users con-
tribute more than 2.5 million new song-tag or artist-tag an-
notations. However, as mention above, a relatively small
percentage of artists and songs have ever been tagged and
even fewer have been thoroughly annotated.

Academic research has also focused on the music an-
notation problem in recent years. Turnbull et al. suggest
that there are five general distinct approaches to annotat-
ing music with tags: conducting a survey (e.g., Pandora),
harvesting social tags (e.g., Last.fm), playing annotation
games [5, 6], text-mining web documents [7, 8], and ana-
lyzing audio content with signal processing and machine
learning [9–11]. In some sense, tag propagation represents
a sixth approach because it is based on the notions of artist
similarity. That is, propagation can incorporate other forms
of music information, such as user preference data, to gen-
erate tags for music. However, it cannot be used in isola-
tion from these other approaches because it makes direct
use of an initial set of annotated artists.

In the next section, we present the general tag propa-
gation algorithm. We then introduce four different music
information sources that are individually useful for calcu-
lating artist similarity. Section 4 describes the two evalua-
tion metrics that we use to test our system with a database
of 3,500 artists, four similarity metrics, and three types of
tags. We discuss the results in Section 5, and conclude in
Section 6.

2. TAG PROPAGATION

Compared with other automatic tagging algorithm, tag
propagation is relatively straightforward. Suppose that we

1 Pandora statistics are based on personal notes for a public talk
by Pandora founder Tim Westergren. AMG statistics were found at
http://www.allmusic.com.

want to annotate a novel artist a. We find the most simi-
lar artists of a, combine existing annotations of them, and
select the tags that appear frequently.

More formally, tag propagation requires two matrices:
a similarity matrix S and a tag matrix T. S is an artist-
by-artist similarity matrix where [S]i,j indicates similarity
score between artist i and j. T is an artist-by-tag matrix
where [T]a,t represents the strength of association between
artist a and tag t. In this paper, we consider the entries
in T to be a binary number of 0 or 1, where 0 represents
unknown or weak association, and 1 indicates a strong as-
sociation. We call the a-th row of T the tag annotation
vector, and denote as ta.

Once we have a similarity matrix S (as described in Sec-
tion 3), we can use the standard k-Nearest Neighbor (kNN)
algorithm to propagate tags. For the artist a in question, we
find the k most similar artists (i.e., the neighbors), which
we denote as Na. The neighbors are the columns corre-
sponding to the k largest values in the a-th row of S. We
average the annotation vectors from T of Na to estimate
the annotation vector t̂a of a.

t̂a =

∑
i∈Na

ti

k
(1)

Based on an exponential grid search with k ∈ {2i|0 ≤ i ≤
6}, we find that k between 8 and 64 results in comparable
performance for each of our approaches. As such, we set
k = 32 for each of our experiments in Section 5.

3. ARTIST SIMILARITY

In this section, we describe ways in which we can calcu-
late artist similarity matrices from four different sources
of music information. 2 In that our goal is to evaluate tag
propagation, we primarily make use of existing music IR
approaches [12–15].

3.1 Collaborative Filtering (CF)

Collaborative filtering (CF) is a popular commercial tech-
nique for calculating artist similarity [16] that is based on
user preference data. The idea is that two artists are con-
sidered similar if there is a large number of users that listen
to both artists. In this paper, we consider two forms of user
preference data: explicit feedback and implicit feedback.
Feedback is explicit if a user has indicated directly that he
or she “likes” an artist. This information is often recorded
by a user through a button on a music player interface. Im-
plicit feedback is found by tracking user listening habits.
For example, Last.fm monitors which songs each of their
users listens to over a long period of time. Implicit feed-
back assumes that two artists are similar if many users lis-
ten to songs by both artists.

We aggregate user preference data from 400,000
Last.fm users, and build an artist similarity matrix, CF-
Explicit, by counting the number of users who have ex-
plicitly indicated that they like both artists. We construct

2 The data that we describe in this paper was collected from the Inter-
net in April of 2008.
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Table 1. Most similar pairs of artists based on CF (explicit) and their top social tags.

Tex Ritter country classic country country roots oldies old timey
Red Foley country classic country boogie rock american

Unwound noise rock post-hardcore indie rock math rock post-rock
Young Widows noise rock post-hardcore math rock experimental heavy

DLG salsa latin dlg bachata spanish
Puerto Rican Power salsa latin mambo latino cuba

Starkillers dance house trance electro house electronica
Kid Dub electro electro house electronic dub electro-house

Lynda Randle gospel female vocalists christian southern gospel female vocalist
George Jones country classic country americana singer-songwriter traditional country

An Albatross experimental grindcore noisecore hardcore noise
See You Next Tuesday grindcore deathcore mathcore experimental noisecore

a second similarity matrix, CF-Implicit, by counting the
number of users who listen to both artists at least 1% of
the time.

One issue that arises when using the raw co-occurrence
counts is that the popular artists tend to occur frequently
as a “most similarity” artist [16]. A standard solution is to
normalize by the popularity of each artists:

[S]i,j =
co(i, j)√∑

k∈A co(i, k)
√∑

k∈A co(k, j)
(2)

where A is the set of 3,500 artists, co(i, j) is the number
of users that have given feedback for both artist i and artist
j (explicit or implicit depending on the matrix type). Note
that this equation is equivalent to the cosine distance be-
tween two column vectors of a User-by-Item rating matrix
if we assume that users give binary rating [16].

It could be the case that similarity based on CF is not
strongly related to semantic similarity, and thus might not
be useful for tag propagation. However, if we look at a cou-
ple of examples (see Table 1), we find that similar artists
share a number of common tags. This is confirmed in Sec-
tion 5.1, when we quantitatively compare the performance
of tag propagation using CF-Explicit and CF-Implicit. We
also report on the effect of popularity normalization for
these two approaches.

3.2 Social Tags (ST)

As described in Section 1.1, social tags (ST) are socially
generated semantic information about music. Lamere and
Celma [13] show that computing artist similarity using so-
cial tags produces better performance for music recom-
mendation than other approaches such as collaborative fil-
tering, content-based analysis, or human expert recom-
mendations.

Following their approach, we collect a set of social tags
(represented as a tag annotation vector ta) for each artist
a from Last.fm. However, when collecting this data set,
we found a total of about 30,000 unique tags for our 3,500
artists from Last.fm. Since Last.fm allows anyone to apply

any tag, this vocabulary of tags contains many rare tags that
seemed to be (inconsistently) applied to a small number of
artists [1]. In an attempt to clean up the data, we choose
to prune tags that are associated with less than .5% of the
artists. This resulted in vocabulary of 949 unique tags.

The ST artist similarity matrix S is built by calculating
cosine similarity between each annotation vector:

[S]i,j =
ti · tj

|ti||tj |
(3)

where each annotation vector t is a vector over 949 dimen-
sion.

3.3 Web Documents (WD)

Web documents represent a third source of music informa-
tion that can be used to calculate music similarity. For each
artist a, we collect 50 documents from the Google Search
Engine 3 with query ‘‘artist name’’ music. We
combine the top 50 results into a single document and
then represent that document as a bag-of-words. This
bag-of-words is converted into the term-frequency-inverse-
document-frequency (TF-IDF) document vector da over a
large vocabulary of words [17]. TF-IDF is a standard text-
IR representation that places more emphasis on words that
appear frequently in the given document and are less com-
mon in the entire set of documents.

We build the WD artist similarity matrix S by calculat-
ing cosine similarity score on each pair of TF-IDF docu-
ment:

[S]i,j =
di · dj

|di||dj |
(4)

where i, j are artists.

3.4 Content-Based Analysis (CB)

Lastly, we explore two content-based (CB) approaches for
calculating artist similarity that have performed well in var-
ious MIREX tasks [12,15,18] in recent years. For both ap-
proaches, we begin by extracting a bag of Mel-Frequency

3 www.google.com
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Cepstral Coefficients (MFCCs) feature vectors from one
randomly selected song by each artist.

Our first approach, which was proposed by Mandel and
Ellis [12] (referred to as CB-Acoustic), models the bag-
of-MFCCs with a single Gaussian distribution over the
MFCC feature space. To calculate the similarity between
two artists, we calculate the symmetric KL divergence be-
tween the two Gaussian distributions for the songs by the
two artists. For this approach, we use the first 20 MFCCs
and estimate the Gaussian distribution using a full covari-
ance matrix. This approach is chosen because it is fast,
easy to compute, and a popular baseline within the music-
IR community.

The second approach, proposed by Barrington et al.
[15] (referred to as CB-Semantic), involves estimating the
KL-divergence between the two Semantic Multinomial dis-
tributions corresponding to the selected songs for each pair
of artists. A semantic multinomial is a (normalized) vec-
tor of probabilities over a vocabulary of tags. To calcu-
late the semantic multinomial, we first learn one Gaussian
Mixture Model (GMM) over the MFCC feature space for
each tag in our vocabulary. The GMMs are estimated using
training data (e.g., songs that are known to be associated
with each tag) in a supervised learning framework. We
then take a novel song and calculate its likelihood under
each of the GMMs to produce a vector of unnormalized
probabilities. When normalized, this vector can be inter-
preted as a multinomal distribution over a semantic space
of tags. We choose a vocabulary of 512 genres and acous-
tic tags and use 39-dimensional MFCC+Delta feature vec-
tors. MFCC+Delta vectors include the first 13 MFCCs plus
each of their 1st and 2nd instantaneous derivatives. This
approach is chosen because it is based on a top performing
approach in the 2007 MIREX audio similarity task and is
based on a top performing approach in the 2008 MIREX
audio tag classification task.

4. EXPERIMENTAL SETUP

4.1 Data

Our data set consists of 3,500 artists with music that
spans 19 top-level genres (e.g., Rock, Classical, Elec-
tronic) and 123 subgenre (e.g., Grunge, Romantic Period
Opera, Trance). Each artist is associated with 1 or more
genre and 1 or more subgenres. The set of 142 genres and
subgenres make up our initial Genre vocabulary.

For each artist, we collect a set of acoustic tags for songs
by the artist from Pandora’s Music Genome Project. This
Acoustic tag vocabulary consists of 891 unique tags like
“dominant bass riff”, “gravelly male vocalist”, and “acous-
tic sonority”. In general, these acoustic tags are thought to
be objective in that two trained experts can annotate a song
using the same tags with high probability [19]. Lastly, we
collect social tags for each artist using the Last.fm public
API as discussed in Section 3.2. After pruning, the Social
tag vocabulary, it consists of 949 unique tags.

In all three cases, we construct a binary ground truth
tag matrix T where [T]s,a = 1 if the tag is present for the

artists (or in one of the songs by the artists), and 0 other-
wise.

4.2 Evaluation Metrics

We use leave-one-out cross-validation to test our system.
For each artist a, we hold out the ground truth tag anno-
tation vector ta and calculate the estimated vector t̂a by
kNN algorithm. In the artist annotation test, we test how
well we can propagate relevant tags to a novel artist by
comparing the estimated vector with the ground truth.

In the tag-based retrieval test, we generate a ranked
list of the artists for each tag based on their association
strength to a tag. Then we evaluate how high the relevant
artists are placed on the ranked list. Each test is described
in detail below.

One of our artist similarity metric is based on the simi-
larity of socially generated tags as discussed in Section 3.2.
We use tags generated by Last.fm users as our data source
because it provides the largest data set of social tags. Un-
fortunately, we evaluate our system on the same data as
well. Therefore, we use 10-fold cross-validation to evalu-
ate the propagation of social tags based on the similarity
of social tags. That is, for each of 10 folds, we use 90%
of the tags to estimate a song similarity matrix. This sim-
ilarity matrix is used to propagate the other 10% of the
tags. We can combine the 10 estimated annotation tag vec-
tors from each of the 10 folds into one complete annotation
vector.

4.2.1 Artist Annotation

For each artist a, we evaluate the relevance of the estimated
annotation vector t̂a by comparing it to the ground truth
ta. As described earlier, the ground truth data is in binary
format. We transform the estimated annotation vector into
the same binary vector by setting each value that is above
a threshold to 1, and zero otherwise.

By doing so, we move from the estimation problem to
the standard retrieval problem [17]. That is, we predict a
set of relevant tags to describe the artist. We can then cal-
culate precision, recall and f-measure for the given thresh-
old. By varying threshold, we compute a precision-recall
curve as shown in Figure ??.

4.2.2 Tag-Based Retrieval

In this experiment, we evaluate the performance of tag-
based retrieval of relevant artists. For each tag, we gen-
erate a ranked-list of 3,500 artists. The rank is based on
the association score of the tag in each artist’s estimated
annotation vector. Using the ground truth annotations, we
calculate R-precision, 10-Precision, MAP (mean average
precision) and AUC (area under the ROC curve) for each
tag [17]. We then average the performance of the tags in
each of our three tag vocabularies: Pandora Genre, Pan-
dora Acoustic, and Last.fm Social.
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Table 2. Exploring variants of collaborative filtering (CF):
We report the average f-measure / area under the ROC
curve (AUC) for explicit or implicit user preference infor-
mation when we have either normalized or not normalized
for popularity. Each evaluation metric is the average value
over the three tag vocabularies.

Unnormalized Normalized

Explicit .438 / .867 .495 / .885
Implicit .410 / .824 .502 / .891
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Figure 1. Semantic annotation and retrieval model dia-
gram.

5. RESULTS
5.1 CF Comparison
The collaborative filtering approach has four variants with
two sets of varying conditions. First, we compare using
explicit and the implicit user preference data. Second, the
similarity matrix S was generated with and without the
popularity-normalization. We evaluate the performance of
each variant by comparing f-measure from the artist anno-
tation test and area under the ROC curve (AUC) from the
tag-based retrieval test.

The result of each test is illustrated in Table 2. In our
experiments, we observe no significant difference between
the explicit and the implicit user preference data. However,
in both cases, the normalization improves the performance.
It is interesting that the normalization boosts the perfor-
mance of the implicit data more significantly than the ex-
plicit data. This could be due to the fact that implicit data
may be more prone to the popularity bias since Last.fm
radio playlists tend to recommend music from popular
artists [16].

5.2 Artist Annotation

The precision-recall curves for artist annotation are plotted
in Figure ??. For each test, we varied the threshold from

0.1 to 0.4 with the interval of 0.01 and calculated preci-
sion, recall, and f-measure. The baseline Random perfor-
mance is calculated by estimating each annotation vector
with k = 32 distinct random neighbors. Except for the
random baseline, the f-measure was maximized at around
a threshold of 0.3.

In general, the two variants of the collaborative filter-
ing (CF) approach perform best, with the implicit feedback
approach performing slightly better. This is surprising be-
cause the collaborative filtering approach does not explic-
itly encode semantic information whereas social tag, web
documents, and CB-Semantic are based on the similarity
of semantic information. This suggests that collaborative
filtering is useful for determining semantic similarity as
well as music recommendation.

5.3 Tag-based Retrieval

We evaluate tag-based music retrieval based on tag prop-
agation using seven approaches to computing music simi-
larity. We report the performance for three vocabularies of
tags (Genre, Acoustic, and Social) in Table 3.

As was the case with artist annotation, both CF-Implicit
and CF-Explicit show strong performance for all four met-
rics and all three vocabularies. However, ST has the
best performance for R-Precision, 10-Precision, and MAP
when propagating social tags.

Since area under the ROC curve (AUC) is an evaluation
metric that is not biased by the prior probability of rele-
vant artists for a given tag, we can safely compare average
AUC values across the different tag vocabularies. Based
on this metric, we see that all of the approaches (except for
the CB-Acoustic) have higher AUC values in the order of
Genre, Acoustic, and Social tag sets. This suggest that
it may be easiest to propagate genres and hardest to propa-
gate social tags to novel artists.

Both CB approaches show relatively poor performance
(though much better than random), which is disappointing
since all of the other methods require additional human in-
put to calculate music similarity for a novel artist. That
is, if either CB approached showed better performance, we
could remedy the data sparsity problem for novel artists
with a fully automatic tag propagation approach.

6. CONCLUSION

In this paper, we have explored tag propagation as a tech-
nique for annotating artists with tags. We explored al-
ternative ways to calculate artist similarity by taking ad-
vantage of the existing sources of music information such
as user preference data (CF), social tags (ST), web docu-
ments (WD), and audio content (CB). Each similarity met-
ric was tested on three distinct tag sets: genre, acoustic,
and social. Both artist annotation, and tag-based retrieval
tests show that CF generally performs the best, followed
by ST, WD, and CB. This result is somewhat surprising
because collaborative filtering (CF) is solely based on the
aggregate trends of listening habits and user preferences,
rather than explicitly representing music semantics. It con-
firms the idea that CF similarity (e.g., user behavior) can be
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Table 3. Tag-based music retrieval performance. Each evaluation metric is averaged over all tags for each of the three
vocabularies. R-precision for a tag is the precision (the ratio of correctly-labelled artists to the total number of retrieved
artists) when R documents are retrieved, where R is the number of relevant artists in the ground-truth. Similarly, 10-
precision for a tag is the precision when 10 artists are retrieved (e.g., the “search engine metric”). Mean average precision
(MAP) is found by moving down the ranked list of artists and averaging the precisions at every point where we correctly
identify a relevant artist based on the ground truth. The last metric is the area under the receiver operating characteristic
(ROC) curve (denoted AUC). The ROC curve compares the rate of correct detections to false alarms at each point in the
ranking. A perfect ranking (i.e., all the relevant songs at the top) results in an AUC equal to 1.0. We expect the AUC to be
0.5 if we randomly rank songs. More details on these standard IR metrics can be found in Chapter 8 of [17].

Approach Genre (142 tags) Acoustic (891 tags) Social (949 tags)

r-prec 10-prec MAP AUC r-prec 10-prec MAP AUC r-prec 10-prec MAP AUC

Random 0.012 0.015 0.017 0.499 0.025 0.023 0.029 0.495 0.030 0.029 0.033 0.498
CF (implicit) 0.362 0.381 0.342 0.914 0.281 0.306 0.254 0.882 0.409 0.543 0.394 0.876
CF (explicit) 0.362 0.388 0.329 0.909 0.282 0.304 0.246 0.878 0.410 0.562 0.396 0.869
ST 0.344 0.349 0.311 0.889 0.267 0.274 0.237 0.874 0.428 0.584 0.413 0.874
WD 0.321 0.393 0.282 0.861 0.244 0.300 0.200 0.814 0.318 0.478 0.286 0.797
CB (acoustic) 0.101 0.127 0.076 0.701 0.118 0.132 0.088 0.692 0.117 0.159 0.092 0.661
CB (semantic) 0.087 0.103 0.069 0.687 0.115 0.123 0.091 0.714 0.107 0.126 0.084 0.662

used to capture the semantic similarity (e.g., tags) among
artists. We also found that two content-based approaches
(CB) performed poorly in our experiments. This is un-
fortunate because content-based similarity can be calcu-
lated for novel artists without human intervention, and thus
would have solved the data sparsity problem.
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ABSTRACT

This paper presents findings about mood representations.
We aim to analyze how do people tag music by mood, to
create representations based on this data and to study the
agreement between experts and a large community. For
this purpose, we create a semantic mood space from last.fm
tags using Latent Semantic Analysis. With an unsuper-
vised clustering approach, we derive from this space an
ideal categorical representation. We compare our commu-
nity based semantic space with expert representations from
Hevner and the clusters from the MIREX Audio Mood
Classification task. Using dimensional reduction with a
Self-Organizing Map, we obtain a 2D representation that
we compare with the dimensional model from Russell. We
present as well a tree diagram of the mood tags obtained
with a hierarchical clustering approach. All these results
show a consistency between the community and the ex-
perts as well as some limitations of current expert models.
This study demonstrates a particular relevancy of the basic
emotions model with four mood clusters that can be sum-
marized as: happy, sad, angry and tender. This outcome
can help to create better ground truth and to provide more
realistic mood classification algorithms. Furthermore, this
method can be applied to other types of representations to
build better computational models.

1. INTRODUCTION

Music classification by mood 1 recently emerged as a topic
of interest in the Music Information Retrieval (MIR) com-
munity. The first task to tackle this problem is to find a
relevant representation of mood. In this work, we study
mood representations with a bottom-up approach, from a
community point of view.

Several works have shown a potential to model mood in
music (like [3–5] , see [6] for an extensive review). Al-
though this task is quite complex, satisfying results can
be achieved, especially if we concentrate on the mood ex-
pressed by the music rather than the mood induced [6].

1 In order to simplify the terminology, we will use the words emotion
and mood independently for the same meaning: a particular feeling char-
acterizing a state of mind

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
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However, almost every work differs in the way that it rep-
resents emotions. Similarly to psychological studies, there
is no real agreement on a common model. Comparing
these different techniques is a very arduous task. With the
objective to evaluate several algorithms within the same
framework, MIREX (Music Information Retrieval Evalu-
ation eXchange) [7] organized a task on this topic for the
first time in 2007. To do so, it was decided to frame the
problem into a classification task with 5 mutually exclu-
sive categories. However, it was shown that these clusters
might not be optimal as we suspect some semantic over-
lap between categories [8]. In a nutshell, finding the right
mood representation is complex.

In this study, we want to address this problem using data
collected in an ”everyday life” context (not in controlled
laboratory settings like in psychological studies). From
this data, we want to create a semantic space for mood.
In [10], the authors studied the agreement between experts
and a community (also based on last.fm tags) for genre
classification. Levy in [11], studied how tags can be used
for genre and artist similarity and proposed a visualization
of certain words in an emotion space. Both studies inspired
our approach of using social tags to compare the semantics
of the wisdom of crowds with expert knowledge.

The goal of this paper is to create a semantic mood
space where we can represent mood and compare it with
existing representations. There are two main motivations
for this study. First we aim to verify if the knowledge ex-
tracted from social tags and the knowledge from the ex-
perts (psychologists) converges. Then, we want to generate
mood representations that can serve as a basis for further
works like music mood classification. In Section 2, we
expose the expert mood representations. In Section 3, we
detail the dataset of tags and then, in Section 4, its trans-
formation into a semantic space. In Section 5, we study
the categorical representations. In Sections 6 and 7, we
generate and analyze dimensional and hierarchical repre-
sentations. Finally, Section 8 concludes and summarizes
the main findings.

2. EXPERT REPRESENTATIONS

Two main types of representation coexist in the literature.
The first one is the categorical model, using for instance
basic emotions with around four or five categories includ-
ing: happiness, sadness, fear, anger and tenderness [1].
Some works propose mood clusters like the eight clusters
from Hevner [9] (see Figure 1) or the five clusters used
in the MIREX Audio Mood Classification task, detailed
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Clusters Mood Adjectives

Cluster 1 passionate, rousing, confident, boisterous, rowdy

Cluster 2 rollicking, cheerful, fun, sweet, amiable/good natured

Cluster 3 literate, poignant, wistful, bittersweet, autumnal, brooding

Cluster 4 humorous, silly, campy, quirky, whimsical, witty, wry

Cluster 5 aggressive, fiery, tense/anxious, intense, volatile, visceral

Table 1. Clusters of mood adjectives used in the MIREX
Audio Mood Classification task.

in Table 1. The second type of representation is the di-
mensional model, based originally on Russell’s circumplex
model of affect [2] (see Figure 2). The two dimensions
mostly used are arousal and valence 2 .

Figure 1. Hevner’s [9] model with adjectives grouped into
eight clusters.

3. DATASET

Our objective is to obtain a mood space based on social
tags. In order to achieve this goal, we need two compo-
nents: a list of mood words and social network data.

3.1 Mood list

For this study, we want to observe the way people use
mood words in a social network. We selected words re-
lated to emotions based on the main articles in music and
emotion research. We included words from different psy-
chological studies like Hevner [9] or Russell [2]. We also
added words representing basic emotions and other related
adjectives [1]. Finally we aggregated the mood terms mostly
used in MIR [6] and the ones selected for the MIREX
task [8]. At the end of this process, we obtained a list of
120 mood words.

2 In psychology, the term valence describes the attractiveness or aver-
siveness of an event, object or situation.

Figure 2. Russell’s [2] circumplex model of affect with
arousal and valence dimensions.

3.2 Social Tags

Last.fm 3 is a music recommendation website with a large
community of users who are very active in associating tags
with the music they listen to. With over 30 million users
in more than 200 countries 4 , this social network is a good
candidate to study how people tag their music. We crawled
6,814,068 tag annotations from 575,149 tracks in all main
genres. From those, 492,634 tags were distinct. This huge
dataset contains tags of any kind. From the original 120
mood words, 107 tags were found in our dataset. However
some of them did not appear very often. We decided to
keep only the tags that appeared at least 100 times, result-
ing in a list of 80 words. We also chose to keep the tracks
were the same mood tag has been used by several users.
This subset contains 61,080 tracks. We observe that the
mood tags mostly used are sad, fun, melancholy and happy.
For instance, the tag sad has been used 11,898 times in our
dataset. On the contrary, the least used tags are rollicking,
solemn, rowdy and tense, applied in less than 150 tracks.
In average, a mood tag is used in 754 tracks.

4. SEMANTIC MOOD SPACE

We aim to compare mood terms by their co-occurences in
tracks. Intuitively happy should co-occur more often with
fun or joy than with sad or depressed. This co-occurence
information included in the data we crawled from last.fm
is embodied in a document-term matrix where the columns
are track vectors representing tags.

The main problem we have when dealing with this ma-
trix is its high dimensionality and its sparsity. Consequently,
we applied a Latent Semantic Analysis (LSA) [12] to project
the data into a space of a given lower dimensionality, while
maintaining a good approximation of the distances between
data points. This technique has been shown to be very ef-
ficient to capture tag representations for genre and artists

3 http://www.last.fm
4 http://blog.last.fm/2009/03/24/lastfm-radio-announcement

382



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

similarity [11]. LSA makes use of algebraic techniques
such as Singular Values Decomposition (SVD) to reduce
the dimensionality of the matrix. We decided to use a di-
mension of 100, which seems to be good trade-off for sim-
ilarity tasks [11]. In the following experiments, we tried to
change this dimension parameter (from 10 to 10 000 on a
logarithmic scale), with no significant impact on the out-
comes except less relevant results when selecting a too low
or too high dimension. Once we have the data into this se-
mantic space, we compute the distance between terms us-
ing the cosine distance. The distance values are included
in the range [0, 1]. Here are some examples of distances
between mood tags:

dcos(happy, sad) = 0.99
dcos(cheerful, sleepy) = 0.97
dcos(anger, aggressive) = 0.06
dcos(calm, relaxed) = 0.03

We observe that happy and sad are quite far from each
other, as well as cheerful and sleepy. On the other hand,
we note that anger is close to aggressive and that calm is
similar to relaxed. Even if we show here some prototypical
examples, values in the whole distance matrix intuitively
make sense.

5. CATEGORICAL REPRESENTATIONS

To study the categorical mood representations, we first de-
rive a folksonomy (community-based taxonomy) represen-
tation by means of unsupervised clustering from the social
data. Then, we evaluate how the expert taxonomies fit into
the semantic mood space.

5.1 Folksonomy representation

From our semantic space, we want to infer what would be
the ideal categorical representation. To achieve this goal,
we apply an unsupervised clustering method using the Ex-
pectation maximization (EM) algorithm. This algorithm
and the implementation we used (WEKA) are described
in [13]. The first important question to be answered is
how many clusters should we consider. As we want this
number to be inferred by the data itself, we used the v-
fold cross validation algorithm. We divided the dataset in
v folds, training on v − 1 folds and testing on the remain-
ing one. We measure the log-likelihood computed for the
observations in the testing samples. The results for the v
replications are averaged to yield a single measure of the
stability of the model. In Figure 3, we show the results of
this process, displaying an average cost value (in our case
2 times the negative log-likelihood of the cross-validation
data). Intuitively the lower is the value, the better is the
cluster. To choose the ”right” number of clusters, we look
at the cost value while increasing the number of clusters.
Practically, we stop when the mean cost value stops de-
creasing and select the current number of clusters.

We observe that the cost rapidly decreases with the num-
ber of clusters until four clusters. After that, it is stable and

Figure 3. Plot of the cost values (2 times the negative log-
likelihood) depending on the number of clusters.

even increases, meaning that the data is overfitted. Conse-
quently, the optimal number of clusters is four. Using this
number for the EM algorithm, we obtained the clusters ex-
posed in Table 2.

Cluster 1 Cluster 2 Cluster 3 Cluster 4
angry sad tender happy
aggressive bittersweet soothing joyous
visceral sentimental sleepy bright
rousing tragic tranquil cheerful
intense depressing good natured happiness
confident sadness quiet humorous
anger spooky calm gay
exciting gloomy serene amiable
martial sweet relax merry
tense mysterious dreamy rollicking
anxious mournful delicate campy
passionate poignant longing light
quirky lyrical spiritual silly
wry miserable wistful boisterous
fiery yearning relaxed fun

Table 2. Folksonomy representation. Clusters of mood
tags obtained with the EM algorithm. For space and clarity
reasons, we show only the first tags.

These four clusters are very similar to the categories
posed by the main basic emotion theories [1]. Moreover,
these clusters represents the four quadrants of the classi-
cal arousal-valence plane from Russell previously shown
in Figure 2:

Cluster 1: angry (high arousal, low valence)
Cluster 2: sad, depressing (low valence, low arousal)
Cluster 3: tender, calm (high valence, low arousal)
Cluster 4: happy (high arousal, high valence)

To summarize, the semantic space we created is rele-
vant and coherent with existing basic emotion approaches.
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This result is very encouraging and assesses a certain qual-
ity of this semantic space. Moreover, it confirms that the
community uses mood tags in a way that converges with
the basic emotion theory from psychology.

5.2 Agreement between experts and community

In this section, we want to measure the agreement between
experts and community representations. To do so, we per-
formed a coarse-grained similarity, where we measured
how separable the expert-defined mood clusters are in our
semantic space. First, we computed the LSA cosine sim-
ilarity among all moods within each cluster (intra-cluster
similarity) and then we computed the dissimilarity among
clusters, using the centroid of each cluster (inter-cluster
dissimilarity). The expert representations we selected for
this experiment are the eight clusters from Hevner (see
Figure 1) where we could match more than 50% of the tags
and the five clusters from the MIREX taxonomy (see Table
1) where all 31 tags were matched.

5.2.1 Intra-cluster similarity

For each cluster of the expert representations, we com-
pute the mean cosine similarity between each mood tag
in the cluster. The results for intra-cluster similarity are
presented in Figure 4 for the Hevner representation and in
Figure 5 for the MIREX clusters.

Figure 4. Intra-cluster cosine similarity for Hevner’s rep-
resentation.

In the results for the Hevner clusters, we note a high
intra-cluster similarity value for cluster 1, which is the one
including spiritual and sacred (please look at Figure 1 for
the complete list). Cluster 6 performs also quite well (joy-
ous, bright, gay, cheerful, merry). However we have poor
intra-cluster similarity for cluster 8, which includes vigor-
ous, martial and majestic. This might be because these
words are also some of the less used in our dataset, but
we hypothesize that they are less descriptive today than
when the taxonomy was created (1936). Moreover, these
words were selected for classical music which is not the
main content of the lasf.fm music. The rest of the intra-
cluster similarity values are in average quite low, meaning

that this representation is not optimal in the semantic mood
space.

Figure 5. Intra-cluster cosine similarity for MIREX repre-
sentation.

For the MIREX clusters, we remark that the lowest intra-
cluster similarity is for cluster 2 (sweet, good natured, cheer-
ful, rollicking, amiable, fun). Maybe is it quite clear that
this category is about happy music, however the words
used are not so common and may lower this value. In
average, the intra-cluster similarity value is quite high for
this representation. For comparison purpose, we note that
the intra-cluster similarity of the folksonomy representa-
tion has an average intra-cluster similarity value of 0.82
(see Table 4). Obviously, as the folksonomy representa-
tion was made from the semantic space itself, it has better
results than the other models.

In this part, we have looked at the consistency inside
each cluster, however it is also crucial to look at the dis-
tances between clusters to evaluate the quality of the clus-
tering representations.

5.2.2 Inter-cluster dissimilarity

To measure how separable are the different clusters, we
compute the mean cosine distance from each cluster cen-
troid to the other cluster centroids. If we look at our folk-
sonomy representation clusters from Section 5.1, the co-
sine distance between centroids of clusters are all quite
high (0.9 in average, see Table 4). This is not very supris-
ing as the representation was designed with this data.

In Table 3, we show the confusion matrix of the inter-
cluster dissimilarity for the MIREX clusters. We notice
that the lowest value is between cluster 1 and cluster 5,
meaning that these clusters are quite similar. This finding
correlates with the results from the MIREX task, in which
the confusion between these two classes was found signif-
icant [8]. However the confusion between clusters 2 and
4, also relevant in the MIREX results analysis, is not re-
flected here. Additionally, we observe that the most sepa-
rated clusters (5 and 2), are also the less confusing in the
MIREX results. Looking at the confusion matrix for the
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C1 C2 C3 C4 C5
C1 0 0.74 0.128 0.204 0.108*
C2 0.74 0 0.859 0.816 0.876
C3 0.128 0.859 0 0.319 0.265
C4 0.204 0.816 0.319 0 0.526
C5 0.108* 0.876 0.265 0.526 0

Table 3. Confusion matrix for the inter-cluster dissimilar-
ity for the MIREX clusters (C1 means cluster 1, C2 cluster
2 and so on). The values marked with an asterisk are the
most similar and in bold are the less similar values.

Hevner clusters (not shown here for space reasons), we re-
mark that the highest values (dissimilarity above 0.95) are
between clusters 7 and 8, and between clusters 1 and 2. On
the contrary, the lowest value (0.09) is between clusters 1
and 4. Indeed both clusters have words than can appear
similar like spiritual and serene for instance. We summa-
rize the results of both intra and inter-cluster measures for
the different taxonomies in Table 4.

Mood Taxonomy Intra-cluster Inter-cluster
similarity dissimilarity

Hevner 0.55 0.70
MIREX 0.73 0.56
Folksonomy 0.82 0.9

Table 4. Intra-cluster similarity and inter-cluster dissimi-
larity means for each mood taxonomy.

In a nutshell, the Hevner clusters are less consistent but
are more separated than the MIREX ones. Indeed, even if
the latter has more intra-cluster similarity, it suffers from
confusions between some categories as reflected in our re-
sults.

6. DIMENSIONAL REPRESENTATION

Dimensional representation is an important paradigm in
emotion studies. To project our semantic mood space into
a bi-dimensional space, we used the Self-Organizing Map
algorithm (SOM). We decided to use SOM for its topology
properties and because it stresses more on the local simi-
larities and distinguishes groups within the data. Because
less than half of the Russell’s adjectives are present in our
dataset, we prefer to compare qualitatively more that quan-
titatively the expert and the community models. We trained
a SOM and mapped each tag onto its best-matching unit in
the trained SOM. In Figure 6, we plot the resulting orga-
nization of mood tags (for clarity reasons, we show here a
subset of 58 tags).

We observe in the 2D projection four main parts. At the
top-left, terms related to aggressive, below calm and other
similar words, at the top-right tags related to sad and be-
low words close to happiness. We notice the four clusters
corresponding to the basic emotions and our folksonomy
representation mentioned in Section 5.1. This is somehow

 aggressive aggressive  rowdy  intense  bittersweet

 boisterous boisterous  autumnal  plaintive

 majestic  sad  rousing rousing  fiery  amiable

 dreamy  tragic  gloomy  spooky  anxious

 dramatic  depressing depressing  whimsical playful whimsical playful

 relaxed  sleepy  humorous silly humorous silly  quirky

 spiritual  tranquil  tender  joyous bright gay joyous bright gay

 scary  light  cheerful merry

 dark  fun

calm

soothing
serene quiet

longing

 mysterious
 relax

rollicking

happiness

campy

melancholy 

 sentimental

sadness 

 pathetic

lyrical

passionate

 witty wry

angry anger

Figure 6. Self-Organizing Map of the mood tags in the
semantic space.

expected as we already got these clusters from this data.
However, having the same results with a second technique
confirms our findings. Comparing with Russell’s dimen-
sions, we find that the diagonal from top-left to bottom-
right is of high arousal. On the contrary, the diagonal from
top-right to bottom-left is of low arousal. The vertical axis
represents the valence dimension. Even though the 2D rep-
resentation is not equal, there is a clear correlation between
the community and the experts when framing the problem
into two dimensions.

7. HIERARCHICAL REPRESENTATION

The semantic mood space can be visualized in many differ-
ent ways. In this part we experimented hierarchical clus-
tering techniques to produce a tree diagram (dendrogram).
We applied a common agglomerative hierarchical cluster-
ing method with a complete linkage [14] and the cosine
metric. We used the hcluster 5 implementation. With the
20 most used tags in our dataset, we computed the cluster-
ing and plot the resulting dendrogram in Figure 7 .

Although there exists some dendrogram representation
of emotions in the psychology literature [1], the compar-
ison is complex because many of the terms employed are
not present in our dataset and also because finding the right
metric to measure the similarity between both is not triv-
ial. The hierarchical clustering starts with two branches.
Looking at the tags of this first branching, we observe a
very clear separation in arousal with dreamy and calm on
the left and angry and happy on the right. Then the two fol-
lowing branching (resulting in four clusters) represents the
four basic emotions also found as the best categorical rep-
resentation in Section 5 (in order in the dendrogram: calm,
sad, angry and happy). This confirms another time our
findings about the relevancy of these four clusters. More-
over, we notice that the first separation is related to arousal,
often considered as the most important dimension. The re-
maining branches group together similar terms like angry
and aggressive or sad and depressing.

5 http://code.google.com/p/scipy- cluster
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Figure 7. Dendrogram of the 20 most used tags.

8. CONCLUSIONS

This paper presented convergent evidence about mood rep-
resentations. We created a semantic mood space based
on a community of users from last.fm. We derived dif-
ferent representations from this data and compared them
to the expert representations. We demonstrated that the
basic emotions: happy, sad, angry and tender, are very
relevant to the social network. We also found that the
arousal and valence dimensions are pertinent. Moreover
we have shown that both Hevner’s and MIREX represen-
tations have advantages and limitations when evaluated in
the semantic mood space. The former having better sep-
arated clusters and the latter having more consistent clus-
ters. Observations on the confusion and similarity between
MIREX clusters confirmed results from previous analysis.
We also presented a dendrogram visualization validating
again the basic emotion point of view and offering a new
representation of the mood space. All these findings show
the relevancy of using a mood semantic space derived from
social tags. Folksonomy representations can be used in
tasks like mood classification or regression to improve the
quality of the audio content processing algorithms. We
can also imagine a visualization of a user emotional states
based on his listening habits or history. Moreover, one’s
musical library can be mapped and explored with a folk-
sonomy representation derived from the whole social net-
work or a particular subset. Finally this approach can be
generalized to find other domain-specific representations.
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ABSTRACT

Search by keyword is an extremely popular method for re-
trieving music. To support this, novel algorithms that au-
tomatically tag music are being developed. The conven-
tional way to evaluate audio tagging algorithms is to com-
pute measures of agreement between the output and the
ground truth set. In this work, we introduce a new method
for evaluating audio tagging algorithms on a large scale
by collecting set-level judgments from players of a human
computation game called TagATune. We present the de-
sign and preliminary results of an experiment comparing
five algorithms using this new evaluation metric, and con-
trast the results with those obtained by applying several
conventional agreement-based evaluation metrics.

1. INTRODUCTION

There is a growing need for efficient methods to organize
and search for multimedia content on the Web. This need
is reflected in the recent addition of the audio tag classi-
fication (ATC) task at MIREX 2008, and the introduction
of new music tagging algorithms [1, 2]. The conventional
way to determine whether an algorithm is producing ac-
curate tags for a piece of music is to compute the level of
agreement between the output generated by the algorithm
and the ground truth set. Agreement-based metrics, e.g.
accuracy, precision, F-measure and ROC curve, have been
long-time workhorses of evaluation, accelerating the de-
velopment of new algorithms by providing an automated
way to gauge performance.

The most serious drawback to using agreement-based
metrics is that ground truth sets are never fully compre-
hensive [3]. First, there are exponentially many sets of
suitable tags for a piece of music – creating all possible
sets of tags and then choosing the best set of tags as the
ground truth is difficult, if not impossible. Second, tags
that are appropriate for a given piece of music can simply
be missing in the ground truth set because they are less
salient, worded differently (e.g. baroque versus 17th cen-
tury classical), or that they do not facilitate the objectives
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of the particular annotator. For example, a last.FM user
who wants to showcase his expertise on jazz music may
tag the music with highly obscure and technical terms. In
output-agreement games such as MajorMiner [2] and the
Listen Game [4], where the scoring depends on how often
players’ tags match with one another, players are motivated
to enter (or select) tags that are common, thereby omitting
tags that are rare or verbose. Furthermore, because an ex-
haustive set of negative tags is impossible to specify, when
a tag is missing, it is impossible to know whether it is in
fact inappropriate for a particular piece of music.

Agreement-based metrics also impose restrictions on
the type of algorithms that can be evaluated. To be eval-
uated, tags generated by the algorithms must belong to the
ground truth set. This means that audio tagging algorithms
that are not trained on the ground truth set, e.g. those that
use text corpora or knowledge bases to generate tags, can-
not be evaluated using agreement-based metrics.

To be useful, tags generated by audio tagging algorithms
must, from the perspective of the end user, accurately de-
scribe the music. However, because we do not yet fully
understand the cognitive processes underlying the repre-
sentation and categorization of music, it is often difficult
to know what makes a tag “accurate” and what kinds of
inaccuracies are tolerable. For example, it may be less dis-
concerting for users to receive a folk song when a country
song is sought, than to receive a sad, mellow song when a
happy, up-beat song is sought. Ideally, an evaluation met-
ric should measure the quality of the algorithm by implic-
itly or explicitly capturing the users’ differential tolerance
of incorrect tags generated by the algorithms. The new
evaluation metric we are proposing in this paper has ex-
actly this desired property.

The problems highlighted above suggest that music tag-
ging algorithms, especially those used to facilitate retrieval,
would benefit enormously from evaluation by human users.
Manual evaluation is, however, often too time-consuming
or costly to be feasible. Human computation is a new
area of research that studies how to build systems, such
as simple casual games, to collect annotations from hu-
man users. In this work, we investigate the use of a hu-
man computation game called TagATune to collect evalu-
ations of algorithm-generated music tags. In an off-season
MIREX [5] evaluation task, we compared the performance
of five audio tagging algorithms under the newly proposed
metric, and present in this paper the preliminary findings.
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2. TAGATUNE AS AN EVALUATION PLATFORM

TagATune [6] is a two-player online game that collects mu-
sic tags from players. In each round of the game, two play-
ers are either given the same music clip or different music
clips, and are asked to type in tags for their given music
clip. After seeing each other’s tags, players must then de-
cide whether they were given the same music clip or not.

Figure 1. The TagATune interface

When a human partner is not available, a player is paired
with a computer bot, which outputs tags that have been pre-
viously collected by the game for the particular music clip
served in each round. This so-called aggregate bot serves
tags that are essentially the ground truth, since they were
provided by human players.

The key idea behind TagATune as an evaluation plat-
form is that the aggregate bot can be replaced by an al-
gorithm bot, which enters tags that were previously gener-
ated by an algorithm. An interesting by-product of playing
against an algorithm bot is that by guessing same or dif-
ferent, the human player is essentially making a judgment
on the appropriateness of the tags generated by the algo-
rithm. Unlike the conventional evaluation metrics where a
tag either matches or does not match a tag in the ground
truth set, this evaluation method involves set-level judg-
ments and can be applied to algorithms whose output vo-
cabulary is arbitrarily different from that of the ground
truth set.

2.1 Special TagATune Evaluation

To solicit submissions of audio tagging algorithms whose
output can be used to construct the TagATune algorithm
bots, a “Special TagATune Evaluation” was run off-season
under the MIREX rubric. Participating algorithms were
asked to provide two different types of outputs:

1. a binary classification decision as to whether each
tag is relevant to each clip.

2. a real valued estimate of the ‘affinity’ of the clip for
each tag. Larger values of the affinity score indicate
that a tag is more likely to be applicable to the clip.

2.1.1 The Dataset

In the context of the off-season MIREX evaluation task,
we trained the participating algorithms on a subset of the
TagATune dataset, such that the tags they generated could
be served by the algorithm bots in the game. The train-
ing and test sets comprise of 16289 and 100 music clips
respectively. The test set was limited to 100 clips for both
the human evaluation using TagATune and evaluation us-
ing the conventional agreement-based metrics, in order to
facilitate direct comparisons of their results. Each clip is 29
seconds long, and the set of clips are associated with 6622
tracks, 517 albums and 270 artists. The dataset is split such
that the clips in the training and test sets do not belong to
the same artists. Genres include Classical, New Age, Elec-
tronica, Rock, Pop, World, Jazz, Blues, Metal, Punk etc.
The tags used in the experiments are each associated with
more than fifty clips, where each clip is associated only
with tags that have been verified by more than two players
independently.

2.1.2 Participating Algorithms

There were five submissions, which we will refer to as
Mandel, Manzagol, Marsyas, Zhi and LabX 1 from this
point on. A sixth algorithm we are using for comparison is
called AggregateBot, which serves tags from a vocabulary
pool of 146 tags collected by TagATune since deployment,
91 of which overlap with the 160 tags used for training the
algorithms. The inclusion of AggregateBot demonstrates
the utility of TagATune in evaluating algorithms that have
different tag vocabulary.

2.1.3 Game-friendly Evaluation

An important requirement for using human computation
games for evaluation is that the experiment does not sig-
nificantly degrade the game experience. We describe here
a few design strategies to maintain the enjoyability of the
game despite the use of algorithm bots whose quality can-
not be gauged ahead of time.

First, a TagATune round is randomly chosen to be used
for evaluation with some small probability x. This prevents
malicious attempts to artificially boost or degrade the eval-
uation of particular algorithms, which would be easy to do
if players can recognize that they are playing against an al-
gorithm bot. Second, while it may be acceptable to use half
of the rounds in a game for evaluating good algorithms, one
round may be one too many if the algorithm under evalua-
tion always generates completely wrong tags. Since we do
not know ahead of time the quality of the algorithms being
evaluated, x must be small enough such that the effects of
bad algorithms on the game will be minimized. Finally, us-
ing only a small portion of the game for evaluation ensures
that a wide variety of music is served, which is especially
important when the test set is small.

1 The LabX submission was identified as having a bug which nega-
tively impacted its performance, hence, the name of the participating lab-
oratory has been obfuscated. Since LabX essentially behaves like an al-
gorithm that randomly assigns tags, its performance establishes a lower
bound for the TagATune metric.
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Despite the small probability of using each round for
evaluation, the game experience can be ruined by an algo-
rithm that generates tags are contradictory (e.g. slow fol-
lowed by fast, or guitar followed by no guitar) or redun-
dant (e.g. string, violins, violin). Our experience shows
that players are even less tolerant of a bot that appears
“stupid” than of one that is wrong. Unfortunately, such
errors occur quite frequently. Table 1 provides a summary
of the number of tags generated (on average) by each al-
gorithm for the clips in the test set, and how many of those
are removed because they are contradictory or redundant.

Algorithm Generated Contradictory or Redundant

Mandel 36.47 16.23
Marsyas 9.03 3.47
Manzagol 2.82 0.55
Zhi 14.0 5.04
LabX 1.0 0.00

Table 1. Average number of tags generated by algo-
rithms and contradictory/redundant ones among the gen-
erated tags

To alleviate this problem, we perform the following post-
processing step on the output of the algorithms. First, we
retain only tags that are considered relevant according to
the binary outputs. Then, we rank the tags by affinity. Fi-
nally, for each tag, starting from the highest affinity, we
remove lower affinity tags with which it is mutually exclu-
sive. Although this reduces the number of tags available to
the algorithm bots to serve in the game, we believe that this
is a sensible post-processing step for any tag classification
algorithms.

An alternative method of post-processing would be to
first organize the “relevant” tags into categories (e.g. genre,
volume, mood) and retain only the tag with the highest
affinity score in each category, thereby introducing more
variety in the tags to be emitted by the algorithm bots. We
did not follow this approach because it may bias perfor-
mance in an unpredictable fashion and favour the output of
certain algorithms over others.

2.1.4 Evaluation Using The TagATune Metric

During an evaluation round, an algorithm is chosen to emit
tags for a clip drawn from the test set. The game chooses
the algorithm-clip pair in a round robin fashion but favors
pairs that have been seen by the least number of unique
human players. In addition, the game keeps track of which
player has encountered which algorithm-clip pair, so that
each evaluator for a given algorithm-clip pair is unique.

Suppose a set of algorithms A = {ai, . . . , a|A|} and a
test set S = {sj , . . . , s|S|} of music clips. During each
round of the game, a particular algorithm i is given a clip j
from the test set and asked to generate a set of tags for that
clip. To be a valid evaluation, we only use rounds where
the clips given to the human player and the algorithm bot
are the same. This is because if the clips are different, an
algorithm can output the wrong tags for a clip and actually
help the players guess correctly that the clips are different.

A human player’s guess is denoted as G = {0, 1} and
the ground truth is denoted as GT = {0, 1}, where 0
means that the clips are the same and 1 means that the clips
are different. The performance P of an algorithm i on clip
j under TagATune metric is as follows:

Pi,j =
1
N

N∑
n

δ(Gn,j = GTj) (1)

where N represents the number of players who were pre-
sented with the tags generated by algorithm i on clip j,
and δ(Gn,j = GTj) is a Kronecker delta function which
returns 1 if, for clip j, the guess from player n and the
ground truth are the same, 0 otherwise. The overall score
for an algorithm is averaged over the test set S:

Pi =
1
S

S∑
j

Pi,j (2)

2.1.5 Evaluation Using Agreement-Based Metrics

We have chosen to compute the performance of the partici-
pating algorithms using a variety of agreement-based met-
rics that were included in the 2008 MIREX ATC task, as
a comparison against the TagATune metric. These metrics
include precision, recall, F-measure [7], the Area Under
the Receiver Operating Characteristic curve (AUC-ROC)
and the accuracy of the positive and negative example sets
for each tag. We omitted the “overall accuracy” metric, as
it is a very biased statistics for evaluating tag classification
models where there is a large negative to positive tag ratio.

As the TagATune game and metric necessarily focus on
the first few tags returned by an algorithm (i.e. tags that
have the highest affinity scores), we chose to also calculate
the Precision-at-N (P@N) score for each algorithm. This
additional set of statistics allows us to explore the effect
of sampling the top few tags on the performance of the
algorithms.

2.1.6 Statistical Significance

Friedman’s ANOVA is a non-parametric test that can be
used to determine whether the difference in performance
between algorithms is statistically significant [5].

For each algorithm, a performance score is computed
over the test set. Using the TagATune metric, this perfor-
mance score is the percentage of unique players that cor-
rectly judged that the clips are the same or not using the
tags emitted by the algorithm, computed using equation
(1) and (2). For automated statistical evaluations, such as
those performed during the MIREX ATC task, these may
be the F-measure or P@N for the “relevant” tags generated
for each clip, or the AUC-ROC for the “affinity” scores.
These scores can be viewed as a rectangular matrix, with
the different tagging algorithms represented as the columns
and the clips (or the tags, in the case of F-measure aggre-
gated over each tag) forming the rows.

To avoid having variance introduced by different tags
affecting the scaling and distribution of the scores, Fried-
man’s test replaces the performance scores with their ranks
amongst the algorithms under comparison.
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Algorithm TagATune metric +ve Example Accuracy -ve Example Accuracy Precision Recall F-measure
AggregateBot 93.00% – – – – –

Mandel 70.10% 73.13% 80.29% 0.1850 0.7313 0.2954
Marsyas 68.60% 45.83% 96.82% 0.4684 0.4583 0.4633
Manzagol 67.50% 13.98% 98.99% 0.4574 0.1398 0.2141
Zhi 60.90% 40.30% 93.18% 0.2657 0.4030 0.3203
LabX 26.80% 0.33% 99.36% 0.03 0.0033 0.0059

Table 2. Evaluation statistics under the TagATune versus agreement-based metrics

Algorithm Precision at N Precision for AUC-ROC
3 6 9 12 15 ‘relevant’ tags

Mandel 0.6133 0.5083 0.4344 0.3883 0.3387 0.1850 0.8514
Marsyas 0.7433 0.5900 0.4900 0.4308 0.3877 0.4684 0.9094
Manzagol 0.4767 0.3833 0.3222 0.2833 0.2520 0.4574 0.7521
Zhi 0.3633 0.3383 0.3100 0.2775 0.2480 0.2657 0.6697
LabX – – – – – 0.03 –

Table 3. Precision and AUC-ROC statistics collected for each algorithm

Friedman’s ANOVA is used to determine if there exists
a significant difference in performance amongst a set of al-
gorithms. If a difference is detected, then it is common to
follow up with a Tukey-Kramer Honestly Significant Dif-
ference (TK-HSD) test to determine which pairs of algo-
rithms are actually performing differently. This method
does not suffer from the problem that multiple t-tests do
where the probability of incorrectly rejecting the null hy-
pothesis (i.e. that there is no difference in performance)
increases in direct proportion to the number of pairwise
comparisons conducted.

3. RESULTS

Tables 2 and 3 provide summaries of the evaluation statis-
tics collected for each algorithm under the TagATune met-
ric as well as agreement-based metrics. Each of the sum-
mary results was computed over the 100 clips in the test
set, while the statistical significance tests were computed
over the results for each individual clip. The following
sections detail additional statistics that were collected by
the TagATune evaluation.

3.1 Algorithm Ranking

According to the TK-HSD test on the TagATune metric
results, AggregateBot’s performance is significantly better
than all the others. A second group of equally perform-
ing algorithms consists of Mandel, Manzagol, Marsyas,
and Zhi. LabX is the sole member of the worst perform-
ing group. Figure 2 highlights these TK-HSD performance
groupings.

Several authors have speculated on the possibility of a
“glass-ceiling” on the performance of current music classi-
fication and similarity estimation techniques. As identified
by Aucouturier [8], many of these techniques are based on
‘bag-of-frames’ approaches to the comparison of the audio
streams. Hence, the lack of a significant difference among
the performances of the correctly functioning algorithms is
not surprising.

The TK-HSD ordering of the algorithms using the F-

measure scores (Table 2 and Figure 3) is different from that
produced by the TagATune scores. Notably, the Marsyas
algorithm significantly outperforms the other algorithms
and the Zhi algorithm has improved its relative rank con-
siderably.

These differences may be attributed to the fact that the
performance of the Marsyas and Zhi algorithm is more bal-
anced in terms of precision and recall than the Mandel al-
gorithm (which exhibits high recall but low precision) and
the Manzagol algorithm (which exhibits high precision but
low recall). This conclusion is reinforced by the positive
and negative accuracy scores, which demonstrate the ten-
dency of the Mandel algorithm to over-estimate and Man-
zagol to under-estimate relevancy. Metrics that take into
account the accuracies of all tags (e.g. F-measure) are par-
ticularly sensitive to these tendencies, while metrics that
consider only the top N tags (e.g. the TagATune metric
and P@N) are affected little by them.

These results suggest that the choice of an evaluation
metric or experiment must take into account the intended
application of the tagging algorithms. For example, the
TagATune metric may be most suitable for evaluating re-
trieval algorithms that use only the highest ranked tags to

Figure 2. Tukey-Kramer HSD results based on the
TagATune metric
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Figure 3. Tukey-Kramer HSD results based on the F-
measure metric

Figure 4. Tukey-Kramer HSD results based on the AUC-
ROC metric

compute the degree of relevance of a song to a given query.
However, for applications that consider the all relevant tags
regardless of affinity, e.g. unweighted tag clouds genera-
tors, the TagATune metric is not necessarily providing an
accurate indication of performance, in which case the F-
measure might be a better candidate.

3.2 Game Statistics

In a TagATune round, the game selects a clip from the test
set and serves the tags generated by a particular algorithm
for that clip. For each of the 100 clips in the test set and for
each algorithm, 10 unique players were elicited (unknow-
ingly) by the game to provide evaluation judgments. This
totals to 5000 judgments, collected over a one month pe-
riod, involving approximately 2272 games and 657 unique
players.

3.2.1 Number of tags reviewed

One complication with using TagATune for evaluation is
that players are allowed to make the decision of guessing
same or different at any point during a round. This means
that the number of tags reviewed by the human player varies
from clip to clip, algorithm to algorithm. As a by-product
of game play, players are motivated to guess as soon as they

believe that they have enough information to guess whether
the clips are the same or different. Figure 5, which shows
that players reviewed only a small portion of the generated
tags before guessing, reflects this situation.

3.2.2 Correlation with precision

Figure 6 shows the average number of tags reviewed by
players and how many of the reviewed tags are actually
true positive tags (according to the ground truth) in success
rounds (where the human player made the correct guess)
versus failed rounds (where the human player made the
wrong guess). Results show that generally the number of
true positive tags reviewed is greater in success rounds than
in failed rounds, suggesting that players are more likely to
fail at guessing when there are more top-affinity tags that
are wrong. Additionally, the average number of tags re-
viewed before guessing is fewer in the failed rounds than
in the success rounds, with the exception of Mandel, pos-
sibly due to outliers and the much greater number of tags
that this algorithm returns. This suggests that players make
their guesses more hastily when algorithms make mistakes.

3.2.3 Detectable errors

A natural question to ask is whether one can detect from
game statistics which of the reviewed tags actually caused
players to guess incorrectly.

System failed round success round
Mandel 86.15% 49.00%
Marsyas 80.49% 45.00%
Manzagol 76.92% 33.33%
Zhi 84.38% 70.10%
LabX 100.0% 95.77%

Table 4. Percentage of the time that the last tag displayed
before guessing is wrong in a failed round versus success
round

To investigate this question, we consult the game statis-
tics for the most frequent behavior of human players in
terms of the number of tags reviewed before guessing, in
the case when the guess is wrong. For example, we might
find that most players make a wrong guess after reviewing
n tags for a particular algorithm-clip pair. The hypothesis
is that the last tag reviewed before guessing, i.e. the nth

tag, is the culprit.
Table 4 shows the percentage of times that the nth tag

is actually wrong in failed rounds, which is above 75%
for all algorithms. In contrast, the probability of the last
tag being wrong is much lower in success rounds, showing
that using game statistics alone, one can detect problematic
tags that cause most players to make the wrong guess in the
game. This trend does not hold for LabX, possibly because
players were left guessing randomly due to the lack of in-
formation (since this algorithm generated only one tag per
clip).
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Figure 5. Number of tags available and reviewed by play-
ers before guessing

4. CONCLUSION

This paper introduces a new method for evaluating mu-
sic tagging algorithms and presents the results of a proof-
of-concept experiment using a human computation game
as an evaluation platform for algorithms. This experiment
has also been used to explore the behavior of conventional
agreement-based metrics and has shown that averaged re-
trieval statistics, such as F-measure, can be sensitive to
certain tendencies (e.g. imbalanced performance in terms
of precision versus recall) that do not affect the TagATune
metric, which considers the accuracies of only the top most
relevant tags.

While there are many benchmarking competitions for
algorithms, little is said about the level of performance that
is acceptable for real world applications. In this work, we
have shown that the use of aggregate data in the bot pro-
vides a performance level against which the algorithms can
be judged. Specifically, human players can correctly guess
that the music are the same 93% of the times when paired
against the aggregate bot, while only approximately 70%
of the times when paired against an algorithm bot.

Finally, our work has shown that TagATune is a feasi-
ble and cost-effective platform for collecting a large num-
ber of evaluations from human users in a timely fashion.
This result is particularly encouraging for future research
on using human computation games to evaluate algorithms
in other domains, such as object recognition and machine
translation.
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ABSTRACT

A stochastic representation of singing styles is pro-
posed. The dynamic property of melodic contour, i.e., fun-
damental frequency (F0) sequence, is assumed to be the
main cue for singing styles because it can characterize such
typical ornamentations asvibrato . F0 signal trajectories
in the phase plane are used as the basic representation. By
fitting Gaussian mixture models to the observedF0 trajec-
tories in the phase plane, a parametric representation is ob-
tained by a set of GMM parameters. The effectiveness of
our proposed method is confirmed through experimental
evaluation where 94.1% accuracy for singer-class discrim-
ination was obtained.

1. INTRODUCTION

Although no firm definition has yet been established for
“singing style” in musical information processing research,
several studies have reported the relationship between
singing styles and such signal features as singing formant
[1, 2] and singing ornamentations. Various research ef-
forts have been made to characterize ornamentations by the
acoustical property of the sung melody, i.e.,vibrato[3–11],
overshoot [12], and fine fluctuation [13]. The importance
of such melodic features for perceiving singer individuality
was also reported in [14] based on psycho-acoustic exper-
iments. They concluded that the average spectrum and the
dynamical property of theF0 sequence affect the percep-
tion of the individuality. Those studies suggest that singing
style is related to the local dynamics of a sung melody that
does not contain any musical information. Therefore, in
this study, we focus on the local dynamics of theF0 se-
quence, i.e., the melodic contour, as a cue of singing style
and propose a parametric representation as a model for
singing styles.

On the other hand, very few application systems have
been reported that use the local dynamics of a sung melody.
[15] reported a singer recognition experiment usingvi-
brato . [16] reported a method for evaluating singing skill
through the spectrum analysis of theF0 contour. Although
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these studies try to use the local dynamics of melodic con-
tour as a cue for ornamentation, no systematic method
has been proposed for characterizing singing styles. A
lag system model for typical ornamentations was reported
in [14,17–19]; however, variation of singing styles was not
discussed.

In this paper, we propose a stochastic phase plane as
a graphical representation of singing styles and show its
effectiveness for singing style discrimination. One merit
of this representation to characterize singing style is that
since neither an explicit detection function for ornamen-
tation like vibrato nor estimation of the target note is re-
quired, it is robust to sung melodies.

In a previous paper [20], we applied this graphical rep-
resentation of theF0 contour in the phase plane to a query-
by-hamming system and neutralized the local dynamics of
theF0 sequence so that only musical information was uti-
lized for the query. In contrast, in this study, we use the
local dynamics of theF0 sequence for modeling singing
styles and disregard the musical information because mu-
sical information and singing style are in a dual relation.

In this paper, we also evaluate the proposed represen-
tation through a singer-class discrimination experiment in
which we show that our proposed model can extract the
dynamic properties of sung melodies shared by a group of
singers.

In the next section, we propose stochastic phase plane
(SPP) as a stochastic representation of the melodic contour
and show how singing ornamentations are modeled by the
proposed SPP. In Section 3, we experimentally show the
effectiveness of our proposed method through singer class
discrimination experiments. Section 4 discusses the ob-
tained results and concludes this paper.

2. STOCHASTIC REPRESENTATION OF THE
DYNAMICAL PROPERTY OF MELODIC

CONTOUR

2.1 F0 signal in the Phase Plane

Such ornamental expressions in singing asvibrato are
characterized by the dynamical property of theirF0 sig-
nal. Since theF0 signal is a controlled output of the human
speech production system, its basic dynamical characteris-
tics can be related to a differential equation. Therefore, we
can use the phase plane, which is the joint plot of a variable
and its time derivative, i.e.,(x, ẋ), to depict its dynamical
property.
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Figure 1. Melodic contour (top) and corresponding phase
planes forF0-∆F0 (middle) andF0-∆∆F0 (bottom)

Although the signal sequence is not given as an explicit
function of time,F0(t), but as a sequence of numbers,
{F0(n)}n=1,··· ,N , we can estimate the time derivative us-
ing thedelta-coefficient given by

∆F0(n) =

K∑

k=−K
k · F0(n+ k)

K∑

k=−K
k2

, (1)

where2K is the window length for calculating the dynam-
ics. Changing the window length extracts different aspects
of the signal property.

An example of such a plot for a given melodic contour
is shown in Fig. 1. Here, theF0 signal (top), the phase
plane (middle), and the second order phase plane, which is
given by the joint plot ofF0 and∆∆F0 (bottom), are plot-
ted. The singing ornamentations are depicted as the local
behavior of the trajectory around the centroids that com-
monly represent target musical notes.Vibrato in singing,
for example, is shown as circular trajectories centered at
target notes. In the second order plane, the trajectories ap-
pear as lines with a slope of -45 degrees. This shows that
the relationship betweenF0 and∆∆F0 is given as

∆∆F0 = −F0. (2)

Hence, the sinusoidal component is imposed in the given
signal. Over/under-shoots to the target note are represented
as spiral patterns around the note.

2.2 Stochastic representation of Phase Plane

Once a singing style is represented as a phase plane trajec-
tory, parameterizing the representation becomes an issue
for further engineering applications. Since theF0 signal
is not deterministic, i.e., it varies across singing behaviors,
a stochastic model must be defined for the parameteriza-
tion. By fitting a parametric probability density function to
the trajectories in the phase plane, we can build a stochastic
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Figure 2. Gaussian mixture model fitted toF0 contour in
phase plane

phase plane (SPP) and use it for characterizing the melodic
contour. A common feature of the trajectories in the phase
plane is that most of their segments are distributed around
the target note, and therefore the distribution’s histogram
is multimodal, but each mode can be represented by a sim-
ple symmetric 2d or 3d-pdf. Therefore, Gaussian mixture
model (GMM),

M∑
m=1

λmN (f0(n);µm,Σm), (3)

where

f0(n) = [F0(n),∆F0(n),∆∆F0(n)]T , (4)

is adopted for the modeling.N (·) is a Gaussian distribu-
tion, and

Θ = {λm,µm,Σm}m=1,··· ,M , (5)

are parameters of the model, each of which represents the
relative frequency, the mean vector, and the covariance ma-
trix of each Gaussian.

A GMM trained forF0 contours in the phase plane is
depicted in Fig. 2. A smooth surface is trained through
model fitting. The horizontal deviations of each Gaussian
represent the stability of the melodic contour around the
target note, but the vertical deviations represent thevibrato
depth. In this manner, singing styles can be modeled by set
of parametersΘ of the stochastic phase plane.

2.3 Examples of Stochastic Phase Plane

In Fig. 3, theF0 signals of three female singers are plot-
ted: professional classical, professional pop, and an ama-
teur. A deepvibrato is observed as a large vertical devia-
tion in the Gaussians in the professional classical singer’s
plot. On the other hand, the amateur’s plot is character-
ized by large horizontal deviations. Although deepvibrato
is not observed in the plot for the professional pop singer,
its smaller horizontal deviation shows that she accurately
sang the melody.
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Figure 3. Stochastic phase plane models for professional
classical (top), professional pop (middle), and amateur
(bottom)

Table 1. Signal analysis conditions forF0 estimation. Har-
monical PSD pattern matching [21] is used with these pa-
rameters.

Signal sampling freq. 16 kHz
F0 estimation window length 64 ms
Window function Hanning window
Window shift 10 ms
F0 contour smoothing 50 ms MA filter
∆ coefficient calculation K = 2

The stochastic representations of the second order phase
plane are also shown in Fig. 4. Strong negative correla-
tions betweenF0 and∆∆F0 can be found only in the plot
for the professional classical singer that also indicates deep
vibrato in the singing style.

3. EXPERIMENTAL EVALUATION

The effectiveness of using SPP to discriminate different
singing styles is evaluated experimentally.

3.1 Experimental set up

The following singing signals of six singers were used:
one of each gender in the categories of professional clas-
sical, professional pop, and amateur. With/without musi-
cal accompaniment, each subject sang songs with Japanese
lyrics and hummed. The songs were “Twinkle, Twinkle,
Little Star”, and “Ode to Joy” and five etudes. A total of
102 song signals was recorded.

TheF0 contour was estimated using [21]. The signal
processing conditions for calculatingF0, ∆F0, and the
∆∆F0 contours are listed in Table 1.

Since the absolute pitch of the song signals differ across
singers, we normalized them so that only the singing style
of each singer is used in the experiment. Normalization
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Figure 4. 2nd order stochastic phase plane models for
professional classical (top), professional pop (middle), and
amateur (bottom)

was done in the procedure below. First, theF0 frequency
in [Hz] is converted to[cent] by

1200× log2

F0

440× 23/12−5
[cent] . (6)

Then the local deviations from the tempered clavier are cal-
culated by the residue operation mod(·):

mod (F0 + 50, 100). (7)

Obviously, after this conversion, theF0 value is limited to
(0, 100) in [cent] .

3.2 Discrimination Experiment

The discrimination of three singer classes, i.e., profes-
sional classical, professional pop, and amateur, was per-
formed based on the maximuma posteriori probability
(MAP) decision:

ŝ = arg max
s

[p(s|{F0,∆F0,∆∆F0})]

= arg max
s

[
1
N

N∑
n=1

log p(f0(n)|Θs) + log p(s)

]
(8)

wheres is the singer-class id andΘs is the model param-
eters of thesth singer-class. We used “Twinkle-Twinkle,
Little Star” and five etudes sung by singers from each
singer class for training and “Ode to Joy” sung by the same
singers for testing. Therefore the results are independent
from sung melodies but closed in singers.N is the length
of the signal in the samples. Since we assumed an equal
a priori probability for singer-class distributionp(s), the
above MAP decision is equivalent to the Maximum Like-
lihood decision.

3.3 Results

Fig. 5 shows the accuracy of the singer-class discrimi-
nation. The best is attained for a 13-second input sig-
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Figure 5. Accuracy in discriminating three singer classes
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Figure 6. Comparing accuracy in discriminating singer
classes

nal. The accuracy increases with the length of the test
signal and 94.1% is attained with an 8-mixture GMM for
singer-class models, when a 13-second signal is available
for the test input. No significant improvement in accuracy
was found for the longer test input because more song-
dependent information contaminated the test signal. Fig. 6
compares the accuracy of singer-class discriminations us-
ing the three sets of features:F0 only, (F0, ∆F0), and (F0,
∆F0, ∆∆F0). As shown in the figure, by combiningF0

and∆F0, the discrimination error rate becomes half of the
error when only usingF0. Combining second order deriva-
tive ∆∆F0 further reduces the error but not as much as the
case of∆F0. These results show that the proposed stochas-
tic representation of the phase plane effectively character-
izes the singing styles of the three singer classes.

4. DISCUSSION

Our proposed method for representing and parameterizing
theF0 contour effectively discriminates the three typical
singer classes, i.e., professional classical and pop, and am-
ateurs. To confirm that the method models the singing
styles (and not singer individuality), we compared our pro-
posed representation with MFCC under two conditions.
As a closed condition, we trained three MFCC-GMMs
using “Twinkle-Twinkle, Little Star” and five etudes sung
by six (male and female professional classic, professional
pop, and amateur) singers and used “Ode to Joy” sung by
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Figure 7. Comparing proposed representation with MFCC
under two conditions

the same singers for testing. On the other hand, as an
open condition, we evaluated the MFCC-GMMs through
a singer independent manner where singer-class models
(GMMs) were trained by female singer data and tested by
male singer data. As shown in Fig. 7, the performances
of the MFCC-GMM and the proposed method are almost
identical (95.0%) in the closed condition. However, in the
new (unseen) singer experiment, the result of the MFCC-
GMM system significantly degraded to 33.3%, but the
proposed method attained 87.9% accuracy. These results
suggest that the MFCC-GMM system does not model the
singing style but discriminates singer individuality. How-
ever, since SPP-GMM can correctly classify even an un-
seen singer’s data, our proposed representation models the
F0 dynamic characteristics common within a singer class
better than singer individuality.

5. SUMMARY

In this paper, we proposed a model for singing styles based
on the stochastic graphical representation of the local dy-
namical property of theF0 sequence. Since various singing
ornamentations are related to signal production systems
described by differential equations, phase plane is a rea-
sonable space for depicting singing styles. Furthermore,
the Gaussian mixture model effectively parameterizes the
graphical representation; therefore, more than 90% accu-
racy can be achieved in discriminating the three classes of
singers.

Since the scale of the experiments was small, increasing
the number of singers and singer classes is critical future
work. Evaluating the robustness of the proposed method to
noisyF0 sequences estimated under such realistic singing
conditions as “karaoke” is also an inevitable step for build-
ing real-world application systems.
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ABSTRACT

We present and compare several models for automa-
tic identification of instrument classes in polyphonic and
poly-instrument audio. The goal is to be able to identify
which categories of instrument (Strings, Woodwind, Gui-
tar, Piano, etc.) are present in a given audio example. We
use a machine learning approach to solve this task. We
constructed a system to generate a large database of mu-
sically relevant poly-instrument audio. Our database is ge-
nerated from hundreds of instruments classified in 7 cate-
gories. Musical audio examples are generated by mixing
multi-track MIDI files with thousands of instrument com-
binations. We compare three different classifiers : a Sup-
port Vector Machine (SVM), a Multilayer Perceptron (MLP)
and a Deep Belief Network (DBN). We show that the DBN
tends to outperform both the SVM and the MLP in most
cases.

1. INTRODUCTION

Thanks in part to the vast amount of music available on-
line, much research has been done on the automatic extrac-
tion of descriptors for music audio, such as genre, artist,
mood and instrumentation. Because the majority of this re-
search has focused on commercial recorded music, where
ground truth is lacking, relatively little work has been done
in identifying which instruments are playing in music au-
dio. Solving this problem would give rise to better descrip-
tion of commercial audio collections. It could also form a
part of a system able to synthesize music with timbres that
match the instruments found in a particular audio file (e.g.
“generate music that sound like this Sex Pistols mp3”).
Such a system may be useful in applications such as user-
content-guided video game music generation.

In this paper, our focus is on constructing a model able
to determine which classes of musical instrument are present
in a given musical audio example, without access to any
information other than the audio itself. In order to obtain
sufficient labeled training examples for good generaliza-
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tion, we generated our own database of audio. Our goal
was to have enough variability in the set of instruments so
as to allow us to generalize to instruments not used in the
training set. An overview of our system is illustrated in Fi-
gure 1.

Figure 1. Overview of our automatic instrument class re-
cognizer model

We compared three different classifiers to solve this task :
a Support Vector Machine (SVM), a Multilayer Perceptron
(MLP) and a Deep Belief Network (DBN).

The main contribution of this paper is the introduction
of the DBN model to the instrument recognition task. Until
recently, deep neural networks (i.e. networks having many
hidden layers) were not used in practice because they are
hard to train using random initialization and gradient des-
cent alone. Recent developments have made training such
networks possible [3, 15]. DBNs have since shown poten-
tial in many fields such as image and speech recognition.
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Deep networks aim at learning higher-level features at
each layer from the features of the layer below. Learning
such high-level features allows a model to construct an abs-
tract representation of the inputs. This is similar to how the
human brain transforms raw sensory inputs to abstract fea-
tures. An in-depth description and justification of the use
of deep architectures for learning can be found in [2].

The paper is organized as follows : In Section 2, we
describe previous research in the domain of instrument re-
cognition. In Section 3 we describe the system used to ge-
nerate our audio database. In Section 4, we discuss the fea-
tures extracted from the audio. In Section 5, we describe
in detail the three classification models we employed. We
then discuss our results in Section 6.

2. PREVIOUS WORK

The problem of automatic instrument classification has
been tackled from several different angles in the past de-
cades. Psycho-acoustic studies have been conducted to build
“timbre spaces” in which the distance between two sounds
represents their degree of similarity [24, 30]. From the to-
pology of these spaces, we can outline some important fea-
tures of the sounds that are important when studying timbre
(e.g. spectral centroid, spectral flux, etc.). A lot of work on
instrument recognition has been done on isolated instru-
ment sounds and monophonic audio [1,8–11,17,22,23,27].
An overview of previous approaches to automatic instru-
ment classification is described in [13]. Recent work deals
with more complex and musically relevant sounds such as
duets and polyphonies [6,7,16,18–20]. There has also been
much work done on the related task of predicting genre-
and instrument-related tags from audio [4, 21, 26] for mu-
sic recommentation.

In a polyphonic context, notes are not easily separable.
Pitch tracking and source separation techniques can be use-
ful to address this problem, but these are still unsolved pro-
blems in polyphonic audio that attracts a lot of research
activity. The problem of instrument recognition becomes
even more complex when we consider multi-instrument
audio. Many different machine learning models have been
tried to solve this task. In [6], missing feature theory and
a Gaussian-mixture model (GMM) classifier was used to
identify instruments in monophonic and polyphonic audio.
In [20], a process using linear discriminant analysis (LDA)
for instrument recognition for solo and duet performances
is presented. A Support Vector Machine (SVM) and a hie-
rarchical classification scheme are used on polyphonic mu-
sic in [7]. [16] presents a classification model using LDA
and feature weighting using polyphonic audio and musi-
cal context information. In [18], instrument recognition in
polyphonic audio is done by applying a post-process on
a mid-level harmonic atoms representation. [19] compares
the performance of three classifiers : SVMs, Extra Trees
and K-Nearest Neighbors.

Unfortunately, the relative performances of these dif-
ferent approaches are difficult to measure. Since each re-
search team uses a different test database and a different
classification taxonomy, it would be unfair to compare the

reported classification accuracies.We take a small step to-
wards addressing this by publishing our entire instrument
database. See [12].

Most previous work on instrument recognition in poly-
phonic audio has focused on recognizing specific instru-
ments from a small set of instruments. These models do
not attempt to deal with instruments they have never heard
before. In this paper we address this limitation by intro-
ducing a model capable of recognizing classes of instru-
ments instead of specific ones. We argue that this behavior
is better suited to large, rapidly-evolving commercial audio
databases.

3. DATABASE GENERATION

To solve a difficult task such as instrument class recog-
nition in poly-instrument audio, we require a large data-
base with a lot of variability in the data. To address this
challenge, we constructed our own database with a wide
range of sampled and synthesized instruments. Using MIDI
files to control our instruments, we were able to easily ge-
nerate musically plausible examples with a wide range of
velocities, harmonization, and note lengths. We believe this
will help our classifier to better generalize.

3.1 Instrument bank

We used the instrument sounds from the commercial
sampler “Kontakt 3” from “Native Instruments” to gene-
rate our database. The advantage of using a sampler ins-
tead of banks of isolated sounds or recorded performances
is that we can generate musically relevant audio files from
any MIDI file. We selected 172 different physical instru-
ments. For 23 of these physical instruments, we treated dif-
ferent dynamics as individual instruments for a total of 320
instruments. We separated our instruments into 7 classes :
Piano, Guitar, Bass, Organ, Woodwind, Brass and Strings.
Each class contained from 9 to 94 instruments. To test for
generalization we divided our instrument bank into three
independent sets : 50% of the instruments were placed in a
training set, 20% in a validation set and the remaining 30%
in a test set.

3.2 Audio Generation

We built a system to automatically generate a large quan-
tity of audio files using MIDI files and a bank of instru-
ment samples. We generated two audio corpuses using solo
instrument and poly-instrument MIDI files. We composed
and pre-mixed six to seven 30-second midi files per expe-
riment. The first corpus was obtained by generating audio
from the solo instrument MIDI files, while the second was
generated with multi-track MIDI files. We separated the
MIDI files into individual tracks, each file having between
two and six tracks. For each track, we randomly selected an
instrument with a compatible range. By “compatible ran-
ge”, we mean that the chosen instrument has a sample set
with a wide enough range (e.g. C4–C6) to actually play
all of the notes in the file. We then mixed the tracks, ma-
king sure that all instruments in a mix were from the same
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data set (train, valid or test). We generated audio from each
MIDI file with hundreds of different instruments mixes.

Examples of our generated audio and corresponding mo-
del predictions are available at the website :
http://www.iro.umontreal.ca/˜gamme/ismir_
2009/

4. FEATURE EXTRACTION

The selection of features is a crucial aspect of any ins-
trument classifier. One of the most widely used features for
timbre analysis is the Mel-Frequency Cepstral Coefficients
(MFCCs). We used the 20 first MFCCs as well as their
first and second derivatives (dMFCCs and ddMFCCs). The
MFCCs were calculated on 32 ms windows with a window
step size of 10 ms.

We also used a set of spectral features : centroid, spread,
skewness, kurtosis, decrease, slope, flux and roll-off. The
mathematical definitions of these features are described in
[25].

We divided the audio files into 1 second frames, and cal-
culated the mean and the standard deviation of each feature
for each frame, yielding two values for each feature. In to-
tal, the feature vectors contain 136 values : 40 MFCCS, 40
dMFCCs, 40 ddMFCCs and 16 spectral features.

5. MODELS

We tested three different classifiers : a Mulitlayer Per-
ceptron (MLP), a Support Vector Machine (SVM) and a
Deep Belief Network (DBN).

5.1 Multilayer Perceptron

The first model is a single hidden layer feed-forward
neural network, also know as Multilayer Perceptron. An
advantage of such models is that they are very fast to use,
once trained, making them good candidates for a real-time
application. We used the neural network implementation
from the publicly available PLearn library [28].We used a
tanh activation function for the hidden layer, and a logis-
tic sigmoid function for the output layer. We used cross-
entropy as the cost function to optimize. To avoid over-
fitting, we used an L2 norm regularization on the weights
as well as an early stopping condition. We also used conju-
gate gradient descent to accelerate training.

5.2 Support Vector Machine

We also tested a Support Vector Machine (SVM) with
a radial basis kernel. SVMs are widely used large margin
classifiers. The implementation of a SVM is quite com-
plex, but publicly available ready-to-use libraries make them
rather simple to use [5]. SVMs have been used for the
task of instrument recognition with a good degree of suc-
cess [19]. SVMs have the advantage of having fewer hyper-
parameters to optimize than neural networks. We used cross-
validation to optimize the hyper-parameters.

5.3 Deep Belief Network

A deep network is constructed by superposing many
layers of neurons. It is essentially an MLP with many hid-
den layers. The main difference comes from the initiali-
zation of the weights of the connections between neurons.
In the single hidden layer case, a random initialization is
generally sufficient for the gradient descent to work. Ho-
wever, with random initialization on many hidden layers,
the solutions obtained appear to correspond to poor solu-
tions that perform worse than the solutions obtained for
networks with 1 or 2 hidden layers [2, 3]. To circumvent
this problem, the DBN learning procedure consists of a
greedy layer-wise unsupervised pre-training phase, follo-
wed by a supervised gradient descent fine-tuning phase.
The pre-training phase configures the network such that it
may efficiently represent the input data. The pre-training
phase is typically done with layers of Restricted Boltz-
mann Machines (RBMs) [15] or autoencoders [14, 29]. In
this work, we used RBMs. RBMs are constituted of two
layers of neurons : a visible layer and a hidden layer. Each
neuron is connected to every neuron of the other layer, but
have no connection with neurons of the same layer. The
RBMs have a simple and fast learning algorithm that ba-
sically try to minimize the reconstruction error using an
algorithm called contrastive divergence [15]. We can stack
many RBMs on top of each other, where the visible layer
of the top RBMs is the hidden unit of the RBM below, to
obtain a DBN. The pre-training phase then consists of trai-
ning each RBM sequentially, starting from the input layer
up to the output layer. Once this is completed, the model
is further “fine tuned” for a specific supervised learning
task. This fine tuning is done using the same gradient des-
cent learning asn an MLP : given a cost function to opti-
mize, the gradient is propagated through the network, and
weights are updated accordingly. As for our MLP model,
we used a cross-entropy cost function. One problem with
DBNs is the large number of hyper-parameters : number
of layers, number of units per layer, pre-training learning
rate, gradient descent learning rate, weight regularization
constant, number of pre-training epochs. This makes the
hyper-parameter search tedious.

6. EXPERIMENTS

6.1 Experimental Setup

As in [19], we used weak labels as targets for training,
i.e. targets for every frame in a given song are the same.
If a song contains a string instrument and a guitar, every
frame of that song will be labelled as containing ‘strings’
and ‘guitar’, even though there is no guarantee that there is
a string instrument and a guitar in every frame.

The task of instrument class recognition in poly-instrument
audio is a multi-label classification task, i.e. each instru-
ment class may be present or not, and the classifier is una-
ware of how many classes are present.

In order to compare the three different models, we used
the F-Score as a performance measure. The F-Score is a
measure that balances precision and recall. The precision
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and recall are defined as

Precision =
tp

tp + fp
, Recall =

tp

tp + fn
(1)

where tp, fp and fn are the number of ‘true positives’,
‘false positives’ and ‘false negatives’ examples. A true po-
sitive is a positive example that was correctly labeled as po-
sitive by the model. A false positive is a negative example
that was mislabeled as positive. A false negative is a posi-
tive example that was mislabeled as negative. The F-Score
(F ) is defined as the harmonic mean of the precision and
the recall

F =
2(precision ∗ recall)

precision + recall
(2)

This can be simplified to

F =
2tp

2tp + fp + fn
. (3)

To obtain F-Scores for each instrument, we calculated
the F-Scores independently as for 7 independent classifica-
tion tasks. In order to get a global F-score that represents
the overall performance of the models, we took the sum of
tp, fp and fn over all the instruments.

The neural networks (MLP, DBN) output a probability
∈ [0, 1]for each instrument, representing the network’s be-
lief that the instrument is present in the given input frame.
If the probability for a given instrument is higher than a gi-
ven threshold, we classify this class as being present. Lo-
wering the threshold improves the recall, but lowers the
precision, while increasing the threshold has the opposite
effect. To label a whole song, we take the mean of the pro-
babilities from each frame and apply a threshold to decide
whether or not each instrument class is present. We opti-
mized the threshold to maximize the global F-score.

The output of our SVM model is binary (0 or 1) for each
class. We used a similar technique as the neural network to
label a song, except that we have binary votes instead of
probabilities.

6.2 Results and Discussion

6.2.1 Feature sets

To confirm that the features we extracted from the au-
dio were useful for training our models, we compared the
results of training with subsets of our feature sets on the
solo instrument audio corpus. The mean F-score for each
subset using our three models are shown in Table 1. We see
a tendency that using more features helps the SVM and the
DBN, but the MLP doesn’t show improvement with the full
set of features compared to using only 20 MFCCs. Another
result that is remarkable is that the DBN performs surpri-
singly well compared to the two other models with only the
spectral features as inputs. For the following experiments,
we will always use our full set of features.

6.2.2 Solo instrument audio

Our first audio corpus contains solo performances from
all the instruments. For this experiment, we generated a to-
tal of 2735 song examples generated from 7 different MIDI

SVM MLP DBN
Spectral Features (16) 0.51 0.74 0.81

12 MFCCs (72) 0.75 0.85 0.85
20 MFCCs (120) 0.81 0.86 0.87
All Features (136) 0.84 0.84 0.88

Table 1. Global F-score for different features subsets (fea-
tures vector length in parenthesis)

files. We used 1984 of these for training and validation, for
a total of 62434 1-second frames. The results are shown in
Table 2.

SVM MLP DBN %
Bass 0.88 0.88 0.88 13.85%
Brass 0.87 0.88 0.91 22.37%
Guitar 0.0 0.0 0.21 2.13%
Organ 0.96 0.89 0.96 7.46%
Piano 0.45 0.43 0.57 6.39%

Strings 0.94 0.95 0.97 9.59%
Woodwind 0.82 0.85 0.89 29.83%

Global 0.84 0.84 0.88

Table 2. F-score for solo instrument audio. The results that
clearly outperforms the other models are highlighted in
bold. The percentage of positive examples in the training
set for each instrument is shown in the rightmost column

We see that the DBN tends to perform better than both
the SVM and the MLP in this experiment. Moreover, the
DBN seems to perform significantly better when the quan-
tity of positive training example is smaller. Note that both
the SVM and the MLP were unable to recognize the guitar
instrument class. This is probably related to the fact that
only a small fraction of the data set contained positive gui-
tar examples.

The DBN that gave the best validation F-score had 5
layers of 50 units each. Only 3 epochs of pre-training over
the training set were necessary to achieve the best genera-
lization performance. The best MLP model had 40 hidden
units.

6.2.3 Poly-instrument audio

Our second audio corpus is constructed from mixes of
instruments. Each song is generated from one of 6 MIDI
files containing between 2 and 6 tracks, and thus each example
contains from 1 to 6 classes (many instruments from the
same class are allowed). The data set is constituted of 3654
training and validation examples divided in 186532 frames.
Results are shown in Table 3.

Again, in this experiment, the DBN seems to perform
slightly better than the SVM and the MLP. In three cases
(brass, guitar and woodwind), the performance difference
was important. The DBN with the best generalization per-
formance in this experiment had 4 layers of 100 units and
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SVM MLP DBN %
Bass 0.86 0.83 0.85 50.00%
Brass 0.38 0.45 0.63 25.90%
Guitar 0.05 0.15 0.28 11.94%
Organ 0.84 0.84 0.85 62.99%
Piano 0.83 0.80 0.83 64.44%

Strings 0.37 0.37 0.36 18.82%
Woodwind 0.31 0.41 0.52 31.81%

Global 0.72 0.72 0.74

Table 3. F-score for poly-instrument audio. The results
that clearly outperforms the other models are highlighted
in bold. The percentage of positive examples in the training
set for each instrument is shown in the rightmost column

required 4 epochs of pre-training. The best MLP was construc-
ted with 60 hidden units.

6.3 Discussion

In all 3 experiments, the DBN generally performed bet-
ter than the 2 other models, although the difference is not
always important. The DBN tends to perform better espe-
cially in cases where the quantity of positive examples is
small. This could indicate that the DBN was able to learn
higher-level features to discriminate instrument classes. In
other words, it was able to use what it learned from other
instrument classes to discriminate instruments that were
less frequent.

Although the results seem to show that the DBN perfor-
med better than the SVM and MLP, we cannot draw any
hard conclusion with these results because of the similarity
of the results and the lack of confidence intervals. The F-
Score may not be the best measure to get such confidence
intervals. However, these results clearly show that DBNs
can be useful for the task of instrument recognition. These
results also motivate more experiments to confirm the ten-
dency shown. In future work, these experiments should be
run using cross-fold testing and measuring the classifica-
tion error in order to obtain a reliable confidence measure.

When generating our labeled examples, we tried to stay
as close to real music as possible. The MIDI format is good
to reproduce some features of real music such as harmoni-
zation and timing. However, it is harder to represent mu-
sical features such as expressiveness and instrument dyna-
mics variations in MIDI. Also, our system used a rather
simple fixed mixing of the instruments in a given song,
which gave rise to small variability in the relative volume
of the instruments. The limited number of midi files we
used is also a limitation of our model. In future work, we
would like to add more variability to the music generation
by using more songs and by diversifying the mixing bet-
ween instruments.

Another aspect that could improve the performance of
the three models would be to learn an independent decision
threshold for each instrument class. We used only one deci-
sion threshold that was optimized on the validation set glo-

bal F-Score. This may be related to the fact that the SVM
and the MLP were unable to recognize the guitar class in
the solo instrument experiment.

7. CONCLUSION AND FUTURE WORK

In this work, we have introduced the DBN model for
instrument recognition. We have shown that DBNs per-
form at least as well as SVMs and MLPs for this task. We
have also shown that the DBN tends to outperform these
models when the feature set is limited, and when the num-
ber of positive examples for a class is limited. These results
motivate the application of deep networks in music infor-
mation retrieval tasks.

As seen in Section 4, adding more relevant features seems
to improve the performance of the classifiers. In future
work, it would be interesting to consider extracting a wi-
der variety of features from the audio. In this study, we
avoided harmonic features that rely on the identification of
a single fundamental frequencey for a frame of audio be-
cause this is ill-defined in the polyphonic case. In future
work, it would be interesting to test if extracting simple
harmonic features (e.g. odd to even harmonics ratio) from
mixed instruments using an estimate of the most salient
frequency could help for this task. We suppose that there is
useful information in such features.

We also plan to add more variability to our data set by
adding reverb and background noise to our audio examples.
We hypothesize that this would add robustness to our trai-
ned models.

Finally, it would be interesting to test our model on real
music. This is something that we plan for the near future.
To test our model on commercial music, we would need to
train a wider range of instruments, such as drums, distorted
guitars, vocals, etc.

8. ACKNOWLEDGMENTS

Philippe Hamel was supported financially by FQRNT.
Douglas Eck and Sean Wood are financed by NSERC Dis-
covery Grants. Special thanks to Nathanael Lecaude, Pas-
cal Lamblin, Simon Lemieux, Olivier Delalleau, and all the
people at the GAMME and LISA labs for helpful discus-
sions.

9. REFERENCES

[1] G. Agostini, M. Longari, and E. Pollastri. Musical ins-
trument timbres classification with spectral features.
EURASIP J. Appl. Signal Process., 2003 :5–14, 2003.

[2] Y Bengio. Learning deep architectures for AI. Founda-
tions and Trends in Machine Learning, to appear, 2009.

[3] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle.
Greedy layer-wise training of deep networks. In Bern-
hard Schölkopf, John Platt, and Thomas Hoffman, edi-
tors, Advances in Neural Information Processing Sys-
tems 19, pages 153–160. MIT Press, 2007.

[4] T. Bertin-Mahieux, D. Eck, F. Maillet, and P. Lamere.
Autotagger : A model for predicting social tags from

403



Poster Session 3

acoustic features on large music databases. Journal of
New Music Research”, 37(2) :115–135, 2008.

[5] C.-C. Chang and C.-J. Lin. LIBSVM : a library for sup-
port vector machines, 2001.

[6] J. Eggink and G.J. Brown. Application of missing fea-
ture theory to the recognition of musical instruments in
polyphonic audio. In International Symposium on Mu-
sic Information Retrieval (ISMIR ’03), 2003.

[7] S. Essid, G. Richard, and B. David. Instrument recog-
nition in polyphonic music based on automatic taxono-
mies. IEEE Transactions On Audio, Speech And Lan-
guage Processing, 14 :68–80, 2006.

[8] S. Essid, G. Richard, and B. David. Musical instrument
recognition by pairwise classification strategies. IEEE
Transactions On Audio, Speech And Language Proces-
sing, 14 :1401–1412, 2006.

[9] A. Fraser and I. Fujinaga. Toward realtime recogni-
tion of acoustic musical instruments. In Proceedings of
the International Computer Music Conference. 175–7.,
1999.

[10] I. Fujinaga. Machine recognition of timbre using
steady-state tone of acoustic musical instruments. In
Proceedings of the International Computer Music
Conference. 207-10., 1998.

[11] I. Fujinaga and K. MacMillan. Realtime recognition of
orchestral instruments. In Proceedings of the Interna-
tional Computer Music Conference. 141–3., 2000.

[12] P. Hamel, S. Wood, S. Lemieux, and D. Eck. The
GAMME Poly-Instrument Audio Database, 2009.
http://www.iro.umontreal.ca/˜gamme/
instrument_data/.

[13] P. Herrera, A. Klapuri, and M. Davy. Signal Processing
Methods for Music Transcription, chapter Automatic
Classification of Pitched Musical Instrument Sounds,
pages 163–200. Springer US, 2006.

[14] G. Hinton and R. Salakhutdinov. Reducing the di-
mensionality of data with neural networks. Science,
313 :504–507, 2006.

[15] G. E. Hinton, S. Osindero, and Y. Teh. A fast learning
algorithm for deep belief nets. Neural Computation,
2006.

[16] T. Kitahara, M. Goto, K. Komatani, T. Ogata, and H. G.
Okuno. Instrument identification in polyphonic music :
feature weighting to minimize influence of sound over-
laps. EURASIP J. Appl. Signal Process., 2007(1) :155–
155, 2007.

[17] A. G. Krishna and T. V. Sreenivas. Music instru-
ment recognition : from isolated notes to solo phrases.
In in Proceedings of IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP
’04), volume 4, pages 265–268, Montreal, Quebec, Ca-
nada, May 2004.

[18] P. Leveau, D. Sodoyer, and Daudet L. Automatic ins-
trument recognition in a polyphonic mixture using
sparse representations. In ISMIR, 2007.

[19] D. Little and B. Pardo. Learning musical instruments
from mixtures of audio with weak labels. In Procee-
dings of the 9th International Conference on Music In-
formation Retrieval (ISMIR 2008), 2008.

[20] A. Livshin and X. Rodet. Musical instrument identi-
fication in continuous recordings. In Proc. of the 7th
Int. Conference on Digital Audio Effects (DAFX-04),
Naples, Italy, 2004.

[21] M. I. Mandel and D. P.W. Ellis. Song-level features
and support vector machines for music classification.
In Proceedings of the 6th International Conference on
Music Information Retrieval (ISMIR 2005), pages 594–
599, 2005.

[22] J. Marques and P. J. Moreno. A study of musical ins-
trument classification using gaussian mixture models
and support vec- tor machines. Crl technical report
series crl/4, Cambridge Research Laboratory, Cam-
bridge, Mass, USA, 1999.

[23] K Martin. Sound-source recognition : A theory and
computational model. PhD thesis, MIT, 1999.

[24] S. McAdams. Psychological constraints on form-
bearing dimensions in music. Contemporary Music Re-
view, 1989.

[25] G. Peeters. A large set of audio features for sound des-
cription (similarity and classification) in the cuidado
project. Technical report, IRCAM, 2004.

[26] D. Turnbull, L. Barrington, D. Torres, and G. Lan-
ckriet. Semantic annotation and retrieval of music and
sound effects. IEEE Transactions on Audio, Speech
And Language Processing, 16(2) :467–476, 2008.

[27] E. Vincent and X. Rodet. Instrument identification in
solo and ensemble music using independent subspace
analysis. In ISMIR, 2004.

[28] P. Vincent, Y. Bengio, N. Chapados, et al. Plearn.
http://plearn.berlios.de/.

[29] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Man-
zagol. Extracting and composing robust features with
denoising autoencoders. In ICML ’08 : Proceedings
of the 25th international conference on Machine lear-
ning, pages 1096–1103, New York, NY, USA, 2008.
ACM.

[30] D. L. Wessel. Timbre space as a musical control struc-
ture. Computer Music Journal, Vol 3 No 2, 1979.

404



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

USING REGRESSION TO COMBINE DATA SOURCES FOR SEMANTIC
MUSIC DISCOVERY

Brian Tomasik, Joon Hee Kim, Margaret Ladlow, Malcolm Augat,
Derek Tingle, Richard Wicentowski, Douglas Turnbull

Department of Computer Science, Swarthmore College, Swarthmore PA 19081
{btomasi1, joonhee.kim, mladlow1, maugat1}@alum.swarthmore.edu

{dt, richardw, turnbull}@cs.swarthmore.edu

ABSTRACT

In the process of automatically annotating songs with de-
scriptive labels, multiple types of input information can be
used. These include keyword appearances in web docu-
ments, acoustic features of the song’s audio content, and
similarity with other tagged songs. Given these individ-
ual data sources, we explore the question of how to aggre-
gate them. We find that fixed-combination approaches like
sum and max perform well but that trained linear regres-
sion models work better. Retrieval performance improves
with more data sources. On the other hand, for large num-
bers of training songs, Bayesian hierarchical models that
aim to share information across individual tag regressions
offer no advantage.

1. INTRODUCTION

We are interested in developing a semantic music discov-
ery engine in which users enter text queries and receive a
ranked list of relevant songs. This task requires a semantic
music index, i.e., a mapping between songs and associated
tags. A tag, such as “afro-cuban roots,” “heavy metal,” or
“steel-string guitar,” is a short text token which describes
some meaningful aspect of the music (e.g., genre, instru-
mentation, emotion, geographical origins). In this paper,
our goal will be to compute a real-valued score ŷst that
expresses how strongly tag t applies to song s.

There are a number of ways to collect semantic annota-
tions of music. [1] compare five such approaches: surveys,
social tagging, games, web documents, and audio content.
Each of these data sources offers a different perspective,
and each has its own strengths and weaknesses (e.g., scala-
bility, popularity bias, accuracy), so we may wish to collect
information from several of them. The question then be-
comes how to combine that information into a single score
for use in our semantic index.
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c© 2009 International Society for Music Information Retrieval.

In Section 2, we describe three sources of music in-
formation that we have collected: text mining web docu-
ments, content-based audio analysis, and collaborative fil-
tering. Section 3 describes various approaches for combin-
ing these sources, including simple fixed rules, as well as
a trained regression model in which combination weights
depend on the quality and sparsity of the input data. We
explore both ordinary linear and logistic regression, as
well as Bayesian hierarchical models that aim to share
information across tags. Section 4 describes our exper-
imental setup, which includes a ground-truth corpus of
10,870 songs for two vocabularies (71 Genre tags and 151
Acoustic tags) collected from Pandora’s Music Genome
Project. 1 Section 6 concludes.

2. MUSIC INFORMATION SOURCES

We collect semantic-annotation information from three
sources: web documents (WD), content-based audio anal-
ysis (CB), and collaborative filtering (CF). For each song
s and tag t, we use these sources to generate scores—
denoted xWD

st , xCB
st , and xCF

st , respectively—indicating how
well t describes s.

2.1 Web Documents

Tags that appropriately describe a song will tend to appear
in association with the song’s name in natural-language
text documents. We exploit this fact by downloading from
the web pages that describe the song and counting how of-
ten the proposed tag appears within them.

Given a song s, we generate a database Ds of docu-
ments by querying Google for “song name” “artist name”
in lower-case (e.g., “enjoy the silence” “depeche mode”).
We download all hits in the top 10 and clean the HTML
files into raw text. This was done for a total of 9,359 songs.
Then, for each tag t, we compute

xWD
st =

∑
d∈Ds

ntd

Ntd
,

where ntd is a measure that roughly expresses how many
times t actually appeared in document d, and Ntd is the
number of times t could have appeared in d. Ntd is just

1 See http://www.pandora.com/mgp.shtml
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|d| / |t|, the number of words in d divided by the number
of words in t. ntd is a bit more complicated. For long tags,
such as “call and answer vocal harmony (antiphony),” po-
sitional searches for the entire phrase would not work well.
On the other hand, searching for the appearance of any of
the words in t would yield too many hits. We compromise
by computing ntd as the minimum number of hits for any
word, taken over all words in t. In the case when the words
in t appear in d only in the correct order, ntd will in fact be
equal to the number of occurrences of the full phrase t.

2.2 Content-Based Audio Analysis

A second potential source of semantic information about a
song is the audio content itself. For this purpose we use
the supervised multiclass labeling (SML) model recently
proposed by [2].

The audio track of a song is represented as a bag of
feature vectors X = {x1, . . . ,xT }, where each xi is a fea-
ture vector that represents a short-time segment of audio,
and T depends on the length of the song. We use the ex-
pectation maximization (EM) algorithm to learn a song-
specific Gaussian mixture model (GMM) distribution over
each X . Then, for each tag in our vocabulary, we learn a
tag-specific GMM using the Mixture Hierarchies EM algo-
rithm [3]. This algorithm combines the set of song-specific
GMMs for all the songs that have been associated with the
tag. Given a novel song s, we compute the likelihood that
its bag of feature vectors Xs would have been generated by
each of the tag GMMs. Normalizing these likelihoods us-
ing the technique described in [2] yields our set of scores
xCB

st , which can be interpreted as the parameters of a multi-
nomial distribution over the vocabulary of tags.

We use the popular Mel frequency cepstral coefficients
(MFCCs) as our audio feature representation since it was
incorporated into all of the top performing autotagging sys-
tems in the 2008 MIREX tag classification task [2, 4–6].
MFCCs are loosely associated with the musical notion
of timbre (“color”) of the music because they are a low-
dimensional representation of the frequency spectrum of a
a short-time audio sample. For each monaural song in the
data set, sampled at 22,050 Hz, we compute the first 13
MFCCs for each half-overlapping short-time (∼23 msec)
window from 6 five-second clips spaced at uniform inter-
vals over the length of the song. Over the time series of
audio segments, we calculate the first and second instan-
taneous derivatives (referred to as deltas) for each MFCC.
This results in about 5,000 39-dimensional MFCC+delta
feature vectors per 30 seconds of audio content. We sum-
marize an entire song by modeling the distribution of
its MFCC+delta features with a 4-component GMM. We
model each tag with an 8-component GMM.

2.3 Collaborative Filtering

One additional source of semantic information is user
playlists: If two songs appear together in a large number
of listener collections, one possible reason is that the songs
share certain attributes (say, “punk influences”) that the lis-
teners enjoy. This suggests the idea of tag propagation:

Find songs that tend to co-occur in playlists, and transfer
tags from one of them to the other. A more robust approach
is to find the collection of k songs (k = 32 here) that have
the strongest co-occurence score with a given song s. For
each tag t, we take the association xCF

st of s with t to be the
fraction of those 32 songs to which t applies. We set this
number to 0 if the fraction is below a threshold of 0.3. The
reasons for these choices, as well as further details on the
entire data-collection process and choice of tag sets, appear
in [7].

Our data consist of 400,000 user music libraries from
last.fm, where a library is taken to be the set of items that
a user listens to at least 1% of the time. It turns out that data
at the song level is too sparse to generate meaningful co-
occurence statistics, so we instead work at the artist level.
We say that a tag applies to an artist if the tag applies to
any of that artist’s songs. At the end of the propagation
process, we transfer an artist’s score for a tag to each of its
songs. We find the 32 closest artists using the following
similarity score. Between artists i and j, we take

sim(i, j) =
p(i, j)√
p(i)p(j)

,

where p(i, j) is the fraction of all artist co-occurrences rep-
resented by artists i and j, and p(i) is the fraction of all
co-occurrences containing artist i.

3. COMBINING METHODS

Given the data sources described in Section 2, how can
we aggregate them? This general question has been well
studied and is known variously as combining expert judg-
ments (e.g., [8, 9]), multi-sensor data fusion (e.g., [10]),
information fusion (e.g., [11]), or combining classifiers
(e.g., [12, 13]). Rather than reviewing the entire body of
literature on the subject, we focus on two of the most basic
approaches: Fixed-combination rules and trained combin-
ers, specifically regression.

3.1 Fixed Combiners

Fixed combining rules take the output score ŷst to be a sim-
ple function of the input scores: e.g., max, min, median,
sum, or product [14, sec. 3]. Usually the input scores xi

st,
with i ∈ {WD,CB,CF}, are calibrated so that they corre-
spond to confidences or probabilities pi

st that t applies to s
given the source. This can be done, for instance, by stan-
dardizing the input scores to have mean 0 and variance 1
and then taking

pi
st =

1
1 + exp

(
−αxi

st

)
for some α [14, sec. 4.1]. We use α = 1 in this paper.

A disadvantage of this technique, however, is that each
source is treated on equal footing, when in fact, one of our
sources may be far more trustworthy or better informed
[14, sec. 1]. One method that overcomes this limitation is
Bayesian Model Averaging (BMA) (e.g., [15]), which as-
sumes that one of the data sources is the “correct” source
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and takes the final probability to be a weighted combina-
tion of the input probabilities:

pall sources
st =

∑
i∈{WD,CB,CF}

pi
stpi,

where pi is the probability that source i is correct. As [16,
sec. 1] point out, this assumption is often unrealistic, as
the truth about whether a tag applies to a song needn’t be
captured by exactly one of our data sources. Still, the idea
of taking our final score ŷst to be a weighted combination
of the input scores—

ŷst =
∑

i∈{WD,CB,CF}

βi
tx

i
st (1)

for some weights βi
t—does seem like a natural way to ac-

count for the differential predictive value of different in-
puts. The question is how to determine the weights.

3.2 Trained Combiners

If we have training data for a subset of songs, 2 the obvious
answer is to use supervised learning. This is the trained
combiners approach advocated in [14]. Indeed, (1) has the
form of a linear-regression model, and we can determine
the weights of the sources just by treating them as input
features and computing their regression coefficients.

We try both linear and logistic regression, predicting the
ground truth yst ∈ {0, 1} by the individual scores xi

st, as
well as an intercept and possibly other features of inter-
est (see Section 3.4). We take our predicted values ŷst to
be real-valued so that we can more finely rank-order songs
than with 0/1 labels. Regression is a convenient combi-
nation approach because it potentially allows us to use a
number of standard statistical tools: p-values for the sig-
nificance of regression coefficients, prediction intervals for
our output scores, model selection based on residual sum
of squares, and many more advanced techniques.

3.3 Hierarchical Regression Models

One such technique is borrowing of information across
tags. Each tag has its own regression model, but we might
suspect that these models share significant structure: For
instance, if collaborative filtering tends to be a highly pre-
dictive source, we would expect its coefficient to be con-
sistently large. And the linear combination of sources that
best predicts the tag “traditional country” is probably sim-
ilar to the one that best predicts “contemporary country.”

One way to capture this intuition is with a Bayesian hi-
erarchical linear model (e.g., [17]). We’ll illustrate this
concept in the case of a single regression coefficient βt for
a single data source xst without an intercept, but similar

2 Another possible scenario is that, rather than having ground-truth la-
bels for a subset of our songs, we have data that applies to all of our songs
but is weakly labeled, i.e., not every song that applies for a given tag is
labeled as such. If our input data sources are less sparse, we can use them
to “fill in zeros” in the ground truth while preserving the labels that the
ground truth had already.

equations apply in the multivariate setting. Independent
regression across the T tags assumes

yst = βtxst + εst, εst
i.i.d.∼ N (0, σ2

t ), t = 1, . . . , T (2)

for some variances σ2
t , with no relationship among the βt

values. We call this the Independent Linear model. The
Independent Logistic model is the same, except that yst

is replaced by the log-odds ln
(

pst

1−pst

)
, where pst is the

probability that yst = 1.
In a hierarchical model, we assume in addition to (2)

that the βt’s share a common structure:

βt = β + vt, vt
i.i.d.∼ N (0, σ2), t = 1, . . . , T. (3)

For instance, if we had three tags with independent regres-
sion coefficients of 0.1, 0.2, and 0.3, it might be reasonable
to suppose that β ≈ 0.2 with σ ≈ 0.1. We can further
assume a prior over β and perform Bayesian inference to
estimate the parameters. The multivariate version of this
model we call Hierarchical Linear, and the correspond-
ing version in which yst is replaced by the log-odds that
yst = 1 we call Hierarchical Logistic.

We might also assume that vt in (3), rather than be-
ing normally distributed, is drawn from a mixture of nor-
mal distributions. For instance, perhaps the web-document
source is much better at predicting genre labels than acous-
tic ones, so that its βt values for genre tags cluster around
0.2, say, while its βt values for acoustic tags cluster around
0.05. In that case, βt could be modeled by taking β = 0.05,
with vt having peaks at 0 and 0.15. We call this model Mix-
ture Lineark, where k is the number of centers. 3

3.4 Regression Models

Equation (1) suggests the basic regression model to use,
although in practice we include an intercept, which we find
always to be highly statistically significant. We can also
regress on just one or two of the main sources at a time.

A nice aspect of using regression is that we can in-
clude extra features in our model (assuming we expect
they’ll contribute useful information rather than meaning-
less noise that will lead us to overfit). In particular, we
include scrobble counts from last.fm as a measure of the
popularity of the artist who wrote the given song. If we
suspected that more popular songs had more nonzero yst

values in our ground-truth, we would expect this popular-
ity term to have a high positive regression coefficient. In-
cluding the term could be seen as a way of controlling for
popularity bias if we omit the popularity feature when we
predict ŷst for novel songs. We can also include terms for
the interaction of data sources with popularity. A positive
interaction coefficient would indicate that the data source
gives a more confident prediction that a tag applies to a
song when the song’s artist is popular.

3 See Chapters 3 and 5 of [18] for details on each of these three hierar-
chical models in a more general setting.
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4. EXPERIMENTAL SETUP

4.1 Data Set

Our data set consists of 10,870 songs representing 19 top-
level genres (e.g., rock, classical, electronic) and 180 sub-
genres (e.g., grunge, romantic period opera, trance). We
have approximately 60 songs per subgenre. Each song is
associated with one or more genres and one or more sub-
genres. For each song, we also attempt to collect between
2 and 10 acoustic tags from Pandora’s Music Genome
Project vocabulary. This vocabulary consists of over 1,000
unique tags like “dominant bass riff,” “gravelly male vo-
calist,” and “acoustic sonority.” These acoustic tags can
be thought to be objective in that two trained experts can
annotate a song using the same tags with high probabil-
ity [19].

4.2 Cross-Validation Setup

We evaluate the retrieval performance of our combined
scores using five-fold cross-validation on the Pandora data
set. Ordinarily, this would involve training our regression
model on 4/5 of the data and testing on the remaining 1/5.
However, we need to be careful here, because our content-
based data source also trains on the Pandora data set. The
danger is that the content-based system may overfit the
training data, and because our regression model would be
using the same training data, the model might overweight
the content-based source. [14, sec. 5] notes this problem
and suggests that it be addressed by dividing the training
set into two parts, which we do as follows.

We divide the songs into five partitions, each with
roughly 2,000 songs. We apply an artist filter to the parti-
tions, with all of the songs by an artist appearing in a single
fold, to avoid overfitting our model to the particular artists
that appear in our training set. On three of the partitions
we train the content-based system, using it to then obtain
predictions for the songs in the remaining two. We use
one of those partitions (roughly 2,000 songs) to train our
regression model, which then makes its predictions on the
final partition. We then cycle this process five times. The
reason for the uneven split between the two training sets
is that the content-based system needs to learn many more
parameters than our regression model, which typically has
at most five coefficients.

4.3 Tag Pruning

Some tags are labeled with too few songs to be useful for
training when we divide the songs into five partitions, so
we prune them. In particular, the content-based training
considers only tags that have at least 20 positive instances
in the ground truth over each possible set of three parti-
tions on which to train. In addition, our regression model
requires that each single partition have at least one positive
ground-truth song (since it would be trivial to train a model
when the yst’s are all 0) and at least one positive song in
each of the three main data sources. After pruning we are
left with 71 Genre tags and 151 Acoustic tags.

4.4 Implementation Details

Regression works best when the features are roughly nor-
mally distributed, so we transform some of the input scores
for this purpose. For popularity counts, which range any-
where from 1 to over 15 million, we apply a log transfor-
mation. For the web-document source, which is based on
count data, we apply a square-root transformation [20, p.
84]. We then standardize each data source by subtracting
the mean and dividing by the standard deviation for a given
tag. The xi

st’s referred to in Section 3.1 are these standard-
ized values.

For a small number of tags, βi
t was estimated as neg-

ative for one or two of the input data sources. Because
we believe that our main three data sources, while poten-
tially unhelpful, should not be anti-predictive of the ground
truth, we eliminate negative coefficients by setting them
to 0 when they occur. (Making this adjustment results in
a small but statistically significant improvement in mean
average precision and area under the ROC curve for both
Genre and Acoustic tags.) We do allow popularity to have
a negative coefficient, and we remove this restriction en-
tirely when considering models with interaction terms.

4.5 Regression Types

We implement Independent Linear and Independent Lo-
gistic regression using the basic lm and glm func-
tions of the R language. For the hierarchical re-
gressions, we use the bayesm package [21], specifi-
cally the rhierLinearModel, rhierBinLogit, and
rhierLinearMixture functions for Hierarchical Lin-
ear, Hierarchical Logistic, and Mixture Lineark, respec-
tively, with all optional parameters set to their default val-
ues. These methods use Markov chain Monte Carlo to
sample the entire posterior distribution for the βi

t’s given
the data, but we simply take our βi

t estimate to be the aver-
age of these draws. Performance is good with as few as a
few hundred samples, but we find that area under the ROC
curve does not level off completely until 5,000 to 10,000
draws. For the results in this paper, we sample 15,000
draws, which takes on the order of 30 minutes with roughly
100 tags and 2,000 songs. A parameter sweep of the num-
ber k of means in the Gaussian-mixture prior showed no
appreciable differences over the range 2 to 50, so we use
k = 2 as the default.

5. RESULTS AND DISCUSSION

We assess performance using the four standard
information-retrieval metrics listed in Table 1 (see [22, sec.
8.4] for explanation of each). We have also made avail-
able 4 a list of the top 5 predicted songs for each tag for
purposes of qualitative evaluation.

4 See http://www.sccs.swarthmore.edu/users/09/
btomasi1/combiner/
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Table 1. Area under the ROC curve, mean average precision, R-precision, and 10-precision for various settings described further in
the text. Rows are ordered by average AUC for Genre tags. Means and standard errors are taken over the tags, applied to the averages
of five-fold cross-validation. (To compute standard errors with respect to each individual CV fold, divide the reported standard errors
by a further

√
5.) The data-source abbreviations are web documents (WD), collaborative filtering (CF), content-based analysis (CB),

popularity (P), all three main sources in the model (All3), and interactions with each of the three main sources (I).
Regression Model

71 Genre Tags 151 Acoustic Tags

AUC MAP R-Prec 10-Prec AUC MAP R-Prec 10-Prec

Random 0.502±0.003 0.09±0.01 0.08±0.01 0.08±0.02 0.508±0.003 0.032±0.003 0.030±0.003 0.03±0.00
WD 0.666±0.010 0.25±0.02 0.29±0.02 0.47±0.03 0.616±0.006 0.135±0.007 0.181±0.008 0.29±0.02
CF 0.732±0.010 0.45±0.02 0.45±0.02 0.72±0.04 0.641±0.008 0.154±0.010 0.213±0.011 0.25±0.02
CB 0.781±0.014 0.23±0.02 0.25±0.02 0.38±0.03 0.836±0.008 0.141±0.007 0.161±0.008 0.19±0.01
WD&CF 0.789±0.010 0.50±0.02 0.50±0.02 0.74±0.04 0.724±0.007 0.231±0.010 0.280±0.011 0.40±0.02
CB&WD 0.819±0.010 0.32±0.02 0.34±0.02 0.53±0.03 0.870±0.006 0.220±0.009 0.246±0.009 0.36±0.02
CB&CF 0.853±0.009 0.49±0.02 0.48±0.02 0.73±0.04 0.861±0.007 0.213±0.010 0.244±0.010 0.29±0.01
All3&P&I 0.856±0.007 0.52±0.02 0.50±0.02 0.74±0.04 0.860±0.006 0.262±0.010 0.288±0.010 0.40±0.02
All3 0.871±0.007 0.52±0.02 0.50±0.02 0.74±0.04 0.888±0.006 0.276±0.010 0.298±0.010 0.42±0.02
All3&P 0.876±0.007 0.52±0.02 0.51±0.02 0.74±0.04 0.887±0.006 0.277±0.010 0.299±0.010 0.42±0.02

Combination Method

71 Genre Tags 151 Acoustic Tags

AUC MAP R-Prec 10-Prec AUC MAP R-Prec 10-Prec

Min 0.658±0.015 0.27±0.02 0.27±0.02 0.60±0.04 0.654±0.009 0.121±0.006 0.161±0.008 0.26±0.01
Product 0.826±0.009 0.42±0.03 0.41±0.02 0.67±0.04 0.814±0.006 0.197±0.008 0.232±0.009 0.32±0.01
Median 0.826±0.009 0.43±0.02 0.43±0.02 0.68±0.04 0.820±0.006 0.219±0.009 0.261±0.009 0.35±0.02
Sum 0.851±0.007 0.44±0.03 0.44±0.02 0.69±0.04 0.847±0.006 0.220±0.009 0.252±0.009 0.34±0.01
Max 0.856±0.007 0.46±0.02 0.48±0.02 0.59±0.03 0.859±0.006 0.239±0.009 0.274±0.009 0.34±0.01
Ind Log 0.866±0.006 0.51±0.03 0.50±0.02 0.72±0.04 0.875±0.005 0.266±0.010 0.293±0.010 0.40±0.02
Hier Log 0.872±0.006 0.51±0.03 0.50±0.02 0.73±0.04 0.883±0.006 0.272±0.010 0.296±0.010 0.40±0.02
Hier Mix 0.876±0.007 0.52±0.02 0.51±0.02 0.74±0.04 0.887±0.006 0.277±0.010 0.299±0.010 0.42±0.02
Hier Lin 0.876±0.007 0.52±0.02 0.51±0.02 0.74±0.04 0.887±0.006 0.277±0.010 0.299±0.010 0.42±0.02
Ind Lin 0.876±0.007 0.52±0.02 0.51±0.02 0.74±0.04 0.887±0.006 0.277±0.010 0.299±0.010 0.42±0.02

5.1 Regression Models

The top half of Table 1 reports the performance of the In-
dependent Linear model on subsets of the data sources, as
well as models that include popularity information. The
Random method is a regression model in which all sources
have coefficients of 0, so that the final ranking of songs
is the same as the (randomized) order in which they were
initially seen. Each source alone clearly performs better
than random, and each addition of a new source results in
a statistically significant improvement in AUC. 5 This is
consistent with the fact that the data sources are relatively
uncorrelated, having correlation coefficients typically less
than 0.3 and often less than 0.1, depending on the tag.

According to the AUC measure, CB is the individually
most predictive source, while according to precision, CF
is. We suspect this reflects the fact that CB’s input repre-
sentation is dense, providing nonzero scores for 91.2% of
songs for each tag, while CF’s input contains mostly ze-
ros, with scores for only an average across tags of 2.4% of
songs. (WD falls in the middle, with nonzero scores for
an across-tag average of 13.7% of songs.) When CF has a

5 This is usually apparent from inspection of standard errors, but we
verify it by checking that p-values are less than 0.05 for paired t-tests on
the per-tag AUC values. In fact, the only pairs between which this fails
to hold are (1) CB and WD&CF for Genre tags, (2) All3 and All3&P
for Acoustic tags, and (3) CB&CF and All3&P&I for both tag types. If
we apply a conservative Bonferroni correction for the 10·9

2
pairs of tests,

a few more pairs become not significant, including the transition from
CB&CF to All3 for Genre tags.

nonzero value, it really means something, so that CF’s top
results are very precise. Toward the later end of the ranked
results list, however, CF is essentially random, while CB
still provides useful information.

It is interesting to observe that CB’s advantage over CF
in terms of AUC is larger in the case of acoustic tags than
genre tags, perhaps because acoustic tags are inherently
more predictable by audio content alone.

Popularity data was not especially helpful. While its
addition to the three main sources did result in a statis-
tically significant AUC improvement for Genre tags (p-
value 0.007), it did not for Acoustic tags (p-value 0.4), and
the magnitude of difference was relatively small. In some
sense, this is a welcome result, since it suggests that the
Pandora labels are not biased very much by whether an
artist is well-known. The interaction model contained too
many features and tended to overfit, which is unsurprising
given the modest usefulness of the main popularity term.

5.2 Coefficient Magnitudes

Our default regression model was Independent Linear with
the three main data sources, popularity, and an intercept.
Averaging the βi

t’s over all of the tags t gives the following
prediction equation for Genre tags (the one for Acoustic
tags is similar):

ŷst = 0.08 + 0.02xWD
st + 0.02xCB

st + 0.09xCF
st + 0.02xpop

s .
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Because the xi
st’s represent the transformed and standard-

ized input values (see Section 4.4), the standard error for
each βi

st is roughly the same for a given tag, 6 so that the
t-statistic of each coefficient is roughly proportional to the
coefficient’s magnitude. It’s worth noting, though, that sta-
tistical significance of a coefficient as different from zero
is not identical with usefulness as a data source. Indeed,
we saw in Section 5.1 that CB was individually more pre-
dictive than CF, at least as measured by AUC, while CB’s
coefficient is 0.02 instead of 0.09. The reason may again
be that CB provides a denser input representation than CF;
CF can afford to have a large βCF

st because in the rare cases
when its values are nonzero, they’re strongly informative.

5.3 Regression Types

The bottom half of Table 1 shows various combination
techniques. The regression approaches use the model
All3&P, while the fixed-combination approaches use just
the three main sources. All trained regression models out-
perform all fixed-combining methods. 7 This result con-
trasts with the finding by [11] that the simple sum rule out-
performed supervised linear-discriminant analysis (similar
to logistic regression) and decision trees. Still, Sum and
especially Max do not fare badly and would not be unrea-
sonable choices for a simple combining system. That Max
is close to Independent Logistic regression is perhaps un-
surprising, because the fixed-combining methods apply the
same sigmoid transformation to the input data that logistic
regression uses.

While Hierarchical Logistic regression did slightly out-
perform Independent Logistic, the hierarchical and mix-
ture models showed no apparent effect for linear regres-
sion. We suspect this is because the number of observa-
tions (songs) is so large (over 2,100 on average) that the
Bayesian prior terms in those models wash out. To confirm
this, we tried artificially restricting ourselves to 250 songs,
and in that case, the hierarchical methods did slightly out-
perform their independent counterparts.

6. CONCLUSIONS

We have shown that combining different sources of
song-tag annotation information improves retrieval perfor-
mance. Fixed-combining methods like Sum and Max do
a fine job for simple systems, but retrieval improves when
we use a trained combining method like linear or logistic
regression. In settings where large numbers of songs are
available, basic Independent Linear regression on each tag
separately gives results just as good as more sophisticated
hierarchical models, while allowing for easier implemen-
tation, faster computation, and greater parallelizability.

6 This is only “roughly” because of small inter-feature correlations.
7 Paired t-tests on the AUC values for individual tags give p-values

less than 0.05 for all pairs except between (1) Product and Median and
(2) Sum and Max for Genre tags, and (3) all three of Hier Mix, Hier Lin,
and Ind Lin for both tag types. For Genre tags, five more pairs fail to
reject the null hypothesis if we apply a Bonferroni correction on the 10·9

2
pairs of tests, including Sum vs. Independent Logistic (p-value 0.01).
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ABSTRACT 

This research examines the role lyric text can play in im-
proving audio music mood classification. A new method 
is proposed to build a large ground truth set of 5,585 
songs and 18 mood categories based on social tags so as 
to reflect a realistic, user-centered perspective. A relative-
ly complete set of lyric features and representation mod-
els were investigated. The best performing lyric feature 
set was also compared to a leading audio-based system. 
In combining lyric and audio sources, hybrid feature sets 
built with three different feature selection methods were 
also examined. The results show patterns at odds with 
findings in previous studies: audio features do not always 
outperform lyrics features, and combining lyrics and au-
dio features can improve performance in many mood cat-
egories, but not all of them.  

1. INTRODUCTION

There is a growing interest in developing and evaluating 
Music Information Retrieval (MIR) systems that can pro-
vide automated access to the mood dimension of music. 
Twenty-two systems have been evaluated between 2007 
and 20081 in the Audio Mood Classification (AMC) task 
of the Music Information Retrieval Evaluation eXchange 
(MIREX). However, during these evaluations, several 
important issues have emerged and resolving these issues 
will greatly facilitate further progress on this topic.  

1.1 Difficulties Creating Ground Truth Data 

Due to the inherent subjectivity of music perception, 
there are no generally accepted standard mood categories. 
Music psychologists have created many different mood 
models but these have been criticized for missing the so-
cial context of music listening [1]. Some MIR researchers 
have exploited professionally assigned mood labels (e.g. 
AMG, MoodLogic2) [2,3], but none of these taxonomies 
has gained general acceptance. Professionally created la-
bels have been criticized for not capturing the users’ 
perspectives on mood.  

                                                          
1 http://www.music-ir.org/mirex/2007/index.php/AMC
2 http://en.wikipedia.org/wiki/MoodLogic

To date, the AMC dataset is the only ground truth set 
that has been used to evaluate mood classification sys-
tems developed by multiple labs. However, this dataset 
contains only 600 30 sec. song clips. In fact, reported ex-
periments are seldom evaluated against datasets of more 
than 1,000 music pieces. The subjective nature of music 
makes it very difficult to achieve cross assessor agree-
ments on music mood labels. A post-hoc analysis of the 
2007 AMC task revealed discrepancies among human 
judgments on about 30% of the audio excerpts [4]. To 
overcome the limitation, one could recruit more assessors 
to assess more candidate tracks. Unfortunately this would 
require too much human labor to be realistic for most 
projects. Thus, it is clear that a scalable and efficient me-
thod is sorely needed for building ground truth sets for 
music mood classification experimentation and evalua-
tion. 

1.2  Need for Multimodal Mood Classification 

The seminal work of Aucouturier and Pachet [5] revealed 
a “glass ceiling” in spectral-based MIR, due to the fact 
that many high-level (e.g., semantic) music features 
simply are not discernable using spectral-only techniques. 
Thus, researchers started to supplement audio with lyrics 
and have reported improvements in such tasks as genre 
classification and artist identification [6,[7]. However, 
very few studies have combined audio and text for music 
mood classification [8], and their limitations (see below) 
call for more studies to investigate whether and how lyr-
ics might help improve classification performance.  

1.3 Related Work 

Hu et al. [11] derived a set of three primitive mood cate-
gories using social tags on last.fm. They collected social 
tags of single adjective words on a publicly available au-
dio dataset, USPOP [12], and manually selected 19 mood 
related terms of the highest popularity which then re-
duced to three latent mood categories using multi-
dimensional scaling. This set was not adopted by others 
because three categories were seen as a domain oversim-
plification. 

Yang and Lee [8] performed early work on supple-
menting audio mood classification with lyric text analy-
sis. They combined a lyric bag-of-words (BOW) ap-
proach with 182 psychological features proposed in the 
General Inquirer [13] to disambiguate categories that au-
dio-based classifiers found confusing and the overall 
classification accuracy was improved by 2.1%. However, 
their dataset was too small (145 songs) to draw any relia-
ble conclusions. Laurier et al. [9] also combined audio 

Permission to make digital or hard copies of all or part of this work for
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copies bear this notice and the full citation on the first page. 
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and BOW lyric features. They conducted binary classifi-
cation experiments on 1,000 songs in four categories and 
experimental results showed that audio + lyrics combined 
features improved classification accuracies in all four cat-
egories. Yang et al. [10] evaluated both unigram and bi-
gram BOW lyric features as well as three methods for 
fusing lyric and audio sources on 1,240 songs in four cat-
egories.  In these studies, the set of four mood categories 
was most likely oversimplified, the datasets were rela-
tively small and the lyric text features, namely BOW in 
tf-idf representation, were very limited.  

In this paper, we describe a novel method of building a 
large-scale ground truth dataset with 5,585 songs in 18 
mood categories. We then report experiments on a rela-
tively complete set of lyric text features, including func-
tion words, POS features and the effect of stemming. Fi-
nally, we examine the impact of lyric features on music 
mood classification by comparing 1) lyric features; 2) au-
dio features; 3) hybrid (lyric + audio features without fea-
ture selection; and, 4) hybrid features generated by three 
feature selection methods.   

2. BUILDING A GROUND TRUTH SET 

2.1 Data Collection 

We began with an in-house collection of about 21,000 
audio tracks. Social tags on these songs were then col-
lected from last.fm. 12,066 of the pieces had at least one 
last.fm tag. Simultaneously, song lyrics were gathered 
from online lyrics databases. Lyricwiki.org was the major 
resource because of its broad coverage and standardized 
format. To ensure data quality, our crawlers used song 
title, artist and album information to identify the correct 
lyrics. In total, 8,839 songs had both tags and lyrics. A 
language identification program3 was then run against the 
lyrics, and 55 songs were identified and manually con-
firmed as non-English, leaving lyrics for 8,784 songs. 
Table 1 presents the composition of the collection. 

Collection Avg. length 
(sec.) Unique Have tags Have Eng-

lish Lyrics 
USPOP 253.6 8,271 7,301 6,948
USCRAP 243.5 2,553 456 237
American music 183.2 5,049 2,209 790
Metal music 311.8 105 105 104
Beatles 163.8 163 162 161
Magnatune  253.9 4,204 1,261 19
Assorted pop  233.8 600 572 525
Total (Avg.)  234.8 20,945 12,066 8,784

Table 1. Descriptions and statistics of the collection. 

2.2 Identifying Mood Categories 

Social tag data are noisy. We employed a linguistic re-
source, WordNet-Affect [14], to filter out junk tags and 
tags with little or no affective meanings. WordNet-Affect 
is an extension of WordNet where affective labels are as-
signed to concepts representing emotions, moods, or 
emotional responses. There were 1,586 unique words in 
the latest version of WordNet-Affect and 348 of them ex-
actly matched the 61,849 unique tags collected from 
                                                          
3 http://search.cpan.org/search%3fmodule=Lingua::Ident

last.fm. However, these 348 words were not all mood re-
lated in the music domain. We turned to human expertise 
to clean up these words. Two human experts were con-
sulted for this project. Both are MIR researchers with a 
music background and native English speakers. They first 
identified and removed tags with music meanings that did 
not involve an affective aspect (e.g., “trance” and “beat”). 
Second, judgmental tags such as “bad”, “poor”, “good” 
and “great” were removed. Third, some words have am-
biguous meanings and there was not enough information 
to determine the intentions of the users when they applied 
the tags. For example, does “love” mean the song is about 
love or the user loves the song? To ensure the quality of 
the labels, these ambiguous words were removed. 186 
words remained and 4,197 songs were tagged with at 
least one of the words. 

Not all the 186 words represent distinguishable mean-
ings. In fact, many of them are synonyms and should be 
grouped together [3]. WordNet is a natural resource for 
synonym identification, because it organizes words into 
synsets. Words in a synset are synonyms from the linguis-
tic point of view. WordNet-Affect goes one step further 
by linking each non-noun synset (verb, adjective and ad-
verb) with the noun synset from which it is derived. For 
instance, the synset of “sorrowful” is marked as derived 
from the synset of “sorrow”. Hence, for the 186 words, 
those belonging to and being derived from the same syn-
set in WordNet-Affect were grouped together. As a re-
sult, the tags were merged into 49 groups. 

Several tag groups were further merged if they were 
deemed musically similar by the experts. For instance, 
the group of (“cheer up”, “cheerful”) was merged with 
(“jolly”, “rejoice”); (“melancholic”, “melancholy”) was 
merged with (“sad”, “sadness”). This resulted in 34 tag 
groups, each representing a mood category for this data-
set. Using the linguistic resources allowed this process to 
proceed quickly and minimized the workload of the hu-
man experts.  

For the classification experiments, each category 
should have enough samples to build classification mod-
els. Thus, categories with fewer than 20 songs were 
dropped resulting in 18 mood categories containing 135 
tags. These categories and their member tags were then 
validated for reasonableness by a number of native Eng-
lish speakers. Table 2 lists the categories, a subset of their 
member tags and number of songs in each category (after 
the filtering step described below)4.

2.3 Selecting the Songs 

A song was not selected for a category if its title or artist 
contained the same terms within that category. For exam-
ple, all but six songs tagged with “disturbed” were songs 
by the artist “Disturbed.” In this case, the taggers may 
simply have used the tag to restate the artist instead of 
describing the mood of the song. In order to ensure 
enough data for lyric-based experiments, we only se-
lected those songs with lyrics whose word count was 
greater than 100 (after unfolding repetitions as explained 
                                                          
4 Due to space limit, the complete tag list can be found at 
http://www.music-ir.org/archive/figs/18moodcat.htm
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in Section 3.2). After these filtering criteria were applied, 
we were left with 2,829 unique songs.  

  Multi-label classification is relatively new in MIR, 
but in the mood dimension, it is more realistic than sin-
gle-label classification: A music piece may be “happy 
and calm” or “aggressive and depressed,” etc. This is evi-
dent in our dataset as we have many songs that are mem-
bers of more than one mood category. Table 3 shows the 
distribution of songs belonging to multiple categories. 
We adopted a binary classification approach for each of 
the 18 mood categories, and the 2,829 songs formed the 
positive example set. 

Categories # of tags #of songs
calm, comfort, quiet, serene, mellow, chill out,… 25 1,394
sad, sadness, unhappy, melancholic, melancholy 8 916
happy, happiness, happy songs, happy music, … 6 472
romantic, romantic music 2 447
upbeat, gleeful, high spirits, zest, enthusiastic, … 8 321
depressed, blue, dark, depressive, dreary, 11 288
anger, angry, choleric, fury, outraged, rage, … 7 156
grief, heartbreak, mournful, sorrow, sorry, … 14 112
dreamy 1 85
cheerful, cheer up, festive, jolly, jovial, merry, … 13 76
brooding, contemplative, meditative, reflective, … 8 69
aggression, aggressive 2 53
confident, encouraging,  encouragement, optimism 5 43
angst, anxiety, anxious, jumpy, nervous, angsty 6 36
earnest, heartfelt 2 34
desire, hope, hopeful, mood: hopeful 4 28
pessimism, cynical, pessimistic, weltschmerz,… 5 27
excitement, exciting, exhilarating, thrill, ardor,… 8 20
TOTAL 135 4,578

Table 2. Mood categories and song distributions. 

# of  categories 1 2 3 4 5 6
 # of songs 1,625 788 305 91 17 2

Table 3. Distribution of songs with multiple labels.  

In a binary classification task, each category needs 
negative samples as well. To create our negative sample 
set for a given category, we chose songs that were not 
tagged with any of the terms found within that category 
but are heavily tagged with many other terms. Since there 
were plenty of negative samples for each category, we 
randomly selected songs tagged with at least 15 other 
terms including mood terms in other categories. Hence, 
some negative samples of one category are positive sam-
ples of another category. In order to make samples of var-
ious categories as diverse as possible, we set a constraint 
that no negative samples were members of more than one 
category. Similar to positive samples, all negative sam-
ples have at least 100 words in their unfolded lyric tran-
scripts. We balanced equally the positive and negative set 
sizes for each category. Our final dataset comprised 5,585 
unique songs.  

3. EXPERIMENTS 

3.1 Evaluation Measures and Classifiers 

This study uses classification accuracy as the perfor-
mance measure. For each category, accuracy was aver-
aged over a 10-fold cross validation. For each feature set, 
the accuracies across categories were averaged in a macro 
manner, giving equal importance to all categories regard-
less of the size of the categories. To determine if perfor-
mances differed significantly, we chose the non-
parametric Friedman’s ANOVA test because the accura-
cy data are rarely normally distributed.  

Support Vector Machines (SVM) were chosen as our 
classifier because of their strong performances in text ca-
tegorization and MIR tasks. We used the LIBSVM [15] 
implementation of SVM and chose a linear kernel as trial 
runs with polynomial kernels did not yield better results. 
Parameters were tuned using the grid search tool in 
LIBSVM, and the default parameters performed best for 
most cases. Thus, the default parameters were used for all 
the experiments.   

3.2 Lyric Preprocessing 

Lyric text has unique structures and characteristics requir-
ing special preprocessing techniques. First, most lyrics 
consist of such sections as intro, interlude, verse, pre-
chorus, chorus and outro, many with annotations on these 
segments. Second, repetitions of words and sections are 
extremely common. However, very few available lyric 
texts were found as verbatim transcripts. Instead, repeti-
tions were annotated as instructions like [repeat chorus 
2x], (x5), etc. Third, many lyrics contain notes about the 
song (e.g., “written by”), instrumentation (e.g., “(SOLO 
PIANO),” and/or the performing artists. In building a 
preprocessing program that took these characteristics into 
consideration, we manually identified about 50 repetition 
patterns and 25 annotation patterns. The program con-
verted repetition instructions into the actual repeated 
segments for the indicated number of times while recog-
nizing and removing other annotations. 

3.3 Lyrics Features 

Lyrics are a very rich resource and many types of textual 
features can be extracted from them. This work compares 
some of the feature types most commonly used in related 
text classification tasks. 

3.3.1 Bag-of-Words (BOW) 

Bag-of-words (BOW) are collections of unordered words. 
Each word is assigned a value that can represent, among 
others, the frequency of the word, tf-idf weight, norma-
lized frequency or a Boolean value indicating presence or 
absence. Among these variations, tf-idf weighting is the 
most widely used in text analysis and MIR, but some stu-
dies in text sentiment analysis also reported other repre-
sentations outperformed tf-idf weighting [16]. These four 
representations were compared in our experiments. 

Selecting the set of words to comprise the BOW set is 
an important consideration. Stemming is a process of 
merging words with the same morphological roots, and 
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has shown mixed effects in text classification. Thus, we 
experimented with both options. We used the Snowball 
stemmer5 supplemented with irregular nouns and verbs6

as this stemmer cannot handle irregular words. Function 
words (see below) were removed for both the stemming 
and not stemming cases. 

3.3.2 Part-of-Speech (POS) 

Part-of-Speech (POS) is a popular feature type in text 
sentiment analysis [17] and text style analysis [18]. Other 
MIR studies on lyrics have also used POS features [6,19]. 
We used the Stanford POS tagger7 which tags each word 
with one of 36 unique POS tags. 

3.3.3 Function Words 

Function words (e.g. the, a, etc.) carry little meaning. 
However, function words have been shown to be effec-
tive in text style analysis [18]. To evaluate the usefulness 
of function words in mood classification, the same list of 
435 function words found in [18] were used as an inde-
pendent feature set. 

3.4 Audio Processing and Features 

Studies in other MIR tasks have generally found lyrics 
alone are not as informative as audio [6,7]. To find out 
whether this is true in music mood classification, our best 
performing lyrics feature set was compared to Marsyas8,
the best performing audio system evaluated in the 
MIREX 2007 AMC task. Marsyas uses 63 spectral fea-
tures: means and variances of Spectral Centroid, Rolloff, 
Flux, Mel-Frequency Cepstral Coefficients, etc. It also 
uses LIBSVM with a linear kernel for classification. 
Every audio track in the dataset was converted to 
44.1KHz stereo .wav files and fed into Marsyas. The ex-
tracted spectral features were subsequently processed by 
SVM classifiers.  

3.5 Hybrid Features and Feature Selection 

Previous MIR studies suggest that combining lyric and 
audio features improves classification performance. Thus, 
we concatenated our best performing lyrics features and 
the spectral features to see whether and how much the 
hybrid features could improve classification accuracies.  

In text categorization with BOW features, the dimen-
sionality of document vectors is usually high. Thus, fea-
ture selection is often used for the sake of good generali-
zability and efficient computation. In this study, we com-
pared three methods in selecting the most salient lyric 
features: 

1. Select features with high F-scores. F-score measures 
the discrimination power of a feature between two sets 

                                                          
5 http://snowball.tartarus.org/
6 The irregular verb list was obtained from 
http://www.englishpage.com/irregularverbs/irregularverbs.html, and the 
irregular noun list was obtained from http://www.esldesk.com/esl-
quizzes/irregular-nouns/irregular-nouns.htm
7 http://nlp.stanford.edu/software/tagger.shtml 
8 http://www.music-ir.org/mirex/2007/abs/AI_CC_GC_MC_AS_
tzanetakis.pdf

[20]. The higher a feature’s F-score is, the more likely it 
is to be discriminative. F-score is a generic feature reduc-
tion technique independent of classification task and me-
thod. 

2. Select features using language model differences 
(LMD) proposed in [9], where the top 100 terms with 
largest LMD were combined with audio features and 
showed improved classification accuracies. We wish to 
find out if this method works in this study with more cat-
egories.

3. Select features based on the SVM itself. A trained 
decision function in a linear SVM contains weights for 
each feature indicating the relevance of the feature to the 
classifier. [16] has shown that trimming off features with 
lower weights improved SVM performance in literature 
sentimentalism classification. This study investigates if it 
works for music mood classification. 

4. RESULTS

4.1 Best Lyrics Features 

Table 4 shows the average accuracies across all 18 cate-
gories for the considered lyrics features and representa-
tions.  

Representation Boolean term fre-
quency (tf) 

norma-
lized tf 

tf-idf 
weighting

BOW-Stemming 0.5748 0.5819 0.5796 0.6043
BOW-Not Stemming 0.5817 0.5829 0.5840 0.5923
POS 0.5277 0.5768 0.5691 0.5571
Function Words 0.5653 0.5733 0.5692 0.5723

Table 4. Average accuracies for lyric features. 

The best text feature type is BOW with stemming and 
tf-idf weighting (BSTI). The difference between stem-
ming options is not significant at p < 0.05. The four re-
presentations of BOW features do not differ significantly 
in average performances.    
    For POS features, the Boolean representation is not as 
good as others. This is not unexpected because presuma-
bly, most lyrics would contain most POS types. In gener-
al, POS features and function words are not as good as 
BOW features. This confirms the heuristic that content 
words are more useful for mood classification. 

4.2 Combining Audio and All Text Features  
Three feature sets were compared: spectral features, 
BSTI, and direct concatenation of both. Their accuracies 
are shown as part of Table 5. Although their difference is 
not significant (at p < 0.05) on average, BSTI was signif-
icantly better than spectral features in these five catego-
ries: romantic, grief, aggression, angst, and exciting. This 
observation is different from findings in [9] where lyrics 
features alone did not outperformed audio features in any 
category.
   The accuracies in individual categories are shown in 
Figure 1 where categories are ordered by decreasing 
number of samples.   
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Figure 1. Accuracies of three systems in all categories. 

As shown in Figure 1, system performances on differ-
ent categories vary greatly, and no feature set performs 
best for all categories. It appears that spectral features are 
better for larger sized categories, while lyric features are 
better for middle sized categories. Data sparseness may 
be less an issue for text features because the samples 
were chosen to have a certain length of lyrics. From a 
semantic point of view, the categories where spectral fea-
tures are significantly better than text features (“upbeat”, 
“happy” and “calm”)  may have typical auditory charac-
teristics that can be captured by audio spectral features. 
On the other hand, there may be certain lyrics words that 
connect well to the semantics of some categories like 
“grief”, “romantic” and “anger.” Thus, lyrics features 
possibly work better because of this connection. For ex-
ample, the following stemmed words are ranked high for 
these categories by all of the three aforementioned feature 
selection methods: 

grief: singl, scare, confus, heart, cri, sorry, lone, oooh,… 
romantic: endless, love, promis, ador, whisper, lady,… 
anger: fuck, man, dead, thumb, girl, bitch, kill,… 

It is also clear from Figure 1 that the performances of 
the combined feature set closely follow the trend of the 
lyrics-only features. This is probably inevitable given the 
fact that there are several orders of magnitude more lyric 
features than spectral features in the combined set. This 
also demonstrates the necessity of feature selection.  

We note that there is a general trend in terms of aver-
age accuracy decreasing with smaller sample sizes, some-
times even achieving lower than baseline (50%) perfor-
mance. These cases also show the highest variance in 
terms of accuracies across folds. This is a somewhat ex-
pected result as the lengths of the feature vectors far out-
weigh the number of training instances. Therefore, it is 
difficult to make broad generalizations about these ex-
tremely sparsely represented mood categories.     

4.3 Combining Audio and Selected Text Features 

Using each of the three feature selection methods, we se-
lected the top n BSTI features and combined them with 
the 63 spectral features. We first varied n from 63 to 500 
(63, 100, 200,…, 500) for all categories. Since the num-
ber of features varies per category, we also varied n based 
on the number of features available in each category, 
from 10% to 90%. The results show that the best n varies 
across the three feature selection methods. Table 5 shows 

accuracies of the feature sets with the best average per-
formances among each feature selection method. 

Category 
Spec + 
F-score
n=80%

Spec + 
LMD
n=63

Spec + 
SVM    

n=70%

Spec + 
BSTI BSTI Spectral

calm 0.6112 0.6664 0.6054 0.6176 0.5674 0.6635
sad 0.6496 0.6976 0.6573 0.6524 0.6295 0.6796
happy 0.5965 0.6147 0.5784 0.5922 0.5455 0.6168
romantic 0.7014 0.7124 0.7127 0.7104 0.6959 0.6407
upbeat 0.6232 0.6075 0.6013 0.6107 0.5920 0.6389
depressed 0.6318 0.6448 0.6613 0.6475 0.6183 0.5741
anger 0.6692 0.6827 0.6721 0.6787 0.6754 0.6194
grief 0.6477 0.6386 0.6511 0.6511 0.6610 0.5314
dreamy 0.6396 0.6326 0.6354 0.6083 0.6118 0.5771
cheerful 0.5661 0.5732 0.5929 0.5866 0.5598 0.5330
brooding 0.5583 0.5071 0.5726 0.5440 0.5571 0.5452
aggression 0.6683 0.5667 0.6300 0.6500 0.6400 0.5167
confident 0.6417 0.7208 0.5050 0.5100 0.5200 0.5175
angst 0.4750 0.5875 0.6292 0.6292 0.6125 0.4833
earnest 0.5667 0.6250 0.5833 0.5708 0.5750 0.5958
desire 0.5083 0.4250 0.5417 0.5250 0.5583 0.6417
pessimism 0.6833 0.5333 0.6667 0.6667 0.6583 0.5917
exciting 0.5750 0.4250 0.5750 0.5000 0.6000 0.3250
AVERAGE 0.6118 0.6033 0.6151 0.6084 0.6043 0.5717

Table 5. Accuracies of feature sets for individual categories. 
(bold font denotes the best for that category, italic indicates 
significant difference from spectral features at p <0.05.) 

The results show that not all categories can be im-
proved by combining lyric features with spectral features. 
Audio-only and lyric-only features outperform all com-
bined feature sets in five of the 18 categories. Each of the 
combined feature sets outperforms lyric and audio fea-
tures in at most nine categories. This is different from 
findings in previous studies [8,9] where combined fea-
tures were best for all experimented categories.  

In particular, the language model difference method 
with 63 lyric features (Spec + LMD n = 63) shows an in-
teresting pattern: it improves accuracies in six of the 12 
categories where lyric features outperform spectral fea-
tures and three of the six categories where spectral fea-
tures beat lyric features. This indicates that, with the same 
dimensionality, lyrics and audio have indeed a similar 
impact on combined features.  

In combining lyrics and audio features, feature selec-
tion often yields better results because many text features 
are either redundant or noisy. In terms of average accura-
cies, features selected by SVM models work slightly bet-
ter for SVM classifiers than the other two feature selec-
tion methods. However, it is interesting to see that (Spec 
+ LMD n = 63) outperforms lyric and audio features in 
nine categories which are the most among all combined 
feature sets. It also outperforms all others in five mood 
categories and achieves significantly better results than 
spectral features in three other mood categories. Similar 
patterns are observed for the F-score method with 63 lyric 
features. This suggests that in hybrid feature sets, lyric 
features can be and should be aggressively reduced. 

5. CONCLUSIONS AND FUTURE WORK 

This paper investigates the usefulness of text features in 
music mood classification on 18 mood categories derived 
from user tags. Compared to Part-of-Speech and function 
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words, Bag-of-Words are still the most useful feature 
type. However, there is no significant difference between 
the choice of stemming or not stemming, or among the 
four text representations (e.g. tf-idf, Boolean, etc) on av-
erage accuracies across all categories. 

Our comparisons of lyric, audio and combined features 
discover patterns at odds with previous studies. In partic-
ular lyric features alone can outperform audio features in 
categories where samples are more sparse or when se-
mantic meanings taken from lyrics tie well to the mood 
category. Also, combining lyrics and audio features im-
proves performances on most, but not all, categories. Ex-
periments on three different feature selection methods 
demonstrated that too many text features are indeed re-
dundant or noisy and combining audio with the most sa-
lient text features may lead to higher accuracies for most 
mood categories.  

Future work includes investigation of other text fea-
tures, such as text statistics and affective words provided 
by domain lexicons. It would also be interesting to take a 
close look at individual categories and find out why lyrics 
features do or do not help. Moreover, more sophisticated 
feature and model combination techniques besides naïve 
feature vector concatenation are worth investigating.   
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ABSTRACT

This paper proposes a robust and fast lyric search method
for music information retrieval. Current lyric search sys-
tems by normal text retrieval techniques are severely dete-
riorated in the case that the queries of lyric phrases contain
incorrect parts due to mishearing and misremembering. To
solve this problem, the authors apply acoustic distance,
which is computed based on a confusion matrix of an ASR
experiment, into DP-based phonetic string matching. The
experimental results show that the search accuracy is in-
creased by more than 40% compared with the normal text
retrieval method; and by 2% ∼4% compared with the con-
ventional phonetic string matching method. Considering
the high computation complexity of DP matching, the au-
thors propose a novel two-pass search strategy to shorten
the processing time. By pre-selecting the probable candi-
dates by a rapid index-based search for the first pass and
executing a DP-based search among these candidates dur-
ing the second pass, the proposed method reduces process-
ing time by 85.8% and keeps search accuracy at the same
level as that of a complete search by DP matching with all
lyrics.

1. INTRODUCTION

An easy-to-use music information retrieval (MIR) system
plays an essential role in realizing satisfactory music distri-
bution services. Current commercial MIR systems accept
diverse queries by text, humming, singing, and acoustic
music signals. Among these types of queries, text queries
of lyric phrases are commonly used (lyric search) [1]. As
many MIR systems apply full-text search engines to search
lyric, the issue of lyric search has been widely accepted
as a solved issue by state-of-art text retrieval techniques.
However, the authors’ preliminary investigations on real
world queries suggested that, users are likely to input in-
correct lyric phrases (incorrect queries in this paper) into
MIR systems resulting in a failed lyric search. The incor-
rect lyric phrases are due to unreliable human memory or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

mishearing, as users remember the lyric phrases when they
are impressed by hearing a part of a song without a lyric
sheet. The analysis found that incorrect queries which re-
places a word with another word of a similar pronunciation
reaches 19%. This phenomenon is called “acoustic confu-
sion” here.
In text retrieval field, some fuzzy algorithms, such as

Latent Semantic Indexing (LSI) and partial matching, were
used by major commercial Web search engines [2] to im-
prove the robustness against incorrect queries. However,
Xu’s research verified that these algorithms were not help-
ful for acoustic confusion [3].
To solve this problem peculiar to lyric search, a search

method is expected to be able to identify a lyric contain-
ing a part that is most similar in acoustic respect to the
query. Phonetic string matching, which is used in such ap-
plications as name retrieval [4], was considered to be clos-
est to the expected method. It uses edit distance between
phoneme strings to search words with similar sound. How-
ever, edit distance is the minimum number of operations
needed to transform one string into the other [5]. It does
not present the degree of acoustic confusability between
phonemes. For example, /aki/ is easily misheard as /agi/
as opposed to /aoi/, though the edit distances are identi-
cal. This is because the phonemes, “k” and “g”, tend to be
confused mutually, compared with “k” and “o”.
In order to take the degree of acoustic confusability be-

tween phonemes into account for string matching, the au-
thors apply a new distance, called acoustic distance, to
phonetic string matching. Acoustic distance is obtained by
DP matching with the costs derived from phonetic confu-
sion probabilities between the phoneme strings of a query
and a lyric. It is motivated by the ideas in Spoken Doc-
ument Retrieval (SDR) and Spoken Utterance Retrieval
(SUR) [6, 7]. Phonetic confusion probabilities are derived
from a phonetic confusion matrix that is obtained from a
preliminary automatic speech recognition (ASR) experi-
ment.
As it is found by authors’ preliminary investigations

that queries of lyric phrases are not segmented by word or
sentence boundary, edge-free DP matching between two
phoneme strings of a query and a lyric is used to calcu-
late acoustic distance. The computation complexity of DP
matching O{DP} cannot be ignored here because lyrics
always contain long phoneme strings. Conventional pho-
netic string matching applied a complete search by DP
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matching with all lyrics, so the computation complexity is
regarded as O{DP} ∗ It, where It is the number of lyrics
to search. Since commercial MIR systems usually provide
hundreds of thousands of lyrics, the computation complex-
ity is too high to realize a real time search.
Therefore, a lyric search method with a two-pass search

strategy is proposed to speed up the search process. In
the first pass, the proposed method pre-selects the proba-
ble lyric candidates by a rapid approximate search based
on the accumulation of pre-computed and indexed partial
acoustic distances. Then, a complete search by DP match-
ing with the remaining lyrics is carried out during the sec-
ond pass, which decreases the value of It contributing to
the computation complexity.
The experimental results show that the application of

phonetic confusion probability improves search accuracy
in lyric search. Moreover, the processing time is greatly
reduced by using two-pass search strategy.
The remainder of this paper is organized as follows: the

analysis of real world queries is described in Section 2.
The definition of acoustic distance and the proposed method
are introduced in Section 3. The experiments are carried
out to evaluate the proposed method in Section 4. The pa-
per is summarized in Section 5.

2. ANALYSIS OF REALWORLD LYRIC QUERIES

To analyze the queries of lyric phrases for MIR in the real
world, the authors investigated some question & answer
community web sites, where many questions were found
that used lyric phrases to request the names of songs and
singers. As 1140 queries of lyric phrases were collected,
the authors compared each query with its corresponding
lyric to distinguish whether lyric phrases in the query are
correct or not (correct query or incorrect query) and how
they were mistaken. The lyrics and queries are written in
Japanese or English, or a mixture of both.
Figure 1 shows the distribution of incorrect queries in

the different types and correct queries within the collected
data. The incorrect queries, which occupy around 79%, are
classified into the following types:

• Confusion of notations: Chinese characters in the
queries are substituted for syllabary characters (Hi-
ragana or Katakana in Japanese), or vice versa.

• Function-word-error: Only the function words, which
have little lexical meaning, such as prepositions, pro-
nouns, auxiliary verbs, are mistaken in the queries.

• Content-word-error: The content words such as a
noun, verb, or adjective, that have a stable lexical
meaning, are mistaken in the queries.

In the current full-text search methods, function-word-
error and confusion of notations can be handled using a
stop word list to filter out the function words [8], and a
hybrid index of words and syllables [9].

Figure 1. The distribution of incorrect queries in the differ-
ent types and correct queries within the collected queries

On the other hand, as the content words play more im-
portant roles in determining the search intension [8], content-
word-error queries were further categorized into three sub-
types by the authors, viz., namely “acoustic confusion”,
“meaning confusion” and “others”. The percentages and
examples are listed in Table 1. The mistaken parts are
marked in bold.
Acoustic confusion is defined as a replacement of a word

with that of a similar pronunciation; or a replacement of the
unknown-spelling words with syllable strings of a similar
pronunciation. For the first example of acoustic confusion
queries in Table 1, “/kotoganai/” and “/kotobawanani/” have
similar pronunciations while the text strings have no com-
mon parts. In the second example, the Japanese syllable
string is used as a query whose pronunciation is similar to
the English phrase, “You’ve been out riding fences for so
long now” in the target lyric. It was supposed to happen
when users were not able to spell the foreign words that
they heard in a song.
Meaning confusion is defined as a replacement of a word

with its synonym or near-synonym. As shown in Table 1
the first example of meaning confusion queries, “/anata/”
is mistaken for “/kimi/”. Both of the terms refer to the
same meaning “you” in Japanese. For the second example,
“/tsuki/” and “/hoshi/”, which mean “moon” and “star”, are
confused.
The type of “others” contains word insertion, word dele-

tion and other errors in the queries. From the analysis of
collected examples, it is known that mistakes in “others”
type are derived from arbitrary reasons, which include in-
dividual experiences or memories, special environments,
and other reasons. The analysis did not find a relationship
between the mistakes and the lyrics.
As the acoustic confusion queries occupy about 45% of

content-word-error queries (19% of the collected queries),
it remains an important issue for lyric search. Based on
the description above, identifying a lyric containing a part
that is most similar in the acoustic aspect of the query is a
better solution for acoustic confusion than focusing on the
textual or semantic aspects.
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Table 1. The distribution of mistaken types within content-word-error cases

3. AN EFFICIENT SEARCHMETHOD BASED ON
ACOUSTIC DISTANCE

3.1 Introduction of Acoustic Distance

The authors introduce acoustic distance to quantify the de-
gree of acoustic confusion. Acoustic distance is calculated
by DP matching with cost values derived from phonetic
confusion probabilities, instead of the constant cost values
used for edit distance.
First, a phonetic confusion matrix is obtained by run-

ning a phoneme speech recognizer over training data and
by aligning the recognition results of phoneme strings with
reference phoneme strings.
For the elements of the confusion matrix, n(p, q)means

the number of phoneme q obtained as recognition results
by the actual utterances of phoneme p. As “φ” represents
a null, n(φ, p) means the number of the misrecognized
phoneme p (insertion) and n(p, φ) means the number of
the deleted phoneme p (deletion). M represents the set of
phonemes including null.
For each phoneme p, the phonetic confusion probabili-

ties of an insertion Pins(p), deletion Pdel(p) and substitu-
tion for phoneme q Psub(p, q) are calculated on the basis
of the confusion matrix elements, by Eq.1∼3.

Pins(p) =
n(φ, p)∑

k∈M n(k, p)
(1)

Pdel(p) =
n(p, φ)∑

k∈M n(p, k)
(2)

Psub(p, q) =
n(p, q)∑

k∈M n(p, k)
(3)

As a large value of Pins(p) represents a high confus-
ability for an insertion of p, it corresponds to a low cost

of an insertion operation for p in string matching based on
DP. Therefore the value of insertion cost Cins(p), is cal-
culated by Eq.4. In the same way, the value of deletion
cost Cdel(p) and substitution cost Csub(p, q), are calcu-
lated from the corresponding phonetic confusion probabil-
ities by Eq.5 and Eq.6.

Cins(p) = 1− Pins(p) (4)

Cdel(p) = 1− Pdel(p) (5)

Csub(p, q) = 1− Psub(p, q) (6)

Second, with the calculated cost values, edge-free DP
matching between the phoneme strings S1, S2 is carried
out by Eq.7∼9. Here, S[x] is xth phoneme of phoneme
string S and len(S) means the length of S (S1, S2 ∈ S).
D(i, j) designates the minimum distance from the start-
ing point to the lattice point (i, j). DS1,S2 is the accumu-
lated cost of DP matching between S1 and S2, which is
defined as the acoustic distance. It reflects acoustic confu-
sion probability for each phoneme.

1. Initialization:

D(0, j) = 0(0 ≤ j ≤ len(S2)); (7)

2. Transition:

D(i, j) = min

⎧⎪⎪⎨
⎪⎪⎩

D(i, j − 1) + Cins(S2[j])
D(i− 1, j − 1) + Csub(S1[i], S2[j])
D(i− 1, j − 1), (S1[i] = S2[j])
D(i− 1, j) + Cdel(S1[i])

(8)
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3. Determination

DS1,S2 = min{D(len(S1), j)}(0 < j ≤ len(S2));
(9)

3.2 Searching Method based on Acoustic Distance by
DP matching

Based on the criterion that a lyric containing a part that has
the minimum acoustic distance from the query should be
the user’s target, a method with a complete search by DP
matching with all lyrics is described as follows:

1. The lyrics LIt are converted into syllable strings us-
ing a morphological analysis tool such asMecab [10].
The syllable strings are converted into phoneme strings
by referring to a syllable-to-phoneme translation ta-
ble. Consequently, a phoneme string SL(k) repre-
sents a lyric L(k) (L(k) ∈ LIt).

2. Once a query Q is provided, it is converted into a
phoneme string SQ in the same way as step 1. By
Eq.7∼9, the acoustic distance DSQ,SL(k)

between
the query and all lyrics LIt is calculated.

3. Lyrics LIt are ranked in the order of the acoustic
distance DSQ,SL(k)

, and then the lyrics with lower
distance values are provided as search results.

3.3 Searching Method based on Acoustic Distance by
Two-pass Searching

Considering that the complete search by DP matching with
all lyrics requires high computation complexity, a method
with two-pass search strategy is proposed and realized with
following steps:

• Preliminary indexing: An inverted index construc-
tion is preliminarily incorporated for the first pass
search. A list of linguistically existing units of N
successive syllables (syllable N -gram) A1 · · · An

are collected from the text corpus. The units are
organized as index units for fast access, as shown
in Table 2. The acoustic distance DSAn ,SL(k)

be-
tween the phoneme strings of An and L(k) are pre-
computed by Eq.7∼9 and stored in the index matrix.
It can be regarded as an index of acoustic confusion.

• First pass search: By accessing the index described
above, a fast search is realized by using the four
steps below, and the flowchart is illustrated in Figure 2:

1. The input query Q is converted into a syllable
string v by Macab.

2. By Eq.10 the syllable string is converted into
syllable N -gram sets, V1, . . . , Vm, . . . ,VM .
Here, v[m] is themth syllable of v.

Vm = {v[m], v[m + 1], · · · , v[m + N − 1]};
(10)

3. V1, . . . , Vm, . . . , VM are matched with the in-
dex units A1, . . . , An, . . . . By accumulating
the pre-computed and indexed distance values
DSAn ,SL(k)

, the approximate acoustic distance
R(k) is calculated by Eq.11.

R(k) =
∑

m=1,··· ,M
DSAn ,SL(k)

, (Vm = An)

(11)
4. To narrow the search space of lyrics, L(k)with
higher R(k) is pruned off, and a lyric set LIc

containing Ic (Ic < It) best lyric candidates is
preserved for the second pass.

• Second pass search: A complete search by DPmatch-
ing with the lyrics in LIc is carried out.

Based on the processes above, the computing complex-
ity of the proposed method is reduced toO{FPS}+O{DP}∗
Ic. As O{FPS} is the computing complexity of the first
pass search which is much less than O{DP} and Ic is
much less than It, it provides a faster response for a real-
time MIR system.

4. EVALUATION OF SEARCH ACCURACY AND
PROCESSING TIME

4.1 Experimental Set Up and Test Set

To evaluate the search performance of the proposed search
method, experiments were carried out. A database of 10000
lyrics was collected containing both Japanese and English
lyrics. The test set consisted of 220 incorrect queries that
were mistaken in acoustic confusion. They were from the
collected queries mentioned in Section 2. The lyrics corre-
sponding to the queries were included in the database. The
results of the experiment were obtained using a personal
computer (Intel Core2Duo CPU 3.0GHz, 4G RAM). Four
methods described as follows, were compared.

• “Baseline”: A normal partial matching method us-
ing full-text retrieval engine “Lucene”, which is based
on inverted index construction [11]. In this method,
as the query of lyric phrases is divided into N suc-
cessive character substrings, the lyric containing more
substrings is regarded as a more suitable candidate.

• “Method based on Edit Distance of Phoneme (EDP)”:
The search method based on the edit distance of phoneme
strings, which is described in [4].

• “Method based on Acoustic Distance by DP match-
ing (ADDP)”: The search method using a complete
search described in Section 3.2. The phonetic con-
fusion matrix for calculating acoustic distance is ob-
tained using the same speech recognition experiment
as in [12]. Although the confusion matrix should be
based on singing voice, a huge amount of singing
data is not available. In this research, telephone speech
data of Japanese phonetically balanced sentences were
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syllable 3-gram
Lyric No.

L(1) · · · L(k) · · ·
A1 [a-i-u] 0.34 · · · 0.23 · · ·

· · · · · · · · · · · · · · ·
An [na-ko-to] 0.88 · · · DSAn ,SL(k)

· · ·

Table 2. A sample of index item by syllable 3-gram

Character to Syllable 

conversion

Query in Characters : ��������(Japanese) 	

…

0.45

…

…

1

…

0.23

L(k)

…………
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…………

1A1000

…………

…

…

…

1

…

0.34

L(1) …Lyric  No.

syllable 3-gram

A35

……

…A1Syllable 3-gram 
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Query in Syllables : �su-ki-na-ko-to-ga-na-i 	

ga-na-iV6

……

na-ko-toVm

……

su-ki-naV1

A set of syllable 3-gram

Accumulating pre-computed 

and indexed distances

INDEX

Lyrics with approximate 

acoustic distance R(k)

Pruning

A lyric set of I



 candidates
c

IL

)(, kLS
nASD

Figure 2. Flowchart of the first pass search

used as the training data for the acoustic models of
ASR.

• “Method based on Acoustic Distance by Two-pass
Searching (ADTS)”: The proposed method using
the two-pass search strategy as described in Section 3.3.
Considering the balance of index size and search ac-
curacy, here N of syllable N -gram index is set to
3. The syllable 3-grams are collected from the lyric
and newspaper corpus. 100,000 entries of syllable
3-grams, which cover 90% of all syllable 3-grams in
the collected text corpus, are prepared in the index.
As all the syllable 3-grams which exist in the queries
are prepared, no search errors come from out-of-
vocabulary syllable 3-grams in the experiments.

4.2 Improvements of Search Accuracy by Applying
Acoustic Distance

The comparison of the results between “EDP” and “ADDP”
are shown in Figure 3. The vertical axis means the hit rate,
while the horizontal axis shows the top T candidates of the
ranked lyrics, which is called T -best. Here, the hit rate
of T -best is defined as the rate of the total number of hits
within top T candidates to the total number of search ac-
cesses. “ADDP” improves the hit rates by 2% ∼ 4%, as
the T of T -best is ranged from 1 to 100. It indicates that
the proposed acoustic distance gives better effects than edit
distance.

4.3 Evaluation of Search Accuracy and Time
Complexity

The search accuracy and time complexity of four methods
are shown in Figure 4 and Table 3 respectively.
Note that, the value of Ic for “ADTS” is determined by

a preliminary experiment based on the same test set. It
only uses the first pass search of “ADTS” for lyric search
to investigate the relationship between hit rates and T -best
to chose the best threshold value for Ic. Because the hit
rates almost saturated when T is larger than 800, Ic is set
to 800 in this paper.
With a well-designed data structure, “Baseline” achieved

the fastest response among four methods. However, since
the normal text retrieval techniques cannot solve the acous-
tic confusion problem in lyric search, other three methods
based on phonetic string matching achieved higher search
accuracy than “Baseline” by more than 40%. On the other
hand, though “ADDP” and “EDP” provide high perfor-
mances of search accuracy, the processing times for one
query are over 9 seconds, which are not practical in real
world search. By applying a fast search in the first pass to
narrow the search space, “ADTS” shortens the processing
time into 1.85 seconds, which is 14.2% of “ADDP”, with
only 0.5% ∼ 5% deterioration of search accuracy due to
the loss happened in the index-based pruning of “ADTS”.
Attributing to the application of acoustic distance, “ADTS”

keep almost the same hit rates as “EDP” and achieves 2%
improvement when T is larger than 20, by using only 19%
time of “EDP”.
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5. CONCLUSION

This paper proposed a robust and fast lyric search method
based on the introduced acoustic distance and a two-pass
search strategy using an index-based approximate prese-
lection for the first pass and a DP-based string matching
in the second pass. In the case of incorrect queries caused
by acoustic confusion, the proposed method achieved sig-
nificantly higher search accuracy than the normal text re-
trieval method by more than 40%. An improvement by
2% ∼4% is also achieved compared with the conventional
phonetic string matching method. Furthermore, the pro-
posed method realized a real time operation by reducing
85.8% processing time with a slight loss in search accuracy
compared with a complete search by DP matching with all
lyrics. It is proved to be the most practical solution for
acoustic confusion queries on the balance of high search
accuracy and light computation complexity.
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ABSTRACT

Structural music analysis is used to reveal the inner work-
ings of a musical composition by recursively applying re-
ductions to the music, resulting in a series of successively
more abstract views of the composition. Schenkerian anal-
ysis is the most well-developed type of structural analy-
sis, and while there is a wide body of research on the the-
ory, there is no well-defined algorithm to perform such an
analysis. A automated algorithm for Schenkerian analy-
sis would be extremely useful to music scholars and re-
searchers studying music from a computational standpoint.
The first major step in producing a Schenkerian analysis
involves selecting notes from the composition in question
for the primary soprano and bass parts of the analysis. We
present an algorithm for this that uses harmonic and melodic
analyses to accomplish this task.

1. INTRODUCTION

Numerous tasks in music information retrieval could be ac-
complished more effectively if information about musical
structure were readily available. For example, in the task
of retrieving musical passages that are similar to a given
passage, having structural analyses available would allow
similarity metrics to be based on the underlying musical
structure of a composition as well as on the musical sur-
face. An algorithm for structural analysis of music would
therefore be an indispensable resource in music informa-
tion research.

Schenkerian analysis [1] is a type of music analysis that
emphasizes finding structural relationships among the notes
of a composition. Developed by the Austrian music theo-
rist Heinrich Schenker, Schenkerian analysis differs from
other types of analysis that focus on a single aspect of mu-
sic, such as the harmony or melody, to the exclusion of
other aspects. Schenkerian analysis harnesses all aspects
of a piece together to create an analysis that explains how
various notes in the piece function in relation to others.

Of particular importance in Schenkerian analysis is the
identification ofstructural dependencesamong groups of
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notes. If the way in which a noteX functions in a musi-
cal passage is due to the presence of another note or group
of notesY , thenX is said to be dependent uponY , and
Y is said to be at a higher structural level thanX. The
process of finding structural dependences proceeds recur-
sively during an analysis. The final set of dependences can
be depicted as a tree, with the surface-level notes as the
leaves. With each structural dependence located, the more
structurally important notes are elevated to higher levels.

Though a tree theoretically can show all the hierarchi-
cal levels of a Schenkerian analysis, typically analyses are
illustrated through a sequence ofSchenker graphs. These
graphs are visual depictions of a few contiguous levels of
the note hierarchy, using staves with notes as in common
music notation, but using other notation symbols such as
stems, beams, and slurs to show relationships among notes
rather than timing or phrasing information.

Because Schenkerian analysis primarily focuses on the
main melodic line and the main harmonic bass line of the
music in question, Schenker graphs are often presented on
two staves, with the primary melodic line on the upper
staff and the supporting bass harmony tones on the lower
staff. Notes of inner voices are occasionally shown on the
graphs, but are sometimes omitted when they serve to only
fill out the harmony. We focus onforeground graphs, the
graphs that show the structural levels closest to the musi-
cal surface. A foreground graph is usually the first graph
constructed when completing a Schenkerian analysis; all
subsequent graphs are based — directly or indirectly — on
the foreground graph. Therefore, it is critical to choose the
correct set of notes to appear in the foreground graph. We
will call a foreground graph, after notes have been selected
for its staves but before any reductions have been applied,
a preliminary foreground graph. Consider the first eight
measures of Schubert’sImpromptu No. 2 in A-flat major,
shown in Figure 1. A preliminary foreground Schenker
graph for theImpromptu, with appropriate notes in the so-
prano and bass parts, would look like Figure 2.

In this paper, we present and analyze an algorithm, FORE-
GRAPH, for identifying which notes in a score should be-
long on the soprano and bass staves of a preliminary fore-
ground Schenker graph, based on analyses of harmony and
voice leading. We build on the work of Kirlin and Utgoff
[2], whose IVI system requires, as a first step, isolation of
the primary soprano and bass parts prior to analysis. Au-
tomating Schenkerian analysis has been studied recently
by Marsden [3–5] and Marsden and Wiggins [6]. These
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Figure 1. An excerpt fromSchubert’s Impromptu No. 2 in A-flat major.
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Figure 2. A preliminary foreground graph constructed by
hand from theImpromptu.

lines of work are promising, but they have only been tested
on short, sometimes synthetic, musical phrases. Lerdahl
and Jackendoff developed a grammatical approach to mu-
sical structure in [7], which Hamanaka, et. al. [8] turned
into an algorithm. Their system, however, requires manual
adjustment of many parameters that differ for each musical
composition. Older work by Kassler [9] and Smoliar [10]
demonstrated understanding of the principles involved in
automating analysis, but did not provide any algorithms.

2. COMPUTATIONAL METHODS FOR
HARMONIC AND MELODIC ANALYSIS

Schenkerian analysis is based on the principles of harmony
and voice leading. These two aspects of a composition
must be examined prior to beginning an analysis. Since we
desire a fully-automated system for producing foreground
graphs, we must examine various algorithms for determin-
ing the harmony at various points in a composition, and the
voice leading possibilities for any note in a piece.

We have chosen MusicXML as our representation of
choice. MusicXML is a file format that represents common
Western music notation by encoding the pitches and dura-
tions of notes. Though the MIDI representation is more
widely used than MusicXML, the latter format encodes an
additional wealth of information that the former does not
supply, such as key and time signatures, stem and beaming
information, and slurs and phrase marks.

One can look at harmonic analysis as occurring in two
phases. First, a chord-labeling component assigns chord
labels (such as “C Major”) to segments of a composition.
A second pass then uses the chord labels to assign func-
tional Roman numerals to segments.

2.1 Chord Labeling

A chord labeling component must divide a composition
temporally into segments, where each segment corresponds

to a single harmony. We use a variant of Pardo and Birm-
ingham’s HARMAN algorithm [11] to accomplish this.

HARMAN uses two separate algorithms to perform chord
labeling. Thelabeling algorithmis concerned with deter-
mining the best chord label for a given segment of music
(a segment being an interval of time with fixed starting and
ending times), and thesegmentation algorithmdetermines
the points in the music where the harmony changes. A
harmony can change at apartition point: any place in the
music where a note starts or stops.

While HARMAN does a very good job “out of the box,”
we use a modified version of the algorithm and detail our
changes below.

• Meter — HARMAN does not take the meter of the
piece into account, and sometimes it chooses a par-
tition point in a metrically weak position that is ad-
jacent to a metrically stronger one. Because it is
preferable to have a change of harmony in an anal-
ysis at a metrically strong position [12], we force
HARMAN choose each measure boundary as a par-
tition point.

• Octave doubling — Because HARMAN analyzes
each note in a segment independently, often notes
that are doubled at the octave exert too much of an
influence over the chord labeling algorithm. There-
fore, when analyzing a segment, we consider multi-
ple instances of notes with the same pitch class and
duration as a single note. For example, in Figure
1, the notes of the melody in measures 5–7 that are
doubled at the octave will not be counted twice.

• Neighbor tones — Our version of HARMAN ig-
nores “obvious” neighbor tones within segments. An
obvious neighbor tone is a noteY that occurs in a
note sequenceX − Y − Z whereX and Z have
the same pitch, and are separated fromY by a half-
step. Without this correction, HARMAN has trouble
distinguishing between chord tones and non-chord
tones in heavily figurated contexts.

2.2 Assignment of Roman Numerals

Given a chord labeling, the remaining task in harmonic
analysis is mapping the chord labels (such as “C Major”)
to Roman numeral labels (such as “V6”). While we have
investigated algorithms for computing the key of a compo-
sition and the locations of any modulations and toniciza-
tions, we restrict ourselves for the remainder of this dis-
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cussion to non-modulating pieces whose key is encoded
correctly in their MusicXML representation. As FORE-
GRAPH, the foreground Schenker graph generation algo-
rithm presented in the next section, relies on a correct Ro-
man numeral analysis, placing this restriction on the input
music makes us more certain that we are supplying correct
Roman numerals to FOREGRAPH.

The second phase detects tonicizations by looking for
consecutive chords where the first chord functions func-
tions as a temporary dominant to the second. For example,
in the key of C major, this would detect the chord sequence
“D Major – G Major” and change the harmonic analysis of
“II – V” to “V/V – V.” We stipulate that the first chord
cannot occur normally in the original key, to eliminate the
possibility of the common “I – IV” chord sequence being
reinterpreted as a tonicization of the IV chord.

2.3 Voice Leading Analysis

A voice leading analysis determines, for every note in the
piece, which notes could logically follow from that note,
according to the principles of voice leading [12]. Algo-
rithms for determining voice leading, however, can differ
in their interpretations ofimplicit polyphony[13]. For ex-
ample, given the four notes in the first measure of Figure
3, some algorithms would determine that all four notes
belong to a single voice, whereas others would find two
voices and interpret the four notes as standing for the triads
shown in the second measure. The second interpretation is
an example of implicit polyphony.

��� �� �� ���
Figure 3. An example where the voice leading is ambigu-
ous.

Schenkerian analysis, as it gives primary consideration
to the linear connections in music [14], requires a voice
leading analysis that uncovers implicit polyphony. A rea-
sonable way to handle this is to permit a voice-leading
connection between two notes only if the motion between
them is stepwise.

If one takes this stance, it is easy to construct an algo-
rithm for determining the voice leading for a given compo-
sition. For a noten in a piece, we examine the set of notes
that begin at times later than the ending ofn (there can-
not be a voice-leading connection between two notes that
overlap in time). Noten may have up to three voice lead-
ing connections: (1) a step-down connection, (2) a step-up
connection, and (3) a same-pitch connection. For each type
of connection, we find the earliest note that satisfies the
criteria for that kind of connection. We also require that
if n has a same-pitch voice-leading connection to a note
m, thenn may not have any stepwise voice-leading con-
nections to notes that begin later thanm. This is because
voice-leading connections between notes of identical pitch
are typically stronger than stepwise connections.

3. PRODUCING PRELIMINARY FOREGROUND
GRAPHS

Recall that our goal is to produce preliminary foreground
Schenker graphs like the one in Figure 2. Since the purpose
of a foreground graph is to capture the primary soprano and
bass tones of the piece, constructing such a graph reduces
to selecting notes for the soprano and bass parts.

In most circumstances, the primary melody (soprano)
tone is the highest one heard at any point in time, and
the primary bass tone is the lowest. Therefore, FORE-
GRAPH is based on the idea of selecting the highest pitch
for the soprano line and the lowest for the bass line. How-
ever, complications arise in situationswhere the primary
bass or soprano tones persist in time even though they may
have stopped sounding.Consider an Alberti bass line, such
as in Figure 4. Because this figure is outlining a chord,
only the lowest note of the chord belongs to the primary
bass line (the other notes belong to inner voices). The
low Cs, though they are only represented on the page as
eighth notes, persist in the musical mind through the entire
measure as if they were sounding constantly; the true bass
line does not skip between the notes of the chord. This is
the reason why we require a voice leading algorithm that
can detect cases of implicit polyphony, not just in cases
of arpeggiation, but in any case where the bass or soprano
part may move between voices.

�� � �� �� ���

Figure 4. An Alberti bass line.

Still, there are cases where voices start and stop mid-
composition, and an algorithm that blindly follows the ini-
tial bass and soprano lines stepwise from the start of the
piece to the end would not suffice in cases, for example, of
register transfer. Therefore, FOREGRAPH chooses appro-
priate bass and soprano tones for each harmonic segment
defined by the harmonic analysis algorithm, and then fol-
lows the tones via voice-leading connections to fill out the
segment; pseudocode is given in Figure 5. For each har-
monic segment in a composition, FOREGRAPH finds the
lowest and highest pitched notes that belong to the current
harmony; these notes are added to the primary bass and
soprano parts. The FILL RANGE procedure then adds addi-
tional notes by following voice-leading connections from
the initial notes added in the segment; connections are fol-
lowed both backwards and forwards in time, and notes are
only added if they do not overlap in time with any other
notes already added to the segment.

The EXTENDVOICE procedure then allows the musical
line in a harmonic segment to be extended into following
segments, stopping only upon reaching a note that is con-
sonant in the prevailing harmony for the segment. Because
the primary notes are determined independently for each
harmonic segment, it is possible that the soprano or bass
lines fleshed out by FILL RANGE will not connect musi-
cally over a segment break. EXTENDVOICE permits each
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line to be followed to a logical conclusion without adding
too many notes of what may develop into an irrelevant in-
ner voice. Because EXTENDVOICE halts upon adding a
consonant note in the prevailing harmony, leaps are possi-
ble in the computed musical lines over segment breaks.

After choosing the notes for the soprano and bass lines,
they are displayed as noteheads on staves as a prelimi-
nary foreground graph. FOREGRAPH produced the output
shown in Figure 6 for the Schubert Impromptu in Figure 1.
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Figure 6. A preliminary foreground graph produced by
FOREGRAPH.

If one compares the hand-constructed graph in Figure 2
to the one produced by FOREGRAPH in Figure 6, only a
few differences are apparent. One is that the computer-
constructed graph contains instances of adjacent notes of
identical pitch. FOREGRAPH does not reduce these cases
to single notes because although this occurs frequently in
foreground graphs, it is not always done consistently.

The only other differences in the computer-generated
analysis are the omitted “V” chord near the middle of the
analysis, and the added “III6” chord. Both of these differ-
ences derive from the harmonic analysis component used
as a preliminary step to FOREGRAPH. The V chord in the
hand-constructed graph was not generated in the computer
analysis as it was absorbed into the I chords on either side.
Similarly, the first-inversion III chord arises from a misin-
terpretation of chord tones and non-chord tones.

4. EVALUATION AND ANALYSIS

In order to evaluate the correctness of FOREGRAPH, we
require a set of input music scores and correct foreground
graphs for them. We turned to a standard Schenkerian anal-
ysis textbook [14], and encoded the first twelve musical
examples that had correct analyses provided, and whose
analyses contained soprano and bass parts (two of the ex-
amples were monophonic, and so were omitted). The ex-
amples are all multi-measure excerpts from common prac-
tice period works.

Our method of evaluation is based on the standard met-
rics of precision and recall. If one views each note in a
composition as an individual document, then constructing
a preliminary foreground graph is equivalent to executing
two queries: one query to retrieve all notes belonging to
the soprano part, and a second query to retrieve all notes
belonging to the bass part. We also need to define what it
means for a note to be “relevant” and “retrieved” to com-
pute precision and recall. We consider a note “retrieved”
for a query if it appears in the corresponding part (soprano
or bass) for the computer-constructed foreground graph.
Defining “relevant” is complicated because the foreground

graphs as they appear in the textbook (1) often contain per-
tinent pitches of inner voices along with the primary so-
prano and bass parts, and (2) already have had some re-
ductions applied in most cases, which removes some notes
from the ground-truth that would appear in the computer-
generated graphs.

Therefore, we have two notions of “relevant” and com-
pute statistics based on each definition. In our first set of
calculations, we consider a note to be relevant for the so-
prano (bass) query if it is present on the upper (lower) staff
of the Schenker graph in the textbook analysis. This defi-
nition, however, considers many notes as relevant that will
not be present in the computer-generated analyses as they
belong to inner voices. To remedy this, our second defini-
tion considers a note to be relevant for the soprano (bass)
query if it is present on the upper (lower) staff in the Schen-
ker graph in the textbook analysis, and has a stem pointing
up (down). If it is clear that stem direction in a graph isnot
being used to indicate to which voice a note belongs (and
the direction is only determined by aesthetics), the restric-
tion on stem direction is ignored, and only the presence of
the stem is considered. Stems in graphs are indications of
structural importance, and therefore these are notes that we
are particularly interested in having FOREGRAPH identify-
ing correctly.

We ran the FOREGRAPH algorithm on each example
and compared the resulting graphs to the textbook’s graphs.
For each example, and for each part (soprano and bass),
we computed precision (the fraction of retrieved notes that
were also relevant) and recall (the fraction of relevant notes
that were also retrieved). To provide a baseline for compar-
ison with FOREGRAPH, we evaluated a second foreground
graph creation algorithm, RANDOM, that selects notes for
the soprano and bass parts from the input music randomly.
RANDOM always chooses the same number of notes for the
soprano and bass parts for each example as were selected
by FOREGRAPH for the same example. We calculated av-
erage precision and recall for RANDOM over 500 runs. All
of the precision and recall statistics for FOREGRAPH and
RANDOM are displayed in Table 1. To show more clearly
the improvement of FOREGRAPH over RANDOM, Figure 7
compares the F1 measure (harmonic mean of precision and
recall) for each musical example for the two algorithms.

One of the excerpts deserves special mention. The ex-
cerpt from Schubert’sSymphony in B minorconfused FORE-
GRAPH as the accompaniment part is pitched higher than
the primary melody. The analysis constructed by FORE-
GRAPH contained a harmony line in the soprano part, and
the true melody was not present at all. Because this single
example distorted the statistics for the soprano part, Ta-
ble 1 contains entries for the aggregate precision and recall
with and without theSymphonyincluded.

Overall, we are encouraged by the results of the evalu-
ation. We are especially pleased with the recall values for
the stemmed notes definition of relevance; disregarding the
SchubertSymphony, FOREGRAPH retrieved almost 90%
of the relevant bass notes, and almost 80% of the relevant
soprano notes. Figure 7 clearly indicates that FOREGRAPH
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procedure FOREGRAPH

Let V (x, y) be true if there is a voice leading connection between notesx andy.
Let S be a set of notes for the primary soprano part.
Let B be a set of notes for the primary bass part.
for each harmonic segmentH in the compositiondo

Let n be the lowest pitched note inH that is a member ofH ’s harmony.
Add n to B

FILL RANGE(n,B,H)
EXTENDVOICE(B,H)
Let n be the highest pitched note inH that is a member ofH ’s harmony.
Add n to S

FILL RANGE(n, S,H)
EXTENDVOICE(S,H)

procedure FILL RANGE(noten, partP , harmonic segmentH)
Initialize queueQ to contain justn
while Q is not emptydo

Remove the top note from the queue, call itm

Let N be the set of all notes such that ifx ∈ N , then eitherV (m,x) or V (x,m), andx is in H.
SortN by increasing length of time betweenm and each note inN
if N is empty,then return
for each notex ∈ N do

if x does not conflict with any notes inP then addx to P and addx to Q

procedure EXTENDVOICE(partP , harmonic segmentH)
Let curr be the last note inH that is also inP
while curr is not consonant inH ’s harmonydo

Let N be the set of all notes such that ifx ∈ N , thenV (m,x)
if N is empty,then return
Let n be the note inN with the minimum length of time tocurr
Add n to P

curr← n

Figure 5. The FOREGRAPH algorithm.

is a large improvement over choosing notes randomly.

The two issues mentioned earlier that complicated choos-
ing an appropriate definition of relevance cause the preci-
sion and recall values to not represent the true quality of
the graphs produced by FOREGRAPH. The first issue is
that many of the ground-truth analyses contain notes of in-
ner voices on the upper and lower staves, as well as notes
from the primary soprano and bass parts. The bass part of
the ChopinNocturne, for example, contains arpeggiated
chords. FOREGRAPH only included the lowest note of
each chord in the primary bass part, while the textbook in-
cluded all of the notes of each chord, with all but the lowest
given as inner voices. This lowered the recall value for all
bass notes in this example to 23.5%.

The second issue is that many of the textbook’s graphs
have already had simple reductions applied to the musi-
cal surface; repeated notes in the textbook’s graphs have
also been removed in many cases. Because FOREGRAPH

only selectsnotes for the foreground graphs and does not
perform any reductions, many of the precision values are
lower than they would be if those reductions had not been
done in the textbook’s graphs. For example, in theFrench
Suite; FOREGRAPH placed many notes in the soprano part
that were not present in the textbook’s graph because re-
ductions had already been applied to them.

We are confident that FOREGRAPH is ready to be used
as a precursor to an actual Schenkerian reduction algo-
rithm. Because we are only selecting notes to be placed
in the soprano and bass parts, the output of FOREGRAPH

is ready for processing to search for reductions, and any
low precision statistics should not be alarming.
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ABSTRACT

We propose  a  new machine-learning  framework  called 
the  Hierarchical  Sequential  Memory  for  Music,  or 
HSMM. The HSMM is an adaptation of the Hierarchical 
Temporal Memory (HTM) framework, designed to make 
it better suited to musical applications. The HSMM is an 
online  learner,  capable  of  recognition,  generation,  con-
tinuation, and completion of musical structures.

1. INTRODUCTION

In our previous work on the MusicDB [10] we outlined a 
system inspired by David Cope's notion of “music recom-
binance” [1]. The design used Cope's “SPEAC” system 
of structural analysis [1] to build hierarchies of musical 
objects.  It  was  similar  to  existing music  representation 
models [7, 9, 13], in that it emphasized the construction 
of hierarchies in which the objects at each consecutively 
higher  level  demonstrated  increasing  “temporal  invari-
ance” [5]—i.e., an “S” phrase in SPEAC analysis, and a 
"head" in the Generative Theory of Tonal Music [9], both 
use  singular  names  at  higher  levels  to  represent  se-
quences of musical events at lower levels.

Other approaches to learning musical structure include 
neural  network  models  [8],  recurrent  neural  network 
models  (RNNs)  [11],  RNNs  with  Long  Short-Term 
Memory [3], Markov-based models [12, 14], and statist-
ical models [2]. Many of these approaches have achieved 
high degrees of success, particularly in modeling melodic 
and/or homophonic music. With the HSMM we hope to 
extend such approaches by enabling a single system to 
represent  melody,  harmony,  homophony,  and  various 
contrapuntal formations, with little or no explicit a priori  
modeling of musical "rules"—the HSMM will learn only 
by observing musical input. Further, because the HSMM 
is a cognitive model,  it  can be used to exploit  musical 
knowledge, in real time, in a variety of interesting and in-
teractive ways.

2. BACKGROUND: THE HTM FRAMEWORK

In his book “On Intelligence”, Jeff Hawkins proposes a 
“top-down”  model  of  the  human  neocortex,  called  the 
“Memory Prediction Framework” (MPF) [6]. The model 
is founded on the notion that intelligence arises through 
the interaction of perceptions and predictions; the percep-
tion of sensory phenomena leads to the formation of pre-
dictions,  which in  turn  guide  action.  When predictions 
fail  to  match learned  expectations,  new predictions  are 
formed, resulting in revised action. The MPF, as realized 
computationally in the HTM [4, 5], operates under the as-

sumption of two fundamental ideas: 1) that memories are 
hierarchically structured, and 2) that higher levels of this 
structure show increasing temporal invariance.

The HTM is a type of Bayesian network, and is best 
described as a memory system that can be used to discov-
er or infer “causes” in the world, to make predictions, and 
to direct action. Each node has two main processing mod-
ules, a Spatial Pooler (SP) for storing unique “spatial pat-
terns” (discrete data representations expressed as single 
vectors) and a Temporal Pooler (TP) for storing temporal 
groupings of such patterns.

The processing  in an HTM occurs  in two phases:  a 
“bottom-up” classification  phase,  and a “top-down” re-
cognition, prediction, and/or generation phase. Learning 
is a bottom-up process, involving the storage of discrete 
vector  representations  in  the  SP,  and  the  clustering  of 
such vectors into “temporal groups” [4], or variable-order 
Markov  chains,  in  the  TP.  A node's  learned  Markov 
chains  thus represent  temporal  structure  in the training 
data. As information flows up the hierarchy, beliefs about 
the  identity  of  the  discrete  input  representations  are 
formed in each node's SP, and beliefs about the member-
ship of those representations in each of the stored Markov 
chains are formed in the TP. Since the model is hierarch-
ical, higher-level nodes store invariant representations of 
lower-level states, leading to the formation of high-level 
spatio-temporal abstractions, or “concepts.”

A simplified representation of HTM processing is giv-
en in Figure 1. Here we see a 2-level hierarchy with two 

nodes at L1 and one node at L2. This HTM has already 
received some training, so that each L1 node has stored 
four spatial patterns and two Markov chains, while the L2 
node has  stored  three  spatial  patterns  and  two Markov 
chains. There are two input patterns,  p1 and p2. It can be 
seen that p1 corresponds to pattern 4 of Node 1, and that 
pattern  4  of  Node 1 is  a  member  of  Markov chain  b. 
When presented with p1, the node identifies pattern 4 as 
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Figure 1. Simplified HTM processing.
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the stored pattern most similar to p1, calculates the mem-
bership of pattern 4 in each of the stored Markov chains, 
and outputs the vector [0,  1], indicating the absence of 
belief that p1 is a member of Markov chain a, and the cer-
tainty that p1 is a member of Markov chain b.

It can also be seen from Figure 1 that the outputs of 
the children in hierarchy are concatenated to form the in-
puts to the parent. The SP of node 3 thus treats the con-
catenated outputs of nodes 1 and 2 as a discrete repres-
entation of their temporal state at a given moment—i.e., 
time is  ‘frozen’ by  the  parent  node's  SP.  Node  3  then 
handles  its  internal  processing  in  essentially  the  same 
manner as nodes 1 and 2. 

The dotted lines  indicate  the top-down processes  by 
which discrete state representations  can be extracted or 
inferred from the stored Markov chains, and passed down 
the network. Top-down processing can be used to support 
the recognition of inputs patterns, to make predictions, or 
to generate output.

3. MOTIVATIONS BEHIND THE HSMM

Our interest in the HTM as a model for representing mu-
sical knowledge derives from its potential to build spatio-
temporal  hierarchies.  The current  HTM implementation 
from  Numenta  Inc.,  however,  is  focused  primarily  on 
visual pattern recognition [4, 5], and is currently incap-
able of learning the sort of high-level temporal structure 
found in music. This structure depends not only on the 
temporal proximity of input patterns, but also on the spe-
cific sequential order in which those patterns arrive. The 
HSMM treats  sequential  order  explicitly,  and  can  thus 
build detailed temporal hierarchies.

Another motivation behind the HSMM lies in the fact 
that the HTM is strictly an offline learner. For composi-
tional applications, we are interested in a system that can 
acquire  new knowledge  during  interaction,  and  exploit 
that  knowledge in  the compositional  process.  We have 
thus designed the HSMM with four primary functions in 
mind:

1) Recognition: The system should have a represent-
ation of the hierarchical structure of the music at 
any given time in a performance.

2) Generation: The system should be capable of 
generating stylistically integrated musical output.

3) Continuation: If a performance is stopped at a 
given point, the system should continue in a styl-
istically appropriate manner.

4) Pattern Completion: Given a degraded, or partial 
input representation, the system should provide a 
plausible completion of that input (i.e., by adding 
a missing note to a chord).

4. MUSIC REPRESENTATION

For the current study, we are working with standard MIDI 
files from which note data is extracted and formatted into 
three  10-member  vectors:  one  for  pitch  data,  one  for 
rhythmic data, and one for velocity data. The incoming 
music  is  first  pooled  into  structures  similar  to  Cope’s 
“Groups”  [1]—vertical  ‘slices’ of  music  containing  the 
total  set  of  unique  pitches  at  a  given  moment.  A new 
Group  is  created  every  time  the  harmonic  structure 
changes, as shown in Figure 2. The Groups are prepro-
cessed using a simple voice-separation algorithm, which 

divides  polyphonic  material  across  the  10  available 
voices in the vector representation. Group pitches are first 
sorted in ascending order, after which the voice separa-
tion  routine  follows  one  simple  rule:  tied  (sustained) 
notes must not switch voices.

Pitch  material  is  represented  using  inter-pitch  ratio 
[16],  calculated by converting the MIDI notes to hertz, 

and dividing the pitch at time t-1 by the pitch at time t. In 
order to avoid misleading values, as a result of calculat-
ing the ratio between a rest (pitch value 0.0) and a pitch, 
rests are omitted from the pitch representation, and the 
velocity representation is used to indicate when notes are 
active or inactive (see Figure 2).

It will be noted that velocity is not given using con-
ventional MIDI values, but is rather used as a flag to in-
dicate the state of a given voice in the Group. Positive 
values indicate onsets, negative values indicate sustained 
notes, and zeros indicate offsets. We have simplified the 
non-zero values to 1 and -1 in order to avoid attributing 
too much weight to note velocity in the training and in-
ference process. 

The rhythmic values used represent the times at which 
each voice undergoes a transition either from one pitch to 
another, or from a note-on to a note-off. We use the inter-
event time between such changes, and calculate the ratio 
between consecutive inter-event times, for each voice  n, 
according to the following:

interEventRatiot [n]= interEventTimet−1 [n]
interEventTime t[n ]

 (1)

The final representation for the HSMM will thus consist 
of one 10-member inter-pitch ratio vector, one 10-mem-
ber inter-event time ratio vector, and one 10-member ve-
locity flag vector.

5. HSMM LEARNING AND INFERENCE

Figure 3 shows a four-level HSMM hierarchy with inputs 
for pitch, rhythm, and velocity information, an “associ-
ation” node (L2) for making correlations between the L1 
outputs, and two upper-level  nodes for learning higher-
ordered temporal  structure.  The association  node at  L2 
provides  the  necessary  connectivity  between  pitch, 
rhythm, and velocity elements required for the identifica-
tion of musical “motives.” The upper-level nodes at L3 
and  L4  are  used  to  learn  high-order  musical  structure 
from the motives learned at L2.

Figure 2. Music representation for the HSMM.
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5.1  Online Learning in the HSMM

Whereas the TP in the HTM builds Markov chains during 
its training phase, in the HSMM we focus simply on con-
structing discrete  sequences  from the series  of  patterns 
input to the node. As in the HTM, the patterns stored in 
the  SP will  be  referred  to  as  “coincidences.”  The  se-
quences stored by the TP will be referred to simply as 
“sequences.”

5.1.1 Learning and Inference in the Spatial Pooler

The objective of SP learning is to store unique input pat-
terns as coincidences, while the objective of SP inference 
is to classify input patterns according to the stored coin-
cidences. The algorithm used is given in Figure 4. As in 
the HTM, when a new input is received the SP checks the 
input against all stored coincidences,  C. The result is an 
SP output vector yt, calculated according to:

y t [i ]=e−d  p , C [i ] 2/ 2

,  for i=0  to ∣C∣−1  (2)
where d(p,C[i]) is the Euclidean distance from input p to 
coincidence C[i],  and σ  is a constant of the SP. The con-
stant  σ  is used to account for noise in the input, and is 
useful for handling rhythm vectors, where frequent fluc-
tuations of timing accuracy are expected. The output yt is 
a belief distribution over coincidences, in which a higher 
value indicates greater similarity between input pattern p 
and  stored  coincidence  C[i],  and  thus  greater  evidence 
that p should be classified as C[i]. If the similarity of p to 
all stored coincidences is less than the minumum allowed 
similarity, simThreshold, p is added as a new coincidence. 

In the event that a new coincidence is added, the al-
gorithm uses the value of  maxSimilarity—i.e., the belief 
in the coincidence most similar to input p—as the initial 
belief  value  when adding  the  new coincidence.  It  then 
normalizes yt in order to scale the new belief according to 
the belief over all stored coincidences. In order to decide 
whether a new coincidence is required at higher levels, 
we start by first determining whether the input pattern λ 
(see  Figure  1)  should  be  stored  as  a  new coincidence. 
This is simply a matter of checking the length of the  λ 
vector at time t against the length at time t-1. If the length 
has increased, we know that at least one of the children 
has learned a new representation in the current time step, 
and that a new coincidence must be added in order to ac-
count for the additional information. For each new coin-
cidence stored by the SP, a histogram called the  counts  
vector is updated. In the HTM, the update is an integer 
incrementation—a count of how many times the coincid-
ence has been seen during training. However, because the 

HSMM is an online learner, an integer incrementation is 
not appropriate, as it would lead to counts of vanishingly 
small proportions being assigned to new coincidences if 
the  system were  left  running for  long periods  of  time. 
Thus, in the HSMM, the counts vector is updated accord-
ing to the following:

inc=∣C∣× 0.01 (3)

countst [ topCoinct ]=countst−1 [topCoinct ]inc  (4)

counts t[ i ]=counts t[ i ]
1inc

, for i=0 to ∣counts∣−1  (5)

where C is the number of learned coincidences, inc is the 
incrementation  value,  and  topCoinct is  the  coincidence 
that rated as having the  maxSimilarity  (Figure 4) to the 
input. Because  counts  is regularly normalized, it repres-
ents a time-limited histogram in the HSMM.

SP inference above L1 is calculated as in the HTM, but 
we outline it here for the sake of clarity. At higher levels 
we want to calculate the probability that the new input λ 
should be  classified  as  one  of  the  stored  coincidences. 
When  the  node has  more  than  one  child,  we  consider 
each child’s contribution to the overall probability separ-
ately:

C=C 1∪...∪C M

=1∪...∪M

y t [i]=∏
j=1

M

max
k

C j [k , i]× j [ k ] ,  for i=0  to ∣C∣−1
 (6)

where M is the number of child nodes, C j  is the portion 
of coincidence vector k attributed1 to child j, and λj is the 
portion of  λ  attributed to child  j.  Figure 5 shows an ex-
ample calculation for a hypothetical SP with two stored 
coincidences.

p The current input pattern

C The table of stored coincidences

maxSimilarity The maximum similarity value found

simThreshold The minimum degree of similarity between 
input p and coincidence C[i] required for p 
to be classified as C[i]

unmatchedCoinc A count of the number of times input p was 
found to be insufficiently similar to all co-
incidences in C

    Set maxSimilarity to 0
    For each stored coincidence C[i] in C
      Calculate yt[i], given input p, according to Equation 2
      If yt[i] > maxSimilarity
        Set maxSimilarity to yt[i]
      If yt[i] < simThreshold
        Increment unmatchedCoinc count

    If unmatchedCoinc count = size of C
      add input p to stored coincidences C
      append maxSimilarity to end of yt vector
      normalize yt vector 

    Figure 4. Online SP learning and inference.

1Recall that when the node has more than one child, each 
coincidence will be a concatenation of child outputs.

        

Figure 3. A four-level HSMM hierarchy.
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5.1.2 Learning in the Temporal Pooler

The objective  of  TP learning  is  to construct  sequences 
from the series of belief vectors (y) received from the SP. 
When a new input to the TP is received, the TP first cal-
culates the winning coincidence of yt:

topCoinc t= argmax
i

 y t [i ]  (7)

It then determines whether this coincidence has changed 
since  the  previous  time  step—i.e.,  whether  topCoinct 

equals  topCoinct-1—and stores the result in a flag called 
change.

The next  step is  to determine  whether  the transition 
from  topCoinct-1→ topCoinct exists  among  the  TP’s 
stored sequences.  To do this, we depart  from the HTM 
entirely, and use an algorithm we refer to as the Sequen-
cer algorithm. In the Sequencer algorithm, we consider 
two aspects of the relationship between  topCoinct and a 
given stored sequence,  Seqn: 1) the position of topCoinct 

in Seqn (zero if  topCoinct ∉ Seqn), referred to as the “se-
quencer state”, and 2) the cumulative slope formed by the 
history of sequencer states for Seqn. Thus, if Seqn is four 
coincidences  in  length,  and  each  successive  topCoinct 

matches each coincidence in Seqn, then the history of se-
quencer states will be the series: {1, 2, 3, 4}, with each 
transition having a slope of 1.0. We use a vector called 
seqState to store the sequencer states, and a vector called 
seqSlope to store the cumulative slope for each sequence, 
formed by the history of sequencer states.  The slope is 
calculated as follows:

seqSlope t [i ]= 1
seqState t[i ]−seqState t−1[i ]

 (8)

seqSlope t [i ]={seqSlope t−1[ i]−seqSlope t[i ] , i=1.0
seqSlope t−1[i ]−∣seqSlopet [i]∣, i≠1.0

 (9)

seqSlope t[i ]= 2
1e−seqSlopet [ i]

−1  (10)

where  seqStatet[i] indicates  the position of  topCoinct in 
sequence  i  (zero  if  non-member).  The sigmoid  scaling 
performed in Equation 10 helps to constrain the cumulat-
ive slope values. Figure 6 shows an example of using cu-
mulative sequence slopes to reveal the best sequence. 

At levels above L1, we only update the seqSlope vec-
tor when  change  = 1, in order to help the TP learn at a 
time scale appropriate to its level in the hierarchy. A node 
parameter,  slopeThresh, is used to determine the minim-
um slope required for the TP to pass onto the inference 
stage without adding a new sequence or extending an ex-
isting sequence. If the maximum value in seqSlope does 
not exceed the value of slopeThresh, then either a new se-
quence is created, or an existing sequence extended.

Generally, we allow only one occurrence of any given 
coincidence in a single sequence at all levels above L1, 
though any number of sequences may share that coincid-
ence. This is done to avoid building long sequences at the 
bottom of the hierarchy, thus dividing the construction of 
longer  sequences  across  the  different  levels.  We allow 
consecutive repetitions of coincidences at L1, but do not 
allow non-consecutive repetitions. This is a musical con-
sideration, given the frequent use of repetitions in music-
al language.

5.1.3 Inference in the Temporal Pooler

The objective of TP inference is to determine the likeli-
hood that  topCoinct is  a  member  of  a  given stored se-
quence. At each time step, the TP uses the counts vector, 
from the SP, to update a Conditional Probability Table, 
called the weights matrix, which indicates the probability 
of a specific coincidence occurring in a given sequence. 
The weights matrix is calculated as:

weights [i , j]=counts [ j ]×I i , j / ∑
i=1

k

counts [k ]×I i , j  (11)

     I
i , j
={1, C [ j] ∈ S [i ]

0, C [ j] ∉ S [i ]

where  C[j] is the  jth  stored coincidence and  S[i] is the  ith 

stored sequence.
The probabilities stored by the weights matrix are used 

during  TP inference,  and  also  when forming  top-down 
beliefs in the hierarchy, as introduced in Section 2. It is a 
row-normalized matrix  where rows represent  sequences 
and columns represent coincidences. Because the counts  
vector maintains its histogram of  topCoinct occurrences 
over a limited temporal window, the weights matrix in the 
HSMM is able to act as a form of short-term memory for 
the node. 

The  output  of  TP inference  is  the  bottom-up  belief 
vector  z,  which indicates  the degree  of  membership  of 
topCoinct  in each of the stored sequences. The argmax of 
z  thus identifies the sequence most strongly believed to 
be active, given topCoinct. To calculate z, we use a vari-
ant of the “sumProp” and “maxProp” algorithms used in 
the HTM [6],  which we refer  to as  pMaxProp.  The al-
gorithm uses the weights matrix to calculate a belief dis-
tribution over sequences, as follows:

z [i]=max
j=1

i

weights [i , j]× y [ j ]  (12)

An example run of the pMaxProp algorithm is given in 
Figure 7, using the coincidences and sequences from Fig-
ure  6.  Because  the  weights  matrix  in  the  HSMM is  a 

   Figure 6. Using seqSlope to find the best sequence.

              

                
   Figure 5. SP inference calculations above L1.
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short-term  memory,  and  the  pMaxProp  algorithm  is  a 
“one-shot” inference, with no consideration of the previ-
ous time step, we combine the results of pMaxProp with 
the results of the Sequencer algorithm, to yield the final 
bottom-up belief vector:

zt [i ]=
zt [i] seqSlopet [i ]

2
 (13)

5.2  Belief Formation in an HSMM Node

The final belief vector to be calculated, a belief distribu-
tion over coincidences called BelC, represents the combin-
ation of the node's classification of a given input, and its 
prediction  regarding  that  input  in  the  current  temporal 
context. Thus, for every bottom-up input there is a top-
down, feedback response.  Bottom-up vector  representa-
tions passing between nodes are denoted with  λ,  while 
top-down, feedback representations are denoted with  π2. 
A schematic of node processing can be seen in Figure 8. 
The top-down, feedback calculations used in the HSMM 
are the same as those used in the HTM, but we outline 
them here for completeness.

The first step in processing the top-down message is to 
divide the top-down parent belief π by the node's bottom-
up belief λ (at the top of the hierarchy, the bottom-up be-
lief z is used for the top-down calculations):

' [i ]=[i] /  [i]  (14)
Next, the π’ vector is used to calculate the top-down be-
lief distribution over stored coincidences as:

y [i ]=max
Seq

i
∈S
weightsT [i , j ]×  ' [ j ]

 for i=0  to ∣C∣−1
 (15)

where weightsT[i,j] is the transposed  weights matrix, and 
y↓ is the top-down belief over coincidences, and S is the 
table of stored sequences. Figure 9 gives an example, as-
suming the coincidences and sequences from Figure 7. 

The BelC vector is then calculated as the product of the 
top-down (y↓) and bottom-up (y↑) belief distributions over 
coincidences:

BelC [i ]= y [i ]× y [i ]  (16)

This calculation ensures that the belief of the node is al-
ways based on the available evidence both from  above 
and below  the  node’s  position  in  the  hierarchy.  At all 
levels  above L1, the top-down output of  the node (the 
message sent to the children) is calculated using the BelC 

vector and the table of stored coincidences C:

[i ]=argmax
C [ i ]∈C

C [i ]× BelC [ j ]

for i=0  to ∣C∣−1
 (17)

2At the node level, the λ and z vectors are equivalent. The 
naming is intended to distinguish the between-node pro-
cesses from the within-node processes. 

This  calculation  ensures  that  each  child  portion  of  the 
top-down output is proportional to the belief in the node. 
In cases where the parent node has two or more children, 
the  π vector is divided into segments of length equal to 
the length of each child’s λ vector (i.e., reversing the con-
catenation of child messages used during bottom-up pro-
cessing). The various stages of top-down processing are 
illustrated on the right side of Figure 8.

One  extra  step,  in  support  of  TP  inference  in  the 
HSMM, is added that is not present in the HTM. In ac-
cordance with the ideas of the MPF, it seemed intuitively 
clear to us that predictions could be used locally in the TP 
to support the learning process by disambiguating SP in-
puts whenever possible.  With this in mind we added a 
calculation to the TP inference algorithm that biases the 
SP belief vector,  y, according to the state of the  change 
flag, and the current top-down inference over sequences. 
In cases where the sequence inferred by top-down pro-
cessing at time t-1 contains  topCoinct-1,  and change = 0, 
the belief value for  topCoinct-1 is strengthened. However, 
when change = 1, belief in the next coincidence in the in-
ferred sequence is strengthened. The algorithm is given in 
Figure 10. Thus, when the state of the node appears to be 
changing,  belief  is  biased slightly toward what is  most 
likely  to  occur,  whereas  when  the  state  appears  to  be 
stable, the most recent belief is assumed to be correct.

6. DISCUSSION AND CONCLUSION

The strength of the HSMM lies in its balancing of hier-
archical  interdependence  with node-level  independence. 
Each  node  learns  in  the  context  of  the  hierarchy  as  a 
whole, but also forms its own representations and beliefs 
over a particular level of musical structure. At L1, simple 
motivic patterns can be recognized and/or generated, and 
at the higher levels, larger musical structures like phrases, 
melodies, and sections can also be learned, classified, and 

              
Figure 9. Using the weights matrix to calculate the 
top-down belief over coincidences.

    Figure 7. The pMaxProp algorithm calculations.

    Figure 8. HSMM node processing.
.
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generated. Further, since nodes above L1 all process in-
formation  in  an  identical  manner,  and  only  require  a 
single child, additional high-level nodes could be added, 
enabling the learning of higher levels of formal structure
—songs,  movements,  compositions.  Each  node  can  be 
monitored independently, and its state exploited for com-
positional,  analytical,  or  musicological  purposes.  Com-
position tools could be developed, offering various levels 
of  interactivity,  while  maintaining  stylistic  continuity 
with the user's  musical  language.  In the area of classic 
Music Information  Retrieval,  low levels  of  the HSMM 
could  be  used  to  identify  common  motivic  gestures 
among a given set of works, while higher levels could be 
used to recognize the music of individual composers, or 
to cluster a number of works by stylistic similarity. 

topSeqt-1 The sequence inferred by top-down processing

predCoinc The predicted coincidence

    For each coincidence c in topSeqt-1

       If topSeqt-1[c] equals topCoinct-1

          Set predCoinc to topSeqt-1[c+1]

    If change = 0
       y[topCoinct-1] = y[topCoinct-1] * 1.1
    else if change = 1
      y[predCoinc] = y[predCoinc] * 1.1

    Figure 10. Biasing the predicted coincidence.

The  HSMM  exploits  short-term  and  long-term 
memory structures, and uses an explicit sequencing mod-
el to build its temporal hierarchies, thus giving it the ca-
pacity to learn high-level temporal structure without the 
tree-like topologies required by HTM networks.

Tremendous progress has been made in the cognitive 
sciences and cognitive modeling, but such work has re-
mained largely unexplored by the computer music com-
munity, which has focused more on pure computer sci-
ence and signal processing. The HSMM offers a first step 
toward  the  development  and  exploitation  of  a  realistic 
cognitive model for the representation of musical know-
ledge,  and  opens  up a myriad  of  areas  for  exploration 
with regard to the associated cognitive behavior.

7. FUTURE WORK

A working prototype of the HSMM has been implemen-
ted, and initial tests have shown great promise. A future 
paper will cover the evaluation in detail, with an emphas-
is  on  exploiting  the  strengths  offered  by  the  cognitive 
model.

We  are  interested  in  exploring  alternative  distance 
metrics  for  the  L1  nodes—particularly  the  pitch  and 
rhythm nodes,  where  more  musically-grounded metrics 
may be effective. We are also interested in exploring dif-
ferent topologies for the hierarchy, in particular, topolo-
gies that isolate individual voices and allow the system to 
learn both independent monophonic hierarchies and asso-
ciative  polyphonic  hierarchies.  Along similar  lines,  we 
would like to explore the possibilities offered by state-
based gating of individual nodes in more complex hier-
archies, in order to simulate the cognitive phenomenon of 
attention direction. 
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ABSTRACT 

This paper presents additions and improvements to the 
Autonomous Classification Engine (ACE), a framework 
for using and optimizing classifiers. Given a set of feature 
values, ACE experiments with a variety of classifiers, 
classifier parameters, classifier ensembles and dimen-
sionality-reduction techniques in order to arrive at a con-
figuration that is well-suited to a given problem. Changes 
and additions have been made to ACE in order to in-
crease its functionality as well as to make it easier to use 
and incorporate into other software frameworks. Details 
are provided on ACE’s remodeled class structure and 
associated API, the improved command line and graphi-
cal user interfaces, a new ACE XML 2.0 ZIP file format 
and expanded statistical reporting associated with cross 
validation. The resulting improved processing and meth-
ods of operation are also discussed. 

1. INTRODUCTION 

Automatic classification techniques play an essential role 
in many music information retrieval (MIR) research ar-
eas. These include genre classification, mood classifica-
tion, music recommendation, performer identification, 
composer identification, and instrument identification, to 
name just a few. Classification software especially 
adapted to MIR can be of significant benefit. Some im-
portant work has already been done in this area, as noted 
in Section 2. ACE, which is part of the jMIR software 
suite described below, is a framework that builds upon 
these systems and adds additional functionality that is 
generally lacking in both systems designed specifically 
for music classification as well as general classification 
systems. ACE 2.0, which is presented in this paper, has 
been significantly improved since the release in 2005 of 
ACE 1.1 [1]. Improvements include an entirely restruc-
tured and simplified API, a significantly improved com-
mand-line interface, a new GUI, new file formats, im-
proved processing and significantly expanded statistical 
reporting.  

 

1.1 jMIR 

jMIR [2] is a suite of software tools developed for use in 
MIR research. The jMIR components can be used either 
independently or as an integrated suite. Although the 
components can read and write to common file formats 
such as Weka ARFF, jMIR also uses its own ACE XML 
file formats that offer a number of advantages over alter-
native data-mining formats [1, 3]. 

jMIR was designed to provide: 

• a flexible set of tools that can easily be applied to a 
wide variety of MIR-oriented research tasks; 

• a platform that can be used to combine research on 
symbolic, audio and/or cultural data; 

• easy-to-use and accessible software with a minimal 
learning curve that can be used by researchers with 
little or no technological training; 

• a modular and extensible framework for iteratively 
developing and sharing new feature extraction and 
classification technologies; and 

• software that encourages collaboration between dif-
ferent research centers by facilitating the sharing of 
research data using powerful and flexible file for-
mats [4]. 

jMIR is the only existing software suite that combines a 
meta-learning component (ACE) into an integrated 
framework with three different types of musical feature 
extractors, a metadata correction tool, and ground truth 
data. jMIR is also the only unified MIR research frame-
work that combines all three of symbolic, audio, and cul-
tural features. 

1.2 ACE XML 

ACE XML [1, 3] is a set of file formats developed to 
enable communication between the various jMIR soft-
ware components, including ACE. These file formats 
have been designed to be very flexible and expressive. It 
is hoped that the MIR research community will eventu-
ally adopt them as multi-purpose standardized formats, 
beyond the limited scope of jMIR. ACE XML has re-
cently been significantly revised and expanded in order to 
help make this possible [3]. 

1.3 ACE  

ACE is a meta-learning classification system that can 
automatically experiment with a variety of different di-
mensionality-reduction and machine-learning algorithms 
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in order to evaluate which ones are best suited to particu-
lar problems. ACE can also be used as a simple automatic 
classification system. ACE is open source and available 
for free. It is implemented entirely in Java in order to 
maximize portability. 

ACE is built on the standardized Weka machine-
learning infrastructure [5] and makes direct use of a vari-
ety of algorithms and data structures distributed with 
Weka. This means not only that new algorithms produced 
by the very active Weka community can be incorporated 
into ACE immediately, but also that new algorithms spe-
cifically designed for MIR research can be developed 
using the Weka framework. ACE can read features stored 
in either ACE XML or Weka ARFF files. 

Two Weka data structures of particular interest that 
are used by ACE and referred to in this paper are the 
Weka Instances object, which stores a set of instances 
in a representation similar to the Weka ARFF file, and the 
Weka Classifer object, which classifies a set of Weka 
Instances with a specified classification algorithm.  

2. RELATED WORK 

There are a number of existing software packages 
that are often used for machine learning, including Weka 
[5], PRTools [6] and several other MATLAB [7] tool-
boxes. There are also several systems that offer meta-
learning functionality, including RapidMiner (formerly 
Yale) [8] and METAL [9]. All of these are general pur-
pose systems, however, and do not meet some of the spe-
cial needs of MIR, as discussed in [1]. ACE and ACE 
XML make it possible to represent and use types of in-
formation that are particularly relevant to MIR but are not 
expressible or usable in most alternative systems. For 
example, jMIR and ACE XML have the ability to: 

• maintain logical groupings between multi-dimen-
sional features; 

• represent class labels and feature values for poten-
tially overlapping sub-sections of instances as well 
as for instances as a whole; 

• represent structured class ontologies; and 

• associate multiple classes with a single instance.  

There are also several high-quality toolsets that have 
been designed specifically for MIR, but they tend to offer 
less sophisticated processing specifically with respect to 
machine learning. MIRtoolbox [10] is a powerful modu-
lar MATLAB toolbox for designing and extracting audio 
features. The well-known CLAM [11] and Marsyas [12] 
focus on audio-related tasks. The M2K [13] graphical 
patching interface can be used to connect a range of dif-
ferent MIR processing components in ways that can take 
advantage of distributed processing.  

3. IMPROVEMENTS NEW TO ACE 2.0 

3.1 Architectural Restructuring 

ACE’s class structure has been redesigned to be more 
flexible, extensible, and easy to understand. This redesign 
is intended to facilitate integration with other software. 

ACE’s main functionality is accessed through an inter-
face class called Coordinator. Figure 1 illustrates this 
organization: the GUI, command-line interface, and ex-
ternal software all only directly access this new Coordi-
nator class, which then communicates with ACE’s proc-
essing classes. This organization ensures that all 
processing is performed identically, regardless of the 
source of the request, and makes ACE easier to use. New 
users wishing to use the ACE API need only understand 
the Coordinator class in order to be able to use all of 
ACE’s functionality. The remainder of this section pre-
sents ACE’s main classes. 

Figure 1. Structure of ACE’s main processing 
classes. The Coordinator class provides an ex-
clusive interface through which ACE’s main func-
tionality can be accessed. Arrows indicate interac-
tions between classes. All public methods are 
listed, but parameters are omitted from method 
declarations to save space. 
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• Coordinator: The class provides the interface 
through which ACE’s training, classification, cross 
validation, and experimentation functionality can be 
accessed. Only Coordinator calls the classes listed 
below; all other sources need only call the appropri-
ate methods in Coordinator to access the func-
tionality of all other processing classes. Loading and 
preparation of instances as well as dimensionality 
reduction is performed in this class prior to passing 
instances to processing classes. 

• Trainer: Trains a specified type of Weka Classi-
fier based on the given training instances. The 
trained Weka Classifier is stored and saved in an 
ACE TrainedModel object. 

• InstanceClassifier: Classifies a set of instances 
using a trained Weka Classifier. This class reads 
the TrainedModel object from a specified file and 
uses it to classify the given instances. In the context 
of cross validation, a classified Weka Instances 
object is returned. Classifications can be written to a 
Weka ARFF file or an ACE XML Instance Label 
file. 

• DimensionalityReducer: Reduces the dimen-
sionality of the features extracted from a set of in-
stances. This class is called by the Coordinator 
class to reduce the dimensionality of the training 
data prior to training and cross-validation in order to 
help avoid the “curse of dimensionality.” This class 
is also called by the Experimenter class to create 
an array of multiple dimensionality-reduced versions 
of an original set of instances. 

• CrossValidator: Cross-validates the given in-
stances with the specified type of Weka Classi-
fier using the specified number of partitions. In-
stances are partitioned randomly into training and 
testing data for each fold. CrossValidator makes 
calls to the Trainer and InstanceClassifier 
classes to evaluate the performance of a specific 
classification approach. The specified type of Weka 
Classifier is trained on the remaining training 
data and tested on the testing data for each partition. 
Statistics are stored for each partition and used to 
generate performance reports that provide much 
more statistical detail than Weka itself provides. 

• Experimenter: Tests to find the best performing 
classification approach by making repeated calls to 
the CrossValidator class using different parame-
ters each time. Different types of classifiers are 
tested with different types of dimensionality reduc-
tion. Experimenter calls Dimensionali-
tyReducer to get an array of Weka Instances ob-
jects, wherein each cell contains a different dimen-
sionality-reduced version of the original instances.  

Each type of classifier is cross-validated with 
each set of dimensionality-reduced instances. A 
summary of the results for each cross-validation ex-
periment for each dimensionality-reduction experi-
ment is generated, as well as more detailed results 
when requested by the user. After the best classifica-
tion methodology has been selected, validation is 
performed using a publication set put aside at the 
beginning of the experiment. A new Weka Classi-
fier of the chosen type is created and trained on the 
chosen type of dimensionality-reduced instances (all 
instances are now available for use as training data, 
except for the publication set). The newly trained 
Weka Classifier is tested on the publication set 
and the results are saved. 

3.2 Redesigned Cross Validation 

ACE performs full meta-learning with training, testing, 
and publication data sets. Previously, cross-validation 
was performed using the Weka API, but now, ACE im-
plements its own cross-validation that improves upon 
Weka’s. This new implementation, contained in the 
CrossValidator class, includes output of additional 
statistics and more transparent data processing. Whereas 
previously Weka’s cross-validation only allowed access 
to overall correctness statistics and confusion matrices, 
ACE’s new implementation includes variances across 
partitions, individual instance classification results for 
each partition, confusion matrices for each partition, and 
data on running times.  

3.3 ACE XML 2.0 ZIP and Project Files 

ACE XML, the file format used to transmit information 
between the jMIR components, consists of four different 
file types for storing, respectively, extracted feature val-
ues, feature metadata, labeled instances and class ontolo-
gies. Although the separation of this data into four differ-
ent types of files does have significant advantages [4], 
large projects consisting of multiple files can become 
unwieldy. 

The new ACE XML 2.0 Project and ZIP files present 
solutions to this problem. The Project file allows users to 
associate ACE XML files together so that they may be 
automatically saved or loaded together, and the ZIP for-
mat makes it possible to package all files referred to in a 
Project file into a single compressed ZIP file.  

The ACE XML ZIP file is implemented using an 
ACE XML Project file and a hidden text file with the 
extension “.sp”. This file contains only one line of text 
that specifies the name of the single ACE XML Project 
file compressed within the ACE XML ZIP file. When 
ACE parses an ACE XML ZIP file, it looks for the .sp 
file first, and then parses the associated ACE XML Pro-
ject file so that the other contents of the ACE XML ZIP 
file can be properly interpreted. 
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ACE includes utilities for creating, accessing, and 
managing ACE XML ZIP files. When ACE unzips an 
ACE XML ZIP file, it rewrites the ACE XML Project file 
to reflect the new path names of the newly unzipped files. 
ACE can also extract or add a single file from/to an ACE 
XML ZIP file. An ACE XML ZIP file can be used to 
load or save an ACE project via the ACE command-line 
interface, GUI or API.  

3.4 Improved Command-Line Interface 

The previous ACE command-line interface has been en-
tirely redesigned with clearer and more intuitive com-
mands. The command-line interface of software such as 
ACE is particularly important, as it is often needed to 
perform batch processing that can last days or weeks. 
Running ACE from the command line has become easier 
with the addition of new functionality such as the ability 
to load an ACE project from an ACE XML Project file or 
an ACE ZIP file. The user can also now specify the type 
of classifier or dimensionality-reduction algorithm to be 
used as well as other options related to the distribution of 
datasets (e.g., randomization, maximum class member-
ship, and maximum class spread). With the verbose op-
tion, the user also has the option of printing a more de-
tailed report of the performed processing. These im-
provements to the command-line interface not only make 
ACE easier to use, but also provide more precise control 
of ACE’s processing. 

3.5 Graphical User Interface 

ACE also now includes functionality for GUI-based 
viewing, editing, and saving of ACE XML files. This 
functionality is divided between three panes: the Taxon-
omy pane, which displays the contents of an ACE XML 
Class Ontology file; the Features pane, which displays 
the contents of an ACE XML Feature Description file; 
and the Instances pane, which displays the combined 
contents of both ACE XML Feature Value files and ACE 
XML Instance Label files.  

A screen shot of the Taxonomy pane is shown in Fig-
ure 2. The displayed structure indicates a genre taxonomy 
for use in an automatic genre classification task. If an 
ACE XML Instance Label file is loaded without explic-
itly specifying such a class ontology either manually or 
with an ACE XML Class Ontology file, then a flat ontol-
ogy is automatically generated based on the labels used in 
the ACE XML Instance Label file, and is displayed in the 
Taxonomy pane. Figure 3 shows a Features pane display-
ing a list of audio features. If an ACE XML Feature De-
scriptions file is not loaded here prior to loading an ACE 
XML Feature Values file, feature descriptions are gener-
ated automatically based on the features present in the 
ACE XML Feature Values file. Figure 4 shows how the 
Instances pane can be used to display class labels that 
have been associated with particular instances.  

 

 
Figure 2. A sample genre ontology displayed in the Tax-
onomy pane of the ACE GUI. 

 
Figure 3. The Features pane of the ACE GUI displaying 
metadata about a set of audio features. 

 
Figure 4. The Instances pane of the ACE GUI. Song ti-
tles are associated in this example with particular genre 
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labels drawn from the genre ontology shown in Figure 2. 
Note that neither the Display Feature Values nor the Dis-
play Misc Info checkboxes are checked, so only instance 
identifiers and classes are displayed in this particular ex-
ample. 

Figures 5, 6, and 7 illustrate a more complex exam-
ple. Figure 5 establishes a new class ontology, in this case 
a hierarchical music–speech–applause–silence discrimi-
nator. Figure 6 shows how the Instances pane can display 
not only class labels, but also miscellaneous metadata. 
This figure also demonstrates that instances can be bro-
ken into separately-labeled subsections and that each in-
stance or subsection may be associated with multiple 
class labels. Start and stop times indicate the boundaries 
of the subsections. Figure 7 demonstrates how feature 
values can also be displayed using the Instances pane. It 
shows the same data as Figure 6, except that feature val-
ues are displayed and miscellaneous metadata is not.  

If feature arrays and class labels are loaded for the 
same subsection, all information for that instance is pre-
sented in one row. The specific time of the overlap of 
class labels within a subsection is indicated within paren-
theses after the class name. Subsection rows for any 
overall instance can be hidden by unchecking the Show 
Sections checkbox. The Composer and Note columns are 
metadata loaded from the particular Instance Label ACE 
XML file associated with this example and can be hidden 
by clicking on the Display Misc Info checkbox.  

 

Figure 5. Another class ontology displayed in the Taxon-
omy pane of the ACE GUI. 

 

Figure 6. Instances with subsections and metadata dis-
played in the Instances pane of the ACE GUI. 

 

Figure 7. Instances with subsections and feature values 
displayed in the Instances pane of the ACE GUI. 

4. CONCLUSION AND FUTURE WORK 

Improvements have been made to ACE since its original 
publication, including new capabilities that make it a 
more complete and easy-to-use meta-learning classifica-
tion framework. ACE is an ongoing project, and further 
improvements will continue to be made. 

4.1 Fully Functional GUI 

The ACE GUI currently serves as a tool for viewing and 
editing ACE XML files. It will eventually be possible to 
also use the GUI to perform experiments on data sets, as 
can currently only be done with the command-line inter-
face or API. This functionality will be accessible from 
two currently unfinished panes: the Experimenter pane 
and the Preferences pane. The Experimenter pane will 
allow full access to all of ACE’s machine learning func-
tionality. Several sub-panes will be used to display the 
same output that is printed or saved to files when running 
experiments from the ACE command-line interface. The 
Preferences pane of the ACE GUI will allow users to 
specify preferences related to both interface settings and 
machine learning parameters. User studies will also be 
performed in order to validate and improve the GUI de-
sign. 
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4.2 Distributed Work Load 

Functionality is being built into ACE to allow it to run 
trials on multiple computers in parallel in order to reducte 
execution times. Once the distributed aspect of the system 
is complete, a server-based subsystem will be designed 
that contains a coordination system and database. Al-
though not necessary for using ACE, users will be able to 
choose to dedicate computers to this server, allowing 
ACE to run continually. The server will keep a record of 
the performances of all ACE operations run on a particu-
lar user’s cluster and generate statistics for self-evaluation 
and improvement. ACE will then make use of any idle 
time to attempt to improve solutions to previously en-
countered but currently inactive problems. Ultimately, the 
user would only be required to specify the total time 
available (typically days or weeks) for ACE to run its 
experiments and everything else, including the choice of 
learning algorithms and their parameters, would be auto-
matically determined by ACE. 

4.3 Expanded Machine Learning Algorithms 

In the future, ACE will include learning schemes impor-
tant to MIR that are currently missing from the Weka 
distribution, such as hidden Markov models and recurrent 
neural networks. Support for Weka’s unsupervised learn-
ing functionality will also be incorporated. It would also 
be beneficial to include tools for constructing blackboard 
systems, in particular those that can integrate knowledge 
sources based on expert heuristics. Another potentially 
beneficial addition would be to implement modules for 
facilitating post-processing. All of these extensions 
would add to ACE’s flexibility and breadth of processing. 
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ABSTRACT

We describe a probabilistic model for learning musical key-
profiles from symbolic files of polyphonic, classical mu-
sic. Our model is based on Latent Dirichlet Allocation
(LDA), a statistical approach for discovering hidden topics
in large corpora of text. In our adaptation of LDA, sym-
bolic music files play the role of text documents, groups
of musical notes play the role of words, and musical key-
profiles play the role of topics. The topics are discovered
as significant, recurring distributions over twelve neutral
pitch-classes. Though discovered automatically, these dis-
tributions closely resemble the traditional key-profiles used
to indicate the stability and importance of neutral pitch-
classes in the major and minor keys of western music. Un-
like earlier approaches based on human judgement, our
model learns key-profiles in an unsupervised manner, in-
ferring them automatically from a large musical corpus that
contains no key annotations. We show how these learned
key-profiles can be used to determine the key of a musical
piece and track its harmonic modulations. We also show
how the model’s inferences can be used to compare musi-
cal pieces based on their harmonic structure.

1. INTRODUCTION

Musical composition can be studied as both an artistic and
theoretical endeavor. Though music can express a vast
range of human emotions, ideas, and stories, composers
generally work within a theoretical framework that is highly
structured and organized. In western tonal music, two im-
portant concepts in this framework are the key and the tonic.
The key of a musical piece identifies the principal set of
pitches that the composer uses to build its melodies and
harmonies. The key also defines the tonic, or the most sta-
ble pitch, and its relationship to all of the other pitches in
the key’s pitch set. Though each musical piece is charac-
terized by one overall key, the key can be shifted within a
piece by a compositional technique known as modulation.
Notwithstanding the infinite number of variations possible
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Figure 1. C major (left) and C minor (right) key-
profiles proposed by Krumhansl-Kessler (KK), used in the
Krumhansl-Schmukler (KS) key-finding algorithm.

in music, most pieces can be analyzed in these terms.
Musical pieces are most commonly studied by analyz-

ing their melodies and harmonies. In any such analysis,
the first step is to determine the key. While the key is in
principle determined by elements of music theory, individ-
ual pieces and passages can exhibit complex variations on
these elements. In practice, considerable expertise is re-
quired to resolve ambiguities.

Many researchers have proposed rule-based systems for
automatic key-finding in symbolic music [2,10,12]. In par-
ticular, Krumhansl and Schmuckler (KS) [8] introduced a
model based on “key-profiles”. A key-profile is a twelve-
dimensional vector in which each element indicates the
stability of a neutral pitch-class relative to the given key.
There are 24 key-profiles in total, one for each major and
minor key. Using these key profiles, KS proposed a sim-
ple method to determine the key of a musical piece or
shorter passages within a piece: first, accumulate a twelve-
dimensional vector whose elements store the total duration
of each pitch-class in a song; second, compute the key-
profile that has the highest correlation with this vector. The
KS model uses key-profiles derived from probe tone stud-
ies conducted by Krumhansl and Kessler (KK) [9]. Fig-
ure 1 shows the KK key profiles for C major and C minor;
profiles for other keys are obtained by transposition. In re-
cent work [14, 15], these key-profiles have been modified
to achieve better performance in automatic key-finding.

In this paper, we show how to learn musical key-profiles
automatically from the statistics of large music collections.
Unlike previous studies, we take a purely data-driven ap-
proach that does not depend on extensive prior knowledge
of music or supervision by domain experts. Based on a
model of unsupervised learning, our approach bypasses the
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need for manually key-annotated musical pieces, a pro-
cess that is both expensive and prone to error. As an ad-
ditional benefit, it can also discover correlations in the data
of which the designers of rule-based approaches are un-
aware. Since we do not rely on prior knowledge, our model
can also be applied in a straightforward way to other, non-
western genres of music with different tonal systems.

Our approach is based on Latent Dirichlet Allocation
(LDA) [1], a popular probabilistic model for discovering
latent semantic topics in large collections of text docu-
ments. In LDA, each document is described as a mixture
of topics, and each topic is characterized by its own par-
ticular distribution over words. LDA for text is based on
the premise that documents about similar topics contain
similar words. Beyond document modeling, LDA has also
been adapted to settings such as image segmentation [5],
part-of-speech tagging [6], and collaborative filtering [11].

Our variant of LDA for unsupervised learning of key-
profiles is based on the premise that musical pieces in the
same key use similar sets of pitches. Roughly speaking,
our model treats each song as a “document” and the notes
in each beat or half-measure as a “word”. The goal of
learning is to infer harmonic “topics” from the sets of pitches
that commonly co-occur in musical pieces. These har-
monic topics, which we interpret as key-profiles, are ex-
pressed as distributions over the twelve neutral pitch-classes.

We show how to use these key-profiles for automatic
key-finding and similarity ranking of musical pieces. We
note, however, that our use of key-profiles differs from that
of the KS model. For key-finding, the KS model con-
sists of two steps: 1) derive key-profiles and 2) predict
keys using key-profiles. In our model, these steps are nat-
urally integrated by the Expectation-Maximization (EM)
algorithm [3]. We do not need further heuristics to make
key-finding predictions from our key-profiles as the EM
algorithm yields the former along with the latter.

2. MODEL

This section describes our probabilistic topic model, first
developing the form of its joint distribution, then sketching
out the problems of inference and parameter estimation.
We use the following terminology and notation throughout
the rest of the paper:

1. A note u ∈ {A,A],B, . . . ,G]} is the most basic
unit of data. It is an element from the set of neu-
tral pitch-classes. For easy reference, we map these
pitch-classes to integer note values 0 through 11. We
refer to V =12 as the vocabulary size of our model.

2. A segment is a basic unit of time in a song (e.g.,
a measure). We denote the notes in the nth seg-
ment by un = {un1, . . . , unL}, where un` is the `th
note in the segment. Discarding the ordering of the
notes, we can also describe each segment simply by
the number of time each note occurs. We use xn to
denote the V -dimensional vector whose jth element
xj

n counts the number of times that the jth note ap-
pears in the nth segment.

3. A song s is a sequence of notes in N segments:
s = {u1, . . . ,uN}. Discarding the ordering of notes
within segments, we can also describe a song by the
sequence of count vectors X = (x1, . . . , xN ).

4. A music corpus is a collection of M songs denoted
by S = {s1, . . . , sM}.

5. A topic z is a probability distribution over the vo-
cabulary of V = 12 pitch-classes. Topics model
particular groups of notes that frequently occur to-
gether within individual segments. In practice, these
groupings should contain the principle set of pitches
for a particular musical key. Thus, we interpret each
topic’s distribution over twelve pitch-classes as the
key-profile for a musical key. We imagine that each
segment in a song has its own topic (or key), and we
use z = (z1, z2, . . . , zN ) to denote the sequence of
topics across all segments. In western tonal music,
prior knowledge suggests to look for K = 24 topics
corresponding to the major and minor scales in each
pitch-class. Section 2.3 describes how we identity
the topics with these traditional key-profiles.

With this terminology, we can describe our probabilistic
model for songs in a musical corpus. Note that we do not
attempt to model the order of note sequences within a seg-
ment or the order of segments within a song. Just as LDA
for topic modeling in text treats each document as a “bag
of words”, our probabilistic model treats each song as a
“bag of segments” and each segment as a “bag of notes”.

2.1 Generative process

Our approach for automatic key-profiling in music is based
on the generative model of LDA for discovering topics in
text. However, instead of predicting words in documents,
we predict notes in songs. Our model imagines a sim-
ple, stochastic procedure in which observed notes and key-
profiles are generated as random variables. In addition,
we model the key-profiles as latent variables whose values
must be inferred by conditioning on observed notes and
using Bayes rule.

We begin by describing the process for generating a
song in the corpus. First, we draw a topic weight vector
that determines which topics (or keys) are likely to ap-
pear in the song. The topic weight vector is modeled as
a Dirichlet random variable. Next, for each segment of
the song, we sample from the topic weight vector to deter-
mine the key (e.g., A minor) of that segment. Finally, we
repeatedly draw notes from the key-profile until we have
generated all the notes in the segment. More formally, we
can describe this generative process as follows:

1. For each song in the corpus, choose a K-dimensional
topic weight vector θ from the Dirichlet distribution:

p(θ|α) =
Γ(

∑
i αi)∏

i Γ(αi)

∏
i

θαi−1. (1)
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Note that α is a K-dimensional corpus-level param-
eter that determines which topics are likely to co-
occur in individual songs. The topic weight vector
satisfies θi ≥ 0 and

∑
k θk = 1.

2. For each segment indexed by n ∈ {1, . . . , N} in a
song, choose the topic zn ∈ {1, 2, . . . ,K} from the
multinomial distribution p(zn =k|θ) = θk.

3. For each note indexed by ` ∈ {1, . . . , L} in the nth
measure, choose a pitch-class from the multinomial
distribution p(un` = i|zn = j, β) = βij . The β pa-
rameter is a V ×K matrix that encodes each topic as
a distribution over V =12 neutral pitch-classes. Sec-
tion 2.3 describes how we identify these distribu-
tions as key-profiles for particular musical keys.

This generative process specifies the joint distribution over
observed and latent variables for each song in the corpus.
In particular, the joint distribution is given by:

p(θ, z, s|α, β) = p(θ|α)
N∏

n=1

p(zn|θ)
Ln∏
l=1

p(unl|zn, β). (2)

Figure 2(a) depicts the graphical model for the joint distri-
bution over all songs in the corpus. As in LDA [1], we use
plate notation to represent independently, identically dis-
tributed random variables within the model. Whereas LDA
for text describes each document as a “bag of words”, we
model each song as a “bag of segments”, and each segment
as a “bag of notes”. As a result, the graphical model in Fig-
ure 2(a) contains an additional plate beyond the graphical
model of LDA for text.

2.2 Inference and learning

The model in eq. (2) is fully specified by the Dirichlet pa-
rameter α and the musical key-profiles β. Suppose that
these parameters are known. Then we can use probabilis-
tic inference to analyze songs in terms of their observed
notes. In particular, we can infer the main key-profile for
each song as a whole, or for individual segments. Infer-
ences are made by computing the posterior distribution

p(θ, z|s, α, β) =
p(θ, z, s|α, β)

p(s|α, β)
(3)

following Bayes rule. The denominator in eq. (3) is the
marginal distribution, or likelihood, of a song:

p(s|α, β)=
∫

p(θ|α)
N∏

n=1

K∑
zn=1

p(zn|θ)
Ln∏
l=1

p(unl|zn, β) dθ.

(4)
The problem of learning in our model is to choose the
parameters α and β that maximize the log-likelihood of
all songs in the corpus, L(α, β) =

∑
m log p(sm|α, β).

Learning is unsupervised because we require no training
set with key annotations or labels.

In latent variable models such as ours, the simplest ap-
proach to learning is maximum likelihood estimation using
the Expectation-Maximization (EM) algorithm [3]. The

Figure 2. (a) Graphical representation of our model and
(b) the variational approximation for the posterior distribu-
tion in eq. (3). See Appendix A for details.

EM algorithm iteratively updates parameters by comput-
ing expected values of the latent variables under the pos-
terior distribution in eq. (3). In our case, the algorithm
iteratively alternates between an E-step, which represents
each song in the corpus as a random mixture of 24 key-
profiles, and an M-step, which re-estimates the weights of
the pitch classes for each key-profile. Unfortunately, these
expected values cannot be analytically computed; there-
fore, we must resort to a strategy for approximate prob-
abilistic inference. We have developed a variational ap-
proximation for our model based on [7] that substitutes a
tractable distribution for the intractable one in eq. (3). Ap-
pendix A describes the problems of inference and learning
in this approximation in more detail.

2.3 Identifying Topics as Keys

Recall from section 2.1 that the estimated parameter β ex-
presses each topic as a distribution over V = 12 neutral
pitch-classes. While this distribution can itself be viewed
as a key-profile, an additional assumption is required to
learn topics that can be identified with particular musical
keys. Specifically, we assume that key-profiles for differ-
ent keys are related by simple transposition: e.g., the pro-
file for C] is obtained by transposing the profile for C up by
one half-step. This assumption is the full extent to which
our approach incorporates prior knowledge of music.

The above assumption adds a simple constraint to our
learning procedure: instead of learning V ×K independent
elements in the β matrix, we tie diagonal elements across
different keys of the same mode (major or minor). En-
forcing this constraint, we find that the topic distributions
learned by the EM algorithm (see section 3) can be un-
ambiguously identified with the K = 24 major and minor
modes of classical western music. For example, one topic
distribution places its highest seven weights on the pitches
C, D, E, F, G, A, and B; since these are precisely the notes
of the C major scale, we can unambiguously identify this
topic distribution with the key-profile for C major.

3. RESULTS

We estimated our model from a collection of 235 MIDI
files compiled from http://www.classicalmusicmidipage.com.
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Figure 3. The C major and C minor key-profiles learned
by our model, as encoded by the β matrix.

The collection included works by Bach, Vivaldi, Mozart,
Beethoven, Chopin, and Rachmaninoff. These composers
were chosen to span the baroque through romantic periods
of western, classical music.

We experimented with different segment lengths and
different ways of compiling note counts. Though mea-
sures define natural segments for music, we also exper-
imented with half-measures and quarter-beats. All these
choices led to similar musical key-profiles. We also exper-
imented with two ways of compiling note counts within
segments. The first method sets the counts proportional to
the cumulative duration of notes across the segment; the
second method sets the counts proportional to the number
of distinct times each note is struck. We found that the
second method worked best for key-finding, and we report
results for this method below.

3.1 Learning Key-Profiles

Recall that each column of the estimated β matrix encodes
a musical key as a distribution over V = 12 neutral pitch-
classes. Fig. 3 shows the two columns that we identified
as belonging to the keys of C major and C minor. These
key-profiles have the same general shape as those of KK,
though the weights for each pitch-class are not directly
comparable. (In our model, these weights denote actual
probabilities.) Note that in both major and minor modes,
the largest weight occurs on the tonic (C), while the second
and third largest weights occur on the remaining degrees of
the triad (G, E for C major; G, E[ for C minor). Our key-
profiles differ only in the relatively larger weight given to
the minor 7th (B[) of C major and major 7th (B) of C mi-
nor. Otherwise, the remaining degrees of the diatonic scale
(D, F, A for C major; D, F, A[ for C minor) are given larger
weights than the remaining chromatics. Profiles for other
keys can be found by transposing.

3.2 Symbolic Key-Finding

From the posterior distribution in eq. (3), we can infer hid-
den variables θ and z that identify dominant keys in whole
songs or segments within a song. In particular, we can
identify the overall key of a song from the largest weight
of the topic vector θ that maximizes eq. (3). Likewise, we
can identify the key of particular segments from the most
probable values of the topic latent variables zn.

We first show results at the song-level, using our model
to determine the overall key of the 235 musical pieces in
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Figure 4. Key judgments for the first 12 measures of
Bach’s Prelude in C minor, WTC-II. Annotations for each
measure show the top three keys (and relative strengths)
chosen for each measure. The top set of three annotations
are judgments from our LDA-based model; the bottom set
of three are from human expert judgments [8].
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Song Length All 20 beats 8 beats 4 beats
LDA 86% 77% 74% 67%
KS 80% 71% 67% 66%

Table 1. Key-finding accuracy of our LDA model and the
KS model on 235 classical music pieces. Song length in-
dicates how much of each piece was included for analysis.

Figure 5. Songs represented as distributions over key-
profiles. The first set of bars shows keys used in the query
song; the remaining sets of bars show keys used in the three
songs of the corpus judged to be most similar. Note how
all songs modulate between the keys of E[ M, A[ M, C m,
and F m.

our corpus. We tested our model against a publicly avail-
able implementation of the KS model [4] that uses normal-
ized KK key-profiles and weighted note durations. Table 1
compares the results when various lengths of each piece
are included for analysis. In this experiment, we found
that our model performed better across all song lengths.

We also compared our model to three other publicly
available key-finding algorithms [13]. We were only able
to run these algorithms on a subset of 107 pieces in our
corpus, so for these comparisons we only report results
on this subset. These other algorithms used key-profiles
from another implementation of the KS model [8] and from
empirical analyses of key-annotated music [14, 15]. Ana-
lyzing whole songs, these other algorithms achieved ac-
curacies between 62%–67%. Interestingly, though these
models obtained their key-profiles using rule-based or su-
pervised methods, our unsupervised model yielded signifi-
cantly better results, identifying the correct key for 79% of
the songs in this subset of the corpus.

Next, we show results from our model at the segment
level. Fig. 4 shows how our model analyzes the first twelve
measures of Bach’s Prelude in C minor from Book II of the
Well-Tempered Clavier (WTC-II). Results are compared to
annotations by a music theory expert [8]. We see that the
top choice of key from our model differs from the expert
judgment in only two measures (5 and 6).

3.3 Measuring Harmonic Similarity

To track key modulations within a piece, we examine its
K =24 topic weights. These weights indicate the propor-

tion of time that the song spends in each key. They also
provide a low-dimensional description of each song’s har-
monic structure. We used a symmetrized Kullback-Leibler
(KL) divergence to compute a measure of dissimilarity be-
tween songs based on their topic weights. Fig. 5 shows
several songs as distributions over key-profiles. (Note that
previous graphs showed key-profiles as distributions over
pitches.) The first set of bars show the topic weights for
the same Bach Prelude analyzed in the previous section;
the remaining sets of bars show the topic weights for the
three songs in the corpus judged to be most similar (as
measured by the symmetrized KL divergence). From the
topic weight vectors, we see that all songs modulate pri-
marily between the keys of E[ M, A[ M, C m, and F m.

4. CONCLUSION

In this paper, we have described a probabilistic model for
the unsupervised learning of musical key-profiles. Un-
like previous work, our approach does not require key-
annotated music or make use of expert domain knowledge.
Extending LDA from text to music, our model discovers la-
tent topics that can be readily identified as the K =24 pri-
mary key-profiles of western classical music. Our model
can also be used to analyze songs in interesting ways: to
determine the overall key, to track harmonic modulations,
and to provide a low-dimensional descriptor for similarity-
based ranking. Finally, though the learning in our model is
unsupervised, experimental results show that it works very
well compared to existing methods.
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of Jyväskylä, Jyväskylä, Finland, Available:
http://www.jyu.fi/musica/miditoolbox/, 2004.

[5] L. Fei-Fei, P. Perona: “A Bayesian hierarchical model
for learning natural scene categories,” CVPR, 524-531,
2005.

[6] T. Griffiths, M. Steyvers, D. Blei, J. Tenenbaum: “In-
tegrating topics and syntax,” In L. Saul, Y. Weiss, and
L. Bottou, editors, NIPS, 537-544, 2005.

[7] M. I. Jordan, Z. Ghahramani, T. Jaakkola, L. Saul: “In-
troduction to variational methods for graphical mod-
els,” Machine Learning, 37:183-233, 1999.

445



Poster Session 3

[8] C. Krumhansl: Cognitive Foundations of Musical
Pitch, Oxford University Press, Oxford, 1990.

[9] C. Krumhansl, E. J. Kessler: “Tracing the dynamic
changes in perceived tonal organization in a spatial
representation of musical keys,” Psychological Review,
89:334-68, 1982.

[10] H. C. Longuet-Higgins, M. J. Steedman: “On interpret-
ing Bach,” Machine Intelligence, 6:221-41, 1971.

[11] B. Marlin: “Modeling user rating profiles for col-
laborative filtering,” In S. Thrun and L. Saul and B.
Schölkopf, editors, NIPS, 2003.

[12] D. Rizo: “Tree model of symbolic music for tonality
guessing,” Proc. of the Int. Conf. on Artificial Intelli-
gence and Applications, 299-304, 2006.

[13] D. Sleator, D. Temperley: “The Melisma Music An-
alyzer,” Available: http://www.link.cs.cmu.edu/music-
analysis/, 2001.

[14] D. Temperley: The Cognition of Basic Musical Struc-
ture, MIT Press, 2001.

[15] D. Temperley: “A Bayesian approach to key-finding,”
Lecture Notes in Computer Science, 2445:195-206,
2002.

A. VARIATIONAL APPROXIMATION

This appendix describes our variational approximation for
inference and learning mentioned in section 2. It is similar
to the approximation originally developed for LDA [1].

A.1 Variational Inference

The variational approximation for our model substitutes a
tractable distribution for the intractable posterior distribu-
tion that appears in eq. (3). At a high level, the approxima-
tion consists of two steps. First, we constrain the tractable
distribution to belong to a parameterized family of distri-
butions whose statistics are easy to compute. Next, we
attempt to select the particular member of this family that
best approximates the true posterior distribution.

Figure 2(b) illustrates the graphical model for the ap-
proximating family of tractable distributions. The tractable
model q(θ, z|γ, φ) drops edges that make the original model
intractable. It has the simple, factorial form:

q(θ, z|γ, φ) = q(θ|γ)
N∏

n=1

q(zn|φn) (5)

We assume that the distribution q(θ|γ) is Dirichlet with
variational parameter γ, while the distributions q(zn|φn)
are multinomial with variational parameters φn. For each
song, we seek a factorial distribution of the form in eq. (5)
to approximate the true posterior distribution in eq. (3). Or
more specifically, for each song sm, we seek the varia-
tional parameters γm and φm such that q(θ, z|γm, φm) best
matches p(θ, z|sm, α, β).

Though it is intractable to compute the statistics of the
true posterior distribution p(θ, z|α, β) in eq. (3), it is pos-
sible to compute the Kullback-Leibler (KL) divergence

KL(q, p) =
∑
z

∫
dθq(θ, z|γ, φ) log

q(θ, z|γ, φ)
p(θ, z|s, α, β)

(6)

up to a constant term that does not depend on γ and φ.
Note that the KL divergence measures the quality of the
variational approximation. Thus, the best approximation is
obtained by minimizing the KL divergence in eq. (6) with
respect to the variational parameters γ and φn. To derive
update rules for these parameters, we simply differentiate
the KL divergence and set its partial derivatives equal to
zero. The update rule for γm is analogous to the one in the
LDA model for text documents [1]. The update rule for the
multinomial parameters φni is given by:

φni ∝
V∏

j=1

β
xj

n
ij exp[Ψ(γi)], (7)

where Ψ(·) denotes the digamma function and xj
n denotes

the count of the jth pitch class in the nth segment of the
song. We omit the details of this derivation, but refer the
reader to the original work on LDA [1] for more detail.

A.2 Variational Learning

The variational approximation in eq. (5) can also be used
to derive a lower bound on the log-likelihood log p(s|α, β)
of a song s. Summing these lower bounds over all songs
in the corpus, we obtain a lower bound `(α, β, γ, φ) on the
total log-likelihood L(α, β) =

∑
m log p(sm|α, β). Note

that the bound `(α, β, γ, φ) ≤ L(α, β) depends on the
model parameters α and β as well as the variational pa-
rameters γ and φ across all songs in the corpus.

The variational EM algorithm for our model estimates
the parameters α and β to maximize this lower bound. It
alternates between two steps:

1. (E-step) Fix the current model parameters α and β,
compute variational parameters {γm, φm} for each
song sm by minimizing the KL divergence in eq. (6).

2. (M-step) Fix the current variational parameters γ and
φ across all songs from the E-step, maximize the
lower bound `(α, β, γ, φ) with respect to α and β.

These two steps are repeated until the lower bound on the
log likelihood converges to a desired accuracy. The up-
dates for α and β in the M-step are straightforward to de-
rive. The update rule for β is given by:

βij ∝
M∑

m=1

N∑
n=1

φi
mnxj

mn. (8)

While the count xj
mn in eq. (8) may be greater than one,

this update is otherwise identical to its counterpart in the
LDA model for text documents. The update rule for α also
has the same form.
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ABSTRACT

We describe the process of collecting, organising and pub-
lishing a large set of music similarity features produced
by the SoundBite [10] playlist generator tool. These data
can be a valuable asset in the development and evaluation
of new Music Information Retrieval algorithms. They can
also be used in Web-based music search and retrieval ap-
plications. For this reason, we make a database of features
available on the Semantic Web via a SPARQL end-point,
which can be used in Linked Data services. We provide
examples of using the data in a research tool, as well as in
a simple web application which responds to audio queries
and finds a set of similar tracks in our database.

1. INTRODUCTION

Similarity-based retrieval is an important subject area in
music information research. Yet, researchers working in
this field are often limited by the unavailability of large
audio collections, copyright restrictions, and even more
often, unreliable metadata associated with songs in a par-
ticular music database or personal library. This paper de-
scribes a system for collecting and publishing music sim-
ilarity features from a large user base coupled with valu-
able editorial metadata. Metadata are verified against Mu-
sicBrainz, 1 a large public database of editorial informa-
tion on the Web, and published together with the match-
ing similarity features on the Semantic Web [1]. We ex-
plore some research opportunities opened by the system,
and describe SAWA 2 recommender, a sample web appli-
cation which demonstrates how the published data can be
used. Rather than describing a music recommender in de-
tail, our primary motivation is in making high quality data
available for similarity and recommendation research in a
standardised way.

1 http://www.MusicBrainz.org/
2 SAWA stands for Sonic Annotator Web Application. A search and

recommendation system built on SAWA and the SoundBite data set is
available at: http://www.isophonics.net/sawa/rec
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The heart of the data collection system is SoundBite
[10] [15], a tool for similarity-based automatic playlist gen-
eration. Soundbite is available as an iTunes plugin, and is
currently being implemented as a plugin for other audio
players as well. Once installed, it extracts features from
the user’s entire audio collection and stores them for fu-
ture similarity calculations. It can then generate playlists
consisting of n most similar tracks to any given seed track
specified by the user. The similarity data currently con-
sists of 40 values per track, based on the distribution of
Mel-Fequency Cepstral Coefficients (MFCC) as described
in [10]. The extracted features are also reported to a central
server, where they become part of the so called Isophone
database. This database is used for aggregating informa-
tion from SoundBite clients, consisting of editorial meta-
data and similarity features for each audio track. The entire
system may therefore be regarded as a distributed frame-
work for similarity feature extraction. The accumulated
data can be valuable to the research community, and may
also be used by other audio similarity and recommenda-
tion systems. In order to facilitate such usage, we publish
a cleaned-up portion of the data on the Semantic Web.

The rest of the paper is organised as follows: In sec-
tion two, we provide brief explanations of some of the key
terms relevant to the technologies we use. In section three,
we describe the published data set, the collection system
architecture, the data clean-up process, and the way re-
searchers as well as Semantic Web applications can access
the data using a SPARQL end-point 3 . Finally, in section
four, we describe our prototype recommender, a publicly
accessible web application based on this data set.

2. LINKED DATA AND THE SEMANTIC WEB

Building the Semantic Web involves creating a machine-
interpretable web of data in parallel to the existing web
of documents [1]. By uniformly integrating diverse data
and services, it aims to enable applications which would
be difficult, if not impossible, to build using prevailing in-
compatible interfaces and representation formats. An ex-
ample application from the world of music would interlink
content providers (music labels, music sellers, online radio
stations), meta-databases holding musical and artists infor-

3 A web resource that responds to queries using the SPARQL Protocol
and RDF Query Language, an SQL-like language for accessing RDF [9]
data bases.
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mation, semantic audio tools and music identification ser-
vices, and perhaps even music collections held on personal
computers. This could revolutionise the way we access or
discover new music. However, creating such a distributed
network requires that all data sources speak the same lan-
guage, i.e., are governed by a common schema.

Because of the diverse and unbounded nature of infor-
mation on the general Web (and we believe that musical
information is just as diverse), a major challenge was set
forth to Semantic Web developers: How to design a stan-
dard, extensible schema for representing information en-
compassing a wide range of human knowledge? The Se-
mantic Web’s answer to this apparently complex and cir-
cular problem is in specifying how information is pub-
lished, rather than trying to arrange everything into rigid
data structures.

2.1 Semantic Web Technologies

The key concepts and technologies enabling the develop-
ment of the Semantic Web are the Resource Description
Framework (RDF) [9], Semantic Web ontologies, and RDF
query languages.

RDF is a conceptual data model. It provides the flexi-
bility and modularity required for publishing diverse semi-
structured data — that is, just about anything on the Se-
mantic Web. It is based on the simple idea of expressing
statements in the form of subject — predicate — object.
Elements of these statements are literals, and resources
named by Uniform Resource Identifiers (URI). This pro-
vides the model with an unambiguous way of referring to
things, and – through the HTTP dereferencing mechanism
– access to additional information a resource may hold.
Simple RDF statements, however, are not sufficient for ex-
pressing things unambiguously. In order to be precise in
our statements, we need to be able to define, and later re-
fer to concepts and relationships pertinent to a domain or
application. Ontologies are the tools for establishing these
necessary elements.

Semantic Web ontologies are built on the same concep-
tual model that is used for expressing data. However, addi-
tional vocabularies were created for expressing formal on-
tologies. RDF is the basis for a hierarchy of languages rec-
ommended by the W3C 4 . This includes the RDF Schema
Language (RDFS) for defining classes and properties of
RDF resources and the OWL Web Ontology Language for
making RDF semantics more explicit. 5

Besides a standard way of representing information, ac-
cess to data also needs to be standardised. The SPARQL
Protocol and RDF Query Language [6] is a recent recom-
mendation by the W3C for accessing RDF data stores. A
Web interface which accepts and executes these queries is
commonly referred to as a SPARQL end-point.

SPARQL allows access to information in a multitude of
ways. In the simplest case, it is used in a similar manner

4 The World Wide Web Consortium: http://www.w3.org/
5 For example, OWL-DL (description logic) can impose restrictions on

the range and domain types of properties, or constraints on cardinality.

to querying a relational database using SQL 6 . A query –
consisting of a set of triple patterns – is matched against
the database. Results are then composed of variable bind-
ings of matching statements, based on a select clause spec-
ified by the user. This can be used to retrieve informa-
tion about a particular resource. More complex SPARQL
queries are frequently used to aggregate information in a
particular way. For example, a user agent may interpret a
query and aggregate data from various sources on the fly.
The standardisation and increasing support of the SPARQL
query language strongly promotes the adoption of RDF as
a prevailing metadata model and language.

2.2 Linked vs. Structured Data

There are already a large number of services exposing struc-
tured data on the Web. Examples include Google, Yahoo,
OpenSearch, Amazon, Geonames, and the MediaWiki APIs.
Music-related data providers include the Magnatune and
Jamendo labels, and the MusicBrainz database. Most of
these services use proprietary XML-based data formats.
This is sufficient for structuring data for a given applica-
tion, yet, because of the fairly ad-hoc definition of concepts
in XML schema, these formats do not provide the means
for transparent access to a variety of services. The Linked
Data community 7 offers standardised access to some in-
formation exposed by the previously listed services, as well
as other related data sets. In Linked Data services, the re-
liance on diverse interfaces and result formats is reduced
by using RDF as a common representation. This also pro-
vides the means for making data available on the Semantic
Web.

Most existing metadata formats for expressing audio
features are also based on XML. MPEG-7 [7] and ACE-
XML [11] are perhaps the most prominent examples. The
structural and syntactical requirements for expressing el-
ements and schemes in MPEG-7 are fulfilled by using an
extended XML schema language. Although this allows the
production of machine-parsable data, it does not provide a
machine-interpretable representation of the semantics as-
sociated with MPEG-7 metadata elements. The same prob-
lem arises with the ACE-XML format developed for the
jMIR package, linking components such as jAudio for fea-
ture extraction, and the ACE classification engine. A com-
mon problem can be recognised in using XML for stan-
dardised syntax, while the data model remains disjoint and
often arbitrary, with ad-hoc definition of terms, and with-
out the ability to define meta-level relationships such as the
equivalence of certain concepts. This hinders the ability to
integrate services expressing metadata in these formats, or
the reuse of any of the defined terms in other domains. Our
data, on the other hand, is expressed using a flexible RDF
and Web Ontology based data model. It is compatible with
the Music Ontology [12], which is already widely used in
Linked Data applications.

6 Structured Query Language
7 "Linking open data on the semantic web",

http://linkeddata.org/
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2.3 Ontologies

As mentioned in section 2.1, only a conceptual model is
provided by RDF. Ontologies are used for the actual def-
inition of pertinent terms and relationships. Recent ef-
forts [13] toward integrating music-related web services
and data sources have led to the creation of the Music On-
tology [12]. It serves as a standard base ontology which
can be readily used for describing a wide range of con-
cepts. These include high-level editorial data about songs
or artists, production data about musical recordings, and
detailed structural information about music using events
and timelines. The ontology provides the basis for nu-
merous extensions, including the Audio Features Ontol-
ogy [14]. The music similarity features published and used
by the services described in this paper are expressed using
these ontologies.

3. THE SOUNDBITE DATASET

The SoundBite dataset consists of MFCC features and Mu-
sicBrainz identifiers for a cleaned-up subset of the data re-
ported back to the central server by the different instances
of the SoundBite client application. Currently, the database
includes metadata for 152,410 tracks produced by 6,938
unique artists. These numbers are expected to grow as the
number of SoundBite users grows, and the data clean-up
procedure is refined. We believe that this dataset can be
especially valuable because of its scope and diversity. Fur-
thermore, it originates from real-world users, and there-
fore reflects at least a part of the users’ community inter-
ests and relevant needs. It is not susceptible to any biases
which might be implicit in datasets which are artificially-
created for research purposes. We currently do not collect
personal data about SoundBite users, although this infor-
mation might be of interest for other studies. However, at
the time of writing this paper, the growing user community
already seems sufficiently large and varied for the dataset
to cover the most popular genres. The dataset coverage is
expected to further improve as a direct result of user base
growth and further clean-up.

Figure 1. Simplified SoundBite Architecture.

As mentioned in section 1, the features extracted by
each instance of the SoundBite client application are re-
ported back to a central server, where they are stored in a
database alongside the relevant textual metadata. Figure 1

illustrates the interaction between the iTunes application,
the SoundBite plugin, and the Isophone server. The rele-
vant resources on the client side are iTunes music library
and the corresponding XML file which describes the col-
lection. Since textual metadata contained in this XML file,
such as title and artist, are often inserted or altered by the
users themselves, we cannot rely on their accuracy. They
certainly cannot be used as unique identifiers which are
necessary for facilitating public usage of the dataset. Prior
to publishing, the data need to undergo a clean-up process,
as described in following sections. Using the MFCC data
for automatic playlist creation, as done by the Soundbite
plugin, requires similarity metrics to be defined on the data.
These are not provided as part of the dataset, but are rather
considered part of an algorithm which utilizes the data for a
particular application, namely, playlist creation. The pub-
lished data facilitate the exploration of further similarity
algorithms and applications.

3.1 Data filtering and publishing

Since the audio tracks to which the features relate reside
in end-users’ audio collections, they are inaccessible to
us and we obviously cannot provide them as part of the
dataset. It is therefore of crucial importance that we do pro-
vide unique identifiers to the audio material, without which
the provided features can be of very little use. As a source
for such unique identifiers, and as an aid in metadata-based
filtering, we use the MusicBrainz database.

MusicBrainz is a comprehensive public community mu-
sic meta-database. It can be used to identify songs or CDs,
and provides valuable data about tracks, albums, artists and
other related information. MusicBrainz can be accessed ei-
ther through their web site or by using client applications
via an application programming interface (API). We use
the MusicBrainz service as metadata reference in the filter-
ing process, and use MusicBrianz ID’s as unique identifiers
which are published together with the MFCC’s.

The editorial metadata reported back to the server by
SoundBite (as depicted in figure 1) include the entire con-
tent of the iTunes Music Library XML file. The data clean-
up procedure currently uses the following metadata items:

• Track Title

• Main Artist

• Album Title

• Track Duration

• File Format

• Bit Rate

In the first stage of the clean-up process, title, artist,
and album are matched against the MusicBrainz database.
The track’s duration is used for resolving ambiguities, as
well as for sanity check (a large difference between the re-
ported duration value and the duration retrieved from Mu-
sicBrainz may indicate that the other fields are erroneously
or maliciously wrong). Each matching track is assigned an
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ID provided by the MusicBrainz database, which serves as
unique identifier. We found that about 28% of the entries
in our database had exact matches (artist, title, album, and
approximate duration) in the MusicBrainz database. The
remaining 72% are stored for possible future use, but do
not currently qualify for publishing. The relatively small
proportion of tracks that do qualify can be regarded as an
indication of the poor reliability of textual metadata in end
users’ audio collection.

As indicated in [16], MFCC features are more robust
at higher bit rates. Therefore, in the second stage the data
is further filtered according to maximum bit rate and best
quality audio file type (e.g. keeping AACs as opposed
to MP3s), in order to preserve the highest quality features
for each track. Since these parameters are included in the
metadata reported to the server, this doesn’t require access
to the audio files themselves.

Once cleaned-up and filtered as described above, the
MFCC features and the obtained MusicBrainz ID’s are ex-
ported from the database as RDF’s using the D2R Map-
ping [2], with the appropriate linking to the Audio Fea-
tures [14] and SoundBite ontologies (see figure 2). They
are then made available via a SPARQL end-point on our
server 8 .

Figure 2. Accessing the SPARQL endpoint using the
SoundBite ontology.

4. APPLICATIONS

In this section we describe how our data set can be used
as basis for the development of new music similarity and
music recommendation algorithms. Additionally, we pro-
vide an example of a prototype audio search engine. The
service uses our database to find tracks similar to an audio
query and returns editorial metadata about the found set
obtained from external web-services.

4.1 Research Platform

There has recently been a significant amount of research
on music similarity and audio-based genre classification.
Both fields use content-based descriptors extracted from

8 http://dbtune.org/iso/

audio signals. Apart form being computationally expen-
sive, audio-similarity features coupled with matching tex-
tual metadata are not easily obtainable in large quantities.
The published Isophone data provide an excellent oppor-
tunity for further research based on a reliable music col-
lection with readily-available MFCC features. Obviously,
since the available features are calculated prior to being
published, the dataset does not accommodate changes to
the algorithms which produced them in the first place. There
is, however, plenty of room for experimentation with the
way the different features are combined to form similar-
ity metrics, and the way they are used on the application
level. We use the dataset in a research platform, which fa-
cilitates such experiments. We are currently exploring dif-
ferent similarity metrics based on the published features, as
well as different ways to combine the features with other
relevant data, e.g. in the context of hybrid recommender
systems (see, for exmple, [5]). As a proof of concept, and
to demonstrate how the research community could use the
published data, we have implemented a tool which queries
the SPARQL endpoint to obtain MFCC’s for given tracks,
to facilitate the above mentioned research activities.

4.2 SAWA-recommender

SAWA-recommender 9 is a simple query by example search
service made available on the Web. Its main goal is to
demonstrate an application of the published music simi-
larity features. In this section, we outline the use and con-
struction of this service.

A query to SAWA-recommender is formed by one or
more audio files uploaded by the user. It is typically based
on single file, however, uploading multiple audio files is
also allowed. In the latter case, a small set of songs forms
the basis of the query, either by considering similarity to
any of the uploaded songs (and ranking the results appro-
priately), or formulating a single common query by jointly
calculating the features of the query songs. The calculated
query is matched against the Isophone database holding
similarity features and MusicBrainz identifiers associated
with each song in this database. Finally, the MusicBrainz
web API is used to obtain metadata about songs in the re-
sult set. These are displayed to the user. The metadata
consist of basic information such as song title, album title
and the main artist’s name associated with each song. We
also provide direct links to MusicBrainz, as well as Linked
Data services such as BBC Music 10 artist pages.

For each uploaded file, the system also attempts to iden-
tify the audio by calculating a MusicDNS 11 fingerprint
and associated identifier. This identifier is matched against
the MusicBrainz database to obtain editorial data, hence
one can also use the service to find more information about
an audio file (see figure 3).

The architecture of the web application is depicted in
figure 4. The system is built on software components de-

9 http://isophonics.net/sawa/rec
10 http://www.bbc.co.uk/music/
11 http://www.musicdns.com/
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Figure 3. File Identification and Selection Interface.

veloped in the OMRAS2 project 12 and a small set of com-
mon open-source libraries.

The signal processing back-end of the service is pro-
vided by Sonic Annotator 13 together with Vamp audio
analysis plugins [3]. These plugins use an application pro-
gramming interface (API) designed for audio feature ex-
traction. They take audio input and return structured nu-
merical results. While Vamp plugins perform the feature
extraction step (implemented in efficient C++ code), Sonic
Annotator is the host application that reads audio data and
applies plugins to one or more files in batch. This pro-
gram accepts configuration data and returns audio features
in RDF according to specific ontologies [14] [4]. For the
purpose of this present search system, we configure Sonic
Annotator and a suitable Vamp plugin to extract audio sim-
ilarity features based on MFCCs [10].

Figure 4. Search Engine System Architecture.

The core of the search system is a Python application
which provides a Web interface and a basic search and
classification engine. It also manages user sessions and
uploaded files. Since users may upload copyrighted mate-
rial, user sessions are fully isolated, and all audio files are
automatically deleted as the user leaves the service.

12 http://www.omras2.org/
13 Available at: http://omras2.org/SonicAnnotator

The Web interface is built using the Cherrypy 14 Python
library. This allows the implementation of HTTP request
handlers as ordinary methods defined within a web appli-
cation class. Using this library, it is straightforward to ac-
cept audio files as well as publishing data received from
other system components using dynamically generated web
pages.

Query processing and database search is performed in
three steps. First, we extract features from the uploaded
audio files. For optimised search, the query features are
matched against a model trained on the whole database.
Finally, a selected group of songs are ranked based on their
similarity to the query and the results are displayed to the
user.

Although simple linear search was suggested for per-
sonal collections, [10] the size of our current database is
over 150.000 tracks and it is expected to grow. For this
reason, we partition the data space by similarity to form
self-similar groups of songs. These groups or clusters can
then be used to index the database. We can limit the search
space by choosing the best matching cluster based on its
proximity to the query song. Hence, the number of direct
similarity calculations is greatly reduced. Since our goal
is search optimisation rather than classification, we choose
an unsupervised learning algorithm using a self-organising
model, similar to a Self Organising Map [8]. The details of
this exceed the scope of our current discussion. However,
it is important to note that using the symmetrised Kullback-
Leibler (KL) divergence as basis for training and classifica-
tion, we could verify the scarcity of hubs reported in [10]
using a 100-times larger database of features. The songs
are roughly equally distributed among the nodes. Only 4%
of the nodes became hubs (containing a large set of songs)
and 3% of them contain fewer songs. We also found that
this phenomenon is largely independent of the size of the
model (the number of nodes). The fact that the collec-
tion can be partitioned automatically by grouping similar
songs - without obtaining too many over-populated clus-
ters (hubs) - shows that the database is well balanced and
justifies the choice of metrics and learning algorithm. This
is also favourable for the search application, since we can
limit the number of songs where the similarity has to be ex-
plicitly calculated and compute the divergence only within
a single class without significantly modifying the results
set. In our current implementation, a local copy of the par-
titioned database is used for searching, however, the model
is trained on the data available at the SPARQL end-point.
This is achieved by an appropriate SPARQL query, gen-
erated and issued in each training iteration. This way, the
model can easily be adjusted if the database is expanded in
the future. For producing the final results, a limited set of
similar songs is collected and ranked by similarity to the
query song(s) using the KL divergence described in [10].
Finally, the metadata are obtained from MusicBrainz and
displayed to the user.

Since our similarity assessment follows the same prin-
ciples applied in SoundBite, these results can be seen as

14 Available at: http://www.cherrypy.org/
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content-based recommendations. However, given the size
of the database they might be useful for identifying un-
known songs or song segments. In a commercial situation,
our service might be useful in finding an alternative for a
song, where a copyright agreement for its use can not be
obtained.

5. CONCLUSION

We described the SoundBite dataset and its publication on
the Semantic Web. We believe that due to its scope and
diversity (which are expected to grow even further), it is
a valuable resource for researchers as well as application
developers. We provided some examples of applying the
data in research and prototyping web applications. These
initial examples strengthen our beliefs regarding the value
and potential of this dataset, and we therefore intend to
continue to follow our policy of publishing accumulated
data on the Semantic Web. We intend to further develop
this particular dataset by collecting more raw data and re-
fining the filtering process, and to continue developing ap-
plications which utilize the data for research purposes and
public use.
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ABSTRACT

Considering its mediation role between the poles of rhythm,
harmony, and melody, the bass plays a crucial role in most
music genres. This paper introduces a novel set of
transcription-based high-level features that characterize the
bass and its interaction with other participating instruments.
Furthermore, a new method to model and automatically
retrieve different genre-specific bass playing styles is pre-
sented. A genre classification task is used as benchmark to
compare common machine learning algorithms based on
the presented high-level features with a classification algo-
rithm solely based on detected bass playing styles.

1. INTRODUCTION

After prolonged series of publications focusing on low-
and mid-level features, many works within the MIR com-
munity nowadays emphasize the importance of musical
high-level features. Their application is expected to sig-
nificantly increase the precision in automatic music classi-
fication and similarity search tasks that have limits using
conventional modeling paradigms [2]. Various automatic
transcription techniques allow the extraction of score pa-
rameters like note pitch, velocity (volume), onset time and
duration from polyphonic mixtures. These parameters em-
body the prior foundation for a subsequent feature extrac-
tion. Due to their close relation to musicological expres-
sions, high-level features can be easily understood by mu-
sicologists. Thus, they offer a promising opportunity to
translate existing musicological knowledge into automati-
cally retrievable properties of analyzed music.
The remainder of this paper is organized as follows. In
Sec. 2, we illustrate the goals of this publication and give
an overview over related work in the subsequent section.
We present both novel transcription-based high-level fea-
tures and a new framework to model concepts and classes
for the purpose of music classification in Sec. 4. Evalua-
tion results from different scenarios are presented and dis-
cussed in Sec. 5 and a final conclusion is given in the last
section.
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2. GOALS & CHALLENGES

Our goal is to design transcription-based high-level fea-
tures that enable a better characterization of the bass track
in different songs. Furthermore, we aim to develop a gen-
eral method to translate musicological knowledge into rules
on feature values that can be easily evaluated. This ap-
proach is intended to facilitate the design of an instrument-
related classifier that is trained by musicological knowl-
edge – similar to an expert system. When analyzing real
audio data, the strong dependence of a well-performing
transcription system still remains the biggest challenge.

3. PREVIOUS APPROACHES

Various bass transcription algorithms have been proposed
so far in [13], [11], [6], and [18]. They extract the score
parameters of a bass track in polyphonic audio recordings.
Still, transcription errors related to pitch and onset values
appear due to the high complexity of overlapping instru-
ment spectra. These errors affect the accuracy of the de-
duced high-level features. As shown in [16], high-level
features can be derived from different music domains like
instrumentation, texture, rhythm, dynamics, pitch statis-
tics, melody, and chords. Offering a direct access to the
relevant score parameters, symbolic audio data like MIDI
receives preferential treatment in many publications.
The authors of [4] applied several statistical methods to
derive high-level features from note onsets, pitches, and
intervals. The versatility of complexity-based descriptors
based on entropy, compression, and prediction has been
shown in [15]. A set of musical features derived from the
bass part was introduced in [19]. The authors restricted
themselves to pitch-related features and distinguished be-
tween features characterizing the pitch variability and the
pitch motion. Rhythmical aspects like the swing or syn-
copations have been investigated in various publications as
for instance in [12] and [9]. In [16], [4], [19], and [1], genre
classification solely on high-level features was covered.

4. NEW APPROACHES

4.1 High-level features

High-level features allow to model and quantify musical
properties that are directly observable by experienced mu-
sicologists. These are for instance the key, the time signa-
ture or measure of the harmonic consonance in a piece of
music. They can be deduced from the pitch, the onset time,
and the duration values of all notes.
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Melody-related features
By analyzing the course of theabsolute pitchpA, we de-
rive features from the incidence rate of typical pitch pro-
gressions, such asnotes with constant pitchor chromatic
note sequencesrelated to the overall number of notes and
the overallpitch rangein halftones. With reference to the
simultaneously sounding chords of the harmony track, we
derive a feature from the ratio ofchord noteswithin the
bass line. Besides, we convert the absolute pitch of each
note into itsfunctional pitchpA,F . It represents the inter-
val type between each bass note and the root note of the
simultaneously sounding chord. We consider all interval
types from primes to sevenths (pA,F ∈ [1, 7]), bigger in-
tervals are mapped into this interval range. The incidence
rates of all possible values ofpA,F are used as features that
provide key-independent information about the frequency
of occurrence of different interval types related to the har-
mony accompaniment.
The prior use of root notes, octaves, and fifths of the cur-
rent chord within a bass line does not allow a conclusive
differentiation between major and minor based chords by
exclusively investigating the bass accompaniment. Thus, a
measure ofharmonic ambiguityis calculated proportional
to the occurrence rate of primes and fifths and inversely
proportional to the occurrence rate of thirds as
FHA = P (pA,F = 1) + P (pA,F = 5)− P (pA,F = 3).
We use a simple bar-wise distance measure combining
rhythmic and melodic similarity to detect thedominant
bass pattern. Therefore, we compute a square matrixDτ

containing the similarity between the notes in each pair of
bars. We useDτ (k, m) = 0.5[(1 − Nk,m/Nk)+
(1 − Nm,k/Nm)] whereNi denotes the number of notes
in bari andNi,j denotes the number of notes of bari that
have a note equivalent in barj with the same pitch (pA) and
onset[mod(τ, 1)]. We choose the notes of barndom = n
that minimizes

∑
i Di,n as the dominant pattern since this

bar has the lowest overall distance to the other bars. Subse-
quently, measures oftonal andrhythmic variationare de-
rived from the mean distance between all bars to barndom.
For the rhythmical variation, only the aforementioned on-
set condition of the note equivalent is taken into account.
The interval progression of the bass line is characterized
by three different representations, namely the relative pitch
pR ∈ [−12, 12] (mapped down to a two octave range),
the relative pitch mapped to functional intervalspR,F ∈
[−7, 7] (to provide a representation independent of the key-
type as described above), and the interval directionpR,D ∈
[−1, 1]. Subsequently, several statistical properties such as
entropy and relative number of non-zero elements of the
probabilities of all parameter values are extracted as fea-
tures. The measures ofconstant directionFCD & domi-
nant directionFDD furthermore quantify the temporal ra-
tio of note passages with constant interval direction and
characterize the dominant direction. Thus, they measure
to what extend a melody appears to be fluent. We use
FCD = N [pR,D(i) ≡ pR,D(i + 1)] /NIntervals and
FDD = N(pR,I = 1)/NIntervals.

Rhythm-related features
Thebeat gridcontains the temporal positions and indices
of all beats corresponding to the current time signature.
After its extraction, all note onsett and duration values∆t
are mapped from seconds to certain multiples of the corre-
sponding bar lengths (resulting inτ and∆τ ). This allows
a tempo-independentextraction of rhythm-related features.
We applied a similar approach as described in [12] to de-
rive theswing ratio related to the 8th- and the 16th-note
grid.
A measure ofsyncopationrelated to the both aforemen-
tioned temporal grids is derived by retrieving binary pat-
terns (like for instance “1001” in an 16th-note grid rep-
resenting two notes whereas the first one is played on a
downbeat and the other one on the adjacent off-beat re-
lated to the 8th-note grid).
Based on thedominant bass patternand its dynamic pro-
gression, we take the number of bass notes within each
bar with a velocity above 60% of the maximum occuring
bass note velocity as the measure ofaccent sparsity. Per-
cussionists often use the bass-drum to “double” the main
accents of the bass line. We measure the ratio of the num-
ber of notes that both instruments played rhythmicallyin
unisonto the sum of all notes played by the bass and the
bass drum individually.

Structure-related features
In addition, features characterizing repeating melodic and
rhythmic segments are derived. Therefore, we apply a sim-
ple pattern search algorithm (Correlative Matrix Approach
[14]) on character strings derived from the aforementioned
score parameterspA, τ , and∆τ .
We use the statistical properties mean, median, standard
deviation, minimum, and maximum from each of the pat-
tern parameters length, incidence rate, and mean distance
between similar patters as features. Overall, all single-
and multidimensional high-level features result in an 154-
dimensional feature vector.

4.2 Concept-based framework

To improve genre classification, we aim at modeling com-
mon bass playing styles that are typical for certain mu-
sic genres. Therefore, we apply a generic framework to
translate known musicological properties into explicit re-
strictions on feature values. The assignment of weighting
factors furthermore allows to take the importance of each
property into account. In the following subsections, we in-
troduce the termsconcept, class, andpropertyas the major
components of the framework. Afterwards we explain how
relevance valuesfor both properties and classes are derived
to measure their significance to the investigated piece of
music and close with a detailed example. Hereafter, multi-
dimensional variables are denoted in bold print.

Concepts & classes
The termconceptrepresents a general approach to catego-
rize music. Each concept is defined by a set ofclassesas
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Figure 1. Concept-based framework

shown in Fig. 1. In this paper, we apply the conceptsBass-
PlayingStyle(denoted asSB), which represents a common
way of playing the bass in a specific music genre andGenre
(denoted asG), which is a common category for musi-
cologists. One well-known example is the bass playing
style walking bass (defined as classWalkingBass), which
is widely applied by bass players in different music genres
related toSwing. It is covered as an example in the end of
this section. The assignment between classes of both con-
cepts is shown in Fig. 2.

Properties
Each class is defined by a number ofpropertiesP . They
translate its musicological description into explicit restric-
tions on the values of certainfeaturesF .
We discernmandatory properties(M) and frequent prop-
erties(F). Mandatory properties are strictly need to be ful-
filled whereas frequent properties are not mandatory for a
certain class. Aweighting factor0 ≤ gi ≤ 1 is assigned
to each frequent property.gi is proportional to the impor-
tance of the corresponding property with regard to the cur-
rent class.
Furthermore, properties are eitheromnipresent(O) or
conditional (C). Omnipresent properties are constantly
valid, whereas the validity of conditional properties de-
pends on a certain condition. This may for instance be the
presence of an instrument that a feature and thus a property
is related to. Only if the condition is fulfilled, the corre-
sponding property needs to be considered. Generally, the
indices ofP imply the corresponding property type. Ex-
amples are given in the end of this section. We derived the
weighting factors and thresholds of all properties used in
this paper from experiments with development data sam-
ples, which did not belong to the evaluation set.

Relevance values
Theproperty relevance valueγP measures to what extent
a propertyP is fulfilled (γP = 1) or not (γP = 0). It is
derived from the corresponding feature valueF by using
a rating functionr(F ). This function depends on the type
of restriction on the feature valueF that is defined byP .
For instance, we useγP = r (F ) = 0.5[sgn(F − V ) + 1]
to match the propertyP → F isBiggerThan V . The

A frequent use of chord tones is mandatory.
P1,MO → FChordToneRatio isBiggerThan 0.3

2) The melodic direction is often constant within each bar.
(important property - weighting factorg2 = 0.7)
P2,F O → FConstantDirection isBiggerThan 0.7

3) If quarter notes are primarily used (such as in slow and
mid-tempo Jazz songs), there is a high swing factor related to
the eighth note grid. (important property - weighting factor
g3 = 0.8)
if Condition( FDominantRhythmicalGrid is 4 )
P3,F C → FSwingF actor,8 isBiggerThan 0.7

4) If eighth notes are primarily used (such as in up-tempo Jazz
songs), there is a high swing factor related to the sixteenth
note grid. (important property - weighting factorg4 = 0.8)
if Condition( FDominantRhythmicalGrid is 8 )
P4,F C → FSwingF actor,16 isBiggerThan 0.7

5) Chromatic note passages are occasionally used. (less im-
portant property - weighting factorg5 = 0.3)
P5,F O → FChromatics isRelativelyHigh

Table 1. Properties of the classWalkingBass(concept
BassPlayingStyle)

rating function is designed in such a way that0 ≤ γP ≤ 1
is assured.
Subsequently, theclass relevance valueγC is derived for
each classC from its corresponding property relevance
values.γC quantifies to what extend a certain class is rele-
vant for the musicological description of an analyzed piece
of music.
We suggest the following algorithm to comply with the
different property types. If all mandatory properties are
given to be true,γC is calculated as a weighted sum over
all frequent propertiesγPF

according to their normalized
weighting factorŝg (

∑
ĝi = 1). Otherwise it is set to zero.

This algorithm can be summarized as follows:

γC =

{∑
i ĝiγPF,i

if γPM,j
= 1 ∀ PM,j ∈ PM ,

0 else
(1)

Example
As shown in Table 1, the classWalkingBassof the concept
BassPlayingStyleis defined by 5 feature-related properties
that are derived from musicological properties of this style.

5. EVALUATION

We use two data sets consisting of symbolic (MIDI) and
real audio (AUDIO) each with 50 respectively 40 excerpts
from each of the genresPopRock (POP), Swing
(SWI), Latin (LAT), Funk (FUN), Blues(BLU), andMet-
alHardRock(MHR). All excerpts are derived from instru-
mental solo parts of the melody instruments between 20
and 35 seconds of length. Fig. 3 depicts all processing
steps that precede the evaluation.
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5.1 Transcription & Pre-processing

We used the Transcription Toolbox [6] to extract the score
parameters from real audio data. It provides algorithms to
extract the bass, melody, harmony, and drum part as well
as the beat grid information. As explained in Sec. 4.1, our
aim is to focus on the bass and its interaction with the par-
ticipating instruments. Concerning symbolic audio data,
score parameters are directly extracted.

5.2 Feature Selection (FS) and Feature Space
Transformation (FST)

The following feature selection and feature space transfor-
mation techniques have been utilized to reduce the dimen-
sionality of the feature space.

Inertia Ratio Maximization using Feature Space Pro-
jection (IRMFSP).
IRMFSP was proposed in [17]. This FS algorithm is moti-
vated by the ideas similar to Fisher’s discriminant analysis.
During each iteration of the algorithm, we look for the fea-
ture maximizing the ratio of between-class inertia to the
total-class inertia. To avoid the next chosen feature to pro-
vide the same information on the next iteration, all features
are orthogonalized to the selected one. In this evaluation
we use the ISMFSP algorithms with the modifications pro-
posed in [8].

Linear Discriminant Analysis (LDA)
LDA is one of the most often used supervised FST meth-
ods [10]. It is successfully applied as a pre-processing for
audio signal classification. Original feature vectors are lin-
early mapped into new feature space guaranteeing a max-

imal linear separability by maximization of the ratio of
between-class variance to the within-class variance. This
mapping is conducted by multiplying the originalK × N
dimension feature matrixX with the transformation ma-
trix T. Reducing the dimension of the transformed feature
vector fromN to D ≤ N is achieved by considering only
the firstD column vectors ofT for multiplication.

Generalized Discriminant Analysis (GDA)
Real-world classification routines often have to deal with
non-linear problems, thus linear discrimination in the orig-
inal feature space is often not possible. The idea of the FST
technique GDA [3] is to map the features into higher di-
mensional (sometimes infinity dimensional) space, where
the linear discrimination is possible. Dealing with a high
dimensional space leads to an increase of the computation
effort. To overcome this problem, the so calledkernel trick
is applied. The key idea of the kernel trick is to replace
the dot product in a high-dimensional space with a kernel
function in the original feature space.

5.3 Classification

We applied 4 known methods (SVM, GMM, NB, and kNN)
as well as a novel concept-based approach for the purpose
of classification.

Support Vector Machines
A Support Vector Machine (SVM) is a discriminative clas-
sifier, attempting to generate an optimal decision plane be-
tween feature vectors of the training classes [20]. Com-
monly for real-world applications, classification with lin-
ear separation planes is not possible in the original feature
space. The transformation to the higher dimensional space
is done using above mentioned kernel trick (we applied
the RBF kernel in this paper). Transformed into a high-
dimensional space, non-linear classification problems can
become linearly solvable.

Gaussian Mixture Models
Gaussian Mixture Models (GMM) are commonly used gen-
erative classifiers.Single data samples of the class are inter-
preted as being generated from various sources and each
source is modeled by a single multivariate Gaussian. The
probability density function (PDF) is estimated as a
weighted sum of the multivariate normal distributions. The
parameters of a GMM can be estimated using the
Expectation-Maximization algorithm [5].
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Naive Bayes Classifier
Naive Bayes classifier (NB) is a simple probabilistic clas-
sifier. NB uses a strong assumption of feature dimensions
being statistically independent and thus takes into account
only means and variances over the feature dimensions for
all training data of the class. Recently, applicability andef-
ficiency of NB classifiers were discussed in detail in [21].

k-Nearest Neighbor
With k-Nearest Neighbor (kNN), the classification is based
on the class assignment of the closest training examples in
the feature space [7]. We used the Euclidean distance here.
This type of discriminative classifier is also referred as in-
stance based learning. The level of generalization of kNN
can be tuned by adjusting the number of nearest neighbors
k taken into account.

Novel approach: concept-based classifier
Using Eq. 1, we derive a class relevance valueγSBi

≡ γCi

for each class of the conceptBassPlayingStyle. We defined
one common bass playing style for each of the 6 genres
that were considered in the evaluation (see Sec. 5), namely
WalkingBass(SWI), BluesShuffle(BLU), FunkSyncopated
(FUN), SteadyRiff(MHR), BossaNovaBass(LAT), and
ChordRootAccompaniment(POP). For our experiments, we
used 5 different properties for each class.Using the assign-
ment between the classes of both concepts as depicted in
Fig. 2, the concept-based classifier estimates the genreĜ =
Gj that is assigned to the bass playing styleSBi with the
highest class relevance valueγSBi

. In case two or more
bass playing styles related to different genres obtain the
same class relevance values, the classification is consid-
ered to be correct if at least one of the candidates is related
to the correct genre and false if not. As a proof of concept,
we performed the evaluation experiment using the concept-
based classifier on the MIDI data set.

6. RESULTS

Table 3 gives an overview over the classification scores
for different FS / FST combination. For each combina-
tion, the parametrization with the best results is depicted.
Further evaluation parameters such as the number of gaus-
sians for the GMM classifiers,k for the kNN classifiers,
and the number of dimensions after IRMFSP are given
in brackets. We performed a 25-fold cross validation to
derive mean classification scores and their standard devi-
ations (given in brackets below) for each classifier. As
shown there, best mean classification accuracies for the
MIDI and AUDIO data set of81.47% and46.85% have
been achieved applying a combined IRMFSP - GDA pre-
processing for both data sets. Above all, we expect trans-
cription errors affecting note pitch values, onset values and
beat grid information to cause significantly lower classifi-
cation scores for real audio data. For both data sets, the
application of feature selection and feature space transfor-
mation algorithms clearly increases the accuracy values of
the subsequent classifiers.

BLU FUN LAT MHR POP SWI

BLU 68.0 - 4.0 - - 28.0
FUN 28.0 46.0 4.0 4.0 4.0 14.0
LAT 16.0 - 70.0 - 2.0 12.0
MHR 34.0 8.0 6.0 34.0 2.0 16.0
POP 36.0 - 20.0 2.0 6.0 36.0
SWI 36.0 - 22.0 - - 42.0

Table 2. Confusion matrix of the concept-based classifier
(MIDI data set) in %

As depicted in Table 2, the concept-based classifier
achieved a mean classification accuracy of44.3% varying
in a strong way for different genres. Best results have been
obtained forLatin (70.0%) andBlues(68.0%). The low re-
sults forPop (6.0%) andMetalHardRock(34.0%) lead to
the assumption, that modeling only one bass playing style
per genre is not sufficient due to the high variability in the
applied data set. Further steps include the evaluation based
on a larger database.

7. CONCLUSIONS & FUTURE WORK

In this paper, we introduced a novel set of transcription-
based high-level features related to the rhythmic, melodic,
harmonic, and structural description of bass lines. Fur-
thermore, we presented a new approach to model musi-
cal knowledge of musical styles as properties related to the
values of transcription-based high-level features. The main
advantage of concept-based classification approach is that
significantly fewer features are necessary to model each
class as in common machine learning approaches. Future
steps include modeling additional genre-specific bass play-
ing styles as well as transferring the proposed method onto
other frequently used instruments like the guitar.
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ABSTRACT

In this publication we describe a novel two-dimensional
approach for automatic music genre classification.
Although the subject poses a well studied task in Music
Information Retrieval, some fundamental issues of genre
classification have not been covered so far. Especially many
modern genres are influenced by manifold musical styles.
Most of all, this holds true for the broad category “World
Music”, which comprises many different regional styles
and a mutual mix up thereof. A common approach to
tackle this issue in manual categorization is to assign mul-
tiple genre labels to a single recording. However, for com-
monly used automatic classification algorithms, multi-
labeling poses a problem due to its ambiguities. Thus,
we propose to break down multi-label genre annotations
into single-label annotations within given time segments
and musical domains. A corresponding multi-stage evalu-
ation based on a representative set of items from a global
music taxonomy is performed and discussed accordingly.
Therefore, we conduct 3 different experiments that cover
multi-labeling, multi-labeling with time segmentation and
the proposed multi-domain labeling.

1. INTRODUCTION

In the field of Music Information Retrieval, automatic genre
classification has been covered in numerous publications.
Although genre labels as being used in online music stores
or music journals mostly represent marketing terms, genre
itself embodies both a culturally relevant term and an in-
tuitive concept to categorize music. Single genre labels
usually reflect some sort of stylistic elements inherent to a
piece of music. Especially nowadays, music is influenced
by an increasing amount of different musical styles. This
leads to the necessity of describing single recordings with
multiple genre labels. At the same time, this increases am-
biguity in case a distinct genre classification result is in-
tended. We stumbled across this problem while attempting
to train supervised classifiers for a given sub-genre classifi-
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cation taxonomy of global music content. It is obvious that
the broad term “World Music” is one of the most ill-defined
tags when being used to lump all “exotic genres” together.
It lacks justification because this category comprises such
a huge variety of different regional styles, influences, anda
mutual mix up thereof. On the one hand, retaining the strict
classification paradigm for such a high variety of musical
styles inevitably limits the precision and expressivenessof
a classification system that shall be applied to a world-wide
genre taxonomy. On the other hand, multi-labeling is not
straight forward to deploy for automatic supervised classi-
fication since data sets with multiple class assignments are
not well suited as training data due to their inherent ambi-
guity. To tackle these issues, we considered to break down
the multi-label genre classification problem into a set of
single-label genre classification tasks, where each classi-
fier can be trained and optimized using well-defined data.
The novelty of the proposed 2-dimensional approach for
multi-label genre classification consists in the combination
of segment-wise and domain-specific genre classifications.
The term “domain” refers to the perceived semantic di-
mensions of music in which the classification is performed,
in our case timbre, rhythm and tonality, which represents
melody and harmony. We call the introduced approach
“multi-domain labeling”. In this paper we evaluate and
discuss the potential of a more detailed approach directly,
compared to multi-label genre classification. The rest of
this paper is organized as follows. We give an overview
over related work to this topic in the subsequent section.
Then, after explaining our novel approach in section 3, we
give an overview over the utilized databased as well as the
manual genre annotations corresponding to the proposed
method in section 4. In the following section, we describe
the 3 evaluation experiments that we performed. Details on
feature extraction, feature selection, feature space transfor-
mation as well as on the applied classification algorithms
are presented in section 6. After discussing the results of
the experiments in section 7, we conclude our work and
provide perspectives for future directions in section 8.

2. RELATED WORK

Various classification schemes for automatic genre clas-
sification have been proposed during the last years. [17]
provides a comprehensive overview over existing publi-
cations in the domain. There different approaches related
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to expert systems, unsupervised classification, and super-
vised classification systems have been covered. Consider-
ing the general confusion between similar genres, relaxing
the strict classification paradigm and allowing for multiple-
genre classification seemed to be a reasonable future direc-
tion to the authors to implement a more realistic classifi-
cation system. The earlier work of [3] gave a more pes-
simistic outlook by considering the term genre to be intrin-
sically ill-defined and hardly grounded in timbre character-
istics. Already in one of the basic works on music genre
classification by Tzanetakis [21], separate feature sets rep-
resenting timbre, rhythm, and tonality were introduced that
allowed for different types of similarity measures. How-
ever, separate domain-specific genre models have not been
proposed there. [17] provides also an overview of different
classifier approaches applied in genre classification, such
as Support Vector Machines (SVM), Hidden Markov Mod-
els (HMM) or Artificial Neural Networks (ANN). Other
publications such as [21] utilized Gaussian mixture mod-
els (GMM) for this purpose. Among others, the authors
of [18] used ensemble-based decision approaches namely
a one-against all and a round-robin algorithm to combine
binary classifiers. Different feature-space transformation
methods such as Linear Discriminant Analysis are applied
to increase discrimination between the classes resulting in
better classifications scores [17]. Novel musically moti-
vated low- and mid-level features such as the Octave-based
Modulation Spectral Contrast [11] or multiscale spectro-
temporal modulation features [15] were reported to outper-
form conventional features such as Mel-Frequency Cep-
stral Coefficients (MFCCs). Moreover, an increasing
amount of publications focused on high-level features that
are supposed to better characterize musicological proper-
ties as described for instance in [14], [16], and [1]. Fur-
ther relevant publications regarding feature design are ref-
erenced in Section 6.1.

While most research has been conducted using west-
ern popular music, only a few works were related to more
diverse global music content. A study on the applicabil-
ity of different classifiers for automatic genre classification
of traditional Malaysian music was conducted in [7]. The
general issue of multi-label annotations has been addressed
only in a few publications so far. In [13], the authors exper-
imented with SVM-based “binary relevance” multi-label
genre classification in conjunction with MARSYAS-based
features [21]. This approach was continued in [23], where
the authors modified a k-Nearest Neighbors classifier in or-
der to handle multi-label data directly. In [20], automatic
mood estimation was modeled as a multi-label classifica-
tion task where every item may belong to more than one
class. To the current knowledge of the authors, no publica-
tion so far discussed an approach similar to multi-domain
labeling, that will be explained in detail in the following
section.

3. MULTI-DOMAIN-LABELING

As explained in Section 1, while dealing with musical con-
tent from various regional music genres (often referred to

as “World music”), the problem frequently arises that songs
cannot solely be labeled with one single genre label. In-
stead, various rhythmic, melodic and harmonic influences
conflate into multi-layered mixtures. Common classifier
approaches fail because of their immanent assumption that
for all song segments, one dominant genre exists and thus
is retrievable.

To overcome these problems, we introduce a novel ap-
proach called “multi-domain labeling”. We aim at break-
ing down multi-label annotations towards single-label an-
notations within different musical domains, namelytimbre,
rhythm, andmelody / harmonythat are well-known aspects
of perceivable music similarity. Furthermore, a separate
annotation of each temporal segment of the overall song
is enabled. This leads to a more meaningful and realis-
tic two-dimensional description of multi-layered musical
content. In addition, the approach facilitates a more pre-
cise training of a classifier by avoiding fuzzy multi-labeled
data samples.
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Figure 1. Structure of the database

4. DATABASE & ANNOTATIONS

The music collection that we used for our investigations
consists of 430 full-length tracks from the 16 world mu-
sic genres. For each genre, the database includes approx-
imately two hours of music on average (see Fig. 1 for de-
tails). This music data collection was provided by the con-
tent partner of the research projectGlobalMusic2One1 .
The research project involves educated musicologists work-
ing with a world music label and being in regular contact
with musicians associated with the applied genres. Anno-
tations were manually made by using an annotation soft-
ware allowing to label music genres in different domains
with regard to an arbitrary amount of time segments. This
annotation software includes automatic segmentation algo-
rithm, which makes the first suggestion in order to speed
up the annotation process. The experts had a fully freedom
to modify borders and assessments of the segments in each
of domains.

In this paper, we applied a flat taxonomy with all afore-
mentioned genres considered to be situated at the same
hierarchical level. Above all, for our experiments we se-
lected tracks that have been annotated with multi-labels

1 http://www.globalmusic2one.net
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in at least one time segment. To evaluate our new anno-
tation approach, the data set was annotated following the
principles of multi-domain-labeling as described in Sec. 3.
Music experts were allowed to assign up to 4 different
genre concepts for each segment - a global genre, a timbre-
related genre, a rhythm-related genre, and a genre related
to the melodic and harmonic content. The three domain
specific annotations were not mandatory. If there were
multiple genre influences audible in a single segment, the
experts were only allowed to assign one genre label for
each domain. This proceeding ensured single-label anno-
tations within each segment and domain. One observation
that we made was that these domain-specific genre influ-
ences seem to be stable for each segment. The resulting
label cardinality (average number of labels per track) of
multi-labeled songs per genre was between 1.1 and 2.0 for
the selected genres, with 1.0 being a genre that has never
been assigned in conjunction with another genre. The la-
bel cardinality appeared to be different depending on the
music genres.

5. THREE EVALUATION EXPERIMENTS

To evaluate the improvement of the classifier performance,
we perform three different experiments as depicted in Fig.
2(a) - 2(c). Therefore, we are moving stepwise from the
fuzzy case of multi-labeled songs towards single-labeled
segments within different musical domains as described in
the previous section.

Multi-labeling (Exp.1)
In the first experiment, all multi-labeled songs are gener-
ally used to train multiple classifiers, more precisely all
classifier related to the annotated genres.

Multi-labeling with time segmentation (Exp.2)
Bearing the temporal structure of music in mind, we fur-
thermore consider single segments in the second experi-
ment. Multi-labeled segments are repeatedly used as class
instances according to their assigned genre labels.

Multi-domain-labeling with time segmentation (Exp.3)
In the third experiment, we are using temporal segments to
train three different domain-related classifiers. Therefore,
we restricted ourselves to features that can be semantically
assigned towards the particular musical domain, as will be
detailed in 6.1.

6. SYSTEM WORK-FLOW

6.1 Feature extraction

For the experiments conducted in this paper, we utilize
a broad palette of features commonly reported in the lit-
erature (see Sec. 2). Besides low-level acoustic features,
several mid-level representations [4] are extracted. These
measures are computed from excerpts of approximately 5
seconds duration by deriving specialized descriptive mea-
sures (including musical knowledge) from the observed
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(a) Experiment 1: Multi-labeling
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(b) Experiment 2: Multi-labeling with time segmentation
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(c) Experiment 3: Multi-domain labeling (Timbre, Rhythm,
Melody/Harmony)

Figure 2. Evaluation experiments

evolution of low-level features. Besides indifferent usage
of all features (in Exp. 1 and Exp. 2), groups of features
are assigned to the aforementioned domains in the follow-
ing manner.

Timbre
In addition to common features, such as Mel-Frequency
Cepstral Coefficients (MFCC), Audio Spectrum Centroid
(ASC), Spectral Crest Factor (SCF) or Spectral Flatness
Measurement (SFM), modulation spectral features [2] have
proved to be extremely useful to capture short term dynam-
ics of the low-level features. We applied a cepstral low-
pass filtering to the modulation coefficients to reduce their
dimensionality and decorrelate them as described in [6].

Rhythm
All rhythmic features used in the current setup are derived
from excerpts of the different bands of the Audio Spectrum
Envelope (ASE) feature. Part of the measures, such as the
Percussiveness [22] and the Envelope Cross-Correlation,
are based on the envelope signals. The other part is de-
rived from the Auto Correlation Function (ACF) domain.
Besides the measures described in [6], the log-lag ACF and
its descriptive statistics are extracted according to [10].

Tonality
Tonality descriptors are computed from a Chromagram
based on Enhanced Pitch Class Profiles (EPCP) [12], [19].
The EPCP undergoes a statistical tuning estimation and
correction to account for tunings deviating from the equal
tempered scale. Most important, the so-called symmetry
model, a pitch-space representations as described in [9]
are derived from the Chromagram as mid-level features.
The model provides an analytic description of aspects of
musical consonance and dissonance, as well as functional
relationships between probable notes.
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6.2 Dimension Reduction

MIR systems usually use a multitude of low-level and mid-
level acoustic features. Each feature is designed to corre-
late with one of the aspects of perceptual similarity, e.g.
timbre, tempo, loudness or harmony. The distinct acous-
tical features are joined together into so called acousti-
cal feature vectors. While temporal changes in one fea-
ture often correspond to temporal changes in the other fea-
ture (for instance, timbre is changing along with loudness),
the individual dimensions of the feature vectors can often
be strongly correlated and cause information redundancy.
These raw feature vectors could cause various problems
on classification stage. One of the usual ways to suppress
redundant information in the feature matrix is to utilize
dimension reduction techniques. Their purpose is to de-
crease the feature dimensionN while keeping or even re-
vealing the most characteristic data properties. Generally,
all dimension reduction methods can be divided into su-
pervised and unsupervised ones. Among the unsupervised
approaches the one most often used isPrincipal Compo-
nent Analysis(PCA). The key idea of PCA [8] is to find a
subspace whose basis vectors correspond to the maximum-
variance directions in the original feature space. Dimen-
sion reduction is obtained then by simply discarding those
column vectors with the smallest eigenvalues.

6.3 Classification

In this section we shortly describe the applied classifier
and bring the architecture details regarding all three ex-
periments.

Gaussian Mixture Models
Gaussian Mixture Models (GMM) is a commonly used
generative classifier. Single data samples of the class are
thought of as generated from various sources and each
source is modeled by a single multivariate Gaussian. The
probability density function (PDF) of the feature frames is
estimated as a weighted sum of the multivariate normal dis-
tributions. Each singlei-th mixture is characterized by its
mean vectorµi and covariance matrixΣi. Thus, a GMM
is parametrized inΘ = {ωi, µi, Σi}, i = 1, M , whereωi

is the weight of thei-th mixtures and
∑

i
ωi = 1. The

generalization properties of the model can be adjusted by
choosing the number of Gaussian mixturesM . The param-
eters of the GMM can be estimated using the Expectation-
Maximization algorithm [5].

Classifier architecture for three experiments
On the classification stage for each data frame the likeli-
hoods of all class models are calculated. We do not use
prior distribution information. The classification decision
is therefore made using maximum likelihood rule. In a
case of Exp. 1 and Exp. 2 the same data samples may be-
long to multiple data classes. To tackle the problem, here
the classification task is reduced to a set a binary classifica-
tion decisions, where every binary classifierHc is trained
to make a binary decision (if the data sample belong to a
classc or not). These decisions of binary classifiers are

joined together to form the multi-label classification. In a
case of Exp. 3 as described above only single labels are
used within each domain and time segment. Thus for each
domain we train one GMM classifier. On the classification
stage firstly each domain is classified and post-processed
(see Sec. 6.4 for details) independently, and later the re-
sults for all domains are joint together.

6.4 Post-processing

Classification with GMM results in class decision for each
frame of the feature vector. Thus we apply the following
post-processing procedure to reduce frame-level classifica-
tion to the full-track multi-labels. For Exp. 1 and Exp. 2 the
procedure is identical. For all frames of the track for each
of the genres we sum up the number of frames associated
to these genres. Then be build the normalized histogram
of these data. The maximum of this histogram is pointing
out the most probable genre for this track. As we are ex-
pecting more then single label per track, probably, we also
have to accept the second maximum of the normalized his-
togram. This decision is made by a simple thresholding of
the normalized histogram. The track is considered to be
associated to those genres, where the values of the normal-
ized histogram are above the threshold. As the histogram
is normalized, the threshold is set to(0, . . . , 1). The choice
of the threshold crucially influences the performance of the
system. For instance, too low threshold causes high recall
values, but might lead to poor precision. Thus the threshold
values have to be optimized for each of the experiments. In
a case of Exp. 3 we first perform the thresholding for each
of domains independently, and then joint the results.

6.5 Evaluation Measures

In multi-label classification each data sample (in our case
each song or song segment) is associated with a set of la-
belsY ⊆ L, whereL is a full set of labels. LetD be a
multi-label dataset, consisting of|D| multi-label examples
(Xi, Yi), i = 1 . . . |D|, Yi ⊆ L, whereXi is a feature ma-
trix of the data examplei andYi is a set of (ground-truth)
labels associated to the data examplei. The label cardinal-
ity of D is defined as follows:

LC(D) =
1

|D|

|D|∑

i=1

|Yi| . (1)

Given the multi-label classifierH , the estimated set of la-
bels for samplei is Zi = H(Xi). The traditional informa-
tion retrieval evaluation measures for multi-label case are
written as:

Precision(H, D) =
1

|D|

|D|∑

i=1

|Yi ∩ Zi|

|Zi|
, (2)

Recall(H, D) =
1

|D|

|D|∑

i=1

|Yi ∩ Zi|

|Yi|
, (3)

F−measure(H, D) =
1

|D|

|D|∑

i=1

2 ∗ |Yi ∩ Zi|

|Yi| + |Zi|
. (4)
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7. RESULTS

First of all we detail the settings of the system. The feature
extraction procedure results in233 dimensions for timbre
features,768 dimension for rhythmic features, and187 di-
mensions for tonal features. All in all it leads to1188
dimensions of the feature vector. It is well known that
GMMs are sensitive to the curse of dimensionality. As the
available annotated database is relatively small, we applied
PCA to reduce the dimensionality of feature vectors within
each of domains to100 dimensions. The PCA algorithm
has been trained on the randomly chosen training set (70%
of the database) and then applied to the test set (30% of the
database). This PCA-transformed data have been used in
all 3 experiments. The GMMs have been trained with1,
5, 20, and50 mixtures, only diagonal covariance matrices
have been used. The threshold for the post-processing (as
described in Sec. 6.4) has been varied within a range of0
and1 for Exp. 1, Exp. 2, and for each of three domains in
Exp. 3. Figure 3 depicts the dependency of the F-measure
on the thresholding for all above mentioned cases. It is
interesting to note, that for Exp. 1 and Exp. 2 achieved
F-measure significantly differs depending on the amount
of mixtures in the GMM, while in all domains for Exp. 3
the values of F-measure become comparable. Using5 mix-
tures results into highest F-measure values for all experi-
ments. The optimal thresholds values are within a range of
0.15 and0.25.

Within Exp. 3 we found out, that the optimal thresholds
for each of domains separately do not form the optimal
combination of the thresholds leading to the best
F-measure performance when the domains are joined to-
gether. Thus, in a case of GMM1 (using only one gaussian
to model the class) the optimal thresholds in all domains
are found within a range of0.20 and0.25, while in a case
of GMM20 the optimal thresholds lies within a range of
0.30 and0.35. Figure 4 depicts the F-measure performance
for all three experiments. The F-measure values for each
number of mixtures in GMM are increased for Exp. 3 in
comparison to Exp. 1 and Exp. 2. The best performance
is achived in Exp. 1 for GMM with 5 mixtures reaching
the F-measure of 0.61. The significant performance raise
of about10% is observed for the case of using only one
gaussian to model the class information. It can be explain
with a fact, that in a case of Exp. 3 the classes are less
overlapped and easier to model then in a case of the set of
binary classifiers (as in Exp. 1 and Exp. 2).

Note that for Exp. 3 the involved GMMs include about
two times less free parameters than in a case of Exp. 1
and Exp. 2. As we used only diagonal covariance matri-
ces, the number of free parameters for each GMM can be
approximated asm · (2d + 1), wherem is a number of
mixtures andd is the dimensionality of the feature vector.
Thus for Exp. 3 the number of all free parameters com-
prises3 · k · m (2d′ + 1), wherek is a number of classes
andd′ is the features dimensionality within one domain;
GMMs are trained within each of three domains. Whilst in
a case of Exp. 1 and Exp. 2 the amount of free parameters
for the set of binary classifiers reaches2k ·m (2 · 3d′ + 1).
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Figure 3. Dependency of F-measure on the thresholding
while post-processing as described in Sec. 6.4. For Exp. 1
and Exp. 2 the F-measure performance strongly depends
on the number if mixtures in GMM.

8. CONCLUSIONS & FUTURE WORK

The paper presented a novel two dimensional approach
to music genre classification. It allows to decompose the
multi-label classification problem into multiple single-class
classification problems by breaking it down in two dimen-
sions. First results demonstrate high potential of the pro-
posed approach. Future work will be directed towards ap-
plying Support Vector Machines as alternative classifica-
tion technique, as it has been proved to perform better than
GMM for binary classification. In a case of multi-domain
classification we shall make use of supervised feature se-
lection and feature space transformation methods, which
can not be utilized in a case of multi-label classification.
Furthermore, in the context of the research projectGlob-
alMusic2One, we are going to usevocalsand instrumen-
tationas additional domains. We believe the presented ap-
proach to be extensible to other music genres as the seman-
tic partitioning of music into different musical domains is
universal for most of the world’s regional music styles.
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Figure 4. F-measures for all three experiments
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ABSTRACT  

The performance of electronica by Disc Jockys (DJs) 
presents a unique opportunity to develop interactions be-
tween performer and music. Through recent research in 
the MIR field, new tools for expanding DJ performance 
are emerging. The use of spectral, loudness, and temporal 
descriptors for the classification of electronica is ex-
plored. Our research also introduces the use of a multi-
touch interface to drive a performance-oriented DJ appli-
cation utilizing the feature set. Furthermore, we present 
that a multi-touch surface provides an extensible and col-
laborative interface for browsing and manipulating MIR-
related data in real time. 
 
Keywords: Electronica, Electronic Dance Music, Genre 
Classification, User Interfaces, DJ, Multi-touch.   

1. INTRODUCTION  

Electronic dance music, often referred to as Electronica, is 
an overarching collection of genres that focus predomi-
nately on rhythmic motifs & repeating loops. A task of the 
electronica DJ is to compile a set-list of music for per-
formance. Additionally, DJs are always looking for ways 
to expand the interactivity of their performances through 
the use of new tools. The primary goal of this work is to 
give the modern, digital DJ access to a wider range of 
performance options using MIR techniques such as fea-
ture extraction, genre classification, and clustering. Com-
bined with advances in tabletop computing, these tech-
niques have made it possible to add a layer of interactivity 
to automatic playlist generation.  

In the following section we detail related work on mu-
sic features and electronic performance interfaces includ-
ing recent work in tabletop computing. In the remainder 
of the paper we discuss our feature extractors, genre clas-
sification results and the interface that we developed to 
enable DJs to interact with those results to create set-lists. 
We conclude the paper with a discussion of future work 
in interactive MIR powered DJ applications and tabletop 
computing.  
 

2. RELATED WORK 

Our work draws on a wide array of related research rang-
ing from musical descriptors and novel performance inter-
faces to recent applications in tabletop computing. By 
synthesizing these related but disparate areas of research, 
we enable new performance experiences for individual 
and group DJs to create and modify set-lists in real time.  

Genre classification can be accomplished using a range 
of signal features and algorithms. For electronica in par-
ticular, features and patterns such as rhythm, tempo, pe-
riodicity, and even use of panning have been explored in 
the literature [1-3].  

For DJs specifically, the use of interfaces to retrieve 
musically relevant material in performance has included 
query-by-beat-boxing [4], and query-by-humming [5]. 
Retrieval using both traditional and non-traditional in-
struments and interfaces has been explored by [6]. Other 
research in the academic arena for enabling DJ perform-
ance includes AudioPad [7], and Mixxx [8]. Although we 
take influence in these interfaces for retrieval, our work 
wishes to explore a browsing paradigm using similar 
creative interfaces.  

In the commercial sector, Stanton’s Final Scratch1 en-
ables DJs to use a physical controller to manipulate and 
mix digital music, while Native Instruments’ Traktor2 is a 
software-only solution for DJ performance. Ableton’s 
flagship software, Live3, has been increasingly used to 
enable DJs to use their own pre-composed music in live 
performance through the synchronized playback of dif-
ferent audio loops, known as clips.    

A multitude of literature on tabletop computing & in-
terfaces exists.  The Reactable team was one of the first 
groups to directly apply both tangible and multi-touch 
interaction to the performance of music [9], followed by 
others including the earlier referenced AudioPad, which 
is also a tangible interface.  More recently, MarGrid, a UI 
for the browsing of a digital music collection using Self-
Organizing Maps has been examined using a tabletop 
interface [10]. The use of Self Organizing Maps (SOM) 
for visualizing feature data has also been previously cov-
ered by [11], [12]. In addition, although not performance-
oriented, MusicSim presents an interesting combination of 
audio analysis and music browsing in an interactive com-
puter-based interface [13]. 

Our aim here is to expand on these efforts by introduc-
ing the use of a multi-touch surface in a way that is both 
intuitive and collaborative. The use of Self Organizing 
                                                           
1 http://www.stantondj.com/ 
2 http://www.native-instruments.com/ 
3 http://www.ableton.com/ 
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Maps represents a useful way of organizing features for 
visualization, on-top of which many real-time interactive 
applications are possible.  

3. DATA COLLECTION 

For our experiments, six genres across the spectrum of 
electronic music were selected for their diverse character-
istics and wide-spread popularity.  

One hundred 2 to 8 minute prototypical tracks were 
sliced at random into single 30-second chunks for each 
genre. Our dataset contains at least 20 distinct artists in 
each genre; tracks were not chosen on the perceived 
genre of the composing artist, but a human baseline 
analysis by the authors.  In total, there are 600 30-second 
clips, each in a stereo 44.1 kHz PCM-encoded file format. 
All files were normalized before experimentation.  

3.1 Genre Definitions 

Many subgenres fall beneath the umbrella term of elec-
tronica—this paper examines six of the most broad & 
popular genres commonly played by DJs: intelligent dance 
music (IDM), house, techno drum and bass (DnB), trance, 
and downtempo. A brief description of them is as follows:  

IDM distinguishes itself by its heavy use of complex 
meter, sophisticated and often sporadic percussive ele-
ments, and varying use of syncopation. IDM carries with 
it a rich harmonic and melodic palate borrowed from 
many genres. Tempos typically range from 150-180 
BPM. Notable artists in the genre are Aphex Twin, 
Squarepusher, and Autechre. IDM may sometimes be 
referred to as Glitch music.  

House music makes use of the common ‘four-on-the-
floor’ rhythm pattern consisting of a steady kick drum on 
each downbeat in a 4/4 meter. Defining characteristics 
involve offbeat open hi-hat patterns and snare or claps on 
the two and four of every bar. Harmonic content and in-
strumentation is often borrowed from Disco genres. Tem-
pos usually range from 115 to 135 BPM. Daft Punk, 
Thomas Bangalter, and Alan Braxe are popular artists in 
the genre.  

Techno uses minimal melodic ornamentation, relying 
more on bass riffs and polyrhythmic drums layered over a 
common four-on-the-flour kick drum. The rhythmic ele-
ments in techno are often the defining features of the 
song, with percussive grooves and riffs taking precedence 
over more traditional melodic and harmonic structure. 
Significant artists include Derrick May, Richie Hawtin, 
and Robert Hood.  

DnB makes heavy use of “break beat chopping,”—the 
re-sequencing of drum hits from other previously re-
corded material. DnB is often composed above 160 BPM, 
with characteristic bass lines moving at half the tempo. 
Goldie and Pendulum are both well-known artists. 

Trance distinguishes itself by employing thick, com-
plex harmonic components, leaving little room for the 
complex rhythmic structures found in other similar gen-
res. Trance often makes use of arpeggios, drum rolls, and 
long crescendos of synthesizers. The genre is composed 

around 140 BPM. DJ Tiesto, Ferry Corsten, and Sasha 
are popular artists within the Trance genre. 

Downtempo employs lush harmonic textures and 
groove-oriented percussion. Tempos are characteristically 
low, ranging from 60 to 90 BPM. Boards of Canada, Air, 
and Bonobo are well-known artists within the genre.  

4. AUDIO ANALYSIS AND CLASSIFICATION 

Audio analysis was performed using the ChucK audio 
programming language [14]. Our results are based on a 
two-second (88200 sample) Hann window, resulting in 15 
8-dimensional vectors for each audio clip. In addition to 
being written to disk for further analysis, the raw data was 
also sent over networked protocol (OSC1) into Process-
ing2, a visuals-oriented programming language.  The proc-
ess of visualizing the data using Processing is later pre-
sented in Section 5. Before application development could 
begin, a central concern was to uncover a feature-set that 
could accurately classify electronica. We follow with a 
description of the eight features used in our experiments.  

4.1 Spectral Features 

• Centroid, the centre of mass of the spectrum;  
• Flux, the change in spectral energy across suc-

cessive frames;  
• Rolloff, the frequency below which resides 85 

percent of a spectrum's energy.  

4.2 Loudness Features 

• RMS, the amplitude of a window; 
• Panning, a coefficient used to describe the 

weight of the signal in either the left or right 
channels [3]; 

• Panning Delta, change in the panning coefficient 
across successive windows [3].   

4.3 Temporal Features 

• Number of Bass Onsets, an integer representing 
the number of peaks (‘Beats’) detected in a win-
dow; 

• Average Inter-onset Time, a basic feature to de-
scribe the periodicity of the beats across a win-
dow. 

4.4 Classification 

Four separate classifiers were run on all six classes, and 
also on a smaller set of four classes. All experiments were 
performed utilizing a 10-fold cross-validation method in 
the Weka machine learning environment  [15].  

A k-Nearest Neighbour classifier (IBk) gave the best 
overall result, resting at a 75.2% classification rate across 
the six classes (16.7% baseline accuracy). Table 1 shows 
the confusion matrix for this experiment.  

                                                           
1 http://opensoundcontrol.org/ 
2 http://www.processing.org/ 
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As Table 1 illustrates, the k-NN classifier had trouble 
distinguishing between IDM & DnB, and House & 
Techno. This is most likely attributed the sporadic per-
cussive elements found in IDM & DnB, and very similar 
tempos found in House & Techno. Another experiment 
was run omitting IDM and House, resulting in a superior 
87.0% classification rate. In the context of real-time per-
formance and playlist generation, the omission was the 
result of IDM and House being considerable similar to 
genres already being classified. In favor of omitting any 
single pair of the confused genres, one of each was left 
out. The confusion matrix of this experiment is shown in 
Table 2.  

Other classifiers used in testing were a C4 Decision-
Tree (J48), a backpropagation Artificial Neural Network 
(MultiLayerPerceptron), and a Support Vector Machine 
(SMO). More details on these classifiers can be found in 
[15, 16]. Table 3 lists the accuracy of the four different 
classifiers using both the six-class and four-class datasets. 

The exclusion of the two panning features and average 
inter-onset for the 6 and 4-class datasets using k-NN re-
duced classification accuracy by 7.70% and 4.85% re-
spectively, indicating that both temporal and panning 
features moderately improved classification. Given the 
distinct tempos and production values between elec-
tronica genres, higher-level features using both tempo and 
panning should be considered an important facet of future 
classification experiments.  

 
 Idm Tno Dnb Hse Trn Dtm 

Idm 0.60 0.02 0.16 0.07 0.02 0.12 
Tno 0.02 0.84 0.03 0.07 0.04 0.01 
Dnb 0.10 0.03 0.72 0.05 0.05 0.04 
Hse 0.04 0.05 0.06 0.78 0.04 0.03 
Trn 0.01 0.04 0.05 0.05 0.82 0.02 
Dtm 0.13 0.01 0.06 0.05 0.02 0.74 

 
Table 1 Confusion matrix, in percent, for the 6-class k-
NN classifier 
 

 Techno Dnb Trance Dtempo 
Techno 0.90 0.05 0.05 0.01 
Dnb 0.04 0.84 0.06 0.06 
Trance 0.05 0.06 0.87 0.02 
Dtempo 0.01 0.10 0.02 0.87 

 
Table 2 Confusion matrix, in percent, for the 4-class k-

NN classifier 
 

 IBk J48 MLPercept. SMO 
6 Class 0.75 0.66 0.60 0.58 
4 Class 0.87 0.82 0.81 0.79 

 
Table 3 Accuracy, in percent, among the four classifiers 

 
 
 
 
 

5. APPLICATIONS 
 
A large portion of our work consisted of prototyping 

and testing potentially useful tools for the DJ. By sorting 
our dataset through the use of Self Organizing Maps, DJs 
will be able to generate groupings of musical material that 
immediately work well together. This data organization 
will provide not only obvious song clusters, but also in-
teresting musical associations that may otherwise be over-
looked.  

5.1 Bricktable 

A multi-touch surface called Bricktable [17] was chosen 
as the interface for visualizing and interacting with the 
SOMs. Multi-touch screens add a certain physicality to the 
data for the user, additionally supplying a modular soft-
ware platform on which to expand the performance capa-
bilities of these tools, especially between multiple poten-
tial users.  

5.2 Self Organizing Maps 

Our first application visualized the data in Processing us-
ing a SOM. The ability to effectively reduce dimensional-
ity using a standard k-NN algorithm and the ease of visu-
alization made a SOM an appealing choice to display the 
data as well as create a basic platform for playlist genera-
tion. The use of SOMs for playlist generation has been 
previously researched extensively by M. Dittenbach et. al. 
using their PlaySOM system [18].  

Individual songs consist of 15 8-dimensional feature 
vectors. During our feature extraction stage, ChucK sends 
the features over Open Sound Control into Processing 
along with file name and path. The features are then or-
dered in a hierarchal manner, and superimposed over an 
RGB vector. The color vectors are then used to visualize 
unique songs on a 2D map. Once the map is populated 
and sorted, users can access individual songs by touching 
a coloured circle. This will recall the filename and begin 
playing the song, allowing users to quickly compare 
neighbouring music.  

 

 
 

Figure 1 The SOM being displayed on the Bricktable, 
with the DJen interface minimized 
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5.3 The DJen Performance Application 

Although the use of multi-touch for selecting songs di-
rectly on the SOM provides an engaging way for brows-
ing a music collection, the application can be pushed fur-
ther within the multi-touch paradigm. With this in mind, 
we present the DJen (‘D-Gen’) application, a tool to fa-
cilitate automatic set-list generation by enabling effective 
navigation of large libraries of music.   

A critical skill among successful DJs is the ability to 
navigate seamlessly between many different songs, some-
times from varying genres. The key to this task is having 
the songs share a relationship in some way, usually 
through tempo. Via our SOM visualization, DJs already 
have access to musical groupings based off similarities, 
even if the genre is misclassified; however, DJen allows 
DJs to gesture a path through this map creating a dynamic 
playlist that can be used as source material for a perform-
ance. Due to the similarities between neighbours on the 
map, any arbitrary path will automatically generate a list 
of songs that share a strong relationship. Additionally, 
multiple DJs can create paths simultaneously, and DJen 
can interpolate a single path equidistant from all other 
paths. This will create a set list that represents the mean 
vectors between the original DJen paths. Finally, paths 
may be modified in real time for fine-tuning. Through 
this process we hope to enable the grouping of material in 
ways that a DJ may find inspiring.  This path-based sys-
tem is reminiscent of research conducted by R. Gulik and 
F. Vignoli in [19].   

Figure 2 demonstrates the DJen GUI with the two pri-
mary UI elements shown: the playlist editor, and the 
‘now-playing’ bar. Without a path set, a DJ can drag in-
dividual circles into the playlist editor to create a set list. 
When a path is drawn, the editor is automatically popu-
lated. If working collaboratively, another DJ may reshape 
the path and the playlist editor will automatically re-
generate a set list. 
  

 

 
 

Figure 2 The SOM with the DJen GUI.  

6. CONCLUSIONS & FUTURE WORK 

Through the use of MIR tools we have shown strong po-
tential for categorizing Electronica by genre. The k-NN 
algorithm provided an effective way of processing the 
sample data, making the DJen application possible 

through the use of a SOM. Finally, coupling this work 
with a multi-touch surface opened new avenues for DJs to 
interact with their music.   

The DJen application represents a motivating step to-
ward ‘intelligent’, MIR-powered tools for DJs. Its 
strength is revealed through the interactive user interface 
and visualization techniques. In the future, more rhythmic 
features to categorize electronica may be explored to cre-
ate a system whereby DJen can perform automatic transi-
tions between songs. This will allow the DJ to concen-
trate on other expressive areas such as sampling, looping, 
and effects processing.  

The continuous growth of multi-touch necessitates 
development of further applications to explore both single 
and multi-user performance paradigms. Although DJen 
may be used by one or more users, extensive collabora-
tion options may be enabled by allowing one DJ to over-
see transitioning, while another manages multiple set-lists 
stemming from the original path chosen across the map.  

Looking into the future, we hope DJen and other 
MIR-powered applications of its type will in the future 
enable any DJ to create expressive performances for their 
audiences.  
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ABSTRACT 

Composers of popular music weave lyrics, melody, and 

instrumentation together to create a consistent and com-

pelling emotional scene. The relationships among these 

elements are critical to musical communication, and un-

derstanding the statistics behind these relationships can 

contribute to numerous problems in music information 

retrieval and creativity support. In this paper, we present 

the results of an observational study on a large symbolic 

database of popular music; our results identify several 

patterns in the relationship between lyrics and melody.  

1. INTRODUCTION 

Popular music uses several streams of information to 

create an emotionally engaging experience for the listen-

er. Lyrics, melody, chords, dynamics, instrumentation, 

and other aspects of a song operate in tandem to produce 

a compelling musical percept. Extensive previous work 

has explored each of these elements in isolation, and cer-

tain relationships among these components – for exam-

ple, the relationship between melody and chords – have 

also been addressed in the research community. However, 

despite their salience and central role in music cognition, 

lyrics have not been addressed by computational analysis 

to the same degree as other aspects of popular music. 

In this study, we examine the relationship between 

lyrics and melody in popular music. Specifically, we in-

vestigate the assumption that songwriters tend to align 

low-level features of a song’s text with musical features. 

Composer Stephen Sondheim, for example, has com-

mented that he selects rhythms in music to match the nat-

ural inflections of speech [1], and popular books on 

songwriting suggest considering the natural rhythms of 

speech when writing melodies [2]. With this qualitative 

evidence in mind, we quantitatively examine relation-

ships between text and music using a corpus of several 

hundred popular songs. Specifically, we investigate the 

general hypothesis that textual salience is correlated with 

musical salience, by extracting features representative of 

each and exploring correlations among those features.  

This study contributes fundamental statistics to musi-

cology and music-cognition research, and makes the fol-

lowing specific contributions to the music information 

retrieval community: 

1) We establish new features in the hybrid space of lyr-

ics and melody, which may contribute to musical in-

formation and genre analysis as well as music rec-

ommendation. 

2) We demonstrate a quantitative correlation between 

lyrical and melodic features, motivating their use in 

composition-support tools which help composers 

work with music and text. 

3) We strengthen the connection between MIR and 

speech research; the features presented here are 

closely related to natural patterns in speech rhythm 

and prosody. 

4) We make analysis of lyrics and melody in popular 

music more accessible to the community, by releas-

ing the parsing and preprocessing code developed for 

this work. 

2. RELATED WORK 

Previous work in the linguistics and speech communities 

has demonstrated that inherent rhythms are present even 

in non-musical speech (e.g. [3,4]). Additional work has 

shown that the rhythms inherent to a composer’s native 

language can influence instrumental melodic composi-

tion. Patel and Daniele [5] show a significant influence of 

native language (either English or French) on composers’ 

choice of rhythmic patterns, and Patel et al. [6] extend 

this work to show a similar influence of native language 

on the selection of pitch intervals. This work does not in-

volve text per se, only the latent effect of language on in-

strumental classical music. Beyond the rhythmic aspects 

of speech, additional work has demonstrated that vowels 

have different intrinsic pitches [7], and even that pho-

nemes present in musical lyrics can influence a listener’s 

perception of pitch intervals [8]. This work supports our 

claim that there is a strong connection between not only 

rhythmic aspects of speech and music, but also between 

linguistic, phonemic, pitch, and timbral aspects of speech 

and music. 

In addition to these explorations into the fundamental 

properties of speech and lyrics, preliminary applications 

of the statistics of lyrics have begun to emerge for both 

creativity support tools and problems in music informa-

tion retrieval and analysis. Proposing a creativity support 

tool to explore alignments of melodies and lyrics, [9] uses 
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a series of hand-coded heuristics to align a known set of 

lyrics to the rhythm of a known melody. Oliveira et al. 

[10] develop a preliminary system that addresses the 

problem of generating text to match a known rhythm; this 

works also includes a preliminary analysis of a small da-

tabase to qualitatively validate the authors’ assumptions. 

Wang et al. [11] and Iskandar et al. [12] use higher-

level properties of lyrical structure to improve the auto-

matic alignment of recordings with corresponding lyrics. 

Lee and Cremer [13] take a similar approach to match 

high-level segments of lyrics to corresponding segments 

in a recording. Recent work in the music information re-

trieval community has also applied lyric analysis to prob-

lems in topic detection [14], music database browsing 

[15], genre classification [16], style identification [17], 

and emotion estimation [18]. This work motivates the 

present study and suggests the breadth of applications 

that will benefit from a deeper, quantitative understand-

ing of the relationship between lyrics and melody. 

3. METHODS 

3.1 Data Sources and Preprocessing 

Our database consisted of 679 popular music lead sheets 

in MusicXML format. 229 of our lead sheets came from a 

private collection; the remaining 450 came from Wikifo-

nia.org, an online lead sheet repository. Our data spans a 

variety of popular genres, including pop, rock, R&B, 

country, Latin, and jazz, with a small sampling of folk 

music. 

Each lead sheet in our database contains a melody, 

lyrics, and chords for a single song (chords were not used 

in the present analysis). Lyrics are bound to individual 

notes; i.e., no alignment step was necessary to assign lyr-

ics to their corresponding notes. Word boundaries were 

provided in the MusicXML data so it was possible to de-

termine which syllables were joined to make whole 

words without consulting a dictionary. Key and time sig-

nature information was also provided for each song (in-

cluding any changes within a song). For all analyses pre-

sented in this paper, we ignored measures of music with a 

time signature other than 4/4. Lead sheets were processed 

to build a flat table of notes (pitch and duration) and their 

corresponding syllables, with repeats flattened (expanded 

and rewritten without repeats) to allow more straightfor-

ward analysis. 

3.2 Computed Musical Features 

This section describes the three features that were com-

puted for each note in our melody data. 

3.2.1 Metric Position 

For each note, the “Metric Position” feature was assigned 

to one of five possible values based on the timing of the 

note’s onset: downbeat (for notes beginning on beat 1), 

half-beat (for notes beginning on beat 3), quarter beat 

(beginning on beats 2 or 4), eighth beat (beginning on 

the “and” of any quarter beat), and other. 

3.2.2 Melodic Peak 

The “Melodic Peak” feature is set to True for any note 

with a higher pitch than the preceding and subsequent 

notes. It is set to False otherwise (including notes at the 

beginning and end of a song). We selected this feature 

because previous research has connected melodic con-

tours to a number of features in instrumental music [19]. 

3.2.3 Relative Duration  

For a note in song s, the “Relative Duration” feature is 

computed by calculating the mean duration (in beats) for 

all notes in s and then dividing each note’s duration by 

the mean. Thus “Relative Duration” values greater than 1 

indicate notes longer than mean duration for the asso-

ciated song. 

3.3 Computed Lyrical Features 

This section describes the three features that were com-

puted for each syllable in our lyric data, based on the syl-

lable itself and/or the containing word. 

We determined the pronunciation of each syllable by 

looking up the containing word in the CMU Pronouncing 

Dictionary [20], a public-domain, machine-readable Eng-

lish dictionary that provides phoneme and stress level in-

formation for each syllable in a word. In cases where the 

dictionary provided alternate pronunciations, we selected 

the first one with the correct number of syllables. Un-

known words and words whose associated set of notes in 

our MusicXML data did not correspond in number to the 

number of syllables specified by the dictionary were re-

moved from the data. Note that this dictionary provides 

pronunciation for isolated words. Stress patterns can 

change based on the surrounding context, so this pronun-

ciation data is only an approximation of natural speech. 

3.3.1 Syllable Stress 

The CMU dictionary gives a stress level according to the 

following ordinal scale: Unstressed, Secondary Stress, 

and Primary Stress; each syllable was assigned one of 

these three values for the “Syllable Stress” feature. Sec-

ondary stress is typically assigned in words with more 

than two syllables, where one syllable receives some 

stress but is not the primary accent. For example, in the 

word “letterhead”, the first syllable is assigned a primary 

stress, the second is unstressed, and the third is assigned a 

secondary stress. 

3.3.2 Stopwords 

Stopwords are very common words that carry little se-

mantic information, such as “a”, “the”, and “of”. Stop-

words are generally ignored as “noise” in text processing 
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systems such as search engines. There is no definitive or 

absolutely correct list of English stopwords; we use the 

monosyllabic subset of the online adaption [21] of the 

fairly canonical stopword list originally presented by van 

Rijsbergen [22]. We specifically choose the monosyllabic 

subset so that we are conservative in our identification of 

stopwords; we consider words such as “never”, while 

perhaps too common for certain applications, to be se-

mantically rich enough to merit treatment as non-

stopwords. The “Stopword” feature is set to True or 

False for each monosyllabic word, and is undefined for 

multisyllable words. 

3.3.3 Vowels 

Each syllable in the dictionary may include multiple con-

sonants, but only one vowel. We extract the vowel for 

each syllable; this categorical feature can take on one of 

15 possible values, enumerated in Table 1. 

4. RESULTS 

Having established a set of features in both the melodic 

and lyrical spaces, we now turn our attention to exploring 

correlations among those features. 

4.1 Syllable Stress 

Based on our general hypothesis that musical salience is 

frequently associated with lyrical salience, we hypothe-

sized that stressed syllables would tend to be associated 

with musically accented notes. We thus explored correla-

tions between the “Syllable Stress” feature and each of 

our melodic features. Each analysis in this subsection was 

performed only using note data associated with polysyl-

labic words, so that stress values are meaningful. 

4.1.1 Syllable Stress and Metric Position 

A stronger syllable stress is associated with a stronger 

metric position, as we see in Figures 1 and 2. These give 

two different views of the data, based on conditioning 

first by either metric position or syllable stress. 

Figure 1 demonstrates that the half beat and downbeat 

positions strongly favor stressed syllables, and are rarely 

associated with unstressed syllables. For comparison, 

stressed and unstressed syllables occur with approximate-

ly equal a priori probabilities (P(primary stress) = 0.46 

 

CMU Vowel IPA (Pan-English) Example 

AH ə hut 

UH ʊ hood 

IH ɪ it 

ER ɜ hurt 

EH ɛ Ed 

AE ӕ at 

AA ɑː odd 

IY iː eat 

UW uː two 

AY aɪ hide 

AO ɔ: ought 

OW oʊ oat 

EY eɪ ate 

AW aʊ cow 

OY ɔɪ toy 

Table 1. Vowels used in our analysis (sorted by in-

creasing average associated relative note duration – 

see section 4.4). In order to classify vowels as short, 

long, or diphthong, vowels from the CMU dictionary 

were translated to Pan-English IPA (International 

Phonetic Alphabet) symbols according to [23]. Sym-

bols ending in a colon (:) represent long vowels; 

symbols containing two characters (e.g. oʊ) 

represent diphthongs. As is further elaborated in 

Section 4, we highlight that when sorted by average 

musical note duration, short vowels are correlated 

with shorter durations than long vowels and diph-

thongs in all cases, and with the exception of one 

long vowel (AO, or ɔ:), diphthongs are assigned 

longer durations than long vowels. 

P(Metric Position | Syllable Stress) 

Figure 2. P(metric position | syllable stress). Un-

stressed syllables are very unlikely to show up on a 

downbeat, but very likely at an 8
th
 beat position. Pri-

mary stresses rarely occur on off-beats. 
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Figure 1. P(syllable stress | metric position). The 

stronger a note’s metric position, the more likely it is 

that the associated syllable has a primary stress. 

Secondary stresses are rare overall and were omitted 

from this graph. 
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and P(unstressed) = 0.48). Figure 2 similarly shows that 

unstressed syllables are very unlikely to show up on a 

downbeat, but very likely at an 8th-beat position, and that 

primary stresses rarely occur on off-beats. Pearson’s Chi-

Square test confirms a significant relationship between 

these features (p < 0.0001). 

4.1.2 Syllable Stress and Melodic Peaks 

Figure 3 shows that stronger syllable stress is also strong-

ly associated with the occurrence of melodic peaks. This 

relationship holds in both directions: the probability of a 

primary stress is significantly higher at syllables corres-

ponding to melodic peaks than at non-peaks, and the 

probability of a melodic peak is much higher at stressed 

syllables than non-stressed syllables. Pearson’s Chi-

Square test confirms a significant relationship between 

these features (p < 0.0001). 

4.1.3 Syllable Stress and Note Duration 

In Figure 4, the “Relative Duration” feature has been dis-

cretized into two values: “Short” (Relative Duration ≤ 1, 

i.e. notes shorter than the mean duration within a song), 

and “Long” (Relative Duration > 1). Figure 4 shows that 

long notes are more likely to associated with stressed syl-

lables than unstressed syllables, and short notes are more 

likely to be associated with unstressed syllables. The in-

verse relationship is true as well; most notes (55%) asso-

ciated with unstressed syllables are short, and most notes 

(55%) associated with primary-stress syllables are long. 

Pearson’s Chi-Square test confirms a significant relation-

ship between these features (p < 0.0001).  

4.2 Stopwords 

Based on our general hypothesis that musical salience is 

frequently associated with lyrical salience, we hypothe-

sized that semantically meaningful words would tend to 

be associated with musically salient notes, and conse-

quently that stopwords – which carry little semantic in-

formation – would be associated with musically non-

salient notes. In this subsection, only notes associated 

with monosyllabic words are used in the analysis, since 

our list of stopwords includes only monosyllabic words. 

4.2.1 Stopwords and Metric Position 

Figure 5 shows the probability of finding a stopword at 

each metric position. The stronger the metric position, the 

less likely the corresponding word is to be a stopword. 

The overall probability of a stopword (across all metric 

positions) is 0.59. However, the half-beat and downbeat 

positions favor non-stopwords. Pearson’s Chi-Square test 

confirms a significant relationship between these features 

(p < 0.0001). 

4.2.2 Stopwords and Melodic Peaks 

Figure 6 shows that melodic peaks are more frequently 

associated with non-stopwords than with stopwords. The 

inverse relationship holds as well: the probability of ob-

serving a stopword at a melodic peak is lower than at a 

non-peak. Pearson’s Chi-Square test confirms a signifi-

cant relationship between these features (p < 0.0001).  

P(Melodic Peak | Syllable Stress) 

Figure 3. P(melodic peak | syllable stress). The 

probability of a melodic peak increases with increas-

ing syllable stress. 
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Figure 4. P(syllable stress | relative duration). The 

“Relative Duration” feature was discretized into two 

values: “Short” (Relative Duration ≤ 1, i.e. notes 

shorter than the mean duration within a song), and 

“Long” (Relative Duration > 1). Shorter note durations 

are more likely to be associated with unstressed syl-

lables; longer durations are more likely to be asso-

ciated with stressed syllables. 
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Figure 5. P(stopword | metric position). This graph 

shows metric positions moving from weak (left) to 

strong (right), and the corresponding decrease in the 

probability of stopwords at corresponding syllables.  
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4.3 Vowels 

We hypothesized that vowel sounds would vary reliably 

with note durations, reflecting both the aesthetic proper-

ties of different vowel types and the impact of different 

vowel types on a singer’s performance. We thus looked at 

correlations between the “phonetic length” of vowels 

(short, long, or diphthong) and the average durations of 

corresponding notes. We assign phonetic length to vowel 

length according to the IPA convention for Pan-English 

interpretation of phonemes (Table 1). 

4.3.1 Vowels and Relative Duration 

Figure 7 is a sorted plot of mean relative duration of notes 

for each vowel type. In general agreement with our hypo-

thesis, the shorter vowels all have mean relative duration 

less than 1 (i.e. short vowels have shorter duration than 

average in a song); long vowels and diphthongs have 

mean relative duration greater than 1 (i.e. long vowels 

have longer duration than average). We highlight that 

short vowels are correlated with shorter durations than 

long vowels and diphthongs in all cases, and with the ex-

ception of one long vowel (AO, or ɔ:), diphthongs are as-

signed longer durations than long vowels. 

If we generate a Boolean feature indicating whether a 

vowel is long (including diphthongs) or short, and we si-

milarly use the Boolean version of the “Relative Dura-

tion” feature (see Figure 5), we can proceed as in pre-

vious sections and correlate vowel length with relative 

duration. Figure 8 shows that longer notes are more likely 

to be associated with long vowels, and short notes with 

short vowels. Pearson’s Chi-Square test confirms the sig-

nificance of this relationship (p < 0.0001). 

5. DISCUSSION 

5.1 Summary of Findings 

We have introduced an approach for analyzing relation-

ships between lyrics and melody in popular music. Here 

we summarize the relationships presented in Section 4: 

1) Level of syllabic stress is strongly correlated with 

strength of metric position. 

2) Level of syllabic stress is strongly correlated with the 

probability of melodic peaks. 

3) Level of syllabic stress is strongly correlated with 

note duration. 

4) Stopwords (which carry little semantic weight) are 

strongly correlated with weak metric positions. 

5) Stopwords are much less likely to coincide with me-

lodic peaks than non-stopwords. 

6) Short vowels tend to be associated with shorter notes 

than long vowels, which tend to be associated with 

shorter notes than diphthongs. 

These findings support our highest-level hypothesis: 

songwriters tend to align salient notes with salient lyrics. 

The strength of these relationships – and our ability to 

find them using intuitive features in both lyrics and me-

lody – suggests the short-term potential to apply these 

relationships to both MIR and creativity support tools. 

5.2 Applications and Future Work 

The analysis presented here used features that were easily 

accessible in our database of symbolic popular music. Fu-

ture work will explore similar relationships among more 

P(Melodic Peak | Stopword) 

Figure 6. P(melodic peak | stopword). Melodic peaks 

are significantly more likely to coincide with non-

stopwords than with stopwords. 
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Figure 7. Mean relative duration of notes associated 

with each vowel, sorted form short notes (left) to long 

(right). The resulting partitioning of similar vowel 

types shows that short vowels are correlated with 

shorter durations than long vowels and diphthongs in 

all cases, and with the exception of one long vowel 

(AO), diphthongs are correlated with longer durations 

than long vowels. 
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complex features of both lyrics (e.g. valence, parts of 

speech) and music (e.g. tone and timbre, dynamics, and 

pronunciation data extracted from vocal performances). 

Understanding the statistics of lyrics alone will con-

tribute to the many of the same applications that will ben-

efit from our understanding of the relationship between 

lyrics and music. Therefore, future work will also include 

a large-scale study that more deeply explores the statistics 

and grammatical patterns inherent to popular lyrics, as 

compared to non-musical text corpora.  

Most importantly, future work will explore applica-

tions of a quantitative understanding of the relationship 

between lyrics and melody. For example, these relation-

ships can provide priors for lyric transcription and lyric 

alignment to audio recordings. Similarly, strengthening 

the connection between music and lyrics will allow us to 

more easily borrow techniques from the speech commu-

nity for problems such as artist identification and score-

following for popular music. 

Furthermore, a quantitative understanding of the rela-

tionship between lyrics and melody has applications in 

tools that support the creative process. Composers and 

novices alike may benefit from systems that can suggest 

lyrics to match a given melody or vice versa, and under-

standing the relationships presented in this paper is an 

important first step in this direction. One might similarly 

imagine a “grammar checker” for popular composition, 

which provides suggestions or identifies anomalies not in 

text, but in the relationship between melody and lyrics. 

6. PREPROCESSING TOOLKIT 

In order to stimulate research in this area and allow repli-

cation of our experiments, we provide the preprocessing 

components of our analysis toolkit to the community at: 

http://www.music.informatics.indiana.edu/code/musicxml 

The archive posted at this location does not include our 

database (for copyright reasons), but we provide instruc-

tions for downloading the Wikifonia data set. 
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ABSTRACT

We present a novel method for searching for unknown
music. RhythMiXearch is a music search system we de-
veloped that can accept two music inputs and mix those
inputs to search for music that could reasonably be a re-
sult of the mixture. This approach expands the ability of
Query-by-Example and allows greater flexibility for users
in finding unknown music. Each music piece stored by our
system is characterized by text data written by users, i.e.,
review data. We used Latent Dirichlet Allocation (LDA) to
capture semantics from the reviews that were then used to
characterize the music by Hevner’s eight impression cate-
gories. RhythMiXearch mixes two music inputs in accor-
dance with a probabilistic mixture model and finds music
that is the most likely product of the mixture. Our experi-
mental results indicate that the proposed method is compa-
rable to human in searching for music by multiple exam-
ples.

1. INTRODUCTION

Much music content has become available, and music anal-
ysis and retrieval systems have recently been rapidly devel-
oping. To make finding music easy, many prototype sys-
tems for searching for music pieces by using content-based
IR techniques have been proposed [17] [6]. They enable
users to find music by inputting an audio file as a query,
called Query-by-Example (QBE), in particular inputting by
humming, i.e., Query-by-Humming (QBH) [4]. Based on
the input audio signals, QBE systems retrieve music by
calculating the similarity between the queried music piece
and stored music and then return the results in the order of
similarity to the query. Searching by example is helpful for
obtaining new music similar to music that you have or that
you have heard.

However, these content-based IR methods are not able
to meet the specific needs of users wanting to find music
they have never heard. A common situation is that you
want to find a certain piece of music which you imagine

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

in your mind, but have neither the keywords related to it,
music similar to it, nor the ability to sing it. In addition,
content-based approaches rank at the top only music simi-
lar to what you know well, so you cannot find music very
different from yours; the opportunity to discover new mu-
sic is lost. This is caused by the lack of flexibility in in-
putting queries. As the amount of digital music content in-
creases, finding the precise music you want requires higher
expressiveness of queries.

We present a novel approach to searching for unknown
music. RhythMiXearch is a music search system we devel-
oped that can accept two or more music inputs. By mixing
the input music, it searches for music that could reason-
ably be a result of the mixture. This approach expands the
ability of Query-by-Example and allows greater flexibility
for users in finding unknown music. For example, intu-
itively, RhythMiXearch can introduce music similar to The
Beatles’ Let It Be + Coldplay’s Viva la Vida to you.

Stored music in RhythMiXearch is characterized on the
basis of users’ impressions. We retrieved review data on
Amazon.com, analyzed the text data by using Latent Dirich-
let Allocation (LDA) [2], and determined the impressions
that users received from the music.

There is a strong reason that users’ impressions were
used as a feature of the music and were extracted from the
review data rather than the features of the music itself be-
ing used. Consider music that users do not know but want
to find. The mood or impression the music will give users
is more important than the timbre [1] or rhythm [5] [12] it
has. Users are likely not able to imagine the details of the
wanted music, such as the timbre and rhythm; they only
feel the sense of the music they want, such as the mood
and impression. In addition, in our approach to mixing in-
put music, picturing mixtures of timbre and rhythm would
be difficult, and for users, the result may not be what is
expected or wanted. For detecting the impression given by
music pieces, seeing review text written by humans about
the music would be more effective than analyzing the mu-
sic itself. Mood detection by signal analysis has been pro-
posed [15] [14]. However, the final feeling we get from lis-
tening to music is a product of knowing the title and artist,
listening to the melody, understanding the lyrics, and so
on; simply analyzing the timbre and rhythm of a piece is
not enough for estimating what listeners will feel. In con-
trast, reviews are provided by music listeners, so analyzing
review text rather than the music itself would be helpful for
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determining the impression given by the music.
Input music is combined based on the features of the

music represented by the estimated impression, and our
system ranks its stored music pieces by their likelihood of
reasonably being a result of the combined input music. Sit-
uations in which multiple examples could be used include
the following: searching for music that has all the features
of multiple music inputs, and searching with multiple in-
puts of your favorite music. For these situations, we devel-
oped a method to combine two music inputs in one query.
We named the multiple input query Query-by-Mixture-of-
Examples.

2. RELATED WORK

Characterizing music by using text data has been reported
recently. Knees et al. used Web documents to develop a
system that searches for music pieces through natural lan-
guage queries [11] and also presented a method to combine
signal-centered features with document-centered ones [9].
They characterized music pieces by using a conventional
IR approach, which is the Vector Space Model with tf-idf
method. In addition to searching for music, artist classi-
fication [10] was done by the same text-based approach
with the SVM. Pohle et al. [13] describe artists by com-
mon topics or aspects extracted from Web documents. A
browser application they presented enables users to formu-
late a query to search for desired artists by simply adjusting
slider positions.

Turnbull et al. [16] focused on natural language queries
such as “female lead vocals” , called Query-by-Semantic-
Description (QBSD). In their approach, the Computer Au-
dition Lab 500-Song (CAL500) data set was used to learn a
word-level distribution over an audio feature space. QBSD
can search for music pieces unfamiliar to users, which is
the same aim as ours. Terms used as queries to illustrate
music, however, are limited with regard to amount and can-
not capture subtle nuances to search for wanted music.

Music Mosaics [18] is a concept for creating a new
query by concatenating short segments of other music pieces.
It applies the signal analysis technique to characterize mu-
sic and represents pieces of the music by thumbnails. Query-
ing with multiple music pieces in music mosaics is quite
similar to our method, but as mentioned above, making a
query by assembling pieces of signal information to find
unfamiliar music is difficult.

Similar to our approach, MusicSense [3] is a music rec-
ommendation system for users reading Web documents such
as Weblogs. It adopted a generative model called Emo-
tional Allocation Modeling to detect emotions of docu-
ments and music with the text. In this model, a collection
of terms is considered as generated over a mixture of emo-
tions, like the LDA approach.

3. METHODOLOGY

At first, we propose a framework of our approach. Then,
we explain song characterization with reviews by using
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Figure 1. Framework of our approach.
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Figure 2. 8 sets of impression words proposed by Hevner.
Adjacent sets are similar impressions, and opposite ones
are counter-impressions.

LDA, probabilistic mixture model for combining input mu-
sic pieces, and ranking music pieces by the similarity.

3.1 Framework of Our Approach

The framework of our approach is shown in Fig. 1. It
consists of three steps: (1) detecting impressions of music
pieces by using LDA from music reviews, (2) mixing in-
put music pieces on the basis of the impressions, and (3)
ranking stored music pieces by their likelihood of being
the result of the mixture.

For extracting impressions from music reviews, we used
a generative model named LDA, in which it is assumed that
terms in a document are generated by a mixture of topics,
i.e., multinomial distributions over topics. The assump-
tion enables us to conjecture the fundamental meanings of
documents, and the meanings are represented by the topic
distribution for each document.

The sets of impression words for music proposed by
Hevner [8] are shown in Fig. 2. The impression words are
used to find which impression a review gives in the genera-
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tive model , in intuitive terms, by calculating the similarity
between reviews and the impression words, where we re-
gard the sets of impression words as documents. We obtain
the probability that each distribution over topics for a doc-
ument would generate a set of impression words if only
Hevner’s sets of impression words were provided.

Given multiple music inputs, we mix on the basis of the
impression probability. Different mixture models are pro-
posed for different situations. Finally, the results from the
stored music pieces are returned, ranked by the similarity
to the mixture of multiple examples. One easy method is
the similarity-based ranking between stored music and the
virtual music created as a result of a mixture. We apply
this method to our system and introduce a prototype sys-
tem based on the framework.

3.2 Characterizing Songs by Reviews

First, we introduce a method to characterize songs by an-
alyzing text review data with LDA. In the LDA analysis,
terms in a document are assumed to be generated from a
topic and topics allocated to words are chosen from multi-
nomial distributions for the documents. Each multinomial
distribution is selected from the Dirichlet distribution, which
is often adopted as a prior distribution for a multinomial
distribution.

The LDA generative process consists of choosing pa-
rameters for each document w as follows.

1. Choose θ ∼ Dirichlet(α).

2. For each ith word wi in document w,

(a) choose a topic zi ∼ multinomial(θ), and
(b) choose a word wi from p(wi|zi, β), a multino-

mial distribution conditioned on the topic zi,

where α and β are hyper-parameters for a corpus that was
assumed to be previously fixed in this paper, θ is deter-
mined for a document, and wi and zi for a word.

The probability over the ith word for a multinomial dis-
tribution θ is given by

p(wi|θ, β) =
∑
zi

p(wi|zi, β)p(zi|θ). (1)

The probability p(zi|θ) characterizes a document by the
topics, which have lower dimensions K than the words.
Each topic is represented by the word-occurrence p(wi|zi, β).

With multiplication of all the N words in a document
w and integration over θ, the occurrence distribution of a
document w is computed as

p(w|α, β) =
∫

p(θ|α)

(
N∏

i=1

∑
zi

p(wi|zi, β)p(zi|θ)

)
dθ.

(2)
Taking the product of all the documents in a corpus, we

obtain the occurrence probability of the corpus. We use the
Gibbs sampling technique [7] to estimate the parameters
for the probability of the corpus and obtain the approxi-
mate distribution p(wi|zi, β) and the parameter θ, which is
allocated to each document.

θ z w

θ z w

Reviews

Sets of Impression Words

)|( whp

α

β

Figure 3. Graphical model representation of Latent
Dirichlet Allocation and of detecting impressions given by
music reviews. The upper outer rectangle represents re-
views, and the inner rectangle represents the chosen topics
and words in a review. The bottom outer rectangle repre-
sents sets of impression words. We estimate impressions of
music by calculating the probability p(h|w) that a multi-
nomial distribution for a review w generates a set of im-
pression words h.

After analyzing a corpus, we calculate the probability
that a topic distribution for a document would generate a
set of impression words. The distribution is denoted by
p(h|w), where h is a variable for Hevner’s sets of impres-
sion words H and is one of the sets. A graphical model rep-
resentation of LDA and of detecting impressions given by
documents is shown in Fig. 3. Through Bayes’ theorem,
p(h|w) is represented by only the product p(w|h)p(h):

p(h|w) =
p(w|h)p(h)∑
h p(w|h)p(h)

, (3)

where parameter β is omitted and p(h) is assumed to be
the same for all h in H .

The probability p(w|h) is divided by the latent param-
eters or the topics:

p(w|h) =
N∏

i=1

∑
zi

p(wi|zi)p(zi|θh). (4)

θh is a parameter of a multinomial distribution for a set of
impression words h, which is estimated regarding the set
as a document.

Finally, summing up over all documents for a music
piece, i.e., reviews, we obtain the probability p(h|m) that
a music piece m generates an impression h:

p(h|m) =
∑

w∈Dm

p(h|w)p(w|m), (5)

where Dm is a collection of reviews for music piece m and
we assume the same distribution for p(w|m), i.e., 1/ |Dm|.
The probability p(h|m) can be explained as an impression
represented by a set of words h at the probability p(h|m)
obtained by a user listening to music m.
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The Beatles

Let It Be

Coldplay

Viva la Vida

Figure 4. The left chart represents Let It Be by The Bea-
tles. The right chart represents Viva la Vida by Coldplay.
The numbers correspond to those in Fig. 2.

Examples are shown in Fig. 4. The reviews for the two
pieces of music were downloaded from Amazon.com, and
the probability p(h|m) was visualized by Google Chart
API 1 .

There are two reasons we put the topic distributions into
eight impression categories. First, to measure the similar-
ity between music pieces effectively, we should select the
most suitable topic, i.e., give weight to topics that strongly
represent the music features and reduce the weight of those
that do not relate to the features. This is because all the top-
ics do not necessarily represent features of the music, e.g.,
a topic may simply indicate that a music piece is expen-
sive. Second, to convey to users why the specific results
were returned, the music must be visualized in some way.
This is important particularly in a situation when a user
wants to find unknown music.

3.3 Probabilistic Mixture Model

In the previous subsection, we characterized music pieces
by p(h|m), which is the probability that the music m gives
an impression h represented by some adjectives. On the
basis of this probability, two music pieces input by users
are combined and a new probability for the result of the
mixture is generated. A basic method is to compute the
average of two given distributions p(h|mx) and p(h|my),
i.e., {p(h|mx) + p(h|my)} /2. However, this is likely to
provide a flattened distribution whose probabilities are sim-
ilar. An ordinary average operation has a potential prob-
lem: a remarkable feature on the distribution may be ig-
nored in the result of the combination. Thus, we propose
two mixing operations for two input distributions that can
be used in different situations.

3.3.1 Feature-preserved Mixture

To combine two music pieces while preserving their fea-
tures, we suppose the following probabilistic process.

1. Choose one of two input music pieces at a 1/2 prob-
ability.

2. Repeat two impression extractions from the chosen
music until the extracted impressions converge.

1 http://code.google.com/intl/en/apis/chart/

3. Adopt the concurrent impression as the result of the
mixture for the two music pieces.

The process is given by the following equation:

p(h|mz) =
1
2

{
p(h|mx)2∑
h p(h|mx)2

+
p(h|my)2∑
h p(h|my)2

}
, (6)

where p(h|mx) and p(h|my) are the distributions over the
impressions for input music mx and my, respectively, and
p(h|mz) is that for virtual music mz assumed to be the
result of the mixture.

The operation to adopt the concurrent impression en-
hances the outstanding probability in each distribution. This
method to combine two music pieces is suitable for a situ-
ation where users want music that has the remarkable fea-
tures of both pieces.

3.3.2 Product Mixture

The second approach to mix two music pieces effectively
is to accentuate the features common to both music inputs.
This is achieved by the formula

p(h|mz) =
p(h|mx)p(h|my)∑
h p(h|mx)p(h|my)

. (7)

This operation corresponds to the following process.

1. Repeat extractions of the impression from each mu-
sic piece until the extracted impressions converge.

2. Adopt the concurrent impression as the result of the
mixture for the two music pieces.

This method is suitable for a situation where users want
music that has a remarkable feature common to input mu-
sic mx and my . It can be applied for recommending music
by using multiple music pieces listened to by users as a
query.

3.4 Ranking by Similarity between Music Pieces

The virtual music resulting from the combination of two
music inputs is characterized by a distribution p(h|mz),
and the music in a system is ranked by closest similarity
and returned as a search result. Here, defining the similar-
ity between two music pieces is necessary.

Generally, the Kullback-Leibler divergence DKL(p||q)
is used for the similarity of probabilistic distributions p and
q. This function is not symmetric, thus we take the average
of the two versions and define the similarity between two
music pieces mx and my , letting p = p(h|mx) and q =
p(h|my):

Sim(mx,my) = exp
[
−1

2
{DKL(p||q) + DKL(q||p)}

]
.

(8)
Given the distribution p(h|mz) for a virtual music piece,

each music piece m ∈ M in a system is returned on the ba-
sis of the similarity Sim(mz,m).
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Number of impression Average percentage of songs
neighbors in same genre

1 0.579
5 0.523
10 0.488
20 0.454
50 0.407
100 0.359
All 0.152

Table 1. Average percentage of most similar songs in same
genre

4. IMPLEMENTATION

We collected music pieces and reviews from Amazon.com
with Amazon Web Services 2 , querying by artist names
that are listed in CAL500 [16]. We obtained 86,050 pieces,
for which 879,666 reviews were written; the average num-
ber of reviews per artist was about 10.2. The obtained re-
views were analyzed by GibbsLDA++ 3 , which is an im-
plementation of Gibbs sampling for LDA. As parameters
in LDA, we fixed the number of topics K = 100 and
hyper-parameters α = 50/K and β = 0.1. We then con-
ducted 1000 iterations of Gibbs sampling for the parameter
estimation.

5. EVALUATION

5.1 Evaluation of Characterization

Before evaluating our system, the performance of charac-
terization by impressions must be clarified. We evaluated
our method in accordance with the objective evaluation by
Aucouturier et al. [1]. We calculated the correlation be-
tween impression and genre similarity by using the songs
in our system. Because Amazon.com has multiple labels
on songs, only 356 songs that had only 1 label and more
than 20 reviews were used in our evaluation , and the top
11 genres used in our experiment were R&B, country, rap
and hip-hop, classic rock, classical, jazz, blues, pop, alter-
native rock, world music, and soundtracks.

The results can be seen in Table 1 and Fig. 5. In Ta-
ble 1, the closest k songs for a song were retrieved, the
percentage of the same genre was calculated, and the av-
erage was taken for all the songs. There was a low corre-
lation between impression and genres. As indicated in the
study on timbre and genre [1], this approach cannot mea-
sure the performance correctly because two songs in the
same genre do not always give similar impressions. How-
ever, comparing the results with those of timbre similarity,
we could show the effectiveness of review-centered char-
acterization.

A similarity matrix for each genre is shown in Fig. 5.
Each cell represents the average of the similarity between
songs in two genres. We could see a difference between
songs in the same genre and different genres except in the
alternative rock genre.

2 http://aws.amazon.com/
3 http://gibbslda.sourceforge.net/

Rap&Hip-Hop 0.879 0.824 0.841 0.838 0.836 0.531 0.678 0.776 0.811 0.614 0.827 

Country 0.824 0.871 0.821 0.806 0.827 0.505 0.719 0.791 0.827 0.555 0.837 

Classic Rock 0.841 0.821 0.859 0.837 0.821 0.498 0.687 0.781 0.797 0.699 0.829 

World Music 0.838 0.806 0.837 0.852 0.836 0.526 0.679 0.759 0.781 0.691 0.817 

R&B 0.836 0.827 0.821 0.836 0.850 0.506 0.691 0.765 0.791 0.619 0.828 

Jazz 0.531 0.505 0.498 0.526 0.506 0.766 0.579 0.479 0.541 0.343 0.502 

Classical 0.678 0.719 0.687 0.679 0.691 0.579 0.735 0.682 0.734 0.470 0.712 

Alternative 

Rock
0.776 0.791 0.781 0.759 0.765 0.479 0.682 0.750 0.770 0.568 0.788 

Soundtracks 0.811 0.827 0.797 0.781 0.791 0.541 0.734 0.770 0.833 0.539 0.806 

Blues 0.614 0.555 0.699 0.691 0.619 0.343 0.470 0.568 0.539 0.878 0.613 

Pop 0.827 0.837 0.829 0.817 0.828 0.502 0.712 0.788 0.806 0.613 0.841

R&HH Country
Classic 

Rock
WM R&B Jazz Classical AR

Sound-

tracks
Blues Pop

Figure 5. Similarity matrix for 11 genres. Each cell repre-
sents the average of similarity between songs in two gen-
res. The black cells represent the maximum similarity in
each row, and the gray cells represent the 2nd and 3rd max-
imum similarity within 10% of the maximum in each row.

5.2 Evaluation of Query-by-Mixture-of-Example

Comparing with results returned by a human, we investi-
gated the performance of our proposed method to search
with a query by mixture of example. We asked a student
who knows music pieces well to choose reasonable songs
as mixture of input queries listed in Table 2. Then, we
asked 5 persons to listen input music and output music in-
cluding both music recommended by human and returned
by RhythMiXearch, and to evaluate relevance of the out-
puts in five levels. The result is shown in Fig. 6, where
the average scores were taken for each question, and the
question numbers correspond to those in Table 2.

In some questions, music recommended by human were
considered more relevant than the results returned by Rhyth-
MiXearch. Our system is inferior to human in performance,
however, the result by human should be regarded as the up-
per bound in the evaluation. In the questions 4 and 5, the
results by RhythMiXearch obtained higher scores, whereas
in the questions 2 and 3, our method failed to return rele-
vant results for mixture of example. The result may show
that a human can recommend music only for similar two
music like the inputs seen in the question 2 and 3, on the
one hand, our system can search for music even for differ-
ent types of music like the inputs used in the question 4
and 5.

6. CONCLUSION

We presented a novel method for searching for unknown
music and also presented our developed system RhythMiX-
earch, which can accept two music inputs and mix those
inputs to search for music that could reasonably be a result
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# Input A Input B Human Feature-Preserved Mixture Product Mixture
1 The Beatles, Let It Be Coldplay, Viva La Vida Bob Dylan, Blowin’ In the Wind Kiss, Dynasty The Black Crowes, Lions
2 Michael Jackson, Thriller Madonna, Like a Virgin Jamiroquai, Cosmic Girl Jimi Hendrix, The Jimi Hendrix Experience *
3 Eminem, The Eminem Show Britney Spears, Britney TLC, Silly Ho Green Day, Nimrod *
4 Eric Clapton, 461 Ocean Boulevard John Lennon, Imagine Eagles, New Kid in Town Eric Clapton, Me and Mr. Johnson Cream, Disraeli Gears
5 The Cardigans, First Band on the Moon Whitney Houston, Whitney Janis Joplin, Half Moon Christina Aguilera, Stripped *

Table 2. 5 set of inputs and outputs for evaluation of Query-by-Mixture-of-Example. (* means the same result as Feature-
preserved Mixture.)
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Figure 6. Average of scores for each question

of the mixture. Our first contribution was to characterize
music pieces by reviews with LDA and to evaluate the per-
formance of the representation of the music pieces. The
second contribution was to propose a probabilistic mixture
model for processing multiple example queries. We be-
lieve that Query-by-Mixture-of-Examples is an important
concept for searching for new music pieces.
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ABSTRACT

We propose a new retrieval system based on musical struc-
ture using symbolic structural queries. The aim is to com-
pare musical form in audio files without extracting explic-
itly the underlying audio structure. From a given or arbi-
trary segmentation, an audio file is segmented. Irrespec-
tive of the audio feature choice, we then compute a self-
similarity matrix whose coefficients correspond to the es-
timation of the similarity between entire parts, obtained by
local alignment. Finally, we compute a binary matrix from
the symbolic structural query and compare it to the audio
segmented matrix, which provides a structural similarity
score. We perform experiments using large databases of
audio files, and prove robustness to possible imprecisions
in the structural query.

1. INTRODUCTION

Content-based search on very large audio files databases
is an important issue in music information retrieval. New
browsing tools propose to compare audio songs according
to music properties such as style, rhythm, melody, timbre,
etc. Among all of these properties, taking into account in-
formation about structure may be very useful for discrimi-
nating songs, since it may be closely linked to music style
or music composer. In this paper, we propose to focus on
these structural properties.

Musical structure has been of major concern over the
last years. This field aims to retrieve and compare human-
recognizable musical structure within an audio piece. To
this end, Foote proposed in 1999 [1] a self-similarity matrix-
shaped representation whose coefficients carry structural
information over the musical piece. This matrix is obtained
analyzing repeated sections within the piece; it describes
both a global structure and different local structures.

Existing works about music structure generally focus
only on structural analysis in audio files. Footeet al. pro-
posed a music summarization method by summing scores
in its self-similarity matrix representation [2]. Dannenberg
tested several transcription methods by adapting them to
the nature of the given audio file, in order to explicitly re-
trieve the underlying structure [3]. Mülleret al. proposed
a method to extract relevant paths in a self-similarity ma-
trix, deducing the precise structure of the music piece [9].
Bartsch developed an automatic thumbnailing system that
retrieve relevant parts from audio [7], and Goto focused
later in chorus extraction over songs taking into account
possible modulations or variable durations of their occur-
rences in the audio musical piece [6]. Peeters used [5] a
representation in terms of ”states” of music and proposed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.
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Figure 1. Overview of the query-by-structure method pro-
posed.

an algorithm that computes a structural summarization in
several passes over the audio file. Bartschet al. worked [4]
on a summarization centered on choruses using chroma
features. Pauluset al. used [8] several audio features to
build a probability space in order to analyze the best prob-
able underlying structure.

Once the structure is correctly analyzed, a retrieval sys-
tem may be directly developed by comparing the sequences
of structure. The problem is the correctness of the struc-
ture estimated. Although several systems have been pro-
posed and evaluated, analysis errors significantly limit the
accuracy of a retrieval system based on such approaches.
Lately, Izumitani and Kashino proposed a method that esti-
mates the structural similarity between two excerpts by di-
rectly comparing the self-similarity matrices computed [12].
This method is applied to cover song detection.

The method we propose trails after the same principle:
comparing musical form without extracting explicitly the
underlying audio structure. In this paper, we bring a new
retrieval system based on musical structure using symbolic
queries. In Section 2, we describe the system proposed.
In Section 3, we present different experiments on real pop
music databases. Finally, we conclude and open perspec-
tives in Section 4.

2. METHOD

The proposed method searches the database for the musi-
cal piece that best matches a given symbolic query. See
Figure 1 for the method global schematic view.

2.1 Audio Self-Similarity matrix computation

First, the system splits an audio file inton audio segments
according to a given segmentation. The applied segmenta-
tion used in our retrieval system will be described later.

483



Poster Session 3

2.1.1 Features

In the proposed method, the comparison is based on musi-
cal structures, not directly on audio features. Therefore,it
is fundamental to keep in mind that the chosen audio fea-
tures can be changed, regardless of the further steps of the
method.

As a feature set, we useHarmonic Pitch Class Profiles
(HPCP) [11]. HPCPs, which provide tonal information,
are robust to noise, timbre, dynamics, tuning or loudness
variations, and ensure then an accurate tonal description.
The different tonality vectors are extracted the same way
as in [11] or [10], frame by frame.

This analysis transforms an input audio file into a se-
quenceH = (

−→
hi)1≤i≤n of N B-dimensional vectors

−→
hi ,

whereN denotes the number of frames in the musical piece,
andB denotes the chosen chroma bin resolution (generally
12, 24 or 36). Our system settles for a 12 bins resolution.

The method proposed compares the signal to itself in
order to retrieve structural information (see Section 2.1.2).
That’s why an adapted measure that enables the compar-
ison between two HPCP vectors is needed. We choose
the binary local alignment technique described in [10] to
this purpose. On top of being adapted to HPCPs, this mea-
sure computes the optimal transposition index between two
chromas to provide a similarity score, which allows our de-
tection to be robust to key changes within the same audio
musical piece. This comparison measure is able to com-
pute from two features sequencesH1 andH2 a similarity
score by local alignment.

2.1.2 Segmented self-similarity matrix of an audio file

As explained before, we use self-similarity matrices in or-
der to represent the repeated sections. In our model, self-
similarity matrices contain elements, whose range is[0, 1],
that stand for the likeliness between two parts of a struc-
ture. Horizontal and vertical axis of the matrix represent
time, that runs from left to right as well as from top to bot-
tom.

In classic uses of self-similarity matrices, eachi, j coef-
ficient is computed by comparing the feature correspond-
ing to the timei of the musical piece with the one corre-
sponding to the timej of the same musical piece. However,
in our model, contrary to the general self-similarity com-
puting process, time does not run uniformly on both axis.
Indeed, each elementi, j of the matrix corresponds to the
similarity measure between two entire partsPi andPj of
the musical piece. Thus, each coefficient corresponds to
the evaluation of the similarity between two sets of feature
vectors, not directly between two vectors.

Based on then audio file segments computed from the
audio signal,n sequencesH1, H2, . . . , Hn of HPCP vec-
tors are computed, each one corresponding to an audio seg-
ment. Therefore, comparing two HPCP sequences means
comparing two segmented parts of the audio signal. Thus,
for each couple of HPCP sequencesH1 andH2, we com-
pute a similarity score using the binary local alignment by
dynamic programming technique inspired from Gomez’s
work and described in 2.1.1. This provides a self-similarity
matrix R, whose coefficients stand for the comparison of
two parts within the musical piece:

R = (alignment(Hi, Hj))1≤i≤n,1≤j≤n (1)

where alignment() denotes the binary local alignment by
dynamic programming technique used to compare two
HPCP sets. An example of reference segmented self-simi-
larity matrix is shown on Figure 2 (right).

2.2 Query matrix computation

In a first approach, the query used for comparisons is a bi-
nary self-simlarity matrix computed from a symbolic struc-
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Figure 2. Left: Symbolic query self-similarity matrix of
The Beatles - All My Lovingmusical piece. Right: Seg-
mented reference self-similarity matrix of the same musi-
cal piece. Letters show the different recognizable patterns;
white pixels stand for repeated sections, and black pixels
stand for distinct sections. The left reference matrix is seg-
mented according to the ground truth for this musical piece
(exact structure).

tural query, that can be arbitrarily defined or taken from a
ground truth.

2.2.1 Symbolic structural query

Our model uses symbolic structural queries, which are a
symbolic representation of the underlying structure of a
musical piece. A symbolic query can be seen as a sequence
of symbols that represent a particular musical form. Each
part within a symbolic structural query has its own dura-
tion. It can represent a simple note as well as an entire
excerpt.

A symbolic structural query can be seen as a sequence
of symbols, for instance ‘aabca’, combined or not to sym-
bols representing duration information. Two identical sym-
bols within the sequence indicate a similarity between the
two corresponding parts, and two different symbols indi-
cate a dissimilarity.

2.2.2 Self-similarity matrix of a symbolic query

Symbolic queries are comparable to pattern sequences that
impose two kinds of constraints : similarities,i.e. remark-
able repetitions, and dissimilarities.

The symbolic query self-similarity matrix is created by
analyzing the provided patterns sequence. Assuming that
(sk)1≤k≤n represents a symbols sequence of lengthn (e.g.
s = ‘ababc′), the query self-similarity matrixQ is defined
as follows:

∀(i, j) ∈ {1 . . . n}2, Qi,j =
{

1 if si = sj

0 if si 6= sj
(2)

The resulting matrix is binary, and stands for 2 types of
constraints: similarity and dissimilarity. An example of a
self-similarity matrix created from a symbolic query can
be viewed in Figure 2 (left).

2.3 Matrices comparison

In order to assign a similarity score between the matrices
we compute, we use three different algorithms that have
different properties. These three algorithms provide a nor-
malized similarity score according to a binary query matrix
and a reference matrix. From now on, the two matrices
compared are denoted asQ andR.

The first approach consists in computing the similarity
between matrices using a pixel-to-pixel algorithm, based
on an euclidean distance algorithm. However, we consider
more sophisticated algorithms that show different charac-
teristics.
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Figure 3. Possible compared patterns taken into account
in local alignment with (i) Izumitani’s algorithm and (ii)
Lecroq’s algorithm.

An approach to the comparison problem can be yielded
by local alignment algorithms. In our context, this prin-
ciple is extended to matrices comparison; possible opera-
tions in order to transform the first matrix into the second
work on symbols that can be seen as clusters of the com-
pared matrices.

In some cases, it can be very relevant to consider pixel-
wise deletions or insertions in the matrices comparison.
Moreover, if the query binary matrix is smaller than the
compared reference matrix (structure excerpts search), lo-
cal alignment techniques are able to cope with the dimen-
sion difference and to provide a local similarity score.

2.3.1 Izumitani and Kashino’s algorithm

The first local alignment algorithm tested is the one pre-
sented in [12]. This algorithm takes as an input two self-
similarity matrices. Since these matrices are symmetrical
and have constant maximum diagonal, this algorithm only
works on the lower triangles. It is based on a dynamic pro-
gramming method that searches the diagonal direction of
the reference self-similarity matrix. Indeed, the Izumitani
and Kashino’s algorithm compares each entire line of the
reference matrix with each entire line of the query matrix.
Thus, for each comparison, it allows the 3 different opera-
tions (insertion/deletion/substitution) on a unique pattern:
entire lines of the lower triangle of the compared matrices.
This pattern can be seen on Figure 3 (left).

Furthermore, the dynamic programming matching me-
thod is based on “matched element indices sets” recur-
sively computed, which means that at each stepn, match-
ing elements between two compared lines are deduced from
then− 1 step (see [12], 2.3, p.612). In other words, if an
element does not match the compared line at a step, the
whole following column elements will not be taken into
account in any further comparison. This represents a limi-
tation of this algorithm.

2.3.2 Lecroq et al.’s algorithm

In order to improve the alignment comparison, we chose to
consider a different method. Indeed, reducing considered
patterns for the comparisons to lines only seemed to be
rather limited, which led us to evaluate a new method.

The second local alignment algorithm studied is adapted
from [13]. It was developed and used in order to com-
pare symbolic dialog annotations, and is particularly spe-
cialized in aligning 2-dimensional patterns. Lecroqet al.’s
algorithm browses the matrices element by element, and
allows the 3 typical operations on different patterns: a sin-
gle element (pixel), a part of a line or an entire line, a part
of a column or an entire column, and a part of a line and a

part of a column simultaneously. These different patterns
are represented on Figure 3 (right).

Our adaptation consisted in not comparing text entries
but patterns included in self-similarity matrices, takinginto
account their properties and adapting the comparison to a
non-binary similarity measure.

2.4 Retrieval system specificities

2.4.1 Query-based segmentation

Symbolic structural queries can be combined or not to in-
formations about the duration of each pattern.
If the query indicates absolute time informations (in frames
or seconds), these can be used to split the musical piece in
segments.
If the query indicates relative time informations, the global
duration of the piece can be used to split the musical piece.
If no time information is provided in the symbolic query,
segmentation is arbitrary: for instance, it can be uniformly
processed, each part having the same duration than the oth-
ers.

2.4.2 Pre-processing

Before evaluating a similarity score, the reference self-si-
milarity matrix must be pre-processed. Indeed, since the
reference matrix contains the similarity scores between the
different parts of the musical piece, the distribution of the
values of its coefficients is likely to vary according to the
considered musical piece. For some audio files, the tonal
distinction between two parts that are supposed to be dif-
ferent, e.g. a chorus and a verse, will be very clear, whereas
it will turn out to be vague in some other cases.

Letµ andσ be respectively the average and the standard
deviation values of the coefficients’ distribution in the ref-
erence matrixR. The normalized reference self-similarity
matrix R̂ is computed as follows:

∀(i, j) ∈ {1 . . . n}2, R̂i,j =
(Ri,j − µ)

σ
· σ̂ + µ (3)

whereσ̂ is a constant corresponding to the new standard
deviation to apply. It must be adapted to the pixel-to-pixel
comparison constants (see 2.4.3). In our model, we used
σ̂ = 0, 31.

2.4.3 Adapted euclidean distance

In a first approach, we compare matrices by computing an
euclidean score, based on pixel-to-pixel comparisons. As
explained before, the binary query matrix contains simi-
larity and dissimilarity constraints. However, our method
does not give these two constraints the same importance.

Actually, we can reasonably hypothesize that two parts
that are supposed to be similar (i.e. that are represented by
the same symbol in the query) present two close tonal de-
scriptions, whereas two parts that are supposed to be dis-
similar can be either close, or different in their tonal de-
scriptions: there is no gradation on the dissimilarity notion.
Therefore, it is necessary to make an distinction between
the strong similarity constraints and the weak dissimilarity
constraints that imposes the symbolic query.

Our adapted euclidean distance computes then two dif-
ferent scores, which takes into account this distinction: A
similarity scores= ∈ [0, 1], that is established only with
similarity constraints imposed by the query,
A dissimilarity scores 6= ∈ [0, 1], that is established only
with the dissimilarity constraints of the query.
Let Q andR denote the query and reference compared ma-
trices, respectively. We introduce the set

R= = {(i, j)|Qi,j = 1, i < j}

that denotes the reference matrix indices that correspond to
a similarity (white pixel, value 1) in the query. In the same
way, we introduce the set
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R 6= = {(i, j)|Qi,j = 0, i < j}

that denotes the reference matrix indices that correspond
to a dissimilarity (black pixel, value 0) in the query.s= is
computed comparing each similarity element of the query
with the corresponding element in the reference the follow-
ing way:

s= =
1

|R=|

∑

(i,j)∈R=

||1−Ri,j || (4)

where ||.|| denotes the classical euclidean norm.s 6= is
computed comparing each dissimilarity element of the que-
ry with the corresponding element in the reference the fol-
lowing way:

s 6= =
1

|R 6=|

∑

(i,j)∈R6=

f(Ri,j) (5)

wheref denotes an exponential shaped function that was
empirically determined :

f(x) =
1

e8 − 1
· (e8·x + 1)

3. EXPERIMENTS

In order to evaluate our method in the most systematic way,
we established a serie of experiments that underline its dif-
ferent characteristics.

3.1 Databases establishment

We based our research on a structural ground truth cor-
pus created by M. Levy, K. Noland and G. Peeters1 . It
includes60 accurate XML annotations for western pop
songs, and numbers for each musical piece every detected
section with its duration. It was found to be one of the
most used corpora in this field, in many prior studies, such
as [14] or [15].

We used two different audio files databases in order to
validate our model.
- The ground-truth corresponding audio files databaseDg,
that includes the60 musical pieces annotated in the corpus;
- A noise databaseDm, that contains200 audio western
pop music audio files from different authors.
Obviously, we respected the following inclusion:
Dg ⊂ Dm. Audio files were taken from commercial CD
versions.

We analyzed signals using HPCP features (see 2.1.1)
with an overlap of50% and a window size of744 millisec-
onds.

3.2 Exact structural queries

The first experiment consists in searching musical pieces
through a large database with the prior knowledge of their
exact structure and time segmentation. Thus, we generated
queries according to the symbolic representation and seg-
mentation provided by our ground truth corpus. To com-
pute the reference matrices, we segmented theDm files
according to each available ground truth data given inDg

(60 files). Segmentation was carried out with relative time
information provided by the queries.

We then computed similarity scores between each query
and the200 well-segmented references, and checked whe-
ther the best matching was made on the file corresponding
to the query. To do so, since the applied segmentation and
symbolic query were supposed to be exact, we used the
adapted euclidian distance described in Section 2.4.3. Be-
cause of the high accuracy of the used symbolic queries
and segmentations, this simple algorithm was as efficient
as local alignment techniques for this experiment.

1 http://www.elec.qmul.ac.uk/digitalmusic/downloads/index.html#segment
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Figure 4. Structural excerpts concordance between the
three best results matching withAll My Lovingexcerpt. (i)
Stop the rock, (ii) All My Loving - the queried structural
excerpt, and (iii)A Day in the Life. Rectangles widths are
commensurate with pattern durations; Dashed lines show
structural concordances.

For all of the60 cases tested, the experiment was con-
clusive: the corresponding audio file was best matched.
Therefore, the system is able to retrieve exactly a musical
piece providing its exact structure and segmentation.

3.3 Structure excerpts queries

The second experiment consists in searching musical pieces
through a database with the prior knowledge of a part of
their exact structure and time segmentation. In other words,
knowing an excerpt of a structure and the segmentation of
a musical piece, we now aim at retreiving the entire orig-
inal musical piece as well as any piece that contains the
same given structural excerpt.

As a symbolic query, we chose a structural excerpt from
theAll My Lovingby The Beatlesmusical piece:
’VCBV’ (Verse - Chorus - Bridge - Verse).
We assume that the time segmentation of this structure is
known,i.e. we know how long each part lasts.

Since the symbolic query matrix and the reference ma-
trix do not have the same size, the pixel-to-pixel distance is
irrelevant here. Thus, we tested the alignment of the sub-
request matrix on every musical piece ofDg segmented
according to theThe Beatlespiece with Izumitani et al.’s
and Lecroq et al.’s algorithms.

With each of both algorithms, the best matching was ob-
tained on the original Beatles piece. However, the second
best matched result differs from one algorithm to the other.
Figure 4 shows the matched structure excerpt on the best
matched pieces: the originalThe Beatlespiece (ii), that
was best matched on both of the algorithms, the second
best matched piece with Izumitani’s algorithm (i), and the
second best matched piece with Lecroq’s algorithm (iii).
The indicated patterns correspond to ground truth data rel-
ative to each audio musical piece. Here are the full sym-
bolic structures of these pieces :
All My Loving: ’A A B C B A B D’
A Day in the Life: ’A B B B C D E B C F G’
Stop the Rock: ’A A A A A B C D B A E F F D B A’

By segmenting musical pieces according to theAll My
Loving ground truth, the structures of pieces (i) and (iii)
were re-segmented, exhibiting a new structure that highly
matched the queried structure excerpt (ii). Dashed lines in
Figure 4 show the high pattern matching: pattern similar-
ities and dissimilarities are nearly identical between each
of the three best matched pieces.

3.4 Time robustness

In the experiments described above, we processed exact
segmentations taken from the ground truth. However, our
query-by-structure method aims at getting rid of time con-
straints, and at being able to retrieve correctly providing
exclusively a symbolic query as an entry.
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Figure 5. Altering a single time border between two parts
of a structure: consequences on similarity scores. (i):
Izumitani and Kashino alignment algorithm, (ii): Lecroq
alignment algorithm, (iii): Adapted pixel-to-pixel distance.
Plain line stand for theAll My Loving, The Beatlesmusical
piece, while dashed line stands for the second best match-
ing score. Horizontal axis show the border position, from
the start of the first part to the end of the second, in sec-
onds. Its length is about 15 seconds.

Therefore, it is necessary to test our algorithms on time
constraints,i.e. to change more or less the prior exact seg-
mentation in order to evaluate their robustness towards this
criterion.

As explained before, a segmentation combined to a sym-
bolic query provides a series of symbolic parts indexed in
time. From now on, we will denote as a border of two con-
secutive parts the exact point in time when ends the first
part and starts the second one. The following time robust-
ness experiments consist in changing the position of one
or several borders in order to observe the impact on the
matching scores.

3.4.1 Changing one segmentation border

The first time robustness test consists in changing one bor-
der over a given segmentation. From the ground truth cor-
pus, we chose a musical piece (All My Loving), and modi-
fied its exact segmentation.

Here is the symbolic structure of this musical piece :
Verse - Verse - Chorus - Bridge - Verse - Chorus - Outro
We chose to work on the first Chorus / Bridge border, for
it generally demarcates two distinct parts in their tonal de-
scription.

Let s1, e1, s2 ande2 denote respectively the beginning
and the end of the first chorus, and the beginning and the
end of the bridge. In order to estimate time robustness on
our method, we generated a series of20 different segmen-
tations changing the border position froms1 to e2, keeping
the constraint thate1 = s2. Thus, the only difference be-
tween two generated segmentations is the position of this
border.

The experiment results are shown on Figure 5. The
plain line identifies the scores for the considered musical
piece, whereas the dashed line indicates the second best
matching score over the databaseDg. In the x-axis, the
tested position of the border varies froms1 to e2, the verti-
cal dashed and dotted line indicating the original position
of the border in the ground truth.

For the3 comparison methods, we can see that the scores
obtained for the musical piece (plain lines) vary slightly in
an interval that corresponds to±6 seconds around the orig-
inal position of the border. Above this value, the border
seems to alter the score in such a way that the tested musi-
cal piece does not best match the symbolic query matrix.
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Figure 6. Altering every time borders between parts in a
structure: consequences on similarity scores. (i) Izumitani
and Kashino alignment algorithm, (ii) Lecroq et al. align-
ment algorithm, (iii) Adapted pixel-to-pixel distance. Plain
line stand for the average over the 10 draws, and dashed
lines stand for the greatest and lowest obtained values. The
matching scores correspond to the output computed by the
different algorithms.

3.4.2 Changing every segmentation borders

After changing a single border in a segmentation, we esti-
mated time robustness on our algorithms by changing ev-
ery borders in the same segmentation. Letd be the total
considered musical piece duration. We introducepmax,
expressed as a percentage of the total musical piece dura-
tion, that corresponds to the maximum variation of each
border in the segmentation (in percent). In other words,
introducingtmax = pmax · d, each border in the segmen-
tation may be changed to a new time that does not exceed
the old one±tmax. We chose10 different values forpmax

from 1% to 10% of the total piece duration, and gener-
ated a random segmentation whose borders were changed
according to the above principle. This operation was re-
peated10 times for each value ofpmax.

Results can be seen in Figure 6. The figures show the
average scores (plain lines) as well as the minimum and
maximum scores (dashed lines) obtained over the10 draws.
They show the evolution of similarity scores between the
symbolic query and the randomly altered segmentations
according to the maximum alteration factor. Considering
the second best matching scores obtained on the same sym-
bolic query, the three algorithms seem to be robust to a
maximum variation of the borders of 6% of the total piece
duration. Above this value, the best matching is realized
on a different piece.

3.5 Query-by-Structure

We now consider timeless queries that only impose a sym-
bolic structure. From now on, no information about time
segmentation is given: the principle is to search for a musi-
cal piece in the database providing exclusively its symbolic
structure.

In order to realize this experiment, we focused on a few
pieces that make part of the ground truth. This way, we
could get the annotated structure of each musical piece and
use it as the input symbolic query of our method. How-
ever, borders timings were not retrieved from the anno-
tation files, which yielded queries without timing indica-
tions. Lacking any indication about time in the segmen-
tation, our system assumes that the different symbols are
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Rank
# Musical Piece Eucl Izum Lecroq
1 AllMyLoving 7 6 4
2 DevilinHerHeart 2 1 2
3 Drive 1 1 3
4 ItWon’tBeLong 1 1 1
5 Lonestar 84 111 26
6 Misery 1 1 1
7 NotaSecondTime 1 1 1
8 TakeOnMe 29 13 55
9 Thubthumpning 3 15 3
10 Wannabe 13 12 8
11 WhenI’mSixtyFour 100 90 54
12 WithaLittleHelp.. 1 1 1
13 Words 2 9 10
14 YouReallyGot.. 1 1 1

Average Rank 17.57 18.79 12.14
Median Rank 2 3.5 3
MRR 0.544 0.537 0.480

Table 1. Query-by-Structure results with3 different algo-
rithms: euclidean (Eucl), Izumitani (Izum) and Lecroq.

uniformly distributed over the excerpt. In other words, it
assigns the same duration to each symbol in the query.

Results can be viewed in Table 1. We tested14 differ-
ent symbolic structural queries with no time informations
compared to each file ofDm. The result table shows the
retrieval ranks obtained for every musical pieces and for
each of the3 algorithms.

As shown by the two previous experiments, the algo-
rithms used are able to deal with an inexact segmenta-
tion over the audio files. However, we saw limitations
on the maximum time variation applied on borders. After
analysing the ground truth relative to the different tested
musical pieces, we could split the test set in two classes:
- Regular structured pieces, whose recognizable patterns
have close durations (less than 10% of the duration of the
piece). This class contains pieces No. 1, 2, 3, 4, 6, 7, 9, 12,
13, 14 in the table;
- Irregular structured pieces, whose recognizable patterns
durations may vary significantly (possibly more than 10%
of the duration of the piece). This class contains pieces No.
5, 8, 10, 11.
As we can see, irregular structured excerpts ranks are rather
high with the three algorithms, which shows the limita-
tions of our system. However, regular structured pieces are
much more precisely retrieved.

At comparing the different algorithms used, we can see
that the three algorihms seem to be efficient, euclidian a-
dapted distance providing the best Mean Reciprocal Rank
(MRR).

4. CONCLUSION AND FUTURE WORK

We have proposed a music retrieval system based on struc-
tural similarity. Considering a symbolic representation of
the underlying structure of a musical piece, an audio file
can be segmented and compared using self-similarity rep-
resentation on HPCP features, providing a similarity score
that indicates the structural likeliness. We used three dif-
ferent algorithms to compare matrices. We proved that
not only the algorithm works exactly on accurate symbolic
queries, but it presents also a significant robustness to slight
time variations, which even allow searching for structures
ignoring timing informations.

An interesting idea as a perspective is to work on a
query-by-example oriented system. This time, the query
will not be a symbolic structural information but an au-
dio file, arbitrarily segmented. Then, the retrieval will be

focused on finding the closest structures to the underly-
ing structure of the input audio file. In our first tests, we
managed to get from an input audio file a very structurally
similar musical piece.

Finally, our system is based on a tonal representation
of the signal. Nevertheless, since the retrieval operation
works on structural data, this parameter could be changed
to any other one. We should consequently test our system
on other features, such as rhythm representations or timbre
analysis.
This work is part of the SIMBALS project (JC07-188930),
funded by the French National Research Agency.
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ABSTRACT 

Key-finding is a central topic in Western music analysis 
and development of MIR tools. However, most approaches 
rely on the Western 12-tone scale, which is not universally 
used. African music does not follow a fixed tone scale. In 
order to classify and study African tone scales, we devel-
oped a system in which the pitch is first analyzed on a con-
tinuous scale. Peak analysis is then applied on these data 
to extract the actual scale used. This system has been ap-
plied to a selection of African music, it allows us to look 
for similarities using cross-correlation. Thus it provides an 
interesting tool for query-by-example and database man-
agement in collections of ethnic music which can not be 
simply classified according to keys. Next to this the data 
can be used for ethnomusicological research. The study of 
the intervals used in this collection, e.g., gives us evidence 
for Western influence, with recent recordings having a 
tendency to use more regular intervals. 

1. INTRODUCTION 

Scale recognition has a long tradition in the analysis of 
Western music. Already in medieval music theory, deter-
mining the mode and classifying pieces according to their 
mode was a central topic. Also in the music theories of the 
Middle-East and India, classification of music according to 
the scale (often connected to a certain ‘mood’) is an im-
portant topic. Not surprisingly, with the advent of compu-
tational methods, researchers started to design systems to 
perform the process of scale recognition automatically [1]. 
In recent years the focus has shifted from symbolic ap-
proaches, based on MIDI or score representations, to the 
analysis of musical audio files (e.g. [2 - 6]). Various sys-
tems have reached a reasonable level of success in labeling 
music according to the keys of the Western tonal system 
(cf. MIREX 2005 [7]).  

Automatic analysis and classification of scales in music 
that is not organized according to the Western tonal sys-
tem is much less developed. Some efforts that have been 
done to extract the scales of e.g. Australian aboriginal did-
jeridu music [8] or Indian classical music [9] use a reduc-
tion to Western pitch classes, thus avoiding the problems 
raised by irregular temperaments. Although this approach 
can be efficient to a certain extent, it seems limited to 
music with a pitch organisation that has a certain resem-
blance to the Western system and is problematic in terms 
of culture specific information. In some music the pitch-

set used is as such not very important, but rather the musi-
cal gestures associated with playing or moving from one 
tone to another are the most characteristic aspects. This 
has been used in the study of Chinese guqin music [10] 
and Carnatic (South-Indian classical) music [11], using 
prototypical gestural patterns or melodic atoms to describe 
the melodic content of music in which the pitch is seldom 
stable.  

Some work has been done on the scale analysis of 
music of the Middle-East, more precisely on Turkish [12] 
and Persian [13] modes. This music is characterized by the 
occurrence of intervals based on (roughly) a quarter tone 
scale. Therefore, an analysis based on a chromatic (half-
tone) division of the octave can not be used. Therefore the 
pitch is analysed on a more continuous scale, then trans-
formed to pitch histograms, which can be attributed to 
schemata that represent the modes used in this specific 
repertoire. 

Pitch organisation in the music of Sub-Saharan Africa 
does not rely on a fixed theoretical framework. Ethno-
musicological research has shown that a large variety of 
scales is in use. Often these scales use intervals that do not 
conform to the European chromatic scale, e.g. the use of 
intervals around 240 cents in (roughly) equidistant penta-
tonic scales [14]. However, standardized tuning systems or 
culture-specific classification systems do not exist. In this 
paper we will propose a system to explore African scales 
with applications in Music Information Retrieval and 
ethnomusicology. First we will present the collection on 
which the scale-detection system is applied, as well as the 
test-set which will be analyzed in detail. In the next chap-
ter we give a brief description of the pitch detection and 
peak extraction systems used to analyze the music and 
how the output can be coupled with the metadata associ-
ated with the original sound files.  

2. BACKGROUND 

The audio set which has been used in this research, is a 
selection from the audio archive of the RMCA (Royal Mu-
seum for Central Africa) in Belgium. It is one of the larg-
est collections worldwide of music from Central Africa. 
The audio collection consists of about 50,000 sound re-
cordings (with a total of 3,000 hours of music), dating 
from the early 20th century up to now. Aiming for durable 
conservation and enhanced accessibility, the audio archive 
has been digitized entirely. Not only the audio but also ac-
companying metadata and contextual information have 
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been digitized. A database and website were developed 
containing complete descriptions and fragments of the 
audio. The results of this project can be accessed on the 
website http://music.africamuseum.be.  

For this study a selection of 901 audio files was used. In 
order to be sure to get a selection that consists only of 
music that uses a relatively fixed tone scale (and not e.g. 
music for percussion ensemble), we extracted music using 
four common types of musical instruments: musical bow 
(N = 132), zither (N = 134), flute (N = 385) and lamello-
phone (thumb piano) (N = 250). The selection was limited 
to music described as solo performances, mostly they con-
tain only the sound of the instrument, in some cases the 
performer also sings, accompanying him/herself on the 
instrument.  

3. ANALYSIS 

3.1 Pitch detection 
 
The pitch algorithm used in this paper has originally been 
designed to perform automated transcription of sung audio 
into a sequence of pitch classes and their duration [15]. 
Original goal of this tool was the development of a query-
by-humming system for retrieving pieces of music from a 
digitized musical library.  In this original system, the 
acoustic signal is turned into a parametric representation of 
the time-frequency information. A note is assigned to the 
segment by identifying the highest peak in the histogram 
of the frame-level pitch frequencies found in the segment, 
and by computing the average of the pitches lying in that 
bin. The pitch is then converted to a MIDI note rounding 
the computed annotation to the closest note frequency. 

For the application of pitch recognition to the study 
of African scales, some important adaptations had to be 
made. First, the time segmentation, necessary to create 
melodies, was not of importance for building the pitch 
scales and was left out. Second, the quantization of the an-
notations into MIDI notes was unwanted, as we want to 
describe music that does not necessarily follows the 
equally-tempered scale. Therefore, the actual frequencies 
were used as pitch annotations. The output of this pitch 
algorithm consists of a list in which every line represents 
10 ms, listing six potential frequencies, each with a proba-
bility.  This allows extension to polyphonic textures. 

In this case however, we choose to work with largely 
monophonic music. Therefore only the pitch with the 
highest probability was retained for every 10 ms, at least if 
this probability was higher than a minimal threshold (in 
this case 0.5). Then the frequencies were transformed to a 

cents scale, setting C0 to zero (cents). For comparing his-
tograms, all listed values were reduced to one octave, gen-
erating a chromavector of 1200 values, representing the 
scale of the piece. A typical example of the graphical rep-
resentation generated by the pitch detection system is 
shown in Figure 1. 

3.2 Peak Extraction 
 
The pitch analysis gives us a precise representation of the 
pitch content used in every piece. To extract the scale, a 
peak analysis was performed on the histograms. As a first 
step, the 1200 integers are ranked by their value. Starting 
from the highest value, peaks are assigned. A peak is ac-
cepted if it meets all parameters. Parameters for the selec-
tion are width of the area around the peak in which another 
peak cannot be assigned, the size (volume) of the peak and 
height relative to average height. Parameters were manu-
ally optimized for this data set by trial and error. As the 
histograms show a large variance (small and wide peaks, 
high and low peaks, high and low noise levels), a mean of 
the best individual settings was chosen as final parameter 
settings (see Table 1). The analysis gives us the number of 
peaks, average height and a precise description of the lo-
cation and size of the individual peaks (Table 2). 
 
Parameter Definition Value  
Places number of lines in the input file 1200 
Peakradius 
 

width of the peaks 30 

Overlap 
 

tolerated overlap between peaks 0.25 

Accept 
 

maximal proportion: volume 
peak without overlap/volume 
peak with overlap 

25 

Volfact 
 

minimal volume of a peak: vol-
fact*(average height of histo-
gram)*(1+2*peakradius) 

1 

Heightfact 
 

minimal height of a peak: 
heightfact*(average height of the 
histogram)  

1 

Table 1. Parameters used in the peak detection, with the 
settings used in the current analysis in the Reith column. 
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Figure 1. Example of the graphical output of the pitch 
analysis. 

Peaks 
(cents) volume height 

left 
side 

% peak 
height  

right 
side 

% peak 
height 

91 20441 922 61 0,15 121 0,21 
837 17953 538 807 0,47 867 0,29 
325 9603 371 295 0,13 355 0,29 
476 8305 301 446 0,17 506 0,16 

1050 12313 296 1020 0,57 1080 0,52 

Table 2. Example of the output of the peak analysis for the 
piece shown in Figure 1, showing the pitches, together 
with information on the size of the peak. 

3.3 Metadata 

All the meta-data that were originally associated with the 
collection were digitized. Thus we get a large number of 
data fields from different categories: identification (num-
ber/id, original carrier, reproduction rights, collector, date 
of recording, duration), geographic information (country, 
province, region, people, language), and musical content 
(function, participants, instrumentation). Unfortunately, 
not for every recording all fields are available and often 
these data cannot be traced, as a large part of the collection 
is made up of unique historical sources. 

 The results of the pitch and scale analysis can be cou-
pled with existing meta-data such as instrumentation, geo-
graphical information or date of recording. This can give 
us valuable information on the use of certain scales, such 
as geographical spread or evolution through time. As the 
current selection of pieces is relatively small, we used 
broad categories for the geographical origin (West-Africa, 
Southern Africa,…) and the recording time (before 1960, 
between 1960 and 1975, after 1975). An example of such a 
coupling is given in Figure 2. It gives the amount of peaks 
for each piece for each of the three time periods. This 
shows that in recent recordings, hexatonic and heptatonic 
scale become relatively more important while the import-
ance of pentatonic and tetratonic scales diminishes.  

Figure 2. Bar chart representing the amount of peaks (2-
9), for each the three categories of recording time: before 
1960 (n = 288), between 1960 and 1975 (n = 296) and af-
ter 1975 (n = 317). 

4. APPLICATIONS 

The analyses made can be applied in different areas. 
First we will show the application of the pitch detection 
for data-mining applications, using cross-correlation of the 
pitch profiles to look for similarities. Next we will show 
an application of the techniques for ethnomusicological 
research, studying the intervals used in African scales. 

4.1 Correlation analysis 
 
The chromavectors given by the pitch analysis can be 
cross-correlated with each other in order to search for 
similar scales. As African music doesn’t have a standardi-
zed tuning pitch, we need to allow a shift of pitch. There-
fore, the cross-correlation technique uses every permuta-
tion of the original chromavector and returns the highest 
correlation from a list of 1200 correlations together with 
amount of cents it had to be shifted (Figure 4). Thus this 
method can be used for a query-by-example in which the 
output is a list of pieces with similar scales. This applica-
tion allows to retrieve a song from a database without 
knowing any concrete fact about it, which is an important 
element for the usability of a search engine in a database 
of largely unknown music.  

Next to this, the method can be useful for database 
management. The technique allows to check whether some 
songs are already present in their archive (so called double 
listed items), looking for perfect correlations without pitch 
shift. It can also help to establish groups of pieces with a 
similar origin, detecting possible links between recordings 
from different origins (cf. Figure 3). This could eventually 
lead to determination of missing meta-data. 

Although the results of this analysis are promising, still 
some optimizations have to be done. Thus e.g. noisy pitch 
profiles with broad peaks, indicating less stable pitches 
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(e.g. from singing) (cf. Figure 3) are more likely to gener-
ate high correlations compared to pieces with very clearly 
defined pitches. Similarly the larger the number of peaks 
the more difficult it gets to obtain high correlations. Some 
mechanisms to deal with these differences should still be 
developed. 

 

Figure 3. Graphical representation of a query-by-
example, in this case the correlation is very high (r = .98) 
and no shift in pitch is necessary, which could point to a 
similar origin, despite the different sources. 

 

 

Figure 4. Two examples of a cross-correlation analysis, 
where the optimal correlation is found through a pitch 
shift. In the upper example a relatively large shift of 296 
cents (about a minor third) reveals the highest similarity 
(r = .80), while in the lower example only a small shift of 
26 is necessary to obtain the maximum (r = .89). 

4.2 Interval analysis 

In the analysis of 20th century Western classical music, so-
called ‘interval vectors’ are used to express the intervallic 
content of a pitch-class set [16]. Using a Western chro-
matic scale, interval vectors are limited to an array of six 
numbers, expressing the amount of occurrences of each 
possible pitch interval (from a minor second to a tritone). 
With the variety of intervals found in African scales, this 
reduction to six numbers is not possible. Nevertheless, 
creating a global view on the intervals that constitute the 
scales can give us interesting insights in the pitch structure 
of the music. Are there for example any specific intervals 
that occur often, can we see regional differences or is there 
an evolution through time.  

For this analysis the scales obtained from the peak 
analysis are transformed to an array of all possible inter-
vals that can be built with this scale. As we work with 
scales reduced to one octave, the distinction between ris-
ing and falling intervals can not be made. Therefore the 
maximum interval size is set at 600 cents (a tritone or half 
an octave). For the analysis presented here, the intervals 
were grouped in bins of 5 cents, which gives us interval 
vectors of 120 elements. 

 

 

Figure 5. Comparison of all the pitch intervals found in 
the scale analysis from (above) the 42 pieces from the J.S. 
Bach’s six cello suite and (below) our collection of 901 
pieces of African music. 

First we can make a global analysis of the intervals. In 
figure 5, a comparison is made between our complete col-
lection of 901 pieces and a small sample of Western tonal 
music (Johann Sebastian Bach’s six cello suites, played by 
Mstislav Rostropovich, a collection of 42 movements). In 
the interval analysis of the Western music we clearly see 
peaks corresponding to the standard intervals of 100 cents. 
For the African music the situation is much less clear. One 
similarity could be the importance of the 500 cents inter-
vals (corresponding to the pure fourth/fifth), but the other 
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peaks are much less well-defined and in some cases sharp 
peaks appear at odd intervals (e.g. 160, 370 cents). 

Now we can also couple the interval vectors with the 
meta-data. As an example we can look if we can find some 
differences in interval content between the three time peri-
ods. The analysis of the meta-data already revealed that 
tone scales with larger number of pitches became more 
important in recent recordings (cf. supra). Do we also find 
an influence on the pitch content? All three interval pro-
files are very irregular and show peaks at unexpected 
places, as seen in the global analysis. An interesting evolu-
tion is seen if we look at the relative share of the intervals 
corresponding to the Western equally-tempered scales. 
Counting the relative share of the 5 relevant intervals by 
taking the two bins around the correct interval (e.g. 95-105 
cents for the minor second), we see that the share of these 
intervals almost doubles in the recent recordings (Table 3). 
Only for the minor third we don’t see an increase, and the 
change is especially remarkable for the major seconds 
(also containg the minor sixths) and the pure fourths/fifths. 
A detailed view on the area in which pure fourths and 
fifths are found reveals an interesting evolution (Figure 6). 
The main peak seems to shift from 530 cents in the earliest 
recordings to 515 cents in the middle period to end up at 
500 cents in the most recent recordings. This possibly also 
indicates a gradual evolution to a Western pure-fifth based 
tuning. 

 
Interval < 1960 1960-1975 > 1975 
min. 2nd 1,46 1,87 2,20 
maj. 2nd 1,57 1,71 5,20 
min. 3rd 2,26 3,39 2,84 
maj. 3rd 1,25 1,28 2,78 

4th/5th 2,55 2,56 5,31 
sum 9,10 10,81 18,33 

Table 3. Relative share (in %) of pitches in an area of 10 
cents around the Western equally-tempered intervals, for 
three recording time periods. 

Figure 5. Relative share (in %) of pitches in bins of 5 
cents between 450 and 550 cents for three recording time 
periods. 

A detailed analysis of regional differences goes beyond the 
scope of this paper. Yet, we can see some interesting ele-
ments in relation to the global analysis of intervals. We see 
for example that the peak at 160 cents is present in every 
region. This shows that it is not a feature of a particular 
culture, but a ‘pan-African’ characteristic.  Further ethno-
musicological work is necessary to find a possible expla-
nation for the importance of this interval. Interestingly 
similar interval sizes are found in the music of the Middle-
East, where they are classified as ‘neutral seconds’ (nei-
ther minor nor major, but in between). The pitch system 
there however is organized according to completely differ-
ent principles, so it is not clear if a direct link can be estab-
lished.  

5. DISCUSSION AND CONCLUSIONS 

We proposed a number of methods to deal with non-
standardized tone-scales, as they are found in African mu-
sic. Avoiding working with a priori determined categories 
(such as the pitches of the chromatic scale), allows a rep-
resentation and analysis of a large variety of tone scales. 
This was illustrated by a sample of solo-music on four dif-
ferent instrument types taken from the archive of the Bel-
gian Royal Museum of Central-Africa. The results are 
promising, both for data-mining application and as a start-
ing point for ethnomusicological research. Before we can 
expand these techniques to the whole database, several 
problems still have to be solved. Some important obstacles 
for are the presence of unaccompanied vocal music, which 
usually has a fluctuating pitch. This makes it very hard to 
extract the exact scale automatically, without applying a 
kind of pitch correction first. Also there is a problem with 
the use of percussion. The presence of percussive sounds 
tends to obscure the actual pitch scale used and to generate 
one large peak associated with the pitch of the percussion 
instrument. Therefore a system to suppress these percus-
sive sounds should also be developed. 
Using this relatively small sample of 901 pieces, we could 
already develop some methods for ethnomusicological re-
search, creating a more elaborate view on scales and tem-
peraments in African music in an automated way. A global 
comparison between the intervals found in Western and in 
African scales, shows that African music does not conform 
to the fixed chromatic scale nor has another fixed scale, 
however in recent recordings there seems to be a tendency 
to the use of more elaborate, equally-tempered scales. Fur-
ther research has to be done in these historical aspects as 
well as on the geographical aspects of African tone scales. 
These techniques lead to usable applications for query-by-
example, database management and classification. 
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ABSTRACT

This paper presents a system for tracking the position of a
polyphonic music performance in a symbolic score, pos-
sibly in real time. The system, based on Hidden Markov
Models, is briefly presented, focusing on specific aspects
such as observation modeling based on discrete filterbanks,
in contrast with traditional FFT-based approaches, and de-
scribing the approaches to decoding. Experimental results
are provided to assess the validity of the presented model.
Proof-of-concept applications are shown, which effectively
employ the described approach beyond the traditional au-
tomatic accompaniment system.

1. INTRODUCTION

The concept of audio to score alignment refers to the abil-
ity of a system to align a digital audio signal recorded from
a music performance with its score. More precisely, given
a recording of a music performance and its score, the aim
of such alignment system is to match each sample of the
audio stream with the musical event it belongs to. There
are a number of possible applications of such technology,
ranging from the “automatic accompanist”, a software al-
lowing solo players to practice their part while the com-
puter plays the orchestral accompaniment, to tools for mu-
sicological analysis or augmented audio access.

Most systems currently used for audio to score align-
ment are based on statistical models. In particular Hidden
Markov Models (HMMs) [1, 5], possibly with hybrid ap-
proaches that make use of Bayesian networks and HMMs [8]
or Hidden Hybrid Markov / semi-Markov chains [3].

In this paper we propose an HMM-based system that
focuses on handling highly polyphonic music through the
use of a filterbank approach.

2. MODEL DESCRIPTION

The main idea of the proposed approach is that the most
relevant acoustic features of a music performance can be

Permission to make digital or hard copies of all or part of this work for
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modeled statistically as observations of a Hidden Markov
Model (HMM). The process of performing a music work
can be regarded as stochastic because of the freedom of
interpretation, yet the knowledge of the work that can be
obtained from the score can be exploited to model the pos-
sible performances. In the presented system, a HMM is
built according to the data contained in the music score.
The incoming audio signal is divided into frames of fixed
length, with every frame corresponding to one time step
of the HMM; the HMM performs a transition every time a
new audio frame is observed and the advancement of the
performance in the score is tracked by performing the de-
coding of the HMM. The crucial point is the definition of
the graph topology and the observation modeling while de-
coding is performed with well-known algorithms.

2.1 Score Graph Modeling

The score modeling step aims at obtaining a graph struc-
ture representing the music content of the score. In partic-
ular, a score is represented as a sequence of events, imply-
ing that it can be transformed into a simple graph where
states are connected as in a chain. Two levels of abstrac-
tion can be distinguished in the resulting graph: a score
level modeling the macro-structure of the piece, that is the
sequence of music events, and an event level dealing with
the structure of each music event; the distinction between
the two reflects the conceptual separation between differ-
ent sources of mismatch: the former deals with possible
errors both by the musicians and in the score, while the
latter models the duration and the acoustic features of each
event, which vary depending on interpretation, instrumen-
tation, recording conditions and other factors.

2.1.1 Score Parsing

The first step in building the HMM graph is the transforma-
tion of the symbolic score into a sequence of events. In the
case of a monophonic score, all the notes and explicit rests
correspond to an event, while events in a polyphonic score
are bounded by any single onset and offset of all the notes
that are played by the various instruments/voices (see Fig-
ure 1). Due to the large availability of already transcribed
music, MIDI has been used as the score representation for-
mat although, being provided by end users, most of the
MIDI files contain transcription errors that may influence
the alignment effectiveness.
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(a) Original score (b) Event sequence

Figure 1. Score representation

2.1.2 Graph Topology – Score Level

In its simplest form, the topology of the score level graph
directly represents the succession of events: the states, each
corresponding to a single music event, form a linear chain,
as seen in Figure 2(a). This approach has no explicit model
for local differences between the score representation and
the actual performance that has to be aligned, thus the over-
all alignment can be affected by local mismatches. For in-
stance, a skipped event, which should create only a local
misalignment, can extend its effect also when subsequent
correct events are played resulting in larger differences in
the alignment.

In order to overcome these problems, a special type of
states was introduced, namely ghost states – as opposed
to event states, which correspond to real events in the mu-
sic work. Ghost states were proposed in [4]. The basic
graph topology is modified so that each event state can
perform a transition to an associated ghost state, which in
turn can perform either a self-transition or a forward tran-
sition to subsequent event states. The final representation
is made of two parallel chains of nodes, as shown in Fig-
ure 2(b). This approach can model local differences be-
tween the score and the performance, because in this case
the most probable path can pass through one or more ghost
states during the mismatch and realign on the lower chain
when the performance matches again the score. The transi-
tion probabilities from event states to corresponding ghost
states are typically fixed, while the transition probabilities
from a ghost state to subsequent event states follow a de-
creasing function of distance: this resembles the idea of
locality of a mismatch due to an error.

2.1.3 Graph Topology – Event Level

The event level models the expected acoustic features of
the incoming audio signal. Every state of this level is mod-
eled as a chain of n sustain states, each having a self-loop
probability p, possibly followed by a rest state, as shown
in Figure 2(c). Sustain states model the features of the sus-
tained part of an event, while rest states model the possi-
ble presence of silence at the end of each event that can
be due to effects such as staccato playing style. As de-
scribed in [7], the probability of having a segment duration
d is modeled by a negative binomial distribution, with ex-
pected value µ = n

1−p and variance σ2 = np
(1−p)2 . The

duration of an event is modeled by setting the values of n
and p accordingly; in particular µ is set equal to the event
duration in the score.

Two cases can be distinguished depending on the choice
of having n fixed or variable. In the former case event du-

N1 N2 N3 N4

(a) Score level (simplest topology)

N1 N2 N3 N4

G1 G2 G3 G4

(b) Score level, with ghost states
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(c) Event level

Figure 2. Graph topologies

ration is modeled by self-loop probability. This approach
is easy to implement and with a small n the total number
of states in the graph is relatively small and proportional to
the number of events; on the other hand the variance of the
distribution changes with events duration. The latter case
allows for a more precise modeling of event duration. It is
reasonable to compute n and p in order to have σ2 = kµ,
where p is constant for all the events, and the only parame-
ter responsible for the event duration is the number of sus-
tain states, of which the total number is thus proportional
to the duration of the score.

2.2 Modeling the Observations

The fundamental assumption of the model is that states of
the event level emit the expected acoustic features of the
incoming signal. Because polyphonic pitch detection is
still unreliable, the signal itself is not analyzed, instead its
harmonic features are compared to the expected features of
the emissions of the HMMs.

2.2.1 Sustain States

The core feature used by the observation modeling of sus-
tain states is the similarity, for each audio frame, between
the spectrum of the incoming signal and an ideal spec-
trum of the sustain state that is being considered. Sophis-
ticated techniques have been proposed making use of spe-
cific knowledge of instrument timbre [2]. Although very
effective in specific situations, such as contemporary mu-
sic performances where the instruments can be sampled,
this kind of approach is not suitable for the general case
where the instrument cannot be known in advance from
the score.

Typically, spectrum analysis is done via the Fast Fourier
Transform: the energies for the various frequency bands
are computed by summing the energies in the appropriate
FFT bins. The problem with this approach is that the linear
frequency resolution of the FFT leads to a significant loss
of precision in the lower frequency range. While the situa-
tion is partially compensated by upper harmonics a differ-
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ent strategy can nevertheless improve the performances of
a system.

In our approach, the frequency resolution problem is
handled using a bank of discrete filters. In particular, each
one is a second order filter of the form

Hi(z) =
(1− ri)

√
1− 2ri cos(2θi) + r2i

(1− rie−jθiz−1)(1− riejθiz−1)
(1)

which has unit gain at θi (the normalized nominal frequency
of the i-th note), and allows, by changing the pole radius
ri, to set the filter bandwidth; each filter output is then
routed to a delay line in order to compensate for the dif-
ferent group delays: assuming that each filter has the same
bandwidth in semitones, the filters corresponding to the
lowest notes have a much higher group delay than the high-
est ones. We assume that this delay, which can be removed
off-line or compensated in real time applications, is to be
preferred to a lack of frequency resolution for lower notes.
A comparison of FFT and Filterbank analysis is presented
in Section 3.3.

The observation probability of a note is computed by
partitioning the spectrum into frequency bands, with each
band corresponding to a note in the music scale. Let Efi
be the energy of the i-th filter output signal in the current
frame, i.e. Efi =

∑
t y

2
i (t); the energy Eni corresponding

to the i-th note can be defined as

Eni =
∑
j

Efi+h(j) (2)

where wj = 1 and h(j) is a simple map between the in-
dex of a harmonic and the corresponding note index. In
this very simple instrument model, the energy for the note
C3 is computed as the sum of the energies for the filters
corresponding to the notes C3, C4, G4, C5, E5, and so on.

The observation probability for the i-th sustain state is
computed as

b
(s)
i = F (

Eni
Etot

) (3)

where Ei is the energy in the expected frequency bands
and Etot is the total energy of the audio frame. F (·) is the
unilateral exponential probability density function

F (x) =
eλ

eλ − 1
λeλ(x−1) 0 ≤ x ≤ 1 (4)

Other similarity functions can be applied with similar re-
sults, in particular the cosine distance between the vec-
tor representations of the simple instrument model used to
compute Ei and the filter output energies.

While the above approach is robust enough for mono-
phonic alignment, the complexity of polyphony makes it
preferable to apply a different weighting of the harmonics
in the instrument model. A possible solution is to modify
Equation 2 by adding decreasing weights to the note har-
monics to reflect a more realistic instrument model. When
filters overlap for some harmonics of different notes, the
weight assigned to that harmonic in the instrument model
can be either the sum or the maximum of the individual
weights; the latter solution seems to perform better, and the

intuitive explanation is that typical scores do not contain
precise information about the loudness of each note/part,
so a simpler model is more general.

2.2.2 Rest States

The observation probability for the i-th rest state is com-
puted as a decreasing function of the ratio of the current
audio frame energy over a reference threshold represent-
ing the maximum signal energy.

b
(r)
i = F (

Etot

Ethres
) (5)

The threshold is adaptive, to compensate for possible dif-
ferences in the overall recording volume of different input
streams.

2.2.3 Ghost States

A simple approach for modeling the observations of ghost
states is to assign a fixed value to the observation proba-
bilities, because these states are meant to provide a sort of
“emergency exit” for local matches. The approach can be
improved by computing the observation probability for the
i-th ghost state as:

b
(g)
i =

i+k∑
j=i

wi(j)b
(s)
j (6)

that is, a weighted sum of the sustain observation proba-
bilities of the following event states, where wi(·) is a de-
creasing discrete distribution function and its presence is
motivated by the fact that, intuitively, in case of wrong or
skipped notes, the notes actually played would probably be
close to the expected ones. In case of errors in the score,
the weighting function induces the system to quickly re-
align on near notes.

2.3 Decoding Strategies

The proposed system exploits the decoding algorithms de-
scribed in [6], depending on the application context, namely
forward decoding and forward-backward decoding. These
strategies determine, at each time interval, the most proba-
ble state, without forcing the decoded sequence of states to
actually be the most probable sequence of states as is the
case for Viterbi decoding. Preliminary tests showed that
the system recovers more quickly, because the decoded se-
quence does not need to be a feasible state sequence.

Figure 3 compares a typical evolution of the state prob-
abilities for the forward and forward-backward decoding
algorithms. The latter is characterized by a more precise
evolution, a highly desirable behavior in the case of subse-
quent events with the same set of harmonics: if no model-
ing of a note attack is employed – as is the case with the
current version of the system – and the rest states at the
end of the lower level event chain do not help discrimi-
nating the events, the evolution of forward-backward de-
coding automatically assigns to the events a duration in
the alignment which is proportional to the duration in the
score.
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(a) Forward decoding (b) Forward-backward decoding

Figure 3. Evolution of state probabilities

3. EXPERIMENTAL RESULTS

The evaluation of an audio to score alignment system is
a difficult task, mainly because of the lack of a manually
aligned test collection of polyphonic music. For instance,
the MIREX test collection is not publicly available because
of copyright reasons and it contains mainly monophonic
recordings. For this reason, two test collections have been
prepared, the former made up of single-instrument poly-
phonic pieces and chamber music and the latter compris-
ing excerpts of more complex orchestral works. A experi-
mental comparison of the FFT and Filterbank analysis ap-
proaches is presented using recordings of tuba and cello
music, characterized by a low frequency content.

3.1 Single Instrument and Chamber Music Collection

The audio collection is made up of excerpts from well known
piano, violin, and chamber music works 1 extracted from
CD and home recordings; the MIDI files were downloaded
from the Internet. The files in the collection have been cho-
sen so that the complexity of their polyphony is representa-
tive of pieces which could be realistically used in a typical
automatic accompaniment system, with real time require-
ments. The resulting alignments were manually checked,
visually inspecting the mismatches and aurally verifying
them by listening to a stereo recording containing the orig-
inal piece and a synthesized version generated from the
alignment data on different channels.

Out of 20 test recordings, none caused the system to get
lost, but in one case the alignment was very unstable (it
was always in proximity of the “true” alignment but never
precise) so its contribution will not be considered. For the
other recordings the mismatches were classified according
to their duration as either brief (shorter than two seconds)
or long (larger time intervals, although never more than 10
seconds); the former type of mismatches occurred 41 times
while the latter 10 times, mostly on complex passages of
polyphonic material. Example alignments can be viewed
and heard in the authors’ home pages 2 , where more de-
tailed statistics can also be found.

Because of the real time requirements, the forward de-
coding algorithm was used to compute the alignments. If

1 Bach: Italian Concerto, Goldberg Variations, Chaconne from the Vi-
olin Partita in D minor; Beethoven: Piano Sonata op. 13, String Quar-
tet op. 18 n. 1; Mozart: Piano Sonata KV333; Ravel: String Quartet;
Schubert: Quartettsatz D703; Schumann: Waldszenen op. 82.

2 http://www.dei.unipd.it/˜montecc2/ismir09/
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Figure 4. Typical alignment evolution

real time is not a constraint, usually forward-backward de-
coding gives better results, in which many of the glitches
in the forward-decoded alignment are eliminated. Such an
example is shown in Figure 4.

All the alignments have been performed using the same
model parameters; further experiments showed that some
improvements can be obtained by assigning different weights
to the harmonics in Equation 2 for piano and string works.
Essentially, the different weighting reflects the suitability
of a more refined instrument model, in particular the piano
model is characterized by more rapidly decaying overtones
than the string model.

3.2 Orchestral Music Collection

The orchestral music collection comprises 48 excerpts of
40 seconds from CD recordings of symphonic works 3 ; the
MIDI scores are generally much less accurate than the ones
used in the chamber music collection.

A simple evaluation methodology was devised in order
to present results for this collection. The output of the
alignment system for a single performance/score couple
is a list of value pairs in the form [audiotime,miditime].
Once all the performances in a collection are aligned to
their corresponding score, these alignments are analyzed
to extract a measure of precision based on the average de-
viation of the alignment data from the best fitting line. This
measure is based on the hypothesis that an orchestra plays
more or less a tempo, at least in short time intervals, thus
a graphic representation of the alignment should follow a
straight line. While this is clearly a potentially incorrect
assumption, the suitability of the particular performances
in the test collection was verified by the authors. The best
fitting line computed from the alignment data is thus as-
sumed to be the correct alignment; ∆avg is defined as the
average deviation of the alignment data point from the best
fitting line. Under the assumption of a performance char-
acterized by a steady tempo, the lower is ∆avg the higher
is the alignment accuracy. This evaluation methodology
was not used for the chamber music collection because the
tempo was not steady enough.

Figure 5 shows the histograms of the slope and ∆avg

distributions for the best fitting lines obtained from the
alignments. The tempo of the recorded performances and
of the respective MIDI files are roughly comparable, so

3 Beethoven: Symphonies n. 3, 7, 9; Haydn: Symphony n. 104;
Mendelssohn: Symphony n. 4; Mozart: Symphonies and Serenades
K136, K412, K525, K550; Vivaldi: The Four Seasons.
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Figure 5. Orchestral collection alignment results

the expected histogram of the slopes should be centered
around 1; an alignment can thus be safely considered in-
correct when slope values are outside the interval (0.6, 2).
This simple assumption allows to quickly interpret the graph-
ical results and deduce that the performance of the system
with orchestral music is, as expected, clearly worse than
the case for single instrument or chamber music, in which
all alignments were essentially correct. Manual inspection
of the results showed that the correct alignments were 36;
for those, the average ∆avg was 0.47.

A closer analysis pointed out that in the correct and in-
correct sets of alignment the elements are homogeneous
with respect to the music work, e.g. all Vivaldi’s and most
of Mozart’s music was correctly aligned while most of
Beethoven’s were not. The reason for this was found out
to be the fact that in the recordings of Beethoven’s works
the reference pitch was slightly higher than the standard
440 Hz for A4; correcting this setting considerably im-
proved the results for Beethoven’s music. This situation
is a clear example of how a single set of parameters is not
suitable for all the possible situations, but this is typically
not a requirement: in the offline case multiple alignments
can be performed and only the best one, according to the
simple heuristics discussed above, can then be presented to
the user, while when real time is required, it is reasonable
to assume that the system parameters can be adjusted using
previous rehearsals as reference.

In the above results, the forward decoding algorithm
was used to compute the alignments; the reason is that the
forward-backward algorithm turned out to be less robust
for aligning performances where an alignment computed
with forward decoding was not precise.

3.3 Comparison of FFT and Filterbank analysis

Several experiments were performed on a small collection
of recordings of tuba and cello music, to show the advan-
tages of discrete Filterbank analysis over traditional FFT
for observation modeling on music characterized by a low
frequency content. The recordings were aligned manually
in order to count the number of wrongly recognized or
skipped notes. Of 105 total events, the FFT based system
did not recognize 12 and skipped 1, while the Filterbank
based system did not recognize only 4 notes and skipped
none. It should be noted that in almost all cases of not
recognized notes both system realigned on the correct note
immediately, and that the parameters of the systems were
not tuned for this particular situation, so that better per-

0 2 4 6 8 10

audio time (s)
0

1

2

3

4

5

6

7

8

m
id

i t
im

e 
(s

)

FFT based system
Filterbank based system

Figure 6. Comparison of FFT and Filterbank approaches

formances can be expected; forward decoding was used to
simulate a real-time operation. The alignments of the worst
performing recording are shown in Figure 6.

4. APPLICATIONS

Two applications are presented that make use of audio to
score alignment technology for music analysis tasks.

4.1 AudioZoom

AudioZoom is a software for the auditory highlight of sin-
gle instruments in a complex polyphony. The basic idea
is that the alignment can help dividing a polyphonic music
performance into its individual components: the general
problem is known as source separation, which is usually
defined blind when it is assumed that almost no informa-
tion is available about the role of each source. In our case,
having the score as a reference, the system has a com-
plete knowledge about the notes played, at each instant,
by all the instruments. The user, typically a teacher who
may exploit this tool to highlight particular instruments or
passages to students that are not able to follow a complex
score, can select one or more instruments, one or more par-
ticular musical themes or patterns, or any combination, and
the system can selectively amplify the chosen elements.

The final effect is to put on the front, or zooming, the
interested elements. A prototype of AudioZoom has been
developed, based on a bank of bandpass filters centered
around the harmonics of a selected instrument, using an
approach similar to the instrument model described in Sec-
tion 2.2.1. The user selects one channel from the MIDI file
that represents the score, and the system aligns the differ-
ent filterbanks with the audio recording. An example of
the effect of AudioZoom, applied to the viola part of the
beginning of Haydn’s Symphony n. 104, is shown in the
sonograms of Figure 7.

4.2 Interpretation Analysis

Analyzing different interpretations of a music work is a
central activity of musicological analysis. Of all the fea-
tures that characterize a personal rendition, tempo is prob-
ably the most perceivable one. The alignment of two audio
performances allows to compare the relative tempos, but
neither can be considered as a reference since no interpre-
tation can be neutral. It can be noted that the concept of
neutral interpretation is itself not well defined.
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Figure 7. Effect of AudioZoom

Figure 8. Different interpretations of the same piece

The alignment of two interpretations to the score allows
a musicologist to draw some considerations on the differ-
ent interpretations, for instance by comparing the instanta-
neous tempo at each bar. Figure 8 shows an early prototype
of a tool for the comparison of different performances, in
which two interpretations of the beginning of J. S. Bach’s
Italian Concerto are juxtaposed using the measures in the
score as a reference. Clearly, the prototype can be extended
by representing the differences in loudness, the use of ac-
celerandi and rallentandi or more complex features related
to timbre perception.

5. CONCLUSIONS AND FUTURE WORK

A system is proposed for the alignment of an audio per-
formance with a score. The system is based on the use
of filterbanks to extract pitch related information from the
performances. Comparative evaluations with previous ver-
sions of the system showed that observation modeling based
on discrete filterbanks has some advantages with respect
to the simpler FFT approach, resulting in higher effective-
ness. In general, evaluation showed that the approach can
be effectively applied to real application scenarios; many
areas however can be improved, and below we propose
some research directions which seem the most promising.

A clear priority is the creation of a collection which
comprises precise manual alignments, in order to properly
evaluate the effectiveness of the approach but also to train
the model parameters in a rigorous way. This is a very
time-consuming task, requiring music experts and specific
annotation tools for properly marking the matches between
the events in the scores and the corresponding time in-
stants in the recordings. The only viable solution in our

opinion is to involve other research teams in building a
shared collection of reasonable size; such collaborative ef-
fort would also help in devising appropriate data and eval-
uation methodologies for alignment system. A good start-
ing point is the collection used for the MIREX campaigns,
which should be improved adding polyphonic scores and a
clearer time reference for the alignment evaluation.

The introduction of a refined modeling for the attack of
notes is desirable for many instruments with percussive at-
tacks – in particular the piano – to better handle repeated
notes, but with the appropriate decoding strategies this is-
sue is not critical. Another improvement regards the mod-
eling of complex events, such as trills or glissandi, which
are hard to extract from MIDI files, resulting in potentially
less effective models.
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ABSTRACT

Non-negative matrix factorization (NMF) has been suc-
cessfully used in audio source separation and parts-based
analysis; however, iterative NMF algorithms are compu-
tationally intensive, and therefore, time to convergence is
very slow on typical personal computers. In this paper,
we describe high performance parallel implementations of
NMF developed using OpenMP for shared-memory multi-
core systems and CUDA for many-core graphics proces-
sors. For 20 seconds of audio, we decrease running time
from 18.5 seconds to 2.6 seconds using OpenMP and 0.6
seconds using CUDA. These performance increases allow
source separation to be carried out on entire songs in a
number of seconds, a process which was previously im-
practical with respect to time. We give insight into how
such significant speed gains were made and encourage the
development and use of parallel music information retrieval
software.

1. INTRODUCTION

Even though music information retrieval (MIR) research
is growing in importance and popularity, we have yet to
see widespread adoption of MIR techniques in end-user
applications. Part of this may be due to the ubiquity of on-
line music recommendation services such as Pandora and
Last.fm that use hand-labeled data and collaborative fil-
tering as a basis for their recommendations, but also, the
overall computational complexity of many MIR techniques
makes their use outside of powerful compute clusters in-
feasible. The rate of progress of MIR research could be
greatly improved if the execution time of MIR techniques
was reduced enough to allow for quicker evaluation and
tuning of algorithm parameters and more frequent real-
world usage.

An emphasis on creating fast implementations has seen
some attention, though not nearly enough. Tzanetakis pro-
duced submissions to MIREX 2007 using the Marsyas au-
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dio processing framework that ran orders of magnitude faster
than the submissions of competitors while producing com-
parable results [1]. For example, in the audio mood clas-
sification task, the multi-core Tzanetakis implementation
completed in 2 minutes, while competing implementations
took between 8 minutes and 3 hours. Even for research
implementations, such large speed differences can signifi-
cantly impact the usability of MIR software.

In this paper, we describe our efforts to speed up percus-
sive source separation based on non-negative matrix fac-
torization (NMF), an unsupervised learning technique that
has been used in audio source separation and parts-based
analysis [2] [3] [4] [5]. Since NMF dominates the compu-
tation time in such a source separation task, it is an impor-
tant computational procedure to optimize.

The goal of this paper is to demonstrate the dramatic
speedup that can be achieved by multi-core and many-core
implementations of multimedia applications and to encour-
age MIR researchers to develop and reuse high performance
parallel implementations of important MIR procedures.

In Section 2, we explain the importance of producing
parallel MIR applications. Section 3 covers the practical
considerations for audio source separation based on NMF.
In Section 4, we introduce the OpenMP and CUDA parallel
programming models. Section 5 details the design of our
parallel implementations and gives insight into techniques
important to parallelizing MIR applications. Finally, Sec-
tion 6 concludes with suggestions on how MIR can most
benefit from parallel computing.

2. PARALLELIZING MULTIMEDIA
APPLICATIONS

Percussive source separation is a useful first step in such
MIR tasks as drum transcription, rhythm summarization,
and beat tracking. By extracting an audio signal containing
only percussive instruments, the task of rhythmic analysis
can be greatly simplified. Helen and Virtanen [6] use NMF
along with a support vector machine (SVM) to accomplish
this. The drum track extractor we use as a target for perfor-
mance optimization is similar to that presented in [6] but
includes additional complexity optimizations and percus-
sive features introduced in [7].

Computation time in this system is dominated by NMF,
which makes up about 80% of the CPU time (18.5 seconds
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of the 23.1 seconds total) in a Matlab implementation run
on 20 seconds of audio. In order to increase throughput,
the NMF step must be optimized.

Because single-core CPU performance increases have
been hindered by power concerns, limits on memory speed,
and diminishing returns on instruction level parallelism,
the focus of computer science research has turned strongly
towards parallel architectures and programming models [8].
Applications programmers can no longer develop a sequen-
tial implementation of their software and hope that future
uniproccessor speedups will provide the necessary com-
puting power to make their application useful. Instead, the
exponentially increasing number of processing elements,
or cores, in current architectures must be exploited to max-
imize performance.

Multi-core CPU architectures are already commonplace
in workstations, servers, and laptops, so parallelizing code
to utilize available cores will lead to significant perfor-
mance increases for most users. In addition, the majority
of personal computers today ship with many-core graph-
ics processors contained on the system’s video card. Cur-
rent high-end graphics processors (GPUs) ship with tens of
processors each capable of executing operations on large
data vectors. The end result is a highly data-parallel archi-
tecture that can be used for general computation (not just
graphics rendering) thanks to programming frameworks like
OpenCL [9] and Nvidia’s CUDA [10].

CUDA has been successfully used to achieve very high
performance on a variety of applications that rely on signal
processing and machine learning. Examples include a fast
GPU-based support vector machine implementation that
achieves up to 135× speedup over LIBSVM [11], a large
vocabulary speech recognition engine with 10× speedup
over sequential versions [12], and an image contour detec-
tor that achieves 114× speedup [13]. To help put these
numbers in perspective, the 114× speedup represents a re-
duction in runtime from 4 minutes to 2 seconds.

We aim to achieve such dramatic performance gains
with NMF-based source separation.

3. NON-NEGATIVE MATRIX FACTORIZATION
FOR AUDIO SOURCE SEPARATION

Non-negative matrix factorization can be used for audio
source separation by decomposing a spectrogram matrix
into two matrices which contain source-wise spectral con-
tributions and time-varying gains. NMF can be phrased as
the optimization problem:

Given an M × N non-negative matrix X ∈ RM×N
+ ,

find matrices W ∈ RM×K
+ and H ∈ RK×N

+ that mini-
mize the cost function f(X,WH).

3.1 Cost Function

Rather than using the mean-squared error between X and
the product WH as the cost function, we use a matrix ver-
sion of the Kullback-Leibler divergence:

D(X‖WH) =
∑
ij

(
Xij log

Xij

(WH)ij
−Xij + (WH)ij

)
(1)

It has been shown in [3] that this divergence cost func-
tion achieves better audio source separation results than
mean-squared error.

3.2 Multiplicative Updates

Lee and Seung [14] have proposed an algorithm based on
gradient-based multiplicative updates for minimizing the
above optimization problem. For the divergence cost func-
tion, we alternate between updates on the two matrices us-
ing the following expressions

H← H. ∗
WT X

WH

WT1
, W←W. ∗

X
WHHT

1HT
(2)

Where division is carried out element-wise, “.∗” is element-
wise multiplication, and 1 represents an M ×N matrix of
ones and is used to compute row and column sums.

It is important to note that, because the optimization
problem is not convex in both W and H, the above up-
dates do not necessarily converge to a global minimum.
To address this problem, researchers typically use multiple
random initializations and choose the best result. Adding
extra computation time by running multiple trials cannot
be done without significant justification since time to con-
vergence can be in the minutes when operating on just sec-
onds of audio.
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Figure 1. A spectrogram matrix for a basic rock beat sur-
rounded by its factor matrices W and H computed using NMF.
The component-wise gain matrix H has been aligned with the
corresponding drum score.

3.3 Initialization

Other approaches use a deterministic initialization based
on the structure or statistics of the matrix X or derived
from knowledge about the domain. We use an approach
based on the latter [7], which uses a subset of discrete co-
sine transform basis functions and typical drum spectra as
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the initial columns of W. For our purposes, the initializa-
tion choice does not directly affect the speed with which
the updates in eq. (2) are executed, but it can affect the
overall number of iterations required for convergence. To
eliminate this dependence, we will only focus on optimiz-
ing the speed of a set number of iterations rather than time
to convergence.

3.4 Matrix Dimensions

An additional consideration that must be made is the di-
mensionality of the spectrogram matrix that is to be fac-
torized. To adequately represent drum sounds in both time
and frequency, a length 4096 Hann window is used to ex-
tract each analysis frame and a hop size of 256 is used to
shift the window in time. For 20 seconds of audio sam-
pled at 44.1kHz, this gives us a matrix of size 2049×3445
(number of positive frequency bins × number of analysis
frames). Since such high frequency resolution (∼10Hz)
is not required at higher frequencies, we use a Bark-based
perceptual dimensionality reduction [7] on the columns of
X to arrive at a matrix of size 512 × 3445. After NMF
is carried out on this smaller matrix, we can interpolate to
return to the original frequency scale if necessary. Lastly,
we choose an inner dimension for the factor matrices W
and H of K = 30. This represents the number of sources
involved in the separation.

Using these dimensions, our implementations require
about 60MB of memory per minute of audio, making entire-
song decomposition feasible from a memory standpoint.

Next we introduce the programming models that will be
used to parallelize the NMF algorithm.

4. OPENMP AND CUDA

4.1 OpenMP

OpenMP is a standardized API that enables parallel execu-
tion on shared-memory multi-core machines [15]. OpenMP
has been implemented for C, C++, and Fortran and is sup-
ported in Visual C++ 2005, the Intel compiler, and gcc 4.2
and above. The beauty of OpenMP lies in its ability to par-
allelize existing sequential code by annotating it with com-
piler directives. OpenMP automatically forks threads that
execute on separate processors according to the directives.

OpenMP very conveniently parallelizes loops contain-
ing independent iterations using a single directive. The
element-wise array multiplication shown below can be split
amongst nt cores using a leading #pragma directive.

#pragma omp parallel for num_threads(nt)
for(i=0;i<N;i++)

c[i] = a[i]*b[i];

A reduction, which operates on multiple pieces of data
and returns a single result, can be carried out using a re-
duction clause in the for pragma. In the example below,
the reduction operator is addition, so we are returning the
sum of an array. The first pragma creates a team of nt
threads that are each assigned a chunk of the work in the
for loop. After each thread completes its work, the values

contained in each thread’s private variable s are summed
into a single final variable s.

s = 0;
#pragma omp parallel num_threads(nt)
#pragma omp for reduction(+:s)

for(i=0;i<N;i++)
s += a[i];

4.2 CUDA

CUDA encompasses both the parallel device architecture
used in newer Nvidia GPUs and the extensions to the C
language used to program the CUDA architecture for gen-
eral purpose computation. CUDA code compiled using
Nvidia’s nvcc is executed on the host, or CPU, which then
issues instructions to the device or GPU. Host code typi-
cally contains control flow instructions and memory move-
ment operations between host memory and device mem-
ory, while device code is made up of kernels, which are
functions written to execute in a Single Program, Multi-
ple Data (SPMD) fashion, i.e. each thread running on the
device during kernel invocation executes the kernel code
independently on whatever chunk of data is assigned to the
thread.

Teams of threads can also share memory. As of CUDA
2.1, threads can be grouped into thread blocks of up to size
512. Threads within the same block are executed on the
same processor and can all access special on-chip shared
memory, which is necessary for inter-thread communica-
tion. Because separate thread blocks cannot share data,
they can be executed independently on separate proces-
sors. Therefore, a kernel that uses a large number of thread
blocks should scale well on future GPUs with more pro-
cessors.

In the box below, we see a kernel that performs element-
wise addition. Each thread runs the vecAdd function sep-
arately and computes an array index from its thread ID,
block ID, and block size, and operates on the array ele-
ments located at that index. In the main function, the kernel
is invoked with B thread blocks each containing N threads,
so B ×N should be equal to the size of the arrays.

// kernel definition
__global__ void vecAdd(float* a,

float* b, float* c){
int i = threadIdx.x+blockIdx.x*blockDim.x;
c[i] = a[i] + b[i];

}

int main(){
. . .
// kernel invocation
vecAdd<<<B,N>>>(a,b,c);

}

Device kernels are physically executed in groups of 32
adjacent threads called warps. Warps are most efficient
when the group of threads can be executed in a completely
SIMD (Single Instruction, Multiple Data) manner, i.e. each
thread in the warp does the exact same thing but to dif-
ferent data. Inserting control flow statements into a ker-
nel that cause threads within the same warp to execute
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different code (this is referred to as a “divergent” warp)
forces the affected threads to be run sequentially rather
than concurrently. Double-precision hardware support is
currently lacking in CUDA, which is why we focus on
single-precision implementations in this work.

CUDA is designed to achieve high throughput on highly
data-parallel computations. Luckily, most multimedia ap-
plications (especially music) exhibit a large amount of data
parallelism.

5. PARALLEL IMPLEMENTATION

5.1 Important Kernels

To help organize our NMF implementation, we decompose
the updates in eq. (2) into the most important computa-
tional kernels, including dense matrix multiplication, col-
umn and row sums, and element-wise vector arithmetic.
Each of the kernels will be called sequentially, but individ-
ual kernels will be heavily parallelized and optimized.

The kernel that will do the most work in terms of float-
ing point operations (flops) is the Single-precision GEneral
Matrix Multiply, or SGEMM. For the matrix dimensions
listed at the end of Section 3.4, the four SGEMMs in eq. (2)
require about 423 Mflops. The element-divides require
about 3.6 Mflops, the sums about 0.1 Mflops, and the element-
multiplies about 0.1 Mflops. To prevent dividing by zero,
a small constant (called EPS) is added to every element in
each divisor matrix, which produces a non-trivial amount
of work (3.6 Mflops). Also, in order to check for conver-
gence, we compute the divergence cost function (1) every
25 iterations, which computes the sum of 1.8 × 106 log-
based values.

Even though the SGEMMs contain the vast majority of
the work, other operations, namely the slow floating-point
divides and the sums, can end up using a lot of compute
time. Divides are inherently slow operations and can take
tens of clock cycles on certain architectures. While the
sums contain relatively few total operations, a parallelized
sum will require inter-thread communication which can be
very slow. Since a highly optimized SGEMM routine is
available in most vendor BLAS libraries, our implemen-
tation goal was to tune the remaining kernels so that the
SGEMMs dominate the overall computation time. Practi-
cally speaking, significantly outperforming our Matlab im-
plementation (which takes 18.5 seconds to run 200 itera-
tions on a Core 2 Duo T9300) was a more exciting goal.

5.2 OpenMP Implementation

As stated before, OpenMP makes it very easy to parallelize
existing sequential code for a multi-core shared-memory
machine. Using the two types of for pragmas from Sec-
tion 4.1 we can parallelize the sums and element-wise arith-
metic. Since the element divides are numerous, slow, and
do not require inter-thread communication, it makes sense
to parallelize their loop. The row and column sums, how-
ever, require a lot of communication for the amount of ad-
dition work done per core (since the partial sum computed

by each core must be sent to another core), so paralleliz-
ing the reduction loop actually led to a slower kernel. The
larger sum in the divergence cost function not only con-
tains lots of addition but a slow log-based computation,
so the work to communication ratio was befitting parallel
speedup.

For the SGEMMs, we use Intel’s Math Kernel Library
(MKL) ver. 10.0.1.014, which is heavily optimized to take
advantage of memory hierarchy and SIMD instructions.
MKL uses OpenMP under the hood, so the number of threads
used for the SGEMMs can be controlled in the same way
as our parallel loops.

Performance results for the OpenMP implementation
are shown in Figure 2 for a dual-socket Intel Core i7 920
machine which has 8 cores and 16 hardware threads. The
best performance is seen at 14 threads and is about 4.3×
faster than the single-threaded run. The most significant
speed up is seen in the SGEMM since it has the highest
work to communication ratio, but other time-consuming
kernels benefit as well. Running this implementation on
the Core 2 Duo T9300 with 2 threads takes 8.9 seconds,
which is 2× faster than our optimized Matlab implementa-
tion using 2 threads.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12
Element Multiply
Row/Col Sums
Add EPS
Divergence
Element Divide
SGEMM 

Threads

Ti
m

e 
fo

r 2
00

 it
er

at
io

ns
 [s

ec
]

11.25

2.60

Figure 2. Performance results for the OpenMP implementation
on a dual-socket Intel Core i7 920

5.3 CUDA Implementation

Writing a CUDA implementation takes a bit more thought.
First, the matrices must be copied to GPU memory. Copies
between CPU and GPU are relatively slow (ideally 3 GB/s
over the PCI bus), and it’s best to avoid them except dur-
ing initialization or when returning results. This means
that in our case it’s better to perform all of the matrix com-
putations on the GPU to avoid extra copies even if certain
operations are better suited for the CPU.

Element-wise arithmetic is completely data-parallel and
is easily accomplished with code similar to that in Sec-
tion 4.2. Other kernels, including the SGEMMs and sums,
require a bit of inter-thread communication and are not so
trivially parallelized on CUDA.

5.3.1 SGEMM

Luckily, an optimized SGEMM routine is available in the
CUBLAS 2.1 library that achieves 60% of theoretical peak
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performance for large matrices on current GPUs [17]. For
the Geforce GTX 280, 60% of peak amounts to 373 Gflops/s.
For our particular matrix multiplications of dimensions [512×
30× 3445], [30× 512× 3445], and [512× 3445× 30], the
CUBLAS SGEMM achieves 117, 147, and 104 Gflops/s
respectively on this GPU. Even though these are relatively
small SGEMMs, we should still be able to do better.

Upon inspection of the paper [17] that describes the
methods used in the current CUBLAS SGEMM, we dis-
covered that threads operate on matrix sub-blocks with di-
mensions 16 and 64. With this in mind, we tried zero
padding our matrices to multiples of 16, 32, and 64. We
found that simply padding the matrices to multiples of 32
resulted in an effective throughput (not counting operations
on zero-padded areas) of 264, 196, and 85 Gflops/s for
each SGEMM size. Since the NMF algorithm uses two
SGEMMs of the first size, this results in an SGEMM run-
ning time reduction from 0.71 to 0.52 seconds for 200 iter-
ations.

5.3.2 Reduction

Because parallel reductions, such as sums, mins, and maxes,
are not included in standard libraries, we will have to write
our own routines. A tutorial on optimizing reductions in
CUDA is available in the CUDA SDK [18]. This overview
presents optimization strategies that can be used to greatly
improve the speed of large power-of-2-size reductions and
shows how a 30× speedup can be achieved for a 4.2× 106

length sum over a naive binary tree implementation.
A binary tree reduction can be constructed in various

ways. Using the shared memory of a thread block, we
can perform a series of two-element reductions. Two ways
to organize the overall reduction are shown in Figure 3.
In both versions, each thread in the thread block starts by
reading an array element from global memory into shared
memory. Then threads are assigned to carry out two-element
sums.

The difference lies in which threads work on which ar-
ray elements. Method 1 interleaves working and non-working
threads which act on adjacent elements. Method 2 se-
quentially assigns working threads so there are contigu-
ous blocks of working and non-working threads. This de-
creases the number of divergent warps. Also, the memory
accesses are strided rather than adjacent to reduce the num-
ber of simultaneous memory bank accesses (since shared
memory locations are cyclically assigned to memory banks)
[16].

In addition to reorganizing the tree traversal, other op-
timizations –such as explicit loop unrolling and allowing
each thread to read and sum multiple array elements into its
shared memory location before the tree traversal begins–
improve performance a bit. These techniques had to be
adapted for non-power-of-2-size arrays, but they greatly
improved the speed of the large 1.8 × 106 length diver-
gence sum.

For the smaller 512 and 3445 length column and row
sums, these techniques were not quite enough, and the CUDA
kernel ran much slower than a sequential CPU version. In
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Figure 3. Two methods of shared memory reduction

order to produce more concurrent work (in terms of thread
blocks), we can compute all 30 of the column or row sums
simultaneously. This is accomplished by launching a 2D
grid of thread blocks, in which the first dimension rep-
resents which of the 30 sums is being computed and the
second dimension indexes the thread blocks within the in-
dividual sum. This final optimization produced staggering
speedup for the 30 smaller sums as shown in Figure 4.
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Figure 4. Cumulative effect of various optimizations on running
time of 200 iterations of the 30 column sums

5.3.3 CUDA Performance Results

The results for the CUDA implementation compared to
OpenMP and Matlab implementations are shown in Fig-
ure 5. The Matlab implementation is optimized for single-
precision vector operations and uses the dimensionality re-
duction technique mentioned in Section 3.4. Our Matlab
implementation runs about 3× faster than a naive Matlab
implementation that doesn’t use dimensionality reduction.
The OpenMP version runs more than twice as fast as the
Matlab version on the same machine, and shows significant
speedup when using more threads on the Core i7; however,
the non-linear speedup between 1 and 14 threads suggests
that the OpenMP version will not scale well to more cores.

Our CUDA implementation shows great performance
on the older Geforce 8600 GTS, which has 4 multiproces-
sors at 1.46 GHz. The newer Geforce GTX 280, with 30
multiprocessors at 1.3GHz, runs the CUDA implementa-
tion over 30× faster than the optimized Matlab implemen-
tation and 18× faster than the single-threaded OpenMP
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Figure 5. Running time comparison for 200 iterations of
512×30×3445 NMF using optimized implementations in Mat-
lab, OpenMP, and CUDA on different architectures

version on the Core i7 920. Both of these GPUs are mar-
keted to consumers for desktop gaming and graphics so
are quite affordable compared to many of the professional-
grade cards.

Additional speedup is possible with future GPUs with
more multiprocessors and greater memory bandwidth. As
stated earlier, CUDA programs scale well if kernels have
a large number of independent thread blocks. The rela-
tively small size of the matrix operations doesn’t guaran-
tee strong scaling in the future, but in this case, additional
speedup is not necessarily required. For audio source sep-
aration, the NMF already performs at 33× real-time on the
GTX 280.

6. DISCUSSION AND FUTURE WORK

After achieving such significant speedup on the NMF step
of percussive source separation, the next step would be
to parallelize the remaining pieces of the complete source
separation process. As with the bulk of signal process-
ing and machine learning routines, these steps are all very
data-parallel (since individual audio frames can be pro-
cessed independently) so would benefit from paralleliza-
tion.

When choosing between OpenMP and CUDA for pro-
gramming MIR applications, it is important to note that
while CUDA can achieve superior performance on newer
GPUs, the programmer effort required is much greater than
with OpenMP, which is a better starting point for those who
already know how to program in C. We must also remem-
ber that parallel MIR applications do not necessarily have
to be coded from scratch. Many MIR techniques can be as-
sembled from basic building blocks that already have fast
parallel implementations. In addition to standard libraries
like MKL, fftw, and CUBLAS, many researchers have re-
leased parallel implementations of important routines.

We will be releasing Python modules for the implemen-
tations described in this paper so that other researchers
can benefit from the speed gains. We feel that sharing
high-performance, user-friendly tools in order to encour-
age more widespread use of parallel implementations within

the MIR community is an important step in increasing the
practicality of MIR techniques.
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ABSTRACT

In this paper we show that the modeling of musical knowl-
edge within alignment algorithms results in a successful
similarity approach to melodies. The score of the align-
ment of two melodies is taken as a measure of similarity.
We introduce a number of scoring functions that model
the influence of different musical parameters. The evalua-
tion of their retrieval performance on a well-annotated set
of 360 folk-song melodies with various kinds of melodic
variation, shows that a combination of pitch, rhythm and
segmentation-based scoring functions performs best, with
a mean average precision of 0.83.

1. INTRODUCTION

In this paper we use alignment algorithms to measure the
similarity of melodies. Alignment algorithms are widely
used for comparison of sequences of symbols. Creating
an alignment is a way to relate two sequences with each
other by finding the best corresponding parts. Especially
in the field of computational biology, where they are used
to find corresponding patterns in protein or nucleotide se-
quences, many algorithms that align sequences have been
developed. Sequence alignment is also suitable for assess-
ing musical similarity for several reasons. Firstly, music
unfolds in time, therefore, a model of music as a one-
dimensional sequence of events seems appropriate. Sec-
ondly, manual alignments have extensively been used in
folk-song research to evaluate relations between melodies.
Thirdly, structural alignment is a prominent model in cog-
nitive science for human perception of similarity [3].

Most alignment algorithms use a dynamic program-
ming approach. One of the earliest variants is the Lev-
enshtein distance [8], which is an edit distance: it com-
putes how many operations are needed to transform one
sequence into another. Needleman and Wunsch [9] pro-
posed an algorithm that finds an optimal alignment of two
complete sequences. The quality of an alignment is mea-
sured by the alignment score, which is the sum of the
alignment scores of the individual symbols. If we con-
sider two sequences of symbols x : x1, . . . , xi, . . . , xn,
and y : y1, . . . , yj , . . . , ym, then symbol xi can either be
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aligned with a symbol from sequence y or with a gap. Both
operations have a score, the substitution score and the gap
score. The gap score is mostly expressed as penalty, i.e.
a negative score. The optimal alignment and its score are
found by filling a matrix D recursively according to:

D(i, j) = max


D(i− 1, j − 1) + S(xi, yj)
D(i− 1, j)− γ
D(i, j − 1)− γ

, (1)

where S(xi, yj) is the substitution scoring function, γ
is the gap penalty, D(0, 0) = 0, D(i, 0) = −iγ, and
D(0, j) = −jγ. D(i, j) contains the score of the optimal
alignment up to xi and yj and therefore, D(m,n) con-
tains the score of the optimal alignment of the complete
sequences. We can obtain the alignment itself by tracing
back from D(m,n) to D(0, 0); the algorithm has both time
and space complexity O(nm). In our modeling, we use an
extension of the algorithm proposed by Gotoh [5], which
employs an affine gap penalty function without loss of ef-
ficiency. In this approach, the extension of a gap gets a
lower penalty than its opening.

Mongeau and Sankoff [10] were among the first to adapt
alignment algorithms to music. They used an extended ver-
sion of the Needleman-Wunsch algorithm. Their scoring
function takes both pitch and duration into account. Mon-
geau and Sankoff’s approach has been quite influential,
e.g. the search algorithm implemented in the search engine
MELDEX [13] is based on this algorithm. Gómez et al. [4]
successfully tested a modified version on a MIREX data-
set. In general, alignment algorithms have often been used
to match short melodic phrases against a larger database
[1, 4, 7, 13, 14]. Typical tasks addressed with this approach
are to find a tune in the database with QBH [1], differ-
ent arrangements of a piece [14], or similar incipits given
to the query [4]. We use the alignment between complete
melodies in order to find melodies that belong to the same
tune family. The similarity relations that have to be mod-
eled originate in the oral transmission of folk-songs and
differ from those in the previous tasks.

Contribution. In this paper we model various features
of music as substitution scoring functions, which we incor-
porate in the Needleman-Wunsch-Gotoh algorithm. Using
a set of melodies that are well-described regarding their
different kinds of similarity relations, we evaluate the in-
fluence of these scoring functions on the retrieval perfor-
mance. Our best scoring function combines several musi-
cal features and outperforms well-known approaches from
literature.
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2. DATA

2.1 The Annotated Corpus

The set of melodies studied in this paper is part of a larger
collection of over 6000 encoded Dutch folk-songs hosted
by the Meertens Institute in Amsterdam. In the ongoing
project of digitization at this institute, the melodies are en-
coded both from ethnomusicological transcriptions of field
recordings and from written sources of folk-songs, deliver-
ing several formats (humdrum **kern, MIDI, Lilypond). 1

For a subset of 360 melodies, detailed annotations have
been created in order to describe similarity relations be-
tween melodies [16], resulting in a well-documented set of
songs, the Annotated Corpus.

The melodies are grouped in so-called tune families. 2

All melodies in one group are considered to be histor-
ically related through the process of oral transmission.
Since the history of each tune family is not fully docu-
mented, it is often not known whether two melodies are
historically related. Instead, musicological experts decide
whether melodies belong to the same tune family by as-
sessing their melodic and textual similarity. In order to
make the experts’ musical intuition behind the similarity
assessments explicit, we developed an annotation system
(described in [16]). For the Annotated Corpus (consisting
of 26 tune families) several dimensions of perceived sim-
ilarity (contour, rhythm, motives, text) were numerically
rated by the musicologists such that the similarity between
the most typical melody of a tune family (the reference
melody) and all other members of the tune family was de-
scribed. The 26 tune families were chosen from the larger
collection by an expert such that this set contains a repre-
sentative diversity of similarity relations between members
of a tune family. Comparing the annotations to the retrieval
performance of alignment algorithms allows a detailed un-
derstanding of the success or failure of the models based
on musicological insights.

2.2 Representation of melodies

For applying alignment algorithms, a melody has to be pre-
sented as a sequence of symbols. In our representation,
each symbol represents a note. A symbol has a number of
attributes, including: pitch (in base40 encoding), duration
(rational number), score time (rational number), time in bar
(rational number), onset (integer), current bar number (in-
teger), current phrase number (integer), upbeat (boolean),
current meter (rational number), free meter (boolean), ac-
cented (boolean), and time position within phrase (real
number in [0, 1]). These attributes are used to compute
substitution scores or other attributes. Figure 1 shows an
example with some of the attributes.

Based on the encoded time signature, two levels of ac-
cents are distinguished: either accented or not accented.
The first note of any group of two in a double meter and the
first beat in any group of three beats in a triple meter is con-

1 The full collection is browsable at: http://www.liederenbank.nl.
2 At the Meertens Institute the concept of “melody norm” is used, see

[16] for a more detailed explanation of this concept.

Figure 1. Representation of melodies.

sidered accented. All other notes are unaccented. Thus, in
songs in free meter, or in songs with additive or asymmet-
rical meters, 3 which are very uncommon in this corpus,
all notes are unaccented. Furthermore, phrase boundaries
have been annotated by the encoders.

2.3 Rests

Most notated rests can be considered inessential. In partic-
ular at the end of phrases singers often take a breath, such
that timing between the phrases is very variable. The exact
encoding of rests as performed is therefore not reasonable.
To make melodies more comparable, all rests have been
replaced by a prolongation of the previous note.

2.4 Transposition Invariance

Since songs are notated in different keys, the similarity
measure should be transposition invariant. To achieve this,
a pitch histogram for both melodies is created that indicates
for each pitch the total duration during the song. Then the
shift at which the normalized histograms have maximal in-
tersection is computed. Since the pitches are represented
in base40 encoding, the shift of the histogram can be inter-
preted as the interval with which the one melody should be
transposed in order to compare it to the other.

2.5 Normalization of Alignment Scores

Since the score of an alignment depends on the length of
the sequences, normalization is needed to compare differ-
ent alignment scores. Therefore, we divide the alignment
score by the length of the shortest sequence.

3. SCORING FUNCTIONS

3.1 Single substitution scoring functions

In this section we introduce a number of substitution scor-
ing functions for different musical dimensions. They de-
termine substitution scores that are based on musicologi-
cal knowledge. Each function takes two symbols of the
melodic sequence as input. The output of each scoring
function is in the interval [−1, 1].

First, we introduce scoring functions that are based on
pitch-related features. The simplest scoring function deter-
mines whether two pitches are the same or not. The score

3 Asymmetrical meters consist of stacked groupings of dissimilar met-
rical groups.
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is either maximal or minimal:

Sexactpitch(xi, yj) =
{

1 if xi = yj

−1 if xi 6= yj
. (2)

In oral transmission, slight changes of pitches are likely
to occur, therefore, we allow substitution with pitches that
are within a band with certain width:

Spitchb(xi, yj) =
{

1 − int(xi,yj)
23 if int(xi, yj) ≤ 23

−1 otherwise
.

(3)
We define int(xi, yj) = |p(xi)− p(yj)| mod 40, with
p(x) as the pitch of symbol x in base 40 encoding. A fifth
is 23 in base 40 encoding. Thus, all intervals up to a fifth
get a positive substitution score and all larger intervals are
considered a bad match.

Another way to express the distance of two pitches is by
their harmonic relation. The substitution of consonances
gets a higher score than the substitution of dissonances:

Sharm(xi, yj) =


1 prime
0.5 consonance
0.5 augmented prime
−1 dissonance

. (4)

The intervals are taken modulo octave. Consonances are
minor and major third, perfect fourth, perfect fifth and mi-
nor and major sixth. The augmented prime gets a positive
substitution score to favour alignments of songs that have
a minor and a major variant.

Furthermore, we define two substitution functions that
are based on melodic contour, taking either the contour of
a phrase or of the entire melody into account:

Sphrasecont(xi, yj) = 1−2∗|pphr(xi)− pphr(yj)| . (5)

Ssongcont(xi, yj) = 1−2∗|psong(xi)− psong(yj)| . (6)

Here pphr(x)ε[0, 1] indicates the vertical position between
the lowest and highest pitches of the phrase that x is part
of, while psong(x)ε[0, 1] indicates the vertical position be-
tween the lowest and highest pitches of the entire song. In
determining the highest and lowest pitches, the notes in the
upbeats of the phrases are disregarded, since these are very
variable between variants of a song.

Next, we define three scoring schemes that are based on
rhythmic features. In a simple approach based on note du-
rations, the score is maximal if the durations are the same,
and minimal otherwise:

Sexactdur(xi, yj) =
{

1 if d(xi) = d(yj)
−1 if d(xi) 6= d(yj)

, (7)

in which d(x) is the duration of the symbol x.
Metric accents derived from the notated time signa-

ture describe a further aspect of the rhythmic structure of
melodies. We define a substitution function that uses these
metric accents in the following way:

Saccent(xi, yj) =
{

1 if a(xi) = a(yj)
−1 if a(xi) 6= a(yj)

, (8)

in which a(x) indicates whether the symbol x is accented
or not (for defining accents see section 2.2).

A more complex notion of metric accents based on the
rhythmic structure of notes instead of the time signature is
provided by Inner Metric Analysis (IMA) [15]. We define
a scoring function that is determined by the metric weights
of the notes, as computed by IMA:

Sima(xi, yj) = 1 − 2 ∗ |w(xi)− w(yj)| . (9)

Here w(x) denotes the metric weight of the symbol x
scaled into the interval [0, 1]. For scaling, all weights were
divided by the greatest weight in the song. The parameters
for the IMA algorithm are the ones that are mostly used:
p = 2, l = 2 (e.g., in [15]).

Furthermore, we want to use the information of phrase
boundaries given in our data-set. We introduce a scoring
function based on the horizontal position within the phrase:

Sphr(xi, yj) = 1 − 2 ∗ |phr(xi)− phr(yj)| , (10)

in which phr(x)ε[0, 1] indicates for the symbol x the hor-
izontal position in its phrase. This substitution function
helps to keep phrases together in alignments.

3.2 Combination

The single substitution scoring functions defined in sec-
tion 3.1 model isolated aspects of melodies. In order to
model several aspects within one function to get closer to
the multidimensionality of melodies, we combine substitu-
tion functions. We want alignments in which the aligned
symbols are similar in all dimensions, therefore, we multi-
ply the individual scores:

Scombination(xi, yj) =
n∏

k=1

Sk(xi, yj) , (11)

in which each Sk(xi, yj) is scaled into the interval [0, 1],
and the final score is scaled into [−1, 1] back again.

3.3 Gap penalty function

We use an affine gap penalty function in which the penalty
for opening a gap is 1, and the penalty for extending a gap
is 0.1. Thus, variants of songs in which e.g. a phrase is
repeated can be better aligned, since these penalties result
in one long gap instead of many short gaps. Furthermore,
the use of an affine gap penalty function prevents gaps from
being scattered all over the alignment.

4. EVALUATION OF SCORING FUNCTIONS

The scoring functions are evaluated by their respective re-
trieval performance on our Annotated Corpus as described
in section 2. To evaluate a scoring scheme each melody is
taken once as query and the other melodies are sorted ac-
cording to the normalized score of the alignment with the
query melody. At all ranks the average recall and average
precision for all ranking lists is computed. These values
are plotted in a diagram. The criterion for relevance is the
membership of the same tune family.
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4.1 Evaluation of Single Substitution Functions

First, we study the performance of the single pitch-based
substitution functions introduced in section 3.1. Variation
in pitch is considered an important element of oral trans-
mission (see e.g. [6]). Nevertheless, aligning melodies us-
ing the exact pitch information with the simplest function
Sexactpitch results in a relatively good performance (see
Figure 2). Allowing pitch variation within a small range
using the pitch band function improves this performance
only slightly.
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Figure 2. Retrieval performance of pitch-based substitu-
tion functions.

Both the harmonic and contour-based substitution func-
tions perform worse than Sexactpitch. Considering the
contour instead of the exact pitch sequence does not re-
sult in a better retrieval performance. Harmonic relations,
which have otherwise successfully been used in models of
melodic expectancy [11], do not improve the alignment of
melodies of a tune family in comparison to exact pitch in-
formation.
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Figure 3. Retrieval performance of non-pitch-based sub-
stitution functions.

Figure 3 shows retrieval performance for the scoring
functions that do not involve pitch information. Although
rhythmic features have been considered quite stable within
oral transmission (see [6]), all rhythm-related substitu-
tion functions perform worse than pitch-related functions.

Sima performs at the top of the ranking slightly better than
Saccent, however Saccent performs slightly better in the
low range. In general the difference between the two mod-
els is quite small, indicating that the accents of the notated
bars are synchronous to the accents based on notes onsets.

4.2 Evaluation of Combinations of Single Substitution
Functions

In a next step, we combine rhythmical, metrical and seg-
mentation data. First, we combine the best of the pitch-
related functions (Spitchb) with rhythmical and phrase
functions. Figures 2 and 3 show that the individual substi-
tution functions perform worse than Spitchb, but from the
curves of Spitchb−accent, Spitchb−phrase, Spitchb−exactdur,
and Spitchb−ima in Figure 4 it appears that combinations
yield better retrieval performance for all combinations but
Sexactdur. Since Sexactdur is binary and the combination
is by multiplication, the pitch similarity for symbols with
no exact correspondence in duration is lost.

Combination with the other two rhythmic functions
(Sima and Saccent) show equal improvement. The rather
modest improvement when considering metric accents in
comparison to the single substitution function Spitchb con-
tradicts the hypothesis that pitches among melodies of the
same tune family are more stable on metrically accented
notes than on metrically weak positions as assumed in [2]:
obviously pitches on metrically weak positions also vary
to only a small extent. The phrase information yields the
greatest improvement.

Finally, we evaluate the retrieval performance of the
combination of the best substitution functions. We choose
Sima as the metric scoring function, Spitchb is the best
pitch based scoring function. Sphr improved retrieval re-
sults by stimulating phrase boundaries to be aligned. The
retrieval performance of the combination Spitchb−ima−phr

shown in Figure 4 shows even better performance results
than the combinations of two single substitution functions.
If we average the precision of all relevant items for all
queries, we get a mean average precision of 0.83 for this
combination. Choosing Saccent instead of Sima gives
nearly the same retrieval performance.
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Figure 4. Retrieval performance of combinations of sub-
stitution functions.
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To evaluate the scalability, we performed the same test
with a data-set containing all 4863 classified songs and
with the same 360 queries. The results yield a mean av-
erage precision of 0.67.

4.3 Comparison with Related Methods

Figure 5 shows comparisons of our best scoring scheme
with alignment methods from literature. For the method
of Mongeau and Sankoff [10] the parameters were taken
as given by Mongeau and Sankoff. The normalization was
done by dividing the alignment score by the sum of the
durations of both sequences. DiffEd and rawEd were taken
from the Simile alignment toolbox without change [12]. It
appears that our Spitchb−ima−phr performs best.
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Figure 5. Comparison with related methods.

5. RETRIEVAL PERFORMANCE PER TUNE
FAMILY

The classification of the melodies into tune families by
musicological experts is based on a number of musical di-
mensions. The importance of the different dimensions and
the form of interaction between them varies to a great ex-
tent among tune families. Therefore, finding a similarity
model that performs well on all tune families is a challeng-
ing task. The retrieval performance of the scoring function
Spitchb−ima−phr shows per tune family a considerably sta-
ble success, with average precision values ranging from 1
to 0.8 for 23 out of 26 tune families. Hence, this function
works reasonably well on the majority of tune families. For
three tune families the function shows only moderate re-
trieval performance, which are Een lindeboom stond in het
dal 1 (short: Lindeboom), Daar reed een jonkheer 1 (short:
Jonkheer) and Heer Halewijn 4 (short: Halewijn), with re-
spective average precision of 0.71, 0.67 and 0.65. Table
1 gives an overview of low ranking results extracted from
rankings in which the reference melody of the tune family
(see section 2.1) was used as the query. For Lindeboom,
Figure 6 shows the first line of the query along along with
a good match and the two melodies with ranks 77 and 140.
The melodies on these low ranks are quite different from
the query. This is reflected by the experts’ annotations: for
the two melodies on ranks 77 and 140 all global musical

Tune family Relevant melodies at rank
Lindeboom 77 and 140
Jonkheer 78, 98 and 167
Halewijn 19, 40, 74 and 101

Table 1. Overview over low ranking results.

stondDe eensden in 'tboom dalne

4
3

koe daglen zo't Was merop een

dalne stond

4
3

inboomdenEen het

het dalboom stond

4
3

Een inneden

Figure 6. From top to bottom: incipits of reference melody
(query), melodies on ranks 1, 77 and 140..

dimensions (rhythm, contour and importance of motives)
are rated somewhat similar, while for most of the other
melodies of Lindeboom at least two of these dimensions
are rated very similar.

In the tune family Jonkheer the melody on rank 78 is no-
tated with a different phrase structure than the query, such
that two phrases correspond to one phrase of the query.
Since phrase information is used for the alignment, this in-
consistent phrase assignment introduces lower scores. The
melody on rank 98 has a very different formal structure
than the query: while the query has the form ABA’, this
melody has the form AAA’A”. As a consequence, notes in
phrases that are aligned with each other differ to a great
extent. The melody on rank 167 is quite different from the
query (see Figure 7), which is reflected by low ratings of
the experts in both local and global musical dimensions.

The tune family Halewijn is according to the experts
most of all characterized by a similar rhythmic organiza-
tion. Melodies of this group differ considerably regard-
ing pitch, such that the contour is mostly rated as only
somewhat similar. The averaged annotation values for all
musical dimensions in this tune family show a significant
(p = 0.02) linear correlation with the distances obtained
using the Spitchb−ima−phr rater –– hence the lowest ranked
melodies tend to receive low similarity scores in the anno-
tations. For the melody on rank 74 the expert commented
that it is possible that this melody does not belong to the
tune family.

6. CONCLUSION AND FUTURE WORK

We have shown that the inclusion of musical knowledge
in alignment algorithms improves the assessment of sim-
ilarity among folk song melodies. By evaluating differ-
ent substitution scoring functions, we found that our pitch-
related functions lead to better recognition than rhythm-
related functions. The use of phrase information improved
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Figure 7. Reference melody of Jonkheer (top) and melody
on rank 167 (bottom).

the retrieval results considerably. The best combination of
functions, combining a pitch-based, a rhythm-based and a
segmentation-based scoring function, outperforms related
methods from literature.

Next, we will develop scoring functions that reflect
more advanced musicological models. We will use the an-
notations to evaluate the results by means of the quality
of alignments. Since the occurrence of similar motives in
related melodies was considered important by the musi-
cological experts, we will investigate how corresponding
motives can be aligned. For testing the suitability of our
approach to model similarity within oral transmission in
general, we will evaluate its performance on different col-
lections. These steps contribute to the development of a
similarity rater adequate for oral transmission that is based
on musically advanced models of melodic similarity.
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ABSTRACT

We describe an artist recommendation system which inte-
grates several heterogeneous data sources to form a holistic
similarity space. Using social, semantic, and acoustic fea-
tures, we learn a low-dimensional feature transformation
which is optimized to reproduce human-derived measure-
ments of subjective similarity between artists. By produc-
ing low-dimensional representations of artists, our system
is suitable for visualization and recommendation tasks.

1. INTRODUCTION

A proper notion of similarity can dramatically impact per-
formance in a variety of music applications, such as search
and retrieval, content-based tagging engines, and song or
artist recommendation. When designing such a system,
practitioners must choose an appropriate measure of sim-
ilarity for the task at hand. Often, this involves selecting
among multiple heterogeneous feature types, which may
not be directly comparable, e.g., social network connec-
tivity and probabilistic models of keywords. Integration
of diverse features must be conducted carefully to ensure
that the resulting similarity measure sufficiently captures
the qualities desired for the application.

In music applications, the problem of selecting an opti-
mal similarity measure is exacerbated by subjectivity: peo-
ple may not consistently agree upon whether or to what
degree a pair of songs or artists are similar. Even more flex-
ible notions of similarity, such as ranking, may suffer from
the effects of inconsistency, which must be understood and
counteracted.

In this work, our goal is to construct artist-level similar-
ity measures, adhering to two key principles. First, a simi-
larity measure should integrate heterogeneous features in a
principled way, emphasizing relevant features while being
robust against irrelevant features. Second, instead of rely-
ing solely on features, the measure should learn from peo-
ple and be optimized for the task at hand, i.e., predicting
human perception of similarity. Using recently developed
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algorithms, we demonstrate how to learn optimal metrics
for subjective similarity while seamlessly integrating mul-
tiple feature modalities. We do not mean to imply that
there exists a fully consistent ground truth in musical sim-
ilarity. Rather, we seek to construct similarity measures
which are maximally consistent with human perception.

1.1 Related work

There has been a considerable amount of research devoted
to the topic of musical similarity, primarily in the realms
of playlist generation and recommendation [3,14,18]. The
present work is perhaps most similar to that of Slaney,
et al. [21], in which convex optimization techniques were
applied to learn metric embeddings optimized according
to side information. Our work differs in that we focus on
artist similarity, rather than classification, and we use direct
measurements of human perception to guide the optimiza-
tion.

Barrington, et al. applied multiple-kernel learning to a
classification task [4]. Our approach uses a different for-
mulation of multiple-kernel learning which allows greater
flexibility in assigning weights to the features and training
set, and produces a metric space instead of a linear separa-
tor.

Ellis, et al. and Berenzweig, et al. studied the issue of
consistency in human perception of artist similarity, and
evaluated several acoustic- and socially-driven similarity
measures against human survey data [5, 9]. Their work fo-
cused on the comparison of existing measures of similarity
(e.g., playlist co-occurrence), rather than learning an opti-
mal measure.

2. EMBEDDING ALGORITHMS

Our approach to the artist recommendation task is to em-
bed each artist from a set X into a Euclidean space so that
distances correspond to human perception of dissimilarity.
Although it has been documented that notions of similar-
ity between artists can vary dramatically from person to
person, rankings of similarity between pairs of artists are
comparatively more robust [9].

One simple ranking method involves comparisons of
artists j and k relative to a fixed reference artist i. This
yields similarity triplets (i, j, k), indicating that the pair
(i, j) are more similar to each-other than the pair (i, k).
Data of this variety are becoming increasingly common

513



Poster Session 3

Aerosmith
Bon Jovi

112
Bon Jovi

Bryan Adams
Bon Jovi

(a)

Aero
sm

ith

Bon
 Jo

vi

11
2

Bry
an

 A
da

ms

(b)

Figure 1. Similarity triplets can be interpreted as a directed
graph over pairs of artists: an edge (i, j)→ (i, k) indicates
that i and j are more similar than i and k. (a) The graph
representation of two triplets: (Bon Jovi, Aerosmith, 112)
and (Bon Jovi, Bryan Adams, 112). (b) An example of a
1-dimensional embedding that satisfies these triplets.

for general ranking and human perception modeling tasks,
such as the Tag-a-Tune bonus round [12].

In this setting, we seek a Euclidean embedding function
g : X → RD such that each given triplet (i, j, k) yields

‖g(i)− g(j)‖2 + 1 < ‖g(i)− g(k)‖2, (1)

where the unit margin is enforced for numerical stability.
In other words, distance in the embedding space corre-
sponds to perceived similarity. This framework eliminates
the need to normalize quantitative similarity scores (as in
multi-dimensional scaling), and does not over-simplify the
description language to a binary problem (e.g., same ver-
sus different).

Several algorithms have been proposed to solve embed-
ding problems in this framework [1, 16, 20]. Here, we
briefly summarize the partial order embedding (POE) al-
gorithm of [16].

2.1 Partial order constraints

A collection of similarity triplets can be equivalently repre-
sented as a directed graph in which each vertex represents
a pair of artists, and a directed edge indicates a compar-
ison of pairwise similarities (see Figure 1). Interpreting
the similarity triplets as a graph allows us to simplify the
embedding problem by pruning edges which may be re-
dundant or inconsistent.

If the triplets give rise to a directed acyclic graph (DAG),
this defines a partial order over distances, which implies
the existence of some similarity space which is consistent
with the measured triplets. If the graph contains cycles,
then no similarity function can satisfy all of the triplets,
and we say that the triplets are inconsistent. In practice,
there are always inconsistencies in human similarity per-
ception, but the graph representation provides a direct way
to locate and quantify these inconsistencies. Section 4.1
describes an experiment and methodology to analyze in-
consistencies in a collection of similarity measurements.

2.2 Multi-kernel embedding

Since our eventual goal is to recommend similar artists
when presented with a previously unseen artist, we will
need to provide a means to map unseen artists into the em-
bedding space after training, without requiring any simi-
larity measurements for the new artist. POE achieves this

Feature space 1

Feature space 2

Feature space m

...

...

Input space Embedding space

Figure 2. The embedding procedure first maps a point x
intom different non-linear spaces (encoded bym different
kernel matrices), and then learns a set of projections Np

(p = 1 . . .m) which form the embedding space.

by restricting the choice of embedding functions to lin-
ear projections from a given feature space. This readily
generalizes to non-linear embeddings through the use of
kernel functions [19]. Artists are first mapped into a high-
dimensional inner-product space by a feature transform de-
fined by a kernel function k(· , ·). POE then learns a pro-
jection from this feature space into a low-dimensional Eu-
clidean space. This leads to the parameterization

g(x) = NKx,

where N is a linear projection matrix, and Kx is the vector
formed by evaluating a kernel function k(x, i) against all
points i in the training set.

Since formulating the problem in terms ofN would lead
to a non-convex optimization problem — with perhaps in-
finitely many parameters — POE instead optimizes over a
positive semidefinite matrix W = NTN � 0 [6]. N may
be infinite-dimensional (as is the case in Gaussian kernels),
but an approximation to N can be recovered from W by
spectral decomposition:

NTN = W = V ΛV T = V Λ1/2Λ1/2V T

=
(

Λ1/2V T
)T (

Λ1/2V T
)

= ÑTÑ
(2)

where V and Λ contain the eigenvectors and eigenvalues
of W .

In MIR tasks, it is becoming common to combine data
descriptions from multiple feature modalities, e.g., social
tags and spectral features [4]. POE accomplishes this by
learning a separate transformationNp for each ofm kernel
matricesKp (p = 1 . . .m), and concatenating the resulting
vectors (see Figure 2). This formulation allows (squared)
distance computations in the embedding space to be de-
composed as

d(i, j) =
m∑
p=1

(
Kp
i −K

p
j

)
TW p

(
Kp
i −K

p
j

)
. (3)

The multi-kernel POE algorithm is given as Algorithm 1.
The objective function has three components: the first term,∑
i,j d(i, j) maximizes the variance of the embedded points,

which has been demonstrated to be effective for reducing
dimensionality in manifold data [23]. In the present appli-
cation, variance maximization diminishes erroneous rec-
ommendations by pushing all artists far away from each-
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other, except where prevented from doing so by similarity
ordering constraints.

The second term, −β
∑
C ξijk, incurs hinge-loss penal-

ties for violations of similarity constraints, scaled accord-
ing to a free parameter β. The last term,−γ

∑
Tr (W pKp),

regularizes the solution and enforces sparsity in the solu-
tion, again scaled by a free parameter γ. Parameters β and
γ are tuned by cross-validation, similar to the C parameter
in support vector machines [7].

There are four types of constraints in Algorithm 1. The
first, d(i, j) ≤ ∆C , bounds the diameter of the embedding
to resolve scale invariance. 1 The second set of constraints,
d(i, j) + 1 − ξijk ≤ d(i, k) enforces consistency between
the learned distances and similarity triplets in the training
set, as in Equation 1. The slack terms ξijk ≥ 0 allow
similarity constraints to be violated, provided it yields an
overall increase in the value of the objective function. Fi-
nally, W p � 0 forces each W p to be positive semidefinite,
so that the Np matrices can be recovered as in Equation 2.

The optimal solution
(
W 1,W 2, . . . ,Wm

)
is computed

by gradient ascent, and then each matrix is decomposed to
produce the embedding function

g(x) = (NpKp
x)mp=1 , (4)

where (NpKp
x)mp=1 denotes the concatenation over all m

vectors NpKp
x .

Algorithm 1 Multi-kernel partial order embed-
ding [16]. d(i, j) is defined as in Equation 3, and(
W 1,W 2, . . . ,Wm

)
are optimized by gradient ascent.

Input: kernel matrices K1,K2, . . . ,Km,
triplets C = {(i, j, k) : (i, j) more similar than (i, k)}
Output: matrices W 1,W 2, . . . ,Wm � 0.

max
Wp,ξ

∑
i,j

d(i, j)− β
∑
C
ξijk − γ

∑
p

Tr (W pKp)

s. t.
∀i, j∈X d(i, j) ≤ ∆C

∀(i, j, k)∈C d(i, j) + 1− ξijk ≤ d(i, k)
ξijk ≥ 0

∀p∈1, 2, . . . ,m W p � 0

3. DATA

To evaluate our system, we designed experiments around
the aset400 data set of Ellis, et al [9]. The data consists of
412 popular artists, and similarity triplets collected with a
web survey in 2002. We augmented the data set with sev-
eral types of features, both human-derived (tags and text),
and purely content-driven, as described below.

3.1 Text features

Our text-based features were collected from Last.FM be-
tween January and May of 2009. To standardize the list

1 ∆C is computed from the structure of the similarity triplets graph,
and is not a free parameter. See [16] for details.

of artist names, we used the search artists method of the
Echo Nest API [17].

We then collected for each artist two types of textual
features from Last.FM: biography summaries and the top
100 tags [11]. The tags were filtered by a small set of regu-
lar expressions to resolve common spelling variations. For
example, r-n-b, r&b, r-and-b were all mapped to rnb, and
the merged tag rnb received a score equal to the sum of
scores of its constituent tags.

The tags and biographies were filtered by stop-word
removal and stemming, resulting in dictionaries of 7737
unique tag words, and 16753 biography words. Each artist
was summarized as two bags of words (one for tags and
one for biographies), which were then re-weighted by TF-
IDF. Finally, to compare similarity between artists, we con-
structed kernels K tag and Kbio defined by the cosine simi-
larity between word vectors.

3.2 Acoustic features

For each artist, we selected between one and ten songs at
random (depending on availability), with an average of 3.8
songs per artist. From these songs, we extracted a va-
riety of content-based features. Since content-based fea-
tures relate to songs and not directly to artists, we do not
expect them to perform as well the textual features de-
scribed above. We are primarily interested in integrating
heterogeneous features, and quantifying the improvements
achieved by optimizing for artist similarity.

3.2.1 MFCC

Mel-frequency cepstral coefficients (MFCCs) have been
demonstrated to capture timbral or textural qualities, and
perform well in a variety of MIR applications [13, 15].
For each song, we compute the first 13 MFCCs for up
to 10000 half-overlapping short-time segments (23 msec),
along with the first and second instantaneous derivatives.
This results in a collection of 39-dimensional delta-MFCC
vectors for each song.

Each artist was summarized by modeling the distribu-
tion of delta-MFCC vectors in all songs belonging to that
artist, using a Gaussian mixture model (GMM) of 8 com-
ponents and diagonal covariances. Then, to compare mod-
els between artists, we construct a probability product ker-
nel (PPK) between the GMMs:

KMFCC
ij =

∫ √
p
(
x; θMFCC

i

)
p
(
x; θMFCC

j

)
dx,

where θMFCC
i and θMFCC

j are the GMM model parameters
for artists i and j [10]. Unlike kernels derived from Kull-
back Leibler divergence, PPK can be computed in closed-
form for mixtures of Gaussians.

3.2.2 Chroma

For each song in our database, we modeled the distribution
of spectral energy present in frequencies corresponding to
the chromatic scale, resulting in a 12-dimensional vector
for every 250 msec of audio. Although chroma features
are not specifically suited to the artist similarity task, they
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have been shown to work well in other applications when
combined with other features, such as MFCCs [8]. We
summarized each artist by collecting chroma features for
each of the artist’s songs, which were then modeled with
a single full-covariance Gaussian distribution

(
θch
)
. From

these chroma models, we construct an artist similarity ker-
nel 2 from symmetrized KL-divergence:

DKL(i, j) =
∫
p
(
x; θch

i

)
log

p
(
x; θch

i

)
p
(
x; θch

j

) dx
Kch
ij = exp

(
−DKL(i, j) +DKL(j, i)

µ

)
,

where µ is the mean KL-divergence over all pairs i, j. Since
we are not using mixture models here, this can be com-
puted in closed form.

3.2.3 Content-based auto-tagging

In contrast to the low-level acoustic features, we also eval-
uate high-level conceptual features which were automat-
ically synthesized from audio content. To achieve this,
we computed semantic multinomial distributions using the
system described in [22]. For each song, the auto-tagger
examines the acoustic content and produces a multinomial
distribution over a vocabulary V of 149 words, e.g., mel-
low, dance pop, horn section, etc. The semantic model
parameters θSM

i for an artist i were computed by averaging
the parameters of each of that artist’s song-level models.
(We also tested a version using the point-wise maximum
of song-level models, but it yielded little quantitative dif-
ference.) To compare models between artists, we construct
a semantic multinomial kernel using the multinomial PPK:

KSM
ij =

(∑
x∈V

√
p
(
x; θSM

i

)
p
(
x; θSM

j

))s
.

This is equivalent to a homogeneous polynomial kernel of
degree s over the model parameter vectors. For our exper-
iments, setting s = 75 yielded reasonable results.

4. EXPERIMENTS

4.1 Quantifying inconsistency

The aset400 data set consists of 412 popular artists, and
similarity triplets gathered from a web-based survey. In
the survey, an informant was presented with a query artist
i, and was asked to select, from a list of ten artists, the re-
sponse j most similar to the query artist. Then, for each of
the remaining responses k which were not selected, mea-
surements (i, j, k) were recorded. Note that in a list of ten
potential responses, there may be several “good” choices.
Being forced to choose a single best response therefore re-
sults in numerous inconsistencies in the triplets, which we
set out to quantify.

The survey data contains 98964 triplets, generated from
10997 queries to 713 human informants. We analyze the
filtered version of the data, which has been reduced to

2 Symmetrized KL-divergence does not generally produce a PSD ker-
nel matrix, but the POE algorithm is still correct for indefinite kernels.

Total number of edges

Retained edges after pruning 
direct inconsistencies

Average size of maximal 
consistent subgraphs

Number of edges included 
in all acyclic subgraphs

16385

13420

100%

81.9%

54.8%

52.5%

8975.2

8598

Figure 3. Quantitative summary of consistency within the
aset400 filtered triplets. Directly inconsistent triplets are
those where both (i, j, k) and (i, k, j) are present.

16385 measurements wherein the informant was likely to
be familiar with the artists in question. Although this greatly
reduces the amount of noise present in the full set, the fil-
tered set still contains numerous inconsistencies.

Consistency in the similarity measurements can be quan-
tified by analyzing their graph representation. As a first
step, we filter out all measurements (i, j, k) if (i, k, j) is
also present, i.e., those artist-pairs which the informants
could not consistently rank. We refer to these triplets as di-
rectly inconsistent. Removing these triplets decreases the
number of edges by 18.1% to 13420.

However, simply removing all length-2 cycles from the
graph does not ensure consistency: all cycles must be re-
moved. Finding a maximum acyclic subgraph is NP-hard,
but we can find an approximate solution by Algorithm 2.
Since the algorithm is randomized, we repeat it several
times to compute an estimate of the average maximal acyclic
subgraph. With 10 trials, we find consistent subsets of av-
erage size 8975.2.

To evaluate the stability of these subgraphs, we count
the number of edges present in all solutions, i.e., those
measurements which are never pruned. Over 10 trials,
8598 edges (95.8%) were common to all solutions, leaving
4.2% variation across trials. Our results are summarized in
Figure 3.

Algorithm 2 Approximate maximum acyclic subgraph
Input: Directed graph G = (V,E)
Output: Acyclic graph G′

E′ ← ∅
for each (u, v) ∈ E in random order do

if E′ ∪ {(u, v)} is acyclic then
E′ ← E′ ∪ {(u, v)}

end if
end for
G′ ← (V,E′)

4.2 Order prediction

The goal of our system is to recommend similar artists in
response to a query. To evaluate the system, we test its abil-
ity to predict for artists i, j and k (where i is unseen), the
ordering of similarity between (i, j) and (i, k), i.e., which
of the artists j or k is more similar to artist i.
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4.2.1 Experimental Setup

We split the data for 10-fold cross validation, resulting in
370 training and 42 test artists for each fold. All directly
inconsistent triplets were removed from both training and
test sets, as described in Section 4.1. For each training
set, we filtered the triplets to produce a maximal acyclic
subgraph, retaining only those measurements which were
included in all of 10 trials of Algorithm 2. The acyclic
subgraphs were then pruned down to their transitive re-
ductions, i.e., minimal graphs with equivalent transitivity
properties [2]. This effectively removes the measurements
which could be deduced from others, thereby reducing the
complexity of the embedding problem with no loss of qual-
ity. The resulting training sets have an average of 6252.7
similarity measurements. The corresponding graphs have
average diameter 30.2, indicating the longest contiguous
chain of comparisons which can be followed in the train-
ing sets.

For each test set, we included only those triplets (i, j, k)
where i is in the test set and j, k are in the training set, re-
sulting in an average of 1149.6 triplets per test set. Aside
from pruning directly inconsistent triplets, no further pro-
cessing was done to enforce consistency in the test set.
Therefore, we cannot expect 100% prediction accuracy on
the test set. As shown in Figure 3, we can expect a lower-
bound on the achievable accuracy of 67% (8975.2/13420).
This is consistent with the upper-bound of 85% constructed
in [9].

4.2.2 Results

We tested the embedding method on each of the kernels
described in Sections 3.1 and 3.2 independently, and then
combined. The free parameters β and γ were tuned by
sweeping over β ∈ [100, 10000] and γ ∈ [100, 1000]. Af-
ter learning, performance was evaluated by counting the
number of test-triplets correctly predicted by Euclidean dis-
tance in the embedding space.

Figure 5 illustrates two regions of an embedding pro-
duced by the combination of tags and biography features,
including several query points which were mapped in after
learning. The nearest neighbors of the query points pro-
vide reasonable recommendations, and the neighborhoods
are generally consistent. Moreover, neighborhoods which
are largely dissimilar (e.g., female vocals and punk) have
been pushed to opposite extremes of the space by the vari-
ance maximization objective.

For comparison purposes, we also evaluated the predic-
tion accuracy of distance-based ranking in the native fea-
ture spaces. Native multi-kernel results were computed by
concatenating the kernels together to form feature vectors,
which is equivalent to setting each Np = I . This pro-
vides an intuitive and consistent way to compute distances
to neighbors in one or more feature spaces.

Figure 4 lists the quantitative results of our experiments.
In all cases, prediction accuracy improves significantly af-
ter learning the optimal embedding. Moreover, the im-
provement is more significant than it may at first seem,

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8

Optimized
Native

Tags

Biography

Tags+Bio

MFCC

Chroma

SM

MFCC+Chroma

MFCC+SM

Tags+MFCC

Tags+Bio+MFCC

0.620
0.535

0.561
0.507

0.590
0.554

0.611
0.522

0.614
0.556

0.776
0.705
0.705

0.514
0.790

0.640
0.773

0.693
0.783

0.640

Figure 4. Triplet prediction accuracy for each feature and
combinations, before and after learning.

since the maximum achievable performance is less than
100% due to inconsistencies in the test set.

It is not surprising that textual features give the best per-
formance, and there are two main factors which explain
this effect. First, only textual features were attributed di-
rectly to artists and not songs. Second, textual features de-
rive from natural language, which is well-suited to describ-
ing subtle differences. We achieve significant improve-
ments by optimizing the similarity metric, with gains of
7% for tags and 19% for biographies. Moreover, combin-
ing both types of textual features results in better perfor-
mance than either feature on its own.

As expected, embeddings based on acoustic features
perform significantly worse than those derived from text.
We believe this is primarily due to the fact that acoustic
features relate directly to songs, and variation across an
artist’s songs introduces noise to the artist-level models.
Note that combining a kernel which performs poorly (e.g.,
chroma) does not significantly degrade the overall perfor-
mance, indicating that the algorithm correctly selects the
most relevant features available.

4.2.3 Comparison

Our results can be directly compared to the “unweighted
agreement” score measurements of [9]. Particularly of in-
terest is the comparison of our biography-based embed-
ding, which is analogous to the text-based measures in [9].
Our biography features natively achieve 51.4% accuracy,
compared to 57.4% for the web documents in [9]. How-
ever, the optimized embedding improves prediction accu-
racy to 70.5%.

5. CONCLUSION

In this paper, we demonstrated a method for optimizing
multi-modal musical similarity measures to match human
perception data. We believe that the techniques illustrated
here could be applicable in other subjective similarity tasks,
particularly at the song level, and this will be the focus of
future work.
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ABSTRACT

This paper addresses the intersection of computational

analysis and musicological source studies. In musicology,

scholars often find themselves in the situation where their

methodologies are inadequate to achieve their goals. Their

problems appear to be twofold: (1) the lack of scientific

objectivity and (2) the over-reliance on new source discov-

eries. We propose three stages to resolve these problems, a

preliminary result of which is shown. The successful out-

come of this work will have a huge impact not only on

musicology but also on a wide range of subjects.

1. INTRODUCTION

Recent developments in computer and information tech-

nology have brought significant changes to the ways in

which we conduct research in a wide range of domains,

and musicology is not an exception.

Yet in historical musicology the majority of scholars

still conduct their research without making full use of this

technological advancement, thus creating huge potential

for future advancement.

By nature, their research methods are less scientific, i.e.

they tend not to, or find it impossible to disclose all the in-

formation they used in order to arrive at their conclusions,

and hence it is often difficult to verify their findings re-

gardless of whether or not there are elements of subjective

judgment in them.

There is a separate problem in musicology in that the

majority of source-based studies heavily rely on the redis-

covery of new sources.1 Thus, if a new source is not found,

there is often little discussion to challenge the existing in-

terpretation offered by scholars in the past. Is there really

no way of improving the theories unless a new source is

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2009 International Society for Music Information Retrieval.

1 Sources refer to manuscript sources, that is written scores by hand.
Before the invention of printing, music was preserved either by oral trans-
mission or by MS copies.

discovered? How can a computer assist musicologists in

analysing the information contained in the known sources?

The main objective of this study is to solve such prob-

lems in historical musicology by addressing the following

questions:

1. Can computational analysis offer the same conclu-

sions as those arrived at by historical musicologists?

2. Are there any oversights in the musicologists’ anal-

ysis of the sources?

To achieve our objectives, it is necessary to address the

following issues:

1. How to define a data structure for storing Bach’s

manuscripts in digital format;

2. How to extract information from the digitised manu-

scripts;

3. How to analyse the extracted information.

This paper is structured as follows: Section 2 describes

the relationship between the proposed methods and ex-

isting scholarly debates in the field; Section 3 discusses

the research methods to be employed; Section 4 shows a

preliminary result of the proposed method; Section 5 il-

lustrates the contribution that the proposed research will

make; and Section 6 offers concluding remarks.

2. PREVIOUS RESEARCH

There are numerous research projects dealing with com-

putation in musicology and different kinds of data formats

have been proposed to encode musical data [1–3]. How-

ever, all of them deal with limited musical information

such as pitch or rhythm derived from printed scores, and

the majority of previous research on computational music

analysis [4–9] is based on those data formats.

There is also a certain amount of research related to au-

tomatic music analysis using the signal-processing tech-

nique with acoustic sources [10–14], which record musical

performance from published scores. But if we investigate

only published scores, rather than the original manuscripts,

we miss important information that has been lost in the

process of creating an edition.
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Recent journal articles or proceedings of ISMIR [15–

17] includes a considerable number of researches on the

Optical Music Recognition (OMR). Most of them deal with

staff removal algorithm, which eases the preprocessing of

the digitised images of the manuscripts such as the music

symbol recognition.

With regard to the research related to manuscript anal-

ysis, Tomita developed a database of variants and errors

which supposedly lists all the extant manuscripts and early

prints of the Well-Tempered Clavier II, a work well known

for its complex history of compilation, revision and trans-

mission [18]. The database contains all kinds of informa-

tion extracted from manuscripts – not only musical variants

but also notational errors and variants that may have been

inherited from its model or may cause errors when fresh

copies were made from it – giving us many insights into

how the future database should be developed.

3. METHODOLOGY

There are three stages in this project:

1. To define of a data structure for storing Bach’s

manuscripts in digital format;

2. To develop a methodology to automatically extract

data from the digitised images of music manuscripts;

3. To develop a methodology to analyse these data to

find significant information for musicological study.

In the first instance, a data structure that is appropriate

to be analysed by computers needs to be defined. This data

structure should be designed in such a way that it can en-

code all the information extracted from manuscripts – not

only musical aspects such as pitch or rhythm, but also the

physical aspects of the manuscript which may account for

the scribe’s unintentional omissions, misplacement, super-

fluous symbols that were somehow caused by the appear-

ance of its exemplar. This has been investigated with the

collaboration of musicologists.

Secondly, a method will be developed to harvest the in-

formation useful for research from the digitised images of

the manuscripts. At the moment, we consider primarily

the visible information such as the direction of stems or

the position of note-heads. The first task is the recogni-

tion of each music symbol such as staff line, bar line, note

stem, note head and clef. The Gamera [19] framework will

be used for this task.

Finally, a method to analyse the data will be proposed.

In order to achieve this, powerful machine learning meth-

ods such as bagging [20], boosting [21], and random for-

est [22] will be adopted.

Figure 1 illustrates how the proposed method operates.

First, a digitised image file is created by physically scan-

ning the manuscripts. Secondly, symbolic data is extracted

from the digitised image file. Thirdly, computational anal-

ysis is carried out using the symbolic data.

Start

Physical 

manuscript data

Scanning

Digitised 

image file

Data 

extraction

Symbolic 

data

Computational 

analysis

End

Figure 1. Flowchart of the proposed method

4. PRELIMINARY EXPERIMENT

4.1 An overview of the preliminary experiment

This sections presents a preliminary result of the third stage

described under ”3. Methodology”. Currently, the first and

second stages are conducted manually, while the program

was developed for the third stage. To demonstrate the per-

formance of the latter, the simplest example would be to

examine the origin and authenticity of variants. Because

WTC II was so popular among Bach’s pupils and admir-

ers during and after his lifetime, numerous manuscripts

were made, copied and edited, which not only increased

the number of errors or variant readings, but also resulted

in introducing contamination to the texts in some sources

[23, 24]. This program produces a source affiliation dia-

gram showing how closely these sources were related, tak-

ing into account the differences that may be caused either

by accident or on purpose while being copied.

In this paper, we focus on the sources of Viennese ori-

gin, which are considered to have been originated from a

copy that was brought from Berlin to Vienna in 1777 by

Gottfried van Sweieten (1734-1803). How the unique text

of the Viennese sources evolved up has been the principal

interest for musicologists, for this was the state of musical

text which Mozart learned in 1782. In [25], Tomita inves-

tigated the Viennese sources, thereby proposing a source

affiliation diagram of them, an excerpt of which is shown

in Figure 2.

4.2 Preliminary result

We describe one approach to this task using the database

developed by Tomita [24], an excerpt of which is shown

in Figure 3, where S/N is the serial number given to each

examination point; Bar indicates in which measure(s) the

elements are examined; V, bt/pos stands for Voice, Beat

and Position, respectively; Element specifies the target of

enquiry; Spec. Loc gives graphic representation of infor-

mation under examination; Classified suggests text-critical

significance.

Firstly, the distance between two manuscripts should be

defined. The simplest way is to count the number of differ-

ent factors between two manuscripts.

In Figure 3, “Q11731” has no different factors from
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No.

543

Nydahl

Figure 2. Score affiliation diagram of the Well-tempered

Clavier Book II, generated by human analysis (excerpted

from [18])

those of “No.543”, thus the distance between “Q11731”

and “No.543” is 0. On the other hand, “Q11731” has three

factors which are different from those of “Nydahl”, thus

the distance between “Q11731” and “Nydahl” is 3. How-

ever, such observation dose not reflect the reality suffi-

ciently. To improve the accuracy of observation, we should

consider how easily each factor can change. For instance,

notational factors such as the direction of the stem or po-

sition of the note-head are more likely to change than mu-

sical factors such as pitch or duration. Taking this into

consideration, genealogical distance is defined by the fol-

lowing equation,

D(MSS1, MSS2) =

SN
X

i=1

αTypei
I(MSS1[i], MSS2[i]) (1)

where, MSS1 and MSS2 denote two different manuscripts,

MSS[i] denotes the ith content of MSS, αType
i

is the

weight considering the fluidity of each type of the con-

tent, and I(x, y) is the indicator function which returns 0

if x = y else 1. In this paper, all αType
i

were equalized,

leaving an adjustment of αType
i

as a future task.

No.543

Nydahl

Figure 3. Database used for the experiment (excerpted

from [18]).

Secondly, manuscripts are clustered by a hierarchical

cluster analysis using a set of dissimilarities calculated on

the basis of Equation (1). Initially, each manuscript is as-

signed to its own cluster and then the algorithm proceeds

iteratively, at each stage joining the two most similar clus-

ters, continuing until there is just a single cluster. At each

stage distances between clusters are recomputed by the

Lance-Williams dissimilarity update formula according to

the complete linkage method.
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Figure 4. Score affiliation diagram of Fugue No.22 in B♭

minor from the Well-tempered Clavier Book II, generated

by computational analysis

Figure 4 illustrates an example of source affiliation di-

agram automatically generated by the proposed algorithm.

Manuscripts of Fugues 10, 12 and 14 were used to cal-

culate the distance between each manuscript. This result

is almost consistent with that of human analysis, while

the position of No.543 (Berea) is considered to be differ-

ent. This result indicates that this database is sufficient to

achieve a rough classification; but to achieve a more re-

liable classification or for further analysis, it is necessary

to develop a new data structure that is suitable for a more

detailed computational analysis. The manual weighting of

αType
i

can reflect the expert knowledge of musicologists;

however it could also reflect their own subjectivity. To ex-

clude it, a method for automatic weighting of these factors

should be investigated.

There are numerous possibilities of using these databases

for analysis and the potential is far-reaching. Figure 5

shows biplot of the result of the principle component anal-

ysis. This reveals that there exists a large gap between

Add.35021 (Bach’s autograph manuscript) and the Vien-

nese sources. Figure 6 shows the result of the variable im-

portance estimation for the classification of the manuscripts

of Fugue 23 by random forest, where y-axis corresponds

to S/N of the text critical database. This indicates that S/N

475, and 136 are important for computer to classify them.

These analyses using appropriate databases are considered
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Figure 5. Biplot produced from the output of the principle

component analysis of the text critical database of Fugue

23

to bring the objectivity and new findings to historical mu-

sicology.

Another area of investigation is an automatic handwrit-

ing analysis. The method for identifying handwriting in

noisy document images [26] cannot directly be applied to

music manuscripts. This is because handwriting identifi-

cation needs not only visual information such as curvature

(which represents the shape of the curves or bending an-

gle) but also multifaceted information such as the purpose

for which a manuscript was written, the scribe’s habits, the

conditions under which the manuscript was made, and so

on. The proposed method is expected to overcome such

difficulties by taking into account the multifaceted infor-

mation with the appropriate database for computational anal-

ysis.

5. CONTRIBUTION

This research makes main contributions in the following

areas:

1. The proposed method will provide a way to verify

previous research in historical musicology;

2. It will be possible to offer new information about the

sources from the already known sources;
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Figure 6. Result of variable importance estimation for

the classification of Viennese sources by a random for-

est, where y-axis corresponds to S/N of Fugue 23 shown

in [18]: for example, V475 is notation difference of rest in

bar 89; V136 is the existence of accidental in bar32.

3. The proposed method can be a prototype of an em-

pirical research method.

The result of the proposed research has a good potential

for becoming a road map for musicological research of the

future, and empirical research method would offer an al-

ternative to the previous research methods often criticised

for their inherent subjectivism. Consequently, it is hoped

that the majority of previous research may be reworked by

using the proposed methods. In this process, new discov-

eries can still be made that would shed new light on the

musical works concerned without requiring the rediscov-

ery of new sources. Moreover, the results of the proposed

research may also serve as a prototype in other areas of

research, such as archaeology, historical literature or other

social science subjects that involve the study of historical

sources.

6. CONCLUSION

In this paper, we have shown the necessity of using the

computational approach in source studies. We also ad-

dressed the problems of subjective attitudes and its over-

reliance on new source discoveries in traditional research

methods in musicology. Three stages that may resolve

these problems have been discussed. The outcome of this

work should affect not only musicology but also a wide

range of subjects.
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ABSTRACT

The contribution of this paper is threefold:
First, we propose modifications to Fluctuation Patterns

[14]. The resulting descriptors are evaluated in the task of
rhythm similarity computation on the “Ballroom Dancers”
collection.

Second, we show that by combining these rhythmic de-
scriptors with a timbral component, results for rhythm sim-
ilarity computation are improved beyond the level obtained
when using the rhythm descriptor component alone.

Third, we present one “unified” algorithm with fixed
parameter set. This algorithm is evaluated on three differ-
ent music collections. We conclude from these evaluations
that the computed similarities reflect relevant aspects both
of rhythm similarity and of general music similarity. The
performance can be improved by tuning parameters of the
“unified” algorithm to the specific task (rhythm similarity
/ general music similarity) and the specific collection, re-
spectively.

1 INTRODUCTION

Many of the rhythm descriptors proposed so far eventually
reduce the rhythm to a representation that discards infor-
mation about which frequency band the rhythmic feature
originates from. We begin this paper by asking: “Can the
performance of rhythm descriptors be improved by adding
frequency information?” To this end, we follow two di-
rections. First, we propose and evaluate descriptors that
retain information about the frequency range in which a
given rhythm feature (more precise: periodicity strength)
was measured. Related work in this direction includes
[10]. Second, we add frequency information in the form
of a “timbral” component (cf. [3]).

The paper is organized as follows. In Section 2, we
suggest a number of modifications to Fluctuation Patterns
(FPs) [14]. Relative to our evaluation setting, the mod-
ified variant seems to capture rhythmic similarity better
than the unmodified algorithm. In Section 3, we go on
by adding frequency information to the proposed rhythm

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

descriptors in the form of a “timbral” component, and find
that in our evaluation setting, rhythm similarity computa-
tion is improved further this way. We consider this finding
as complementary to the practice of using rhythm descrip-
tors to improve the performance of (general) music simi-
larity measures (e.g., [14]). Based on this observation, we
design an algorithm that seems to perform well both in the
task of rhythm similarity and in the task of general music
similarity computation (Section 4). In our evaluation set-
ting, this combined algorithm outperforms approaches that
are specifically designed for the respective tasks.

2 GETTING THE RHYTHM

This section is dedicated to rhythm descriptors and their
evaluation on the Ballroom Dancers collection.

2.1 Rhythm Descriptors

Below, the rhythm descriptors evaluated in this paper are
described. These are the well-known Fluctuation Patterns,
and our proposed extensions Onset Patterns (OPs) and On-
setCoefficients (OCs).

2.1.1 Fluctuation Patterns (FPs)

Fluctuation Patterns (FPs) [14] measure periodicities of the
loudness in various frequency bands, considering a num-
ber of psychoacoustic findings. We use the implementation
of the MA Toolbox 1 with the proposed parameter set, so
that the frequency bands correspond to 20 critical bands.
Details about the computation are given e.g. in [14]. An
evaluation of the importance of the various psychoacoustic
processing steps in FP calculation is given in [10].

2.1.2 Onset Patterns (OPs)

We suggest a number of changes to FPs (cf. [4, 17, 18]).
To this end, a number of preliminary experiments was con-
ducted. The most important changes to FPs are listed here,
before the points are discussed in detail:

• Reduce the signal to the parts of increasing ampli-
tude (i.e., likely onsets).

• Use semitone bands to detect onsets instead of fewer
critical bands.

• Use Hanning window and zero padding before de-
tecting periodicities with FFT.

1 http://www.pampalk.at/ma/
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• Represent periodicity in log scale instead of linear
scale.

We only consider onsets (or increasing amplitudes) in
a given frequency band. To detect such onsets, we use a
cent-scale representation of the spectrum with 85 bands of
103.6 cent width, with frames being 15.5 ms apart. On
each of these bands, an unsharp-mask like effect is applied
by subtracting from each value the mean of the values over
the last 0.25 sec in this frequency band, and half-wave rec-
tifying the result. This aims to detect also slow-attack in-
strument onsets in melodies that have notes with only one
(or few) semitones apart. Subsequently, values are trans-
formed by taking the logarithm, and reducing the number
of frequency bands from 85 to 38 which is closer to the
number of critical bands.

As in the computation of FPs, segments of frames are
analyzed for periodicities. We use segments of 2.63 sec
length with a superimposed Hanning window, zero-padded
to six seconds. Adjacent segments are 0.25 sec apart. Each
of these segments is analyzed for periodicities in the range
from T0 = 1.5 sec up to about 13.3 Hz (40 to about 800
bpm), separately in each of the 38 frequency bands. A cru-
cial point in this transformation is that we do not represent
periodicities on a linear scale (as in FPs), but rather we use
a log-representation. Thus, after taking the FFT on the six
seconds of a given frequency band, a log filterbank is ap-
plied to represent the selected periodicity range in 25 log-
scaled bins. In this representation, periodicity (measured
in Hz) is doubled every 5.8 bins (i.e., going 6 bins to the
right means measuring a periodicity about twice as fast).
By using this log scale, all activations in an OP are shifted
by the same amount in the x-direction when two pieces
have the same onset structure but different tempi. While
this representation is not blurred (as done in the computa-
tion of FPs), the applied techniques induce a smearing in
the lower periodicity range (cf. Figure 1). After a segment
is computed, each of the 25 periodicities is normalized to
have the same response to a broadband noise modulated by
a sine with the given periodicity. This is done to eliminate
the filter effect of the onset detection step and the transfor-
mation to logarithmic scale.

To arrive at a description of an entire song, the values
over all segments are combined by taking the mean of each
value over all segments. We call the resulting representa-
tion of size 38 · 25 Onset Patterns (OPs). In this paper, the
distance between OPs is calculated by taking the Euclidean
distance between the OPs considered as column vectors.

2.1.3 OnsetCoefficients (OCs)

OnsetCoefficients are obtained from all OP segments of
a song by applying the two-dimensional discrete cosine
transformation (DCT) on each OP segment, and discard-
ing higher-order coefficients in each dimension. The DCT
leads to a certain abstraction from the actual tempo (cf.
[5, 18]) and from the frequency spectrum (like in MFCCs).
This is motivated by the notion that slightly changing rhythm
and sounds does not have a big impact on the perceived
characteristic of a rhythm, while the same rhythm played

Figure 1. FP and OP of the same song. Doubling of peri-
odicity appears evenly spaced in the OP. A bass drum plays
at regular rate of about 2 Hz. The piece has a tap-along
tempo of about 4 Hz, while the measured periodicities at
about 8 Hz are likely caused by offbeats in between taps.

with a drastically different tempo may have a different per-
ceived characteristic. For example, one can imagine that
a slow and laid-back drum loop, used in a Drum’n’Bass
track played back two or three times as fast, is perceived as
cheerful.

The number of DCT coefficients kept in each dimension
(periodicity / frequency) is an important parameter. The
selected coefficients are stacked into a vector. For example,
keeping coefficients 0 to 7 in the periodicity dimension,
and coefficients 0 to 2 in the frequency dimension yields a
vector of length 8 · 3 = 24. We abbreviate this selection as
7× 2. Based on the vectors for all segments, the mean and
full covariance matrix (i.e, a single Gaussian) is calculated,
which is the OC feature data for a song.

The OC distance D between two Songs (i.e., Gaussians)
X and Y is calculated by the Jensen-Shannon (JS) diver-
gence (cf. [11]).

D(X, Y ) = H(M)− H(X) + H(Y )
2

(1)

where H denotes the entropy, and M is the Gaussian re-
sulting from merging X and Y . We calculate the merged
Gaussian following [20]. We use the square root of this
distance.

2.2 Setup for Rhythm Experiments

We evaluate the rhythm descriptors on the ballroom dance
music set 2 previously used by other authors, e.g. [5, 4, 2,

2 data from ballroomdancers.com
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15, 7] and for the ISMIR’04 Dance Music Classification
Contest 3 . This set consists of 698 tracks assigned to 8
different dance music styles (“genres”). The classification
baseline is 15.9%.

The purpose of the descriptors discussed above is to
measure rhythmic similarity. For evaluation, we assume
that tracks that are in the same class have a similar rhythm.
To facilitate comparison to previous work [5, 4], we use a
1-nearest-neighbor (1NN) stratified 10-Fold cross valida-
tion (averaged over 32 runs) in spite of a certain variance
induced by the random selection of folds. We assume that
the only information that is available is the audio signal.
Using 1NN 10fold cross validation, [5] report up to 79.6%
accuracy.

When using more sophisticated classification algorithms
(and other features), higher accuracies are obtained. For
example, [2] report a classification accuracy of up to 82%
using only automatically computed features (i.e., without
using correct tempo annotation or manually corrected first
bar annotations). The highest classification accuracy we
are aware of is 86.9%, obtained by kNN classification [7].

The mentioned accuracies are obtained when the audio
signal is the only data source made available to the algo-
rithms. It has to be noted that the algorithms yield higher
accuracies when also the correct tempo annotation is given
as feature data. In this case (which is not considered in this
paper), an accuracy of 95.1% (or 96.0% when also human-
corrected bar annotations are used [2]) have been obtained.

2.3 Results for Rhythm-Only Descriptors

FPs as implemented in the MA toolbox, compared by Eu-
clidean distance, yield an accuracy of 75.0%. OPs com-
pared with Euclidean distance yield 86.7%. The results for
various settings of using only OnsetCoefficients for sim-
ilarity estimation are shown in Figure 2. It can be seen
that the highest values are obtained when keeping more
than 16 coefficients in the periodicity dimension and when
only keeping the 0th coefficient in the frequency dimension
(which corresponds to averaging over all frequencies). In
this range, values increase when including more periodic-
ity coefficients, which seems consistent with the findings in
[5]. In this range, we obtain an average value of 87.7% 4 .

3 ADDING “TIMBRE” INFORMATION

To examine how the discussed rhythmic descriptors can
be used in conjunction with “bag of frames” audio sim-
ilarity measures, we combine them with a “timbral” au-
dio similarity measure. The used frame-based features are
the well-known MFCCs (coefficients 0..15), Spectral Con-
trast Coefficients [9] (using the 2N approach [1], coeffi-
cients 0..15), and the descriptors Harmonicness and At-
tackness. The latter two describe the amount of harmonic
and percussive elements (cf. [13]) in a cent-scaled spectro-
gram with frequency bands being 66 cent and frames being

3 http://mtg.upf.edu/ismir2004/contest/rhythmContest/
4 We take the average rather than the maximum value as an indicator

due to variances introduced by 10fold CV.

46 ms apart. Percussive elements are detected by applying
a 5 × 5 filter with the kernel (-0.14, -0.06, 0.2, 0, 0) repli-
cated over five rows. The analogous filter to detect har-
monic elements has the form (−0.09,−0.01, 0.2,−0.01,
− 0.09)T , replicated over five columns. The Harmonic-
ness value for a frame is the sum of the half-wave recti-
fied responses of this filter centered at the frequency bins
of the considered frame. The frame’s Attackness value
is calculated the same way but using the filter for per-
cussive elements. Altogether, these are 34 descriptor val-
ues for a frame, which are combined over a song by tak-
ing their mean and full covariance matrix. Two songs are
compared by taking the Jensen-Shannon divergence as de-
scribed above.

We combine the discussed rhythm descriptors with this
timbral component by simply summing up the two distance
values (i.e., timbral and rhythm component are weighted
1 : 1). For comparison, e.g., in the G1C algorithm [14], FP
based features are weighted with 30%, and a MFCC com-
ponent is weighted with 70%. Our weighting decision is
not based on systematic evaluations but rather it is mainly
based on impressions gained from non-representative lis-
tening experiments. To bring the two distances (rhythm
based and timbre based) to a comparable magnitude, for
each song the distances of this song to all other songs in the
collection are normalized by mean removal and division by
standard deviation 5 . Subsequently, the distances are sym-
metrized by summing up the distances between each pair
of songs in both directions. This preprocessing step is done
for each component (timbral and rhythm) independently
before summing them up.

3.1 Combination Experiment

We repeat the experiment shown in Figure 2, but this time
combining the rhythm descriptors with the timbral com-
ponent as described. The 1NN 10fold cross validation ac-
curacy is 54.0% when considering only the timbral com-
ponent, 79.4% in combination with FPs, and 87.1% with
OPs. From the results in Figure 3, it can be seen that
classification results are improved when combining OCs
with the timbral component. This time, average results
of 90.2% are obtained over the parameter range discussed
above (compared to 87.7% in the the first experiment, Fig-
ure 2). The highest obtained 1NN accuracy is 91.3%.

Results are summarized in Table 1. The results for the
combined method are above the values obtained for each
component (rhythm and timbre) alone. We think this is an
indication that rhythm similarity computations can be im-
proved by including timbre information. This is in line
with [19] who reason that tempo can be detected better
when considering timbre information. In a way, this is
complementary to previous approaches where descriptors
of rhythmical properties were added to timbre descriptors
in order to improve music similarity computations (e.g. the

5 This is done once before splitting up training and test sets for clas-
sification. No class labels are used in this step. We expect the impact of
determining the normalization factors only on the respective (stratified)
training set to be negligible.
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Figure 2. Dance genre classification based on OnsetCoefficients; distances calculated according to Equation 1. 1NN 10fold
CV accuracies obtained on ballroom dataset when including coefficients 0 up to the given number in the respective dimen-
sion. For example, including coefficients 0..17 in the periodicity dimension and coefficients 0..1 in frequency dimension
(resulting in 18 · 2 = 36 dimensional feature data) yields an accuracy of 85.9%. Low results at right border are caused
by numerical instabilites when calculating the determinant during entropy computation. For better visibility, gray shades
indicate ranks instead of actual values.

Algorithm 1NN
Baseline 15.9%
FP 75.0%
OP 86.7%
OC up to around 87.7%
Timbre 54.0%
Timbre+FP 79.4%
Timbre+OP 87.1%
Timbre+OC up to around 90.2%

Table 1. Ballroom dataset: 10fold CV accuracies obtained
by the evaluated methods. The methods below the line are
combined by distance normalization and addition.

G1C algorithm [14]). This duality leads to the experiments
presented next.

4 THE “UNIFIED” ALGORITHM

Encouraged by the experiments presented in the previous
section, we examine the performance of this algorithm not
only in the task of rhythm similarity computation, but also
in the task of general music similarity. Our aim is to find
a selection of OCs that perform well in both tasks, which
eventually leads to a “unified” music retrieval algorithm
that reflects both rhythm and timbre similarity.

4.1 Data Sets

Music similarity experiments are performed on the set from
the ISMIR’04 genre classification contest (ISMIR’04) 6 ,
and on the “Homburg” data set (HOMBURG) [8]. Like the
ballroom set, these collections are available to the research
community, which facilitates reproduction of experiments
and gives a benchmark for comparing different algorithms.
There are two variants of the ISMIR’04 collection. The
first is the “training” set which consists of 729 tracks from
six genres. The second consists of all the tracks in the
“training” and “development” sets, which are 1458 tracks

6 http://ismir2004.ismir.net/genre contest/index.htm

from six genres. We use the central two minutes from each
track. The HOMBURG set consists of 1886 excerpts of 10
seconds length.

4.2 Combination Experiment

In this section, we conduct a similar experiment as in Sec-
tion 3.1 on the ISMIR’04 training collection. The aim is to
evaluate the impact of OCs on the performance in general
music similarity computation (i.e., not limited to rhythm
similarity). The results from these experiments are used
to create the “unified” algorithm, which will then be eval-
uated on all three collections (including the HOMBURG
collection).

Following previous work [1, 14], we take genre classi-
fication accuracy as an indicator of the algorithm’s ability
to find similar sounding music. We use the same evalua-
tion methodology as before. The timbre component alone
yields 83.8%. Combining it with FPs as described, ac-
curacy drops to 83.6%. Using OPs instead, accuracy in-
creases to 85.2%. With OCs, accuracy can be improved up
to 87.8% in the parameter range shown in Figure 4. This
figure shows an outlier for 19 × 0 OCs, for which unfor-
tunately we did not find an obvious explanation such as
outliers in the distance matrix or numerical instabilities.
Comparing Figures 3 and 4, it seems that a good tradeoff
between the two collections is found when using 16 × 1
OCs. This selection yields 17 ·2 = 34-dimensional feature
data, i.e., the rhythm feature data consists of a mean vector
of length 34 and a covariance matrix of size 342 = 1156.

4.3 Final Evaluation and Optimization

In Table 2, 10fold CV results obtained with this setting are
listed. For comparison to previous work, also the highest
classification accuracies obtained so far that we are aware
of are listed. These accuracies refer to methods only us-
ing audio descriptors without additional human-annotated
clues. On all three collections, the results of the “unified”
algorithm are above these previously reported results.
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Figure 3. Combination of OCs with timbral component on the ballroom dancers collection, 1NN 10fold cross validation.

Figure 4. Combination of OCs with timbral component, ISMIR’04 training collection.

Collection 1NN highest kNN Literature
(obtained at k)

Ballroom 88.4% 89.2% (k=5) 86.9% [7]
ISMIR’04 train 87.6% 87.6% (k=1) 84.0% [16]
ISMIR’04 1458 90.4% 90.4% (k=1) 83.5% [6]
HOMBURG 50.8% 57.0% (k=10) 55% [12]

Table 2. Accuracies obtained by the “unified” algorithm
on the various collections.

While these results show that our “unified” algorithm
outperforms the respective specialized approaches, we ob-
serve that when tuning to the particular collections, our
techniques can be used to obtain even higher accuracies.
For these experiments, we use leave-one-out evaluation for
two reasons. First, doing 10fold cross validation (and re-
peating it several times for averaging) has a clearly longer
runtime, as we evaluate a fixed matrix of pairwise dis-
tances. Second, in the 10fold cross validation experiments,
we observe a certain variance between repeated experi-
ments.

Our non-exhaustive tuning experiments indicate that
even the normalization step used to combine two measures
(Section 3) alone in some cases increases accuracy. On the
Ballroom Dancers collection, a 3NN accuracy of 91.8%
is obtained when including normalised OCs up to 24 ×
0. Using only the normalised timbre component, on the
ISMIR’04 training set a 1NN accuracy of 88.8%, and on
the full ISMIR’04 set an accuracy of 91.8% is reached.
On the HOMBURG set, 11NN classification using only

the normalised timbre component yields 58.4%.
Common sense indicates that the “unified” algorithm is

a better choice for similarity estimation than such tuned
variants, as the tuned variants do not perform well on all
collections. In particular, these experiments show that dis-
carding the rhythm component and using the timbre com-
ponent alone, higher accuracies than those of the “unified”
algorithm are obtained both on the ISMIR’04 set and the
HOMBURG set. But with this setting, accuracy decreases
clearly on the “Ballroom Dancers” collection. This may
indicate the existence of an evaluation glass ceiling in the
sense that an improved general music similarity algorithm
might even yield lower accuracies.

5 CONCLUSIONS

We have presented modifications of Fluctuation Patterns
(FPs) that can be used to obtain higher classification accu-
racies on the audio signal of the “Ballroom Dancers collec-
tion” than FPs compared by Euclidean distance. By adding
frequency information to these proposed rhythm descrip-
tors in the form of a “timbral” component results are fur-
ther improved.

Based on these results, we suggest a “unified” algo-
rithm. The presented experiments indicate that the simi-
larities computed by this algorithm both reflect aspects of
rhythm similarity and aspects of general music similarity.
In both respects, classification accuracies obtained in our
test setting are at least comparable to those previously re-
ported for algorithms specifically designed for the respec-
tive tasks.

Going beyond this, presented preliminary results show

529



Oral Session 6: Similarity

that by using different parameter settings (including selec-
tion of used OCs, and relative weighting of timbral and
rhythm component) for different collections, the accura-
cies obtained with the “unified” algorithm can be further
improved. As by doing so, one loses the generality of the
algorithm, we refrain from further optimizations in this di-
rection.
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ABSTRACT

This paper introduces a method for the organization of re-
corded music according to structural similarity. It uses
the Normalized Compression Distance (NCD) to measure
the pairwise similarity between songs, represented using
beat-synchronous self-similarity matrices. The approach is
evaluated on its ability to cluster a collection into groups of
performances of the same musical work. Tests are aimed at
finding the combination of system parameters that improve
clustering, and at highlighting the benefits and shortcom-
ings of the proposed method. Results show that structural
similarities can be well characterized by this approach, gi-
ven consistency in beat tracking and overall song structure.

1. INTRODUCTION

Characterizing the temporal structure of music has been
one of the main goals of the MIR community, with ex-
ample applications including thumbnailing, long-term seg-
mentation and synchronization between multiple record-
ings [1, 2]. Despite this focus, however, there has been lit-
tle in terms of using structure as the main driver of audio-
based retrieval and organization engines.

This paper proposes and evaluates a methodology for
the characterization of structural similarity between musi-
cal recordings. The approach models similarity in terms
of the information distance between music signals repre-
sented using self-similarity matrices. These matrices are
well-known for their ability to characterize recurring pat-
terns in structured data, and are thus widely used in MIR
for the analysis of musical form. However, in retrieval ap-
plications they are mostly used as intermediate representa-
tions from which a final representation (e.g. beat spectrum,
segment labels) is derived. In this paper we argue that self-
similarity matrices can be used directly in the computa-
tional modeling of texture-, tempo- and key-invariant rela-
tionships between songs in a collection. Our approach is
mainly inspired by the work in [3], which uses the same
principle to compare the structure of protein sequences.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

1.1 Background

The use of structure for audio-based MIR was first pro-
posed in [4]. This approach is based on the idea that long-
term structure can be characterized by patterns of dynamic
variation in the signal. In this approach, song similarity is
measured as the cost of DP-based pairwise alignment be-
tween sequences of local energy or magnitude spectral co-
efficients. Experimental results, albeit preliminary, show
the potential of this idea for retrieval.

A similar concept is explored in [5], and more exten-
sively in [6], where variations of spectral content are quan-
tized into a symbolic sequence, obtained via vector quanti-
zation or HMMs. In these works, pairwise song similarity
is measured using the edit distance or, more efficiently, lo-
cality sensitive hashing [6].

The mentioned sequences are not only able to represent
the texture and harmony of musical pieces, but also struc-
tural patterns, from motifs and phrases to global form. Mu-
sical sequences sharing style, origin or functionality will
be likely to show structural similarity, despite differences
in actual sequence content. Hence, a change of key does
not preclude listeners from identifying a 12-bar blues, and
the relationship between different variations and renditions
of a work remain close, despite changes of instrumenta-
tion, ornamentation, tempo, dynamics and recording con-
ditions. Unfortunately, all representations discussed above
are sensitive to one or more of these variables. As a result,
their success at characterizing music similarity depends on
their ability to marginalize those changes. Examples in-
clude the use of modified distance metrics and suboptimal
feature transposition methods [2, 5].

Structure comparison has been extensively studied in
other fields, such as bioinformatics. For protein sequences,
for example, structures are usually characterized using con-
tact maps, which are, simply put, binary self-similarity
matrices where a 1 characterizes a contact (i.e. similar-
ity higher than a certain threshold) and a 0 the lack of it.
The problem of comparing protein topologies using con-
tact maps is known as maximum contact map overlap, with
many proposed solutions in the literature. In this paper we
concentrate on the one proposed in [3], which uses an ap-
proximation of the information distance between two con-
tact maps known as the normalized compression distance
(NCD), to be discussed in more detail in section 2.2.

In music, the NCD has been used on raw MIDI data
for clustering and classification based on genre, style and
melody [7, 8]. More recently, it has been used on audio
data for sound and music classification [9] and, with lim-
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Figure 1. (a) Self similarity matrix of the first 248 bars of a performance of Beethoven 5th Symphony; MDS projection of
a quarter (b), half (c) and full matrix (d) to 3 dimensions; (e) comparison of two different performances.

ited success, in cover-song identification [10]. To the best
of our knowledge this paper proposes the first use of NCD
to characterize structural similarity between music audio
recordings.

1.2 Example

Figure 1(a) shows a self-similarity matrix of the first 248
bars of the first movement of Beethoven’s 5th symphony.
The recording is of a 2006 performance by the Russian
National Orchestra conducted by Mikhail Pletnev. Figures
1(b-d) are the result of taking the distances in the matrix
and projecting them into a 3-dimensional space using clas-
sical multidimensional scaling (MDS). The figures show
the trajectory of the piece at a quarter, half and full seg-
ment length, respectively. Figures 1(b) and (c) depict the
famous opening section of this symphony as a loop, while
figure 1(d) shows the recapitulation as simply another, ap-
proximate instance of the same loop. This example clearly
shows how self-similarity matrices are able to character-
ize primary (the trajectory itself) and, at least, secondary
(local motifs such as the loop) structure in music. Fig-
ure 1(e) shows the full segment trajectory described above
(in black), and a new trajectory, corresponding to a 1963
recording by the Berlin Philharmonic conducted by Her-
bert von Karajan (in red). The goal of our approach is to
quantify the (dis)similarity of these representations, and to
use the results to group related music together.

2. APPROACH

The proposed approach consists of three main parts: (a)
representation, where a self-similarity matrix is generated
from the analysis of the audio signal; (b) similarity, where
the pairwise distance between the representations is com-
puted using the NCD; and (c) clustering, where the matrix
of NCDs is used for the grouping of songs. The details are
explained in the following.

2.1 Representation

In our implementation we use a beat-synchronous feature
set F , composed of either MFCC or chroma features. The
first 20 MFCCs are calculated using a 36-band filterbank,
frame size of 23.22ms and 50% overlap. The chroma fea-
tures are computed via the constant-Q transform using a
minimum frequency of 73.42 Hz, 36 bins per octave and
a 3-octave span, on a signal downsampled to fs = 5512.5

Hz. The resulting features are tuned and their dimension-
ality reduced to 12 with a weighted sum across each 3-bin
pitch class neighborhood. For beat tracking we use the al-
gorithm in [11], and average the extracted features between
consecutive beats. Beat tracking is used to reduce the size
of the self-similarity matrix and to minimize the effect of
tempo-variations on the representation.

The feature set is smoothed using zero-phase forward-
backward filtering with a second order Butterworth filter.
Filter cutoff is at 1/128th of the feature rate. Finally, the
features are standardized (separately for each song).

The computation of self-similarity matrices has been
discussed extensively elsewhere in the literature and will
not be discussed in any detail here. Suffices to say that for
our tests we use both the euclidean and cosine distances.
Once computed, matrices are normalized (per song) to the
[-1,1] range, their upper triangular part extracted, and the
values uniformly quantized and encoded into B bits. In
our experiments B assumes the values 2, 3 and 4. It is
worth noting that we have favored the notion of “fuzzy”
rather than binary self-similarity, as it is not clear what an
adequate definition of contact may be in the context of this
work. For the same reason we have favored the use of uni-
form quantization over other possible partitions of the sim-
ilarity range.

2.2 Similarity

We measure similarity using the normalized compression
distance (NCD), which will be briefly introduced here (For
a comprehensive discussion the reader is referred to [7]).

It can be shown that the information distance between
two objects o1 and o2, up to a logarithmic additive term, is
equivalent to:

ID(o1, o2) = max{K(o1|o2),K(o2|o1)} (1)

whereK(.) denotes the Kolmogorov complexity. The con-
ditional complexityK(o1|o2) measures the resources need-
ed by a universal machine to specify o1 given o2.

The information distance in Eq. 1 suffers from not con-
sidering the size of the input objects, and from the non-
computability of K(.). To solve the first problem, a nor-
malized information distance can be defined as:

NID(o1, o2) =
max{K(o1|o2),K(o2|o1)}
max{K(o1),K(o2)}

(2)

To solve the second problem, we can approximateK(.) us-
ing C(.), the size in bytes of an object when compressed
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using a standard compression algorithm. Using this prin-
ciple, it can be shown that equation 2 can be approximated
by the normalized compression distance:

NCD(o1, o2) =
C(o1o2)−min{C(o1), C(o2)}

max{C(o1), C(o2)}
(3)

where C(o1o2) is obtained by compressing the concatena-
tion of objects o1 and o2 [7]. For our implementation the
objects are the encoded self-similarity matrices for each
song. We use the NCD implementation in the CompLearn
toolkit 1 with the bzip2 and PPMd compression algorithms.

2.3 Clustering

We use an algorithm from Matlab’s statistics toolbox that
builds a hierarchical cluster tree using the complete linkage
method [12]. The clusters are defined by finding the small-
est height in the tree at which a cut across all branches will
leave MaxClust or less clusters. The output of the pro-
cess is a vector containing the cluster number per item in
the test set.

3. EXPERIMENTAL SET-UP

3.1 Test Data

We use two datasets in our experiments. The first set,
which we call P56, consists of 56 recordings of piano mu-
sic, including excerpts of 8 works by 3 composers (Beetho-
ven, Chopin and Mozart), played by 25 famous pianists
between 1946 and 1998. It was collected as part of the
computational study of expressive music performance dis-
cussed in [13]. Each work has, at least, 3 associated rendi-
tions and at most 13, with audio file lengths in the range of
1 to 8 minutes.

The second set (S67, collected by the authors) includes
67 recordings of symphonic music, including one move-
ment for each of 11 works by 7 composers (Beethoven,
Berlioz, Brahms, Mahler, Mendelssohn, Mozart and Tchai-
kovsky). The set includes instances from 56 different re-
cording sessions scattered between 1948 and 2008, featur-
ing 34 conductors. Each work has 6 associated renditions,
with the sole exception of the 3rd movement of Brahm’s
Symphony No. 1 in C minor, for which 7 performances are
available. The duration of the recorded movements range
from 3 to 10 minutes.

Classical music is used as, apart from the odd repeti-
tion of a motif or section, the structure of renditions can
be expected to be the same. The two sets are composed
of recordings using similar instrumentation (piano, orches-
tra), to emphasize the difference with timbre-base simi-
larity approaches. Both sets, however, present significant
variations in recording condition and interpretation (no-
tably in dynamics and tempo). All files are 128 kb/s MP3s
with sampling frequency of 44.1kHz.

1 http://www.complearn.org

3.2 Methodology

Clustering methods are highly sensitive to both the num-
ber and relative size of partitions in a dataset. To account
for variations of those factors and avoid overfitting, every
test is performed I times, each using a random sample of
size N < M , where M is the number of items in the
dataset. For every test, we report the mean accuracy of
clusters across the I subsets, measured as follows.

Given a partition of the dataset into R groups, Q =
{q1, ..., qR}, produced by the clustering algorithm, and a
target partition, T = {t1, ..., tP }, we can validate Q using
the Hubert-Arabie Adjusted Rand (AR) index as:

AR =

(
N
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
N
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
(4)

where
(
N
2

)
is the total number of object pairs in our dataset.

AR measures the correspondence between Q and T , as a
function of the number of the following types of pairs: (a)
pairs with objects in the same group both in Q and T ; (b)
objects in the same group in Q but not in T ; (c) objects
in the same group in T but not in Q; and (d) objects in
different groups in both Q and T . The AR index accounts
for chance assignments and does not require arbitrary as-
signment of cluster labels not P = R, as might be the case
when using classification accuracy to validate clustering.
Readers unfamiliar with the AR index might find the fol-
lowing guidelines useful: AR = 1 means perfect clustering,
while values above 0.9, 0.8 and 0.65 reflect, respectively,
excellent, good and moderate cluster recovery. Random
partitions of the dataset result on AR → 0 (can also as-
sume small negative values). For a detailed discussion of
the properties and benefits of the AR index see [14].

4. RESULTS AND DISCUSSIONS

The main goal of our experiments is to test the capacity of
the proposed approach in characterizing structural similar-
ity. As similarity is an elusive concept which is not easily
quantified, we test an approximate scenario: the task of
clustering a music collection into groups of renditions of
the same work. Thus, for example, a partition Q of S67,
generated using the approach in section 2 with parame-
ters θ, is validated using AR and a target partition T of
11 groups, where each group contains the 6 or 7 renditions
of one of the works in the collection.

Specifically, our experiments seek to: (1) find the pa-
rameterization θ that maximizes AR, (2) assess the impact
of the used clustering methodology, and (3) highlight the
strengths and shortcomings of our approach.

4.1 Parameterization

In our experiments θ = {F, d,B,C,MaxClust}, where
F is the feature set (MFCC or chroma), d the distance met-
ric used to compute the self-similarity matrix (euclidean or
cosine), B the number of bits used to quantize the matrix
(2, 3 or 4), C the compression method used for the com-
putation of the NCD (bzip2 or PPMd), and MaxClust the
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Figure 2. Comparison of mean AR results for allF, d com-
binations on sets P56 (left) and S67 (right).

Figure 3. Comparison of mean AR results for B =
{2, 3, 4} on sets P56 (left) and S67 (right).

Figure 4. Comparison of mean AR results for C =
{bzip2, PPMd} on sets P56 (left) and S67 (right).

maximum number of clusters to be retrieved from the tree
(between 6 and 35).

All possible combinations of θ are tested I = 50 times 2 ,
using random samples of size N = 0.75×M (42 for P56,
50 for S67). In all tests, both collections are tested inde-
pendently.

Figure 2 shows results for all F, d combinations forC =
bzip2 and B = 3. As with most figures in this section, it
separately shows AR values for P56 (left) and S67 (right),
across the range of MaxClust values. For both datasets,
chroma features outperform MFCCs, clearly for P56 and
slightly for S67. This is consistent with the notion of har-
monic content as a reliable indicator of structure in music,
as has been repeatedly found in the segmentation litera-
ture [1,2]. The better performance of MFCCs in S67 com-
pared to P56 is to be expected, as within-song timbre dif-

2 We tested I = {10, 20, 50, 100, 200, 500, 1000} and found varia-
tions of mean AR to be minimal for I ≥ 50.

ferences and dynamic changes are more pronounced in or-
chestral than in piano music. For chroma features, the use
of euclidean or cosine distances in the computation of the
self-similarity matrix makes little difference. For MFCCs,
however, the euclidean distance results in significantly bet-
ter performance, indicating that dynamics are as important
as timbre changes in defining the structure of a piece.

Figure 3 illustrates the importance of the number of
bits B used in the encoding and quantization of the self-
similarity matrix, for F = chroma, d = euclidean and
C = bzip2. Apart from B = 2 giving the best results
for S67, no clear trend is visible in these plots (at least not
common to both sets). This hints at process independence
from the choice of B. The good performance of B = 2,
however, opens the door for a binary definition of contacts
in music, although more extensive testing is necessary to
define an appropriate threshold.

Finally, figure 4 compares two compression methods for
the computation of NCD. In these plots, F = chroma,
d = euclidean and B = 3. In all cases bzip2 outperforms
PPMd, which is unfortunate as the latter is much faster
than the former. This result seems to contradict findings in
the literature where the PPM family of compression meth-
ods usually works best for the NCD computation [7].

Figure 5. Variation of mean AR according to random sam-
ple size N (P56 in black, S67 in gray).

4.2 Clustering methods

On a separate experiment, we tested our system against
variations of the random sample size N for both collec-
tions. N values ranged from 30 to 52 for P56, and 64 for
S67. We used F = chroma, d = euclidean, B = 3 and
C = bzip2. Figure 5 shows results for P56 (in black) and
S64 (in gray, skewed towards the right), across a range of
MaxClust values ranging from N/2 − 20 to N/2 + 10.
Each curve corresponds to a value ofN . Variations of peak
AR across N appear to be uniformly distributed in the de-
picted range for each test set. Their location within this
range does not follow any obvious trend. For example, for
P56, the minimum peak corresponds to the N = 32 curve,
while the maximum peak is for N = 30 (closely followed
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by N = 48). All other peaks are randomly located in be-
tween.

Notably, the location of peaks appears to be a function
of N , with most peaks in (N/2 − 5) ± 3 for P56 and in
(N/2 + 3) ± 2 for S67. The difference between the sets,
however, also indicates that the size of the collection M ,
the number of groups within that collection and the size of
those groups have a hand in the results. While N and M
are always known, it is unreasonable to expect the number
and size of groups to be known, making the choice of value
for the critical MaxClust parameter a complex one. Our
inability to define MaxClust with prior information is a
major shortcoming of the proposed approach.

As an alternative we have tested a different clustering
algorithm, which operates by merging clusters whose sep-
aration, measured in their connecting node, is less than a
pre-specified Cutoff value, ranging between 0 and 1. No-
tably, this method does not require any prior information
about cluster numbers. Additionally, we test building the
hierarchical cluster tree using single, average and weighted
linkage in addition to the complete linkage method used in
the rest of this paper [12]. Figure 6 shows the results of
these tests using F = chroma, d = euclidean, B = 2
andC = bzip2. The AR = 0.63 result for weighted linkage
and Cutoff = 0.85 in S67 is the highest obtained in our ex-
periments, a significant increase on our previous best (vis-
ible in the “complete” curve of the same graph). It clearly
shows that gains can be made by improving our cluster-
ing stage. However, this result is not indicative of a gen-
eral trend, as illustrated by the low results obtained for the
same method in the P56 dataset. An in-depth exploration
of the space of clustering methods and their parameteriza-
tions will be the focus of future work.

Figure 6. Test of cutoff clustering with 4 linkage methods.

4.3 An example tree

Figure 7 is generated using yet another linkage algorithm
on the full S67 dataset, the quartet method described in
[7], using F = chroma, d = euclidean, B = 3 and
C = bzip2. Clustering on this tree usingMaxClust = 36
results on AR = 0.55, which makes this graph represen-
tative of system performance using the best parameteriza-
tion.

The tree branches out into 10 clusters, each correspond-
ing to a work in the collection. Four of those clusters group
all renditions of a given work. Figure 7(a) shows a detail

of the tree exemplifying one such cluster, corresponding to
the 7 renditions of the third movement of Brahm’s Sym-
phony No. 1 in C minor. Two clusters group 5 out of 6
performances, for example those for the third movement
of Mozart’s Symphony No. 4 in G minor k550 depicted
in Figure 7(c). One cluster, for the second movement of
Mahler’s Symphony No. 1 in D major “Titan”, groups 4
out of 6 performances as shown in Figure 7(b). The three
remaining clusters group only 3 or 2 performances out of 6.
Only one work results in no clusters of any kind. In total,
47 out of 67 recordings are correctly assigned to a group.
Ungrouped recordings are located in the stem of the tree,
which has been gray-shaded in the graph.

Figures 7(b) and (c) also help illustrate the effect of beat
tracking accuracy on the proposed approach. The number
of detected beats in the missing performance of Mozart’s
k550, visible in the stem of the tree in Fig. 7(b), is ap-
proximately twice as many as those detected in all other
performances of the same piece. Octave errors act as fil-
ters on the feature set, which can result on a significant loss
of detail in the corresponding self-similarity matrix and, as
the tree shows, a poor characterization of structural simi-
larity between the recordings. This is an important draw-
back of our approach as octave errors are common in beat
tracking. Another example of the same problem are the
two missing recordings in Mahler’s Symphony 1 cluster in
Fig. 7(b), which are located in the lower end of the stem of
the tree. An informal analysis of the results shows that a
good portion of overall clustering errors are associated to
inconsistencies in beat tracking. It is worth noting that “in-
consistency” is the right word in this case, as what is really
important is not that beats are correctly tracked, but that
their relation to the actual tempo of the piece is the same
for all performances.

An additional observation relates to the six performances
of the fourth movement of Berlioz’s “Symphonie Fantas-
tique”. The score includes a repetition of the first 77 bars
of this movement before entering its second half, roughly
describing an AAB structure. Half of the performances
in our dataset, however, ignore that repetition resulting on
a shorter AB structure. Correspondingly, the cluster in
the tree related to this piece groups only the latter, while
the other three performances appear close together in the
lower end of the tree. While in theory the common part
of the structure should be enough to identify the similarity
between all six recordings, in practice this is clearly not
the case. This sensitivity to common structural changes,
e.g. repetitions, raises questions about the potential use of
NCD-based similarity in the modeling of the relationships
that exist amongst variations, covers, remixes and other
derivatives of a given work. Further research is now be-
ing conducted to fully explore this issue.

5. CONCLUSIONS AND FUTURE WORK

This paper presents a novel approach for the organization
of recorded music according to structural similarity. It
uses the Normalized Compression Distance (NCD) on self-
similarity matrices extracted from audio signals, using stan-
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Figure 7. Uprooted binary tree of S67 using the quartet method. Details show a perfect cluster (A) and two partial clusters
(B and C)

dard features and distance metrics. The approach is eval-
uated on its ability to facilitate the clustering of different
performances of the same piece together. Experimental re-
sults on piano and orchestral music datasets show that the
approach is able to successfully group the majority of per-
formances in a collection, resulting on average AR values
in the 0.5-0.6 range. Our tests show that best results are ob-
tained for self-similarity matrices computed using chroma
features and the euclidean distance, and encoded using 2-3
bits. They also show that the NCD works best when using
the bzip2 compression algorithm. Preliminary results also
indicate that further gains can be made by improving the
clustering stage.

On the downside, the approach has shown sensitivity
to octave errors in beat tracking and, predictably, to struc-
tural changes, which limit the potential application of the
current implementation to the retrieval and organization of
other types of musical variations. To address these issues,
future work will concentrate on two main areas. First, the
improvement of the self-similarity representation, along
the lines of work in [2], to include transposition invariance,
path following and the merging of matrices computed at
1/2, 1 and 2 times the tracked tempo. Second, we will ex-
plore alternatives to the use of NCD for the maximum con-
tact map overlap problem. We plan to explore solutions
based on the branch and cut approach (e.g. [15]) and adapt
them to the specificities of music data.
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ABSTRACT

We present a filter-and-refine method to speed up acous-

tic audio similarity queries which use the Kullback-Leibler

divergence as similarity measure. The proposed method

rescales the divergence and uses a modified FastMap [1]

implementation to accelerate nearest-neighbor queries.

The search for similar music pieces is accelerated by a fac-

tor of 10−30 compared to a linear scan but still offers high

recall values (relative to a linear scan) of 95− 99%.

We show how the proposed method can be used to query

several million songs for their acoustic neighbors very fast

while producing almost the same results that a linear scan

over the whole database would return. We present a work-

ing prototype implementation which is able to process sim-

ilarity queries on a 2.5 million songs collection in about

half a second on a standard CPU.

1. INTRODUCTION

Today an unprecedented amount of music is available on-

line. As of April 2009, the Apple iTunes music store alone

lists more than 10 million downloadable songs in its cata-

log. Other online music stores like Amazon MP3 still offer

a 5 million songs catalog to choose from. With the catalog

numbers constantly reaching new record highs, the need

for intelligent music search algorithms that provide new

ways to discover and navigate music is apparent.

Unfortunately many of the intelligent music processing

algorithms that have been published do not easily scale to

the millions of music pieces available in an online music

store. In particular, this is true for music recommendation

algorithms which compute acoustic music similarity using

a Gaussian timbre representation and the Kullback-Leibler

divergence, as in [2], [3] or [4].

Especially the Kullback-Leibler divergence, as it is used

in the referenced works, poses multiple challenges when

developing a large scale music recommendation system:

(1) the divergence is very expensive to compute, (2) it is

not a metric and thus makes building indexing structures

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2009 International Society for Music Information Retrieval.

around it very hard and (3) in addition, the extracted acous-

tic music similarity features have a very high degree of

freedom, which too is a general problem for indexing so-

lutions (“curse of dimensionality”) [5].

But on the other hand, systems using this technique reg-

ularly rank in the very top places in the yearly MIREX

Automatic Music Recommendation evaluations 1 , which

makes them a tempting but challenging target for broad

usage in real applications.

1.1 Related Work

The idea of using FastMap-related techniques for computa-

tionally heavy non-metric similarity measures and nearest

neighbor retrieval was first demonstrated by Athitsos [6].

They use BoostMap [7] to improve the speed of classify-

ing handwritten digits. Cano et al. [8] use FastMap to map

the high dimensional music timbre similarity space into a

2-dimensional space for visualization purposes.

Roy et al. [9] present a music recommendation sys-

tem which uses a Monte-Carlo approximation of the

Kullback-Leibler (KL) divergence as similarity measure.

The Monte-Carlo approximation of the KL divergence is

far more expensive to compute and less accurate than the

closed form of the KL divergence which is used in our pa-

per and recent music similarity algorithms. To speed up a

similarity query, they narrow the number of nearest neigh-

bor candidates by incrementally increasing the accuracy of

the Monte-Carlo sampled divergence measure.

Another interesting approach, which was pursued by

Garcia [10], is to compute computationally expensive sim-

ilarity measures on modern graphics processors (GPUs).

Modern GPUs offer high floating-point performance and

parallelism. As an example Garcia shows how a lin-

ear brute force nearest neighbor scan using the Kullback-

Leibler divergence can be accelerated on a GPU compared

to computing it on a standard CPU. The idea to use the

GPU to process similarities could be combined with the

methods presented in this paper.

With mufin.com there also exists a commercial music

recommendation service which computes acoustic audio

similarities for a very large database of music (6 million

tracks as of April 2009). However, their website gives no

hint on how their service works 2 .

1 http://www.music-ir.org/mirexwiki/
2 http://www.mufin.com/us/faq.html
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1.2 Contributions of this paper

The contribution of this paper is three-fold:

• First, we present a filter-and-refine method based on

FastMap which allows quick music similarity query

processing. It is designed to work with very large

music databases which use Gaussian timbre models

and the Kullback-Leibler divergence as music simi-

larity measure.

• Second, we show how a rescaling of the divergence

values and a new FastMap pivot object selection

heuristic substantially increase the nearest neighbor

recall of the algorithm.

• Finally, we present an implementation of a music

recommendation system using the proposed tech-

niques which handles a 2.5 million tracks evaluation

collection in a very efficient way.

2. PRELIMINARIES

2.1 Data

Throughout this paper we use a collection of 2.5 million

songs to evaluate the performance and to show the practical

feasibility of our approach. The 2.5 million tracks consist

of 30 second snippets of songs gathered by crawling an

online music store offering free audio preview files.

2.2 Similarity

We extract timbre features from the snippets and compute

a single Gaussian timbre representation using the method

proposed by Mandel & Ellis [2]. We compute 25 Mel

Frequency Cepstrum Coefficients (MFCCs) for each audio

frame, so that a Gaussian timbre model x finally consists

of a 25-dimensional mean vector μ and covariance matrix

Σ. For performance reasons we also precompute and store

the inverted covariance matrix Σ−1.

To compute acoustic timbre similarity we use the sym-

metrized version (SKL) of the Kullback-Leibler diver-

gence (KL, [11]), defined between two multivariate nor-

mal distributions x1 ∼ N (μ1,Σ1) and x2 ∼ N (μ2,Σ2):

SKL(x1, x2) =
1
2
KL(x1, x2) +

1
2
KL(x2, x1). (1)

A query for similar songs is processed in a linear scan

by computing the SKL between the Gaussian x1 of the

seed song and all other songs in the database. The songs

with the lowest divergence to the seed song are its nearest

neighbors and possible recommendations.

2.3 Nearest neighbor recall

To compare the effectiveness of the nearest neighbor re-

trieval variants evaluated, we used what we call nearest

neighbor (NN) recall. We define it as the ratio of true near-

est neighbors found by some algorithm (NNfound) to the

number of true nearest neighbors (NNtrue). The true near-

est neighbors are found by a full linear scan.

recall =
|NNfound ∩NNtrue|

|NNtrue| (2)

3. THE METHOD

To build our filter-and-refine method for fast similarity

queries we use an adopted version of FastMap [1], a Mul-

tidimensional Scaling (MDS) technique. MDS [12] is a

widely used method for visualizing high-dimensional data.

It takes the distance matrix of a set of items as input and

maps the data to vectors into an arbitrary-dimensional Eu-

clidean space. FastMap is straightforward to use even for

large databases since it only needs a low and constant num-

ber of rows of the similarity matrix to compute the vector

mapping. However, FastMap requires the distances to ad-

here to metric properties.

3.1 Original FastMap

The original FastMap [1] algorithm uses a simple mapping

formula (Equation 3) to compute a k-dimensional projec-

tion of objects into the Euclidean vector space. The dimen-

sion k is arbitrary and can be chosen as required. Usually

higher dimensions yield a more accurate mapping of the

original similarity space.

To project objects into a k-dimensional Euclidean vec-

tor space, first two pivot objects from the feature database

have to be selected for each of the k dimensions. The orig-

inal algorithm uses a simple heuristic to select those pivot

objects: for each dimension (j = 1..k), (1) chose a random

object xr from the database, (2) search for the most distant

object of xr using the original distance measure D() and

select it as the first pivot object xj,1 for the dimension, (3)

the second pivot object xj,2 is the object most distant to

xj,1 in the original space.

After the 2k pivot objects have been selected, the vector

representation of an object x is computed by estimating

Fj(x) for each dimension (j = 1..k):

Fj(x) =
D(x, xj,1)2 + D(xj,1, xj,2)2 −D(x, xj,2)2

2D(xj,1, xj,2)
(3)

This method depends on metric properties of D to pro-

duce meaningful mappings. However, it has been noted

that FastMap works surprisingly well also for non-metric

divergence measures [7].

As FastMap only requires a distance function D and

pivot objects to compute the vector mapping, it can be in-

stantly applied to map the Gaussian timbre models with the

SKL as distance function to Euclidean vectors (ignoring

the fact that the SKL is not metric).

3.2 A Filter-And-Refine Method using FastMap

To use FastMap to quickly process music recommenda-

tion queries, we initially use it to map the Gaussian timbre

models to k-dimensional vectors. In a two step filter-and-

refine process we then use those vectors as a prefilter: first
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we filter the whole collection in the vector space (with the

squared Euclidean distance) to return a number (filter-size)

of possible nearest neighbors, then we refine the result by

computing the exact SKL on the candidate subset to re-

turn the nearest neighbors. By using the SKL to refine
the results, the correct nearest neighbor ranking is ensured.

We set the parameter filter-size to a fraction of the whole

collection.

Since the complexity of a single SKL comparison is

much higher than a simple vector comparison, the use of

the squared Euclidean distance to prefilter the data results

in large speedups compared to a linear scan over the whole

collection using the SKL. Table 1 compares the computa-

tional cost (in floating point operations, flops) of the SKL
to the squared Euclidean distance d2 using different vector

dimensions (k) to prefilter candidate nearest neighbors.

Divergence flops flops/flopsSKL

SKL 3552 1
d2, k = 20 60 0.017
d2, k = 40 120 0.034
d2, k = 60 180 0.051

Table 1. The computational complexity (in flops) of com-

puting the squared Euclidean distance (d2) is, even for high

mapping dimensions like k = 60, much lower than the

costs of computing a single SKL comparison. Note: We

already use an optimized implementation of the SKL ex-

ploiting matrix symmetry and the sequence of matrix op-

erations [13].

Unfortunately, as we show in the next section (3.3), ap-

plying FastMap to the problem without any modifications

yields very poor results.

3.3 Modifications

In our implementation we have included two important

modifications which improve the quality of FastMap map-

pings for nearest neighbor retrieval. The modifications

are centered around two thoughts: (1) a metric divergence

measure would produce better vector mappings, and (2) a

more specialized heuristic for pivot object selection could

produce better mappings especially for the near neighbors,

which are the center of our interest.

3.3.1 Rescaling

Before mapping the objects xi ∈ X to a k-dimensional

vector (Equation 3), we propose to rescale the original

symmetric Kullback-Leibler divergences (SKL) by taking

the square-root:

D(x1, x2) =
√

SKL(x1, x2). (4)

This rescaling has the effect of making the SKL behave

more like a metric. As the SKL already has the important

properties of being symmetric and non-negative, it only

fails to fulfill the triangle inequality. Taking the square root

has the effect to partly fix the divergence, making it more
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Figure 1. Nearest neighbor (NN) recall of two pivot object

selection methods (median: the proposed pivot object se-

lection heuristic, basic: the original FastMap heuristic) in

combination with three divergence rescaling methods (no-
rescaling, eλx,

√
x). NN recall is averaged over five in-

dependent evaluation runs (10.000 queries per run), each

time using a new random collection. Parameters: k = 40,

filter-size=10%, collection size=100.000.

metric [14]. Another more common way is to rescale the

SKL with eλSKL() (see [3] or [2]).

We have experimentally verified the effect of rescaling

on a collection of 100.000 randomly drawn Gaussian tim-

bre models (Table 2), by checking the triangle inequality.

The table clearly shows that exponentiating indeed reduces

the number of cases where the triangle inequality is vio-

lated, but it does not work as well as taking the square

root, which makes the SKL obey the triangle inequality

in more than 99% of the cases in our experimental setup.

Divergence % triangle inequality

SKL() 91.57%

1− eλSKL(), λ = − 1
100 93.71%

1− eλSKL(), λ = − 1
50 95.60%√

SKL() 99.32%

Table 2. Percentage of Gaussian object triples fulfilling

the triangle inequality (D(x, z) ≤ D(x, y)+D(y, z)) with

and without rescaling. The triangle inequality was checked

for all possible triples in a collection of 100.000 randomly

selected Gaussian timbre models.

3.3.2 Pivot Object Selection

To select the pivot objects which are needed to map an ob-

ject x to a vector space, the original algorithm uses two ob-

jects for each dimension which lie as far away from each

other as possible (see Section 3.1). In contrast to the orig-

inal heuristic we propose to select the pivot objects using

an adapted strategy: (1) first we randomly select an object

xr and compute the distance to all other objects; (2) we
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then select the first pivot object x1 to be the object lying at

the distance median, i.e. the object at the index i = �N/2�
on the sorted list of divergences; (3) likewise, the second

pivot object x2 is selected to be the object with the distance

median of all divergences from x1 to all other objects.

By using pivot objects at the median distance we avoid

using objects with extremely high divergence values which

often occur in the divergence tails when using the SKL.

Since we are also particularly interested in optimally map-

ping the near neighbors and not the whole divergence

space, this strategy should also help in preserving the

neighborhoods.

3.3.3 Improvements

Finally, we measure how these modifications improve the

filter-and-refine method by experimentally computing the

nearest neighbor (NN) recall of each change on a 100.000
songs collection. Figure 1 shows the result of the exper-

iment. A huge improvement in the nearest neighbor re-

call can be seen for all strategies which use the median

pivot object selection heuristic (A, C, D, E) compared to

the original FastMap heuristic (B). The figure also shows

that rescaling the SKL values helps to further increase the

NN recall. The suggested strategy (C) using the median

pivot object selection strategy together with square-root-

rescaling gives the best results.

4. IMPLEMENTATION

The implementation of the filter-and-refine music recom-

mendation engine is straightforward: in an initial step the

whole collection is preprocessed with the proposed map-

ping method, transforming the database objects into a k-

dimensional vector space. This is a linear process since

only 2k pivot objects have to be selected and each object in

the database is mapped to a vector using Equation 3 once.

Our implementation saves the pivot objects for each di-

mension and the vector mappings of processed objects to

disk. This allows fast restarting of the system and easy

processing of new objects.

To query for similar objects we use the previously de-

scribed filter-and-refine method, filtering out a predefined

number (filter-size, a percentage of the collection size) of

nearest neighbor candidates using the vector representation

and refining the result with the exact SKL.

This outlines the general method we propose, but obvi-

ously two parameters which have a huge impact on the re-

trieval quality (nearest neighbor (NN) recall) and the query

speed have not been discussed yet: the number of vector

dimensions k and the filter-size.

4.1 Recall and Speed

It is obvious that a larger filter-size results in better NN

recall values but higher computational costs. Likewise, a

higher k used for the vector mapping results in a more ac-

curate mapping of the divergence space, but with each di-

mension the computational costs to compute the squared

Euclidean distance in the prefilter steps are increased.
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Figure 2. Plot relating the nearest neighbor recall and

the floating point operations resulting from different filter-

and-refine parameter combinations, to a full linear scan

(flops/flopsSKL). Recall is computed for the 10 nearest

neighbors for different parameter combinations of k and

filter-size in a collection of 100.000 songs. A good com-

bination (good recall, low computational cost) would be

mapped to the upper left corner of the plot.

Figure 2 evaluates different parameter combinations of

k and filter-size and their impact on nearest neighbor re-

call and computational cost (and thus query speed). The

diagram was compiled using a collection of 100.000 Gaus-

sian timbre models. It shows the 10-NN retrieval recall and

query speed (computational cost in terms of flops).

The figure shows that a parameter combination of k =
20 and filter-size= 5% can be selected to achieve about

95% 10-NN recall. That combination would take only 7%

of the query time required by a linear scan with the SKL.

If a 10-NN recall of 85% is acceptable a parameter com-

bination requiring only 3.5% the computational cost of a

linear scan is possible (k = 20 and filter-size= 2%). Al-

most perfect 10-NN recall values (> 98 − 99%) can be

reached when setting filter-size to about 10% of the collec-

tion size, which still requires only 10% of the time a linear

scan would need.

This evaluation shows how a good parameter combina-

tion for a collection should be selected. In Section 5 we

plot a similar diagram (Figure 3) to select the best parame-

ters for a 2.5 million song collection achieving 99% 1-NN,

98% 10-NN and 95% 100-NN recall on the collection.

4.2 Errors

Another aspect which is of interest is how falsely reported

nearest neighbors (false positives) affect the average qual-

ity of music recommendations. We have done a 1-NN

genre evaluation (with artist filter, see [3]). This is a stan-

dard evaluation to test the quality of a music recommenda-

tion algorithm.

We tested four different collections (three in-house col-

lections and the Ismir 2004 Magnatune music collection
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which is freely available for testing purposes 3 ). Table 3

summarizes the results. It appears that the errors which

are being made do not affect the classification accuracy

in an adverse way. Classification accuracy decreases only

by about 0.1% for the two larger collections and by about

0.5% for the two small collections.

Collection, size Genres F&R Full Scan

#1, N = 16781 21 30.17% 30.28%
#2, N = 9369 16 28.55% 28.66%
#3, N = 2527 22 28.27% 28.78%
Ismir 2004, N = 729 6 64.47% 64.88%

Table 3. 1-NN genre evaluation results (with artist filter)

on four different collections. The table compares the genre

classification accuracy of the filter-and-refine (F&R) ap-

proach presented in this paper with a full exact linear scan.

Parameters: k = 40, filter-size=5%

5. PROTOTYPE PERFORMANCE

To show the practical feasibility of using this filter-and-

refine method with large music databases we use the

method on the 2.5 million song collection and build a pro-

totype music recommendation system. The system should

be able to answer queries for the 100 nearest neighbors

with high speed and recall.
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Figure 3. NN recall with different filter-sizes evaluated on

1% (= 25.000) of the 2.5 million songs collection. With a

filter-size of 5% one can achieve 95% 100-NN recall and

98% 10-NN and 99% 1-NN recall. k = 40.

To select the optimal parameter we ran an experiment

to determine the best filter-size, k was set to 40. Figure 3

shows the recall values for different NN and filter-sizes. It

can be seen that the true 1-NN and 10-NN are retrieved

almost always if the filter-size is set to 5%, 8% or 10% of

the collection size.

3 http://ismir2004.ismir.net/genre contest/index.htm

In a second experiment (Figure 4) we compare the ac-

tual query response times of three different filter-size set-

tings (filter-size= 8%, 5%, 2%, k = 40) to a full linear

scan. It can be seen that the system running on a single

standard CPU core is capable of answering music recom-

mendation queries in half a second while returning about

95% of the correct 100 nearest neighbors compared to a

linear scan which would take about 7.8sec on the system.
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Figure 4. Comparison of the time it takes to query a 2.5

million song collection for nearest neighbors using a full

scan compared to a scan using the filter-and-refine method

proposed. The PC used a standard Intel Core Duo CPU

(2.5GHz) and had all Gaussian models loaded to RAM.

6. CONCLUSIONS

We have described a filter-and-refine method for fast ap-

proximate music similarity search in large collections. The

method is designed for Gaussian music timbre features us-

ing the symmetric Kullback-Leibler divergence to com-

pute acoustic similarity, but could be generalized to other

distance measures. A prototype implementation of our

method handling 2.5 million tracks is able to answer mu-

sic similarity queries in about half a second on a standard

desktop CPU.

By accelerating similarity queries by a factor 10 to 30,

we show how a large scale music recommendation service

relying on recent music information retrieval techniques

could operate.
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ABSTRACT

Content-based music retrieval requires to define a similar-
ity measure between music documents. In this paper, we
propose a novel similarity measure between melodic con-
tent, as represented in symbolic notation, that takes into
account musicological aspects on the structural function of
the melodic elements. The approach is based on the rep-
resentation of a collection of music scores with a graph
structure, where terminal nodes directly describe the mu-
sic content, internal nodes represent its incremental gen-
eralization, and arcs denote the relationships among them.
The similarity between two melodies can be computed by
analyzing the graph structure and finding the shortest path
between the corresponding nodes inside the graph. Pre-
liminary results in terms of music similarity are presented
using a small test collection.

1. INTRODUCTION

One approach to content-based access to music documents
is to provide users with tools to retrieve music documents
that are similar to a set of one or more documents already
known, which are the starting point of a query-by-example
paradigm. The effectiveness of the results depends on the
way a measure of music similarity is computed. This task
is difficult to define, because the notion of music similarity
is subjective and also because the role played by the dif-
ferent music dimensions – i.e., rhythm, melody, harmony,
timbre, orchestration, tempo – is task dependent. For in-
stance, the perceived similarity of two ballroom songs is
mainly related to rhythm, while in jazz music it can de-
pend on chord progressions.

In recent years, a major interest has been given to the
retrieval of audio documents, typically in compressed for-
mats such as MP3. This trend is explained by the increas-
ing availability of large collections of audio files, and by
the fact that users without a music training are usually not
interested in accessing symbolic representations. For this
reason, the notion of music similarity has been biased to-
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c© 2009 International Society for Music Information Retrieval.

wards the music dimensions that, on the one hand, are
more relevant for music listeners and, on the other hand,
can be reliably extracted from audio files. A typical ap-
proach is to extract some timbre descriptors to address dif-
ferent tasks, such as genre and artist identification, auto-
matic playlist generation, or music collection visualiza-
tion [12].

Music documents can be represented also in symbolic
forms, such as a notated digital score or a MIDI file. The
access to these documents can be based on higher level fea-
tures, such as melodic profile and harmonic progressions,
which are not easily extracted from audio files. In partic-
ular, the melodic profile has been often used as the main
dimension to compute the similarity between music doc-
uments [1, 7]. A typical task of melody-based retrieval is
the automatic identification of a melody sung or hummed
by the user. For this application, the similarity measure has
to be robust to local mismatches due to imprecise recall
from memory and to a lack of singing skills by the users,
because it is assumed that the query and the relevant docu-
ments are representing the same information. Although the
term query-by-humming was very popular in the early days
of MIR research [3], recently it has been often replaced by
the more general term query-by-example because it is as-
sumed that users can easily record with a portable device
an excerpt of the song they are interested to retrieve and
are not willing to hum a melody in front of an user inter-
face. Approaches of this kind may be based on approxi-
mate matching to identify the music work corresponding
to the recorded performance, a task that is usually defined
as cover [5] or music [8] identification.

The computation of melodic similarity can be useful
also for applications other than an identification task. For
instance, in musicological analysis the study of the melodic
material used by different composers, or consistently used
by a given composer, is of particular interest. Also eth-
nomusicological studies can take advantage from melodic
similarity in order to track the evolution of a given song
over the centuries and its diffusion in different geographi-
cal regions. Melodic similarity can be exploited to retrieve
music that “sounds like” other well known songs, for in-
stance to find a suitable soundtrack for a TV show.

We propose a novel similarity measure computed be-
tween music content in symbolic format, that takes into
account the musical structure of the composition through
the application of an analytic method. Our approach aims
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at representing a music collection with a graph structure
where terminal nodes directly describe the music content,
internal nodes represent its incremental generalization, and
arcs take track of the relationships among them. Results
are presented using an excerpt of the dataset used for the
melodic similarity task at the Music Information Retrieval
Evaluation eXchange (MIREX) campaign of 2005 [17].

2. MEASURING MELODIC SIMILARITY

A common approach to the computation of melodic sim-
ilarity is to make some assumptions on the perception of
pure tones and melodic intervals and to simplify the melodic
representation accordingly. This process can be considered
as a variant of stemming applied to the music domain, be-
cause it aims at conflating into a single stem all the melodic
variants that are musically or perceptually similar. A sim-
ple example is the representation of the melodic profile us-
ing only three classes of pitch intervals – ascending, de-
scending, and same nome – as proposed initially in [3].
Clearly, more complex representations are possible using
either a finer quantization of the intervals or the analysis of
the harmonic role of melodic intervals. In all these cases,
it is assumed that similar melodic excerpts share the same
representation. Segmentation can be applied to melodic in-
formation [10], where the similarity between melodies can
be computed as a weighted sum of the similarities between
pairs of segments. This latter approach aims also at effi-
ciency, because retrieval can be based on indexing [2].

Another approach is to exploit the properties of well
known distance measures, such as the edit distance using
approximate string matching techniques [4] or the earth
mover’s distance [16], in order to deal with variants in mu-
sic content. An alternative is to apply statistical modeling,
such as Markov chains described in [14], to cope with lo-
cal variations. The general idea is that the melody used
to query the system is transformed in order to be matched
with the melodies in the collection, assuming that the cost
of the transformation is related to the melodic similarity.
One limitation of these approaches is that they make little
use of structural information and musicological analysis.

The similarity measure proposed in this paper is based
on a different approach. The basic idea is that all melodies
– the ones in the music collection and the query – un-
dergo a process of generalization (or simplification). The
idea is motivated by the results of musicological studies,
such as the Generative Theory of Tonal Music [6], the
Implication-Realization Model [9], and Schenkerian anal-
ysis [13]. In particular, we aim at finding structural de-
pendencies among the notes of a composition in order to
organize them into a coherent hierarchy. This task can
be achieved by means of a series of simplifications of the
melodic content of a piece, assuming that these simplifica-
tions correspond to a generalization of the melodic profile.

The central part of our approach is the determination of
which notes in a music passage are more structurally sig-
nificant than others. We use this property to build a hierar-
chical representation of a single music document and, in-
crementally, of a collection of documents. At each step, the

PS analysis

doc 1

Segmentation

makeGraph

PS analysis

doc 2

Segmentation

makeGraph

PS analysis

doc N

Segmentation

makeGraph

mergeGraphs

shortestPath

...

Coding Coding Coding

PSR doc 1 PSR doc 2 PSR doc N

PSR collection

PSS

Harmonic anal. Harmonic anal. Harmonic anal.

Figure 1. From the music document to the Pseudo-
Structural Representation.

melodic content is analyzed and transformed in a melody
with fewer notes and with a simpler profile that should rep-
resent the most musicologically relevant content informa-
tion. The procedure ends when the melodic segments are
represented by a single note. We called this representation
Pseudo-Structural Representation (PSR), because it is in-
spired by structural analysis, yet the algorithm implement-
ing it exploits some simplifications. The PSR is a graph-
based representation, in which the terminal nodes are re-
lated to music surface and the internal nodes are progres-
sive generalizations of the surface.

The steps to build the PSR of a collection of documents
are depicted in Figure 1. First, each music document un-
dergoes harmonic analysis, which highlights the harmonic
function – i.e., tonic, dominant, subdominant – of each
chord. Although a number of automatic routines is avail-
able for the computation of the harmonic function, in our
experiments we choose to manually annotate the chords.
This task, which is the only manual intervention, is in gen-
eral not required for polyphonic documents for which re-
liable systems for inferring the chord progression already
exists. Given that the evaluation has been carried out us-
ing the MIREX 2005 dataset for the Symbolic Melodic
Similarity task, which documents contain only the main
melody, we preferred to manually annotate the chords to
not introduce possible sources of mismatch while evaluat-
ing a novel approach. Automatic chord annotation will be
addressed in future work, with the aim to create a totally
automatic procedure. At this stage we prefer to not intro-
duce possible sources of preprocessing errors that are not
dependent on the approach.

The second step consists in the progressive simplifica-
tion of the melodic profile, by means of an algorithm in-
spired by musicological analyzes. First of all, the surface
melody is processed to assign three weight coefficients to
each note. These coefficients are related to: the underly-
ing harmonic function (harmonic weight), the metric po-
sition (metric weight), and the pitch interval between the
tone of the melody and the root of the underlying chord
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Figure 2. Example of Pseudo-Structural analysis on a
Bach’s Choral.

(melodic weight). A number of weighting schemes have
been devised and evaluated experimentally, as presented
in Section 4. The basic idea is to assign higher weights
to relevant notes. For instance, a note with tonic function
has a higher harmonic weight than a note with a subdomi-
nant function, the same applies to notes in strong beats in
respect to notes in weak beats for the metric weight; as re-
gards the melodic weight, a perfect fifth with the chord root
has higher weight than a perfect four or a major second.

The algorithm works locally on a sliding window, pro-
gressively eliminating notes with smallest weights within a
window. In the particular implementation, window length
has been set equal to the double of the minimum dura-
tion of the melody, thus a window contains at most two
notes. For instance, the surface melody of Figure 2 has a
minimum duration of an eight-note and consequently the
window length is a quarter-note. In case the window con-
tains two notes with the same weight, the algorithm applies
additional heuristics that take into account (in descend-
ing order of relevance): only melodic weight, only metric
weight, only harmonic weight, and finally the relative po-
sition. The less relevant note is removed and the other one
is prolonged to cover the duration of the removed note.

When the sliding window reaches the end of the melody,
the first level of abstraction is completely calculated. Then,
the algorithm is applied iteratively to calculate the higher
levels. The algorithm stops when the highest level has
one or two notes. Figure 2 shows an example of Pseudo-
Structural analysis applied to the first six bars of the Bach’s
Choral BWV345, with four levels of progressive general-
ization. The higher the level the more general representa-
tion of the melodic profile.

The analyzed documents are then segmented in musi-
cal phrases, a task that can be carried out using one of the
different algorithms that have been presented in the litera-
ture [11]. With the aim of separately measuring the effect
of all the components, we perform segmentation both man-
ually and automatically, using the algorithms provided by
the Miditoolbox. All the approaches have been evaluated
on the same test collection. Segmentation is carried out at
the surface level and inherited by the higher levels. In gen-
eral segments can overlap, although automatic segmenta-
tion algorithms usually provide non overlapping segments.

The subsequent step regards the coding of the pitch se-

bwv345.3-7 bwv345.11-15

bwv345.24-31 bwv345.16-21

Figure 3. Pseudo-Structural Representation (partial view)
of the document analyzed in Figure 2.

quences, one for each segment. Because duration is used
to perform the Pseudo-Structural analysis, it is implicitly
modeled at the higher levels of generalization and not di-
rectly represented in the PSR. Pitch information is repre-
sented in the form of melodic intervals, that is the differ-
ence between two subsequent notes. Apart from the seg-
ments representing the melodic surface, pitch information
undergoes different levels of quantization, from a coarse
representation using three symbols (0 unison; ±1 up/down
tone) to the distance in semitones.

Each coded segment is then inserted into the PSR graph
structure. In particular, terminal nodes contain segments of
the melodic surface and internal nodes contain segments
which are the results of the generalization process. As a
result of the Pseudo-Structural analysis, an internal node
is connected with a directed arc to all the nodes, either in-
ternal or terminal, that correspond to the immediate lower
level of generalization. Nodes that hold the same content
are joined together in a single one, that inherits the ances-
tors and the descendants of the starting nodes, obtaining a
direct acyclic graph. An example of the PSR of a music
document is shown in Figure 3. The PSR of a complete
collection can be built by iterating the process for all the
segments and the documents in the collection.

Given a PSR, we can define the distance between two
melodic segments s1 and s2, represented by the terminal
nodes n1 and n2, as the length of shortest path from n1 and
n2 considering PSR as an undirect graph where all the arcs
have the weight set to 1. It can be noted that PSR could be
also a weighted graph, where each arc has a weight that
takes into account the kind of applied simplification or the
relative frequency nodes appear in a music work and in a
collection. This aspect will be investigated in future work.
The way the distance is computed can be described through
an example. With reference to the music document shown
in Figure 3, the distance between the melody segment from
beat 3 to beat 7 (coded by [1 2 -2 -1]) and the melody
segment from beat 24 to beat 31 (coded by [-1 2 2 1 2 -
2 -1]) is equal to 6. This distance is a metric, because it
is clearly reflexive and symmetric. Moreover, being based
on the shortest path inside an undirect graph, it is easy to
show that the triangular inequality holds.
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3. APPLICATIONS

The first application of the similarity measure is a musico-
logically grounded approach to content-based retrieval of
music documents using a query by example paradigm. For
this application, retrieval can be carried out by perform-
ing the same Pseudo-Structural analysis also to the query,
which is then (temporarily) added to the PSR graph, in or-
der to compute the similarity. As for other approaches,
melodic similarity of the complete documents can be com-
puted as a weighted sum of the melodic similarity of their
segments. In particular, the distance between two docu-
ments d(ci, cj) is defined as the mean of the PSD between
all the segments of ci and cj . The similarity s(ci, q) be-
tween ci belonging to a collection of N documents and the
query q is calculated through equation

s(ci, q) =

(
1 +

d(ci, q)∑N
j=1

d(ci,cj)
N−1

)−1

, (1)

where the similarity is proportional to the reciprocal of the
distance d(ci, q) between the document ci and the query q
divided by a normalizing factor, which is the mean distance
between ci and all the other documents in the collection.
The normalizing factors can be computed off-line in order
to speed up retrieval.

The graph representation provides a simple way to de-
fine the maximum allowable distance between two seg-
ments. For instance, the user may choose to limit the length
of the paths across the graph or to define the maximum al-
lowed level of generalization, that is the number of times a
path can jump to a higher level. Moreover, the user can be
presented with a list of documents, their relevant segments,
and a representation of the internal nodes that shows which
is the path across the PSR that transforms the query into the
retrieved segments. It is interesting to note that through
this approach, the user can modify its personal view of the
PSR, because past queries can be stored in the graph and
eventually affect the results of the current retrieval session.

The analysis of the structure of the PSR can provide
novel tools for exploring a music collection. For instance,
the user can choose a branch of the PSR and explore the
melodic excerpt that are represented by internal or by ter-
minal nodes and, in the latter case, to listen to the composi-
tions they belong to. Thus, the user can navigate inside the
music segments of a collection, and their generalization
based on musicological properties. To this end, informal
tests showed that PSR tends to group similar composing
styles in close regions of the graph. This ability of the pro-
posed approach will be explored in future work.

4. EXPERIMENTAL EVALUATION

The methodology has been experimentally evaluated using
the dataset provided for the Symbolic Melodic Similarity
task at MIREX 2005 [17]. The dataset is based on the
RISM collection of incipits, where relevance judgments
on melodic similarity have been provided by a pool of ex-
pert musicologists. We present three different measures

# symbols ADR AP R-P
3 0.65 0.60 0.54
5 0.66 0.60 0.52
7 0.65 0.59 0.51
no quantization 0.67 0.64 0.56

Table 1. Results with manual segmentation and using dif-
ferent levels of quantization.

segmentation ADR AP R-P
manual 0.67 0.64 0.56
gestalt 0.69 0.64 0.55
probabilistic 0.67 0.61 0.53
LBDM 0.61 0.53 0.50

Table 2. Results with no quantization and using different
approaches to segmentation.

of retrieval effectiveness. The common measures average
precision (AP) and R-precision (RP), and the Average Dy-
namic Recall (ADR) which takes into account that rele-
vance judgments are not binary [15] and has been used as
the main parameter at MIREX 2005.

Results on a subset of 110 incipits using 11 queries are
reported in Table 1, showing the effect of different levels
of quantization when manual segmentation is applied. The
reduced size of the collection is due to the fact that, for this
initial evaluation, part of the process shown in Figure 1
– annotation of the harmonic function and segmentation –
has been carried out manually. As it can be seen, results are
similar, with slightly better performances when no quanti-
zation is applied, although the differences are not statisti-
cally significative. This aspect should be investigated in
more detail with a larger collection because a coarse quan-
tization allows us to reduce the size of the PSR improving
efficiency, yet a fine quantization preserves more informa-
tion about the melodic content.

We carried out an experiment using three automatic ap-
proaches to segmentation when no quantization was ap-
plied. Segmentation algorithms are the ones provided by
the Miditoolbox, which are based on gestalt concepts, on
probabilistic model, and on the Local Boundaries Detec-
tion Model respectively. Results are reported in Table 2,
showing that the gestalt-based approach gives results com-
pletely comparable with manual segmentation. A test on
the statistical significance of the differences between these
results showed that none of the differences reached the sig-
nificance, thus this step can be carried out automatically
without affecting retrieval effectiveness.

Other experiments have been carried out to evaluate dif-
ferent weighting schemes for the Pseudo-Structural analy-
sis. As regards the harmonic weight, we tested the effec-
tiveness of grouping the harmonic functions in 3, 4, or 7
classes (denoted with letter H). For instance, for 3H we
grouped the harmonic functions depending on their degree
on the scale, namely I and VI had the highest weight, IV
and V had a intermediate weight and other degrees had the
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weighting scheme ADR AP R-P
3H , MH , 3M 0.67 0.64 0.56
4H , MH , 3M 0.65 0.63 0.56
7H , MH , 3M 0.65 0.64 0.56
3H , MH , 4M 0.67 0.64 0.55
3H , MH , 7M 0.61 0.60 0.51
3H , MS, 3M 0.66 0.63 0.52

Table 3. Results using different weighting schemes.

smallest weight. The metric weight was varied considering
either a simple subdivision (MS) in strong and weak beats
or a hierarchical organization (MH) depending on the po-
sition in the measure. Finally, the melodic weight has been
tested in a similar fashion of the harmonic weight, with 3,
4, and 7 classes (denoted with letter M ) where, for exam-
ple, in 3M notes forming an interval of a unison/octave,
third or fifth from the fundamental had the highest weight,
a seventh had an intermediate weight, and other intervals
had the smallest weight. Weighting schemes with more
classes, such as 4H and 7H for harmonic weight, sim-
ply introduce new classes either taking into account new
harmonic functions or splitting an existing class in two or
more smaller classes. Similar considerations apply to the
melodic weights.

Results are reported in Table 3, for some combination
of weighting schemes, showing that the use of three classes
for both the harmonic (3H) and the melodic (3M ) weights
with a hierarchical metric (MH) weight gave the best per-
formances, although differences are minimal and not sta-
tistically significative. Considering that in all the exper-
iments the three effectiveness measures are considerably
higher than the ones obtained at MIREX, we can assume
that with a larger collection the performances will be at
least comparable with other approaches.

An important characteristic of the PSR is the relation-
ship between the number of documents in the collection
and the number of different nodes in its graph represen-
tation. It is expected that the size of the graph will in-
crease with sublinear trend when documents are added to
the PSR. Figure 4 shows this trend, where the number of
new nodes – both internal and terminal – that are added
with each new document decreases with the number of
documents, although local variations can still be seen due
to the reduced size of the test collection.

Figure 5 shows the results of a nearest neighbor query
on the collection, with the aim of highlighting which fea-
tures are captured by the proposed similarity measure and
whether this definition can take into account for progres-
sive differences among melodies. The searched pattern is
the surface melody of the first segment of 000.109.406 −
1.1.1 in the RISM collection. Pseudo-Structural analysis
of this composition highlights that the notes at positions 2,
4, and 6 (notes B, B, and G respectively) are less relevant
than the others. Indeed, all these notes are passing notes on
a weak metric position. At an higher level of generaliza-
tion in the PSR, these notes are therefore omitted, and the

Figure 4. Number of new nodes added to the PSR graph
when new music documents are added. The bold line is a
logaritmic aproximation in a least square error sense.

segment is represented by an ascending melodic interval
(A-C), followed by two descending melodic intervals (C-
A and A-F), which correspond to the code [+2 -2 -2] using
the coarsest quantization. At a distance d = 1, the result
reports a segment with identical pitch, but with augmented
duration values. It can be noted that the ratio among du-
rations are unchanged in respect to the query segment. At
a distance d = 2, there are segments with similar but not
equal pitches, and with minor metric variations. Finally, at
distance d = 3 and d = 4 there are melodic segments com-
posed by notes that at least share with the query segment
the same higher level code [+2 -2 -2].

000.109.446-1.1.1.

000.112.625-1.1.1

000.116.073-1.1.1 230.004.687-1.1.1

250.004.931-1.4.1 800.000.399-1.1.1

400.008.388-1.1.1 000.127.493-1.1.1

d=0

d=1

d=2

d=3

d=4

Figure 5. Results of a nearest neighbor query.

5. CONCLUSIONS

The proposed approach aims at representing the structural
relationships of a music collection with an undirected graph,
which is built from the analysis of the melodic content of
music documents. Terminal nodes represent melodic seg-
ments of the documents, while internal nodes represent a
progressive simplification/generalization of their content.
Music similarity is then measured by the length of the short-
est path between terminal nodes. This representation al-
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lows us to retrieve music documents that are relevant at
least from a musicological point of view. Moreover, the
proposed similarity is a metric because it is based on a
topological distance, allowing us to efficiently carry out a
number of retrieval tasks, such as range queries, k-nearest
neighbor, and document clustering.

The approach has been tested with a collection of in-
cipits. Moreover, qualitative analysis have been carried
out on the relationships between the graph structure and
the melodic content of the documents. Results are encour-
aging, both in terms of average precision of the retrieval
results and in terms of musicological significance. The ap-
proach can be further exploited for browsing a collection
of music documents based on the traversal of the graph
representing the music documents and their relationship.

The described similarity measure is tailored to music
genres where harmony plays a functional role, like in West-
ern tonal music, because the weighting schemes presented
in Section 2 are mostly based on the harmonic content.
The idea itself of generalizing the melodic content through
structural analysis is motivated by musicological studies
on Western music. Although we believe that it is difficult,
if not impossible, to develop a general purpose approach to
music similarity searches, it is likely that the idea of rep-
resenting music content with a hierarchical graph, where
levels are associated to an incremental simplification of the
musical content, can be generalized to other music features
and to other genres.

A major limitation is that, at the moment, the method-
ology is still partially based on manual annotation of the
chord progressions of the musical documents. Given the
encouraging results, future work will focus on the com-
plete automatization of the analyzes.
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ABSTRACT

In this paper we investigate a new approach to the simi-

larity of tonal harmony. We create a fully functional re-

modeling of an earlier version of Rohrmeier’s grammar of

harmony. With this grammar an automatic harmonic anal-

ysis of a sequence of symbolic chord labels is obtained

in the form of a parse tree. The harmonic similarity is

determined by finding and examining the largest labeled

common embeddable subtree (LLCES) of two parse trees.

For the calculation of the LLCES a new O(min(n, m)nm)
time algorithm is presented, where n and m are the sizes

of the trees. For the analysis of the LLCES we propose

six distance measures that exploit several structural char-

acteristics of the Combined LLCES. We demonstrate in a

retrieval experiment that at least one of these new meth-

ods significantly outperforms a baseline string matching

approach and thereby show that using additional musical

knowledge from music cognitive and music theoretic mod-

els actually helps improving retrieval performance.

1. INTRODUCTION

Harmonic Similarity is a relatively new research topic with-

in Music Information Retrieval (MIR) that is concerned

with determining the similarity of the chord sequences in

songs and enables users to search for songs on the basis

of their harmony. Retrieval based on harmony offers obvi-

ous benefits: it allows for finding cover songs (especially

when melodies vary), songs of a certain family (like Blues

or Rhythm Changes), or variations over standard basses in

instrumental baroque music, to name a few. So far, very

few measures of harmonic similarity have been proposed.

De Haas et al. [1] developed a distance measure based on

Lerdahl’s Tonal Pitch Space [2].

When researching MIR, it is important to realize that

only part of the information needed for good similarity

judgment can be found in the musical data. Musically

schooled as well as unschooled listeners have extensive

knowledge about music [3,4] and one important task of a

MIR researcher is to select or develop the appropriate mu-

sic cognitive and music theoretical models that provide the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2009 International Society for Music Information Retrieval.

knowledge needed for making good similarity judgments.

We strongly believe that such a model is necessary, and

that systems without such additional musical knowledge

are incapable of capturing a large number of important

musical features. In this study we report a new method

of harmonic similarity matching that applies a remodeling

of Rohrmeier’s [5] phrase-structure grammar for tonal har-

mony as underlying cognitive and music theoretical model.

In analogy to linguistics, various hierarchical models

of musical structure have been proposed since the 1980s

and have been brought up recently in cognitive and com-

putational discussions [6–8]. In this context, Rohrmeier’s

generative grammar of diatonic harmony [5] transfers no-

tions about the hierarchical organization of tonal music

[6,7] to the area of harmony. It is based on the assump-

tion that, within a sequence of harmonies, different chords

have different degrees of stability and dependency, based

on their position within the hierarchical structure. In a

chord sequence several chords may be replaced, inserted

or omitted in such a way that the harmonic structure re-

mains intact, whereas the changes of structurally impor-

tant anchor chords may result in large structural modifi-

cations of the entire dependency structure of the harmony

sequence. These dependency features and relationships re-

semble constituent structure and dependencies in linguis-

tic syntax and can be modeled with a grammatical formal-

ism [9].

These variable relationships between chords and their

structural roles motivate the rationale not to base our har-

mony matching methods on sequence matching methods–

which assume the equal importance of all chords in a se-

quence–but on a hierarchical formalization that incorpo-

rates the differences in structural function. Figure 1, dis-

playing two versions of the jazz standard Take the ‘A’ train,

illustrates this idea. Even though both sequences appear to

be substantially different when compared element by ele-

ment, an analysis of their formal dependencies reveals that

both derive from a common harmonic pattern that is repre-

sented by the parse trees and fits human intuition.

We present a fully functional remodeling of Rohrmeier’s

grammar [5], which parses sequences of symbolic chord

labels and returns parse trees like the ones in Figure 1, in

section 3. A parse tree is more than a harmonic analysis

alone, since it contains all the structural relations of the

harmonies used in a song, and is therefore very suitable for

determining harmonic similarity. We compare parse trees

by finding and examining the combined Largest Labeled
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Figure 1. Two parse trees of different versions of the same jazz standard Take the ‘A’ train. The leafs of the tree represent

the actual chords of the sequence.

Common Embeddable Subtree (LLCES). The LLCES is

the tree that can be included in both parse trees while main-

taining the labels and the ancestor relations. In section 4.2

we present a new algorithm that finds the LLCES. Using

the LLCES we define a series of similarity measures for

tonal harmony.

Contribution: First, we present a remodeling of a for-

mal grammar for tonal harmony and propose solutions for

some of the typical problems of its application. Second, we

present a new O(min(n, m)nm) time algorithm that calcu-

lates the LLCES, where n and m are the sizes of the trees.

Third, six LLCES based distance measures are defined to

compare the parse trees. Last, the retrieval performance

of these distance measures is experimentally verified on a

dataset of 72 symbolic chord sequences of jazz standards.

2. RELATED WORK

In the last century, numerous formal theoretical approaches

to western tonal music have been proposed. Formaliz-

ing Schenker’s theory [6], Lerdahl and Jackendoff [7] pro-

posed a generative theory that organized western tonal mu-

sic by recursive hierarchical dependency relationships be-

tween musical elements in terms of time-span reduction

and prolongation structure. They formalized the interac-

tion between these structures with metrical and grouping

structure in terms of constraint based preference rules. Sim-

ilarly, there is some theoretical evidence that tonal har-

mony is organized in a comparable, hierarchical way. Early

attempts by Kostka and Payne ( [10] ch. 13) and Baroni

[11] suggest that harmony is organized in hierarchical lay-

ers. Current theoretical approaches [5,12–15] suggest that

the structure of harmony sequences exceeds the simplic-

ity of a straightforward chord transition table (or finite-

state grammar [9]), like Piston’s table of root progressions

[16], and may be modeled by hierarchical, context-free

or phrase-structure grammars [9]. Pachet [17] proposes

a set of rewrite rules for jazz harmony similar to Steed-

man’s grammar [12]. He shows that these rules could be

learned form chord sequence data in an automated fashion.

Rohrmeier [5] gave an encompassing account how tonal

harmonic relationships may be formalized using a genera-

tive context-free grammar with variable binding.

3. A GRAMMAR FOR TONAL HARMONY

The generative formalism proposed by Rohrmeier [5] ex-

pands on earlier approaches in a number of ways. Steed-

man’s approach [12,13] is merely concerned with Blues

progressions and, featuring only seven context-sensitive

rules (with variations), omits a number of theoretically im-

portant features to extend to a broader domain. Rohrmeier’s

approach extends on these ideas and gives an overarching

account of tonal harmony and tonal-phrase structure inde-

pendently of a specific style or musical form. In addition, it

proposes to incorporate the structural distinctions between

form, theoretical harmonic function [18], scale degree pro-

longation [6,7] and surface feature realization into differ-

ent levels of the syntactic derivation. The present study

proposes a remodeling of the grammar without modulation

and with limited local tonicization and scale adaptation in

order to reduce the complexity for the implementation of

a first-stage working system. The current remodeling was

optimized for jazz, but the aim is to develop a set of core

rules that explain basic harmony structures which can be

augmented with style specific rules.

The grammar incorporates four levels: a phrase level,

functional level, scale-degree level and surface level. The

phrase level divides a piece into phrases, the functional

level specifies the functional role a certain scale-degree has

within a phrase. The scale-degree captures the relation be-

tween the chord and the key and the surface level expresses

the actual chord with all its possible additions, inversions,

etc.

Below, the main rules of the grammar are listed in or-

der to give an outline of the architecture of the grammar.

A piece always consists of one or more phrases (P ). On

this phrase level the grammar distinguishes two types of

phrases: phrases which end on a perfect cadence (PCP )

and phrases which end with a half-cadence (HCP ). Per-
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fect cadence phrases are distinguished by ending with a

tonic function (t) upon which all subordinate harmonic el-

ements are dependent, whereas half-cadence phrases force

a phrase to end with a dominant function (d) which results

in a tonicization of, or a perfect or imperfect cadence on

the dominant.

1. Piece → P+

2. P → PCP

3. P → HCP

4. PCP → d t+ | d d t+ | t d t

5. HCP → t+ d

At the functional level, the grammar encapsulates core

relationships between the three main harmonic functions:

tonic (t), dominant (d) and subdominant (s).

6. d → s d

7. t → tpg

These functional rules can be applied recursively, but fi-

nally translate into scale-degrees. Rule 9 deals with certain

forms of parallels (tpg).

8. t → I

9. tpg → vi | iii

10. d → V | vii0

11. s → ii | IV

The functional level also incorporates a number of addi-

tional prolongational rules that allow for the derivation of

more distant harmonic structures such as the preparatory

use of iii and tritone substitutions. Rule 12 incorporates

a feature specifically added for modeling the prototypical

II-V-I sequences in jazz harmony that are less frequent in

other styles.

12. x → V(x) x | ii(x) V(x) x for any scale degree x

13. IV → iii IV

14. V(x) → bII(x) for any scale degree x

At the surface level scale degree symbols are translated

into the actual surface chord. These translation steps are

straightforward when the key is known beforehand. For

instance, a VI symbol in the key of C minor would trans-

late into an A♭-chord. In addition, elaborations of chords

are added at this level of description: a surface realization

of a VI chord may result in a A♭6 chord. Some of these

surface elaborations of chords are tied to their structural

functions (strong typing), e.g. an Em7♭5 chord label indi-

cates a subdominant function ii in a ii-V-I sequence, or a

D7 chord label indicates a dominant function (except in

blues contexts where minor sevenths loose their functional

connotation).

3.1 Implementation and Parsing

There are some additional rules that have been implemented,

but are not described here. Among these are rules for typ-

ical voice-leading and prolongational structures and some

typical borrowings from the parallel key. Since we have

not incorporated modulation yet, it is necessary to label

these phenomena to be able to explain the remainder of

the piece. Furthermore, there are rules that deal with typi-

cal well-known diminished chord transitions in various de-

scending and ascending forms.

The grammar as specified above is not strictly a con-

text free grammar, because rule 12 and rule 14 use a vari-

able binding. However, by expanding a rule for every el-

ement x that it holds, a set of context free rules can be

created that yields the exact same outcome. Having a con-

text free grammar, a free Java implementation [19] of an

Earley Parser [20] is used to parse the chord sequences in

O(n3) time, where n is the number of chords.

Context free grammars often create multiple ambiguous

parse trees. To select the optimal parse tree out of the set

of parse trees, we provided the rules with weights (set by

hand) and defined the total weight of a parse tree as the

product of the weights of the rules used in its construction.

Because of this, some rules have less chance to be used in

the final derivation. This allows to select the best tree from

the ambiguous parse trees. The complete grammar as well

as the lead-sheets of the examples in Fig 1 are available

online 1 .

4. COMMON HIERARCHICAL STRUCTURES

In this section we present six distance measures for the

parse trees generated by the grammar discussed in the pre-

vious section. For the comparison of parse trees, we pro-

pose an approach based on the problem of tree inclusion,

which is elaborately dealt with in [21]. Given the parse

trees of two songs, the general idea is to find the collec-

tion of largest labeled common embeddable subtrees (LL-

CESs) for every combination of phrases. The LLCES is the

largest tree that is included in both parse trees. This means

that there exists a one-to-one mapping from the nodes of

the LLCES to the nodes with the same label in both parse

trees that preserves ancestor relations, but not necessarily

parent relations. When processing harmony parse trees,

this is a natural thing to do because typically a chord pro-

gression is augmented by adding a structure to the left

branch and repeating the right branch, e.g. when a Dm is

prepared by an A7 chord. Hence, if both trees are similar,

the LLCES reflect the structure of the parse trees it is gen-

erated from, and if both trees are dissimilar, the resulting

LLCES will be much smaller and less grammatical. In the

next sections we explain the calculation of the LLCES, and

how we use it to define six distance measures.

4.1 Preliminaries

A rooted tree is a structure denoted with P = (V, E,Proot),
where V is a finite set of nodes, E is the set of edges con-

1 http://give-lab.cs.uu.nl/music/
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Figure 2. An example of a rooted by A that can be embed-

ded into two larger trees rooted by B and C.

necting nodes in V , and Proot is the root of the tree P . The

nodes of the parse trees generated by the grammar of sec-

tion 3 are all labeled and the label of node v is denoted with

label(v). The subtree of P rooted at node v is denoted with

P [v] and children(v) denotes the subset of V with nodes

that have v as parent. Similarly desc(v), denotes the dece-

dents of v, i.e. the subset of V that is contained in P [v]
and have v as ancestor. Furthermore we use a few addi-

tional functions, po(v) denotes the post order number that

is assigned to a node v in a postorder traversal. depth(P )
denotes the depth of a tree, i.e. the number of nodes in the

longest path from leaf to the root. Finally, the degree(P )
is the degree of a tree, i.e. the maximum number of chil-

dren.

We say that a tree P = (V, E, Proot) is included in a

tree T = (W, F, Troot) if there exists an embedding of P

into T . An embedding is an injective function f , mapping

each node in P to a node in T , that preserves labels and

ancestorship. Figure 2 shows an example of an included

tree. Note that a left-to-right ordering of the descendants is

not required. Formally, this means that for all nodes u and

v in P it is required that:

1. f(u) = f(v) if and only if u = v,

2. label(u) = label(f(v)),

3. u is an ancestor of v in P if and only if f(u) is an

ancestor of f(v) in T .

4.2 Largest Labeled Common Embeddable Subtree

We are not aware of an algorithm that calculates the largest

common embeddable subtree for labeled trees. Gupta and

Nishimura [22] have developed a O(n2.5 log n) time al-

gorithm for finding this tree for two unlabeled trees. The

algorithm we present here calculates the largest common

embeddable subtree for the labeled case and expands on

the general tree matching ideas as described in [21], ch. 3.

Algorithm 1 calculates the LLCES of two trees P =
(V, E, Proot) and T = (W, F, Troot). To store the nodes

of the subtrees of the LLCES the algorithm uses a table

M such that M [po(w)] stores the subtrees that can be em-

bedded into both P and T [w]. The algorithm builds the

LLCES up from the leaves by traversing the nodes of T and

P in postorder. When a node v with an identical label as w

is encountered (line 5), the algorithm creates a new node x

with the same label as v. In case w is a leaf, x is stored in

M (lines 8–9). In case w is an internal node, we look up

the subtrees in M that match the children of w. Because

the tree is processed in postorder these nodes were previ-

ously stored in M and can be retrieved from M [po(w′)]
for each child w′. If a previously stored subtree rooted by

Algorithm 1 Largest Labeled Common Embeddable Subtree

1: procedure LLCES(P,T )
2: M ← ∅

3: for all w ∈W in postorder do
4: for all v ∈ V in postorder do
5: if label(v) = label(w) then
6: x← new node
7: label(x)← label(v)
8: if children(w) = ∅ then
9: add x to M [po(w)]

10: else
11: for all w′

∈ children(w) do
12: for all x′

∈M [po(w′)] do
13: if x′

∈ desc(v) then
14: add (x, x′) to M [po(w)]
15: else
16: add x′ to M [po(w)]
17: end if
18: end for
19: end for
20: add x to M [po(w)]
21: end if
22: end if
23: end for
24: if M [po(w)] = ∅ then
25: for all w′

∈ children(w) do
26: add M [po(w′)] to M [po(w)]
27: end for

28: end if
29: end for
30: return M [po(Troot)]
31: end procedure

x′ is a descendant of v, this subtree becomes a child of the

new node x, by adding a new edge (x, x′) to M [po(w)]
(lines 10–15). Otherwise, if x′ is not a descendant of v,

x′ is stored in M [po(w)] (line 16). After all, a common

ancestor can show up in a next iteration. Finally, the new

subtree x is stored in M as well (line 20). If the label of

w does not match any of the labels of the nodes in P , the

subtrees stored in M for all children w′ of w are added

to M [po(w)] (lines 24–28). This process continues until

all nodes of T have been matched against all nodes of P

and finally M [po(Troot)], the LLCES of P and T , is re-

turned. A drawback of our algorithm is that it is incapable

of dealing with duplicate labels. Therefore we number the

duplicate labels that descent the same phrase.

The running time of the algorithm is dominated by the

lines 3-23. For each of the O(nm) combinations of w and

v (lines 3, 4) a constant time test is performed. Because the

labels are unique, only min(n, m) times each of the O(n)
nodes in the subtrees that has been stored in M [po(w)] so

far (line 12), is checked against each of the O(m) descen-

dants of node v (line 13). This results in a time complexity

for the whole algorithm of O(min(n, m)nm).

4.3 Distance Measures

We base the distance measures on the LLCES, but we do

not calculate the LLCES of two parse trees directly for two

reasons. First, as we can see in Figure 1, there are quite

some duplicate labels in the parse trees which our algo-

rithm cannot handle. Second, if a parse tree of a song con-

tains a repetition of a phrase that the matched song does

not have, the repeated phrase cannot be matched. To solve
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Figure 3. The Combined LLCES for every combination of phrases of the parse trees of Take the ‘A’ Train as in Fig. 1.

these two problems we compare parse trees in a phrase-

wise fashion. For every phrase in the target tree T we

calculate the LLCES for every phrase of the pattern parse

tree P and pick the largest LLCES to create a Combined

LLCES (see Fig. 3). The duplicate labels are re-labeled per

phrase too in preorder (see the superscripts in Fig. 1 and

3). Because the number of duplicate labels per phrase is

small, the labellings will be nearly identical if two trees

have a similar harmonic structure. Note that if the two

parse trees T and P have a different number of phrases, the

structure of the Combined LLCES will differ if P is used

as a target tree, because for every phase in the T a LLCES

is constructed. This makes every Combined LLCES based

measure is asymmetrical.

We propose three distance measures for sequences of

symbolic chord labels based on the Combined LLCES:

1. Relative Combined LLCES Size Distance (Rel): By

dividing the number of nodes in the target tree T

by the number of nodes in the Combined LLCES a

distance measure between 0 and 1 is obtained that is

normalized by the size of T .

2. Grammar Violation Distance (Viol): if two trees are

not similar, the combined LLCES will contain con-

nections between nodes that cannot be explained by

the grammar. By dividing the number of nodes in the

target tree T (which are grammatical by definition)

by the number of grammatical nodes in the Com-

bined LLCES we obtain a distance measure between

1 and 0 that is normalized by the size of T .

3. Average Depth Distance (Dep): if trees are very sim-

ilar, the level of complexity in the harmonic structure

in the Combined LLCES will be comparable to the

level of complexity target tree T . By dividing the

average leaf depth of T by the average leaf depth of

the Combined LLCES, we obtain a distance measure

between 1 and 0, that is normalized by the size of T .

One can observe in Figure 1 that, having the actual parse

tree structure, the actual chord labels are not of much im-

portance anymore. Given two similar sequences, it is rather

arbitrary whether the chords labels match or not: the struc-

ture of the harmony determines the similarity. Therefore

we can remove each leaf node describing a surface chord

from the Combined LLCES and target trees. The structure

of the phrase, functional and scale-degree level remains un-

changed. As a consequence, this yields three additional

harmonic distance measures that are concerned with the

structure of the harmony only. Other Combined LLCES

distance measures can be thought of.

5. EXPERIMENT

We have evaluated the six LLCES based distance mea-

sures described in the previous section in an experiment.

We assembled a dataset of 72 symbolic chord label se-

quences extracted from user-generated Band-in-a-Box files

that were collected on the Internet. Band-in-a-Box is a

software package that generates accompaniment given a

certain chord sequence provided by the user. This dataset

consists of 51 different pieces of which 16 pieces contain

two or three versions, forming 16 song classes. These

pieces are all jazz standards from before the 1970’s and

can all be found in the Real Book [23] or similar sources.

All parse trees of these pieces are available online 2 . The

task is to retrieve the other versions of a song class, given

a certain query song from that class. All songs containing

more than one version are used as a query and the rank-

ings are analyzed by calculating the mean average preci-

sion (MAP). To place the results in perspective, we cal-

culate the edit distance [24] between all chord sequences,

represented as a string of chord labels, as a baseline mea-

sure.

The results are presented in Table 1. It seems that all

Combined LLCES based methods perform better than the

baseline edit distance, but only the difference between the

Viol distance measure without chord symbol nodes scores

significantly better than the baseline edit distance (p < .01,

two-tailed T-test). The results show therefore that the num-

ber of grammatical connections in the Combined LLCES

is a good indicator for harmonic similarity. The lack of

significance of the other measures might be explained by

the limited size of the relatively small dataset. However,

the experiment does show that a matching method that ana-

lyzes the structure of the harmony outperforms a sequence-

based method that does not use any musical knowledge.

6. CONCLUDING REMARKS

This paper introduced a new approach to harmonic simi-

larity. We showed that a grammar of tonal harmony can

2 http://give-lab.cs.uu.nl/music/
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Chord Symbols No Chord Symbols

Distance: Rel Viol Dep Rel Viol Dep Edit

MAP: 0,79 0,81 0,72 0,81 0,86 0,73 0.67

Table 1. The MAP of the six Combined LLCES based

similarity measures and a baseline edit distance.

be adapted in such a way that is usable for matching har-

mony sequences. However, there are some open issues.

At the moment we cannot calculate distance measures to

pieces that do not parse and for every grammar there are

always pieces imaginable that do not parse. A solution to

this problem can be found in partial matching. Often only

one or two chords cannot be explained by the grammar. By

removing these chords and parse the left and the right side

separately, it is possible to obtain a parse tree that can be

used for matching.

A property of context free grammars is that sequences

can have multiple ambiguous parse trees. Using the gram-

mar presented here, many chord sequences are intrinsically

ambiguous and have multiple derivations. One solution

might be to incorporate intrinsically ambiguous parse trees

in the creation of the Combined LLCES. Nevertheless, it

is important to keep the number of unwanted ambiguous

parse trees as low as possible. By making the grammar

strongly typed and adding weights to rules, we controlled

the number and the selection of parse trees. Still, the gram-

mar as presented here features several problems with re-

spect to the parsing of phrase boundaries, which consti-

tutes a main source of ambiguities (as in Fig. 1). A set of

additional preference rules will be designed for future ver-

sions of the model to rule out unlikely phrase-boundaries.

These will be based on metrical information which is not

yet incorporated in the present model. Yet another way of

improving the expressive power of the grammar and limit-

ing the number of ambiguous parse trees at the same time,

is to start parsing with a very strict grammar and, only af-

ter a rejection of the chord sequence, to add more loosely

typed rules that can explain the more exotic harmonic phe-

nomena.

The research presented here demonstrates how a gram-

mar of harmony may characterize harmonic similarity in a

musical way. This will have a large impact on the quality

of the representation, analysis and retrieval of tonal music.

This research also provides a case study that demonstrates

the importance of cognitive and theoretic models of mu-

sic in the design of appropriate methods for MIR tasks that

have been neglected so far because of their inherent musi-

cal complexity.
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ABSTRACT

A method for expressive melody synthesis is presented seek-
ing to capture the structural and prosodic (stress, direction,
and grouping) elements of musical interpretation. The in-
terpretation of melody is represented through a hierarchical
structural decomposition and a note-level prosodic annota-
tion. An audio performance of the melody is constructed
using the time-evolving frequency and intensity functions.
A method is presented that transforms the expressive anno-
tation into the frequency and intensity functions, thus giv-
ing the audio performance. In this framework, the problem
of expressive rendering is cast as estimation of structural
decomposition and the prosodic annotation. Examples are
presented on a dataset of around 50 folk-like melodies, re-
alized both from hand-marked and estimated annotations.

1. INTRODUCTION
A traditional musical score represents music symbolically
in terms of notes, formed from a discrete alphabet of pos-
sible pitches and durations. Human performance of music
often deviates substantially from the score’s literal inter-
pretation, by inflecting, stretching and coloring the music
in ways that bring it to life. Expressive music synthesis
seeks algorithmic approaches to this expressive rendering
task, so natural to humans.

There is really a great deal of past work on expressive
synthesis — more than can be summarized here, though
some of the leading authors give an overview of several
important lines of work in [1]. Most past work, for ex-
ample [2], [3], [4], as well as the many RENCON piano
competition entries, for example [5] [6], has concentrated
on piano music. The piano is attractive for one simple rea-
son: a piano performance can be described by giving the
onset time, damping time, and initial loudness of each note.
Since a piano performance is easy to represent, it is easy
to define the task of expressive piano synthesis as an es-
timation problem: one must simply estimate these three
numbers for each note.

This work supported by NSF grants IIS-0739563 and IIS-0812244

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

In contrast, we treat here the synthesis of melody, which
finds its richest form with “continuously controlled” in-
struments, such as the violin, saxophone or voice. This
area has been treated by a handful of authors, including
the KTH group [7], [8], as well as a number others, in-
cluding a commercial singing voice system. Continuously
controlled instruments simultaneously modulate many dif-
ferent parameters, leading to wide variety of tone color, ar-
ticulation, dynamics, vibrato, and other musical elements,
making it difficult to represent the performance of a melody.
However, it is not necessary to replicate any of these fa-
miliar instruments to effectively address the heart of the
melody synthesis problem. We will propose a minimal au-
dio representation we call the theremin, due to its obvi-
ous connection with the early electronic instrument by the
same name [9]. Our theremin controls only time-varying
pitch and intensity, thus giving a relatively simple, yet ca-
pable, representation of a melody performance.

The efforts cited above include some of the most suc-
cessful attempts to date. All of these approaches map ob-
servable elements in the musical score, such as note length
and pitch, to aspects of the performance, such as tempo
and dynamics. One example is the rule-based KTH sys-
tem, which grows out of several decades of focused effort.
In this system, each rule maps various musical contexts
into performance decisions, which can be layered, so that
many rules can be simultaneously applied. The rules were
chosen, and iteratively refined, by a music expert seeking
to articulate and generalize a wealth of experience into per-
formance principles. In contrast, the work of Widmer [2],
[4] takes a machine learning perspective by automatically
learning rules from actual piano performances. We share
the perspective of machine learning. In [4], phrase-level
tempo and dynamic curve estimates are combined with
the learned rule-based prescriptions, through a case-based
reasoning paradigm. That is, this approach seeks musical
phrases in a training set that are “close” to the phrase being
synthesized, using the tempo and dynamic curves from the
closest training example. As with the KTH work, the per-
formance parameters are computed directly from the ob-
servable score attributes with no real attempt to describe
any interpretive goals such as repose, passing tone, local
climax, surprise, etc.

Our work differs significantly from these, and all other
past work we know of, by explicitly trying to represent the
interpretation itself. Previous work does not represent the
interpretation, but rather treats the consequences of this in-
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terpretation, such as dynamic and timing changes. We rep-
resent the interpretation in two ways. This first uses a tree-
like structural decomposition that makes explicit various
levels of repetition or parallelism in the melody. This idea
is familiar from other work such as [3], though we intro-
duce a framework for automatically estimating the struc-
ture. This approach has connections with [10], which finds
phrase decompositions from symbolic music. Secondly,
we introduce a hidden sequence of variables representing
the prosodic interpretation (stress and grouping) itself, by
annotating the role of each note in the larger prosodic con-
text. We believe these representations are naturally posi-
tioned between the musical score and the observable as-
pects of the interpretation. Thus the separate problems
of estimating the representations and generating the actual
performance from the representations require shorter leaps,
and are therefore easier, than directly bridging the chasm
that separates score and performance.

2. THE THEREMIN

Our goal of expressive melody synthesis must, in the end,
produce actual sound. We introduce here an audio rep-
resentation we believe provides a good trade-off between
expressive power and simplicity.

Consider the case of a sine wave in which both fre-
quency, f(t), and amplitude, a(t), are modulated over time:

s(t) = a(t) sin(2π

∫ t

0

f(τ)dτ). (1)

These two time-varying parameters are the ones controlled
in the early electronic instrument known as the theremin.
Continuous control of these parameters can produce a va-
riety of musical effects such as expressive timing, vibrato,
glissando, variety of attack and dynamics. Thus, the theremin
is capable of producing a rich range of expression. One
significant aspect of musical expression the theremin can-
not capture is tone color — as a time varying sine wave,
the timbre of the theremin is always the same. Partly be-
cause of this weakness, we have modified the above rep-
resentation to allow tone color to change as a function of
amplitude:

s(t) =

H∑
h=1

Ah(a(t), f(t)) sin(2πh

∫ t

0

f(τ)dτ) (2)

where the {Ah} are hand-designed functions, monotoni-
cally increasing in the first argument. Thus our sound is
still parametrized by f(t) and a(t), while we increase the
perceived dynamic range.

3. REPRESENTING MUSICAL
INTERPRETATION

There are, no doubt, more aspects of musical interpreta-
tion than can possibly be treated here. Palmer [11] gives a
very nice overview of current thinking on this subject from
the Psychology perspective. Broadly speaking, there are

Figure 1. Amazing Grace (top) and Danny Boy (bot)
showing the note-level labeling of the music using sym-
bols from our alphabet.

at least three important components to musical interpreta-
tion: conveying musical structure, and, in particular, the
way it relates to the notion of phrase; musical prosody —
the placing, avoidance, and foreshadowing of local (note-
level) stress and the associated low-level groupings that
follow; and musical affect such happy, sad, intense, ag-
itated, etc. We will focus only on phrase structure and
prosody here, acknowledging that this is only a piece of
the larger interpretive picture.

The folk-like music we treat here is mostly composed
of simple musical structure, with a high degree of repeti-
tion of rhythm, pitch contour, chord sequence, and other
musical elements. Typically the hierarchical structure of
these melodies is captured by simple tree structures, often
involving binary groupings at various levels of grouping: it
is no accident that 34 out of the 48 melodies in our dataset
have 2n measures for some n. Within this hierarchy, mu-
sical phrases correspond to “levels” of this tree. When a
melody is not captured by a perfectly regular tree struc-
ture, it often corresponds to the concatenation of such reg-
ular trees. For instance, the familiar melody, God Save the
Queen, may be described (2-2-2)+((2-2)-(2-2)) where each
number represents a group of measures, ’+’ denotes con-
catenation and ’-’ denotes grouping. Thus the melody has
3 groups of two measures followed by a two levels of bi-
nary structure for the last eight measures. While there is a
subjective component to the partition into phrases, the first
6 and last 8 measures seem like reasonable choices, per-
haps splitting the last 8 measures into two 4-bar phrases.
In this example phrase boundaries correspond exactly to
measure boundaries, though often this is not the case. Thus
we must also indicate the length of the “pickup” for each
group of measures.

While conveying musical structure is an important part
of expressive synthesis, the main focus of our effort here is
on musical prosody. We introduce now a way of represent-
ing the desired musicality in a manner that makes clear in-
terpretive choices and conveys these unambiguously. Our
representation labels each melody note with a symbol from
a small alphabet,

A = {l−, l×, l+, l→, l←, l∗}

describing the role the note plays in the larger context.
These labels, to some extent, borrow from the familiar vo-
cabulary of symbols musicians use to notate phrasing in
printed music. The symbols {l−, l×, l+} all denote stresses
or points of “arrival.” The variety of stress symbols al-
lows for some distinction among the kinds of arrivals we
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Figure 2. A graph of the frequency function, f(t), be-
tween two notes. Pitches are bent in the direction of the
next pitch and make small glissandi over the transitions.

can represent: l− is the most direct and assertive stress; l×

is the “soft landing” stress in which we relax into repose;
l+ denotes a stress that continues forward in anticipation
of future unfolding, as with some phrases that end in the
dominant chord. Examples of the use of these stresses, as
well as the other symbols are given in Figure 1. The sym-
bols {l→, l∗} are used to represent notes that move for-
ward towards a future goal (stress). Thus these are usually
shorter notes we pass through without significant event. Of
these, l→ is the “garden-variety” passing tone, while l∗ is
reserved for the passing stress, as in a brief dissonance,
or to highlight a recurring beat-level emphasis, still within
the context of forward motion. Finally, the l← symbol de-
notes receding movement as when a note is connected to
the stress that precedes it. This commonly occurs when re-
laxing out of a strong-beat dissonance en route to harmonic
stability. We will write x = x1, . . . , xN with xn ∈ A for
the prosodic labeling of the notes.

These concepts are illustrated with the examples of Amaz-
ing Grace and Danny Boy in Figure 1. Of course, there
may be several reasonable choices in a given musical sce-
nario, however, we also believe that most labellings do not
make interpretive sense and offer evidence of this is Sec-
tion 7. Our entire musical collection is marked in this man-
ner and available at
http://www.music.informatics.indiana.edu/papers/ismir09

4. FROM LABELING TO AUDIO
Ultimately, the prosodic labeling of a melody, using sym-
bols from A, must be translated into the amplitude and fre-
quency functions we use for sound synthesis. We have
devised a deterministic mapping from our prosodically-
labeled score to the actual audio parameter outlined here.

Our synthesis of f(t) and a(t) begins by modifying
the literal interpretation of musical timing expressed in the
score to include ritardandi (slowing down) at the ends of
phrases. While we have not done so here, [3] recommends
larger changes at higher levels of the phrase hierarchy, as
expressed by our structural representation. We further mod-
ify f(t) to include vibrato to long and stressed notes. Fi-
nally, we bend each pitch in towards the following pitch
with a final glissando to encourage a sense of legato. Fig-
ure 2 shows a short piece of this pitch function over the
two consecutive two notes.
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Figure 3. The functions f(t) (green) and a(t) (red) for the
first phrase of Danny Boy. These functions have different
units so their ranges have been scaled to 0-1 to facilitate
comparison.

The heart of the transformation, however, is in the con-
struction of the amplitude function a(t). This function is
created through a series of soft constraints that are placed
on the amplitude defined at various “knot” locations over
time. These constraints are taken from from the prosodically-
annotated score and the structural representation. For in-
stance, we want phrase beginnings, as indicated by the
structural representation, to be low in amplitude; thus we
add a quadratic penalty that encourages this characteristic.
Similarly, we want stressed notes to be high in amplitude
and add similar quadratic penalties to encourage this. In
addition we want forward-moving notes to be increasing
in amplitude, and thus add quadratic terms that encour-
age this relationship between a forward-moving note and
its successor. Similar terms are added for receding notes.
We then compute the values at the knot locations by min-
imizing the quadratic penalty function, and interpolate the
resulting amplitudes at the knot locations. A more detailed
presentation of this process is described in [12]. An ex-
ample of both the a(t) and f(t) functions for a familiar
examples are given in Figure 3.

5. HOW MUCH MUSICALITY DOES THE
REPRESENTATION CAPTURE?

The theremin parameters, f(t), a(t), and hence the audio
signal, s(t), depend entirely on the structural representa-
tion, the prosodic labeling, and the musical score, through
the mapping described in Section 4. We want to under-
stand the degree to which our representation captures mu-
sically important interpretive notions. To this end, we have
constructed a dataset of about 50 simple melodies contain-
ing a combination of genuine folk songs, folk-like songs,
Christmas carols, and examples from popular and art music
of various eras. The melodies were chosen to be familiar,
having simple chords, simple phrase structure, all at mod-
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erate to slow tempo, and appropriate for legato phrasing.
Examples include Danny Boy, Away in a Manger, Loch
Lomond, By the Waters of Babylon, etc. These melodies
were painstakingly hand-annotated with structure and prosody
by the author.

We rendered these melodies into audio according to our
hand-marked annotations and the process of Section 4. For
each of these audio files we provide harmonic context by
superimposing sustained chords, as indicated in the scores.
The entire collection of symbolic melodies, along with ren-
dered audio files, is available at the aforementioned web
site.

We do observe some aspects of musical interpretation
that are not captured by our representation. For example,
the interpretation of Danny Boy clearly requires a climax
at the highest note, as do a number of the musical exam-
ples. We currently do not represent such an event through
our markup. It is possible that we could add a new cate-
gory of stress corresponding to such a highpoint, though
we suspect that the degree of emphasis is continuous, thus
not well captured by a discrete alphabet of symbols.

Another occasional shortcoming is the failure to distin-
guish contrasting material, as in O Come O Come Emanuel.
This melody has a Gregorian chant-like feel and should
mostly be rendered with deliberate calmness. However, the
short outburst corresponding to the word “Rejoice” takes
on a more declarative affect. Our prosodically-oriented
markup simply has no way to represent such a contrast of
styles, though it is hinted at in the structural decomposition
of ((3-3)-(3-3))+(2-2)+3.

There are, perhaps, some other general shortcomings of
the interpretations, though we believe there is quite a bit
that is “right” in them, especially considering the simplic-
ity of our representation of interpretation. However, we
hope readers will make independent judgments.

6. ESTIMATING THE INTERPRETATION

The essential goal of this work is to algorithmically gen-
erate expressive renderings of melody. Having formally
represented our notion of musical interpretation, we can
generate an expressive rendering by estimating this repre-
sentation.

6.1 Estimating Phrase Structure

We estimate the structural decomposition of our melody
by maximizing an objective function defined on the de-
composition using dynamic programming. The approach
begins by labeling each note subsequence containing two
bar lines as a terminal state, and scoring the plausibility of
each possible label for the subsequence (the score function
will be discussed presently). We then proceed inductively
to find the optimal labelings of progressively larger sub-
sequences, ultimately terminating with a labeling for the
entire melody.

Suppose we have have found the possible labelings of
each note subsequence containing m−1 bar lines, and have
computed the best-scoring derivation of each such labeled

subsequence (the labels will be described below). We can
find the optimal score of each label on each contiguous
region containing m bar lines by piecing together various
contiguous subsequences containing less than m bar lines.
We allow three possible ways to do this, as follows

1. We can label a subsequence containing m bar lines
as a terminal state, corresponding to a single group-
ing with no subdivisions. We label such a group of
measures as m — the number of measures compos-
ing the group. The subsequence need not begin or
end at a measure boundary.

2. If the number of measures, m, has a factor, f , in
{2, 3, . . . , 5}, we consider all partitions of the region
into f contiguous regions each containing k = n/f
bar lines. For each such partition, we consider piec-
ing together k identically labeled segments and la-
beling the result as (k − k − . . .− k). For instance,
if we consider a region containing 8 bar lines and
consider composing this region of two identically
labeled contiguous regions, we could group regions
labeled as either 4 or (2-2). Any such production
would result in a region labeled as (4-4), denoting
the binary split. We cannot combine two contiguous
regions labeled as 4 and (2-2) to make a (4-4) region.

3. For the final production phase, which considers the
complete collection of melody notes containing, say,
M bar lines, we allow the previously-described pro-
ductions as well as a concatenation operation. The
concatenation pieces together any pair or triple of
contiguous regions composing the complete melody.
Such concatenations will be denoted as A + B or
A + B + C where A,B,C are any possible label-
ings of the individual regions.

Each of these productions generates a score for the re-
sulting labeling. When we use the terminal state label, we
want the collection of measures to make sense as an iso-
lated unit. Thus we will score such labels to reward rela-
tively long final notes and chord changes at the following
bar line.

When applying our factoring rule, we wish to group to-
gether note sequences that exhibit parallelism. The rhyth-
mic parallelism between two note groups can be measured
by the symmetric difference of the rhythms — the num-
ber of notes that do note “line up” when the bar lines are
aligned. This measure rewards similar rhythmic structures
and encourages groups to have the same pickup length.
When more than two groups are considered, we can com-
pute an average symmetric difference. We have used such
average symmetric differences on rhythm, pitch, and chord
to achieve an overall measure of parallelism. The score of
a particular factor label will then be the sum of the individ-
ual labeled subsequence scores plus the score for overall
parallelism.

The final production type is concatenation. Generally
speaking, we wish to discourage such explanations, so we
give a fixed penalty every time the concatenation operation
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is invoked. Thus the score for a label involving concatena-
tion is the sum of the individual scores, plus a parallelism
score between the concatenated sections, plus the concate-
nation penalty.

With this description in mind, it is simple to find the
overall best scoring labeling. After computing and scoring
all possible labelings of regions containing m bar lines,
we retain only the best scoring parse for each particular
label — this is the essential idea of dynamic programming.
Finally, when we consider the entire collection of notes,
we choose the best scoring of all labelings as our structure
estimate.

At present we have simply hand-chosen the score func-
tion and make no claims for the optimality of this choice.
Both the automatic training and evaluation of this method
are the focus of ongoing work. As an example, our al-
gorithm recognized O Come O Come Emmanuel as ((3-
3)-(3-3))+7 with each segment containing a quarter note
pickup, showing an ability to recognize interesting asym-
metries. Appropriately, most often we recognized simple
binary structures to our melodies.

6.2 Estimating the Prosodic Labeling
Our estimation of the unobserved sequence of prosodic la-
bels, x1, . . . , xN , depends on various observables, y1, . . . , yN ,
where the feature vector yn = y1

n, . . . , yJ
n measures at-

tributes of the musical score at the nth note. The fea-
tures we consider are surface-level attributes of the musical
score. While a great many possibilities were considered,
we ultimately culled the set to the metric strength of the
onset position, as well as the first and second differences
of note length, in seconds, and MIDI pitch.

Our fundamental modeling assumption views the label
sequence, x, as a Markov chain, given the data, y:

p(x|y) = p(x1|y1)

N∏
n=2

p(xn|xn−1, yn, yn−1) (3)

= p(x1|y1)

N∏
n=2

p(xn|xn−1, zn)

where zn = (yn, yn−1). The intuition behind this assump-
tion is the observation (or opinion) that much of phrasing
results from a cyclic alternation between forward moving
notes, {l→, l∗}, stressed notes, {l−, l+, l×}, and optional
receding notes {l←}. Often structural boundaries occur
when one moves from either stressed or receding states to
forward moving states. Thus the notion of state, as in a
Markov chain, seems to be relevant.

We estimate the conditional distributions p(xn|xn−1, zn)
for each choice of xn−1 ∈ A, as well as p(x1|y1), using
our labeled data. We will use the notation

pl(x|z)
def
= p(xn = x|xn−1 = l, zn = z)

for l ∈ A. In training these distributions we split our score
data into |A| groups, Dl = {(xli, zli)}, where Dl is the
collection of all (class label, feature vector) pairs over all
notes that immediately follow a note of class l.

l∗ l→ l← l− l× l+ total
l∗ 135 112 0 18 2 0 267
l→ 62 1683 8 17 0 0 1770
l← 3 210 45 6 2 0 266
l− 49 48 4 103 15 0 219
l× 5 32 2 65 30 0 134
l+ 0 3 0 12 3 0 18
total 254 2088 59 221 52 0 2674

Figure 4. Confusion matrix of errors over the various
classes. The rows represent the true labels while the
columns represent the predicted labels. The block struc-
ture indicated in the table shows the confusion on the
coarser categories of stress, forward movement, and reced-
ing movement

We model the pl(x|z) distributions using the classifica-
tion tree methodology of CART [13]. That is, for each Dl

we begin with a “split,” zj > c separating Dl into two sets:
D0

l = {(xli, zli) : zj
li > c} and D1

l = {(xli, zli) : zj
li ≤

c}. We choose the feature, j, and cutoff, c, to achieve max-
imal “purity” in the sets D0

l and D1
l as measured by the

average entropy over the class labels. We continue to split
the sets D0

l and D1
l , splitting their “offspring,” etc., in a

greedy manner, until the number of examples at a tree node
is less than some minimum value. Our estimate p̂l(x|z) is
then computed by finding the terminal tree node associated
with z and using the empirical label distribution over the
class labels {xli} whose associated {zli} fall to the same
terminal tree node.

Given a piece of music with feature vector z1, . . . , zN ,we
can compute the optimizing labeling

x̂1 . . . , x̂N = arg max
x1,...,xN

p̂(x1|y1)
N∏

n=2

p̂(xn|xn−1, zn)

using dynamic programming.

7. RESULTS

We estimated a labeling for each of the C = 48 pieces in
our corpus by training our model on the remaining C − 1
pieces and finding the most likely labeling, x̂1, . . . , x̂N , as
described above. When computing the most likely labeling
for each melody in our corpus we found a total of 678/2674
errors (25.3%) with detailed results as presented in Figure
4.

The notion of “error” is somewhat ambiguous, however,
since there really is no correct labeling. In particular, the
choices among the forward-moving labels: {l∗, l→}, and
stress labels: {l−, l×, l+} are especially subject to inter-
pretation. If we compute an error rate using these cate-
gories, as indicated in the table, the error rate is reduced to
15.3%.

One should note a mismatch between our evaluation
metric of recognition errors with our estimation strategy.
Using a forward-backward-like algorithm it is possible to
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compute p(xn|y1, . . . , yN ). Thus if we choose

x̄n = arg max
xn∈A

p(xn|y1, . . . , yN ),

then the sequence x̄1, . . . , x̄N minimizes the expected num-
ber of estimation errors

E(errors|y1, . . . , yN ) =
∑

n

p(xn 6= x̄n|y1, . . . , yN )

We have not chosen this latter metric because we want a
sequence that behaves reasonably. It the sequential nature
of the labeling that captures the prosodic interpretation, so
the most likely sequence x̂1, . . . , x̂n seems like a more rea-
sonable choice.

In an effort to measure what we believe to be most im-
portant — the perceived musicality of the performances
— we performed a small user study. We took a subset
of the most well-known melodies of the dataset and cre-
ated audio files from the random, hand, and estimated an-
notations. The estimated annotations were produced using
ground truth for the structure while estimating the prosodic
labelings. We presented all three versions of each melody
to a collection of 23 subjects who were students in our Uni-
versity’s music school, as well as some other comparably
educated listeners. The subjects were presented with ran-
dom orderings of the three versions, with different order-
ings for each user, and asked to respond to the statement:
“The performance sounds musical and expressive” with
the Likert-style ratings 1=strongly disagree, 2=disagree,
3=neutral, 4=agree, 5=strongly agree, as well as to rank
the three performances in terms of musicality (the rank-
ing does not always follow from the Likert ratings). Out
of a total of 244 triples that were evaluated in this way,
the randomly-generated annotation received a mean score
of 2.96 while the hand and estimated annotations received
mean scores of 3.48 and 3.46. The rankings showed no
preference for the hand annotations over the estimated an-
notations (p = .64), while both the hand and estimated an-
notations were clearly preferred to the random annotations
(p = .0002, p = .0003).

Perhaps the most surprising aspect of these results is
the high score of the random labelings — in spite of the
meaningless nature of these labelings, the listeners were,
in aggregate, “neutral” in judging the musicality of the
examples. We believe the reason for this is that musical
prosody, accounts for only a portion of what listeners re-
spond to. All of our examples were rendered with human-
supplied structural representations and the same sound en-
gine of Section 4 which tries to create a sense of smooth-
ness in the delivery with appropriate use of vibrato and
timbral variation. We imagine that the listeners were partly
swayed by these aspects, even when the use of prosody
was not satisfactory. The results also show that our estima-
tion produced annotations that were, essentially, as good
as the hand-labeled annotations. This demonstrates a suc-
cess of our research. The computer-generated interpreta-
tions clearly demonstrate some musicality with an average
listener rating of 3.46 — halfway between “neutral” and
“agree.” However, there is considerable room for improve-
ment.

The melodies were also rendered using structural repre-
sentations estimated as in Section 6.2, thus leaving the en-
tire musical interpretation to the computer. The audio files
documenting this experiment are available on the afore-
mentioned web site.
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ABSTRACT

This paper focuses on automatic extraction of acoustic

chord sequences from a musical piece. Standard and fac-

tored language models are analyzed in terms of applica-

bility to the chord recognition task. Pitch class profile vec-

tors that represent harmonic information are extracted from

the given audio signal. The resulting chord sequence is

obtained by running a Viterbi decoder on trained hidden

Markov models and subsequent lattice rescoring, applying

the language model weight. We performed several exper-

iments using the proposed technique. Results obtained on

175 manually-labeled songs provided an increase in accu-

racy of about 2%.

1. INTRODUCTION

Among all existing musical styles, western tonal music,

which is one of the most popular nowadays, is known for

its strong relationship to harmony. Harmonic structure can

be used for the purposes of content-based indexing and re-

trieval since it is correlated to the mood, style and genre

of musical composition. Automatic analysis of digital mu-

sic signals has attracted the attention of many researchers,

establishing and evolving the Music Information Retrieval

(MIR) community. One of the largest research areas of the

interdisciplinary science of MIR is music transcription. A

subtask of this problem, which deals with the extraction

of harmonic properties of audio signal, is chord recogni-

tion. Basically, harmony denotes a combination of simul-

taneously or progressively sounding notes, forming chords

and their progressions. In almost all cases the harmonic

structure of a piece of music can be converted into a chord

sequence. A great interest in chords can be indicated by a

number of websites containing chord databases for existing

popular songs. Automatic extraction of harmonic structure

can also be of great use to musicologists, who perform har-

monic analysis over large collections of audio data.

As in the case of speech recognition, one of the most

critical issues in chord recognition is the choice of the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2009 International Society for Music Information Retrieval.

acoustic feature set to use in order to represent the wave-

form in a compact way. One of the most successfully used

feature set is chromagram, which can be represented as

a sequence of chroma vectors. Each chroma vector, also

called Pitch Class Profile (PCP), describes the harmonic

content of a given frame. The amount of energy for each

pitch class is described by one component in the PCP vec-

tor. Since a chord consists of a number of tones and can be

uniquely determined by their positions, chroma vectors can

be used effectively for chord representation. The chroma

feature was firstly introduced for music computing tasks by

Fujishima [1]. He proposed a real-time chord recognition

system, describing extraction of 12-dimensional chroma

vectors from the Discrete Fourier Transform (DFT) of the

audio signal and introducing a numerical pattern match-

ing method using built-in chord-type templates to deter-

mine the most likely root and chord type. The statistical

learning method for chord recognition was suggested by

Sheh and Ellis [2]. They exploited the Expectation-Maxi-

mization (EM) algorithm to train hidden Markov models,

while chords were treated as hidden states. Statistical in-

formation about chord progressions in their approach is

represented by the state transitions in HMM. The approach

of Papadopoulos and Peeters [3] incorporates simultaneous

estimation of chord progression and downbeats from an au-

dio file. They paid a lot of attention to possible interaction

of the metrical structure and the harmonic information of a

piece of music.

Incorporating statistical information on chord progres-

sions into a chord recognition system is an important issue.

It has been addressed in several works through different

techniques. Mauch and Dixon [4] used one of the simplest

forms of N -grams – the bigram language model. In the

approaches of Papadopoulos and Peeters, Lee and Slaney

[3,5] chord sequence modeling is introduced through state

transition probabilities in HMM. In their case ”language

model” is a part of HMM and is derived from the Markov

assumption, where chord probability is defined by only

one predecessor. Yoshioka et al. [6] presented an auto-

matic chord transcription system which is based on gener-

ating hypotheses about tuples of chord symbols and chord

boundaries, and further evaluating the hypotheses, taking

into account three criteria: acoustic features, chord pro-

gression patterns and bass sounds. This approach was fur-

ther developed by Sumi et al. [7]. They mainly focused on

the interrelationship among musical elements and made an
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attempt to efficiently integrate information about bass lines

into chord recognition framework. They used two 2-gram

models, one for major keys and one for minor keys, which

are obtained in advance from real music. A large study on

the modeling of chord sequences by probabilistic N-grams

was performed by Scholz et al. [8]. Unal et al. [9] used

perplexity-based scoring to test the likelihoods of possible

transcription sequences.

This paper investigates the applicability of standard and

factored language models of high orders (3-gram, 4-gram).

Experiments with different back-off strategies for factored

language models are carried out.

The rest of the paper is organized as follows: section 2

describes the front-end processing. In section 3 the here

adopted HMM-based classification engine is briefly out-

lined. Language modeling is presented in section 4. Sec-

tion 5 is devoted to the description of the whole proposed

chord recognition system. The experimental results and

conclusion are then given in section 6 and section 7, re-

spectively.

2. FRONT-END PROCESSING

Before extracting features, the tuning procedure described

in [10] is applied in order to find the mis-tuning rate and

set the reference frequency fref for the ”A4” tone. The

necessity of tuning appears when audio was recorded from

instruments that were not properly tuned in terms of semi-

tone scale.

The feature extraction process starts with downsam-

pling the signal to 11025 Hz and converting it to the fre-

quency domain by a DFT applying Hamming window of

185.7 ms with 50% overlapping. The harmonic content is

extracted from the frequency range between 100 Hz and 2

kHz only. The main reason for this is the fact that in this

range the energy of the harmonic frequencies is stronger

than non-harmonic frequencies of the semitones. A se-

quence of conventional 12-dimensional Pitch Class Profile

(PCP) vectors, known as chromagram is used as acoustic

feature set. Each element of PCP vector corresponds to the

energy of one of the 12 pitch classes. The process of PCP

extraction can be decomposed into several steps. After ap-

plying DFT, the energy spectrum is mapped to the chroma

domain, as shown in (1).

n(fk) = 12log2

(

fk

fref

)

+69, n ∈ℜ+ (1)

where fref denotes the reference frequency of ”A4”

tone, while fk and n are the frequencies of Fourier trans-

form and the semitone bin scale index, respectively. To

reduce transients and noise we apply smoothing over time

using median filtering, similarly to Peeters [11] and Mauch

et al. [4]. At the last stage semitone bins are mapped

to pitch classes, which results in the sequence of 12-

dimensional PCP vectors:

c(n) = mod(n, 12) (2)

Cmaj

Begin End

BmagC#maj

Dmaj

Bmin

Insertion penalty

Figure 1. Connection scheme of trained models for decod-

ing.

3. HIDDEN MARKOV MODELS

Hidden Markov models, which have been successfully

used for modeling temporal sequences, are utilized in the

proposed approach.

In contrast to many existing approaches [2, 3, 5], where

chord is represented as a hidden state in one ergodic HMM,

a separate left-to-right model is here created for each

chord. In the given system configuration each model con-

sists of 3 hidden states. The entry and exit states of a

HMM are non-emitting, while the observation probabili-

ties are identical for all emitting states. Observation vector

probabilities in the emitting states can be approximated by

a number of Gaussians in 12 dimensions, described by a

mean vector and a covariance matrix. The feature vector

components are assumed to be uncorrelated with one an-

other, so the covariance matrix has a diagonal form. For

each observation we use a mixture of 512 12-dimensional

Gaussians. Songs from the training set are segmented ac-

cording to the ground-truth labels so that each segment

represents one chord. Chromagrams extracted from these

segments are used for training, which is based on the ap-

plication of the Baum-Welch algorithm.

Before running the recognition task, we extract a chro-

magram for each song from the test data. There is no

preliminary segmentation as done on the training data for

which a chroma vector sequence is extracted for each

chord segment; only one chromagram is obtained for the

whole test song. The trained chord HMMs are connected

as shown in figure 1. Such parameter as insertion penalty

is introduced, which allows for obtaining labels with dif-

ferent degrees of fragmentation. The Viterbi algorithm is

then applied to the test data by using the resulting con-

nected trained model in order to estimate the most likely

chord sequence for each song and to produce a chord lat-

tice.

4. LANGUAGE MODELING

A lot of different statistical language models have been

proposed over years. The most successful among them

appeared to be finite state transducers. In Natural Lan-

guage processing N-grams are used for word prediction.

Given N − 1 predecessors, it can provide the probability

of N -th element appearing. Language models have a va-

riety of applications such as automatic speech recognition
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and statistical machine translation. The main goal of lan-

guage modeling can be explained as follows: having a sen-

tence, which consists of K words (w1, w2, ...wK ), gener-

ate a probability model p(w1, w2, ...wK). In most common

cases it can be expressed as (3).

p(w1, w2...wK) =
∏

t

p(wt|w1, w2...wt−1) =
∏

t

p(wt|ht)

(3)

where ht is the history sufficient for determining the

probability of wt word. In standard N -gram models the

history consists of the immediately adjacent N − 1 words.

For example, in 3-gram model the probability of current

word can be expressed as: p(wt|wt−1, wt−2).
While estimating language model parameters, there ex-

ists the problem of sparse data. It is caused by the impos-

sibility of producing maximum likelihood estimate of the

model, because all combinations of N -word sequences are

unlikely to be found in the training corpus. Since any train-

ing corpus is limited, some acceptable sequences can be

missing from it, which leads to setting zero probability to

plenty of N -grams. In order to cope with the problem, dif-

ferent techniques, such as back-off, smoothing and inter-

polation are used [12–14]. The main principle of back-off

is to rely on lower-order model (e.g p(wt|wt−1)) if there

is zero evidence for higher-order (e.g. p(wt|wt−1, wt−2))
model. The order of dropping variables is known as back-

off order. In the case of standard language models it is ob-

vious that information taken from older predecessor will

be less beneficial and it should be dropped prior to other

predecessors.

In the proposed approach we draw direct analogy be-

tween a sentence in speech and a tune in a piece of mu-

sic. The above-described strategy can be successfully used

in chord sequences modeling. In this case a chord is the

equivalent of a word and the sequence of chords can be

modeled by means of the same technique.

4.1 Factored language models

Western music is known to be highly structural in terms of

rhythm and harmony. In order to take advantage of mutual

dependency between these two phenomena, we have stud-

ied the interrelationship between beat structure and chord

durations. The number of occurrences as a function of

chord duration in beats histogram is shown in figure 2. It

is clearly seen that a greater part of chord durations is cor-

related to the metrical structure (2, 4, 8, 12, 16, 24, 32

beats), which suggests that including also chord durations

in the language model is more convenient than analyzing

just a sequence of chord symbols. This can be easily done

with the help of factored language models (FLMs), which

treat a word (chord) as a set of factors. FLMs have been re-

cently proposed by Bilmes and Kirchoff [15] and showed

promising results in modeling highly inflected languages,

such as Arabic [16].

In a factored language model, a word (chord) can be

represented as a bundle of factors: wt = {f1
t , f2

t , ..., fK
t }.

The probability for FLM is given in (4), where π(fk
t ) is

0
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Figure 2. Chord Duration Histogram.

a set of variables (parents), which influence the probabil-

ity of fk
t . In our case to model chord sequences we use

two factors: chord label Ct and chord duration Dt: wt =

{Ct,Dt}.

p(wt|ht) =
∏

k

p(fk
t |π(fk

t )) (4)

As opposed to standard language models, where older

predecessors give less relevant information at the given

time instant, in FLMs there is no obvious order to drop

parents π(fk
t ). There are a lot of possibilities to choose

less informative factors to drop among the others. More-

over, keeping some factors of older predecessors can be of

greater benefit than keeping the value of some other fac-

tors, which are more relevant to the given time instant.

One of the possible solutions is to use ”generalized parallel

back-off”, which was initially proposed and well described

by Bilmes and Kirchoff [15]. The main idea is to back-off

factors simultaneously. The given set of back-off paths is

determined dynamically based on the current values of the

variables. (For a more detailed description, see [15]).

At the experimental stage we explore the standard back-

off (a) and the parallel back-off (b) techniques, whose

graphs are presented in figure 3. In both cases the chrono-

logical order is kept, while in the standard back-off case a

higher priority to the factor of chord symbol is assigned.

The arrows are marked with the factor being dropped at

the current back-off step; blocks include the variables that

influence the probability of chord label being estimated.

5. CHORD RECOGNITION SYSTEM

The full scheme of chord recognition system is depicted in

figure 4.

Feature extraction part has been described in section 2.

The beat extraction algorithm used here is introduced by

Dixon [17] and is exploited as a separate module, called
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Figure 3. Standard back-off (a) and parallel back-off (b)

graphs for tri-gram LM.

BeatRoot 1 .

The key detection module utilizes the approach sug-

gested by Peeters [11], where trained HMMs are used to

find the best score from 24 possible keys for the given se-

quence of chroma vectors for each test song. In the sug-

gested system the key is assumed to be constant.

On the training stage, features extracted from wave-

forms are used to train hidden Markov models, while chord

labels from training corpus are used as an input for lan-

guage model parameter estimation. Language model train-

ing includes training either standard LMs or FLMs. For

training standard LMs chord sequences taken from the

training labels are used as input. For building text for

FLM the information combined from beat extraction mod-

ule and the training labels is used. For each chord symbol

from ground-truth labels we estimate the duration in beats

and produce an output in the form: ”C-(chord type):D-

(duration)”. To minimize the problem of sparse data, all

duration values are quantized by a relatively-small set of

or integer values. Our codebook consists of the following

values: 1, 2, 3, 4, 6, 8, 12, 16, 24 and 32 beats. The sug-

gested codebook is supposed to be well-suited for the pop

songs. This assumption is made on the basis of metrical

analysis of the Beatles data (see fig. 2). The suggested

scheme however might not be sufficient while modeling

jazz or other genres.

In order to make our system key invariant, a key trans-

formation technique is proposed here. In fact, the training

corpus might not contain some type of chords and chord

transitions due to the fact that keys with a lot of accidentals

are much less widespread (G# maj, Ab min). Moreover,

while estimating chord transition probabilities the relative

change in the context of the given key (e.g. tonic – dom-

inant – subdominant) is more relevant than exact chord

names. For training data we have ground-truth table of

1 http://www.elec.qmul.ac.uk/people/simond/beatroot/index.html

keys for each song, while for test data we estimate key in

the key detection module. Then, similar to training HMMs,

by applying circular permutation, features and labels are

converted to the Cmaj (in case of major key) or to Amin

(in case of minor key). After the decoding procedure in

order to produce final labels (in the original key of the an-

alyzed song) obtained labels are converted back using the

same scheme.

Similar to the approach of multiple-pass decoding,

which has been successfully used in speech recognition

[14], the decoding procedure consists of two steps. Dur-

ing the first step time-and-space efficient bigram language

model is applied on the stage of Viterbi decoding, produc-

ing a lattice. A lattice can be represented by a directed

graph, where nodes denote time instants and arcs are dif-

ferent hypotheses. Since lattices contain the information

on the time boundaries, it is possible to make an estima-

tion of duration in beats for each hypothesis. During the

second step the obtained lattice is rescored applying more

sophisticated language models (trigram and higher) on the

reduced search space. Since the main problem is to ex-

tract chord labels, it is not necessary to model chord dura-

tion probabilities explicitly. Our decoding scheme, apply-

ing language modeling, is based on Viterbi decoding and

subsequent lattice rescoring, where lattices contain the in-

formation on possible chord boundaries. Chord durations

are used only to define chord label probabilities and the

resulting chord boundaries are obtained from the lattices.

Generally, standard LMs do not take into account duration

factor at all, the only important thing here is just a sequence

of labels. The advantage of FLM is that when applying the

language model weight on the stage of lattice rescoring,

chord durations contribute to the probabilities of different

hypotheses in the lattice.

Standard LMs are manipulated using HTK 2 tools,

while FLMs are managed using SRILM [18] toolkit, since

HTK does not support this type of language models.

6. EXPERIMENTS

Evaluation of the proposed system was performed on the

songs taken from 12 Beatles albums, ground-truth annota-

tions for which were kindly provided by C. A. Harte [19].

The system can distinguish 24 different chord types (major

and minor for each of 12 roots). 7th, min7, maj7, minmaj7,

min6, maj6, 9, maj9, min9 chords are merged to their root

triads; suspended augmented and diminished chords are

discarded from the evaluation task. The percentage of du-

ration of discarded chords results to be 2.71% of the whole

material. In order to prevent the lack of training data (some

chord types can appear only few times in the training cor-

pus) only two models are trained: C-major and C-minor.

For this purpose, all chroma vectors obtained from labeled

segments are mapped to the C-root using circular permuta-

tion. After that mean vectors and covariance matrices are

estimated for the two models. All the other models can be

obtained by a circular permutation procedure.

2 http://htk.eng.cam.ac.uk/
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Figure 4. Chord recognition system.

For evaluation, the recognition rate measure was used,

which in the given case corresponds to the total duration of

correctly classified chords divided by the total duration of

chords, as reported in the following:

rec.rate =
|recognized chords| ∩ |ground− truth chords|

|ground− truth chords|
(5)

The evaluation was performed frame by frame, as it

was done under the MIREX 3 competition. In our ex-

periments 3-gram and 4-gram language models were used.

While working with FLMs, we exploited standard and gen-

eralized parallel back-off strategies (see figure 3; 4-gram

graphs have the same structure and can be obtained from

3-gram graphs by adding one level).

It is worth mentioning that applying different language

model weights on the stage of lattice rescoring one can

obtain different recognition rates. Figure 5 indicates how

recognition rate depends on the LM weight. In this case the

curves correspond to the LM- and FLM-based systems; ex-

periments were conducted on the fold 1 with 4-gram con-

figuration.

In order to estimate the increase in performance intro-

duced by including LM block and in order to compare effi-

ciency of standard and factored language models, a 5-fold

cross-validation was accomplished on the given data set.

The folds were built in a random way and there is high al-

bum overlap. The recognition rates are shown in Table 1.

Here ”bl” is baseline system, ”3lm” ”3flm” ”3flmgpb” are

trigram configurations with key transformation for stan-

dard LM, FLM, and FLM with generalized parallel back-

off respectively, ”4lm” ”4flm” ”4flmgpb” are 4-gram con-

figurations. For any of the given configurations, an aver-

age standard deviation of about 15% was also observed,

3 http://www.music-ir.org/mirex/2008/index.php/Main Page
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Figure 5. Recognition rate as a function of LM weight.

which was derived from the recognition rates computed on

a song-by-song basis.

Experimental results showed that introducing language

modeling increases the performance of the system, while

generalized parallel back-off strategy for FLM did not

show any advantages over standard back-off for the chord

recognition task. Meanwhile, using FLM show very slight

improvement (0.25 %) in comparison to standard LM.

The differences in the output labels for LMs and FLMs

are mainly on the junctions of chords. While using stan-

dard LM one can get a slight boundary deviation from its

ground-truth value (e.g. 1 beat), using FLM fixes this in

most cases because it takes into account the duration fac-

tor. That is why the difference in recognition rates is so

small.

7. CONCLUSION

In this paper a set of experiments on chord recognition

task including language modeling functionality as a sep-

arate layer has been conducted. The experimental results

in a 5-fold cross-validation were conducted on a com-

monly used database of the songs by the Beatles. Factored

language models were compared with standard language

models and showed small increase in performance for the

task. The main advantage of FLMs is that they possess

a better chord recognition ability on the chord junctions.

Comparing back-off techniques, we can assume that using

generalized parallel back-off for the chord recognition task

does not result in better performance.

However, the suggested system has a number of limita-

tions: assuming the key of the song constant, one can not

cope with key changes. A deeper study on different model

smoothing and selection techniques as those addressed by

Scholz et al. [8] could be reprised.

In general, experimental results showed that utilizing

language models leads to an increase in accuracy by about

2%. This relatively small difference in performance may

be due to the size of vocabulary for the chord recognition

task in comparison with that of many speech recognition

applications. The performance of chord recognition sys-
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data bl 3lm 3flm 3flmgpb 4lm 4flm 4flmgpb

fold 1 70.81 72.22 72.55 72.56 72.39 72.53 72.27

fold 2 70.23 70.78 71.15 71.51 71.09 71.38 71.25

fold 3 65.87 66.81 66.59 67.01 67.22 66.89 67.17

fold 4 66.20 67.15 67.60 67.61 67.64 67.62 67.51

fold 5 66.19 69.73 69.72 68.55 68.55 69.72 69.77

average 67.86 69.34 69.52 69.45 69.38 69.63 69.59

Table 1. Evaluation results: recognition rates.

tems is perhaps influenced primarily by relevance and ac-

curacy of the extracted features and related acoustic mod-

eling.
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ABSTRACT

Methods for spectral analysis of audio signals and their
graphical display are widespread. However, assessing mu-
sic and audio in the visual domain involves a number of
challenges in the translation between auditory images into
mental or symbolically represented concepts. This paper
presents a spectral analysis method that exists entirely in
the auditory domain, and results in an auditory presenta-
tion of a spectrum. It aims to strip a segment of audio sig-
nal of its temporal content, resulting in a quasi-stationary
signal that possesses a similar spectrum to the original sig-
nal. The method is extended and applied for the purpose
of music summarisation.

1. INTRODUCTION

Graphical display is the predominant approach to convey-
ing musical sound analysis information to people, includ-
ing via spectrograms, spectra, waveform graphics and mu-
sical manuscript. While the visual system is dominant in
many information transfer contexts, sonification (the repre-
sentation of information through non-speech sound) offers
many (often complementary) possibilities for information
transfer [1]. As audio and music are data that are experi-
enced primarily in the auditory domain, sonification would
appear to be an appropriate method for analysis and repre-
sentation of audio data, as it sidesteps the translation pro-
cess from the auditory domain to the visual domain that is
inherent in using visual representations.

A variety of simple techniques for sonification of sound
in the context of audio education have been proposed by
Cabrera and Ferguson [2, 3], and Ferguson has developed
techniques for techniques for statistical sonifications of au-
dio in his Ph.D thesis [4]. These sonification methods pro-
vide auditory analogues to common statistical visual dis-
plays (such as cumulative distribution functions and box
plots), but with much richer information than visual charts.
One of the solutions proposed in the thesis is a method of
displaying spectral data, which is the focus of this paper.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

Spectral analysis is one of the most fundamental, pow-
erful, and widely used methods for the investigation of
audio. This paper discusses an approach to spectral dis-
play that does not use Fourier analysis, and exists com-
pletely within the auditory domain. Instead of a Fourier or
related transform implemented through signal processing,
the method uses the spectral analysis of the human audi-
tory system. While almost all listening could be thought
of as involving auditory spectral processing, in listening
that is focused on spectral features, temporal features are
distractions that should be removed. Such features include
rhythm, prosody, language, and more generally, the time
structure of the sound being analysed. Put simply, the tech-
nique blurs temporally fluctuating audio signals to create
quasi-stationary signals with almost identical spectra en-
velopes to the original signals, but without any semblance
to the original time-dependent fluctuation. This technique
is rooted in the theories of Gabor [5, 6] and granular syn-
thesis [7], and has been strongly influenced by the recent
advances in concatenative synthesis by Schwarz [8, 9].

Information visualisation literature has focused on meth-
ods for presenting data in ways that present large overviews
of data, but allow a user to ‘zoom and filter’ the representa-
tion to find information that is important [10]. Fry’s Com-
putational Information Design outlines a method for devel-
oping interactive information representation systems [11].
A sonification method that would improve on visual meth-
ods may; use the original audio as the sound material for
the analytic representation; filter the content of that audio
in some way; maintain context and meaning of the audio;
and draw relationships and present pertinent contrasts.

Schenkerian analysis of musical works is well-known
and features in many undergraduate music curricula [12].
This graphical analysis method based on musical manu-
scripts allowed Schenker to reveal the various layers of a
composition. The spectral sonification method described
in this paper has the potential to be used in a similar man-
ner allowing a scaling of perspective from large to small
scale structures depending on the periods analysed.

2. SPECTRAL SUMMARISATION ALGORITHM

The core technique this paper presents is a method for
spectrally summarising a larger audio signal. A represen-
tation that can convey the spectrum using audio without
frequency domain signal processing can be built using a
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simple digital algorithm based on fragmenting the time sig-
nal into potentially overlapping windows, and recombining
them in a way that (i) maintains a roughly constant power
spectral envelope that matches the signal’s long term spec-
trum; and (ii) removes distracting (non-spectral) features.
This can be achieved by concatenating short windows (or
grains) of audio by averaging a large proportion, but not
all, of the original signal windows. A number of unique
but spectrally similar windows need to be concatenated to-
gether, since if a single audio grain is repeated the resulting
sound will be dominated by amplitude modulation related
to the repetition rate. A systematic explanation of a pro-
cess to create and concatenate unique but spectrally similar
grains is as follows:

1. For a user-selected window length wn samples, ran-
domly select a window length wnr from the range of
values between wn − wn

2 and wn + wn

2 .
2. Randomly select windows of length wnr from the

signal to be averaged to create a set {w1, w2, ...wm}
of m unique windows.

3. Sum this set of windows, and divide by the square
root of the number of windows ({w1+w2,...+wm}√

m
) to

produce a single frame of wnr samples duration.
4. Repeat steps 1, 2 and 3 (re-randomising each time)

until enough unique but spectrally similar audio frames
are produced to build a stationary sound of a chosen
duration.

5. Concatenate these audio frames, using overlapping
and adding with a custom window function. Ramps
taken from either side of a Hanning window func-
tion are applied only to the overlapping proportion
(typically only 5-10% of wn) to maintain a constant
sum between concatenation boundaries (see Figure
3).

This method is simple, but it is successful at creating a
quasi-stationary sound with a spectral profile that matches
the original file, while keeping the time variance to a min-
imum.

2.1 Validation, Tradeoffs and Limitations

To validate the appropriateness of the averaging process we
undertook a comparison of spectra created by this spectral
averaging method against the spectrum of the unmodified
sample. A distinction worth mentioning is that through
mixing we are amplitude (pressure) averaging, rather than
power (pressure squared) averaging. Summing a large num-
ber of randomly selected signals as described above may
be considered to be an operation on incoherent signals,
which is why the square root of the number of windows
is used in the denominator of the algorithms third step.
Hence, the power spectrum of the sonification approxi-
mates the power spectrum of the original wave. While
there is some potential for a substantial discrepancy be-
tween the power of the resulting spectrum and a true long
term power spectrum, tests have shown that discrepancies
are not severe for realistic signals if the averaging method
uses a window size larger than 1024 samples.

There is a significant smearing of energy when using
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Figure 1. A 2kHz sine wave is spectrally averaged using
a variety of window sizes, and compared with the original
sine wave signal. The larger window sizes result in less
spectral smearing.
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Figure 2. A pink noise recording is compared against
spectral representations of pink noise using various win-
dow lengths - longer window length result in less spectral
deviation.

shorter window lengths. We demonstrated this by com-
paring a spectrally averaged sine tone at 2kHz, using a
range of window lengths, to the original signal. Figure
1 demonstrates this effect. Generally, window lengths of
1024 samples or greater decrease smearing and increase
spectral representation quality significantly. Subjectively,
short window lengths tend towards extremely noise-like
signals bearing little resemblance to the tonal spectra ex-
pected.

The window length used in the spectral summarisation
algorithm has a small effect on the low frequency range
of the spectrum reproduced. To investigate this we com-
pared a spectrum of a sample of pink noise (with a 48000
Hz sample rate) against three spectral summarisations, one
using a 4096 point window, one with a 1024 point win-
dow, and one with a 256 point window. The length of the
window determines the frequency below which the spectral
representation begins to attenuate – at 4096 points there is
little effect, but at 256 points it starts to become more sig-
nificant and further reductions in window length result in
the low cutoff frequency increasing proportionally. The
cutoff frequency (fc) is apparently based on the largest
wave period that can be represented by a specific window
length (wn), summarised by the relationship:
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fc =
fs

wn
(1)

This investigation tends to support the use of window
sizes of at least 1024 samples and upwards for this spec-
tral averaging technique. Larger window sizes will tend to
allow more temporal fluctuation, depending on the tempo-
ral fluctuation present in the original signal, so there is a
tradeoff present, however window sizes smaller than 1024
samples seem likely to significantly alter the spectrum to a
degree where it is unrecognisable and non-representative.
These parameters are likely to be experienced interactively,
and therefore there is probably a subjective element to a
user’s selection for the most appropriate window size.

The windowing and overlapping at the concatenation
stage must not introduce either discontinuities (clicks) or
amplitude modulation, and thus we have designed a cus-
tom window shape that incorporates a large plateau (simi-
lar to a Tukey window) as well as a Hanning window func-
tion’s ramps at either end. The proportion of the window
devoted to the ramp is determined by the number of over-
lapping samples, and the resulting window shape main-
tains a constant sum at the window boundaries (see Figure
3). Furthermore, the randomisation around a central win-
dow length, ameliorates amplitude modulation effects that
may arise out of periodic selection window length.

3. HARMONY ANALYSIS APPLICATIONS

Harmony analysis typically requires a familiarity with read-
ing musical manuscripts, a difficult skill that is analogous
to learning a new language. This, of course, places an
immediate barrier to those users without these skills, but
it also presumes a level of expertise in cross-modal per-
ception in those users who possess skills in this language.
A user who is presented with a harmony analysis on a
manuscript is expected to ascertain the auditory meaning
of the symbols and their consequences within the musi-
cal structure. This is not necessarily straightforward, and
many users will ‘interact’ with the manuscript by using a
piano to play back the pitches and compare their signif-
icance, while other users develop skills in producing au-

ditory images of the various pitches. Methods that bridge
the gap between symbolic representations of pitch relation-
ships and auditory pitches are possible alternative solutions
for these issues. Generally, the idea of this exploration is
to make the patterns within music clearer than they are in
a typical musical recording, so that users may understand
harmonic patterns at multiple structural levels, and in intu-
itive manners.

The problem of producing a sonification of the harmony
within the audio recording is therefore one of filtering the
audio recording to contain less information, with an em-
phasis on that information which would be included in a
harmonic representation. Such information may include
musical elements like the fundamental frequency of the
bass notes, and other notes presented either loudly or for
comparatively long periods, while avoiding short decora-
tive notes, or quick scalar passages. It would seek to re-
move, generally speaking, the temporal presentation of the
notes, as well as their amplitude envelopes, resulting in a
stationary sound with each important pitch presented si-
multaneously to build a chordal sound, accentuating the
harmonic contribution each note makes, and diminishing
each note’s individual quality.

A structural representation would also need to describe
how each section of the music relates to each other. The
form of the piece is a crucial element in musicology, but
it can be difficult to understand music at the formal scale
from reading a musical manuscript, or from listening to
an audio recording. Snyder [13] describes three levels of
musical memory: the early processing level – which deals
with characteristics of single notes, the short-term memory
level – which holds musical phrases and rhythmic pattern,
and the long-term memory level – which deals with for-
mal sections, movements or entire pieces. Snyder also de-
scribes how long-term or formal memory deals with sec-
tions of music that are too long to be understood in the
present, and their order needs to be consciously recon-
structed as they do not automatically retain their time-order.

Simplifications or shorter versions of the musical sam-
ple can be used to describe the form of the piece in an
amount of time that can be held within short-term memory.
By presenting an auditory representation that is shorter than
the original audio recording, but is proportional to the orig-
inal, form can be more appropriately presented. Elements
like key changes and voice ledaing become more obvious,
as the ear can compare the short term memory of the old
key to the new.

3.1 Voice Leading and Chord Patterns

The algorithm for building an averaged chord progression
is as follows:

1. Get time information to use for time value bound-
aries – this may be based on extracted symbolic mu-
sical information, rhythmic information, timeseries
descriptor peaks or various other time markup meth-
ods.

2. Find the first time boundary and the second time
boundary to be averaged across and find the audio
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Figure 4. Comparing the sonification (top) and the origi-
nal audio (bottom) we can see that the sonification attempts
to blur the spectral components from each bar into a sta-
tionary sound. This sound is changed at every bar-line,
approximately once every 3 seconds. The graphic only
demonstrates the first 25 seconds of the piece.

data in between the two times.
3. Apply the averaging method to this time interval to

create the same duration of averaged audio, or per-
haps a duration altered by a constant factor.

4. Place the resulting audio data at the corresponding
sample numbers of the output audio, using appropri-
ate overlapping.

5. Repeat the process after stepping forward to the sec-
ond and third boundary, and continuing to step for-
ward until the entire recording has been averaged
and the output sonification built.

A simple method for finding time boundaries with which
to segment the chordal structure is to extract the beats and
assume that chord changes will be synchronised with beats,
or more likely with bars. Depending on the meter of the
piece (3/4, 4/4 or 6/8 commonly) we use particular beats
as time boundaries, and in the following examples we have
manually set the meter based on listening to the music, but
advanced beat tracking algorithms may correctly estimate
it as well. We also need to set an anacrusis value, that
describes whether the piece begins on the first beat of the
bar. Beat tracking is well-researched, and we use Dixon’s
Beatroot algorithm [14].

3.2 Harmonic Pattern Examples

We will attempt to use this algorithm to represent the long-
term structure of some pieces of music.

One piece that is defined primarily by its chordal con-
tent (as opposed to its melodic or rhythmic) is Bach’s Pre-
lude No 1. from ‘the Well-tempered Clavier’. A Schenke-
rian analysis has also been published for this piece [12]. By
applying the algorithm to the audio we produce a sonifica-
tion that is presented in Figure 4. The sonification created
is not a completely stationary sound, like a set of tones, nor
is it a sound that has discernible starting or ending notes.
It demonstrates characteristics of the timbre of the instru-
ment, but primarily it presents the notes that have sounded.
The quality of the sound is similar to the sound that would
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Figure 5. A second chord sonification example that
demonstrates the structure of a Beatles song, Norwegian
Wood. The upper graph is a spectrogram of the original au-
dio, and the lower is the spectrally averaged sonification.
The graphic shows only the first 20 seconds.

be produced if the pianist stopped at the end of the bar and
held down all the keys played in the bar.

The averaging across the bar is particularly appropriate
for this particular piece, due to the manner in which Bach
presents a single chord per bar. For other situations this
may result in chords blurring into other chords, resulting
in strong dissonance. Despite this, there are a large ma-
jority of pieces where this simple scheme would be suffi-
cient. The remainder may be dealt with using more sophis-
ticated methods, that employ harmonic and rhythm based
pre-processing to carefully avoid averaging across chord
changes incorrectly.

One purpose of the blurring of the audio is to be able
to place one bar’s harmonic content temporally adjacent to
the next’s. This should allow each harmonic change to be
understood in terms of the notes within each chord, and to
which notes they each move. An example of a pattern that
might be uncovered through this process is the bassline in
this prelude. While these notes are strongly sounded at the
beginning of the bar, they decay by the end of the bar, and
other higher notes are dominant by this stage. The blurring
applied places each of these sounds adjacent to each other,
yielding a legato bassline.

The other useful process possible by using the blurring
of the audio is that the speed of the example can be arbitrar-
ily altered. The blurred audio has no temporal content, so a
bar’s worth of sound may be presented over 3 seconds or in
half a second. By setting an arbitrary compression factor
for the duration, we can proportionally change the duration
of the piece while maintaining the formal structure. This
can be used to alter a 3 minute piece, whose structure can
be ‘remembered’, into a 20 second piece, whose structure
can be ‘heard’.

In the structural sonification of Norwegian Wood (Fig-
ure 5), we hear a clear structure of descending melodic
notes that define the chord structure. The structure is a lot
simpler than that of the Prelude, and each formal section
can be clearly heard.
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Figure 6. There is a 15dB SPL range over the time period
of the musical example. High levels can be heard to cor-
respond to the chords which have the least correlation and
are the most dissonant.

3.3 Chordal Patterns and Context

While we wish to maintain the temporal order of the var-
ious chords, due to their importance to the overall direc-
tion and purpose of a piece of music, it may be interest-
ing to annotate the sonification in terms of the values of
other parameters. A simple parameter to investigate is the
sound pressure level (SPL). From listening to the sonifica-
tion we can hear that often tonic chords are quieter com-
pared with the chords that lead into them. A comparison
of SPL against chord estimates shows the decrease in SPL
that accompanies every return to the tonic (see Figure 6).
We may wish to accentuate this further. By normalising the
level of audio from of each section, and then mapping the
SPL extracted from the audio to an expanded gain func-
tion that is then re-applied to each section, we can experi-
ence the structural implications of the performer’s use of
dynamics more clearly.

While this is a straightforward example, the use of sound
pressure level as the mapping target is arbitrary, and many
other such targets exist. Another candidate parameter to
base a gain function sonification on is the harmonic dis-
tance the chord is from the tonic. One can attempt to ap-
proach this from a chord recognition perspective, but in
this case we will use the chroma pattern only and will com-
pare it against the first (tonic) chord.

The virtual pitch algorithm of Terhardt takes a template
matching approach to finding pitches in the sound [15]. It
applies a peak picking algorithm to find the points in the
spectrum that are peaks. These are then applied to a suc-
cessive template matching algorithm that attempts to place
the peaks under a pitch template. The pattern of pitches
across the audible range can be constrained to create a
chroma pattern, representing the strength of each of the
12 pitches within an octave, regardless of pitch-height.

Using this method we calculate an average chroma pat-
tern for each bar, and then multiply and sum those chroma
pattern vectors to create a number representing the corre-
lation between each bar and the first chord. A high number
represents a high number of similar notes, or low chord
distance, while a low number represents a large amount
of difference. These values are clearly a useful target for
mapping to a gain function. With larger chord distances
associated to greater SPL, and smaller chord distances as-
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Figure 7. The correlation between various chords seems
to follow a predictable pattern. The gain function sonifi-
cation makes that pattern more apparent by exaggerating
it, and highlighting low correlation values. Low values of
correlation are analogous to high values of chord distance.

sociated to low SPL, the effect should be similar to typical
musical approaches.

An alternative approach to expanding parameters such
as sound pressure level is to use a parameter as the basis of
temporallycutting and reorganising the harmonic units or
bars. Any measurable parameter that can be derived from a
steady-state spectrum could be used for this purpose. The
time periods (in this case bars) that are used to average
from in the algorithm described in section 3.1 are then as-
sociated with a median parameter value taken for their time
period. The median parameter value determines the re-
ordering, and then the audio units are rearranged based on
the new order. If the chord correlation values mentioned
above are used to order the bars in ascending order, then
the sonification progresses from chords that are generally
dissimilar to the tonic, to chords that are more consonant
– giving an overall impression of a long cadence. During
this process particular chords can be assessed within the
overall scheme of chords.

3.4 Beyond Chords

Analysis of sections of music larger than individual chords
or bars is easily implemented using this method. The long
term spectra of entire pieces can be sonified into a short
sound, so that, for example, the average spectra of each of
Bachs Preludes and Fugues (one in each major and minor
key) can be quickly compared by ear. The overall spectrum
of the entire collection of preludes could then, for example,
be sonified so as to be compared by ear to those of other
similar collections of preludes or etudes played on piano
(such as those of Chopin or Listz).

4. CONCLUSIONS

We have presented an algorithm for spectral summarisa-
tion, and have applied it to the problem of music summari-
sation. This method is based on concatenative and gran-
ular synthesis and aims to strip musical audio of its fine
temporal content while maintaining the spectral shape and
energy. We have described methods for applying this ba-
sic spectral summarisation technique to the analysis of har-
mony and voice leading, and for using it to compare chords
against the tonic chord of a musical piece.
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4.1 Applications, Limitations and Future Work

These techniques are useful for assessing musical sam-
ples in a semi-automated manner - in a way that hope-
fully falls somewhere between listening to the entire au-
dio file, and an abstract information retrieval algorithm. In
this way it may be possible to apply this method in the de-
sign or checking of music information retrieval algorithms.
This representation method may also be useful in educa-
tion contexts, for the assessment of spectra, and to intro-
duce ideas of structure and tonality. Its application to au-
ditory browsing, for instance of digital archives of musical
recordings, is also worth consideration.

Short signals highlight a limitation of this method – a
certain amount of audio data is required to reliably build
an average window from. For short signals the use of
large windows is also difficult, leading to the tradeoff be-
tween spectral smearing and window length described in
2.1. This method is likely to be experienced in an inter-
active context, due to its reliance on computer technology.
Investigation into good ways to provide interactive user ac-
cess to this algorithm is likely to greatly improve its use-
fulness. Lastly, the suppression of the audio’s temporal
information throws away a lot of temporal qualities that
are fundamental in musical practice. Modifications of this
method that seek to systematically explore aspects of mu-
sic apart from only the spectral and harmonic qualities are
worth careful consideration.

It is easy to forget how powerful auditory analysis can
be when visual and textual presentation of data are over-
whelmingly common. Sonification of audio is more than
a tautology, and extends beyond the trivial case of merely
playing the original audio recording. This paper examines
one simple technique for the sonification of sound record-
ings which focuses on spectral features. One of the attrac-
tive features of this technique is that it does not employ any
spectral analysis using digital signal processing instead the
spectrum analysis is achieved in the ear, and the purpose
of the technique is to prepare the audio so as to provide a
sound that focuses attention on spectral features. In other
work we have examined other spectrum sonification tech-
niques that do use Fourier transforms, such as exaggerat-
ing spectral features through auto-convolution (raising the
spectrum to an integer power) [2].

Applications of this technique extend beyond conven-
tional harmony-based music, and beyond music. Broadly
speaking, it is applicable to audio recordings that have med-
ium or long term spectral features of interest (including
harmony, timbre) that might be difficult to clearly discern
without the removal of temporal structure and/or the com-
pression of duration.
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ABSTRACT

The Cover Song Retrieval (CSR) problem has received

considerable attention in the MIREX 2006-2008 evalu-

ation sessions. While the reported performance figures

provide a general idea about the strengths of the submit-

ted systems, it is not clear what actually causes the re-

ported performance of a certain system. In other words,

the question arises whether some system component de-

sign choices are more critical for a system’s performance

results than others. In order to obtain a better understand-

ing of the performance of current CSR approaches and

to give recommendations for future research in the field

of CSR, we designed and performed a comparative study

involving system component design approaches from the

best-performing systems in MIREX 2006 and 2007. The

datasets used for evaluation were carefully chosen to cover

the broad spectrum of the cover song domain, while still

providing designated test cases. While the choice of the

dissimilarity assessment method was found to cause the

largest CSR performance boost and very good retrieval re-

sults were obtained on classical opus retrieval cases, results

obtained on a new test case, involving recordings originat-

ing from different microphone sets, point out new chal-

lenges in optimizing the feature representation step.

1. INTRODUCTION

Cover Song Retrieval (CSR) generally refers to the prob-

lem of identifying different interpretations of the same

musical work. Since 2006, this challenge has been in-

cluded in the centralized yearly Music Information Re-

trieval (MIR) evaluation sessions known as the MIR EX-

change (MIREX). Ever since, several systems for this task

have been submitted and evaluated on a fixed, but undis-

closed dataset. As the results obtained by these systems

are expressed in the form of general performance numbers,

no information is provided that could reveal the influence

of specific CSR system component design choices and the

composition of the evaluation dataset on the obtained re-

trieval results.
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Although CSR appears to be more specific than e.g.

music genre retrieval, cover songs still span a broad range

of types, each with their own variants and invariants, pos-

ing specific challenges on the design of the CSR system.

In order to validate design motivations and identify which

system aspects are most critical for performance results, it

is necessary to consider CSR systems as combinations of

general system components and review performance with

respect to these components. Additionally, the design of

the evaluation dataset is critical for obtaining true insight

into the performance of CSR systems.

In this paper, a comparative study is presented with spe-

cial attention to the influence of individual system compo-

nents and the composition of evaluation datasets on CSR

system performance. We look at the two best-performing

systems in MIREX 2006-2007, breaking them down into

separate, generic components, which are recombined into

alternative combinations. These are evaluated on 4 differ-

ent datasets. Attention will hereby be paid to the validation

of several ‘semantically intuitive’ choices in the systems.

In this way, we aim at achieving better understanding of

current CSR approaches, identifying which system com-

ponents are most critical for the final performance results

and which research directions deserve further attention in

future CSR research.

2. PROBLEM DESCRIPTION

2.1 Definition of ‘Cover Song’

While the term ‘cover song’ (or simply ‘cover’) used to

suggest a pop music phenomenon, it has more recently

been defined as ‘a recording of a song or tune which has

previously been recorded by someone else’ 1 . This broad

definition has typically been accepted in the MIR research

field, accepting alternate takes of a song by the same artist

to be covers as well. When considering the broad range

of cover songs according to this definition, many musical

aspects can be thought of that may vary among different

covers. Several good suggestions for musical aspects that

can be used in characterizing cover songs are given in [1].

2.2 Cover Song System Components

For the CSR problem discussed in this paper, a setting is

assumed in which an example raw audio file is provided

1 This also is seen in dictionaries, e.g. see http://dictionary.
cambridge.org/define.asp?key=17817&dict=CALD,
accessed May 2009.
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as a query to a dataset, after which the audio files in the

dataset are returned in an ordered way, according to their

similarity score compared to the query. In this setting, CSR

systems can be characterized using a general model, con-

sisting of two main components:

• Feature representation, transforming a raw audio file

into a representation suitable for further matching;

• Dissimilarity assessment, achieving the actual

matching, applying a chosen dissimilarity measure.

Two more system aspects concerned with post-processing

of the feature representation will further be considered:

• The typical approach of using short-time harmonic

features for the feature representation produces very

much data. In order to reduce this amount of data,

an averaging step is adopted.

• In order to handle varying sound intensity levels,

which can be caused both by the quality of the

recording and by musical dynamics, a normalization

procedure is usually applied to the chosen feature

representation.

The musical variants expected in cover songs have in-

fluenced design choices for the mentioned system com-

ponents. For the feature representation, chromagrams

are commonly chosen 2 . These are considered to model

melodic/harmonic progression over time without the need

for exact transcriptions, while being robust to specific in-

strument timbres. Besides, multiple interpretations of a

song will inevitably introduce tempo and timing variations,

which also should be accounted for in CSR systems.

If system evaluations are done as a whole, it will not be

clear from the results which of these component choices

are most important to the final performance results. Addi-

tionally, validation of design choice motivations (such as

the timbre-robustness of chromagrams) will be difficult.

2.3 Importance of Evaluation Dataset Composition

While during the system design, attention is paid to possi-

ble musical variants in cover songs, these do not appear to

be considered with the same importance in system eval-

uation. Evaluation datasets typically are colorful cross-

sections of private music collections, which are sought to

contain as much musical variation as possible. However,

the more variants in the dataset, the more difficult it will

be to interpret an overall performance number. Given the

broadness of the cover song spectrum, understanding of a

system’s performance can only be achieved if attention is

paid to the types of cover song similarity test cases posed

by a dataset.

A common problem in audio-based MIR research is the

lack of public benchmark data. When different authors re-

port performance numbers on different private music col-

lections, comparison of their approaches cannot be made

2 see for example the extended abstracts on http://www.

music-ir.org/mirex/[yearofsession]/index.php/

Audio Cover Song Identification Results, with 2006,
2007 and 2008 as possible session years (accessed May 2009).

easily. The MIREX endeavour offered a centralized so-

lution to this, comparing multiple algorithms on the same

evaluation data. However, as details regarding the eval-

uation dataset composition are not revealed to the partic-

ipants, only comparative information on total system per-

formance is provided, while algorithm behavior on specific

test cases once again remains unclear.

2.4 Contribution

To address the problems described above and gain more

in-depth understanding of CSR performance in current ap-

proaches, in this paper, we describe a comparative study

with two main focus points:

• to investigate the impact of choices in each individ-

ual general CSR system component listed above on

the CSR performance;

• to relate the achieved performance results to specific

test cases provided by the evaluation data.

The setup of this comparative study is explained in Sec-

tion 3, while the results are reported and discussed in Sec-

tion 4. We finish the paper in Section 5 with conclusions

and recommendations for future work.

3. EVALUATION SETUP

In this section we first explain the systems we selected and

implemented for our comparative study.

3.1 Basic Systems

3.1.1 Best CSR system in MIREX 2006

The system proposed by Ellis et al. in [2] was the best-

performing system in the first MIREX CSR Task, held in

2006. We use the implementation that has been made avail-

able by the author [3], which is very similar to this original

2006 MIREX CSR submission.

Regarding the feature representation, chromagrams

based on instantaneous frequency (CIF) are used. Features

are averaged over beats, which appears to be a semantically

intuitive choice, allowing robustness to tempo variances; a

beat tracker is needed in order to achieve this. For normal-

ization, each 12-bin chroma vector in the chromagram is

normalized to unit norm.

For similarity assessment, cross-correlation (CC) is per-

formed. In order to allow for different key transposi-

tions, all 12 possible chroma transpositions are considered

in this correlation step. Subsequently, a similarity score

is achieved through the maximum peak correlation value

found. This can be changed into a dissimilarity score by

taking the reciprocal of this value.

3.1.2 Best CSR system in MIREX 2007

The system proposed by Serrà et al. in [4] was the best-

performing system in the second MIREX CSR Task, held

in 2007. This system showed a striking performance in-

crease compared to all other systems; an improved version
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also convincingly showed the best performance results in

the 2008 MIREX CSR Task [5].

As no implementations of this system are publicly avail-

able, for the experiments described, the system has been

reimplemented from the literature, using the information

in [1, 4, 6]. The preprocessing steps (transient localiza-

tion and spectral normalization) have still been omitted in

our implementation, as it was not completely clear which

procedures were exactly followed for these steps. For the

same reasons, the system changes and parameter tunings

mentioned in [5] could not be implemented, so our im-

plemented system will show the most resemblance to the

MIREX 2007 submission by the authors.

For feature representation, Harmonic Pitch Class Pro-

files (HPCPs) [6] are used. These are chromagrams (or

pitch class profiles) in which each spectral peak contribu-

tion is weighted across multiple chroma bins. Additional

contribution is weighted into the final representation by

taking into account the first 8 harmonics of each spectral

peak. Averaging is done over a fixed number of frames,

as beat tracking was found to include additional errors that

decreased performance (this also was noted in [7]). Nor-

malization is performed by dividing a HPCP instance by

the maximal value found in this instance, yielding a profile

in which the maximum value is 1.

For matching, a procedure was devised called Dynamic

Programming Local Alignment (DPLA), using binary sim-

ilarity. For the two audio HPCP vectors to be matched,

first an Optimal Transposition Index is computed. Sub-

sequently, after applying the found optimal key transpo-

sition, a binary similarity matrix is constructed, based on

remaining optimal transposition indices per HPCP short-

time instance after the global transposition. Subsequently,

in a way similar to string or DNA matching, a dynamic

programming procedure with local constraints (for tempo

fluctuations) is applied. The best path found will decide

the similarity score, which is normalized to a dissimilar-

ity score. More information on these procedures can be

found in [1]. Parameter choices have been directly taken

from [1]; as for the averaging factor, the choice was made

to consider an averaging factor of 10 frames. Furthermore,

only 12-bin HPCPs are considered instead of the suggested

36 bins, as 12 bins were used both in the Ellis et al. system

and in later versions of the Serrà et al. system.

3.2 Considered Approaches

Using the systems described above, several possible gen-

eral design choices can be extracted. The following

choices have been verified in our algorithms:

• The general choice of feature representation: (1)

Chromagrams based on Instantaneous Frequency

(CIF), (2) Harmonic Pitch Class Profiles (HPCP)

and (3) Pitch Class Profiles (PCP), which are con-

structed similarly to HPCPs, but omitting the addi-

tional harmonic weighting.

• The averaging factor for the feature representation:

(1) averaging over beats and (2) averaging over a

fixed number of frames.

• The matching procedure for dissimilarity assess-

ment: (1) cross-correlation (CC) and (2) Dynamic

Programming Local Alignment (DPLA).

All possible combinations of these choices have been

tested, with three possible normalization choices regard-

ing feature representation: (1) no normalization, (2) nor-

malization to unit norm and (3) normalization by the max-

imum.

3.3 Performance measures

We evaluate the systems using 2 evaluation measures,

which also were adopted in the most recent MIREX evalu-

ations [8]:

• (Arithmetic) Mean of average precisions (MAP);

• Mean rank of 1st correctly identified cover (MR1st).

The most recent MIREX evaluations employ two more

evaluation measures focusing on the top-10 retrieval re-

sults. However, in our experiments, only MAP and MR1st

will be suitable performance indicators: our datasets,

which are discussed hereafter, contain cover sets of dif-

ferent sizes, as opposed to the MIREX dataset which con-

tained 10 relevant cover versions per query song.

3.4 Datasets

4 datasets have been used in our experiments, which will

be described now. The construction and choice for the

datasets has largely been motivated by the need to provide

clear and designated test cases. The choice was made to

use 4 separate datasets in order to provide a clear-cut cor-

pus per dataset. All audio tracks have been converted to the

MP3 format. For each dataset, each audio file in the dataset

was matched against all other files in the same dataset.

3.4.1 Covers80 dataset

This dataset, containing pop song covers, was made avail-

able by Ellis [3]. 166 recordings are included, encompass-

ing 80 ‘cover sets’, which means the average number of

versions is just 2.05. With the dataset being constructed

rather randomly, musical variants within the dataset differ

greatly and interpreting performance measures will be dif-

ficult. We decided to include results on this set anyway for

reference reasons.

3.4.2 Beethoven piano sonatas

This dataset contains multiple interpretations of move-

ments from 4 Beethoven piano sonatas. The data in this

dataset originates from private music collections of the au-

thors and the Beeld en Geluid (BeG) vinyl collection 3 in

the European archive. The dataset contains 128 record-

ings, encompassing 13 ‘cover sets’. As piano sonatas are

3 http://europarchive.org/collection.php?id=

public classical music BeG, accessed May 2009.
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considered, all covers will consist of very similar instru-

ment timbres and will be played in exactly the same key.

Therefore, the set has very clear invariants and poses well-

defined (although not too challenging) similarity tasks. A

set of similar composition was used for a CSR system men-

tioned in [9], which showed near-perfect performance.

3.4.3 Songs

This dataset departs from recordings of classical art songs

that were performed at the 1st International Student Lied

Duo Competition, held in Enschede in April 2009. It con-

tains study recordings from one of the participating duos,

made at rehearsals and try-outs in preparation for the com-

petition. Additionally, recordings of all the participants

made during the official competition rounds are included.

More specifically, included songs encompass compulsory

songs, as well as songs that were performed by multiple

different participants. Finally, the set was extended with

extra song interpretations from private music collections,

the BeG vinyl collection and the vinyl recordings from the

King’s Sound Archive 4 . In total, the dataset contains 205

recordings, encompassing 21 ‘cover sets’.

At the competition, recordings have been made with

two different pairs of microphones at two different loca-

tions in the hall (on stage and in the hall). While record-

ings from these two pairs contain exactly the same musical

interpretation, the recordings do show considerable acous-

tical differences. As this poses an interesting test case for

the CSR algorithms, the takes from both microphone pairs

have been included in the dataset.

Both this songs dataset and the Beethoven dataset con-

sider multiple interpretations of exactly the same score.

The problem of retrieving such interpretations has some-

times been considered as a subtask within CSR, known as

opus retrieval. The difference between both sets is that the

songs set shows much more variation in instrument timbre

and musical keys, as the performing singers have different

voice types.

3.4.4 Beatles

This dataset aims at being a slightly more specific dataset

than the covers80 set with larger ‘cover set’ sizes, while

still reflecting a similar corpus. The dataset contains orig-

inal Beatles songs (including alternative takes and ver-

sions), as well as various covers taken from tribute CDs,

including Baroque, R&B, Latin and easy listening styles.

In total there are 197 audio files, encompassing 51 ‘cover

sets’. On one of the CDs used, 4 covers were present of

songs from individual Beatles members. These were in-

cluded in our database without providing alternative ver-

sions. Typical CSR evaluation experiments contain even

more of such ‘outlier noise’ files in evaluation datasets (e.g.

MIREX), but in our experiments they explicitly have not

been included extensively in order to focus on system be-

havior on actual covers.

4 http://www.kcl.ac.uk/kis/schools/hums/music/

ksa/ksa sound.html, accessed May 2009.

4. RESULTS

Each of the possible combinations mentioned in Subsec-

tion 3.2 has been tested on all 4 datasets. The resulting

MAP and MR1st scores are plotted twice, both in Figure 1

and Figure 2. While the performance scores are the same

in both figures (expressed in data points at the same loca-

tions on the vertical axis), the used data markers indicate

different system choices. In Figure 1, the data point mark-

ers indicate corresponding combinations of feature rep-

resentations and dissimilarity assessment, while the data

point markers in Figure 2 indicate corresponding combi-

nations of normalization and averaging choices. In the fig-

ures, baseline results for random guessing are indicated as

well, which were obtained by generating 50 random simi-

larity matrices for each dataset and averaging the obtained

results. Because of space limitations, only the results of

the best-performing system combinations are numerically

expressed in Table 1.

Dataset MAP MR1st

covers80 0.648 15.817

Beethoven 1 1

songs 0.986 1

Beatles 0.693 5.699

Table 1. Best performance scores for each of the datasets

The best results turn out to occur for the same combina-

tion consistently: the CIF feature representation, averaged

over a fixed number of 10 frames, normalized to unit norm

and with dissimilarity assessment based on DPLA. This

means aspects from both studied original systems combine

into an optimally performing system.

With respect to the feature representation choice, the

CIF representation generally does not perform worse than

HPCPs or PCPs. In the pop music datasets (covers80 and

Beatles), it even performs clearly better than HPCPs and

PCPs. Besides, as mentioned above, the CIF represen-

tation consistently occurs in the best-performing system

component combinations for each of the 4 datasets. Re-

garding the difference between HPCPs and PCPs, the har-

monic weighting in the HPCPs does not give convincing

performance increases when compared to PCPs. While

HPCPs were known to yield the highest correlation scores

when compared to symbolic note information [6], this does

not appear to be a convincing advantage in the CSR prob-

lem, which deals with approximate matches.

The notion in [1,4] that DPLA dissimilarity assessment

yields much better results than CC is convincingly con-

firmed for all 4 datasets. This also holds for the state-

ment in [1, 4, 7] that averaging over a fixed number of

frames improves performance in comparison to averag-

ing over tracked beats. While all better-performing sys-

tem combinations contain normalized feature representa-

tions, the performance increase from the normalization

step is much smaller than the increases caused by choos-

ing DPLA dissimilarity and averaging over a fixed number

of frames. Furthermore, there is no specific normalization
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Figure 1. MAP and MR1st for the 4 datasets with feature and dissimilarity assessment choices indicated.
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Figure 2. MAP and MR1st for the 4 datasets with normalization and averaging choices indicated.

choice performing convincingly better than other normal-

ization choices.

As expected, the results for the classical opus retrieval

cases (Beethoven and songs) are better than those on the

pop music datasets. However, it is remarkable how close

the performance on both classical datasets is, despite the

much larger variations in timbre and key in the songs

dataset. Errors in near-perfect results on the Beethoven

set are caused by the historic vinyl recordings, which are

degraded in quality compared to modern recordings. How-

ever, as shown in Table 1, the best-performing system com-

bination was robust to the vinyl recording sound distor-

tions, having perfect retrieval results on this set. In the

Beatles database, if besides a query multiple alternative
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recordings of the same artists exist, these recordings are

ranked very high in the retrieval results. However, the per-

formance results worsen because of the inability of all im-

plemented approaches to deal with the freer covers, such

as the easy listening piano versions of the Beatles songs.

The similarity test cases posed by the songs dataset

demonstrate some other interesting properties of the cur-

rent CSR approaches. If a song is available in multiple

interpretations from the same musicians, these interpreta-

tions are usually ranked higher than interpretations of other

musicians. This might be due to timing aspects rather than

timbral aspects, as interpretations of other singers of the

same voice type as the singer in the query do not consis-

tently rank higher than interpretations of other singers of

other voice types or even the other gender. This validates

the hypothesis that the followed approaches show timbre-

robustness. The claimed key invariance of all approaches

is also confirmed in our results, as songs sung in the same

key as a query do not always rank higher than recordings

of the song in other keys.

In the best system combinations for the songs database,

if an alternate microphone recording of a given song is

available, it is retrieved as the best-matching song. How-

ever, while such recording pairs undoubtedly contain ex-

actly the same musical interpretation, the found dissimi-

larity scores of both pair members compared to a query

of another interpretation are not identical. It even is not

guaranteed that both pair members will be neighbors in the

corresponding dissimilarity ranking to the query. This is an

interesting notion that does not match our human notion of

interpretation similarity.

5. CONCLUSION AND DISCUSSION

In this paper, more insight into the performance of current

CSR approaches was sought through a comparative study,

in which different combinations of CSR system compo-

nents were evaluated on 4 carefully constructed datasets.

The obtained results show that choices that semantically

seemed intuitive do not necessarily yield better perfor-

mance results: including harmonic weighting into a fea-

ture representation does not convincingly show perfor-

mance improvement, while averaging the representations

over beats actually makes the results worse.

Regarding the system components, the best feature rep-

resentation found consistently in our experiments is the

CIF representation, which is not the representation used

in the best MIREX systems of 2007 and 2008. However,

the dissimilarity assessment method used in those systems,

binary similarity using DPLA, gives a large performance

increase in comparison to using CC. This suggests that the

dissimilarity measure has been the crucial factor in the suc-

cess of the best MIREX CSR system submissions of 2007

and 2008. The remaining system aspect that was tested,

the feature normalization, only gives a slight increase in

performance.

Successful CSR system component combinations can

deal very well with opus retrieval tasks, even if large tim-

bre and key variance is present. However, ranking results

for the different microphone recording pairs in the songs

dataset show different ranks for identical musical interpre-

tations which only differ in terms of the acoustical con-

ditions. Therefore, the difference in the dissimilarity must

be due to the feature representation, suggesting that further

improvement is still possible here.

While the major changes from the best-performing sys-

tem of MIREX 2007 to that of 2008 mainly focused on

improving the dissimilarity assessment part [5], improve-

ment possibilities in the other system components, espe-

cially the feature representation, are clearly not excluded.

Further experiments are needed into alternatives that will

be able to yield results that better approach our human no-

tions of cover song similarity.
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ABSTRACT

We investigate an approach to a music search engine

that indexes music pieces based on related Web documents.

This allows for searching for relevant music pieces by is-

suing descriptive textual queries. In this paper, we exam-

ine the effects of incorporating audio-based similarity into

the text-based ranking process – either by directly modify-

ing the retrieval process or by performing post-hoc audio-

based re-ranking of the search results. The aim of this com-

bination is to improve ranking quality by including relevant

tracks that are left out by text-based retrieval approaches.

Our evaluations show overall improvements but also ex-

pose limitations of these unsupervised approaches to com-

bining sources. Evaluations are carried out on two col-

lections, one large real-world collection containing about

35,000 tracks and on the CAL500 set.

1. MOTIVATION AND RELATED WORK

In the last years, the development of query-by-description

music search engines has drawn increasing attention [1–

5]. Given the size of (commercial) digital music collec-

tions nowadays (several millions of tracks), this is not a

big surprise. While most “traditional” music retrieval ap-

proaches pursue a query-by-example strategy, i.e., given a

music piece, find me other pieces that sound alike, query-

by-description systems are capable of retrieving relevant

pieces by allowing to type in textual queries targeting mu-

sical or contextual properties beyond common meta-data

descriptors. As this method of issuing queries is the com-

mon way to search the Web, it appears desirable to offer

this type of functionality also in the music domain.

Several approaches to accomplish this goal have been

presented – all of them with a slightly different focus. In [1],

Baumann et al. present a system that incorporates meta-

data, lyrics, and acoustic properties all linked together by

a semantic ontology. Queries are analyzed by means of

natural language processing and tokens have to be mapped

to the corresponding concepts. Celma et al. [2] use a Web

crawler focused on audio blogs and exploit the texts from
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the blogs to index the associated music pieces. Based on

the text-based retrieval result, also musically similar songs

can be discovered. In [3], we propose to combine audio

similarity and textual content from Web documents ob-

tained via Google queries to create representations of mu-

sic pieces in a term vector space. A modification to this

approach is presented in [6]. Instead of constructing term

vector representations, an index of all downloaded Web

documents is created. Relevance wrt. a given query is as-

sessed by querying the Web document index and applying

a technique called rank-based relevance scoring that takes

into account the associations between music tracks and

Web documents (cf. Section 2.1). Evaluations show that

this document-centered approach is superior to the vector

space approach. However, as this method is solely based

on texts from the Web it may neglect important acoustic

properties and suffer from effects such as popularity bias.

Furthermore, inadequately represented tracks and tracks

not present on the Web are penalized by this approach. In

this paper, we aim at remedying these shortcomings and

improving ranking quality by incorporating audio similar-

ity into the retrieval process.

Recently, the method of relevance scoring has also been

adapted to serve as a source of information for automat-

ically tagging music pieces with semantic labels. In [5],

Barrington et al. successfully combine audio content fea-

tures (MFCC and Chroma) with social context features

(Web documents and last.fm tags) via machine learning

methods and therefore improve prediction accuracy. The

usefulness of audio similarity for automatic tagging is also

shown in [4] where tags from well-tagged tracks are prop-

agated to untagged tracks based on acoustic similarity.

The remainder of this paper is organized as follows: In

the next section we review methods for Web-based mu-

sic track indexing and audio-based similarity computation.

Section 3 describes two possible modifications of the ini-

tial approach that are examined in Section 4. In Section 5,

based on these results, we discuss perspectives and lim-

itations of combining Web- and audio-based approaches

before drawing conclusions in Section 6.

2. INCORPORATED TECHNIQUES

In the following, we explain the methods for constructing

a Web-based retrieval system and calculating audio simi-

larity, which we combine in Section 3.
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2.1 Web-based Indexing and RRS Ranking

The idea of Web-based indexing is to collect a high num-

ber of texts related to the pieces in the music collection

to gather many diverse descriptions (and hence a rich in-

dexing vocabulary) and allow for a large number of possi-

ble queries. In our first approach, we aimed at permitting

virtually any query by involving Google for query expan-

sion [3]. When introducing rank-based relevance scoring

(RRS), we renounced this step in favor of reduced com-

plexity and improved ranking results [6]. From our point it

is very reasonable to limit the indexing vocabulary to terms

that actually co-occur with the music pieces (which is still

very large). Construction of an index with a corresponding

retrieval scheme is performed as follows.

To obtain a broad basis of track specific texts, for each

music piece m in the collection M , three queries are issued

to Google based on the information found in the id3 tags

of the music pieces:

1. “artist” music

2. “artist” “album” music review -lyrics

3. “artist” “title” music review -lyrics

For each query, at most 100 of the top-ranked Web pages

are retrieved and joined into a set (denoted as Dm in the

following). For retrieval, we utilize the open source pack-

age Nutch 1 . Beside efficient retrieval, a further benefit is

that all retrieved pages are also automatically indexed by

Lucene 2 that uses a tf xidf variant as scoring function [7].

The resulting Web page index is then used to obtain a rel-

evance ranking of Web pages for arbitrary queries. This

page ranking, together with the information on associa-

tions between pages and tracks, serves as input to the RRS

scheme. Compared to the original formulation in [6], we

introduce the additional parameter n that is used to limit

the number of top-ranked documents when querying the

page index. For large collections, this is necessary to keep

response time of the system short. For a given query q and

for each music piece m, scores are calculated as:

RRSn(m, q) =
∑

p∈Dm∩Dq,n

1 + |Dq,n| − rnk(p,Dq,n),

(1)

where Dm is the set of text documents associated with

music piece m (see above), Dq,n the ordered set (i.e., the

ranking) of n most relevant text documents with respect to

query q, and rnk(p,Dq,n) a function that returns the rank

of document p in Dq,n (highest relevance corresponds to

rank 1, lowest to rank |Dq,n|). The final relevance ranking

of music tracks is then obtained by sorting the music pieces

according to their RRS value.

Note that, as suggested in [5, 8], we also experimented

with a weight-based version of relevance scoring (WRS)

that incorporates the scores of the Web page retrieval step

rather than the ranks. In our framework this modification

1 http://lucene.apache.org/nutch
2 http://lucene.apache.org

worsened performance. Possible explanations are the dif-

ferences in the underlying page scoring function or the dif-

ferent sources of Web pages (cf. [8]).

2.1.1 Pseudo-Document Indexing

Instead of modifying the page scoring scheme, we invented

a simple alternative approach for text-based indexing that

lies conceptually between the first vector space approach [3]

and the relevance scoring scheme. For each music piece

m, we concatenate all retrieved texts (i.e., all texts from

Dm) into a single document which we index with Lucene.

Hence, each music piece is represented by a single docu-

ment that contains all relevant texts. Querying this pseudo-

document index results directly in a ranking of music pieces.

This rather “quick-and-dirty” indexing method will serve

as a reference point in the evaluations and give insights

into the capabilities of purely Web-based retrieval.

2.2 Audio-Based Similarity

For calculating music similarities, or more precisely, dis-

tances of tracks based on the audio content, we apply our

algorithm which competed successfully in the “Audio Mu-

sic Similarity and Retrieval” task of MIREX 2007 [9]. For

each piece of music, Mel Frequency Cepstral Coefficients

(MFCCs) are computed on short-time audio frames to char-

acterize the frequency distribution of each frame and hence

model aspects of timbre. On each frame, 25 MFCCs are

computed. Each song is then represented as a Gaussian

Mixture Model (GMM) of the distribution of MFCCs using

a Single Gaussian Model with full covariance matrix [10].

The distance between these models is denoted by dG.

Beside the MFCC-based distance component, also Fluc-

tuation Patterns (FPs) are computed as proposed in [11]. A

track is represented as a 12-band spectrogram and for each

band, a Fast Fourier Transformation (FFT) of the ampli-

tude is taken over a window of six seconds. The result-

ing matrix is referred to as the Fluctuation Pattern of the

song. The FPs of two songs are compared by calculating

the cosine distance, denoted by dFP . Furthermore, two ad-

ditional FP-related features are computed: Bass (FPB) and

Gravity (FPG). These two features are scalar and the dis-

tance between two songs is calculated by subtracting them,

denoted by dFPB and dFPG. To obtain an overall distance

value d measuring the (dis)similarity of two songs, all de-

scribed distance measures are z-normalized and then com-

bined by a simple arithmetic weighting:

d = 0.7 · zG + 0.1 · (zFP + zFPB + zFPG) (2)

where zx is the value of dx after z-normalization. Fi-

nally, distances between two songs are symmetrized. For

similarity computation, we ignore all pairs of songs by the

same artist (artist filtering, cf. [12]) since this similarity is

already represented within the Web features.

3. COMBINATION APPROACHES

This section describes two different approaches for com-

bining the purely text-based retrieval approach with the
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audio-based similarity information. According to [5, 13],

the first approach can be considered an early fusion ap-

proach, since it incorporates the audio similarity informa-

tion directly into the relevance scoring scheme, whereas

the second approach can be considered a late fusion ap-

proach, since it modifies the ranking results obtained from

the Web-based retrieval. Basically, both algorithms in-

corporate the idea of including tracks that sound similar

to tracks already present through text-only retrieval. The

score of a track m is calculated by summing up a score

for being present in the text-based ranking and scores for

being present within the nearest audio neighbors of tracks

associated with the text-based ranking.

3.1 Modifying the Scoring Scheme (aRRS)

With this approach, we try to incorporate the audio simi-

larity directly into the scoring scheme of RRS. The advan-

tage is that this has to be calculated only once and does not

require post-processing steps. The audio-influenced RRS

(aRRS) is calculated as:

aRRSn(m, q) =
∑

p∈Pm,q,n

RF (p,Dq,n) ·MF (m, p), (3)

RF (p,Dq,n) = 1 + |Dq,n| − rnk(p,Dq,n), (4)

MF (m, p) = α · I(p,Dm) +
∑

a∈Am

I(p,Da), (5)

where Pm,q,n = (Dm ∪ DAm
) ∩ Dq,n, Na,k the k near-

est audio neighbors of a, Am the set of all tracks a that

contain m in their nearest audio neighbor set, i.e., all a for

which m ∈ Na,k, DAm
the set of all documents associ-

ated with any member of Am, and I(x,D) a function that

returns 1 iff x ∈ D and 0 otherwise. Informally speak-

ing, also tracks sounding similar to track m participate if a

page relevant to m occurs in the page ranking for query q.

The parameter α is used to control the influence of tracks

that are directly associated with a Web page (in contrast to

tracks associated via audio neighbors). In our experiments

we set α = 10. Note that aRRS is a generalization of RRS,

as they are identical for k = 0.

3.2 Post-Hoc Audio-Based Re-Ranking (PAR)

The second approach incorporates audio similarity into an

already existing ranking R. The advantage of this approach

is that it can deal with outputs from arbitrary ranking al-

gorithms. The post-hoc audio-based re-ranking (PAR) is

calculated as:

PAR(m,R) =
∑

t∈(m∪Am)∩R

RF (t, R) ·NF (m, t), (6)

NF (m, t) = α·I(m, {t})+G(rnk(m,Nt,k))·I(m,Nt,k),
(7)

G(i) = e−
(i/2)2

2 /
√

2π, (8)

We included the gaussian weighting G in this re-ranking

scheme because it yielded best results when exploring pos-

sible weightings. Parameter α can be used to control the

scoring of tracks already present in R. Note that for k = 0,

R remains unchanged.

4. EVALUATION

For evaluation, we decided to use two test collections with

different characteristics. The first collection is a large real-

world collection and contains mostly popular pieces. The

second collection is the CAL500 set, a manually annotated

corpus of 500 tracks by 500 distinct artists [14]. In the

following, we describe both test collections in more detail.

4.1 The c35k Collection

The c35k collection is a large real-world collection, orig-

inating from a subset of a digital music retailer’s catalog.

The full evaluation collection contains about 60,000 tracks.

Filtering of duplicates (including remixes, live versions,

etc.; cf. [3]) reduces the number of tracks to about 48,000.

As groundtruth for this collection, we utilize last.fm tags.

Tags can be used directly as test queries to the system and

serve also as relevance indicator (i.e., a track is considered

to be relevant for query q if it has been tagged with tag

q). From the 48,000 tracks, we were able to find track-

specific last.fm tags for about 35,000 of the tracks. To ob-

tain a set of test queries, we started with last.fm’s list of

top-tags and manually removed tags useless for our pur-

pose (such as seen live or tags starting with favorite). We

also searched for redundant tags (such as hiphop, hip hop,

and hip-hop) and harmonized their sets of tagged tracks.

However, all forms are kept as queries if they translate to

different queries (in the example above, hiphop translates

to a query with one token, hip hop to two tokens, and hip-

hop to a phrase). As result, a set of 223 queries remained.

From the 223 tags we further removed all tags with a num-

ber of associated tracks above the 0.95-percentile and be-

low the 0.05-percentile, resulting in 200 test queries. A

common way to increase the number of tagged examples

is to use artist-specific tags if no track-specific tags are

present [3, 8]. Since, in our indexing approach, tracks by

the same artist share a large portion of relevant Websites,

we decided against combination with artist tags to avoid

overestimation of performance.

4.2 The CAL500 Set

The CAL500 set is a highly valuable collection for mu-

sic information retrieval tasks [14]. It contains 500 songs

(each from a different artist) which are manually anno-

tated by at least three reviewers. Annotations are made

wrt. a vocabulary consisting of 174 tags describing musi-

cally relevant concepts such as genres, emotions, acoustic

qualities, instruments, or usage scenarios. Although we

consider the fact that our indexing approach is in princi-

ple capable of dealing with large and varying vocabularies,

some of these tags are not directly suited as query, espe-

cially negating concepts (e.g., NOT-Emotion-Angry) can
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Recall Precision Prec@10 r-Precision Avg. Prec. (MAP)

Baseline 100.00 3.65 3.60 3.65 3.68

Web only PAR Web only PAR Web only PAR Web only PAR Web only PAR

PseudoDoc 93.66 98.79 4.27 3.67 39.25 17.40 30.78 22.94 25.97 18.81

RRS aRRS PAR RRS aRRS PAR RRS aRRS PAR RRS aRRS PAR RRS aRRS PAR

n = 10 2.18 3.67 10.71 30.15 18.73 6.81 31.19 31.33 30.85 2.16 3.27 6.22 1.19 1.43 2.21
n = 20 3.74 6.16 16.89 29.02 17.95 6.57 32.40 32.15 32.40 3.63 5.17 8.46 1.84 2.25 3.37
n = 50 7.17 11.28 27.76 27.61 16.02 6.17 38.45 37.85 38.40 6.52 8.37 11.66 3.24 3.87 5.53
n = 100 12.72 19.64 39.41 25.99 13.72 5.66 44.10 43.55 43.95 10.24 12.52 14.74 5.54 6.51 8.44

n = 200 18.67 28.65 50.98 23.77 12.10 5.25 47.75 47.75 47.65 14.22 16.67 17.82 8.23 9.61 11.51
n = 500 29.31 44.10 66.60 20.12 9.77 4.81 50.30 49.95 50.15 19.84 21.58 22.02 12.39 14.02 15.91
n = 1000 40.38 58.17 77.63 16.88 8.12 4.50 52.55 51.80 52.35 24.22 24.52 25.21 16.10 17.56 19.23
n = 10000 80.50 95.19 96.68 7.29 4.25 3.85 57.45 57.50 38.20 35.20 32.81 32.26 29.98 28.48 26.45

Table 1. Evaluation results for the c35k collection: Both re-ranking approaches (aRRS and PAR) are compared against the

text-only RRS approach for different numbers of maximum considered top-ranked pages n. For both aRRS and PAR, we

set k = 50, for PAR, α is also set to 50. Values (given in %) are obtained by averaging over 200 evaluation queries.

Recall Precision Prec@10 r-Precision Avg. Prec. (MAP)

Baseline 100.00 13.32 13.33 13.31 14.31

Web only PAR Web only PAR Web only PAR Web only PAR Web only PAR

PseudoDoc 81.15 98.83 14.50 13.34 30.72 31.15 25.77 26.28 22.66 25.74

RRS aRRS PAR RRS aRRS PAR RRS aRRS PAR RRS aRRS PAR RRS aRRS PAR

n = 10 5.96 62.23 59.08 25.77 14.49 14.84 25.77 23.81 23.74 5.61 18.35 18.44 3.58 14.26 13.51
n = 20 10.19 80.90 75.90 24.87 13.99 14.34 25.98 26.40 25.61 8.84 20.55 20.70 5.30 18.36 17.20
n = 50 17.99 93.45 89.52 22.84 13.33 13.63 26.06 27.84 26.04 13.49 22.92 22.23 7.57 21.55 20.19
n = 100 26.80 96.60 94.78 21.02 13.15 13.39 29.30 30.07 29.28 18.05 23.88 23.79 10.59 23.07 22.41
n = 200 38.63 97.23 96.38 19.15 13.08 13.22 30.60 31.58 30.79 21.58 24.32 24.38 13.84 24.27 23.90
n = 500 56.31 97.37 97.05 16.86 13.07 13.15 32.68 32.52 33.17 24.06 25.79 25.91 18.02 25.19 25.27
n = 1000 66.91 97.47 97.18 15.54 13.06 13.13 33.47 33.45 33.60 24.86 25.90 26.52 20.37 25.85 25.64
n = 10000 73.27 97.61 97.31 14.56 13.05 13.13 33.62 33.74 33.67 25.06 26.95 26.76 21.77 26.58 25.82

Table 2. Evaluation results for the CAL500 set: Values are obtained by averaging over 139 evaluation queries. Apart from

that, the same settings as in Table 1 are applied.

not be used. Hence, we remove all negating tags. Fur-

thermore, we join redundant tags (mostly genre descrip-

tors). For tags consisting of multiple descriptions (e.g.,

Emotion-Emotional/Passionate) we use every description

as independent query. This results in a total set of 139 test

queries.

4.3 Evaluation Measures and Results

To measure the quality of the obtained rankings and the

impact of the combination approaches, we calculate stan-

dard evaluation measures for retrieval systems, cf. [15].

Table 1 shows the results for the c35k collection (averaged

over all 200 queries): The top row contains the baseline

that has been empirically determined by repeated evalu-

ation of random permutations of the collection. Not un-

expectedly, the incorporation of additional tracks via the

audio similarity measure leads to an increase in overall re-

call while precision is worsened. However, these global

measures are not too important since for rankings one is

in general more interested in how fast (i.e., at which posi-

tion in the ranking) relevant results are returned. To this

end, measures like Precision @ 10 documents, r-Precision

(i.e., precision at the rth returned document, where r is the

number of tracks relevant to the query), and (mean) aver-

age precision (i.e., the arithmetic mean of precision values

at all encountered relevant documents) give more insight

into the quality of a ranking. For r-Precision and aver-

age precision we can clearly see that PAR (and also aRRS)

perform better than text-based RRS. However, when com-

paring this to the pseudo-document indexing approach, we

see that this simple and efficient ranking technique is in

most cases even better than the combination with audio. 3

Thus, although audio similarity may improve results, it

can not keep up to a well working text-based approach.

Furthermore, we can see that incorporation of audio wors-

ens results if recall of the initial ranking is already high

(n=10000, PseudoDoc). The reason is that audio simi-

larity introduces a lot of noise into the ranking. Hence,

to preserve the good performance at the top of the rank-

ings, α should be set to a high value. On the other hand,

this prevents theoretically possible improvements. For the

CAL500 set (Table 2), things look a bit different. Here,

the aRRS approach performs clearly superior to RRS. Im-

provements can even be observed within the first ten docu-

ments. For this collection, also results of the PseudoDoc

approach can be improved by applying post-hoc audio-

based re-ranking. For comparison of different retrieval

strategies, we calculated precision at 11 standard recall

levels. For each query, precision P (rj) at the 11 stan-

dard recall levels rj , j ∈ {0.0, 0.1, 0.2, ..., 1.0} is inter-

polated according to P (rj) = maxrj≤r≤rj+1
P (r). This

allows averaging over all queries and results in character-

3 Note that the Web only recall value of PseudoDoc represents the up-
per bound for all purely text-based approaches.

582



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
re

c
is

io
n

 

 

RRS (n=10,000)

RRS−PAR (n=10,000)

RRS (n=500)

RRS−PAR (n=500)

RRS (n=100)

RRS−PAR (n=100)

Pseudo Doc

Pseudo Doc−PAR

Baseline

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Recall

P
re

c
is

io
n

 

 

aRRS (n=10,000)

aRRS (n=500)

aRRS (n=100)

RRS (n=10,000)

RRS (n=500)

RRS (n=100)

Baseline

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Recall

P
re

c
is

io
n

 

 

RRS−PAR (n=1,000, alpha=50)

RRS (n=1,000)

RRS−PAR (n=100, alpha=75)

RRS−PAR (n=100, alpha=50)

RRS−PAR (n=100, alpha=20)

RRS−PAR (n=100, alpha=1)

RRS (n=100)

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Recall

P
re

c
is

io
n

 

 

aRRS (n=1,000, k=100)

aRRS (n=1,000, k=50)

aRRS (n=1,000, k=25)

aRRS (n=1,000, k=10)

RRS (n=1,000)

aRRS (n=50, k=100)

aRRS (n=50, k=50)

aRRS (n=50, k=25)

aRRS (n=50, k=10)

RRS (n=50)

Figure 1. Precision at 11 Standard Recall Levels plots: The upper left plot depicts selected curves (averaged over all

queries) from evaluating the c35k set for comparison of the RRS approach and subsequent PAR re-rankings. The upper

right plot depicts (averaged) curves from the CAL500 set for comparison of the RRS and the aRRS approaches. The lower

figures are intended to give an impression of the effects of different parameters for PAR (left) and aRRS (right). Both are

calculated on the CAL500 set.

istic curves for each retrieval algorithm, enabling compari-

son of distinct algorithms/settings. Figure 1 depicts several

precision at 11 standard recall level curves. The two plots

at the top basically confirm what could be seen in tables 1

and 2. The two plots at the bottom show the influence of

parameters α and k on the retrieval quality.

Using the CAL500 set, we can (rather informally) eval-

uate how audio similarity influences retrieval of tracks from

the so-called “long tail”. To this end, we restricted the

set of relevant tracks for each query to contain only tracks

from the (in general not so well known) online record label

Magnatune. Absolute numbers resulting from this type of

evaluation are rather discouraging, however, when compar-

ing the results from RRS200 with those from aRRS200 on

this modified ground truth, a small improvement can be ob-

served (e.g., MAP increases from 2.03 to 3.68, rPrec from

2.44 to 2.82). Optimistically spoken, a positive tendency

is recognizable – from a more realistic perspective, both

results are disappointing. In any case, the impact on long

tail tracks needs a thorough investigation in future work.

5. DISCUSSION

We have shown that combining Web-based music index-

ing with audio similarity has the potential to improve re-

trieval performance. On the other side, we have also seen

that even an improved combined retrieval approach may

be outperformed by another, rather simple, text-only ap-

proach. Possible explanations are inadequate combination

functions and/or an inadequate audio similarity measure.

To estimate the potential of the audio similarity measure

for this task, we examined the 100 nearest audio neighbors

for every relevant track for a query and for every query,

i.e., at each position k = 1...100, we calculated the preci-

sion (wrt. the currently examined query). Figure 2 shows

the result averaged over all seed songs and queries for the

c35k collection. Within the top 10 neighbors, a precision

of around 7% can be expected in average based solely on

the audio similarity. However, it is questionable whether

this can be improved as audio similarity measures (stati-

cally) focus on specific musical properties, whereas textual
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Figure 2. Precision at audio-based nearest neighbor for the

c35k set (averaged over all queries; for every query average

of rankings with each relevant track as seed).

queries can be aimed at basically every aspect of music,

from different acoustic properties, to cultural context, to

completely unrelated things.

In general it has to be stated that proper combination of

these two sources is rather difficult since they target dif-

ferent directions and applications. Furthermore, a com-

bination function can not be optimized in advance to suit

every potential query, i.e., in contrast to, e.g., [5], auto-

matic learning of proper combination functions (e.g., via

machine learning methods) is not applicable for this task

since we have no learning target. More precisely, Web-

based music indexing as we currently apply it is an unsu-

pervised approach. This is implied by the requirement to

deal with a large and arbitrary vocabulary.

6. CONCLUSIONS AND FUTURE WORK

We proposed two methods to combine a Web-based music

retrieval system with an audio similarity measure to im-

prove overall ranking results and enable including tracks

not present on the Internet into search results. Based on our

evaluations, we could show that the overall ranking quality

can be improved by integrating purely acoustic similarity

information. However, we were also confronted with the

current limitations of this combination. The first results

gathered, open up new questions for future work, e.g., if

another audio similarity measure could produce more sub-

stantial results. Also the question of combining the dif-

ferent sources will be taken a step further. Possible fu-

ture enhancements could comprise clustering to find co-

herent groups of songs. This could be based on learning

from many queries and finding stable relations between

frequently co-occurring tracks. Another aspect that will be

dealt with in future work is the impact on tracks from the

long tail. Ideally, a combination would allow for retrieval

of relevant tracks irrespective of their presence on the Web.
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ABSTRACT

This paper presents a new method to refine music-to-score
alignments. The proposed system works offline in two
passes, where in the first step a state-of-the art alignment
based on chroma vectors and dynamic time warping is per-
formed. In the second step a non-negative matrix factor-
ization is calculated within a small search window around
each predicted note onset, using pretrained tone models of
only those pitches which are expected to be played within
that window. Note onsets are then reset according to the
pitch activation patterns yielded by the matrix factoriza-
tion. In doing so, we are able to resolve individual notes
within a chord. We show that this method is feasible of
increasing the accuracy of aligned note’s onsets which are
already aligned relatively near to the real note attack. How-
ever it is so far not suitable for the detection and correction
of outliers which are displaced by a large timespan. We
also compared our system to a reference method showing
that it outperforms bandpass filtering based onset detection
in the refinement step.

1. INTRODUCTION

Opposed to blind audio analysis there are several applica-
tions where the recording of an already known piece of
music has to be analysed. These applications range from
computational musicology, especially performance analy-
sis, and pedagogical systems to augmented audio players
and editors as well as special query engines. Knowing that
a huge number of symbolic transcriptions of classical as
well as modern pieces are publicly available, this leads to
the task of automatic music-to-score alignment.

Most current approaches are based on a local distance
measure – mainly chroma vectors or features derived from
chroma vectors – to compare the similarity between one
time frame of the audio and one time frame of the score
representation. These distances are then used by a global
optimization algorithm, usually Dynamic Time Warping
(DTW) or Hidden Markov Models (HMM), which finds
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the best matching alignment between these two feature se-
quences.

Recently much attention has been drawn on online algo-
rithms for audio-to-score alignment, also known as score
following, like described in [1]. However less work has
focused on improvements of the accuracy of offline algo-
rithms. In this paper we present ongoing work towards ac-
curate measurement of individual notes’ parameters. The
calculation of accurate alignments is not only of use for the
above mentioned applications but can also provide training
and test data for less informed tasks like blind audio tran-
scription [2].

We propose a two-pass system where in the first step a
standard alignment routine based on chroma vectors and
DTW is performed. In the second step this alignment is
refined using a non-negative matrix factorization (NMF)
approach. For each note a search window is set around
the estimated note onset. With each of theses windows
an NMF using pretrained tone models of only those notes
excepted to occur within the respective audio segment plus
a noise component is performed. In doing so, the system is
able to resolve individual note onsets within whole chords.

We will show that this method provides a good means
of refining the estimated onset times of notes that are rel-
atively well detected by standard alignment. However in
hard cases where the alignment deviates considerably from
the ground truth the method shown here is prone to errors
as well.

Section 2 is a brief overview of related work. In Sec-
tions 3 and 4 we explain the first alignment step and the
NMF-based refinement respectively. Section 5 contains a
description of the evaluation method used as well as the
experimental results before we conclude our work in Sec-
tion 6.

2. RELATED WORK

Much work, including [2–5], has focused on audio-to-score
alignment based on acoustic features and Dynamic Time
Warping (DTW). In [6] chroma vectors, Pitch Histograms,
and two Mel-Frequency Cepstrum Coefficient (MFCC) re-
lated features have been compared in the context of DTW
based audio matching and alignment. It was shown that
chroma vectors perform significantly better than the other
features.

Since DTW applied on two sequences of length n is of
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complexity O(n2) in time as well as in space the resolution
of the features used is limited by runtime as well as mem-
ory constraints. One way of refining audio alignments is to
increase this resolution while keeping computational costs
within reasonable bounds. This is done by multi-scale ap-
proaches like described in [5] or [7] where the resolutions
are increased iteratively but on the other hand search paths
are constrained by tentative solutions found so far.

The resolution based refinement does not overcome an
important side effect of alignments based on dynamic time
warping. Notes that are struck together in the score, like
it is the case for chords, can not be treated independently.
This is a major drawback in applications like performance
analysis, where the accurate timing of individual chord
notes is an important expressive characteristic. [8] and [9]
use pitch specific energy levels in order to estimate the tim-
ings of individual notes.

Another method to iteratively refine audio alignments
is a bootstrap approach as described by [4]. There an au-
dio segmenter is trained on an initial alignment. This seg-
menter can produce a refined alignment which is then used
for a repeated training step. This method allows for the ap-
plication of supervised machine learning techniques with-
out the need for external training data.

Non-negative matrix factorization, as used here, was
first applied to audio alignment in [10]. There, the com-
bination of NMF and Hidden Markov Models was able to
create alignments for polyphonic instruments in realtime.

3. BASIC ALIGNMENT

3.1 Chroma Feature

In the first pass the proposed system performs a state-of-
the-art audio-to-midi alignment based on chroma vectors
and Dynamic Time Warping. Chroma vectors have 12 ele-
ments representing the single pitch classes (i.e. C, C#, D,
D#,. . . ). The values are calculated based on a short time
Fourier transform. Each frequency bin is then related to
the index i of a pitch class by

i = round
(

12 log2

(
fk

440

))
+ 9 mod 12 (1)

where fk is the center frequency of the kth bin. The
tuning frequency is supposed to be 440 Hz but can easily
be changed to any other value. The summand 9 shifts the
vector such that the pitch class C has index 0. The individ-
ual values are then obtained by summing up the energies
of all bins corresponding to a certain pitch class.

A similar feature that yields comparable results has been
suggested by [11] which on the one hand takes only bins
containing energy peaks into account but on the other hand
also considers harmonics. At the extraction of the so called
Harmonic Pitch Class Profile the energy of a frequency bin
k does not only contribute to the pitch class best matching
the center frequency fk but also to those pitch classes best
matching fk/h with h = 2, 3, 4. . . . This accommodates

for the assumption that the energy in bin k can also rep-
resent the hth harmonic of a pitch. Since the energy of a
partial decreases with the order of the harmonic, an addi-
tional weighting factor of wharm = dh−1 with 0 < d ≤ 1
is introduced.

The calculation of the chroma representation based on
a MIDI file instead of audio data is straightforward since
each MIDI event can be directly assigned to the corre-
sponding pitch class. However when using the Harmonic
Pitch Class Profile, errors are made when letting the en-
ergy of the actual f0 contribute to the pitch classes cor-
responding to f0/3, f0/5,. . . . This inexactness has to be
reproduced in order to obtain equivalent representations of
audio and score. Likewise when using default chroma vec-
tors, contributions of a note to other pitch classes than the
one corresponding to the f0 caused by harmonics can be
considered as well.

Preliminary experiments have shown that chroma vec-
tors and Harmonic Pitch Class Profiles yield comparable
results. Therefore chroma vectors have been used for the
remainder of this work due to computational advantages.

3.2 Dynamic Time Warping

Based on this chroma representation a globally optimal
alignment is calculated. Therefore a sequence of chroma
vectors for the audio file as well as for the score represen-
tation is calculated. In doing so the score MIDI is divided
into time frames such that the overall number of frames
and the overlap ratio between frames is the same as of the
STFT applied on the audio data. The Euclidean distance is
used to compute a similarity matrix SM comparing each
frame of one feature sequence to each frame of the other
sequence, after all feature vectors have been normalized.
Mapping corresponding frames to each other is the same
as finding a minimal cost path through this similarity ma-
trix. A path through SMij is then equivalent to the align-
ment of frame i of the score feature sequence to frame j of
the performance feature sequence. Dynamic time warping
(DTW) is a well-established dynamic programming based
algorithm that finds such optimal paths. A detailed tutorial
can be found in [12].

In order to get meaningful results an alignment path has
to meet several constraints.

Continuity The constraint of continuity forces a path to
proceed through adjacent cells within the similarity
matrix. Jumps would be equal to skipping frames
without considering the costs of this operation.

Monotonicity The constraint of monotonicity in both di-
mensions guarantees that the alignment has the same
temporal order of events as the reference sequence.

End-point constraint The end-point constraint forces the
ends of the path to be the diagonal corners of the
similarity matrix. In doing so it is assured that the
alignment covers the whole sequences.

The optimal path according to DTW is calculated in two
steps. The forward step starts a partial path at the point
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[0, 0] and rates it with the cost SMij . Then it calculates the
minimum path costs for all other partial alignments ending
with frame i of the score being aligned to frame j of the
recorded performance in a recursive manner according to
equation 2.

Accu(i, j) = min


Accu(i− 1, j − 1) + SMij ∗ wd

Accu(i− 1, j) + SMij ∗ ws

Accu(i, j − 1) + SMij ∗ ws

(2)
The three options correspond to partial paths ending

with a diagonal step, an upwards step, and step to the right
within the similarity matrix SM . In addition to the actual
local distances, weights wd and ws are needed to yield rea-
sonable path costs. If there were no such weights, diagonal
paths would be strongly favored over straight ones which
are twice as long. Experiments have shown that the values
1.4 and 1.0 (still giving diagonal steps a preference over
straight ones) perform well. In our implementation we do
this cost calculation in place, i.e. overwriting the values
SMij by Accu(i, j) in order to save memory space.

The backtracking step of DTW starts as soon as all val-
ues Accu(i, j) have been calculated. Accu(N −1, M −1)
is the minimal cost of a complete alignment between the
two feature sequences. Therefore the optimal path is re-
constructed starting from [N − 1, M − 1] going back to
[0, 0]. In order to be able to do so, a second matrix is built
during the forward step, memorizing whether the last step
leading to a point [i, j] was diagonal, upwards, or to the
right.

4. NMF-BASED REFINEMENT

4.1 Non-negative Matrix Factorization

Within the last few years non-negative matrix factorization
(NMF) has become of increasing interest in the domain of
blind audio transcription. The basic idea is that an input
matrix V of size m × n is decomposed into two output
matrices W and H of size m × r and r × n respectively
where the elements of all these matrices are strictly non-
negative and

V ≈WH (3)

Assuming that V represents real-world data such fac-
torizations will most likely not be perfect. The reconstruc-
tion error caused by any deviation of WH from V can be
measured by a cost for which the Euclidean distance or the
I-divergence are common choices. In minimizing this cost
function, W and H are learned as an initially determined
number r of basis vectors and their activation patterns over
time respectively.

Performing such a decomposition on a spectrogram, as
obtained by a short time Fourier transform, will result in a
dictionary W of weighted frequency groups and their oc-
currence H over time. According to the input V and the
parameter r, the base components in W will, in the ideal
case, represent models of single pitches or chords played

on a certain instrument. But due to the unsupervised nature
of the method, elements of W might as well correspond to
special frequency patterns during the attack, sustain, or de-
cay phase of a note, single partial or just noise.

However, as soon as the piece and its score are known,
as it is the case in the context of audio alignment, the in-
strument(s) used to perform the piece are most probably
known as well. So there is no need to learn a set of base
components. Instead a number r of tone models can be
trained in advance which overcomes the above mentioned
uncertainty of unsupervised learning. Also the number and
kind of tone models can be adjusted to the respective piece.

With only H being left unknown Equation 3 can be
rewritten as

v ≈W · h (4)

where W is the fixed dictionary of tone models. v and
h are single column vectors of V and H that can now be
processed independently, which leads to a much simpler
decomposition task [13]. The vectors h are very sparse in
nature and represent an f0 estimation for the corresponding
frame.

Throughout this work the mean square criterion given
as

cerr =
1
2
‖Wh− v ‖22 (5)

is used as cost measure for factorization errors since
computationally efficient algorithms for its optimization
are available [14].

4.2 Tone Model Training

In order to get meaningful factorizations at least one tone
model per possible pitch has to be contained in W . Given
a set of training samples, such tone models can be trained
in advance using the same method as described above. In
the ideal case those training samples are audio recordings
of single pitches played on a certain instrument. Starting
from Equation 3 again, W and H become vectors w and h
since there is only one basis component present (r = 1).
h can further be approximated by the amplitude envelope,
leaving only w to be unknown. The actual computation is
then done by the same implementation as used during the
performing step of the algorithm.

Throughout this work we use an additional basis com-
ponent representing white noise. Experiments have shown
that such a noise model significantly improves the align-
ment results.

4.3 Local Refinement

In the first stage of the proposed system a music-to-score
alignment has already been performed. The advantage of
this alignment is that it is globally optimized and very ro-
bust. However independent from all parameters that can
be set, accuracy is limited by the fact, that such an align-
ment algorithm can never differentiate between notes that
are struck together in the score.
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To overcome this limitation and still preserve high ro-
bustness we define a search window of length l around the
initially estimated onset time. Within this local context the
refinement step tries to find the exact temporal position of
each individual (chord-)note. The parameter l has been
chosen to be 2 seconds since preliminary evaluation of the
first alignment step has shown that only a marginal number
of outliers deviates from the ground truth by more than a
second.

For each such search window the contained notes and
their pitches are determined in order to define the tonal
context of the note under consideration. This information
is used to build a dictionary W local made up by tone mod-
els describing only those pitches that are present within the
local context plus an additional (white) noise component.
The resulting activation patterns H are smoothed using a
median filter and used in order to extract following features
for each time frame.

Activation energy Since activation patterns H are very
sparse in nature (even when sparsity is not enforced),
activation energies greater than zero are strong indi-
cators for note positions.

Energy slopes The first derivative of the activation energy
corresponds to energy changes. Positive slopes as
they occur at note onsets are filtered by half wave
rectification.

Relative energy slopes Since transients at note onsets are
characterized by energy burst across the whole spec-
trum, other pitches – especially ones with shared
harmonics – might show low activation energies dur-
ing such phases as well. Therefore the increases in
energy of the pitch under consideration in relation to
the overall frame energy is also taken into account.

Experiments have shown that the maxima of the deriva-
tives are good predictors for note attacks while the maxi-
mal activation energy itself has turned out to be less sig-
nificant. Comparing the slope of the absolute energy to the
one of the relative energy revealed a slight advantage of
the relative energy derivative which was therefore chosen
as onset detection criterion.

5. EXPERIMENTAL RESULTS

5.1 Evaluation Method

We limit our evaluation to classical piano music using a
database consisting of the first movements of 11 Mozart
sonatas played by a professional pianist. The performance
was done on a computer monitored Bösendorfer SE290
grand piano, producing an automatic MIDI transcription
of the exact ground truth of played notes as well as pedal
events. Aligning a single movement instead of a whole
sonata at a time is a valid simplification since individual
movements are per default separate tracks on audio CDs.
Nevertheless the overall performance time of this test set
is still about one hour containing more than 30.000 notes.

The tone models used for the NMF-based refinement
have been learned from single tones played on the same
grand piano. Since such a recording was not available for
each pitch, the missing models have been acquired by sim-
ple interpolation.

For evaluation purpose we calculated an alignment for
each piece using the audio recording of the expressive per-
formance and a mechanical score representation in MIDI
format. We compared the resulting onset times to our given
ground truth data and took the absolute displacement as
evaluation criterion. This evaluation was done for the ini-
tial alignment step only as well as for the whole system
including the refinement.

Initial alignments were done using a short time Fourier
transform (STFT) with a window length of 4096 samples
and a hop size of 441 samples, which corresponds to a time
resolution of 100 frames per second. For the refinement
step a search window of radius one second was used and
the STFT hop size was reduced to 256 samples, resulting
in time frames of a length of 5.8 ms.

First experiments with this setup have shown that al-
though the calculation of the factorization base feature is
narrowed down to a small search window as well as a small
pitch range, it is still not as robust as expected. About 10%
of the notes have not been detected by the factorization step
and therefore left unchanged during refinement.

Concerning the remaining notes it turned out to be the
best strategy to only modify those notes where the initial
alignment position and the timing resulting from refine-
ment are approximately consistent. This is the case for
about half of the overall number of notes. In situations
where these two onset candidates differ by more than 20
frames (i.e. 116 ms) a conflict is detected – although its
resolution has been left to future work. One cause for such
conflicts are repeated notes which cannot be handled by
the simple detection mechanism as described above.

5.2 Evaluation Results

In Table 1 the limits of the quartiles as well as the 95th

percentile are given. Within the first three quartiles the
refinement has improved results for each individual piece.
However concerning notes that are displaced by more than
100 ms in the initial alignment tend to be displaced even
further by the refinement step.

For most applications a transcription is good as soon as
a human listener can not distinguish it from the original.
This implies that in the context of music-to-score align-
ment a note can be counted as correctly aligned if its devi-
ation from the ground truth is less than the just noticeable
difference of the human perception. In an experimental
environment, where listeners were asked to adjust the tim-
ing of one tone within a series, such that the inter-onset
intervals became perfectly regular, this just noticeable dif-
ference was investigated [15]. It was found to be around
10 ms for notes shorter than 250 ms and about 5% of the
note duration for longer ones.

Therefore an evaluation based on this criterion was done
as well. In Table 2 the amount of notes with a time dis-
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25% < x 50% < x 75% < x 95% < x
piece # notes duration

bas. ref. bas. ref. bas. ref. bas. ref.
kv279-1 2803 4:55 7 ms 5 ms 16 ms 12 ms 30 ms 27 ms 103 ms 101 ms
kv280-1 2491 4:48 11 ms 5 ms 23 ms 14 ms 42 ms 34 ms 126 ms 127 ms
kv281-1 2648 4:29 12 ms 6 ms 24 ms 15 ms 42 ms 36 ms 114 ms 112 ms
kv282-1 1907 7:35 10 ms 6 ms 23 ms 15 ms 53 ms 44 ms 337 ms 380 ms
kv283-1 3304 5:22 7 ms 5 ms 15 ms 12 ms 27 ms 26 ms 62 ms 65 ms
kv284-1 3700 5:17 7 ms 6 ms 15 ms 13 ms 31 ms 29 ms 97 ms 98 ms
kv330-1 3160 6:14 7 ms 5 ms 15 ms 11 ms 28 ms 24 ms 118 ms 124 ms
kv332-1 3470 6:02 9 ms 7 ms 20 ms 18 ms 39 ms 37 ms 138 ms 147 ms
kv333-1 3774 6:44 8 ms 5 ms 16 ms 13 ms 29 ms 20 ms 79 ms 80 ms
kv457-1 2993 6:15 10 ms 6 ms 19 ms 15 ms 37 ms 35 ms 214 ms 257 ms
kv475-1 1284 4:58 13 ms 11 ms 30 ms 24 ms 78 ms 75 ms 360 ms 393 ms

all 31534 1:02:39 8.3 ms 5.6 ms 18 ms 14 ms 35 ms 32 ms 132 ms 137 ms

Table 1. Comparison between accuracy after the basic alignment step (bas.) and the additional refinement (ref.)

x < 10 ms x < 50 ms
piece

bas. ref. bas. ref.
kv279-1 33.8% 43.2% 88.2% 88.4%
kv280-1 22.4% 42.5% 81.5% 85.0%
kv281-1 20.1% 38.5% 80.4% 83.4%
kv282-1 25.3% 39.2% 73.7% 76.8%
kv283-1 36.2% 44.2% 92.6% 92.2%
kv284-1 34.6% 41.7% 86.9% 87.2%
kv330-1 35.5% 46.7% 89.9% 89.7%
kv332-1 27.1% 32.5% 83.0% 82.7%
kv333-1 31.5% 42.2% 90.1% 90.1%
kv457-1 27.3% 35.9% 82.5% 83.2%
kv475-1 20.0% 23.6% 63.9% 66.8%

all 29.6% 40.0% 84.8% 85.6%

Table 2. Comparison between accuracy after the basic
alignment step (bas.) and the additional refinement (ref.)

placement less than 10 ms is shown for the initial and the
refined alignment. According to the chosen STFT time
resolution this corresponds to a deviation of one frame at
maximum. In addition the number of notes having a dis-
placement error less than 50 ms is given as well since this
is a common evaluation criterion in onset detection.

Again it is shown that the refinement improves those
notes already aligned relatively close to their real onset.
The amount of notes with displacement errors less than
10 ms was increased from about 30% to 40% while the
number of notes with errors below 50 ms was only mod-
erately changed from 84.8% to 85.6%.

5.3 Feature comparison

From the list of related work presented in section 2, [8] is
the one that presents the approach which is most similar to
the system proposed here. There onset detection by selec-
tive bandpass filtering is described in the context of score
supported audio transcription. According to this method a
note is found by summing up the energy in all frequency

fact. s.b.f.
25% < x 5.6 ms 10.0 ms
50% < x 14 ms 20 ms
75% < x 32 ms 40 ms
95% < x 137 ms 128 ms
x < 10 ms 40.0% 24.9%
x < 50 ms 85.6% 81.3%

Table 3. Comparison between refinement based on fac-
torization (fact.) and based on selective bandpass filtering
(s.b.f.) [8]

bands corresponding to the f0 as well as the harmonics of
a pitch and then finding a maximum in the derivative of
this indication function. In order to avoid the influence of
other pitches with overlapping harmonics, partials that col-
lide with those of an other note struck at the same time are
neglected.

We have compared our system to an own implemen-
tation of this approach. In doing so, we used the same
computational framework and only exchanged the factor-
ization feature in the refinement step by this onset detector
based on selective bandpass filtering. The accumulated re-
sults on the whole test set are shown in Table 3. It demon-
strates that bandpass filtering yields results less accurate
than those produced by NMF, and mostly even less accu-
rate than those achieved by the alignment based on chroma
vectors. A possible reason is that the STFT based ver-
sion of selective bandpass filtering relies on just a few fre-
quency bins while NMF takes the whole spectrogram into
account.

6. CONCLUSION AND FUTURE WORK

We have introduced a new method to increase accuracy of
music-to-score alignments by a two-pass system. Whereas
the first step consists of a state-of-the-art alignment using
chroma features and dynamic time warping the second step
is a refinement based on non-negative matrix factorization.
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We have shown that this refinement step performs very
well on notes which have already been detected relatively
close to their real onset time by the alignment step. The
number of notes placed with a time deviation below the
just noticeable difference according to [15] of 10 ms has
been increased from about 30% to 40%. This is remark-
able since so far only those notes without any conflicting
features have been modified.

However the method does not bring any improvements
for notes where the deviation of the initial alignment from
the ground truth is large. On one hand the refinement step
only works within a search window which should be kept
as small as possible. Notes that are misaligned such that
the actual onset is out of this window can never be cor-
rected by the method described here. On the other hand
chroma features as well as factorization based pitch sepa-
ration rely on prominent energy peaks in the spectrogram.
If the spectrogram is blurred due to heavy use of pedal or
very rich polyphony both approaches are prone to errors.

This clearly dictates future work to concentrate on the
problem of detecting and handling possible outliers and
’hard’ regions. The most obvious approach is to develop
a method of handling conflicting features as this is the case
for about 40% of all notes. We think that introducing a
tempo model and enforcing reasonable inter-onset inter-
vals entails the potential of further improvements.

Also the 10% of notes that have not been covered by
the factorization based feature are worth being reconsid-
ered. Standard STFT favors the detection of higher pitches
due to its linear frequency scale. Additional spectral trans-
formations like multi-rate filterbanks or a constant-Q trans-
form could help to enhance the note detection, especially
within low pitch ranges.
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ABSTRACT

Invariances are central concepts in content-based music re-
trieval. Musical representations and similarity measures
are designed to capture musically relevant invariances, such
as transposition invariance. Though regularly used, their
explicit definition is usually omitted because of the heavy
formalism required. The lack of explicit definition, how-
ever, can result in misuse or misunderstanding of the terms.

We discuss the musical relevance of various musical in-
variances and develop a set-theoretic formalism, for defin-
ing and classifying them. Using it, we define the most
common invariances, and give a taxonomy which they in-
habit. The taxonomy serves as a useful tool for idetinfying
where work is needed to address real world problems in
content-based music retrieval.

1. INTRODUCTION

To effectively perform content-based music retrieval
(CBMR), the intrinsic features of music must be taken into
account. Some of the most important features correspond
directly with invariances. Invariances related to pitch,
tempo and duration are widely used, but usually without
proper definition or discussion of their inter-relationship.
Indeed, a single term is sometimes used to name multiple
phenomena, admitting confusion about its real meaning.

Western musical scales may be transformed, or trans-
posed, to any other key so that the corresponding pitch in-
tervals remain intact. Indeed, Western people tend to listen
to music analytically, observing pitch intervals rather than
absolute pitch values. Thus, musical works are identified
regardless of the prevalent musical key. The same observa-
tion is valid for tempo: two pieces of music are considered
the same if the other is just played slower than the other
(i.e., a different time scale is used). So transposition and
time-scale invariance are important in CBMR applications.

However, in some cases mere transposition and time-
scale invariance are not enough. For example, in query
by humming, untrained singers often cannot produce pitch
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intervals accurately enough to constitute a match. To ad-
dress this, several pitch class generalizations have been
suggested, such as pitch contour [9] and qpi classification
[4]. Using these generalizations, only direction of inter-
val (contour) or the order of magnitude of interval (small,
medium or large) is observed, respectively.

In this paper, we will define what it means when a rep-
resentation or a method (algorithm) is invariant under a
given notion arising from a musical phenomenon. We will
give definitions for widely used invariances related to three
main dimensions of music: pitch, onset time and duration.
The latter two are temporal features and, usually, the third
is derivable from the second. However, it is sometimes use-
ful to separate them since the invariances as applied, cate-
gorised by our taxonomy, may differ. We will also define a
set of more abstract, structural invariances. All of these in-
habit a taxonomy that shows the relationships between the
invariances, and also serves as a tool for identifying areas
where further work in CBMR is needed.

2. DEFINING THE INVARIANCES

2.1 The representation

Let us start by defining the notion of a representation. In
this context, we are modelling an observed phenomenon
(music perception), and it is important not to presuppose
that the data is the phenomenon; therefore, making the rep-
resentation explicit is important too.

Let the size of a set S be denoted by |S|. Let the set
of ordered subsets of set S of size between n and m, in-
clusive, be denoted by Sn...m, and where n = m, Sn; S∗

is the power set of S. Given a set of features, fi ∈ F ,
each with a unique type, τi ∈ τ , identified by an injection
T : F 7→ τ , an abstract representation, ρ, is a subset of F .
The type of each feature should be a mathematical specifi-
cation (e.g., linear Abelian group for pitch) which is cho-
sen to model the corresponding reality appropriately [13].
Given an abstract representation, ρ, a concrete representa-
tion, r, is a set of tuples

{〈f,Σf ,�f ,Φf ,Πf 〉 | f ∈ ρ}

where Σf is an alphabet adequate to express f ,�f is a par-
tial order on Σf , Φf and Πf are sets of functions and predi-
cates, respectively, which apply to members of Σf defining
the operations and tests required for the algebra of T (f).
Wiggins et al. [13] give detailed examples of datatypes for
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Feature invariances Structural invariances
Pitch Onset Time Duration

Weaker/more specific transposition (2) ω-permutation (11/1)
↓ pitch-transposition (3) time-position (6) strongly permutation (11/2)
↓ pitch-warp (4) time-scale (7) time-scale (7) ω-concatenation (12/1)

Stronger/less specific Parsons (5) time-warp (9) duration-warp (8) strongly concatenation (12/2)

Table 1. A sparse taxonomy on considered invariances. An invariance in the table subsumes the invariances above it, if no
horizontal line appears in between. The number in parenthesis is that of the associated definition in Sections 2.4 and 3.

pitch and time. In general, �f is needed for the working
of our formalism, not for the representation itself (there
would be a member of Πf for this, where appropriate); it
is kept separate so that it may be different from any orders
that are internal to the feature implementation, if necessary.

Let .̂ be a function which maps a concrete representation
to its corresponding abstract representation.

Given a concrete representation, r, let an element e,
e ∈ r, be a set of values, ei, with concrete datatypes corre-
sponding with r.

Let a dataset, E, be a set of elements. E is in r iff each
ei in E is in r.

2.2 A concatenator

To define invariances, we use a concatenator constructor.
A concatenator, Cr′

ω (E), constructs a lexicographically
ordered multiset 1 of elements from a dataset, E, repre-
sented in r. The lexicographical order is specified by the
ordered set ω ∈ r̂1...|r| and the�i of the members of r cor-
responding with the members of ω. The superscript of the
concatenator r′ ⊆ r, gives the dimensions to be displayed.

For example, given a dataset, E, in an (abstract) rep-
resentation including {pitch, onset, duration} features,
the concatenator C{pitch}

{onset}(E) creates a set of pitches or-
dered by onset time; one might use it to extract the pitches
in a monophonic melody. If we generalise this to arbitrary
features and combinations thereof, and consider only se-
quences including the first note of a piece, we arrive at the
viewpoint representation of Conklin and Witten [3].

Evidently, the projective properties of this operator ac-
count for representational invariances where the invariant
feature is an explicit feature in the representation, or a com-
bination thereof. We use the term capture to denote this
capacity: so projection to subsets of the existing feature
set captures this kind of invariance.

For notational convenience we write operations applied
to each member of an ordered set in order as operations on
the set itself, where this is unambiguous, so, where A is a
set of values and e is a value, A · e = {a · e | a ∈ A};
similarly, the elements of two sets of the same size, A, B
may be combined pairwise in order under ·: A ·B = {a ·b |
ai ∈ A, bi ∈ B}. Finally, to combine a value, v ∈ Σf ,
under an operation, ·, with one feature, f , of an element

1 This is a multiset because it is possible for the concatenator to map
more than one element of E to any given element in the resulting repre-
sentation; it may be necessary to know that this has happened.

e, leaving other features unchanged, we write e ·f v, so
e+pitch k adds k to the pitch feature of e.

In order neatly to specify a particular kind of derived
invariance, we use 〈S〉·f , where S is an ordered set, to de-
note the ordered set produced by ordered, pairwise oper-
ation on the feature f of elements si ∈ S under ·. So,
〈S〉−f = {si+1 −f si | 1 ≤ i < |S|}. This oper-
ation has consequences for the representation of the re-
sult: each feature type must be replaced by a derived type
(corresponding with predefined ones where appropriate).
For our concerns here, pitch is replaced by interval, and
onset is replaced by ioi (inter-onset-interval), in the obvi-
ous way. We will need also a second-order derived invari-
ance to be used with onsets (arriving at ioi proportions),
thus: 〈〈S〉−onset〉÷ioi = { 〈si+i〉−onset

〈si〉−onset

| 1 ≤ i < |S| − 1}.

2.3 Representational invariance

Some invariances can be captured by a change of repre-
sentation. Whether or not this is possible depends on the
representation used and on the nature of the phenomenon
modelled. In many cases, a change of representation like
this can usefully be thought of as indexing, and so it is
helpful to know what remains invariant.

For example, because pitch can be modelled by an
Abelian group, it follows that for any set of pitches,E, thus
modelled, there is another set formed by combining a con-
stant member of Σpitch under the plus function in Φpitch

with each member of E (the members of Σpitch are by
definition in one-to-one correspondence with a partition of
Σinterval). It is implicit in the specification of the abstract
representation that this operation, which is mathematically
translation, models musical pitch transposition. Revers-
ing this argment, it follows that any sequence of pitches
can be expressed as a sequence of pitch differences, or
intervals. Now, again because of the mathematical prop-
erties of the representation, it happens that each such in-
terval is represented in Σpitch, and the algebra defined by
Φpitch models the additive behaviour of intervals too: they
also form an Abelian group. Thus, it is possible to pro-
duce a transposition-invariant version of any dataset, E, in
any representation which contains pitch and onset infor-
mation, by computing the ordered set whose members are
computed by calculating 〈C{pitch}

{onset,pitch}(E)〉−p . If the mu-
sic modelled by E is monophonic, then this is the familiar
interval sequence representation; however, if the music is
not monophonic, care must be taken, because the relative
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nature of this representation makes its values dependent on
their position in the sequence generated by the concate-
nator; therefore, one cannot apply many of the operations
one would like. This fact is well-known to representers
of music: an interval-based representation is not readily
amenable to the representation of non-monophonic music.
However, in this change of representation, relatively little
information is lost: just one constant value, which tells us
on what pitch the original dataset started; given that infor-
mation, the entire original E may be reconstructed. In this
sense, we say that the change is structurally conservative.
However, though useful in itself, this property is neither
necessary nor sufficient for a transformation to be useful.

For example, a familiar invariance transformation is that
based on perceptual octave-equivalence, used in comput-
ing a chromagram. Here, perception maps exactly on to
the mathematics, and so perceptual octave equivalence can
be modelled by a chromatic equality function, defined as
equality modulo n, where n is the number of divisions of
the octave being used in the underlying scale of the pitch
system. Here, Σchroma can very usefully be a contiguous
subset of Σpitch, so Z12 does very nicely, and Φchroma and
Πchroma are equally easily defined. However, this repre-
sentation change is also not, in general, structurally conser-
vative, and it is mathematically evident why: the mapping
from Z to Z12 is many-to-one, and so information is lost.
The same principle, with a mapping to Z8, gives scale-
degree representation, which is also octave-invariant.

A more interesting example is contour, an important as-
pect of melodic memory [8, §2.3]; Parsons coding [9] is a
common way to represent the contour of music. However,
ΣParsons = {−, 0,+}; it is not possible to give a fully de-
fined plus function over this set, while maintaining it as a
model of musical contour, for obvious reasons. Therefore,
we confirm that information is lost in changing to a repre-
sentation whose pitch is based on Parsons coding, and one
can argue this in advance because the abstract type of the
Parsons code is not as expressive as a linear Abelian group.
Thus, change of representation to Parsons code from, say,
MIDI, is not structurally conservative. The same applies
to comparable but more detailed interval-based representa-
tions such as the qpi alphabet [4].

Parsons coding captures an invariance which is stronger
than transposition invariance in the sense that the equiva-
lence classes it creates are fewer and larger. We will de-
fine two such invariances. In these, contour is preserved,
but interval size is not—formal specifications are given in
Definitions 4 and 5. Transposition from major to paral-
lel minor is a (rather cautious) example of pitch warping;
so, more generally, are interval augmentation and diminu-
tion in contrapuntal theory, or expansion and contraction
in the music of Bartók. We note that among the passages
captured by pitch warping lie also the equivalent transposi-
tions, and this confirms that the stronger pitch-warp invari-
ance is a indeed generalisation of transposition invariance.
Therefore, a content-based music retrieval technique using
Parsons coding can be seen as a filtering technique for find-
ing transposed occurrences of a query (only filtering and

not identifying, because false positives will be generated).
Our remaining common musical features, onset time

and note duration, and the corresponding invariances (see
Table 1) can be dealt with in the obvious way using the
concatenator. For instance, given two datasets, B and B′
in the same representation 2 , two ioi sequences produced
by the appropriate concatenator are time-scaled versions of
each other if there is a number 3 d such that

C
{ioi}
{onset}(B) = C

{ioi}
{onset}(B′)×ioi d.

A similar observation to that above, that time-warp invari-
ance is stronger than time-scale invariance, applies here.

2.4 Algorithmic invariance

Music comparison is usually carried out in practice by an
algorithm using a distance measure. Like representations,
measures can be invariant under some property. At this
level, we speak about algorithmic invariances. The fol-
lowing partial definition is a necessary but not sufficient
condition to that end; it will be completed below.

Definition 1 LetM be a CBMR method and P a property
of a finite space 4 , where |P | is the size of the space under
consideration. M is algorithmically P -invariant , if work-
ing on datasets in representations in which the underlying
datatype(s), explicit or implicit, of P does not introduce a
factor into the computational complexity ofM that is de-
pendent from |P |.

This definition rules out invariances achieved by dis-
cretizing a search space, enumerating it, and then search-
ing exhaustively. Although such methods are sometimes
called P -invariant in the MIR literature, this is really not
the case; they are methods that merely appear to take ad-
vantange of invariance via brute-force calculation.

2.4.1 Pitch invariances

We now define the invariances in our taxonomy (Table 1),
starting with pitch. Recall that our sets are by default
ordered multisets. We omit duration, which is derivable
from ioi, and abbreviate {pitch, interval, onset, ioi} to
{p, i, o, ioi}, respectively.

Definition 2 Let r be a representation including pitch and
onset. A distance function D is transposition-invariant iff

∀a, b ∈ Σp.∀A,B in r.D(C r̂
{o}(A), C r̂

{o}(B)) =
D(C r̂

{o}(A) +p a,C
r̂
{o}(B) +p b).

It may be helpful to visualise Definition 2, as in Fig. 1. In
this example, r̂ = {p, o}.

Note that Definition 2 captures the exact transposition
invariance that a music theorist would expect of that prop-
erty. At times, however, it is useful to have a more relaxed

2 This restriction is not mathematically necessary, but to admit compar-
ison between representations here would over-complicate the example.

3 What kind of number depends on the kind of time representation: a
metrical one would use Z or Q; a real-time one might use R.

4 It may have been derived by quantizing a continuous space P ′.
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nator; therefore, one cannot apply many of the operations
one would like. This fact is well-known to representers
of music: an interval-based representation is not readily
amenable to the represenation of non-monophonic music.
However, in this change of representation, relatively little
information is lost: just one constant value, which tells us
on what pitch the original dataset started; given that infor-
mation, the entire original E may be reconstructed. In this
sense, we say that the change is structurally conservative.
However, this property is neither necessary nor sufficient
for a transformation to be useful.

For example, a familiar invariance transformation is that
based on perceptual octave-equivalence, as is used, for ex-
ample, in computing a chromagram. Here, perception maps
exactly on to the mathematics, and so perceptual octave
equivalence can be modelled by a chromatic equality func-
tion, defined as equality modulo n, where n is the num-
ber of divisions of the octave being used in the underlying
scale of the pitch system. Here, Σchroma can very use-
fully be a contiguous subset of Σpitch, so Z12 does very
nicely, and Φchroma and Πchroma are equally easily de-
fined. However, this representation change is also not, in
general, structurally conservative, and it is now clear why,
mathematically: the mapping from Z to Z12 is many-to-
one, and so information is lost. The same principle, with a
mapping to Z8, gives scale-degree representation, which is
also octave-invariant.

A more interesting example is contour, an important as-
pect of melodic memory [7, §2.3]; Parsons coding [8] is a
common way to represent the contour of music. However,
ΣParsons = {−, 0,+}; it is not possible to give a fully de-
fined plus function over this set, while maintaining it as a
model of musical contour, for obvious reasons. Therefore,
we confirm that information is lost in changing to a repre-
sentation whose pitch is based on Parsons coding, and one
can argue this in advance because the abstract type of the
Parsons code is not as expressive as a linear Abelian group.
Thus, change of representation to Parsons code from, say,
MIDI, is not structurally conservative. The same applies
to comparable but more detailed interval-based representa-
tions such as the qpi alphabet [4].

Parsons coding captures an invariance which is stronger
than transposition invariance in the sense that the equiva-
lence classes it creates are fewer and larger: we call this
pitch warping. In pitch warping, contour is preserved, but
interval size is not—a formal definition is given in §2.4.
Transposition from major to parallel minor is a (rather cau-
tious) example of pitch warping; so, more generally, are
interval augmentation and diminution in contrapuntal the-
ory. We note that among the passages captured by pitch
warping lie also the equivalent transpositions, and this con-
firms that the stronger pitch warping invariance is a gener-
alisation of transposition invariance. Therefore, a content-
based music retrieval technique using Parsons coding can
be seen as a filtering technique for finding transposed oc-
currences of a query (only filtering and not identifying, be-
cause false positives will be generated).

The remaining of our common musical features, onset

time and note duration, and the corresponding time-scale
and time-warp invariances (see Table 1) can be dealt with
in the obvious way using the concatenator. For instance,
given two datasets, B and B′ in the same representation 2 ,
two duration sequences C

{duration}
{onset} (B) = {b1, . . . , bn}

and C
{duration}
{onset} (B′) = {b′1, . . . , b′n} are time-scaled ver-

sions of each other if there is a number 3 d such that b1 =
d.b′1, . . . , bn = d.b′n. A similar observation to that above,
that time-warp and concatenation invariances are stronger
than the corresponding time-scale invariances, applies here.

2.4 Methodological invariance

The actual music comparison or retrieval is carried out
by an algorithm based on a distance measure. The mea-
sures themselves can be invariant under some notion. At
this level we speak about methodological invariances.
From here on, we abbreviate {pitch, onset, duration} to
{p, o, d}, respectively.

To be methodologically invariant under a property P
(or methodologically P -invariant), a method M should be
able to work on datasets in representations in which P is
explicit or implicit, without enumerating all the possible
values of P—which, of course, is impossible if the under-
lying datatype(s) is (are) continuous. In this case, dealing
with the invariance must introduce at most a finite constant
factor into the computational complexity of M. This defi-
nition deliberately rules out invariances which are achieved
by discretizing the search space, enumerating the resulting
set and then searching exhaustively. Although such meth-
ods are sometimes called P -invariant in the MIR literature,
this is really not the case; they are merely methods that ap-
pear to take advantange of invariance via brute-force cal-
culation.

We now define all the invariances that are given in our
taxonomy, in Table 1. Recall that these are ordered sets.
We begin with pitch invariances.

Definition 1 Let r be a representation including pitch and
onset. A distance function D1 is transposition-invariant iff

∀a, b ∈ Σp.∀A,B in r.D1(C
{p}
{o} (A), C{p}

{o} (B)) =

D1(C
{p}
{o} (A) +p a, C

{p}
{o} (B) +p b).

Still using the concatenator Cp
o , we now define the stronger

invariance along the pitch dimension:

Definition 2 A distance function D2 is pitch-warp-invari-
ant iff

D2(A,B) = D2(c1(a2 − a1), . . . , cm−1(am − am−1),
d1(b2 − b1), . . . , dm−1(bm − bm−1)),

for any interval sequences A,B in Σ
∗
p and any positive

valued c1, . . . , cm−1, d1, . . . , dm−1 in Σp.

2 This restriction is not mathematically necessary, but to admit com-
parison between representations here would cloud the example with un-
necessary complication.

3 What kind of number depends on the kind of time representation:
a metrical representation would use Z or Q; a real-time representation
might use R.

nator; therefore, one cannot apply many of the operations
one would like. This fact is well-known to representers
of music: an interval-based representation is not readily
amenable to the represenation of non-monophonic music.
However, in this change of representation, relatively little
information is lost: just one constant value, which tells us
on what pitch the original dataset started; given that infor-
mation, the entire original E may be reconstructed. In this
sense, we say that the change is structurally conservative.
However, this property is neither necessary nor sufficient
for a transformation to be useful.

For example, a familiar invariance transformation is that
based on perceptual octave-equivalence, as is used, for ex-
ample, in computing a chromagram. Here, perception maps
exactly on to the mathematics, and so perceptual octave
equivalence can be modelled by a chromatic equality func-
tion, defined as equality modulo n, where n is the num-
ber of divisions of the octave being used in the underlying
scale of the pitch system. Here, Σchroma can very use-
fully be a contiguous subset of Σpitch, so Z12 does very
nicely, and Φchroma and Πchroma are equally easily de-
fined. However, this representation change is also not, in
general, structurally conservative, and it is now clear why,
mathematically: the mapping from Z to Z12 is many-to-
one, and so information is lost. The same principle, with a
mapping to Z8, gives scale-degree representation, which is
also octave-invariant.

A more interesting example is contour, an important as-
pect of melodic memory [7, §2.3]; Parsons coding [8] is a
common way to represent the contour of music. However,
ΣParsons = {−, 0,+}; it is not possible to give a fully de-
fined plus function over this set, while maintaining it as a
model of musical contour, for obvious reasons. Therefore,
we confirm that information is lost in changing to a repre-
sentation whose pitch is based on Parsons coding, and one
can argue this in advance because the abstract type of the
Parsons code is not as expressive as a linear Abelian group.
Thus, change of representation to Parsons code from, say,
MIDI, is not structurally conservative. The same applies
to comparable but more detailed interval-based representa-
tions such as the qpi alphabet [4].

Parsons coding captures an invariance which is stronger
than transposition invariance in the sense that the equiva-
lence classes it creates are fewer and larger: we call this
pitch warping. In pitch warping, contour is preserved, but
interval size is not—a formal definition is given in §2.4.
Transposition from major to parallel minor is a (rather cau-
tious) example of pitch warping; so, more generally, are
interval augmentation and diminution in contrapuntal the-
ory. We note that among the passages captured by pitch
warping lie also the equivalent transpositions, and this con-
firms that the stronger pitch warping invariance is a gener-
alisation of transposition invariance. Therefore, a content-
based music retrieval technique using Parsons coding can
be seen as a filtering technique for finding transposed oc-
currences of a query (only filtering and not identifying, be-
cause false positives will be generated).

The remaining of our common musical features, onset

time and note duration, and the corresponding time-scale
and time-warp invariances (see Table 1) can be dealt with
in the obvious way using the concatenator. For instance,
given two datasets, B and B′ in the same representation 2 ,
two duration sequences C

{duration}
{onset} (B) = {b1, . . . , bn}

and C
{duration}
{onset} (B′) = {b′1, . . . , b′n} are time-scaled ver-

sions of each other if there is a number 3 d such that b1 =
d.b′1, . . . , bn = d.b′n. A similar observation to that above,
that time-warp and concatenation invariances are stronger
than the corresponding time-scale invariances, applies here.

2.4 Methodological invariance

The actual music comparison or retrieval is carried out
by an algorithm based on a distance measure. The mea-
sures themselves can be invariant under some notion. At
this level we speak about methodological invariances.
From here on, we abbreviate {pitch, onset, duration} to
{p, o, d}, respectively.

To be methodologically invariant under a property P
(or methodologically P -invariant), a method M should be
able to work on datasets in representations in which P is
explicit or implicit, without enumerating all the possible
values of P—which, of course, is impossible if the under-
lying datatype(s) is (are) continuous. In this case, dealing
with the invariance must introduce at most a finite constant
factor into the computational complexity of M. This defi-
nition deliberately rules out invariances which are achieved
by discretizing the search space, enumerating the resulting
set and then searching exhaustively. Although such meth-
ods are sometimes called P -invariant in the MIR literature,
this is really not the case; they are merely methods that ap-
pear to take advantange of invariance via brute-force cal-
culation.

We now define all the invariances that are given in our
taxonomy, in Table 1. Recall that these are ordered sets.
We begin with pitch invariances.

Definition 1 Let r be a representation including pitch and
onset. A distance function D1 is transposition-invariant iff

∀a, b ∈ Σp.∀A,B in r.D1(C
{p}
{o} (A), C{p}

{o} (B)) =

D1(C
{p}
{o} (A) +p a, C

{p}
{o} (B) +p b).

Still using the concatenator Cp
o , we now define the stronger

invariance along the pitch dimension:

Definition 2 A distance function D2 is pitch-warp-invari-
ant iff

D2(A,B) = D2(c1(a2 − a1), . . . , cm−1(am − am−1),
d1(b2 − b1), . . . , dm−1(bm − bm−1)),

for any interval sequences A,B in Σ
∗
p and any positive

valued c1, . . . , cm−1, d1, . . . , dm−1 in Σp.

2 This restriction is not mathematically necessary, but to admit com-
parison between representations here would cloud the example with un-
necessary complication.

3 What kind of number depends on the kind of time representation:
a metrical representation would use Z or Q; a real-time representation
might use R.

nator; therefore, one cannot apply many of the operations
one would like. This fact is well-known to representers
of music: an interval-based representation is not readily
amenable to the represenation of non-monophonic music.
However, in this change of representation, relatively little
information is lost: just one constant value, which tells us
on what pitch the original dataset started; given that infor-
mation, the entire original E may be reconstructed. In this
sense, we say that the change is structurally conservative.
However, this property is neither necessary nor sufficient
for a transformation to be useful.

For example, a familiar invariance transformation is that
based on perceptual octave-equivalence, as is used, for ex-
ample, in computing a chromagram. Here, perception maps
exactly on to the mathematics, and so perceptual octave
equivalence can be modelled by a chromatic equality func-
tion, defined as equality modulo n, where n is the num-
ber of divisions of the octave being used in the underlying
scale of the pitch system. Here, Σchroma can very use-
fully be a contiguous subset of Σpitch, so Z12 does very
nicely, and Φchroma and Πchroma are equally easily de-
fined. However, this representation change is also not, in
general, structurally conservative, and it is now clear why,
mathematically: the mapping from Z to Z12 is many-to-
one, and so information is lost. The same principle, with a
mapping to Z8, gives scale-degree representation, which is
also octave-invariant.

A more interesting example is contour, an important as-
pect of melodic memory [7, §2.3]; Parsons coding [8] is a
common way to represent the contour of music. However,
ΣParsons = {−, 0,+}; it is not possible to give a fully de-
fined plus function over this set, while maintaining it as a
model of musical contour, for obvious reasons. Therefore,
we confirm that information is lost in changing to a repre-
sentation whose pitch is based on Parsons coding, and one
can argue this in advance because the abstract type of the
Parsons code is not as expressive as a linear Abelian group.
Thus, change of representation to Parsons code from, say,
MIDI, is not structurally conservative. The same applies
to comparable but more detailed interval-based representa-
tions such as the qpi alphabet [4].

Parsons coding captures an invariance which is stronger
than transposition invariance in the sense that the equiva-
lence classes it creates are fewer and larger: we call this
pitch warping. In pitch warping, contour is preserved, but
interval size is not—a formal definition is given in §2.4.
Transposition from major to parallel minor is a (rather cau-
tious) example of pitch warping; so, more generally, are
interval augmentation and diminution in contrapuntal the-
ory. We note that among the passages captured by pitch
warping lie also the equivalent transpositions, and this con-
firms that the stronger pitch warping invariance is a gener-
alisation of transposition invariance. Therefore, a content-
based music retrieval technique using Parsons coding can
be seen as a filtering technique for finding transposed oc-
currences of a query (only filtering and not identifying, be-
cause false positives will be generated).

The remaining of our common musical features, onset

time and note duration, and the corresponding time-scale
and time-warp invariances (see Table 1) can be dealt with
in the obvious way using the concatenator. For instance,
given two datasets, B and B′ in the same representation 2 ,
two duration sequences C

{duration}
{onset} (B) = {b1, . . . , bn}

and C
{duration}
{onset} (B′) = {b′1, . . . , b′n} are time-scaled ver-

sions of each other if there is a number 3 d such that b1 =
d.b′1, . . . , bn = d.b′n. A similar observation to that above,
that time-warp and concatenation invariances are stronger
than the corresponding time-scale invariances, applies here.

2.4 Methodological invariance

The actual music comparison or retrieval is carried out
by an algorithm based on a distance measure. The mea-
sures themselves can be invariant under some notion. At
this level we speak about methodological invariances.
From here on, we abbreviate {pitch, onset, duration} to
{p, o, d}, respectively.

To be methodologically invariant under a property P
(or methodologically P -invariant), a method M should be
able to work on datasets in representations in which P is
explicit or implicit, without enumerating all the possible
values of P—which, of course, is impossible if the under-
lying datatype(s) is (are) continuous. In this case, dealing
with the invariance must introduce at most a finite constant
factor into the computational complexity of M. This defi-
nition deliberately rules out invariances which are achieved
by discretizing the search space, enumerating the resulting
set and then searching exhaustively. Although such meth-
ods are sometimes called P -invariant in the MIR literature,
this is really not the case; they are merely methods that ap-
pear to take advantange of invariance via brute-force cal-
culation.

We now define all the invariances that are given in our
taxonomy, in Table 1. Recall that these are ordered sets.
We begin with pitch invariances.

Definition 1 Let r be a representation including pitch and
onset. A distance function D1 is transposition-invariant iff

∀a, b ∈ Σp.∀A,B in r.D1(C
{p}
{o} (A), C{p}

{o} (B)) =

D1(C
{p}
{o} (A) +p a, C

{p}
{o} (B) +p b).

Still using the concatenator Cp
o , we now define the stronger

invariance along the pitch dimension:

Definition 2 A distance function D2 is pitch-warp-invari-
ant iff

D2(A,B) = D2(c1(a2 − a1), . . . , cm−1(am − am−1),
d1(b2 − b1), . . . , dm−1(bm − bm−1)),

for any interval sequences A,B in Σ
∗
p and any positive

valued c1, . . . , cm−1, d1, . . . , dm−1 in Σp.

2 This restriction is not mathematically necessary, but to admit com-
parison between representations here would cloud the example with un-
necessary complication.

3 What kind of number depends on the kind of time representation:
a metrical representation would use Z or Q; a real-time representation
might use R.

nator; therefore, one cannot apply many of the operations
one would like. This fact is well-known to representers
of music: an interval-based representation is not readily
amenable to the represenation of non-monophonic music.
However, in this change of representation, relatively little
information is lost: just one constant value, which tells us
on what pitch the original dataset started; given that infor-
mation, the entire original E may be reconstructed. In this
sense, we say that the change is structurally conservative.
However, this property is neither necessary nor sufficient
for a transformation to be useful.

For example, a familiar invariance transformation is that
based on perceptual octave-equivalence, as is used, for ex-
ample, in computing a chromagram. Here, perception maps
exactly on to the mathematics, and so perceptual octave
equivalence can be modelled by a chromatic equality func-
tion, defined as equality modulo n, where n is the num-
ber of divisions of the octave being used in the underlying
scale of the pitch system. Here, Σchroma can very use-
fully be a contiguous subset of Σpitch, so Z12 does very
nicely, and Φchroma and Πchroma are equally easily de-
fined. However, this representation change is also not, in
general, structurally conservative, and it is now clear why,
mathematically: the mapping from Z to Z12 is many-to-
one, and so information is lost. The same principle, with a
mapping to Z8, gives scale-degree representation, which is
also octave-invariant.

A more interesting example is contour, an important as-
pect of melodic memory [7, §2.3]; Parsons coding [8] is a
common way to represent the contour of music. However,
ΣParsons = {−, 0,+}; it is not possible to give a fully de-
fined plus function over this set, while maintaining it as a
model of musical contour, for obvious reasons. Therefore,
we confirm that information is lost in changing to a repre-
sentation whose pitch is based on Parsons coding, and one
can argue this in advance because the abstract type of the
Parsons code is not as expressive as a linear Abelian group.
Thus, change of representation to Parsons code from, say,
MIDI, is not structurally conservative. The same applies
to comparable but more detailed interval-based representa-
tions such as the qpi alphabet [4].

Parsons coding captures an invariance which is stronger
than transposition invariance in the sense that the equiva-
lence classes it creates are fewer and larger: we call this
pitch warping. In pitch warping, contour is preserved, but
interval size is not—a formal definition is given in §2.4.
Transposition from major to parallel minor is a (rather cau-
tious) example of pitch warping; so, more generally, are
interval augmentation and diminution in contrapuntal the-
ory. We note that among the passages captured by pitch
warping lie also the equivalent transpositions, and this con-
firms that the stronger pitch warping invariance is a gener-
alisation of transposition invariance. Therefore, a content-
based music retrieval technique using Parsons coding can
be seen as a filtering technique for finding transposed oc-
currences of a query (only filtering and not identifying, be-
cause false positives will be generated).

The remaining of our common musical features, onset

time and note duration, and the corresponding time-scale
and time-warp invariances (see Table 1) can be dealt with
in the obvious way using the concatenator. For instance,
given two datasets, B and B′ in the same representation 2 ,
two duration sequences C

{duration}
{onset} (B) = {b1, . . . , bn}

and C
{duration}
{onset} (B′) = {b′1, . . . , b′n} are time-scaled ver-

sions of each other if there is a number 3 d such that b1 =
d.b′1, . . . , bn = d.b′n. A similar observation to that above,
that time-warp and concatenation invariances are stronger
than the corresponding time-scale invariances, applies here.

2.4 Methodological invariance

The actual music comparison or retrieval is carried out
by an algorithm based on a distance measure. The mea-
sures themselves can be invariant under some notion. At
this level we speak about methodological invariances.
From here on, we abbreviate {pitch, onset, duration} to
{p, o, d}, respectively.

To be methodologically invariant under a property P
(or methodologically P -invariant), a method M should be
able to work on datasets in representations in which P is
explicit or implicit, without enumerating all the possible
values of P—which, of course, is impossible if the under-
lying datatype(s) is (are) continuous. In this case, dealing
with the invariance must introduce at most a finite constant
factor into the computational complexity of M. This defi-
nition deliberately rules out invariances which are achieved
by discretizing the search space, enumerating the resulting
set and then searching exhaustively. Although such meth-
ods are sometimes called P -invariant in the MIR literature,
this is really not the case; they are merely methods that ap-
pear to take advantange of invariance via brute-force cal-
culation.

We now define all the invariances that are given in our
taxonomy, in Table 1. Recall that these are ordered sets.
We begin with pitch invariances.

Definition 1 Let r be a representation including pitch and
onset. A distance function D1 is transposition-invariant iff

∀a, b ∈ Σp.∀A,B in r.D1(C
{p}
{o} (A), C{p}

{o} (B)) =

D1(C
{p}
{o} (A) +p a, C

{p}
{o} (B) +p b).

Still using the concatenator Cp
o , we now define the stronger

invariance along the pitch dimension:

Definition 2 A distance function D2 is pitch-warp-invari-
ant iff

D2(A,B) = D2(c1(a2 − a1), . . . , cm−1(am − am−1),
d1(b2 − b1), . . . , dm−1(bm − bm−1)),

for any interval sequences A,B in Σ
∗
p and any positive

valued c1, . . . , cm−1, d1, . . . , dm−1 in Σp.

2 This restriction is not mathematically necessary, but to admit com-
parison between representations here would cloud the example with un-
necessary complication.

3 What kind of number depends on the kind of time representation:
a metrical representation would use Z or Q; a real-time representation
might use R.
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nator; therefore, one cannot apply many of the operations
one would like. This fact is well-known to representers
of music: an interval-based representation is not readily
amenable to the represenation of non-monophonic music.
However, in this change of representation, relatively little
information is lost: just one constant value, which tells us
on what pitch the original dataset started; given that infor-
mation, the entire original E may be reconstructed. In this
sense, we say that the change is structurally conservative.
However, this property is neither necessary nor sufficient
for a transformation to be useful.

For example, a familiar invariance transformation is that
based on perceptual octave-equivalence, as is used, for ex-
ample, in computing a chromagram. Here, perception maps
exactly on to the mathematics, and so perceptual octave
equivalence can be modelled by a chromatic equality func-
tion, defined as equality modulo n, where n is the num-
ber of divisions of the octave being used in the underlying
scale of the pitch system. Here, Σchroma can very use-
fully be a contiguous subset of Σpitch, so Z12 does very
nicely, and Φchroma and Πchroma are equally easily de-
fined. However, this representation change is also not, in
general, structurally conservative, and it is now clear why,
mathematically: the mapping from Z to Z12 is many-to-
one, and so information is lost. The same principle, with a
mapping to Z8, gives scale-degree representation, which is
also octave-invariant.

A more interesting example is contour, an important as-
pect of melodic memory [7, §2.3]; Parsons coding [8] is a
common way to represent the contour of music. However,
ΣParsons = {−, 0,+}; it is not possible to give a fully de-
fined plus function over this set, while maintaining it as a
model of musical contour, for obvious reasons. Therefore,
we confirm that information is lost in changing to a repre-
sentation whose pitch is based on Parsons coding, and one
can argue this in advance because the abstract type of the
Parsons code is not as expressive as a linear Abelian group.
Thus, change of representation to Parsons code from, say,
MIDI, is not structurally conservative. The same applies
to comparable but more detailed interval-based representa-
tions such as the qpi alphabet [4].

Parsons coding captures an invariance which is stronger
than transposition invariance in the sense that the equiva-
lence classes it creates are fewer and larger: we call this
pitch warping. In pitch warping, contour is preserved, but
interval size is not—a formal definition is given in §2.4.
Transposition from major to parallel minor is a (rather cau-
tious) example of pitch warping; so, more generally, are
interval augmentation and diminution in contrapuntal the-
ory. We note that among the passages captured by pitch
warping lie also the equivalent transpositions, and this con-
firms that the stronger pitch warping invariance is a gener-
alisation of transposition invariance. Therefore, a content-
based music retrieval technique using Parsons coding can
be seen as a filtering technique for finding transposed oc-
currences of a query (only filtering and not identifying, be-
cause false positives will be generated).

The remaining of our common musical features, onset

time and note duration, and the corresponding time-scale
and time-warp invariances (see Table 1) can be dealt with
in the obvious way using the concatenator. For instance,
given two datasets, B and B′ in the same representation 2 ,
two duration sequences Cduration

{onset} (B) = {b1, . . . , bn} and
Cduration
{onset} (B′) = {b′1, . . . , b′n} are time-scaled versions of

each other if there is a number 3 d such that b1 = d.b′1, . . . , bn =
d.b′n. A similar observation to that above, that time-warp
and concatenation invariances are stronger than the corre-
sponding time-scale invariances, applies here.

2.4 Methodological invariance

The actual music comparison or retrieval is carried out
by an algorithm based on a distance measure. The mea-
sures themselves can be invariant under some notion. At
this level we speak about methodological invariances.
From here on, we abbreviate {pitch, onset, duration} to
{p, o, d}, respectively.

To be methodologically invariant under a property P
(or methodologically P -invariant), a method M should be
able to work on datasets in representations in which P is
explicit or implicit, without enumerating all the possible
values of P—which, of course, is impossible if the under-
lying datatype(s) is (are) continuous. In this case, dealing
with the invariance must introduce at most a finite constant
factor into the computational complexity of M. This defi-
nition deliberately rules out invariances which are achieved
by discretizing the search space, enumerating the resulting
set and then searching exhaustively. Although such meth-
ods are sometimes called P -invariant in the MIR literature,
this is really not the case; they are merely methods that ap-
pear to take advantange of invariance via brute-force cal-
culation.

We now define all the invariances that are given in our
taxonomy, in Table 1. Recall that these are ordered sets.
We begin with pitch invariances.

Definition 1 Let r be a representation including pitch and
onset. A distance function D1 is transposition-invariant iff

∀a, b ∈ Σp.∀A,B in r.D1(C r̂
{o}(A), C r̂

{o}(B)) =
D1(C r̂

{o}(A) +p a, C r̂
{o}(B) +p b).

It may be helpful to visualise Definition 1, as in Fig. 1. In
this example, r = {p, o}.

Still using the concatenator Cp
o , we now define the

stronger invariance along the pitch dimension:

Definition 2 A distance function D2 is pitch-warp-invari-
ant iff

D2(A,B) = D2(c1(a2 − a1), . . . , cm−1(am − am−1),
d1(b2 − b1), . . . , dm−1(bm − bm−1)),

2 This restriction is not mathematically necessary, but to admit com-
parison between representations here would cloud the example with un-
necessary complication.

3 What kind of number depends on the kind of time representation:
a metrical representation would use Z or Q; a real-time representation
might use R.

nator; therefore, one cannot apply many of the operations
one would like. This fact is well-known to representers
of music: an interval-based representation is not readily
amenable to the represenation of non-monophonic music.
However, in this change of representation, relatively little
information is lost: just one constant value, which tells us
on what pitch the original dataset started; given that infor-
mation, the entire original E may be reconstructed. In this
sense, we say that the change is structurally conservative.
However, this property is neither necessary nor sufficient
for a transformation to be useful.

For example, a familiar invariance transformation is that
based on perceptual octave-equivalence, as is used, for ex-
ample, in computing a chromagram. Here, perception maps
exactly on to the mathematics, and so perceptual octave
equivalence can be modelled by a chromatic equality func-
tion, defined as equality modulo n, where n is the num-
ber of divisions of the octave being used in the underlying
scale of the pitch system. Here, Σchroma can very use-
fully be a contiguous subset of Σpitch, so Z12 does very
nicely, and Φchroma and Πchroma are equally easily de-
fined. However, this representation change is also not, in
general, structurally conservative, and it is now clear why,
mathematically: the mapping from Z to Z12 is many-to-
one, and so information is lost. The same principle, with a
mapping to Z8, gives scale-degree representation, which is
also octave-invariant.

A more interesting example is contour, an important as-
pect of melodic memory [7, §2.3]; Parsons coding [8] is a
common way to represent the contour of music. However,
ΣParsons = {−, 0,+}; it is not possible to give a fully de-
fined plus function over this set, while maintaining it as a
model of musical contour, for obvious reasons. Therefore,
we confirm that information is lost in changing to a repre-
sentation whose pitch is based on Parsons coding, and one
can argue this in advance because the abstract type of the
Parsons code is not as expressive as a linear Abelian group.
Thus, change of representation to Parsons code from, say,
MIDI, is not structurally conservative. The same applies
to comparable but more detailed interval-based representa-
tions such as the qpi alphabet [4].

Parsons coding captures an invariance which is stronger
than transposition invariance in the sense that the equiva-
lence classes it creates are fewer and larger: we call this
pitch warping. In pitch warping, contour is preserved, but
interval size is not—a formal definition is given in §2.4.
Transposition from major to parallel minor is a (rather cau-
tious) example of pitch warping; so, more generally, are
interval augmentation and diminution in contrapuntal the-
ory. We note that among the passages captured by pitch
warping lie also the equivalent transpositions, and this con-
firms that the stronger pitch warping invariance is a gener-
alisation of transposition invariance. Therefore, a content-
based music retrieval technique using Parsons coding can
be seen as a filtering technique for finding transposed oc-
currences of a query (only filtering and not identifying, be-
cause false positives will be generated).

The remaining of our common musical features, onset

time and note duration, and the corresponding time-scale
and time-warp invariances (see Table 1) can be dealt with
in the obvious way using the concatenator. For instance,
given two datasets, B and B′ in the same representation 2 ,
two duration sequences Cduration

{onset} (B) = {b1, . . . , bn} and
Cduration
{onset} (B′) = {b′1, . . . , b′n} are time-scaled versions of

each other if there is a number 3 d such that b1 = d.b′1, . . . , bn =
d.b′n. A similar observation to that above, that time-warp
and concatenation invariances are stronger than the corre-
sponding time-scale invariances, applies here.

2.4 Methodological invariance

The actual music comparison or retrieval is carried out
by an algorithm based on a distance measure. The mea-
sures themselves can be invariant under some notion. At
this level we speak about methodological invariances.
From here on, we abbreviate {pitch, onset, duration} to
{p, o, d}, respectively.

To be methodologically invariant under a property P
(or methodologically P -invariant), a method M should be
able to work on datasets in representations in which P is
explicit or implicit, without enumerating all the possible
values of P—which, of course, is impossible if the under-
lying datatype(s) is (are) continuous. In this case, dealing
with the invariance must introduce at most a finite constant
factor into the computational complexity of M. This defi-
nition deliberately rules out invariances which are achieved
by discretizing the search space, enumerating the resulting
set and then searching exhaustively. Although such meth-
ods are sometimes called P -invariant in the MIR literature,
this is really not the case; they are merely methods that ap-
pear to take advantange of invariance via brute-force cal-
culation.

We now define all the invariances that are given in our
taxonomy, in Table 1. Recall that these are ordered sets.
We begin with pitch invariances.

Definition 1 Let r be a representation including pitch and
onset. A distance function D1 is transposition-invariant iff

∀a, b ∈ Σp.∀A,B in r.D1(C r̂
{o}(A), C r̂

{o}(B)) =
D1(C r̂

{o}(A) +p a, C r̂
{o}(B) +p b).

It may be helpful to visualise Definition 1, as in Fig. 1. In
this example, r = {p, o}.

Still using the concatenator Cp
o , we now define the

stronger invariance along the pitch dimension:

Definition 2 A distance function D2 is pitch-warp-invari-
ant iff

D2(A,B) = D2(c1(a2 − a1), . . . , cm−1(am − am−1),
d1(b2 − b1), . . . , dm−1(bm − bm−1)),

2 This restriction is not mathematically necessary, but to admit com-
parison between representations here would cloud the example with un-
necessary complication.

3 What kind of number depends on the kind of time representation:
a metrical representation would use Z or Q; a real-time representation
might use R.

Figure 1. Visualisation of Definition 2. r̂ = {p, o}.

version of transposition invariance. Indeed, the following
pitch-transposition invariance, which omits the exact on-
set times, is often used in music retrieval applications.

Definition 3 Let r be a representation including pitch
and onset. A distance function D is pitch-transposition-
invariant iff

∀a, b ∈ Σp.∀A,B in r.D(C r̂\{o}
{o} (A), C r̂\{o}

{o} (B)) =

D(C r̂\{o}
{o} (A) +p a,C

r̂\{o}
{o} (B) +p b).

Stronger kinds of pitch invariance than the above (as
defined in Section 2.3) are defined as follows.

Definition 4 Let r be a representation including pitch and
onset. A distance function D is pitch-warp-invariant iff

∀KA ∈ N |A|−1.∀KB ∈ N |B|−1.∀A,B in r.
D

(
〈C r̂
{o}(A)〉−p , 〈C r̂

{o}(B)〉−p
)

=

D
(
〈C r̂
{o}(A)〉−p ×i KA, 〈C r̂

{o}(B)〉−p ×i KB
)

where N is one of Z+,Q+,R+.

Note that the multiplication operation here needs to be
duly definable in terms of functions in Φi. If we omit the
onset information of that above, we get Parsons invariance:

Definition 5 Let r be a representation including pitch and
onset. A distance function D is Parsons-invariant iff

∀KA ∈ N |A|−1.∀KB ∈ N |B|−1.∀A,B in r.
D

(
〈C r̂\{o}
{o} (A)〉−p , 〈C r̂\{o}

{o} (B)〉−p
)

=

D
(
〈C r̂\{o}
{o} (A)〉−p ×i KA, 〈C r̂\{o}

{o} (B)〉−p ×i KB
)

where N is one of Z+,Q+,R+.

2.4.2 Temporal invariances.

We now move to temporal invariances. The first allows
for linear time shifts. So, for instance, in musical pattern
matching, the pattern may occur anywhere in the database,
not just as an incipit. Being additive, it is usually easily
combined with the first pitch invariances, above.

Definition 6 Let r be a representation including pitch and
onset. A distance function D is time-position-invariant iff

∀a, b ∈ Σo.∀A,B in r.D(C r̂
{o}(A), C r̂

{o}(B)) =
D(C r̂

{o}(A) +o a,C
r̂
{o}(B) +o b).

Note that the above invariance is not meaningful with
durations. The next two temporal invariances are of
multiplicative nature, the first of which, the time-scale-
invariance, is applicable both with onsets and durations.

Definition 7 Let r be a representation including pitch and
onset. A distance function D is time-scale-invariant iff

∀FA ∈ N |A|, FB ∈ N |B|,KA ∈ Σ|A|o ,KB ∈ Σ|B|o .
∀A,B in r.D(C r̂

{o}(A), C r̂
{o}(B)) =

D(C r̂
{o}(A)×o FA +o KA, C r̂

{o}(B)×o FB +o KB).

where N is one of Z+,Q+,R+.

The next duration-warp invariance is most useful with
duration sequences; it is “durational Parsons invariance”,
i.e., the one for which “shorter, longer, same” encoding is
often used. To this end we use the second order derivation
of setsA and B with ioi proportions, abbreviated ip below.

Definition 8 Let r be a representation including pitch and
onset. A distance functionD is duration-warp-invariant iff

∀KA ∈ N |A|−2,KB ∈ N |B|−2.∀A,B in r.
D

(
〈〈C r̂
{o}(A)〉−o 〉÷ioi, 〈〈C r̂

{o}(B)〉−o 〉÷ioi

)
=

D
(
〈〈C r̂
{o}(A)〉−o 〉÷ioi ∧ip KA, 〈〈C r̂

{o}(B)〉−o 〉÷ioi ∧ip KB
)

where ∧ is the power operator and N is one of
Z+,Q+,R+.

The last temporal invariance does not bother with the
onset information, except in as far as order is preserved.
This is the case, for instance, with CBMR methods based
on string representations that omit explicit onset times.
Note that, although it is temporal, there is no intuitive in-
terpretation of this invariance to duration information.

Definition 9 Let r be a representation including pitch and
onset, and let KA ∈ N |A|,KB ∈ N |B| be such that

ai−1 +o KA(i− 1) < ai +o KA(i) and
bi−1 +o KB(i− 1) < bi +o KB(i)

for 2 ≤ i ≤ |KA|, |KB|. A distance function D is time-
warp-invariant iff

∀A,B in r. D
(
C

r̂\{o}
{o} (A), C r̂\{o}

{o} (B)
)

=

D
(
C

r̂\{o}
{o} (A) +o KA, C

r̂\{o}
{o} (B) +o KB

)
where N is one of Z,Q,R.

Now, we can fully define algorithmic invariance.

Definition 10 A methodM is algorithmically P -invariant
iffM satisfies Definition 1 and its similarity measure sat-
isfies the definitions above corresponding with property P .
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3. STRUCTURAL INVARIANCES

Let us now consider a set of stronger invariances that relate
primarily not to the music represented, but to the results
proven using our order-based formalism. To be maximally
useful, it is helpful to know how strongly the results apply:
in particular, does the order imposed by our concatenator
make a difference to the outcome? For example, in the fol-
lowing permutation invariances, when applied to contour-
based melody comparison, onset-order matters, but in a
pitch-class-distribution comparison, it probably does not.

Definition 11 Let r be a representation and ω ⊆ r̂. A
distance function D is ω-permutation-invariant iff

∀A,B in r.D(C r̂
ω(A), C r̂

ω(B)) =
D(P(C r̂

ω(A)),P(C r̂
ω(B)))

where P is any size-preserving permutation operator on ω.
If ω = r̂, the distance function is strongly permutation-in-
variant.

Further, it may be useful to know that a distance is pre-
served no matter which dimension is used for ordering.

Definition 12 Let r be a representation. A distance func-
tion D is ω- concatenation-invariant iff

∀ω1, ω2 ⊂ r̂.∀A,B in r.D(C r̂
ω1

(A), C r̂
ω1

(B)) =
D(C r̂

ω2
(A), C r̂

ω2
(B)).

If ω1, ω2 = r̂, the distance function is strongly concatena-
tion-invariant.

For a strongly concatenation-invariant distance function
the ordering does not make any difference at all. Note that
a strongly permutation invariant distance function is also a
strongly concatenation invariant, and vice versa.

4. INVARIANCES IN POLYPHONIC
CONTENT-BASED MUSIC RETRIEVAL

4.1 Representations of non-monophonic music

The concatenated representations used here are evidently
directly applicable when dealing with monophonic music.
In the case of (discretely represented) polyphonic music,
a geometrical representation [1, 11, 12, 14] is a more ef-
fective and natural choice [5]. An example of geometrical
music matching (under transpositional equivalence, in this
example) is given in Figure 2, where the common pitch-
against time-representation, giving the onset times but not
durations, is used. Several possible ways to represent du-
rations have been suggested [10, 11, 12].

As Figure 2 suggests, the maximal subset match of the
given query pattern of length m within the database of
length n can be found by observing the translation vec-
tors. Note that a translation corresponds to two musically
distinct phenomena: a vertical move corresponds to pitch-
shift while a horizontal move corresponds to aligning the
pattern time-wise; the combination of these is what a mu-
sician calls “a transposition” (to be distinguished from the
process of transposition, performed during performance).

2 3 4

pitch

time
PT

Figure 2. Pointset P , to the right, represents a pointset
(musical) pattern to be matched against a pointset database
to the left. The arrows represent translation vectors, from
pattern to database, that give maximal occurrence.

Thus, working on the translation vectors captures transpo-
sition and position invariances, in the terms defined here.

Ukkonen et al. [12] gave an algorithm to solve the max-
imal subset matching problem in O(mn logm) time. It
is still the fastest known deterministic algorithm for the
problem. Clifford et al. [2] showed that quadratic running
times are probably the best one can achieve for this prob-
lem by proving that the maximal subset matching problem
is 3SUM-hard. They also gave a randomized algorithm for
the problem that works in time O(n log n).

4.2 Combining invariances

When using the sequence (string) representation, pitch-
transposition invariance is easily combined with time-warp
invariance (and the latter serves as a filtering method for
time-scale invariance). However, the explicit encoding of
the onset times in the geometrical representation makes
it difficult to combine transposition invariance with most
of the temporal invariances, such as time-scale invariance.
The difficulty of combining transposition invariance and
time-scale invariance is due to the fact that the former is an
additive property, while the latter is multiplicative.

Romming and Selfridge-Field [10] gave the only known
non-brute-force algorithm capable of dealing with poly-
phonic music, transposition invariance and time-scale in-
variance. Their algorithm is based on geometrical hashing
and works in O(n3) space and O(n2m3) time. By apply-
ing a window on the database such that w is the maximum
number of events that occur in any window, the above com-
plexities can be restated as O(w2n) and O(wnm3), re-
spectively. The algorithm works on all three of the mu-
sical features discussed here (pitch, onset time and dura-
tion), finding a maximal subset match in such a scenario.
However, as with the SIA algorithm family [7], its appli-
cability to real world problems is reduced due to the fact
that matches are mathematically exact, and so performance
expression and error is difficult to account for.
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5. CONCLUSIONS

In this paper we have discussed invariances related to
content-based music retrieval; they are central concepts
in defining and developing effective representations, sim-
ilarity measures and algorithms to that end. Because of
their centrality to the matter, invariances are widely used
in the literature—but very seldom are they properly defined
or their relationship discussed which has occasionally re-
sulted in misuse of the term and confusion.

We have given a sparse taxonomy of the invariances
along three featural dimensions of music—pitch, onset
time and duration. We also defined stronger invariances,
intrinsic to our formalism. The taxonomy shows explicitly
the relationships of these invariances to each other. More-
over, we have precisely defined them, minimizing confu-
sion in future discussion. The taxonomy works also as a
useful tool in discussing what has been done, and in iden-
tifying where there is still much space for future develop-
ments towards efficient and effective CBMR tools.

It seems that the geometrical framework provides the
best (and most natural) representation when dealing with
polyphonic music. Using this framework, however, it is
not easy to combine translation and time-scale invariances
in a computationally efficient way; there is still a huge
gap to be bridged in this respect to be able to meet the
real world requirements for responsive and error-tolerant
database queries. One way to improve error-tolerance—as
is evident in our taxonomy—would be to adapt the geo-
metrical frameworks to work also on the level of the more
general invariances. To date, there is next to no work in
this direction, though Lubiw and Tanur [6] presented an
algorithm that measures the distance between the desired
pitches and observed pitches that are combined in a final
similarity value. So, with respect to our taxonomy, their
work resides somewhere in between the two ends. Their
method, although built on discrete space, does not straight-
forwardly lend itself to a non-strict time-scale invariance.

We are currently studying how to adapt the geometri-
cal approach to the more general classes of our taxonomy
thus achieving more error-tolerant geometrical methods for
content-based music retrieval. Another direction is to re-
fine the definitions in order to be able to discriminate meth-
ods that allow“gaps” (as the geometrical methods usually
do) from those that do not (for instance, methods based on
exact string matching).
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ABSTRACT

As folk songs live largely through oral transmission, there

usually is no standard form of a song - each performance of

a folk song may be unique. Different interpretations of the

same song are called song variants, all variants of a song

belong to the same variant type. In the paper, we explore

how various melody-based features relate to folk song vari-

ants. Specifically, we explore whether we can derive a

melodic similarity measure that would correlate to variant

types in the sense that it would measure songs belonging to

the same variant type as more similar, in contrast to songs

from different variant types. The measure would be useful

for folk song retrieval based on variant types, classification

of unknown tunes, as well as a measure of similarity be-

tween variant types. We experimented with a number of

melodic features calculated from symbolic representations

of folk song melodies and combined them into a melody-

based folk song similarity measure. We evaluated the mea-

sure on the task of classifying an unknown melody into a

set of existing variant types. We show that the proposed

measure gives the correct variant type in the top 10 list for

68% of queries in our data set.

1. INTRODUCTION

With the rapid growth of digitization and appearance of

digital libraries, folk song archives are (slowly but surely)

entering the digital age. More and more folk song and mu-

sic archives are being digitized, while most new data are

already being collected in digital form.

Folk music is music that lives in oral tradition. It was

composed by everyday people, and has in most cases never

been written down or at least never published. It was mostly

passed on to the next generation verbally and not in written

form. Until folk music researchers started to put together

folk music collections containing transcriptions, lyrics and

other metadata, melodies were never put down in scores

or any other symbolic representation. Several folk song

collections are widely available; probably the most well

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2009 International Society for Music Information Retrieval.

known of them is the Essen Folksong Database [1] that in-

cludes 20.000 songs, mostly from Germany, Poland and

China and minor collections from some other (mostly Eu-

ropean) countries. The digital archive of Finnish Folk Tunes

[2] is also a well known collection, containing approxi-

mately 9.000 folk tunes that were published as a collec-

tion of books between 1898 and 1933 and were digitized

in 2002-2003. Some other collections are: The American

Folk Song Collection [3], Australian Folk Songs [4], etc.

We conducted our researh on songs from the the Ethno-

muse archive [5], which contains folk music and dance col-

lections of the Institute of Ethnomusicology, Scientific Re-

search Centre of Slovene Academy of Sciences and Arts.

The archive is especially suitable for our purpose, because

it contains classifications of songs into variant types, tune

families and genres.

Because folk songs live largely through oral transmis-

sion, there usually is no standard form of a song. As songs

are passed through generations, they undergo an evolu-

tionary process, parts change, they may be dropped and

other parts may be added. Lyrics, as well as melodies get

changed in the process. Each performance of a folk song

may be unique and interpretations of the same song rep-

resent song variants. All variants of a song belong to the

same variant type.

In this paper, we explore how measures extracted from

folk song melodies relate to folk song variants. Specifi-

cally, we explore whether we can derive a melodic simi-

larity measure that would correlate to variant types in the

sense that it would measure songs belonging to the same

variant type as more similar, in contrast to songs from dif-

ferent variant types.

The use of music information retrieval tools in folk mu-

sic research was very limited until recently; a good overview

can be found in the technical report of the Witchcraft project

[6] as well as in [7, 8].

Our research is focused on developing an algorithm that

calculates the similarity of two songs. In the following

works several different approaches of a calculating the sim-

ilarity measure are described. In [9] a method for melodic

similarity of songs is presented; in [10], a method is de-

scribed which uses each extracted statistical feature for

training of separate self-organising map (SOM). All of the

maps are later on used for training of a Supermap, on which

melodies with similar features are located closer together;

in [11] a comparison of different computational approaches
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to rhythmic and melodic similarity is made to find the fea-

tures that characterise similarity of Dutch folk songs. A

rhythmic similarity measure of folk songs is presented in

[12]. Another similarity measure that uses pitch stability

among a group of aligned folk songs is described in [13].

Which songs are similar, or how much they are alike, is

not a precise problem. Not even humans always agree on

whether two songs are similar or not, or which two songs

are most alike. The study of how much experts agree on a

manual annotation method for melodic similarity and the

study of melody feature sets is described in [14].

In our paper we are proposing a system that uses simple

melody-based features for classification of songs into vari-

ant types. While most of the previously mentioned papers

describe methods for calculating rhythmic or melodic sim-

ilarities in collections or finding features that are relevant

in calculations of such similarities, our goal is to create a

retrieval system for melodies, that will help us classify new

unknown songs into already defined variant types.

2. SIMILARITY MEASURE

The main hypotesis of our paper is: It is possible to clas-

sify folk song melodies into correct variant types based on

statistical features of their melodies alone. To either ac-

cept or reject our hypothesis, we first have to answer the

following questions: What kind of data do we have at our

disposal and how much of it? Which features are we going

to use and how to choose them? Which statistical methods

should we use and how to choose them?

The goal is to train a classifier that will classify individ-

ual variants into variant types. For this we created pairs

of songs from Ethnomuse archive. A positive example is a

pair of songs that are from the same variant type; a negative

example is a pair of songs from different variant types.

We selected 650 folk songs belonging to 40 different

variant types from the dataset. The scores for these melodies

are available in Sibelius format, which we converted to

MIDI. The set was split into two subsets: a learning set

of 600 and an independent test set of 50 songs. The learn-

ing set was again split into two subsets: an attribute se-

lection learning set, and an attribute selection test set. For

the attribute selection learning set we only used songs from

variant types with more then 7 variants. From variant types

with more then 10 songs, we only used 10 randomly se-

lected ones. The attribute selection test set was put to-

gether from 100 randomly selected songs from the learn-

ing set. For the purpose of training the classifier we created

pairs of all songs in each of the attribute selection sets. For

these sets we calculated percentages of positive and nega-

tive examples. The attribute selection learning set consists

of 12.7% positive examples and 87.3% negative examples;

attribute selection test set consists of 15,48% positive ex-

amples and 84.52% of negative examples.

For each melody, we calculated a set of 94 melody-

based features with the help of the MIDI Toolbox [15].

We analyzed whether these features can be used to com-

pare pairs of melodies and decide whether they belong to

the same variant type or not. Because the task involves

pairs of melodies, we created pairs of songs, for which we

calculated compounded attributes as the quotient and abso-

lute difference of individual features. All of the calculated

attribute values were normalised and the SMO attribute se-

lection method [16] used on the attribute selection sets to

rank the attributes. We found the following attributes to

be useful for variant type classification (details on the at-

tributes can be found in [17]):

complebm: the measure is an expectancy based model of

melodic complexity based on optimal combination

of pitch and rhythm-related components calibrated

in relation to the Essen Folksong Collection, where

higher value means higher complexity.

entropy: relative entropy of note distribution in a matrix

representation of note events.

meteraccent: measure of phenomenal accent synchrony.

Meter accent is defined as:

meterAccent = mean(mh · ma · du) ∗ (−1) (1)

where vector Metric hierarchy (mh) indicates the

locations of notes in the metric hierarchy (meter is

calculated as an autocorrelation-based estimate - for

further information see [17]); Melodic accent (ma)

assigns melodic accents according to the possible

melodic contours arising in 3-pitch windows. One

can say that the melodic accent will be greater in

places where the pitch changes. Duration accent

(du) is defined in [19]

gradus: degree of melodiousness (mean of Gradus suavi-

tatis) was defined by Euler [18]. Gradus suavitatis

bases on prime factorisation of note frequency ratios

decreased by 1 and summed together with 1:

gradus suavitatis = 1 +
∑

p1∈P

(pi − 1) (2)

where P is set of all prime factors of frequency ratio

and note frequency ratios are acquired from nomina-

tor and denominator matrices. Degree of melodious-

ness (gradus) is mean value of Gradus suavitatis for

all note intervals:

gradus = mean(
∑

ni∈N

(ni)) (3)

where N is set of all note intervals.

compltrans: Simonton’s melodic originality score based

on 2nd order pitch- class distribution of classical mu-

sic derived from a set of music themes.

The selected features were used to train a logistic re-

gression (LR) model. For each pair of melodies, the model

outputs values between 0 and 1 for each instance; the closer

the calculated value is to 1, the more probable it is that the

pair of melodies belongs to the same variant type and vice

versa, the closer the value is to 0, the lower the chance that
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the selected pair of songs is from same variant type. For

the calculated values we had to set the threshold, that de-

termines when the songs of a selected pair are from same

variant type, and when not. The threshold was set so that

the F-Measure reached the maximum on the attribute se-

lection learning set. For later evaluation we have also cal-

culated the F-Measure on the attribute selection test set.

For comparison we have also used the data to build the

same model with SVM Regression (SVM) as well as Mul-

tilayer perceptron (MP). The Table 1 shows that there are

only small differences between different machine learning

models and that all the models are better than random clas-

sifier (RC) in all measures.

Table 1. F-Measure, precision and recall values of differ-

ent models, for the attribute selection test set

Method F-Measure Precision Recall

LR 0.2837 0.9888 0.1656

SVM 0.3396 0.8750 0.2107

MP 0.3237 0.8661 0.1990

RC 0.2649 0.8503 0.1600

3. EVALUATION AND DISCUSSION

3.1 Testing the model

To evaluate the logistic regression based similarity mea-

sure on a realistic task, we set up a retrieval system that

takes an unknown melody as a query and returns an or-

dered list of melodies that should belong to the same vari-

ant type as the query. The queries were chosen from the

independent test set and were compared to songs in the

learning set with the logistic regression classifier trained

as described previously; its output was used to rank the

results.

Table 2. Ranks of first correct hits according to the pro-

posed similarity measure.

Rank Number of correct hits

1st 5

2nd 10

3rd or 4th 6

5th - 20th 18

21st - 30th 4

31st or worse 7

The ranked list of hits contains 600 songs; the correct

hits are those belonging to the same variant type as the

query song. For our model, the majority of first correct hits

are ranked 30th or better (in 43 of 50 cases). The overall

worst first correct hit is on 422nd place. Table 2 shows

where first correct hits were ranked for the entire test set.

For our model 68% of first correct hits lie within the top 10;

a random classifier would reach 41%, so this is a significant

improvement. The average rank of the first correct hit is

20.60th place, but if we exclude the most divergent results,

the average rank of the first correct hit is 7.21th place for

all but the worst 7 songs.

Figure 1. 11 point precision averages of test set items and

their mean value.

Another measure frequently used for MIR system eval-

uation is 11 point precision average. This measure is calcu-

lated as the average precision at recall levels 0.0, 0.1, . . . ,

0.9, 1.0. For our test set the calculated value of 11 point

precision average for songs from the independent test set is

0.1544. In Figure 1 the circles represent 11 point precision

average measure of each of the test set items. The dashed

line indicates the mean value for all the test set items. Most

of the worst cases (those under the mean line in Figure 1)

are either from variant types with less then 7 variants or

variants from bigger variant types that derogate the most.

3.2 Case study

The variant type with the most songs in our data set con-

tains 163 songs. The best first correct hit for a query song

from this variant type is 2nd, while the worst first correct

hit is in the 31st place. 11 point precision average for this

variant type is 0.2096, which is close to 11 point precision

of the best query song - 0.2494. Following is the compar-

ison of the best first correct hit and worst first correct hit

examples for this variant type.

(a) query song

(b) first correct hit song (2nd)

Figure 2. Example of a good result (first correct hit at 2nd

place) for the same variant type as in Figure 3.

Figure 2 shows an example, where the first correct hit

was on the 2nd place; the query and the correct hit are

shown. The reason why this result is ranked so good (it

was ranked 2nd) is because not only complebm (the values,
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5.1332 of query and 5.2631 of first hit song, are quite sim-

ilar), meteraccent (pitch in both, query and first correct hit

song, is not monotonic) and gradus (both songs have quite

high melodiousness) values are very similar with the val-

ues for query song, but also other two features (entropy and

compltrans) are very similar with values for query song;

which is not true for the previous example.

Figure 3 shows the worst first correct hit example. The

query song, its first and last correct hits and the first hit

song on the ranked list returned by our system are given.

The main reason why the song in Figure 3(c) was ranked so

low, is because of the major differences in complebm (the

query song value is 5.0880, the first correct hit song value

is 4.8136 and the last correct hit song value is 3.9494),

meteraccent and gradus melodic features in comparison to

the query (Figure 3(a)); on the other hand complebm and

compltrans values of the first hit song (Figure 3(d)), are

closer to the query song values, then the first correct hit

song values.

(a) query song

(b) first correct hit song (31st)

(c) last correct hit song (592nd)

(d) first hit song (1st)

Figure 3. Example of a bad result (first correct hit at 31st

place) for the variant type with the most examples.

4. CONCLUSIONS AND FUTURE WORK

As we show, there is some correspondence between simple

statistical measures calculated on folk song melodies and

the classification of folk songs into variant types. While

results are far from very good and such a basic approach

cannot be used to build a fully automatic variant type clas-

sification system, the obtained similarity measure is good

enough to create a retrieval system for melodies of an un-

known variant type that will give us list of a few (in our

case 10) variant types, that will contain the correct type

with high probability (in our case 68%). We also plan

to combine the obtained melodic similarity measure with

lyrics-based similarity measures and to use it for visualiza-

tion of folk song melodies in the Ethnomuse archive.
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ABSTRACT

A lead sheet is a type of music notation which summa-
rizes the content of a song. The usual elements that are
reproduced are the melody, chords, tempo, time signature,
style and the lyrics, if any. In this paper we propose a sys-
tem that aims at transcribing both the melody and the as-
sociated chords in a beat-synchronous framework. A beat
tracker identifies the pulse positions and thus defines a beat
grid on which the chord sequence and the melody notes are
mapped. The harmonic changes are used to estimate the
time signature and the down beats as well as the key of the
piece. The different modules perform very well on each of
the different tasks, and the lead sheets that were rendered
show the potential of the approaches adopted in this paper.

1. INTRODUCTION

The lead sheet format is a convenient form of music nota-
tion for songs. It is mostly used for popular music and fa-
mously represented by collections of Jazz standards, e.g.,
The Real Book. It allows the musician to see all the impor-
tant elements necessary to perform a song in a very com-
pact format. It mostly consists of a single staff; the melody
is notated in Western music standard, with the associated
lyrics under the staff and the chord sequence noted above
it. The lead sheet also often specifies the style, i.e., the
way the melody has to be played, e.g., straight or swung
rhythm, and the way the accompaniment should be gener-
ated from the chords. Of course, it also defines the time
signature, the key and the tempo.

Very few works have been oriented towards producing
usable music scores directly from audio. In [1], the au-
thors estimate the melody, the bass line, and the chords.
However, the results are not temporally quantized, so the
output is not completely suited for lead sheet generation
itself. This temporal quantization is indeed a non-trivial
problem and we propose a potential solution in this paper.

The proposed lead sheet transcription system can be
broken down into four seperate modules which exchange

Permission to make digital or hard copies of all or part of this work for
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Beat Tracking

Beat Positions

Melody Estimation

Melody Notes

Separated Accompaniment

Harmonic Analysis

Key

Measure Grid

Chord Sequence

Sheet Rendering

Lead Sheet

Figure 1. Modules of the proposed system along with the
intermediate results they exchange. Dashed lines mark po-
tential future dependencies.

intermediate results. These modules are depicted in Fig. 1.
The beat tracker provides a continuous pulse grid which
forms the temporal basis for the other modules. The algo-
rithm favours faster tempi such that the risk of phase errors
is minimized and ensures a continuos beat grid. The reader
is refered to [2] for details about the chosen approach. In
this article, we directly use the output of this algorithm.
The ith beat position in seconds is denoted bi. The har-
monic module estimates beat-aligned chord sequences, the
most likely measure grid, and the key of the piece. The
measure grid is in turn used to refine the chord sequence by
making chord change probabilities depend on the position
in the measure. The chord detection module is based on the
approach described in [3]. The melody module first sepa-
rates the main melody and the accompaniment building on
the approach presented in [4]. The model is extended such
that the fundamental frequencies of the main melody and
the musical (MIDI) notes of the melody are jointly esti-
mated. The rendering module determines the appropriate
time signature, quantizes the note onsets and durations of
the melody to sub-divisions of the beat level, divides both
melody and chords in measure blocks, and applies pitch
spelling depending on the estimated key.

In the following section we describe the chord detection
scheme and how the down-beat positions are estimated us-
ing the detected chord sequence. After that the key es-
timation method is introduced. The melody extraction is
discussed in Sec. 4. In Sec. 5, we describe how the lead
sheets are rendered. Finally, we present the results as well
as our conclusions and perspectives.
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2. ESTIMATION OF CHORDS AND MEASURES

2.1 Chord detection

The chord detection module can be considered one of the
numerous followers of the approaches described in [5] and
[3], which are based on Hidden Markov Models (HMM).
We model the chords as states of the HMM using a chord
alphabet comprising major and minor chords, i.e., the er-
godic model has S = 24 states ωk, k ∈ [1, S]. The chord
sequence is given as the most likely sequence of states
given the observed feature sequence; this is known as the
decoding problem which is solved using the Viterbi algo-
rithm. Training and decoding is done in a 10-fold cross-
validation setup.

2.1.1 Feature extraction

Beat-synchronous chroma vectors computed from the au-
dio data form the observable features. The audio signal
is mixed to a single channel and downsampled to 11025
Hz. We compute a constant-Q spectrogram [6] from note
E2 (82.4 Hz) to note D#6 (1.24 kHz) using a hop size of
512 samples 1 . Due to the chosen lowest frequency the
length of the longest window is 4096 samples. Chroma
vectors are computed by summing up the magnitude of the
transform for each of the 12 pitch classes over all four oc-
taves. We then use the result from the beat tracking module
to average all feature vectors within beat boundaries. Let
xc(i) denote the 12-dimensional chroma vector represent-
ing the time segment between beat positions bi and bi+1,
i = 1, 2, ....

2.1.2 Training

The observation distribution is modeled as a multivariate
Gaussian per state with mean vectors µk and (full) co-
variance matrices Σk, k ∈ [1, S]. The prior probabilities
are considered uniformly distributed. Both the transition
probabilities and the observation distribution are computed
from the training sets using beat-quantized annotation data
in a similar fashion as described for methods 1 and D in [7].

2.1.3 Initial chord sequence decoding

In the first stage, the chord sequence is decoded using the
classic Viterbi algorithm. Let q1(i) denote the initial es-
timate of the decoded chord symbol which is assumed to
have emitted xc(i). Based on this initially decoded se-
quence we estimate the measure grid.

2.2 Estimating the measure grid

We assume that the probability of chord changes depends
on the position in a measure and that, generally, chords are
more likely to change at the beginning of measures [8].
We also assume a constant time signature; we do not, how-
ever, assume a 4/4 meter (although it clearly dominates our
database). We consider a set of measure grid candidates of
width ν ∈ [3, 4, ..., 8], i.e., each third, fourth, ..., eighth

1 Note that, for the database we used, we can consider all pieces per-
fectly tuned to A4 = 440 Hz

1 2 3 4
0

0.5

1

1 2 3 4 5 6
0

0.5

1

1 2 3 4 5 6 7 8
0

0.5

1

beat in measure

Figure 2. Probability of chord changes depending on the
position in the measure for 4, 6, and 8 beats in a measure,
respectively.

beat is assumed a down-beat. For each ν we have to con-
sider ν potential phase candidates φ ∈ [1, ν], i.e., the first
down-beat is b1, b2, ..., or bν . For each of these grid width
and phase candidate pairs, we compute the score

s(ν, φ) = Tcc(ν, φ)− Fcc(ν, φ), (1)

where Tcc(ν, φ) denotes the number of grid points which
fall on beat positions with a chord change, i.e., q1(i−1) 6=
q1(i), andFcc(ν, φ) denotes the number of grid points with-
out chord changes. The pair (νo, φo) = arg max s(ν, φ)
determines the chosen measure grid. Note that ν does not
necessarily correspond to the numerator of the time signa-
ture as the beat we tracked may actually reflect half-time
or double-time tempo.

2.3 Refined chord sequence decoding

We use the measure grid estimate to compute the refined
chord sequence q2(i) by making the transition probabili-
ties depend on the position in the measure. Based on the
down-beat information given by the annotation we com-
pute the distribution of chord change positions relative to
the measures from the training set. For the database we
used, which will be discussed in Sec. 6, there are three
possible values of ν: 4 (4/4 meter), 6 (6/8 meter), and 8
(4/4 meter; beat represents 8th notes). Fig. 2 depicts an
example for the resulting probability profiles. As antici-
pated, chords are most likely to change on the beginning
of a measure. We now propose a modified Viterbi decod-
ing procedure. As we assume a continuous beat and mea-
sure grid, we can compute the current beat position in a
measure bm = (i−φo) (mod νo) + 1. Now the transition
probability matrix is modified in the following manner: the
diagonal, i.e., the probability to remain in the current state,
is set to 1− pcc(bm), where pcc(bm) denotes the probabil-
ity of a chord change at beat position bm in the measure.
The remaining non-diagonal elements are scaled such that
they add up to pcc(bm). Decoding the HMM using these
varying transition probabilities gives the refined chord se-
quence q2(i).
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3. KEY ESTIMATION

To estimate the key one can compute an average chroma
profile and correlate it to key-specific templates [9]. In-
stead, we propose to compute the mean vector of the chord
likelihoods using the trained Gaussian distributions for the
chord states. We compare both approaches. We train key
template profiles for major and minor keys which are cir-
cularly shifted to form all 24 possible key profiles. To this
end, xc(i) is circularly shifted such that the key is mapped
to the root C for all pieces in the training set. The chroma-
based templates µK1(m) for both key modes m, major
and minor, are computed as the mean vector of all shifted
chroma vectors representing mode m. These templates
have dimension 12. For the chord-based templates, the
multi-variate Gaussian distribution is evaluated to compute
the likelihoods P (xc|ωk). The 24-dimensional mean vec-
tor of these chord likelihoods for both modes m, normal-
ized to add up to one, gives the second set of key templates
µK2(m). To estimate the key of a piece we compute both
the mean chroma vector and the normalized mean chord
likelihoods. Then we compute the dot product of these
test profiles and all 12 shifted variants of the two key tem-
plates as a measure of correlation. Note that for µK2(m)
the two halves of the likelihood vectors representing ma-
jor and minor chords must be shifted independently. The
key for which the template maximizes the dot product is
chosen. This is done for both µK1(m) and µK2(m) to
compare the results.

4. MAIN MELODY ESTIMATION

4.1 Global model for main melody sequence

Our model for melody estimation is based on the model
proposed in [4]. In order to achieve a meaningful quan-
tization of the desired melody line, we adapted the note
duration model initially proposed in [10].
The observation audio signal x is considered as the instan-
taneous mixture of two contributions, the main instrument
voice v playing the main melody and the accompaniment
or background music m, i.e., x = v + m. This relation
stays valid for the short time Fourier transform matrices
X , V and M of these signals. We assume that the sig-
nal was decomposed into N frames, with Fourier trans-
forms of F positive frequency bins. We model the complex
Fourier transforms as complex proper centered Gaussians,
for which we more specifically model the variances.

On one hand, for the accompaniment M , the “Nonneg-
ative Matrix Factorization” (NMF) model is retained. The
resulting variance SMn

(f) for Mn(f), at frame n and fre-
quency f is then given by:

SMn
(f) =

R∑
r=1

WM (f, r)HM (r, n), (2)

where R is the number of elements in the spectrum dictio-
naryWM andHM is the activation coefficient matrix asso-
ciated to WM . In matrix notation, with the variance matrix
SM such that SM (f, n) = SMn(f): SM = WMHM .

level
Filter

K(n− 1) K(n) K(n + 1)

Main
Instrument
level

Vn−1(f) Vn(f) Vn+1(f)

Fundamental
Frequency
level

F0(n− 1) F0(n) F0(n + 1)

Note levelE(n)E(n− 1) E(n + 1)

Figure 3. Generative model for the main instrument
source/filter model.

On the other hand, the main instrument voice V is mod-
elled through a source/filter model. The source part is
driven by a three-layer generative model, shown on the up-
per part of Fig. 3. The filter part is modelled thanks to a
two-layer model (lower part of Fig. 3). Note that the main
instrument level V is also a hidden layer which, along with
the accompaniment levelM , gives the mixture observation
level X .

The source level comprises two hidden levels. First,
the fundamental frequency level F0(n) controls the pitch
of the main instrument. These variables are dependent on
the second layer, the note level. The evolution between
the states of the note level E(n) and the fundamental fre-
quency states are explained in Sec. 4.2.

The filter layer is simpler, because here, we are more in-
terested in the note and frequency levels. Therefore, we al-
low more flexibility in the evolution of the filter part and do
not model any constraint on the corresponding sequence.

The main instrument level is then generated with the fil-
ter and fundamental frequency levels. The variance matrix
SV for Vn(f), such that SV (f, n) = SVn

(f), is given by:

SV = (

WΦ︷ ︸︸ ︷
WΓHΓHΦ)︸ ︷︷ ︸

Filter part

. ∗ (WF0HF0)︸ ︷︷ ︸
Source part

, (3)

where WΓ is a F × P dictionary of P smooth atomic el-
ements, WF0 a dictionary of NF0 spectral combs for the
voiced source part and HΓ the coefficient matrix such that
the actual filter dictionary WΦ = WΓHΓ. The activation
coefficient matrices for the filter and the source parts re-
spectively are HΦ and HF0 .

The optimal note sequence E = {E(1), . . . , E(N)} is
estimated within a Maximum Likelihood (ML) framework:

Ê, F̂0, K̂ = argmaxE,F0,K
log p(X,E, F0,K). (4)

Such an estimation is computationally too intensive, and
we propose in the next section some simplifications to es-
timate the different levels of the problem.
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4.2 Model Approximations

In order to estimate the desired note sequence, we first ne-
glect the constraint of having only one filter per frame. We
then limit the problem to:

Ê, F̂0 = argmaxE,F0
log p(X,E, F0), (5)

The right-hand side of Eq. (5) can be further expressed as:

log p(X,E, F0) = log p(X|F0) + log p(F0|E) + log p(E),

where, as shown on Fig. 3, we use that the sequence X is
independent from E conditional on F0. Furthermore, we
assume that:

log p(X|F0) ≈
∑
n

log H̃F0(F0(n), n). (6)

In (6), the observation likelihood conditional on the melody
fundamental frequency is approximated with a modified
version H̃F0 of the source activation coefficient matrixHF0

calculated on the data as described in [4]. During this first
estimation round, the observation frames are assumed in-
dependent. We set H̃F0 = HF0 and then normalize each
column of H̃F0 by its maximum value.

The log-likelihood of the fundamental frequency sequence,
conditional on the note state sequence, log p(F0|E) is equal
to:

N∑
n=2

log p(F0(n)|F0(n− 1), E(n)) + log p(F0(1)|E(1))

Strictly speaking, F0(n) should also depend on E(n− 1),
but for simplicity, we drop this dependency. We further
assume that p(F0(n)|F0(n − 1), E(n)) is proportional to
the product:

p(F0(n)|F0(n− 1))× p(F0(n)|E(n)).

p(F0(n)|F0(n − 1)) is a prior that simulates smooth f0

variations. p(F0(n)|E(n)) penalizes the distance between
the fundamental frequency and the “expected” frequency
for the note state E(n). These functions are set to:

p(F0(n) = f2|F0(n− 1) = f1) ∝ exp(−α| log2(
f2

f1
)|),

p(F0(n) = f0|E(n) = e) ∝ exp(−β| log2(f0/fe)|2),

where fe is the “standard” frequency for note E = e.
At last, we use the “segmental” duration model in [10] for
the note state evolution:

log p(E1:n) = log p(En|E1:n−1) log p(E1:n−1). (7)

The interested reader may find more information on this
model in [10] , especially on the exact equations for the
durations as well as on the beam searching algorithm that
allows to find an optimal path for the sequence E.

To put it in a nutshell, we proceed as follows:

1. First assuming the independence of neighbouring
frames, the parameters for the fundamental frequency
and the filters are globally estimated.

2. We then extract pitch candidates for the main melody
from the matrix HF0 and use them to restrain the
range of pitches to be tested when looking for the
optimal path.

3. Finally, we find the optimal path of sequencesE and
F0 using a beam search strategy, maximizing the ap-
proximated likelihood Eq. (5).

4.3 Generating a usable melody track transcription

The note sequence must be further quantized to produce
a musical score. The fundamental frequencies are quan-
tized onto the Western musical scale using the model for
the sequence E. The temporal quantization is yielded to
the rendering module such that the time signature can be
considered.

5. LEAD SHEET GENERATION

Eventually, all the pieces of information are put together to
render a readable transcription. Depending on νo and the
estimated tempo we choose an appropriate time signature.
Both the chords and the melody are processed in measure
chunks. The onsets and the duration of the melody notes
are quantized to a subdivision of quarter notes. These are
usually eighth notes, which gives a good tradeoff between
quantization errors and spurious notes. Depending on the
estimated key, a simple pitch spelling algorithm is applied
for both notes and chords. Basically, we choose note and
chord names such that the distance on the circle of fifths is
minimized.

6. RESULTS AND EVALUATION

In order to assess the different modules of the transcrip-
tion system, we need a database for which the chords, the
beat, and the melody line are annotated. Assembling such a
database by manually annotating audio recordings is highly
time-consuming. We found using the Band-In-A-Box 2

(BIAB) format a convenient way of generating the annota-
tion in a semi-automatic way. BIAB is software which gen-
erates musical accompaniment given a sequence of chords,
a tempo, and a style; it also supports melody tracks. Thus,
BIAB files contain all the information which is relevant
for the lead sheet generation task. Actually, BIAB even
features lead sheet printouts, which gives a convenient ref-
erence for the subjective assessment of the results.

Our database comprises 278 files adding up to about
16.5 hours of audio material. It is a subset of the Pop &
Rock database gathered by members of the Yahoo BIAB
user group. Details are available on-line [11]. The files are
rendered substituting the oboe for the singing voice, which
is an instrument that shares a number of acoustic properties
with the human voice. We used a modified version of one
of the BIAB parsers available on-line to extract the relevant
information from the BIAB files.

2 http://www.band-in-a-box.com/
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Figure 4. Histogram of the ratio detected tempo / ground-
truth tempo over the entire database.

6.1 Beat tracking evaluation

We use the same metric as in [2] to evaluate the beat track-
ing module. The performance measure is the fraction of
the longest continuous portion of the piece for which all
beats are detected. A ground-truth beat is considered cor-
rectly tracked if the absolute distance to the nearest de-
tected beat is smaller than 17.5 % of the period. If the ratio
of the detected tempo to the ground-truth tempo is either
two or three, we only consider every second or third beat,
respectively, during the evaluation and choose the starting
beat which maximizes the performance (see [2] for de-
tails). Fig. 4 depicts the histogram of the ratio detected
tempo / ground-truth tempo. There is a single file for which
the ratio is 1.5 which must be considered wrong. The aver-
age beat tracker performance is 94.1 %. For 91.4 % of all
pieces we correctly track more than 90 % of the beats.

6.2 Down-beat tracking evaluation

The down-beat information implicitly given in the BIAB
files cannot be trusted. Historically, BIAB’s support for
meters other than 4/4 is weak and sometimes the system
is abused, e.g., a 6/8 meter would be recorded as a slower
4/4 meter where each beat of the 4/4 meter collects three
beats of the 6/8 meter. Generally, the beat given in BIAB
files is not guaranteed to correspond to the tactus period,
i.e., the denominator of the time signature. It may reflect
half-time tempo, double-time tempo, or ternary meters. To
assess the proposed measure grid estimation approach we
have to take these peculiarities into account. In compliance
with the beat tracker performance measure we consider a
down-beat correctly detected if the absolute distance to the
closest ground-truth downbeat is less than 17.5 % of the
period estimated by the beat tracking module. We com-
pute the down-beat performance measure as the fraction
of the longest continuous portion for which all down-beats
were correctly detected. This is a particularly conservative
measure as it combines both the result of the beat tracking
module and the estimated measure grid based on detected
chord change points. The average down-beat performance
is 87.3 %.

6.3 Chord estimation evalution

We use basically the same evaluation measure as applied
to the 2008 MIREX chord detection task 3 . All annotated
chord symbols are mapped to their root triads resulting in

3 MIREX 2008 Evaluation Campaign, website:
http://www.music-ir.org/mirex/2008/

five chord classes: major, minor, diminished, augmented,
and suspended. (Note that 98.3 % of the chord symbols in
our database fall into the major and minor categories.) This
results in 5 · 12 + 1 possible states, including the no-chord
state, which is used in the two pickup bars. The evalua-
tion measure is the overlap in seconds between the detected
chord sequence and the ground-truth sequence mapped to
the 61 possible states as described above. The average
overlap for the entire database is 76.4 % for the initial chord
detection phase and 79.3 % for the refined estimation us-
ing transition probabilities depending on the position in the
measure. The average overlap quantized to beats, which
is more relevant to the transcription task, is 80.0 %; it is
82.7 % when the pickup bars are discarded.

6.4 Key estimation evaluation

For transcription purposes, a confusion of relative major
and minor keys does not matter as the key signature re-
mains the same. To evaluate the key estimation algorithms
we thus compute the difference in the numbers of sharp
or flat symbols, i.e., the smallest distance on the circle of
fifths either clockwise (positive) or counterclockwise (neg-
ative). Fig. 5 shows the histogram of the key error mea-
sure for both key estimation approaches over the entire
database. Both approaches correctly estimate the key sig-
nature for the majority of the pieces. However, the portion
of the database for which the absolute key signature error
is not greater than one is 80.2 % using the chroma profiles
and 93.5 % using the mean chord likelihoods. The chroma-
based approach is prone to confuse minor keys with their
relative major keys (+3), e.g., A major instead of A mi-
nor, or with the key of the (major) dominant in the case
of harmonic minor (+4), e.g., E major instead of A minor.
Examining the statistics reveals that the variance remains
significant for the chroma profiles. One could try to use
a Gaussian classifier instead but, here, the method using
the mean chord likelihoods works very well. In Pop and
Rock music the chord range of the diatonic scale is often
extended to include chords of keys which are close on the
circle of fifths, e.g., a major chord on the minor 7th degree
of a major scale (subdominant of the subdominant); this
explains absolute key signature errors of one.

6.5 Melody tracking evaluation

For the melody estimation, we selected 11 songs that fit our
definition of the main melody. For each song, the melody
estimation algorithm returns the transcribed notes of the
melody, with their MIDI note number, onset and offset
times. A transcribed note is considered correct if there is a
note in the reference with the same MIDI note number of
which the onset time is close to the one of the transcribed
note. The absolute difference between these onset times
should be less than 150 ms. We compute precision, recall,
and f-measure, and we provide the score obtained using the
perceptually motivated measures in [12]. On our database,
we obtain average recall, precision and f-measure of, re-
spectively, 63 %, 68 % and 63 %. The average perceptive
F-measure is 69 %. Fig. 6 shows the box and whiskers for
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Figure 5. Histogram of the key signature error in steps on
the circle of fifths for the chroma-based (top) and the chord
likelihood-based method (bottom).
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Figure 6. Box and whiskers plot of the results for melody
estimation: Recall (R), Precision (P), F-measure (F) and
perceptive F-measure (Perc. F).

the 11 songs. The outlier corresponds to a song for which
the melody was too fast and too variable for the melody
tracker to follow. The results are promising; however, the
database we used was rather small and experiments on a
bigger and more realistic database should be held in the
future.

7. CONCLUSIONS AND PERSPECTIVES

We have proposed a lead sheet generation system. The
tempo, time signature, chords, key, and melody were han-
dled by several modules that can interact with each other.
The chord sequence helps in determining the time signa-
ture, which in turn can be used to refine the chord sequence
and also defines the minimum note duration for quantiz-
ing the melody. Our approach groups several modules that
achieve state-of-the-art performance on each sub-task. As-
sessing the overall quality of the generated transcription
is not trivial and subjective evaluation should be held for
that purpose. For some examples available on-line [11] the
resulting score is close to musician expectations. Some
assumptions make the system targeted at Western music
genres like Pop and Rock as represented by the chosen
database. Evaluation of the sub-systems on real audio data
remains to be done. The system could be further improved
by allowing more joint estimations. A global model could
cover all the aspects of the problem for which all the pa-
rameters for the different modules are jointly estimated.
However, as for the melody module, such a model might

be too complicated to be directly solved. Instead, this inte-
gration can be approximated for instance by including the
detected beat positions in the melody note duration model.
The melody estimation and separation can also be used to
improve the chord sequence estimation.
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ABSTRACT

Audio chord detection is the combination of two separate
tasks: recognizing what chords are played and determining
when chords are played. Most current audio chord detec-
tion algorithms use hidden Markov model (HMM) classi-
fiers because of the task similarity with automatic speech
recognition. For most speech recognition algorithms, the
performance is measured by word error rate; i.e., only the
identity of recognized segments is considered because word
boundaries in continuous speech are often ambiguous. In
contrast, audio chord detection performance is typically
measured in terms of frame error rate, which considers
both timing and classification. This paper treats these two
tasks separately and focuses on the first problem; i.e., clas-
sifying the correct chords given boundary information. The
best performing chroma/HMM chord detection algorithm,
as measured in the 2008 MIREX Audio Chord Detection
Contest, is used as the baseline in this paper. Further im-
provements are made to reduce feature correlation, account
for differences in tuning, and incorporate minimum classi-
fication error (MCE) training in obtaining chord HMMs.
Experiments demonstrate that classification rates can be
improved with tuning compensation and MCE discrimina-
tive training.

1. INTRODUCTION

As online music databases continue to grow in size, more
effective retrieval mechanisms are needed. In particular,
recognizing certain musicological, acoustical, and cultural
factors in a musical piece impact notions of similarity. One
such musicological factor which has seen an increased re-
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personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

search focus is automatic chord detection, which is a mid-
level representation and a first-step in identifying the har-
mony of a given musical work.

Most recent approaches to identifying chords from the
acoustic signal are based on using chroma features as in-
puts into a hidden Markov model (HMM) based system.
An early approach in literature using an HMM-based sys-
tem was [1], where an ergodic HMM provides the ini-
tial chord progression modeling and updated using N-best
rescoring techniques. Sheh and Ellis [2] deal with an inad-
equate amount of training data by assuming that chroma
vectors from the same mode (e.g., Major) and different
pitch classes can be considered as rotated versions of one
another. Bello et al. [3] incorporate musical knowledge
into the transition probabilities and HMM parameters to
improve the results. Lee and Slaney [4] increase the amount
of training data available by synthesizing audio to provide
accurate chord and boundary information. Improvement is
made in [5] by using key-dependent ergodic HMMs and
warping the chroma features into tonal centroid features
[6], which gives the relation of the chroma features on the
circles of fifths, minor thirds, and major thirds.

The HMM framework is inspired by automatic speech
recognition (ASR), where HMMs represent words or sub-
word units. However, the ASR community only considers
the recognition rate (i.e., what was said) as important and
ignores timing information (i.e., recognizing when each
spoken unit begins and ends). In contrast, audio chord
detection is measured in terms of frame error rate (FER),
which incorporates both tasks. This paper proposes opti-
mizing these two task separately and focuses on the prob-
lem of classification rate (i.e., recognizing what was said).
To the authors’ knowledge, only [2] evaluates these tasks
separately. Specifically, Sheh and Ellis consider forced
alignment, where the correct chord sequence is known and
the timing information is extracted.

This paper implements several improvements to evalu-
ate the limits of the chroma/HMM system for classifica-
tion rates. In particular, the goal of this paper is to improve
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the classification rate between highly confused chords in
the feature space. For instance, one of the most common
chord detection errors is between parallel modes, which
share the same root, but differ in their key signature; e.g, C
Major versus C minor. The cause for confusion is because
the difference between a Major and minor chord is a flat-
tening of the major third to a minor third, which may only
be a few hertz.

The baseline system adopted in this study is the current
state-of-the-art and placed first in the 2008 MIREX Audio
Chord Detection task (Task 2: no pre-training) [7]. To at-
tenuate percussive sounds, the harmonic-percussive source
separation (HPSS) algorithm [8] is used in the baseline
system to isolate the harmonic part of the spectrum prior
to chroma extraction and maximum likelihood (ML) esti-
mation. This paper incorporates the improvements of au-
tomatic tuning compensation and minimum classification
error (MCE) training [9].

The automatic tuning algorithm is a simplification of
the one proposed in [3]. Small, uniform databases, such
as the Beatles Chord Database [10], experience improved
performance with tuning normalization because slight dif-
ferences in tuning cause confusion between highly com-
peting chords. This can lead to confusion among parallel
modes since they differ by a single note, for example. Due
to the trade-off between spectral and time-based resolution
in frame-based music processing, a slight difference in tun-
ing could allow for energy to bleed into neighboring energy
bands, leading to confusion.

MCE, a highly successful discriminative training ap-
proach, enhances ASR performance by overcoming two
assumptions made by parametric approaches. Like speech,
the assumption that the true distribution of chroma vec-
tors is an HMM is an approximation to yield a parametric
fit. ML techniques estimate parameters corresponding to
the mode of the likelihood function. However, if the true
distribution differs from the assumed model, the ML tech-
nique is not guaranteed to yield an optimal performance. In
addition, the strength of the parametric fit relies on accu-
rate parameter estimates. However, current acoustic chord
databases are quite small in size and contain around 100
songs from one to five artists. With such small artist di-
versity, it is unlikely that current databases are a good rep-
resentation of the entire acoustic space. MCE integrates
a discriminative training approach into the parameter es-
timation problem by directly optimizing the performance
classification; i.e., classification error. Specifically, a logis-
tic transform incorporates the classification error rate into
the objective function so that gradient probabilistic descent
will yield an improved set of parameters.

The baseline algorithm, is described in Section 2 and
improvements are detailed in Section 3. Experimental re-
sults in Section 4 compare modifications to the ML base-
line. Finally, Section 5 gives concluding remarks.

2. BASELINE ALGORITHM: MIREX 2008
SUBMISSION

2.1 Harmonic/Percussion Source Separation

As noted in [11], transients and noise decrease the chord
recognition accuracy in chroma-based approaches. This
is largely due to percussive sources, which spread energy
across the entire frequency spectrum. While the authors
in [11] use a median filter to smooth percussive effects,
this paper uses the HPSS algorithm [8], which integrates
the harmonic and percussive separation into the objective
function

J(H,P) =
1

2σ2
H

∑
k,n

(Hk,n−1 −Hk,n)2

+
1

2σ2
P

∑
k,n

(Pk−1,n − Pk,n)2 (1)

where Hk,n and Pk,n are the values of the power spectrum
at frequency index k and time index n for the harmonic
spectrum, H, and the percussive spectrum, P, respectively.
The parameters σ2

P and σ2
H need to be set experimentally.

To ensure that each time-frequency component of the har-
monic and percussive spectrum components sum to a value
equal to the original spectrum, Wk,n, and to ensure that
power spectrums remain positive, the following constraints
are added to the minimization of (1)

Hk,n + Pk,n = Wk,n (2)

Hk,n ≥ 0 (3)

Pk,n ≥ 0 (4)

Note that minimizing (1) is equivalent to maximum like-
lihood estimation under the assumption that (Hk,n−1 −
Hk,n) and (Pk−1,n − Pk,n) are independent Gaussian dis-
tributed variables. This simplification leads to a set of it-
erative update equations for the harmonic and percussive
spectrums. At the output of HPSS are two waveforms; one
of these contains a percussive-dominated spectrum and the
other a harmonic-dominated spectrum. Further details can
be found in [8].

2.2 Chromagram

Chroma vectors are the most common features in audio
chord detection algorithms and describe the energy distri-
bution among the 12 chromas; i.e., pitch classes. To derive
chroma vectors, the harmonic-emphasized music signal is
first downsampled to 11025 Hz. Next, the signal is broken
into frames of 2048 samples with a 50% overlap. The con-
stant Q transform [12] provides spectral analysis using a
logarithmic spacing of the frequency domain, whereas the
traditional discrete Fourier transform (DFT) uses a linear
spacing of the frequency domain. The resulting spectrum,
S, of the audio signal s(t) is given by

S(k) =
T (k)−1∑
t=0

w(t, k)s(t)e−j2πfkt (5)
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where the analysis window, w(t, k), and the window size,
T (k), are functions of the frequency bin index, k. The
center frequency of the k-th bin is designed to match the
equal-temperament scale [13]. For example, if it is desired
to have one bin per note on an 88-piano keyboard, then the
bin center frequencies are

fl = 2l/βfref (6)

with the number of bins per octave, β, set to 12, the min-
imum reference frequency, fref, set to the frequency of A0
(i.e., 27.5 Hz), and l = {1, 2, ..., 88}. The resulting chroma
vector for frame n is

cn(b) =
R∑
r=0

|S(b+ rβ)| (7)

where b = {1, 2, ..., β} is the chroma bin number and R is
the number of octaves considered.

2.3 HMM classifier

The optimal chord sequence, W ∗ is decoded such that [14]

W ∗ = arg max
W

P (W |C)

= arg max
W

P (C|W )P (W )
P (C)

∝ arg max
W

P (C|W )P (W ) (8)

where C = {c1, c2, . . . , cN} is the sequence of chroma
vectors. The probabilities of the acoustic model and tonal-
ity model are P (C|W ) and P (W ), respectively. Note that
in speech, P (W ) is the language model; i.e., the prior
probability for a sequence of words, W . For this paper, the
tonality model assumes that every chord is equally likely.
The reason for the proportionality in (8) is that P (C) is the
same for all chord sequences. The acoustic model is the
probability of producing the observed chroma vectors for
chord W and is modeled with a HMM; i.e.,

P (C|W ) = πq0

N∏
n=1

aqn−1qnbqn(cn) (9)

where πq0 is the initial state probability, aqn−1qn is the tran-
sition probability from state qn−1 to qn, and bqn(cn) is the
output likelihood, which is modeled by a Gaussian mixture
model (GMM)

bqn(cn) =
D∑
d=1

ωdN(µd,Σd) (10)

where D is the number of mixtures, ωd is the mixture
weight for component, d, and N(µd,Σd) is a Gaussian den-
sity with mean µd and covariance Σd. If the features are
uncorrelated, then the covariance matrix is diagonal, Σd =
diag(σ1, σ2, ..., σ12). Note that a single state HMM is
equivalent to a GMM.

Figure 1. Cross correlations of chroma features. Right:
original chroma features. Left: DFT chroma features.
Dark shades (or red if in color) indicate higher correlation
(light shades (or blue in color) indicate low correlation.

3. IMPROVED ALGORITHM

Since the baseline algorithm is in a format compatible with
the automatic speech recognition paradigm, it provides a
good framework to test more advanced speech processing
techniques, such as MCE, as an alternative model estima-
tion step. In addition, parameter reduction and tuning com-
pensation are implemented and compared to the baseline.

3.1 Fourier Transform Chroma Features

As noted in [3], chroma features are highly correlated be-
cause harmonics of different pitch classes overlap and is
demonstrated in the left part of Figure 1. For instance, the
third harmonic of C4 (261.63 Hz fundamental, 784.89 Hz
third harmonic) is highly confusable with G5 (783.99 Hz
fundamental). However, as shown on the right of Figure 1,
the resulting feature dimensions have less cross-correlation
after applying a DFT on the chroma features.

3.2 Tuning Compensation

A second enhancement is tuning compensation. Standard
tuning is such that the A note above middle C on a piano
keyboard (i.e., A4) is approximately 440 Hz. However,
artists may intentionally or unintentionally have a refer-
ence tuning different from the standard. This can lead
to confusion in algorithms which assume that all music
is tuned to the standard reference, as shown in Figure 2.
In the upper part of Figure 2, a 12-dimensional chroma is
applied to a piece of music whose energy distribution is
higher in frequency than standard tuning (A4 ' 440Hz).
Therefore, the signal energy is distributed between the in-
tended note (e.g., C3) and the neighboring note (e.g., C#3).
Considering that Major and minor chords differ by only
one semi-tone in a single note, this can lead to large confu-
sion between the Major and minor modes of a given chord.

To account for differences in tuning, a simplified ver-
sion of [3] is implemented. The original tuning compen-
sation algorithm uses 36 bins per octave (β = 36 in (7))
in the calculation of chroma vectors. A peak picking algo-
rithm produces a histogram, which gives information about
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C3 C#3 D3 C7 C#7 D

C31 C32 C33 C#31 C#32 C#33 D31 D32 D33 C71 C72 C73 C#71 C#72 C#73 D71 D72 D73

Figure 2. Upper: Hypothetical mistuned energy distribu-
tion. Bottom: Find tuning alignment giving maximum en-
ergy distribution at sampled points.

the tuning of the piece. A circular shift is then applied
to the chroma vector as a corrective factor. The reason
for peak picking is that noise sources (e.g., percussion and
transients) corrupt the chroma vectors with non-harmonic
sources.

However, because of HPSS, a simplified procedure fil-
ters percussive noise sources and leaves energy due to har-
monic sources. The new algorithm takes a 36-dimension
chroma vector for each frame in a song, so that each note
considered is divided into a three bins

c̃(α)
n (b) =

R∑
r=0

|S(b+ α+ rβ)| (11)

where α = {1, 2, 3} and b = {1, 2, . . . , 12}. The algo-
rithm then retains the set the α which produces the chroma
vector with the greatest Euclidean length

cn = arg max
c̃
(α)
n

(
c̃(α)
n · c̃(α)

n

)
(12)

3.3 Minimum Classification Error Learning

As mentioned in the Introduction, MCE is a highly suc-
cessful discriminative training approach to improving au-
tomatic speech recognizers over ML and MAP estimation.
The optimization criterion in MCE is to minimize the esti-
mated classification loss

L(Λ) =
1
J

J∑
j=1

M∑
m=1

lm(Xj ; Λ)1(Xj ∈ Ωm) (13)

where Λ are the model parameters, J is the number of
training examples, {X1, X2, . . . , XJ}, M is the number
of categories (i.e., chords), lm(·) is a loss function, and
1(Xj ∈ Ωm) is one if Xj is in category Ωm and zero oth-
erwise. Typically, a 0-1 loss is used for lm(·), which makes
the objective function discrete and difficult to optimize.
However, a common approximation for the loss function
is to replace the 0-1 loss with a logistic function [9],

lm(Xj ; Λ) =
1

1 + exp(−γdm(Xj ; Λ) + θ)
(14)

where γ and θ are experimental constants and dm(Xj ; Λ)
is a misclassification measure, which is negative with a
correct classification and positive when a classification er-
ror is made.

A good indication of misclassification is the distance
between the correct class and competing classes; therefore,
the chosen misclassification measure is based on the gen-
eralized log-likelihood ratio [9]:

dm(X; Λ) = − log gm(X; Λ) + log [Gm(X; Λ)]1/η (15)

where

gm(X; Λ) = max
q
π(m)
q0

N∏
n=1

a(m)
qn−1qnb

(m)
qn (cn) (16)

Gm(X; Λ) =
1

M − 1

∑
p,p 6=m

exp[gp(X; Λ)η] (17)

where η is an experimental positive constant and the su-
perscript (m) refers to the m-th HMM. Note the misclas-
sification measure in (15) compares the probability of the
target class against a geometric average of the competing
classes. The parameter η determines the importance of the
competing classes by the degree of competition with the
target class. In particular, as η→∞, (17) returns only the
most competitive class. A gradient probabilistic descent
procedure [9] produces a set of parameters that yields a
local optimum of (13) through the update equations

Λτ+1 = Λτ − ε
∂lm(Xj ; Λ)

∂Λ

∣∣∣∣
Λ=Λτ

(18)

In order to keep the necessary constraints for an HMM den-
sity, the following transformations are used [9]:

µ̃
(m)
d (b) =

µ
(m)
d (b)

σ
(m)
d (b)

(19)

σ̃
(m)
d (b) = log σ(m)

d (b) (20)

4. RESULTS

4.1 Experimental Setup

The evaluation database is the set of studio albums by The
Beatles, which were transcribed at the chord level by Chris
Harte et. al [10]. As in the 2008 MIREX contest, only the
Major and minor chords are used for the evaluation. All
extended chords, Augmented, and diminished chords are
mapped to the the base root, Major, and minor chords, re-
spectively. A two-fold evaluation is implemented, where
half the albums are used as a training set and the remain-
ing half are used as a test set in the first fold. In the second
fold, the roles of the training and test set are swapped. Note
all songs from a particular album occur in either the test or
training set for each individual fold. This is the same setup
as MIREX 2008, but the third fold in MIREX 2008 was
removed because it was observed that the test cases where
already covered in the first two folds. Prior to HPSS, audio
is downsampled to 11025 Hz. In addition, chord boundary
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Fold BL FT FT+TC FT+TC+MCE
1 57.84 57.84 61.91 73.59
2 61.74 61.74 64.97 71.35
Total 59.95 59.95 63.57 72.37

Table 1. Classification accuracies for Fourier transform
features and tuning compensation (BL = baseline, FT =
Fourier Transform, TC = tuning compensation, MCE =
minimum classification error).

Figure 3. Classification accuracy versus iteration number.

information is assumed to be known and results are given
in percentage of correctly recognized isolated chord seg-
ments, except in Section 4.3, where results are given in
frame accuracy.

4.2 Isolated Chord Recognition Results

Table 1 details the improvement over the ML approach,
where chords are modeled with a single Gaussian distribu-
tion with a full covariance matrix for the baseline, Fourier
transform, and Fourier transform with tuning compensa-
tion cases. The MCE results listed used 50 iterations of
the gradient probabilistic descent algorithm. The parame-
ters γ, θ, and η were found experimentally by using a set
of five songs from the training set as a cross-validation set.
After cross-validation, the entire training set is used to re-
train the system.

Tuning compensation provides a modest, but consistent
gain in performance. Applying a Fourier transform does
not change the performance from the baseline. However,
the main advantage of applying a discrete Fourier trans-
form is to attenuate the correlation in chroma features, and
is equivalent to a discrete cosine transform for real, sym-
metric data [14]. In addition speech processing algorithms,
such as MCE, assume diagonal covariance matrices in the
GMM observation probability. Therefore, applying MCE
is straightforward and results in a drastic increase in perfor-
mance over ML estimation. In particular Figure 3 demon-
strates, generally, each iteration of the gradient probabilis-
tic descent algorithm improves the classification rate.

To understand the types of errors that remain, the con-
fusion matrix is presented in Table 2. It is observed that
Major chords are classified more accurately than minor

Fold BL FT FT+TC FT+TC+MCE
1 74.96 74.96 77.04 77.90
2 72.95 72.95 73.54 74.51
Total 73.46 73.46 75.20 76.10

Table 3. Frame accuracy for continuous chord recognition.

# Frames BL FT+TC FT+TC+MCE
0 73.91 75.20 76.12
1 76.59 77.92 78.93
2 78.61 79.94 80.99

Table 4. Frame accuracy versus number of frames re-
moved at chord boundary.

chords. Specifically, many errors are due to recognizing
minor chords with the correct root, but wrong mode; i.e.,
the parallel Major chord. For example, 82% of c minor
chords are recognized as C Major. The second most com-
mon type of error is in mistaking a Major chord for its
minor, which are chords that share the same key signa-
ture, but differ in the root note. For example, e minor is
confused with G Major 12% of the time. Note, that no lan-
guage model is used in this current paper since the goal of
this paper is to study the confusions that arise due acoustic
confusability in the chroma/HMM framework.

4.3 Continuous Chord Recognition

While this paper is mainly concerned with isolated chord
classification, an additional experiment demonstrates the
performance of continuous chord recognition. In this case,
the frame accuracy is used as the performance metric. The
results are presented in Table 3. As expected, improvement
is less pronounced with adequate boundary information.
Further analysis shows that one reason for the performance
drop is due to identifying chord boundaries. As shown in
Table 4, allowing a tolerance region of two frames on ei-
ther side of a true chord transition point increases the frame
accuracy. Specifically, 20% of the error occurred within
two frames of a chord transition point when at least one
chord to either side of the transition point was detected
correctly. In [2], it was demonstrated that chroma/HMM
setup performed well during forced alignment (i.e., when
the chord sequence is given), but poorly when no informa-
tion on the chord sequence was given. These results indi-
cate that the chord detection problem might benefit from
treating the two tasks separately and optimizing each task
individually.

5. CONCLUSIONS

This paper considers audio chord detection as two sep-
arate tasks: (1) classifying what chords are played and
(2) determining when chords begin and end. Several ad-
vanced pre-processing techniques are implemented such as
HPSS, which attempts to separate transients and percussive
sources from the harmonic spectrum. Further, eliminating
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C C# D D# E F F# G G# A A# B c c# d d# e f f# g g# a a# b
C 91 2 2 2 2
C# 71 2 2 12 5 7
D 1 89 1 2 2 1 3
D# 81 1 9 1 6 1
E 94 1 2 1
F 3 91 2 1 1 1 2
F# 1 1 91 1 1 3 2 1
G 1 1 94 1
G# 3 83 3 10
A 1 1 94 1 1
A# 1 1 1 91 1 1 3 1 1
B 1 1 1 1 3 1 85 1 2 3
c 82 9 9
c# 1 3 1 5 1 2 87
d 6 12 13 3 3 1 57 4 1
d# 33 67
e 5 1 19 12 5 50 8 1
f 1 1 1 11 16 6 63 1
f# 2 1 2 7 11 76 1
g 3 14 9 1 1 71
g# 4 12 85
a 5 2 2 13 78
a# 2 2 40 56
b 6 1 20 71

Table 2. Chord confusion matrix (%). Rows are true chords, columns are hypothesized chords. Capital letters represent
Major chords and lowercase letters represent minor chords.

the correlation between chroma features allows for the use
of many speech processing tools because these tools are
built using the assumption of diagonal matrices in the ob-
servation probability densities.

In this paper, tuning compensation and MCE enhance
the chord recognition task over traditional maximum like-
lihood by reducing the confusion due to noise in the feature
extraction stage. In the future, the authors hope to incorpo-
rate other advanced speech processing techniques, such as
N-best re-scoring, to combat other areas of confusion such
as the confusion between minor chords and their relative
and parallel Major equivalents. Finally, it was observed
that even when chords are detected correctly, 20% of the
error occurred at chord transition points. Therefore, the
authors are investigating chord transition detection algo-
rithms to optimize the second task of chord detection.
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ABSTRACT

This paper proposes a method for visualizing the pitch con-

tent of polyphonic music signals. More specifically, a model

is proposed for calculating the salience of pitch candidates

within a given pitch range, and an optimization technique

is proposed to find the parameters of the model. The aim

is to produce a continuous function which shows peaks

at the positions of true pitches and where spurious peaks

at multiples and submultiples of the true pitches are sup-

pressed. The proposed method was evaluated using syn-

thesized MIDI signals, for which it outperformed a base-

line method in terms of precision and recall. A straight-

forward visualization technique is proposed to render the

pitch salience function on the traditional staves when the

musical key and barline information is available.

1. INTRODUCTION

Pitch analysis of polyphonic music is a challenging task

where computational methods have not yet achieved the

accuracy and flexibility of trained musicians. Several dif-

ferent approaches have been proposed towards solving the

problem. Some methods are based on a statistical model of

the input signal [1], whereas some others model the human

auditory system [2]. Joint detection of multiple pitches has

been proposed [3], contrasted by techniques which carry

out iterative pitch detection and cancellation [4]. Some

methods are based on unsupervised learning [5] and some

others on supervised classification [6]. These examples il-

lustrate the remarkable variety of methods that have arisen

in an attempt to mimic the human ability to make sense

of complex sound mixtures. A nice review of multipitch

detection algorithms can be found in [7].

A drawback of many of the existing multipitch analy-

sis methods is that they produce a discrete set of detected

pitch values (or, fundamental frequencies, F0s 1 ) instead of

a continuous detection function that would show the likeli-

hoods of all possible pitch values within the pitch range of

1 The terms pitch and F0 are used here interchangeably.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2009 International Society for Music Information Retrieval.

interest. For pitch content visualization and acoustic fea-

ture extraction purposes, a continuous detection function

is often more desirable since it allows the human eye or

a subsequent post-processing algorithm to pick the inter-

esting features from the detection function and to decide

which peaks correspond to true pitches.

A fundamental difficulty in computing such detection

functions (think of the autocorrelation function for exam-

ple) is that they do not show a peak only at the position

of the true pitch, but also at twice and half the correct

pitch, and often at all multiples and submultiples of it.

This ambiguity is particularly challenging in multipitch de-

tection where the detection function easily becomes con-

gested with spurious peaks due to the ambiguity associated

with each component sound.

Various techniques have been proposed to suppress the

extraneous peaks in a detection function. For example, it

has been proposed to detect F0s either iteratively or jointly

and to cancel all the spurious peaks that are already ex-

plained by the detected F0s [3,4]. However, these methods

produce only a discrete set of F0s. Karjalainen and Tolo-

nen proposed a method which produces an entire detection

function, where the spurious peaks were suppressed using

an “enhancing” procedure [2].

In this paper, we propose a model for calculating the

salience (or, strength) of all pitch values within a given

range of interest, and investigate a numerical optimization

technique to find the model parameters so that the truly ex-

isting pitch frequencies are indicated with peaks that tend

towards unity value and spurious peaks are forced towards

zero. We also propose a visualization technique, where the

computed pitch salience is rendered on the staves of com-

mon musical notation. This allows people who are able to

read the music notation to play directly from the visual-

ization, or to use it to study performance nuances, such as

pitch glides, vibrato, and expressive timing.

2. METHOD

In the proposed method, an audio signal is first blocked

into frames which are short-time Fourier transformed. The

spectra are whitened (see Sec. 2.1) and the noise floor in

the spectrum due to drums and other non-pitched sounds is

estimated (Sec. 2.2). The whitened spectrum and the noise

spectrum are used in the pitch salience model (Secs. 2.3

and 2.4). These steps are now explained in more detail.
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2.1 Level normalization and spectral whitening

The time-domain audio signal x(n) is blocked into partly-
overlapping analysis frames that are windowed using the

Hamming window. The signal within each frame is level-

normalized to unity variance, zero-padded to twice its length,

and then discrete Fourier transformed to obtain the magni-

tude spectrum Xt(k) in frame t. Each frame is processed
independently, therefore we drop the frame index t in the
following for convenience.

Spectral whitening, or flattening, is applied on X(k) in
order to suppress timbral information and thereby make

the subsequent pitch analysis more robust to various sound

sources. This is achieved by calculating power σ2
c of the

signal within narrow frequency bands c and by scaling the
signal within each band by gc = σν−1

c , where ν = 0.16 is
a parameter determining the amount of whitening. Center

frequencies fc of the subbands are distributed uniformly

on the critical band scale, fc = 229(10(0.33c+1)/21.4 − 1),
and each subband c = 1, . . . , 96 has a triangular power re-
sponse extending from fc−3 to fc+3. The resulting whitened

magnitude spectrum is denoted by Y (k).

2.2 Noise estimation

From the viewpoint of pitch analysis, the sounds of drums

and the beginning transients of many pitched instruments

are considered as “noise”. Several methods have been pro-

posed in the literature for estimating the “noise” (stochastic

spectral component) in music (see [3] for review). Perhaps

the most widely used is the sinusoids plus noise model,

where sinusoidal components are detected and subtracted

in the frequency domain, and the residual is considered

as coloured (filtered) white noise. Another, quite robust

method is to calculate a moving median at local regions of

the magnitude spectrum.

Here the emphasis is laid on the computational effi-

ciency and on the robustness of the method against spectral

peaks which are assumed to correspond to pitched sounds

and should not affect the estimate. The proposed noise

spectrum estimation method consists of the following steps.

First, a moving averageN ′(k) over the whitened spectrum
Y (k) is calculated as

N ′(k) =
1

uk − lk

uk
∑

k′=lk

Y (k′) (1)

where lk and uk define the lower and upper boundaries of

the critical-band subbands within which N ′(k) is calcu-
lated. Note that (1) can be computed very efficiently by

first calculating cumulative sum Ȳ (k) over Y (k) and then
N ′(k) = Ȳ (uk)− Ȳ (lk − 1). The band boundaries lk and
uk can be pre-stored.

To make the noise estimate immune to spectral peaks,

another moving average is calculated, but including in the

averaging only frequency bins for which Y (k) < N ′(k).
The resulting noise spectrum estimate is denoted byN ′′(k).
Performing one more local averaging ofN ′′(k) (by substi-
tuting N ′′(k) in place of Y (k) in (1)) produces the final
noise spectrum estimate N(k).

The presented noise estimation procedure is besides sim-

ple, also computationally efficient. If the input signal con-

sists of coloured white noise (without pitched sounds), it

can be shown that E [N(k)] = 0.61E [N0(k)], where E [·]
denotes expectation and N0(k) is the true noise spectrum
being estimated. In other words, the estimated spectrum

depends linearly on the true spectrum. In practice, how-

ever, the input signal may contain pitched sounds which

affect the estimate and the scaling factor can be anything

between 0.61 and about 1.0. In our case, the subsequent
optimization process explained below takes care of finding

the linear scaling factor for N(k), therefore the proposed
noise estimation method is well suited here.

2.3 Pitch salience model

For convenience, the whitened spectrum Y (k) and the es-
timated noise spectrumN(k) are stored as columns in ma-
trixY, together with an all-one “spectrum”:

Y =











Y (0) N(0) 1
Y (1) N(1) 1
...

...
...

Y (K − 1) N(K − 1) 1











(2)

Let us also define basis functions

am(k) = [log(k + 1)]m−1 (3)

where k denotes the frequency index andm = 1, 2, . . . ,M
indexes the basis functions. This is a polynomial basis on

the log-frequency scale. For convenience, the bases are

collected as columns in matrixA = [a1,a2, . . . ,aM ].
The columns of Y are linearly combined into a single

spectrum Z(k) according to the following linear model:

Z(k) = (AW.×Y)1 (4)

where .× denotes element-wise multiplication,W is a ma-

trix of size (M×3) that contains the model parameters, and
1 is an all-one vector of length 3 (the number of columns
inY). Note that the productAW is a matrix of size (K ×
3), the same size as Y. The three columns define fre-

quency responses for the three columns of Y, before they

are summed (by multiplying with 1) to obtain the final

spectrum Z(k). The first column of AW defines the fre-

quency response of the whitened spectrum Y (k). The sec-
ond column defines the frequency response of the noise

spectrumN(k) and allowing it to be negative leads to noise
subtraction from the final spectrum Z(k). The third col-
umn ofAW is multiplied by the all-one spectrum inY and

allows an additive frequency-dependent curve to be added

to the final spectrum Z(k).
Crucial for the model are the parameters in matrixW.

The M parameters in column i of W (together with the

fixed basis functionsA) determine the frequency response

of column i in Y. The basis functions are necessary in

order to be able to represent the frequency responses with

only a few parameter values. An algorithm for learning the

parameters will be described in Sec. 2.4.
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A harmonic transform is applied on the spectrum Z(k)
to obtain a “raw” salience function r(τ) which indicates
the strength of pitch period candidates τ :

r(τ) =
H

∑

h=1

Z(kτ,h). (5)

The period τ corresponds to the F0 value fs/τ , where fs

denotes the sampling rate. The frequency bin kτ,h corre-

sponds to the h:th harmonic (integer multiple) of the F0
and is determined by the largest value of Z(k) in the vicin-
ity of the frequency hK/τ . More exactly, the maximum is
found in range ⌊hK/(τ + ∆τ/2)⌉ , . . . , ⌊hK/(τ −∆τ/2)⌉,
where ⌊·⌉ denotes rounding to the nearest integer,K is the
length of the Fourier transform, and ∆τ = 0.5 denotes
the spacing between successive period candidates τ . The
number of harmonic partials H = 20.
The harmonic transform (5) is motivated by the Fourier

theorem which states that a periodic signal can be repre-

sented with spectral components at integer multiples of the

inverse of the period. Pitch perception, in turn, is closely

linked to the time-domain periodicity of sounds.

The function r(τ) contains peaks at the positions of true
pitch periods, but it requires further processing to suppress

peaks that often occur at integer (sub)multiples of the true

period(s). The method proposed in the following bears re-

semblance to the “enhancing” technique of Karjalainen et

al. [2] which suppresses the peaks at integer multiples of

the true period(s) in the autocorrelation function (ACF).

They clipped the ACF to positive values, scaled it to twice

its length, and subtracted the result from the original clipped

ACF. This was repreated for time-scaling factors up to about

five to suppress the peaks occurring at integer multiples of

the true period(s).

The method proposed in the following is a generaliza-

tion of the above idea. First, let us create scaled versions of

r(τ). The original function r(τ) is scaled by a factor j by
inserting zeros between the original samples, lowpass fil-

tering the result with cutoff frequency 1
2fs/j and multiply-

ing the filtered signal by j. The resulting signal, denoted
by rj(τ), is finally truncated to the same length as r(τ).
Stretched versions with scaling factors j = 2, 3, . . . , J are
calculated (here J = 5).
Secondly, we calculate shrunk versions of r(τ) by scal-

ing with factor 1/j. This is done by lowpass filtering r(τ)
with cutoff frequency 1

2fs/j and then copying every j:th
sample of r(τ) to a signal denoted by r1/j(τ). Since the
length of r1/j(τ) is only r:th fraction of r(τ), new values
have to be calculated for long periods τ using (5) in order
that the shrunk function would be of the same length as the

original r(τ).
For convenience, the strecthed and shrunk versions of

r(τ) are stored as columns in matrixR,

R =
[

r,1, r2, r3, . . . , rJ , r1/2, r1/3, . . . , r1/J

]

(6)

where we have denoted r ≡ r(τ), r2 ≡ r2(τ), and so on
for convenience, and 1 denotes an all-one vector.

Let us define basis functions

bn(τ) = [log(τ + 1)]n−1 (7)

where τ is the period and n = 1, 2, . . . , N indexes the ba-
sis functions. This is a polynomial basis on the log-period

scale. For convenience, the bases are collected as columns

in a matrix B = [b1,b2, . . . ,bN ].
The final pitch salience function s(τ) is calculated as a

linear function of the columns ofR:

s(τ) = (BV.×R)1 (8)

where V is a matrix of size (N × 2J) that contains the
model parameters, and 1 is an all-one vector of length 2J
(the number of columns in R). The product BV gives a

matrix of the same size as R. Its columns define period-

dependent weights for the columns of R, that is, for the

original raw salience r and its stretched and shrunk ver-

sions, rj and r1/j . For example, setting small negative

weights for the columns that correspond to r2 and r1/2

implements suppression of the peaks that occur an octave

above and below each true pitch period. TheN parameters
in column j of V (together with the fixed basis functions
B) determine the period-dependent weights for column j
in R. Finally, multiplication with 1 is equivalent to sum-

ming over the columns and yields s(τ).
The proposed pitch salience model is now fully defined,

except for the two parameter matricesW andV in (4) and

(8), respectively.

2.4 Algorithm for learning the parametersW andV

The described pitch salience model may look quite com-

plicated at a first sight, therefore we start from a simplified

case to develop an intuition how the model works. Let us

set the parametersW in (4) to zero for all except the first

column which corresponds to the first column ofY, and let

us set the values in the first column so that Z(k) ≈ K
k Y (k)

where K is the Fourier transform length. Furthermore, let
us set the parameters V in (8) to zero for all except the

first column (which correspond to the first column of R),

and set the values so that s(τ) ≈ 1
τ r(τ). Substituting r(τ)

from (5), the overall model becomes

s(τ) ≈
1

τ

H
∑

h=1

K

kτ,h
Y (kτ,h) ≈

H
∑

h=1

1

h
Y (kτ,h). (9)

where the latter equivalence is because kτ,h ≈ hK/τ .
In other words, salience is computed as 1

h -weighted sum

of the partial amplitudes in the whitened spectrum Y (k),
which is a reasonable (although simplistic) way of com-

puting pitch salience.

The above simplified model is actually exactly how the

parametersW and V are initialized in the learning algo-

rithm to be described here. The simple model (9) is a good

starting point, from where we iteratively refine the values.

An overview of the learning algorithm is as follows:

0) MatricesW andV are initialized to values that cor-

respond to the simple model (9).

1) MatrixW is updated, keepingV fixed.

2) MatrixV is updated, keepingW fixed.
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3) Steps 1 and 2 are repeated untilW andV converge.

In practice, it was found to be sufficient to repeat the steps

1 and 2 just a couple of times.

The exact goal of the optimization is to find such pa-

rameters W and V that the salience function s(τ) is as
close as possible to unity value at points τ that correspond
to true pitch periods, and as close as possible to zero at

next-largest peaks that correspond to “false” pitch periods.

The steps are now described in more detail.

Initialization. As already mentioned, W and V are

initialized to values that correspond to the simple model

in (9). Matrix W is initialized so that Z(k) ≈ K
k Y (k)

and matrix V so that s(τ) ≈ 1
τ r(τ). The initial values

in the first column ofW are calculated by least-squares fit

w1 = (ATA)−1ATα, where vectorα(k) = K/(k+ǫ) de-
notes the target function and regularization using ǫ ≈ 50 is
needed to avoid fitting only the largest values near the zero

frequency. Similarly, the initial values in the first column

ofV are calculated by v1 = (BTB)−1BTβ, where vector
β(k) = 1/(τ + ǫ) denotes the target function and ǫ ≈ 50
is again needed to avoid fitting only the largest values near

the zero period.

Updating W. In order to learn better values for W,

some training material is neeeded. For this purpose, we

mixed samples from 32 musical instruments with equal

mean-square levels. Random mixtures up to six simulta-

neous sounds were generated using the McGill University

Master Samples (MUMS) database.

For each training instance g, g = 1, 2, . . . , G, the fol-
lowing operations are performed:

1.a) The salience function s(τ) is calculated using (8)
and the current parametersW andV.

1.b) From s(τ), we record the exact period values of the
P annotated true pitches in training instance g. In
addition, we record the period values of 10−P next-
largest “false” peaks in s(τ). The peak periods are
denoted by τp, p = 1, . . . , 10, and the types of the
peak by φp = [1, . . . , 1, 0, . . . , 0] where 1 indicates
true peaks and 0 the false ones.

1.c) Parameter-specific salience functions sm,i(τ) are cal-
culated using (8) and currentV and specialWwhich

has value 1 at position [W]m,i and 0 elsewhere.

1.d) For each true or false peak p = 1, . . . , 10, the value
of sm,i(τp) is stored in matrixQ on row p+10(g−1)
and columnm+(i−1)M . The peak type φp is stored

in vector c on row p + 10(g − 1).

After all instances g have been processed and the corre-
sponding values stored in matrix Q and vector c, updated

parameters w are obtained by least-squares estimation

w = (QTQ)−1QTc. (10)

The corresponding matrix W is obtained by storing the

3M values in vector w to the three columns ofW. Equa-

tion (10) finds parameters which satisfy s(τ) ≈ 1 at the
positions of “true” peaks, and s(τ) ≈ 0 for the false ones.

Updating V. Updating the matrix V is analogous to

above. For each training instance g, the following opera-
tions are performed:

2.a) and 2.b) are identical to 1.a) and 1.b), respectively.

2.c) Parameter-specific salience functions sn,j(τ) are cal-
culated using (8) and currentW and specialVwhich

has value 1 at position [V]n,j and 0 elsewhere.

2.d) For each true or false peak p = 1, . . . , 10, the value
of sn,j(τp) is stored in matrixO on row p+10(g−1)
and column n+(j−1)N . The peak type φp is stored

in vector d on row p + 10(g − 1).

After all cases g have been processed and the corre-
sponding values stored in matrix O and vector d, updated

parameters v are obtained by least-squares estimation v =
(OTO)−1OTd. The corresponding matrix V is obtained

by storing the 2JN values in vector v to the 2J columns
ofV.

3. RESULTS

Figure 1 shows some example salience functions calcu-

lated for random soundmixtures using the proposed method

(right panels) and, for comparison, for a baseline method

(left panels). As a baseline method, we chose the salience

function proposed in [4, Eq. (3)]. 2 The baseline method is

practically identical to the simple model (9) which is used

to initialize the parameter learning process here.

The two panels on top of Figure 1 show the output of

the baseline and the proposed method for a single harmonic

sound. The true pitch period is marked with a circle and the

remaining largest false peaks are indicated with crosses.

The proposed method is effective in suppressing the extra-

neous peaks to zero level (indicated by the horizontal line)

and in forcing the true peak towards unity value. For cu-

riosity, the next two panels show the outputs of the baseline

and the proposed system for a single sinusoidal compo-

nent. The last four panels show the output of the baseline

system and the proposed system for a random combina-

tion of two and four sounds. As the polyphony increases,

the proposed method too shows many spurious peaks al-

though its result is still considerably cleaner that the base-

line method.

Figure 2 shows precision, recall, and F-measure for the

proposed method (solid line) and for the baseline method

(dashed line) using synthesized MIDI signals as test mate-

rial. The results were calculated by fixing a threshold value

T0, picking all the peaks in all frames above the threshold,

and then calculating the resulting precision π = C(corr.)
C(det.) ,

recall ρ = C(corr.)
C(ref.) , and F-measure ϕ = 2πρ/(π+ρ). Here

C(·), denotes the count of correct pitches found (corr.),
count of all pitches detected (det.), or count of pitches in

the reference (ref.). By varying the threshold, different pre-

cision/recall tradeoffs were obtained.

2 The subsequent iterative detection and cancellation process in [4]
was not used here, since it would lead to a discrete set of F0 values.
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Figure 1. Example salience functions for the baseline

method (left panels) and for the proposed method (right

panels). The four cases from top to bottom represent

1) harmonic sound, 2) single sinusoidal component, 3)

mixture of two harmonic sounds, and 4) mixture of four

sounds. Peaks corresponding to the true pitch are circled.

TheMIDI pieces were obtained by synthesizing random

pieces from the RWC Pop and RWC Genre databases [8]

and from midifarm.com. Synthesis of the MIDI files was

used in order to ensure the correctness and synchroniza-

tion between the synthesized file and the reference MIDI.

Timidity software synthesizer and GeneralUser GS 1.4 sound-

font were used for the synthesis. As can be seen in Fig. 2,

the proposed method improves significantly over the base-

line method. Here one should not pay too much attention

on the absolute numerical values, since the polyphony of

the pieces is quite high and especially the tails of long

sounds can be very weak and difficult to detect.

4. APPLICATION TO PITCH VISUALIZATION

Figure 3 shows the computed salience s(τ) as a function of
time for the piece No. 34 in RWC Popular Music database

[8]. Here, the audio from the database was used instead of

synthesizing from MIDI. The reference MIDI file is ren-

dered on top of the salience function as boxes. In this
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Figure 2. Precision, recall, and F-measure calculated for

synthesized MIDI signals. Results are shown for the pro-

posed method (solid line) and for the baseline method

(dashed line). The third panel shows a histrogram of the

number of concurrent sounds in the test data.

“piano roll” representation, the notes are arranged on the

vertical axis and time flows from left to right.

Many people are not comfortable with reading music di-

rectly from a piano-roll. Therefore we propose here to map

the data from the piano-roll to the traditional staves. This

“fuzzy score” is very handy since it allows studying per-

formance nuances, such as timing deviations and singing

pitch glides and vibrato quite easily.

Figure 4 illustrates the mapping of different notes on the

lines and spaces of the staves. Important to notice is that

the note positions depend on the musical key of the piece,

therefore key estimation is necessary to render the salience

function on the staves. Here we used the key estimator

from [9]. Secondly, the mapping is not linear: the distance

between a line and its neighbouring space on the staves can

be either one or two semitones. For this purpose, the piano-

roll representation is “stretched” or “shrunk” to align with

the staves.

Another requirement to make the score readable are bar

lines which function as temporal anchors and make the

timing of notes readable. Here we used the meter analy-

sis method from [10]. The barlines are indicated with ver-

tical lines and possible tempo changes appear as varying

distances between the barlines.

Figure 5 shows the resulting “fuzzy score” representa-

tion for the same example that was shown in Fig. 3. The

reference MIDI from the RWC database is drawn with cir-

cles on top of the salience. More examples of the computed

fuzzy scores and the corresponding audio excerpts can be

found at http://www.cs.tut.fi/sgn/arg/klap/ismir09/.

5. CONCLUSIONS

The proposed pitch salience model was shown to improve

over the baseline method in terms of precision and recall

when detecting multiple simultaneous pitches in synthe-
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Figure 3. Computed pitch salience for an excerpt of piece

No. 34 in RWC Pop database.
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Figure 4. Mapping of pitch values on the staves positions

in a few example musical keys.

sized MIDI files. This is due to the salience model which

allows suppressing the peaks that occur at (sub)multiples

of the true pitches in the salience function. The main ad-

vantage of the proposed method compared to many exist-

ing multipitch detection methods, however, is that it pro-

duces a continuous function that indicates the salience of

all pitch candidates within a given range. This makes the

proposed method particularly suitable for pitch content vi-

sualization. To this end, the proposed method was aug-

mented with musical key and meter estimation methods

which allow rendering the computed salience on the staves

of common musical notation. 3
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ABSTRACT

Content-based prediction of musical emotions and moods
has a large number of exciting applications in Music In-
formation Retrieval. However, what should be predicted,
and precisely how, remain a challenge in the field. We pro-
vide an empirical comparison of two common paradigms
of emotion representation in music, opposing a multidi-
mensional space to a set of basic emotions. New ground-
truth data consisting of film soundtracks was used to as-
sess the compatibility of these models. The findings sug-
gest that the two are highly compatible and a quantitative
mapping between the two is provided. Next we propose a
model predicting perceived emotions based on a set of fea-
tures extracted from the audio. The feature selection and
transformation is given special emphasis and three sepa-
rate data reduction techniques are compared (stepwise re-
gression, principal component analysis, and partial least
squares regression). Best linear models consisting of 2-
5 predictors from the data reduction process were able to
account for between 58 and 85% of the variance. In gen-
eral, partial least squares models performed the best and
the data transformation has a significant role in building
linear models.

1. INTRODUCTION

Emotional impact of music is one of the most important
reasons for listening to music. A reliable content-based
prediction of emotions in music would be a highly useful
application of MIR, as suggested by the promising proto-
types recently been put forward. It seems however that an
improvement of the study would require a precise clarifi-
cation of the concept under study, which is difficult due to
the inherent fuzziness of the topic. Previous research de-
fined mood as “sound and feel” of music (AllMusicGuide),
of “feeling inspired by the music pieces” (Last.fm) [1].
Such broad opening of the study to a large realm of seman-
tic expression, although interesting by itself, makes how-
ever the problem particularly difficult to tackle. Dealing

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

with the concept of emotion instead, which is rooted on a
large background of scientific research, would enable on
the contrary a better controlled study of research.

However, robust and generalizable prediction of emo-
tions has been difficult for several reasons, namely due to
their conceptual elusiveness, their highly contextual de-
pendencies on situation, context and musical style, and
the limitations of the computational approaches utilised to
date, which emphasize mainly on low-level acoustic fea-
tures. The conceptual elusiveness of emotions is apparent
in both the multitude of theoretical approaches taken, as
well as the high individual variability in the subjective self-
reports of emotional experiences. During the past decade,
basic emotion model, dimensional models, and domain-
specific emotion models have all received support in stud-
ies of music and emotion [2]. However, it still remains
to be clarified whether models and theories designed for
everyday emotions – such as the basic emotion model –
can also be applied in an aesthetic context such as music.
It has been argued, for example, that a few primary basic
emotions seem inadequate to describe the richness of the
emotional effects of music [3].

Current computational efforts of modelling polyphonic
timbre seem to have reached what Aucouturier has called a
‘glass-ceiling’ effect, probably due to their strict reliance
on low-level audio features. This ceiling appears to be
around 50-60% of the variance explained [4]. Out of these
three shortcomings, we aim to provide advances in two of
them, namely by carrying simultaneous conceptual com-
parison of basic emotions and the circumplex model, and
by performing the selection of relevant audio and musical
features by means of multivariate methods.

2. BACKGROUND

2.1 Mood, emotion, and affect terms

Mood ontologies structure emotional adjectives and labels
into a set of various mood clusters. Following purely the-
oretical studies [5, 6], more systematic approaches attempt
to automatically infer the set of clusters based on analysis
of large set of mood labels that are further reduced with the
help of statistical tools: agglomerative hierarchical cluster-
ing of 179 AMG mood labels [1], consensus among a set of
candidate labels used in literature [7, 8] collected through
psychological experiments [9, 10], etc.
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Representation of emotion in a dimensional affective
space has gained support among researchers in music and
emotion [2]. Instead of claiming that independent neural
system exists for every basic emotion, the two-dimensional
circumplex model [7] proposes that all affective states arise
from two independent neurophysiological systems: one re-
lated to valence (a pleasure-displeasure continuum) and
the other to activity (activation-deactivation). In contrast,
Thayer [11] suggested that the two underlying dimensions
of affect were two separate arousal dimensions: energetic
arousal and tense arousal. However, the two-dimensional
models have been criticized for their lack of differentiation
when it comes to emotions that are close neighbours in the
valence-activation space, such as anger and fear. It has also
been discovered, that the two-dimensional model is not
able to account for all the variance in music-mediated emo-
tions [12] and three-dimensional variant containing valence,
energy arousal and tension arousal has given better empir-
ical results [13].

2.2 Ground truth collection

Extensive work has been carried out for the collection of
ground truth related to mood ontology [10, 14]. Concern-
ing the dimensional paradigm, Kim et al [15] have col-
lected dynamic ratings expressed on the valence-activity
space from thousands of songs drawn randomly from the
uspop2002 database via a customized online game.

2.3 Mood and emotion prediction

Previous computational works attempt to predict mood clus-
ters [16, 17] and emotion categories [18, 19]. Lu, Liu, and
Zhang [20] studied mood detection and tracking using a
variety of acoustic features related to intensity, timbre, and
rhythm. Their classifier used Gaussian Mixture Models
(GMMs) for Thayer’s four principal mood quadrants in the
valence-activity representation. The system was trained
using a set of 800 classical music clips, each 20 seconds
in duration, hand labeled to one of the 4 quadrants. Their
system achieved an accuracy of 85% when trained on 75%
of the clips and tested on the remaining 25%.

We believe that linear models are more useful than clas-
sifications for understanding emotion in music. Indeed,
music is often emotionally ambiguous and listeners are not
particularly certain of the emotion categories if given com-
plex examples. Valence and activity mapping has been
previously done [21, 22], but selecting the optimal set of
features is more challenging, due to statistical constraints
imposed by linear models.

3. NEW GROUND-TRUTH SET: SOUNDTRACKS

In the present work, both discrete and dimensional mod-
els of emotions are simultaneously investigated in order to
clarify their mutual relationship and applicability to mu-
sic and emotions. The three-dimensional model is used to
collect data regarding the dimensional approach as it en-
compasses both lower dimensional models. In order to
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Figure 1. Average ratings of the three dimensions and ba-
sic emotions for the 360 soundtrack excerpts.

obtain a large sample of unknown yet emotionally stim-
ulating musical examples, a selection of film soundtracks
was used. Soundtracks are composed for the purpose of
conveying powerful emotional cues, and may serve as a
relatively ‘neutral’ musical material in terms of music pref-
erences and familiarity. A three-part selection process was
utilized. First, 12 experts chose 360 excerpts representing
Happy, Sad, Tender, Scary and Angry emotions as well as
different quadrants in the 3D affect space.

3.1 Evaluation

The expert panel (music students with extensive musical
background) rated the examples, using both basic emotion
concepts and dimensional ratings, on Likert scales (cf. Fig-
ure 1). Then a sampling of the 360 excerpts using both
conceptual frameworks was carried out.

• For the basic emotion examples, the excerpts were
categorized and ranked according to the basic emo-
tion concept that received highest rating. From these
ranked lists, the top five examples and five mod-
erately high examples were chosen for each basic
emotion (happiness, sadness, tenderness, anger and
fear), yielding 50 basic emotion examples ([5 top +
5 moderate] × 5 categories).

• For the dimensional model, each dimension was sam-
pled at 4 percentiles along its axis whilst the other
two dimensions were kept constant, resulting in 60
audio examples that cover the affect space.

This set of 110 examples will be called Soundtrack110 set
hereafter. The mean duration of the excerpts was 15.3 sec-
onds (SD 1.9 s).

In the next phase, 116 university students aged 18-42
years rated the Soundtrack110 set using both 3D set and
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3D 2D
R2 (β) R2 (β)

Happiness .89 (V.93,A.79,T-.35) .89 (V.85,A.49)
Sadness .63 (V-.20,A-.84,T-.22) .63 (V-.05,A-.69)
Tenderness .77 (V.33,A-.45,T-.58) .74 (V.50,A-.51)
Fear .87 (V-.83,A.07,T.63) .87 (V-.90,A.24)
Anger .64 (V-.52,A.32,T.35) .68 (V-.55,A.35

Mean .76 .76

Table 1. Ridge regression summary of dimensional mod-
els explaining basic emotion model categories. For in-
stance, 89% of the variance (R2) of Happiness can be ex-
plained with Valence (V) and Activity (A), with respective
linear coefficient (β) .85 and .49.

basic emotions (on Likert scales). For the ensuing anal-
yses, the means of the ratings across the participants were
used as high consensus existed (Cronbach α > .99 for each
concept).

3.2 Basic emotions vs. dimensional ratings

As could be seen from the Figure 1, at least two emotion
dimensions correlated heavily. In numerical terms, tension
and valence correlate highly (r = −.83) and activity and
tension in moderate way (r = .57), while valence and ac-
tivity do not exhibit such a relation (r = −.08). The high
correlation has implications in the task of constructing re-
gression models for predicting categorical ratings based on
the dimensional rating data, because multicollinear vari-
ables are problematic for standard versions of the regres-
sion. Hence we employed ridge regression since this tech-
nique is less influenced by collinearity due to the inclusion
of constant variance parameter. This enables to attenuate
the influence of collinearity in the calculation of the least
squares optimization in regression. Ridge regression was
used to predict the dimensional ratings from the categori-
cal ratings and vice versa. The results – displayed in Ta-
bles 1 and 2 – demonstrate that the basic emotion model
can more accurately explain the results obtained with the
three-dimensional model than contrariwise. Nevertheless,
the difference is not large (17%, the difference between the
mean R2 from the Tables 1 and 2) and this high degree of
overlap between the conceptual frameworks suggests that
the conceptual frameworks are highly compatible.

To further examine the validity of the three-dimensional
model, its underlying coefficients of determination were
also compared with the 2-dimensional circumplex model
[7]. The results suggest that these two-dimensional mod-
els can explain the results obtained with the basic emo-
tion model virtually as accurately as the three-dimensional
model, with the exception of anger and tenderness (minor
differences in R2 values, see Table 1). It is worth point-
ing out that sadness was explained equally modestly (R2

= .63), in comparison to other emotion categories, by all
the dimensional models. This may reflect the participants’
difficulty to rate the valence of sad music, for sadness in
music is rarely perceived to represent an unpleasant emo-

Basic emotion model
R2 (β)

Valence .97 (H.35, S-.11, T.20, F-.50, A-.14)
Activity .88 (H.47, S-.32, T-.42, F-.05, A.36)
Tension .93 (H-.29, S-.23, T-.55, F.18, A.12)
Mean .93

Table 2. Ridge regression summary of dimensional mod-
els explained by basic emotion model categories: Happi-
ness (H), Sadness (S), Tension (T), Fear (F) and Anger (A).

audio frame predictors
extraction 

summary
(mean, std)

emotion ratings
(activity, valence, tension)

statistical
mapping transformations

Figure 2. General design of the methodology.

tion. Despite this irregularity, these analyses suggest fairly
high mutual correspondence between the two conceptual
frameworks and stimulus sets.

4. AUDIO AND MUSIC FEATURE EXTRACTION
AND TRANSFORMATION

The methodology proposed in this study is summarised in
Figure 2: The Soundtrack110 collection has been analysed
using MIRtoolbox [23], and a set of features has been se-
lected, explained below. We assume that a theoretical se-
lection of features combined with a suitable data reduction
techniques will result to the most parsimonious model. In
addition, the features may require transformation to linear-
ity before statistical mapping, described in the final sec-
tion.

4.1 Theoretical selection of features

First, a theoretical selection is made based on the tradi-
tional categories of musical elements (rhythm, timbre, pitch,
form, etc.) and by representing these categories by a few,
non-redundant (non-correlating) features, in total 29. A
synthetic description of the complete feature extraction pro-
cess is given in Figure 3.

4.1.1 Timbre

Based on a spectrogram with a frame length of .046 s and
half overlapping, three timbral descriptions are computed:
centroid, spread and entropy, the latter predicting the pres-
ence of strong peaks. The mean correlation between fea-
tures, computed using the sountrack110 set, is r = .10.

4.1.2 Harmony

The peaks configuration in the spectrogram enables to es-
timate a measure of roughness [24]. The entropy of each
spectrum, collapsed into one single octave, indicates the
presence of important chroma components. Or more pre-
cisely, the spectrum is turned into a chromagram, wrapped
into one octave, and tonal information is computed – such
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Figure 3. Flowchart of predictor extraction.

as key clarity or harmonic change [25] – based on tonal
profile [26, 27]. We also designed a new measure of ma-
jorness, related to the difference of amplitude, observed on
the tonal profile, between the best major score and the best
minor score. For this dimension we obtain a within-feature
correlation of r = .04

4.1.3 Register

Broad description of the localisation of pitch energy is per-
formed through an estimation of the centroid and deviation
of the unwrapped chromagram, and also in parallel a statis-
tic description of pitch component based on advanced pitch
extraction method [28]. r = .27

4.1.4 Rhythm

Rhythmic periodicity is estimated both from a spectral anal-
ysis of each band of the spectrogram, leading to a fluctu-
ation pattern [29], and based on the assessment of auto-
correlation in the amplitude envelope extracted from the
audio. The clarity of the pulsation can also be assessed
through an observation of the global characteristic of the
autocorrelation function [30]. r = .03

4.1.5 Articulation

Onsets indicated by peaks picked from the amplitude enve-
lope leads to the estimation of the relative amount of event
density. For each successive onset, the slope and tempo-
ral duration of the corresponding attack phase is also esti-
mated. r = −.23

4.1.6 Structure

The multidimensional structure of the pieces of music is
estimated through the computation of novelty curves [31]
based on various functions already computed such as the

spectrogram, the autocorrelation function and the chroma-
gram. r = .85

As a whole, the features represent the categories in a
non-redundant way, as within-feature correlation is lower
than .30, except for structural features.

4.2 Statistical selection of features

The second selection is based on statistical selection of rel-
evant features, in which we compare Multiple Linear Re-
gression (MLR) with a stepwise selection principle, Prin-
cipal Component Analysis (PCA) followed by a selection
of an optimal number of components, and Partial Least
Squares Regression (PLS). Linear mapping via regression
is known to be problematic as the predictors-to-cases ratio
should be 1:10 or larger (we have 29 features, we would
need at least 290 observations or more). Moreover, high
number of predictors will probably be highly collinear, which
is problematic for the establishment of a linear modeling of
the data. Principal component analysis will eliminate the
problem of collinearity, as the components are orthogonal
and enables to use a low number of predictors (PCA com-
ponents) in the regression. However, this data reduction
method is not sensitive to the covariance between the fea-
tures and the predicted data and thus may discard important
features. The third technique, PLS regression [32], car-
ries out simultaneous data reduction and maximization of
covariance between features and predicted data, thus pre-
serving any interesting correlational pattern between them.
The output from the PLS is similar to PCA, individual, or-
thogonal components. To select the optimal number of fea-
tures, Bayesian Information Criterion (BIC) was used.
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Prediction rate (R2)
Model Valence Activity Tension
MLR .64 .75 .67
PCA .42 .74 .51
PLS .70 .77 .71
MLRλ .66 .74 .69
PCAλ .51 .73 .63
PLSλ .72 .85 .79

Table 3. Prediction rates of the different models for cir-
cumplex model of emotions. λ denotes Box-Cox trans-
formed variables.

Prediction rate (R2)
Model Angry Scary Happy Sad Tender
MLR .46 .55 .46 .38 .38
PCA .66 .67 .60 .59 .54
PLS .66 .62 .61 .61 .50
MLRλ .56 .55 .63 .54 .45
PCAλ .56 .47 .53 .52 .45
PLSλ .70 .74 .68 .69 .58

Table 4. Prediction rates for the 5 basic emotions.

4.3 Data Transformation

To apply linear least-squares models, the distribution of
the data should be approximately normal. Each feature
was tested for normality (Lilliefors p<.001) and each non-
normally distributed feature was transformed by means of
Box-Cox power transform [33] by testing λ values between
-2 and 2 in .1 increments and taking the one that yielded the
maximal normality. Finally, all features were normalized.

5. RESULTS AND DISCUSSION

Table 3 displays the prediction rate of linear regression
models using first 5 components in stepwise linear regres-
sion (MLR), and first 5 PCA components, and 2 first com-
ponents from PLS, with or without data transformations
(λ). 5-fold cross-validation (80% for training, 20% for
prediction) was used in all cases to avoid overfitting. In
general, about 70 % of the variance in participants rat-
ings could be predicted with features extracted from the
audio. Data transformation has an important contribution
to the models. MLR provides fairly successful model but
it is problematic due to the serious over optimization step-
wise regression does when using 29 predictors to explain
110 observations. PCA with 5 components has less power
to predict the ratings but is nevertheless fairly adequate
model. It suffers especially from the skewness and lack
of normalization of the data. Finally, PLS (normalized)
provides the highest prediction rate with only two com-
ponents. The model adequacy is largely similar for basic
emotions, displayed in Table 4.

The resulting predictive models vary depending on the
chosen mapping method. Table 5 shows for instance the
important features contributing to the perception of the cat-

Anger Tenderness
Feature β Feature β

Fluctuation peaks -.14 RMS variance -.44
Key clarity -.07 Key clarity .08
Roughness .05 Majorness -.08
Sp. centroid variance -.04 Sp. centroid -.05
Tonal novelty .004 Tonal novelty -.01

Table 5. Components and standardized beta weights of the
MLRλ model for two chosen basic emotions.

egories of anger and tenderness, as predicted by the MLR
method. The predictive models given by the PCA and PLS
methods are less easy to represent clearly, are their under-
lying dimensions are formed by a high number of audio
and musical features.

When mapping the dimensional ratings onto each of
the five basic emotions, the regression models could ex-
plain 63 to 89 percent of the variance. No significant im-
provement was observed with the 3D model over the 2D
model, with the exception of anger, for which adding the
third dimension increased the variance explained by five
per cent. When mapping basic emotions onto the emotion
dimensions, even higher proportions of variance could be
explained by the models, these ranged from 88 to 97 per
cent. These results suggest that there is a high mutual cor-
respondence between the two emotion spaces.

Using a five-fold cross-validation, about 70% of the vari-
ance in the participants ratings could be explained by the
PLS models. The highest proportion of variance explained
(85%) was obtained when predicting activity with the PLS
model using transformed features. We examined the effect
of the Box-Cox transform on the predictive power of the
regression models. In most cases this transform improved
the models significantly. This observation suggests that the
distributions of the extracted features are a crucial factor in
the performance of such predictive models.

The emotion prediction model has been written in Mat-
lab and has been integrated into the new version (1.3) of
MIRtoolbox [23].
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ABSTRACT 

 
Our work focuses on optically reconstructing the stereo 
audio signal of a 33 rpm long-playing (LP) record using a 
white-light interferometry-based approach. Previously, a 
theoretical framework was presented, alongside the 
primitive reconstruction result from a few cycles of a 
stereo sinusoidal test signal. To reconstruct an audible 
duration of a longer stereo signal requires tackling new 
problems, such as disc warping, image alignment, and 
eliminating the effects of noise and broken grooves. This 
paper proposes solutions to these problems, and presents 
the complete workflow of our Optical Audio Recon-
struction (OAR) system. 
 

1. INTRODUCTION 
 
OAR has proven to be an effective contactless approach 
to digitizing monophonic phonograph records [1] [2] [3] 
[4]. Furthermore, it is an available solution for restoring 
broken records. Li et al. previously presented a 
theoretical framework for optically reconstructing audio 
with a white-light interferometry (WLI) microscope and 
image processing [5]. A few cycles of stereo sinusoidal 
signal, extracted from a small number of images, 
illustrated that their approach is capable of extracting 
stereo signals from LPs. To reconstruct a few seconds of 
audio, however, the scanning region must be scaled up to 
a much larger disc area, resulting in thousands of images. 
A sophisticated image acquisition and post-capture 
processing workflow is thus desired to tackle the 
challenges that emerge from large-scale scanning: e.g., 
disc surface warping, image alignment errors, groove 
damages, and unwrapping the grooves into a one-
dimensional audio signal. 
 In Section 2, we review previous OAR systems. Our 
system to acquire record groove images is introduced in 
Section 3, followed in Section 4 by our image processing 
procedures for extracting audio from the scanned images. 
The reconstructed result is illustrated and discussed in 
Section 5. 
 

 
2. EXISTING OAR APPROACHES 

 
In this section, four previous OAR approaches are 
described. Although they operate on recordings of 
different formats, most OAR frameworks follow the same 
high-level three-step procedure for reconstructing an 
audio recording: first, the grooves are scanned; second, 
the groove undulations are isolated and extracted; third, 
these undulations are converted into audio. Approaches 
vary significantly in terms of the hardware used, some 
using a general-purpose commercial product such as a 
confocal microscope, others using a custom installation. 
The hardware, in turn, affects how the grooves are 
scanned and thus how groove undulations must be 
extracted. By contrast, the audio conversion step (which 
may include post-processing, such as equalization) 
depends solely on the record production procedures that 
were used for the particular item being scanned. This step 
almost always includes filtering the signal to undo the 
RIAA equalization used in production and obtain the 
audio. 
 The systems developed by Iwai et al. and Nakamura 
et al. use a ray-tracing method to obtain the groove 
contour of a phonograph record [6] [7] [8]. The groove is 
illuminated with a laser beam, and the groove undulations 
are measured by detecting the angle at which the beam is 
reflected. In this way the laser functions as a simulated 
stylus—a replacement for the mechanical stylus—and 
can output an analog audio signal directly. 
 Unfortunately, since such systems must trace out the 
grooves, they are unable to handle broken records. In 
addition, two types of errors limit this approach: the 
errors caused by the finite laser beam width, which leads 
to echoes and high- and low-frequency noise in the 
extracted audio signals, and the tracking errors that may 
occur when the beam misses the groove entirely. 
 Fadeyev and Haber built an OAR system for 78-rpm 
records based on confocal laser scanning microscopy [1]. 
With the help of a low-mass probe, they built another one 
for wax cylinders [2]. Their system is capable of scanning 
the record in 3D with a vertical accuracy of around 4.0 
microns. However, in their work on 78-rpm records only 
2D imaging is emphasized, at a resolution of 0.26 x 0.29 
microns per pixel. It takes their system 50 minutes to 
scan about 1 second of recorded audio, corresponding to 
0.5–5 GB of image data. The groove bottom is obtained 
using 2D edge detection on the pixel illumination data, 
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and the groove undulation is defined as the radial 
deviation of the groove bottom with respect to an 
unmodulated trajectory about the centre of the record. 
 Lengths of the groove are skipped when dust and 
debris occlude the image and no edges are detectable, but 
no solution to data restoration is provided; such skipping 
may thus cause a loss of data. Fadeyev and Haber 
compared their optically reconstructed audio sample, a 
turntable-digitized audio sample, and a remastered CD 
sample of the same recording. The quality of the 
reconstructed sample was judged to be better than the 
turntable-reconstructed version, but poorer than the CD 
version: while the OAR system produced fewer clips and 
pops than the turntable, and had a lower continuous noise 
level, it also contained background hissing and low-
frequency modulation absent from the CD version. 
 Stotzer et al. created a system that performs a multi-
step optical reconstruction for 78-rpm records [3]. First, a 
2D analog camera is used to rapidly photograph the 
records and the images are preserved on film. This film is 
then scanned and digitized into 2D digital images, which 
are further analyzed to extract the audio. During the 
scanning, the film is placed on a rotating tray with an 
overhead stationary camera that carefully captures the 
groove images passing through its field of view (FOV). 
The rotation of the tray simulates the rotation of the 
record during playback, and effectively unwraps the 
groove segments to become uniformly oriented in the 
resulting images. Similar to Fadeyev and Haver’s 
strategy, edge detection is then used on these images to 
extract the groove undulations, which are simply 
described by the edge that separates the groove valley 
from the space between grooves. 
 In this system, the imaging resolution is compro-
mised by shading blur, motion blur, and sampling blur 
introduced by the illumination and the rotating scanner. 
The blur is estimated to be roughly 24.6 microns along 
the direction of rotation. The system also suffers from 
various acquisition artifacts, such as the very low-
frequency noise caused by the off-axis placement of the 
film. 
 In an effort to restore damaged grooves, smoothing 
and corrupted-pixel-map-based enhancement are per-
formed. The robustness of the damage detection is 
nevertheless questionable due to the simplifying 
assumption that damages such as scratches are solely 
perpendicular to the grooves. The blurring described 
above also makes it difficult to reliably detect scratches 
in the grooves. 
 The reconstructed sound quality achieved by their 
system was evaluated according to several standard audio 
engineering parameters; for example, the signal-to-noise 
ratio of the system was found to be roughly 16dB. 
 Tian used 3D scanning based on dual-focal 
microscopy for reconstructing audio from 78-rpm 
records. The ability to handle LPs is claimed, but not yet 
implemented [4]. Contrary to the aforementioned 
approaches, the groove undulation is defined by the 
groove sidewall orientation at each tangential increment 
relative to the disc center, instead of by the edges of 

either the top or bottom of the groove. Ray-tracing is 
used to create a 3D image of the entire record groove 
surfaces, including the sidewalls. The stylus movement 
across the grooves is represented by the optical flow 
derived from groove image intensity derivatives. The 
sidewall orientations are obtained by using dense depth 
maps and projecting complex surface onto the groove 
cross-section plane. The microscope in use has a lateral 
resolution of 1µm per pixel. Tian’s optical flow approach 
requires 1390 x 36 images of the FOV 640 x 480 pixels 
to represent a two-second audio signal, although on 
which groove revolution the reconstruction is performed 
is not reported. It takes three days for four workstations 
to generate the image representation of a three-second 
audio. The image acquisition time is unclear in the 
literature. The equivalent audio sampling rate in their 
experiment is about 2404.71 Hz. 
 Although laser turntables can serve as a solution to 
optically retrieve audio from phonograph records, they 
require emulating the exact groove-following behavior of 
a turntable. We would like to find a general image-
acquisition-based preservation solution without 
mimicking turntable behavior to derive digital audio 
directly from images. We also wish to obtain 3D 
information: although Fadeyev and Haber claimed their 
system can be adapted to a 3D groove profile, they did 
not implement it, while the system of Stotzer el al. does 
not retrieve 3D information. Tian’s system is 3D-based, 
but his experiments are not performed on stereo LPs, the 
target considered here. Thus, in contrast to these works, 
our research focuses on optically reconstructing a digital 
stereo audio signal from LPs by extracting the lateral and 
vertical groove undulations from 3D groove information. 
 

3. WLI-BASED IMAGE ACQUISITION 
 
WLI is a powerful scanning technique based on physical 
optics, as opposed to the geometrical-optics-based 
approaches that include confocal microscopy and ray-
tracing. In WLI, a broadband light source simulates an 
ensemble of narrow-band interferometers to make high- 
precision measurements. We used a Wyko NT8000 WLI 
microscope equipped with both Michelson and Mirau 
interferometers. Adjusting the vertical focus of these 
allows one to perform vertical scanning interferometry 
with a vertical resolution of better than 1 nm [9]. (The 
amplitudes of the groove depth are typically on the order 
of 25–100 µm [3].) In the current experiment, only the 
Michelson interferometer (10X magnification) is used, 
with a 0.644 x 0.483 mm (or 640 x 480 pixel) FOV. 
Using the 3X vertical scan speed with 20% overlap 
between fields of view, it takes roughly 27 minutes to 
scan one second of audio content. This configuration 
provides a reasonable tradeoff between acquisition 
quality and time cost. 
 Due to warping of the disc surface, the phonograph 
record is not perfectly flat. Expanding the scanning range 
to span all possible groove depths is unfeasible because 
of the greatly increased time cost. On the other hand, re-
estimating for each FOV the range of groove depths to 
scan takes too long as well. To minimize the time cost 
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without risking unfocused images, a hierarchical 
scanning scheme was chosen: the entire grid of FOVs is 
divided into sub-regions, and the scanning depth is 
adjusted only for each sub-region. Compared to the 
approach with a global range, this adaptive scheme 
reduces the scanning time by half.  
 

4. AUDIO EXTRACTION BY IMAGE 
PROCESSING 

 
Once the images have been acquired, the next step is to 
extract from them the groove undulations, which can then 
be converted into audio. A stereo phonograph audio 
signal is encoded in lateral and vertical groove 
undulations, so both must be extracted. To do so, first the 
entire grid of FOVs must be realigned using a dynamic 
programming algorithm. Next, the structures that define 
groove undulations are identified (and restored, where 
damaged). Finally, the groove is traced over the entire 
field and unwrapped, permitting the straightforward 
extraction of the groove undulations. The extracted 
undulations may then be decoded into stereo audio. This 
workflow is illustrated in Figure 1. 

 
Figure 1. Diagram of the implemented system. 

4.1. Image Alignment 

As in most OAR systems, the FOVs are scanned with a 
degree of overlap. Unfortunately, mechanical translation 
during the image acquisition usually results in the images 
being misaligned. Before the information in the images 
can be extracted and combined, the FOVs must be 
realigned with each other. 
 This realignment can be achieved with an iterative 
frame-by-frame image registration approach, using either 
of two algorithms: a greedy one and a dynamic 
programming one [10]. In the greedy algorithm, the 
alignment of local FOV pairs is optimized, ignoring the 
precision of the overall grid alignment. It therefore can 
suffer from cumulative registration errors, resulting in 
unrecoverable gaps between the last few rows of the grid. 
By comparison, dynamic programming can be used to 
achieve a globally optimal alignment by forcing the 
elimination of any inter-row gaps as a constraint. This 
latter approach was selected. 

 
Figure 2. The top view of a typical groove image. The 
false colors represent vertical coordinates, except for the 
valleys, which are left monochromatic for clarity. The 
light color bands are the spaces between the grooves, 
and the light, thin lines are the valley bottoms.  

4.2. The Image Model 

Figure 2, a sample FOV, is a top view of a typical 
scanned region on a phonograph. The three parts of a 
groove can be seen readily: the tops (T), the valleys (V), 
and the bottoms (B). The goal is to extract the 
undulations of these grooves, but first the three parts have 
to be identified and separated. This is done using 
connected-component analysis (CCA). Similar to 
standard CCA in 2D image processing, a binarization 
process (thresholding) is performed as pre-processing to 
separate the global height levels of the T’s and B’s in the 
FOV; then with CCA, individual T’s, V’s and B’s are 
recognized. 
 The original 2D Cartesian coordinates are converted 
into polar coordinates (r, θ), with the origin being the 
disc center. We then distinguish three types of connected 
components (CCs): the top edges T(r, θ), the valleys V(r, 
θ), and the groove bottoms B(r, θ). Two useful properties 
are used in the identification of these regions: First, each 
region should be tangentially continuous, meaning that 
only one CC is supposed to be found on a single 
revolution of a T, V, or B. Second, the geometrical 
relationship between them is known: the B’s are 
completely contained by the V’s, while the T’s and V’s 
do not contain one another because they both stretch 
across the entire FOV. 

4.3. Noise Removal and Groove Restoration 

The raw CCs usually include noise from dust and dirt on 
the record and must be cleaned. Although heuristics 
based on the size of the CCs may seem intuitive, they 
turn out not to be robust in practice. Instead, we simply 
resort to the theoretical geometrical properties of the 
CCs, described in Section 4.2: since the tops and the 
valleys do not contain one another, any top found 
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Figure 3. Groove restoration: CCA fails to identify the correct grooves (left) because the scratch connects certain grooves 
and disconnects others. These faults are corrected in the restored image (right). 

contained by a valley (or vice versa) should be noise. 
This appeared to be a robust noise removal method. 
 Grooves may also be interrupted by scratches, or 
appear to be so due to occlusion by dust. Dust may also 
cause neighbouring grooves to appear attached to each 
other. These conditions create difficulties for extracting 
the groove undulations. To restore such grooves, two 
heuristics based on the tangential continuity property are 
used. First, by locating discontinuous V(r, θ) on the same 
revolution, broken grooves are detected; these may be 
restored by simply interpolating and reconnecting them. 
Similarly, attached grooves are detected and restored by 
locating and tangentially reconnecting discontinuous T(r, 
θ) that exist on the same revolution. Both situations are 
illustrated in Figure 3. Note that cleaning the records 
before scanning does not guarantee a better noise 
condition, because dust accumulates throughout the long 
time span of the scan. (Hosting the microscope in a dust-
free environment may be one way to reduce this source of 
noise.) 

4.4. Extracting Groove Undulations 

The lateral undulations of the inner and outer groove top 
edges (with respect to the centre of the disc), and the 
vertical undulations of the groove bottom are the results 
of the recording stylus cutting into and across the disc 
surface. Following CCA and groove restoration, each 
FOV has been segregated into groove top, valley, and 
bottom regions. The next step is to trace the undulations, 
defined by the oscillations of both edges of the groove, as 
well as by the depth of the groove. Using a search-based 
edge detection algorithm, the inner and outer (with 
respect to the centre of the disc) groove top edges can be 
located; these are denoted as Ti(r, θ) and To(r, θ), 
respectively. The edges Ti(r, θ), To(r, θ), and the groove 
bottom B(r, θ) are iteratively overlapped and matched 
across adjacent, properly-aligned FOVs. In doing so, and 
in unwrapping the spiral-shaped grooves, the three 1D 
undulation sequences are obtained. The lateral 

undulations Ti and To are then averaged to obtain a single 
sequence T corresponding to the center of the groove. 
Note that phase unwrapping needs to be performed to 
obtain a continuous “time line” of the undulations, 
because the polar coordinates have the range of [0, 2π). 
This is due to the fact that the derivation of polar 
coordinates is done to individual FOVs before their 
temporal topological order in the audio signal is clear. 

4.5. Converting Groove Undulation to Audio 

The raw, unwrapped groove undulations need to be 
resampled at an audio sampling rate to be converted to 
digital audio. Since the digital image format used here 
uses rectangular pixel tessellation, the pixel density along 
the undulation varies. It is therefore necessary to 
interpolate when sampling the image. We chose a 
reasonably high industry standard sampling rate (96kHz). 
 According to the constant velocity cutting scheme of 
LP production, the tangential velocities contain the audio 
undulation. This is achieved by performing numerical 
differentiation on the unwrapped undulations. The stereo 
audio is derived according to the following equations: 
 

Channelleft(t) = ΔT(t) – ΔD(t) 

Channelright(t) = ΔT(t) + ΔD(t) 
 
where ΔT(t) and ΔD(t) are the resampled and 
differentiated sequences of the center points and the 
depths of the groove, respectively. Finally, a counter-
RIAA equalization filter is applied to the audio. 
 

5. RESULTS AND DISCUSSIONS 
 
In our experiment, the OAR system presented above was 
used to extract a roughly 1.8-second stereo audio signal. 
The result was compared to a turntable-digitized version 
of the same signal. Waveforms and frequency responses 
for both signals are displayed in Figures 4 and 5. 
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Figure 4. The reconstructed stereo signal: a 1kHz sine 
wave in the right channel and a silent left channel. A 
three millisecond segment of the waveform is shown in 
(a); in (b), the magnitude response of the extracted right 
channel signal up to 6kHz; in (c), the magnitude 
response of the same signal up to the Nyquist frequency 
(48kHz). 

 
 
 

 
 
 

 
Figure 5. The turntable-digitized version of the same 
stereo signal.  
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 It can be observed that the reconstructed version very 
much resembles the turntable-digitized version of the 
same stereo signal. As expected, the most salient 
component in the output stereo signals is 1kHz. However, 
the reconstructed left channel signal is not complete 
silence. In addition, close inspection of the peaks and 
troughs of the reconstructed waveform reveals a non-zero 
DC offset; moreover, the peaks appear to fluctuate 
slightly over time. This low-frequency wow noise, as in 
Fadeyev and Haber’s system, is partly due to the error in 
estimating the disc center, which, as the origin of the 
polar coordinate system, forms the basis of the estimated 
lateral groove undulations.  
 

6. CONCLUSIONS AND FUTURE WORK 
 
OAR methods have been proven to be effective 
alternatives in digitizing mono phonograph records. Our 
WLI-based OAR system has successfully reconstructed 
digital stereo audio signals from LPs. Future work will be 
directed to improving the audio quality while decreasing 
the scanning time. Better center correction strategies will 
be studied, along with other configurations capable of 
pushing the audio quality higher. To push down the 
tremendous time costs, we will also investigate the 
minimum scanning resolution required to produce an 
acceptable audio result. On the other hand, the time costs 
may be reduced as the scanning hardware improves to 
provide, for instance, a larger field of view and faster 
vertical scanning speed. 
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ABSTRACT

Music sales are loosing their role as a means for music dis-

semination but are still used by the music industry for rank-

ing artist success, e.g., in the Billboard Magazine chart.

Thus, it was suggested recently to use social networks as

an alternative ranking system; a suggestion which is prob-

lematic due to the ease of manipulating the list and the dif-

ficulty of implementation. In this work we suggest to use

logs of queries from peer-to-peer file-sharing systems for

ranking song success. We show that the trend and fluctua-

tions of the popularity of a song in the Billboard list have

strong correlation (0.89) to the ones in a list built from the

P2P network, and that the P2P list has a week advantage

over the Billboard list. Namely, music sales are strongly

correlated with music piracy.

1. INTRODUCTION

Peer-to-peer (P2P) networks are one of the internet’s most

popular applications. The number of users and traffic, is

growing dramatically from year to year. Despite several re-

cent high profile legal cases against P2P vendors and users,

it seems that the P2P community at large remains strong

and healthy. In fact, P2P networks gain more acceptance

as many companies and organizations distribute software

and updates via networks such as BitTorrent to save band-

width (e.g., Ubuntu).

Some studies suggest that music piracy might increase

legal sales [1, 2], and copyright owners are advised to start

developing business models that will allow them to gener-

ate revenue from P2P activity. Pioneering suggestions to

utilize P2P networks for the benefit of the music industry

were made by Bhattacharjee et al. [3,4], where P2P activity

was used to predict an album’s life cycle on the Billboard’s

top 200 albums chart.

In our previous work [5] we showed how P2P queries

can be used for early detecting unknown emerging artists.

In this study we take a different approach; we suggest an

alternative songs ranking based on file sharing activity, that

might replace traditional artists ranking such as the Bill-
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board. We measured music piracy using a data set of geo-

graphically identified P2P query string, and compared it to

songs ranking on the Billborad Hot 100, which measures

sales and air plays. We compiled popularity charts based

on P2P activity, and show a strong correlation between mu-

sic piracy and legal sales and air plays. We argue that rank-

ing songs through measurement of P2P queries is a good

predictor of peoples’ taste, and has many advantages over

other means of popularity ranking, which were suggested

in the past, most notably using social networks [6].

The remainder of the paper is organized as follows: In

Section 2 we introduce the data set used in this study, and

the methodology used to collect it. In Section 3 we focus

on comparing song popularity in P2P networks with their

ranking on the Billboard. We discuss the significance of

our finding and our conclusions in Section 4.

2. DATA-SETS AND METHODOLOGY

We use two data sources for this study:

• P2P SearchQueries: A data-set of queries collected
from the Gnutella file-sharing network over twenty

three weeks from January the 7th 2007 to June 8th

2007.

• The BillboardHot 100 The Billboad Hot 100 weekly
charts for 2007 as published by the Billboard Maga-

zine.

These two data-sets were collected independently, yet

this study reveals a strong relationship between them. How-

ever, before analyzing the commonalities and differences,

let us first describe the data sets and the methodology used

to collect them.

2.1 P2P Search Queries

Queries in a file sharing network represent their users cur-

rent taste and interests. A query is issued upon a request

by a user searching for a specific file, or content relevant to

the search string. In this study we used data collected from

the Gnutella network using the Skyrider systems 1 . This

data-set and the technical details of the methodology used

to collect it are described in more depth in [7].

1 Skyrider was a startup company that developed file sharing appli-
cations and services. It has recently been closed down. The data-set was
collected when the company was still active, and is available for academic
research.

633



Poster Session 4

2.1.1 The Gnutella File Sharing Network

In a study performed by Slyck.com, a website which tracks

the number of users of different P2P applications, Gnutella

was found among the three most popular P2P file-sharing

applications together with eDonkey and FastTrack [8]. Fur-

thermore, according to [9], Gnutella is the most popular

file sharing network in the Internet today with a market

share of more than 40%. It is mainly used for piracy of mu-

sic. In [5] the top 500 most popular queries were manually

classified, and it was found that 68% of the queries were

music related. Together with adult content (22%), these

two categories dominate the query traffic, accounting to-

gether for 90% of the queries. Gnutella is also among the

most studied P2P networks in the literature [5, 7, 10–16].

2.1.2 Methodology

A query’s origin IP address is required for its geographical

classification according to its country of origin. While it is

possible to capture a large quantity of Gnutella queries by

deploying several hundred ultrapeer nodes 2 , it will not be

possible to tell the origin IP address of most of these cap-

tured queries. The basic problem in identifying the origin

of captured queries is that queries do not in general carry

information regarding their origin. What they do usually

carry is an “Out Of Band” (OOB) return IP address. This

address allows clients that have content matching a query

to respond to a location close to the origin of the query,

without having to backtrack the path taken by the query

message. However, as most queries come from firewalled

clients, in most cases the OOB address will belong to the

ultrapeer connected to the query origin, acting as a proxy

on behalf of the query originator. Deducting the missing

origin IP address is not trivial. We resolved this problem

by using a hop counting technique that is further explained

in [7].

The vast majority of the Gnutella network is comprised

of Limewire clients (80%-85%) and Bearshare clients (6%-

10%) [10]. The Limewire client does not allow users to

perform any kind of automatic or robotic queries. It does

not allow queries with the SHA1 extension 3 , nor does it

allow the automatic re-sending of queries. When it does

send duplicate queries, it uses a constant Message ID which

enables a simple removal of any duplication. By recording

only queries originating from Limewire clients, we were

able to significantly reduce the amount of duplications and

automatic (non-human) queries, without losing too much

of the traffic. Capturing only Limewire queries is an easy

task as Limewire “signs” the message ID associated with

each message it sends. This signature can be easily veri-

fied by the intercepting node, allowing it to ignore queries

from all other clients.

2 Ultrapeer nodes are special nodes that route search queries and re-
sponses for users connected to them
3 SHA1 queries are queries in which only the hash key of a known

file is sent without a string. This is useful when a client already started
downloading and needs more sources.

Rank String Occurrences

1 adult 36,290

2 akon 23,468

3 lil wayne 12,518

4 beyonce 11,987

5 this is why i’m hot 10,746

6 justin timberlake 10,193

7 porn 9,144

8 don’t matter 9,047

9 fergie 8,979

10 fall out boy 8,077

Table 1. P2P popularity chart for week 9 of 2007

2.2 Data Set Statistics

A daily log file of queries, typically contained 25-40 mil-

lion record lines, each line consists of the query string, a

date/time field, and the IP address of the node issuing the

query. The origin country for each query was resolved

using MaxMind commercial GeoIp database. Similarly

to the Billboard charts, we wanted to concentrate on data

originated from the United States. We thus removed all the

non US queries reducing 55%-60% of the data records.

Our data-set comprised of query strings collected over

a period of 23 weeks from January the 7th 2007 to June

8th 2007. The activity on the Gnutella networks increases

by 20%-25% over the weekend [7]. We thus used weekly

samples taken on a Saturday or a Sunday of every week

of that period. The total number of US originated query

strings processed in this study is 185,598,176.

2.3 The Billboard Hot 100

The Billboard Hot 100 is the United States music industry

standard singles popularity chart issued weekly by Bill-

board magazine [17]. Chart rankings are based on radio

play and sales data collected 10 days before the chart is re-

leased. The ranking process does not take into account file

sharing activity. A new chart is compiled and officially re-

leased to the public each Thursday. The chart is dated with

the week number of the Saturday after, but in this study we

used dates and week numbers according to the actual re-

lease date of the chart, and ignored the date issued by Bill-

board magazine. To simplify time tracking in this paper,

we use week numbers instead of full date to chronologi-

cally order the Billboard charts and the weekly file sharing

data we collected. For example, the Billboard chart which

was released on Thursday January 11th 2007 (week num-

ber 2), was dated by billboard to January 20th (week 3) but

by us to week number 2. The current top 50 singles are

published weekly on the magazine website, while the full

historical charts are available to on-line subscribers for a

small fee. A statistical model of songs ranking in the Hot

100 chart can be found in [18].

3. CORRELATION OF TRENDS

As described above, the Billboard Hot 100 chart ranks songs

relative to each other, and does not reveal the number of
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sales or air-plays measured during that week. In order to

compare it to our file-sharing data, we compiled our own

weekly P2P popularity charts based on the popularity of

search strings. We measured the popularity of each string

by aggregating the number of appearances intercepted from

a US based origin on that week. Table 1 depicts the top 10

positions of the P2P chart generated on week 9 of 2007

(sampled on March 1 2007).

Obviously, the P2P charts include many non music re-

lated strings. The string “adult” for example, was ranked

number one on every chart we compiled. Unlike the Bill-

board charts, the P2P charts included also artists names

(not only single titles), and sometimes even different vari-

ations of the same strings. In order to avoid inaccuracies,

we looked only at the position of a song’s exact title in the

chart. To have high probability that the Billboard songs are

ranked on our chart, we compiled truncated charts of the

top 2000 strings each. A weekly log file contained on aver-

age 1.73 million different strings. Therefore, the top 2000

is approximately one thousandth of the entire P2P popu-

larity chart. The top songs of our P2P chart were queried

about 300,000 times per week in the USA. The songs at lo-

cation 2000 were queried about 4,500 times. The number

of queries per rank follows Zipf’s law [7], thus changes in

a rank position indicate strong shifts in popularity. When

a song is no longer on the top 2000, it exits the P2P chart.

This however, doesn’t mean it is no longer being down-

loaded. Similarly when a single exits the Billboard Hot

100 chart, it doesn’t mean it is not being played on the

radio or sold in stores. Therefore, when considering the

correlation of trends between the two charts, one should

focus on the weeks where a song is ranked on both charts.

3.1 Correlation Measurements

We define Bs and Ps as the chart vectors representing the

song s on the Billboard and P2P chart respectively.

Bs = {bs(1), bs(2), ..., bs(23)} (1)

Ps = {ps(1), ps(2), ..., ps(23)} (2)

Where bs(w) and ps(w) are the positions of song s on the

Billboard and the P2P chart on week w respectively. If

song swas not in the chart, we set its position to∞ for that
week. The support of a chart vector is the time range that

the song was ranked in the chart. Namely where bs(w) <

∞ or ps(w) < ∞. The joint support of a song s is the time

range in which it simultaneously ranked in both charts.

Fig. 1 depicts the chart vectors Bs and Ps for 6 differ-

ent songs. The solid blue graph is the song’s ranking on

the Billboard Hot 100, while the dashed green graph is the

song’s ranking on the P2P chart. The horizontal axis (x-

axis) depicts the date measured in week numbers in 2007.

The song titles and performing artists are written above

each graph. Note that lower parts of the graph represent

higher position on the charts (i.e., the top of the chart is 1,

while the last place is 100 or 2000). Looking at Fig. 1, one

can easily notice the correlation between these two time se-

ries. This correlation is vivid not only in the general trend

of the line, but also in minor trends and fluctuations.
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Figure 1. P2P Popularity Chart vs. The Billboard Hot 100

We slightly altered the standard definition of cross-correlation

to consider only the joint support of the two series Bs and

Ps:

corr =

we
∑

i=ws

[(bs(i)− E{Bs}) · (ps(i)− E{Ps})]

√

√

√

√

we
∑

i=ws

(bs(i)− E{Bs})
2

√

√

√

√

we
∑

i=ws

(ps(i)− E{Ps})
2

(3)

Where [ws, ws+1, ..., we] is the joint support and E{Bs}
and E{Ps} are the means of the corresponding series. The
correlation coefficient is in the range of −1 ≤ corr ≤ 1,
where the bounds indicating exact match up to a scaling

factor, while 0 indicates no correlation.

In all our measurements, we required songs to have a

joint support of at least 4 weeks. This is the majority of

the date-set (over 80%). Songs with a joint support of less

than 4 weeks are mainly songs that ranked before or after

our measurements, and had only a short “tail” inside our

measurement period. Such songs poorly represent correla-

tion of popularity trends over time.

Wemeasured the correlation coefficients of the 135 songs

that had a joint support of at least 4 weeks within the first

twenty three weeks of 2007. The average joint support was

10.9 weeks. The average correlation coefficients was 0.67

while the median was 0.82, indicating a very strong corre-

lation.

One might argue that the high correlation coefficients

are the result of trend similarities of any time series of

songs on charts. We thus measured the cross-correlation

coefficient between the songs in one chart, and a random

permutation in the other chart. Of the 52 songs which had

a joint support of at least 4 weeks, the average joint support

was 9.72 weeks, the average of the correlation coefficients

was -0.006, and the median was 0.023, which negates the

above hypothesis.
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Title Artist No Shift One Week

What Goes Around...Comes Around Justin Timberlake 0.729 0.9707

Lost Without U Robin Thicke 0.7664 0.948

Read My Mind The Killers 0.1764 0.661

Stand Rascal Flatts 0.9617 0.8965

Waiting On The World To Change John Mayer 0.723 0.8965

Wasted Carrie Underwood 0.8611 0.9456

Table 2. Correlation coefficients of the songs in Fig. 1
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Figure 2. Cross-Correlation Coefficients vs. Time Shift

As mentioned is Section 2, the Billboard charts were

dated according to their release date. However, the data

used to compile each chart, is collected during the 10 days

before the chart is published. Thus, we were interested

in the correlation coefficient between the P2P chart and

the Billboard chart of the following week. By shifting the

Billboard chart vectors backwards, we measured the corre-

lation coefficients of the 130 songs with a joint support of

at least 4 weeks. The average joint support was 10.8 weeks.

The average correlation coefficient was 0.76, while the me-

dian value was 0.89. These values are higher than the pre-

vious ones, which indicate a short time shift between the

two series. Fig. 2 depicts the average and median values of

the correlation coefficients, as a function of the Billboard’s

time shift. Clearly, minus one is the optimal time shift.

We thus conclude that trends on the Billboard chart and

on the the P2P charts are highly correlated with the Bill-

board lagging by one week. Table 2 depicts the correlation

coefficients of the example songs in Fig. 1 without shifts,

and with a one week time shift. When carefully examin-

ing Fig. 1, this time shift is noticed on some of the song

graphs. The implication of this finding is obvious: P2P

popularity charts can be used in order to predict trends on

the Billboard chart. Record companies, for example, might

use P2P file sharing activity to improve their marketing de-

cisions.

3.2 Ranking Drift Analysis

In Section 3.1 we showed that songs trends (a climb or

a descend) in P2P popularity charts are highly correlated

with trends on the Billboard Hot 100. We now ask whether

the charts are similar also in the relative ranks of songs. For

each week we took the 100 songs from the Billboard chart,

and “re-ranked” them according to their relative position

on the P2P chart. In accordance with Section 3.1, we used

a time shift of one week. We thus created an alternative

Rank Billboard Alternative Chart

1 Irreplaceable, Beyonce Walk It Out, Unk

2 I Wanna Love You, Akon Feat. Snoop Dogg You, Lloyd Feat. Lil Wayne

3 Fergalicious, Fergie Tim McGraw, Tim McGraw With Faith Hill

4 Smack That, Akon Feat. Eminem Smack That, Akon Feat. Eminem

5 Say It Right, Nelly Furtado We Fly High, Jim Jones

6 My Love, Justin Timberlake Feat. T.I. Runaway Love, Ludacris Feat. Mary J. Blige

7 How To Save A Life, The Fray Say It Right, Nelly Furtado

8 We Fly High, Jim Jones Walk Away, Paula DeAnda Feat. The DEY

9 Welcome To The Black Parade, Make It Rain, Fat Joe Feat. Lil Wayne

My Chemical Romance

10 It Ends Tonight, The All-American Rejects I Wanna Love You, Akon Feat. Snoop Dogg

Table 3. Billboard’s Top Ten Published on January 11th

2007 vs. The Alternative Chart

ranking chart for the Billboard songs based on their P2P

activity. This alternative chart is actually a filtered version

of P2P chart from Section 3.1 that contains only the songs

from the Billboard chart.

In Table 3 we show the top ten Billboard singles from

the chart released on January 11th 2007 (week 2), and our

alternative singles chart based on P2P activity on of the

previous week. The two charts share four common songs,

yet they are quite distinct. For the full 100 songs charts,

the median distance of songs on the Billboard from their

ranking on the alternative chart is 18.

In order to better understand the difference in song rank-

ing, we define the ranking drift of a song as the difference

between its rank on the Billboard chart to its rank on the

corresponding alternative chart. We then plot the cumula-

tive distribution function (CDF) of this difference for all

100 titles on the Billboard. Fig. 3(a) depicts the CDF of

four weekly charts on different weeks in 2007. The week

numbers are according to the Billboard charts. The cor-

respondence of the two charts can be evaluated from the

shape of graphs. A perfect match between the two charts,

would appear as a perfect step function. Fig. 3(a) reveals a

moderate correspondence of the Billboard charts with the

alternative charts. For instance, the percentage of songs

whose rank drift is in the range -25 to 25 is 60% on aver-

age.

CDF charts can be further used to compare the dynam-

ics within each chart over time. We thus measured the drift

of the songs from their ranking on previous weeks (on the

same chart). Fig. 3(b) depicts the ranking drift of songs

on the Billboard from the first week of 2007, over a pe-

riod of 3 weeks. As expected the ranking drift increases

for longer time intervals. Fig. 3(c) depicts the ranking drift

of songs on the alternative chart during the same time pe-

riod. Again the drift increases with time. The drift on the

alternative chart, however, is smaller than that of the Bill-

board, indicating less change in songs ranking from week

to week.

4. DISCUSSION

In past decades, air-plays and record sales were the pri-

mary means of distribution of popular music. The Bill-

board Hot 100 was therefore a reasonable proxy to popu-

larity. Today, however, new technologies in particular the

Internet, have created new means for distribution of music.
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(c) Songs time drift on the alternative charts

Figure 3. Cumulative Distribution of Ranking Drift (CDF)

The growing popularity of file sharing make record sales

and radio plays an increasingly poor predictor of peoples’

taste. The record industry attempts to stop the swapping of

pop music through the Internet by taking some P2P ven-

dors to court, but the steady spread of file sharing systems

and their technological improvements make them impossi-

ble to shut down.

In Section 3 we saw that currently the Billboard’s sales

based ranking system, is still quite in tune with what peo-

ple download, but as file sharing becomes ever more preva-

lent, a need for a new ranking system arises. This observa-

tion was first introduced by Grace et al. [6], where it was

suggested to use opinion mining (OM) on public boards

to measure music popularity. In [6], comments on artists’

pages on MySpace were used to build an alternative pop-

ularity chart of musical artists. Their top ten alternative

list was substantially different than that of the Billboard. It

was preferred, however, over the Billboard’s list by 2-to-1

ratio by their 74 human test subjects.

We argue that popularity ranking based on P2P activ-

ity has many advantages over ranking based on opinion

mining. First, it eliminates the complex task of classifying

opinion polarities based on identifying opinion semantics.

When P2P queries are considered, each query is always a

positive indication of a user showing interest in the song or

the artist. Second, the laborious task of identifying spam

content in opinion mining, becomes trivial in a data set of

query strings. On top of that, opinion mining in a website

such as MySpace is biased towards the typical user of such

a website, and biased again towards active users who care

to comment on artists pages. Our method, doesn’t require

an active action on the side of the user. We rather mea-

sure queries generated as part of the file sharing process.

Nonetheless, these queries disclose the interests of the user.

Finally, we argue that opinion mining is more vulnerable

to manipulations by stakeholders such as public relation

companies acting on behalf of the artist or the record com-

pany. Planting comments on MySpace by interested enti-

ties is rather easy, while the technological barrier of gener-

ating many search queries in a file sharing network is much

higher. In fact, networks such as Gnutella, already employ

techniques to identify and eliminate non-human automatic

search queries (as described in Section 1).

However, ranking songs based on P2P queries still has

some open questions. There are, of course, the ethical is-

sues with music piracy which are yet to be addressed. Re-

garding integrity, the ranking might be biased towards the

preferences of file swappers which may differ in taste from

the general public. It is also possible that a single P2P net-

work, however large, has a user community which is biased

against or for some genres, bringing the need to base the

chart on all the top P2P networks and not just the largest

one as was done in this study. Some of the open questions

on the algorithmic side include the need to develop an artist

ranking algorithm based on singles downloads, and to re-

solve the ranking of songs with confusing titles (e.g., Love

or Hot).

It is not unlikely, that in the foreseeable future, music

distribution based on file sharing will become the norm,

and music sales will be reduced to a niche market. We ex-

pect that as the practice of file sharing becomes even more

widespread, this line of research will become increasingly

relevant.
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ABSTRACT

Rhythm is one of the main properties of Western tonal
music. Existing content-based retrieval systems generally
deal with melody or style. A few existing ones based on
meter or rhythm characteristics have been recently pro-
posed but they require a precise analysis, or they rely on
a low-level descriptor. In this paper, we propose a mid-
level descriptor: the Meter Class Profile (MCP). The MCP
is centered on the tempo and represents the strength of beat
multiples, including the measure rate, and the beat subdivi-
sions. The MCP coefficients are estimated by means of the
autocorrelation and the Fourier transform of the onset de-
tection curve. Experiments on synthetic and real databases
are presented, and the results demonstrate the efficacy of
the MCP descriptor in clustering and retrieval of songs ac-
cording to their metric properties.

1. INTRODUCTION

The amount of digital music is rapidly increasing, and is
mostly comprised of Western pop music. New interfaces
for browsing, classifying or searching have to be proposed.
Content-based retrieval systems generally consider musi-
cal properties related to melody or style. But taking into
account other characteristics such as rhythm may lead to
the development of useful tools for helping users to browse
into large databases.

Research regarding rhythmic or metric properties typ-
ically involves tempo or meter analysis. Several systems
have been developed for improving tempo induction [1,2],
meter analysis [3,4], or estimation of the time signature of
audio songs [5]. Other works focus on the automatic classi-
fication of songs according to their rhythmic properties [6].
In contrast, only a few methods have been presented for re-
trieving songs by rhythmic similarity. A few existing ones
consider a low-level descriptor such as beat spectrum [7],
acoustic features [8], or spectral descriptors [9]. Others
precisely analyze tempo, meter and/or time signature [5]
and are consequently limited by the error analysis.

In this paper, we present a new mid-level descriptor for
retrieving music according to the metric properties. The
estimation of this descriptor requires neither a complete
analysis of the time signature nor the meter of a song, but
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only the prior knowledge of its tempo. In comparison to
a low-level feature, the essential metric information is re-
duced to a few values which characterize the metric prop-
erties of any song. In Section 2, we discuss the notion of
metrical structure. The new mid-level descriptor and the
associated analysis method are detailed in Section 3. Then,
clustering and retrieval experiments are presented in Sec-
tion 4. Finally, discussion of these results and perspectives
are proposed in Section 5.

2. MUSICAL METER

2.1 Metrical Structure

In Western tonal music, the periodic alternation of strong
and weak beats leads to a metrical hierarchy known as met-
rical structure. The symbolic representation of this struc-
ture is present in score notation using markings such as a
time signature, bar lines, and dynamic accents.

The Generative Theory of Tonal Music (GTTM) [10]
proposes a model of the metrical structure, where the meter
of a musical piece may be represented by multiple levels
of beats. The periodicity of beats is reinforced from level
to level, and it is the interaction of the different levels that
produces the sensation of meter. This representation is also
used by Temperley [11] in his proposal of a preference rule
system for meter.

According to [10], while there are five or six metri-
cal levels in a piece, one is particularly central: thetac-
tus level. The tactus identifies a perceptually prominent
level, with the levels immediately smaller and immedi-
ately larger. It refers to the perceived tempo, the internal
clock [12]. It corresponds highly with the notated unit time
of a musical piece, but it can differs. Lee [13] indicates
thus that listeners may revise meter to always get a tactus
between 300ms and 600ms.

In the following, we assume that the tactus level corre-
sponds to the tempo and the basic unit time of the music,
when it is known or notated. We choose also to use with-
out distinction the termstactus andbeat. As the metrical
structure is hierarchical, levels lower than that of the tac-
tus can be called subtactus levels and represent divisions
of the beat. The smallest division is generally calledtatum
or tick. Alternatively, higher levels are termed supertactus
levels, and contain multiples of the beat duration, including
the measure level.

2.2 Time Signature

We can restrict the notion of meter to two levels, the faster
of which provides the element, and the slower of which
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group them. According to Gouyon [14], this is close to
the usual description of meter that can be found in a score,
given by the time signature and the bar lines.

The time signature consists of 2 integers arranged ver-
tically, e.g. 4

4
or 6

8
. The upper number of the signature in-

dicates the number of units in a bar, with the value of unit
given by the lower number of the signature (e.g. 4 for a
quarter note). If the upper number is divisible by 3 and the
lower by 2, the time is compound and the number of beats
per measure is given by the upper number divided by 3. In
this case, the unit of time,i.e. the beat, is divided triply
at the smaller level. Otherwise, in simple time, the upper
number indicates the number of beats per measure and the
beat is divided duply. Table 1 presents the time signatures
mainly used in Western tonal music.

3. METER CLASS PROFILE

We introduce in this section a new descriptor to represent
the metrical structure of the music called Meter Class Pro-
file (MCP). We describe the method used for estimating
the MCP, and provide examples for illustration of its use.

3.1 Properties

MCP is a real-valued vector providing information of the
strength of the different metrical levels within the music.It
is centered on the tactus level: the beat multiples, including
the measure level, are represented on the left, and the beat
subdivisions, including the tatum level, on the right. The
choice was made to represent the relative strength of ac-
cents at multiple rates of the tempo:2, 3, 4, 5, 7, 9, and11,
and also at subdivisions of the tempo:1/2, 1/3, 1/4, 1/6,
1/8, 1/12. MCP is thus a vector of thirteen dimensions.

A MCP corresponding to a4/4 time signature would
contain high amplitudes for the bin corresponding to4 times
the tempo,i.e. beat multiple4 representing the measure
periodicity, for beat multiple2 (in 4/4, there are accents
every two beats), for beat subdivision1/2 (because4/4
is in simple time), and perhaps beat subdivisions1/4 and
1/8 (if 16th or 32th notes occur). A few examples are pre-
sented in Figure 2.

As the MCP is independent from tempo, its represen-
tation does not change with tempo variations. It may be
considered as a mid-level descriptor, since the metric in-
formation is summarized to a 13-dimension vector with-
out identifying a particular time signature. Additionally,
the amplitude ratios from the different metrical levels pro-
vide a meaningful way to handle the meter of a musical
piece. The MCP could, for example, also indicate a degree
of swing, by considering the balance between duple and
triple beat subdivisions.

3.2 Estimation

The method proposed here for computing MCP relies on
existing analysis methods recently described for estimat-
ing tempo [15]. It has been implemented using the MIR
toolbox [16]. The main steps are illustrated on Figure 1,
with the example of the country songWanted (A. Jackson),
annotated with a3/4 time signature.

In this paper, we consider only one global MCP per
audio musical signal. We thus choose to analyze a large
frame of music (length60 seconds). The meter is assumed

to be stationary during this frame. An onset-energy func-
tion is first extracted from the audio signal by taking into
account spectral energy flux [17]. Then, dominant period-
icities (or frequencies) are estimated.

Two types of observations, respectively termed Onset
Discrete Fourier Transform (ODFT) or Onset Autocorre-
lation Function (OAF), are considered. Their complemen-
tary properties are discussed for tempo estimation in [2].
In the experiment presented in this paper, the OAF and
ODFT are both computed and normalized and the tempo
frequency is known.

The analysis method of MCP locates both periodicities
corresponding to beat multiples (related to measure) and
beat subdivisions. Estimation of multiples and subdivi-
sions is carried out using the complementary properties of
the two observations. On one hand, the ODFT of a periodic
signal is a set of harmonically related frequencies, and it is
difficult to determine predominant frequencies above the
tempo frequency. Therefore, we only estimate frequencies
lower than the tempo frequency. These frequencies corre-
spond to beat multiples (first part of MCP), in particular
that of the measure.

On the other hand, the OAF of a periodic signal is a
set of periodically related lags. It is thus difficult to mea-
sure predominant periodicities higher than the tempo pe-
riod. The OAF is only considered for estimating periods
lower than the tempo periods. These periods are related to
beat subdivisions (second part of the MCP).
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Figure 1. Different stages of the analysis method of Meter
Class Profile for the songWanted of A. Jackson (time sig-
nature3/4): from top to bottom, the autocorrelation func-
tion, the spectrum of the onset function and the MCP esti-
mated, showing peaks at beat multiple3 and beat subdivi-
sion1/2.

With prior knowledge of the tempo, the first part of the
MCP is estimated from the ODFT and the second part is
estimated from the OAF. Consequently, period bands cor-
responding to harmonics of the frequency tempo are ana-
lyzed when considering the OAF. Only the six harmonics
(2, 3, 4, 6, 8, and12) are taken into account. The amount
of energy of OAF within a thin frequency band around the
related periodicities directly determines the amplitude re-
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2
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Table 1. Time signatures. Most common signatures are duple, tripleand quadruple time in Western tonal music. Notations
9/2, 9/4 and 9/8 may be used either for a simple measure of 9 pulses, or for a compound measure of 3 pulses.

lated to the beat subdivisions of the MCP. In our imple-
mentation, the width of the frequency bands for cumulat-
ing the energy in the ODFT and OAF has been set to5%.
In Figure 1, the tempo has been annotated to1.5Hz and is
showed on the OAF with a solid line. When considering
periods lower than1

1.5
= 0.66s, energy is located around

period of0.33s, corresponding to the beat subdivision1/2.
The contribution to the beat subdivision of the correspond-
ing MCP is thus significant and clearly indicates a simple
meter.

The ODFT is considered in a similar way. Only the
seven sub-harmonics (2, 3, 4, 5, 7, 9, and11) of the tempo
frequency are considered. Energy within a thin band around
these sub-harmonics determines the amplitude related to
the beat multiples. In Figure 1, only the energy around fre-
quencies1.5

2
, 1.5

3
, . . . , 1.5

11
, contributes to the first part of

the MCP. In this example, the sub-harmonic1.5
3

is signif-
icantly predominant and results in a substantial amplitude
in the MCP. This high amplitude thus indicates that the
song is characterized by3 beats per measure.

Other examples of MCP computation for real audio songs
are shown in Figure 2. In each example, the MCP looks
very different, according to their metric properties. In par-
ticular, the highest value in the first part of the MCP gen-
erally indicates the number of beats per measure, whereas
the highest value of the second part is related to the beat
subdivision.

3.3 Distance between MCP

The MCP is proposed for music retrieval purposes. There-
fore, a method for computing a matching score between
two MCP has to be defined. Several distances are possible,
however this is a difficult selection due to the difference in
the analysis processes of the two parts of the MCP. We thus
propose to consider a global scores as the combination of
the two scoress1 ands2 obtained with the two parts of the
MCP:

s = αs1 + (1− α)s2 (1)

whereα is a fixed weighting value in the interval[0; 1], s1

the comparison score related to themeter multiple part of
the MCP, ands2 the comparison score related to theme-
ter subdivision. These two scoress1 ands2 are calculated
according to correlation:

si(MCP1, MCP2) =
c(MCP1, MCP2)

√

c(MCP1, MCP1)
√

c(MCP2, MCP2)

c(MCP1, MCP2) =

N
∑

i=1

MCP1(i) MCP2(i) (2)

whereMCP1 andMCP2 are MCP vectors of sizeN .
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Figure 2. Examples of MCP computed from real audio
songs with different time signatures, respectively9/8, 4/4,
12/8 and5/4.

4. EXPERIMENTS

In this section, experiments are presented that demonstrate
the ability of MCP to discriminate songs that have different
metric characteristics. The first experiments deal with clus-
tering abilities, and other second concerns song retrieval.

4.1 Databases

Two databases are considered in this paper. The first one is
composed of short artificial audio musical pieces (60 sec-
onds long at16 kHz) that have been synthesized according
to different metric properties. The tempo was set to1 Hz
and classes have been constituted considering the time sig-
nature. Classes with2, 3, 4, 5, 7, 9 and11 beats per mea-
sure have been built, in simple time and in compound time.
For each class,2 different distributions of the strong beats
in the measure have been chosen, to synthesize 200 pieces.
A process has been achieved to randomly add16th notes
in the pieces. The database contains 2800 different files.

The second database is a collection of real pop audio
songs indexed using the time signature. Thenoise col-
lection contains476 simple-meter songs with2 or 4 beats
per measure (sampling rate44.1 kHz).We constitute an-
other collection of54 songs with different metric proper-
ties. Some of them are in compound time, while others are
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characterized by a different number of beats per measure.
Therefore,7 different classes are assumed according to7
different time signatures. The composition of each class
is presented in Table 2. Different classes are also deduced
from time signatures: one class is composed of13 songs
with 3 beats per measure, another class comprises24 com-
pound time songs. For all these54 songs, tempo has been
manually annotated.

It is important to notice that all ground truth annotation
of the songs from thenoise database have not been pre-
cisely verified; ambiguous meter, large tempo variations,
and short-duration time signature changes may result in
evaluation errors that may underestimate the quality of the
clustering and retrieval systems presented here.

Simple Compound
3/4 5/4 7/4 11/4 6/8 9/8 12/8
11 10 7 2 6 2 16

Table 2. Number of songs within each meter class consid-
ered for the experiments.

4.2 Clustering

We present here the clustering abilities of the proposed me-
ter feature on the two different databases.

4.2.1 Evaluation Metrics

The task can be here reworded as follows: “Do the ele-
ments classified together actually belong to the same time
signature?”. The similarity of the elements of the given
database is first computed. As the databases considered
in those experiments are of relatively small sizes, we con-
sider an unsupervised clustering scheme (the k-means) to
perform the clustering task,i.e. each elementek is given a
clustering tagtk. The correct number of classes is given to
the clustering algorithm.

The clustering matrixM is next computed, where each
entry is defined as:

M(Cx, Cy) =
#{(ek, el)|tk = tl ∧ ek ∈ Cx ∧ el ∈ Cy}

#{(ek, el)|ek ∈ Cx ∧ el ∈ Cy}
(3)

whereCx andCy are the classes given as ground truth, and
(ek, el) is a couple of elements. In order to attenuate the
impact of the random initialization of the k-means algo-
rithm, the classification is done10 times and the mean re-
sult over the10 iterations is considered. The better the clas-
sification, the higher the ratio between the diagonal values
of M and the remaining of the matrix.

Evaluation over the synthetic database allows us to val-
idate the proposed approach in a controlled environment.
Figure 3 depicts the clustering matrixM for the synthetic
database. The results are very satisfying in general as most
of the values are concentrated on the diagonal, meaning
that most of the cluster generated by the k-means algorithm
from the features correspond to the actual metrical struc-
tureclasses. Typical errors are due to a confusion between
simple and compound time, e.g. between 3/4 and 9/8 time
signatures, or sometimes between classes for which the
numbers of beats per measure have common factors (e.g.,
4/4 and 2/4, or 9/4 and 3/4).

2−4 6−8 3−4 9−8 4−4 12−8 5−4 15−8 7−4 21−8 9−4 27−8 11−4 33−8
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Figure 3. Clustering matrix over the synthetic database.
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Figure 4. Clustering matrix over the real database.

Real data is now considered to evaluate the robustness
of the MCP. Evaluations based on clustering allows us to
finely analyze the properties of the MCP with respect to the
different time signature classes, as shown in Figure 4. We
can note that a clear distinction is made between simple
and compound time.

4.3 Retrieval

In this section, we propose the evaluation of a music re-
trieval system based on the MCP. The54 songs from the
real song collection are successively considered as query.
The retrieval system computes a similarity score between
the query and all the songs of the database. The database is
comprised of530 different songs, including all the queries
and all thenoise collection. These songs are then ranked
from most to least similar. For each query, we expect to
retrieve all the songs belonging to the class of the query at
the top rank. In the following evaluation, results are pre-
sented with Precision at Top1, N and2N , in which N
denotes the size of the class of the query.

4.3.1 Synthetic Query

The first experiments concern retrieval based on a synthetic
query. This query is a flat input,i.e. a MCP defined by a
binary string. For example, if the songs searched have a
3/4 time signature, the synthetic query is the MCP

[0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0]

where the only non-null values correspond to the beat mul-
tiple 3 and the beat subdivisions1

2
, 1

4
and 1

8
are related to
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simple time subdivisions. Other experiments only concern
the left or right half of the MCP, since retrieval may fo-
cus on beat multiples or beat subdivisions. For example,
retrievingcompound time songs is tested by considering
only the second part of the MCP with a synthetic query
such as:

[0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1]

which exhibits beat subdivisions1
3
, 1

6
, and 1

12
.

Table 3 shows the results of the retrieval experiments
from those synthetic queries. At the exception of time sig-
natures11/4 and9/8, one song of the correct class is al-
ways correctly retrieved at the first rank. These two excep-
tions may be explained by the small size the two classes
concerned (each comprised of only two songs). Concern-
ing the11/4 class, related songs are retrieved at ranks2
and11. Concerning the9/8 class, related songs are re-
trieved at ranks3 and5. Even if the precision at top1 is
null, the retrieval results are thus quite good.

Average precision at top2N indicates that more than
half the songs are generally retrieved within the first2N
ranks. Considering one part of the MCP for retrieving
songs seems to be effective. For example, a synthetic query
allows the retrieval of75% of the songs of the compound
time class at the firstN ranks. Almost all the compound
time songs are ranked within the first2N best matches.
The results of these experiments confirm the quality of the
MCP as a metric descriptor for retrieval, since the MCP
computed from a real audio file is similar to its time signa-
ture properties.

Class Size Top 1 Top N Top 2N
6/8 6 1 0.333 0.500
3/4 11 1 0.364 0.636
9/8 2 0 0.000 0.500
12/8 16 1 0.312 0.375
5/4 10 1 0.800 0.900
7/4 7 1 0.286 0.429
11/4 2 0 0.500 0.500

Total by Class 7 0.714 0.371 0.549

3 beats/mes 13 1 0.846 1.000
5 beats/mes 10 1 0.800 1.000
7 beats/mes 7 1 0.571 0.571
11 beats/mes 2 1 0.500 0.500

Compound 24 1 0.750 0.958

Table 3. Results of the retrieval system based on MCP,
considering a synthetic query.

4.3.2 Audio Query

We present a second experiment to test the ability of re-
trieving real songs using a real song as a query. The appli-
cations related to these experiments are Query-by-Example
systems, which allows users to perform a database search
for songs that are similar to a given query song. The simi-
larity here relies on the metric properties, but does not have
to be explicitly determined by the user.

Since the query is always retrieved at the first rank, we
propose to remove the query from the database. Precision
at topN is the number of correct songs retrieved in the
first N − 1 ranks divided byN − 1, N being the size of

the class considered. Precision at top2N is the number of
correct songs retrieved in the first2N − 1 ranks divided
by 2N − 1. By using all the songs of each class as a
query,N precisions are computed and averaged for each
class. Then, the total average is computed by query, or by
class. It is respectively denotedTotal by Query, andTotal
by Class. Such evaluations are respectively namedFirst
Tier andSecond Tier in [18].

Table 4 shows the results of the retrieval experiments.
The valueα determines the weighting between the two
parts of the MCP, and has been set to0.6. The average
results by query indicate that44% of the queries allow the
retrieval of one song of the same class at the first rank,
53% of the class is retrieved at the first2N ranks. The
accuracy is lower than the results obtained with synthetic
queries. This can be explained by the presence of songs
in thenoise database that may be similar to the query. For
example, a query with time signature3/4 often leads to the
retrieval of songs with time signature9/8, since the num-
ber of beats per measure are the same for each of these two
classes and since the beat subdivisions may be varying dur-
ing the analyzed song (for example in the case of swing).
At the opposite, the class5/4 leads to the best results:80%
of the correct songs are retrieved.

Moreover, difficulties with annotations of time signa-
tures may lead to errors in evaluation. For example, it is
sometimes difficult to discriminate6/8 songs from12/8
songs. This difficulty is illustrated by the poor results for
class6/8, whereas the compound time class leads to good
results.

Classes Size Top 1 Top N Top 2N
6/8 6 0.000 0.033 0.242
3/4 11 0.727 0.500 0.649
9/8 2 0.000 0.000 0.333
12/8 16 0.562 0.579 0.714
5/4 10 0.700 0.567 0.695
7/4 7 0.000 0.095 0.132
11/4 2 0.000 0.000 0.000

Total by Class 7 0.284 0.253 0.395
Total by Query 54 0.444 0.394 0.529

3 beats/mes 13 1.000 0.686 0.825

Compound 24 0.875 0.784 0.863

Table 4. Results of the retrieval system based on MCP,
considering an audio song as query.

5. CONCLUSION AND PERSPECTIVES

In this paper, we have proposed a new mid-level descrip-
tor, related to the beat multiples and subdivisions. Exper-
iments with synthetic and real songs show that consider-
ing the MCP allows the retrieval of songs belonging to the
same metric class.

When focusing on the time signature, we reduce the
search information from the descriptor. Other considera-
tions are also of interest, such as the amplitudes of all the
beat subdivisions, which may denote a certain rhythmic
complexity of the music. The MCP of one minute ofFever
by Ray Charles is shown in Figure 5. If the time signature
of this piece is generally notated 4/4, beat subdivisions at

643



Poster Session 4

1/3 are more prevalent than at 1/2. As studied in [19], this
is a consequence of the swing. We see here that MCP con-
tains information more complex than the time signature
only, and it could thus be used for very specific retrieval
purpose.
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The estimation of the MCP assumes the prior knowl-
edge of the correct tempo. Its robustness against tempo es-
timation has to be improved in the future. If the tempo may
be automatically estimated, errors are unavoidable and will
significantly limit the accuracy of the MCP, and thus the
accuracy of the retrieval system.

Furthermore, since metric properties may change dur-
ing a song, a song may be represented by a sequence of
MCP (computed during short frames), in the same way that
tonal properties of a song can be represented by a sequence
of chromas [20]. Such representation may allow the dis-
crimination of songs with the same metric properties, but
with different evolutions with respect to time.
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ABSTRACT

In this paper, we introduce and discuss the task of sheet

music-audio identification. Given a query consisting of a

sequence of bars from a sheet music representation, the

task is to find corresponding sections within an audio inter-

pretation of the same piece. Two approaches are proposed:

a semi-automatic approach using synchronization and a

fully automatic approach using matching techniques. A

workflow is described that allows for evaluating the match-

ing approach using the results of the more reliable syn-

chronization approach. This workflow makes it possible to

handle even complex queries from orchestral scores. Fur-

thermore, we present an evaluation procedure, where we

investigate several matching parameters and tempo estima-

tion strategies. Our experiments have been conducted on a

dataset comprising pieces of various instrumentations and

complexity.

1 INTRODUCTION

When listening to an audio recording of a piece of mu-

sic, an obvious problem is to decide, which bar of a corre-

sponding sheet music representation is currently played.

For technical reasons, we tackle this problem from the

viewpoint of sheet music-audio identification: Given a se-

quence of bars from the sheet music as a query, the task is

to find all temporal sections in the audio recording, where

this bar sequence from the query is played.

One application of this task is to find out, whether there

are differences between the default bar sequence follow-

ing the instructions in the sheet music and what is actually

played in the audio interpretation. In case there are differ-

ences, sheet music-audio identification may also be used to

automatically determine the bar sequence that is played in

the interpretation, and to identify special parts like caden-

zas that have no counterpart in the sheet music.

If the bar sequence played in the audio interpretation

is known in advance, sheet music-audio identification can
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be solved by first performing sheet music-audio synchro-

nization and then using the synchronization results to iden-

tify the temporal sections in the audio that correspond to

a given query sequence of bars. In case the correct bar

sequence is not known, a more direct approach must be

taken. Here, sheet music-audio matching as performed

in [1] seems to be a reasonable strategy.

In the literature, alignment, identification and retrieval

has been a popular field of research for the single-domain

cases of either audio or symbolic data, see [2] and the ref-

erences therein. For the cross-domain case, a lot of effort

has been put into the task of off-line and on-line alignment

of score data and audio data [3–6]. Here, the assumption is

made that the bar sequence of the score is already known.

The idea of using cross-domain synchronization results as

ground truth or training data for more complicated music

information retrieval tasks has already been formulated for

the application of automatic transcription of pop music [7].

First important steps towards cross-domain matching

and identification of polyphonic musical works have been

conducted by the groups of Pickens and Orio [4, 8]. Us-

ing either audio transcription techniques [8] or a statistical

model for the production of audio data from polyphonic

score data [4] a complete audio track (song or movement)

is used as a query to find the corresponding work in the

score domain. First experiments for approaching the task

of cross-domain work identification by querying arbitrary

segments of score data have been conducted by Syoto et

al. [9] as well as in our previous work [1]. None of the

above approaches explicitly handles differences in bar se-

quence structure or repeats between the score and audio

data, even though this is a common and practically rele-

vant issue in real-world digital music libraries.

The paper is structured as follows. Section 2 specifies

the task of sheet-music audio identification in more detail

and discusses some difficulties and pitfalls. Our two ap-

proaches to sheet music-audio identification are presented

in Section 3, one using synchronization and the other us-

ing matching. Section 4 explains how MIDI events for

comparison with the audio data are created from the sheet

music data. The synchronization and matching procedures

are outlined in Sections 5 and 6. Section 7 describes an

evaluation procedure for the matching approach using the

more reliable results of the synchronization approach as a

ground truth. Experimental results using our test dataset

are discussed in Section 8 before the paper concludes with

an outlook on future work in Section 9.
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2 SHEET MUSIC-AUDIO IDENTIFICATION

In the following, we assume that we are given one scanned

sheet music representation and one audio interpretation of

the same piece of music. We assign a unique label (p, b)
to each bar written in the sheet music, where p is the page

number and b is the bar number on the page. Furthermore,

B denotes the set of all bar labels of the piece. Sheet mu-

sic may contain jump directives like repeat signs, alterna-

tive endings, dacapos or segnos. Following these direc-

tives as they are written in the sheet music, one obtains a

sequence δ = (δ1, . . . , δn), δi ∈ B, indicating the default

sequence of bars that is to be played when performing the

piece. In practice, however, the given audio recording does

not always follow this sequence δ. Performers might, for

example, choose to ignore or add repeats, or even intro-

duce shortcuts. This leads to a possibly different sequence

π = (π1, . . . , πd), πi ∈ B ∪ {↑}, which we call perfor-

mance sequence. Here, we use the label ↑ to mark sec-

tions that are not written in the sheet music, e.g., caden-

zas. Given the performance sequence π, the audio record-

ing can be segmented into time intervals I1, . . . , Id such

that time interval Ii corresponds to the section in the au-

dio data where bar πi is played (or something that is not

written in the score in case πi =↑).

Given a query sequence of bars Q = (q0, . . . , qm), Q a

substring of δ, the task of sheet music-audio identification

is to find all time intervals T in the audio data where the

query sequence of bars is played. More formally,

H(Q) := {T | ∃j : Q = (πj , πj+1, . . . , πj+m)

∧T = Ij ∪ Ij+1 ∪ . . . ∪ Ij+m}

denotes the set of hits w.r.t. Q. Note that in case of repeats

that are notated as repeat signs, there can be more than

one hit for a given query. Also note that besides the time

intervals T there might be other time intervals in the audio

data where the same musical content is played, but that

belong to a different sequence of bars in the sheet music.

We denote this kind of time intervals as pseudo-hits.

3 TWO APPROACHES

Given a scanned sheet music representation and an audio

recording of the same piece of music, in a first step we use

optical music recognition (OMR) software to extract infor-

mation about musical symbols like staffs, bars and notes

from the sheet music scans. Note that the obtained sym-

bolic score data usually suffers from recognition errors.

For simplicity, we here assume that the set of bar labels

B and the default sequence δ are correctly obtained from

the OMR output. Given a query Q = (q0, . . . , qm), which

is a substring of δ, we want to find the set of hits H(Q) as

specified in Section 2. We now describe two approaches

with different preconditions.

For the first approach, we assume that the performance

sequence π = (π1, . . . , πd), πi ∈ B ∪ {↑}, is known. In

this case, we are left with the calculation of the correspond-

ing time intervals I1, . . . , Id. This can be done by using

sheet music-audio synchronization. The set of hits H(Q)
can then be computed by finding occurrences of the query

sequence in the performance sequence.

In the second approach, the performance sequence π is

unknown. In this case, a reasonable strategy is to use sheet

music-audio matching to search for sections in the audio

recording with a similar musical content compared to the

query sequence of bars. These sections may be considered

as an approximation of the set of hits H(Q). However,

one should be aware of the fact that this method cannot

distinguish correct hits from pseudo-hits, and is therefore

expected to deliver false positives. In the following, we

will refer to such false positives as content-induced confu-

sion. Such confusion is also expected to be introduced by

query sequences that differ only slightly, either in musical

content or by a very small number of bars at the beginning

or end of the sequence. This issue becomes particularly

relevant, since the presence of OMR errors prohibits using

too strict settings for rating similarity in the matching.

Due to the additional information π that is given in the

first approach, this approach works much more robust and

reliable than the second approach. The required perfor-

mance sequence π can be created with little effort by man-

ually editing an automatically generated list of jump di-

rectives acquired from the available default sequence δ.

Therefore, we consider this approach semi-automatic. On

the contrary, the second approach is fully automatic, but

the results are less reliable. In the optimum case, only

content-induced confusion would occur. In practice, how-

ever, extra confusion is likely to be introduced by short-

comings of the matching procedure.

The idea followed in this paper is to use the more reli-

able results of the semi-automatic first approach to create

ground truth results for evaluating the less reliable fully

automatic second approach. Using this method, we com-

pare different settings of the matching procedure used in

the second approach to learn which one works best for the

task of sheet music-audio identification.

4 DATA PREPARATION

To compare sheet music data with audio data, we first cre-

ate MIDI note events from the OMR results. However,

OMR results often suffer from non-recognized or misclas-

sified symbols. Especially in orchestral scores with many

parts, erroneous or missing clefs and key signatures lead

to wrong note pitches when creating MIDI events. Fur-

thermore, orchestral scores can comprise parts for trans-

posing instruments, i.e., the notated pitch is different from

the sounding pitch. Such transposition information is not

output by current OMR software, but it is essential for cre-

ating correctly pitched MIDI events. To be able to handle

even complex orchestral scores, a so-called staff signature

text file is generated from each page and is manually cor-

rected. The staff signature file contains information about

the clef, the key signature and the transposition at the be-

ginning of each staff that is found on the page, see Figure

1. It also identifies which staffs belong to the same grand

staff. The information from the staff signature files is used

to correct errors in the OMR output and to add the missing

information about transposing instruments.

There are several choices to be made regarding onset

times and tempo, when creating the MIDI events from the

OMR results. Since in the OMR output, notes or beams
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Figure 1. Staff signature annotation for an example grand staff taken from a score of the “Symphony to Dante’s Divina

Commedia S109 - Inferno” by Franz Liszt. Positive key signature values count the number of sharps, negative values count

the number of flats. Transposition values are specified as the amount of semitones the pitch has to be modified with to

sound correctly.

are often missed out, the accumulated note durations are

not a good estimator for note onset times. This is espe-

cially the case for scores with multiple staffs and possi-

bly multiple voices per staff, where the voice onset times

might drift apart. Instead we use the horizontal position

of notes within each measure as an estimator for the on-

set time. Even though this does not deliver onset times

that perfectly match the musical meter, this method is very

robust against surrounding errors and effectively inhibits

voices from drifting apart.

Another parameter that is required to convert sheet mu-

sic data to MIDI events is the tempo. This parameter is

usually not output by OMR systems. If the performance

sequence π is known in advance, the mean tempo can be

calculated from the duration of the audio track. When π

is not known, one might either use a fixed tempo or try to

estimate a tempo based on the musical content. Note that

the actual tempo used in audio interpretations can easily

vary from 40 to 220 beats per minute (quarter notes per

minute). We will investigate the effects of different tempo

estimation strategies in our experiments in Section 8.

Both the MIDI data and the audio data are converted

to sequences of normalized chroma-based features. Each

feature is a 12-dimensional vector encoding the local en-

ergy distribution among the 12 traditional pitch classes of

Western classical music commonly labeled C, C♯, D, . . .,B.

5 SYNCHRONIZATION

After transforming both the MIDI data as well as the au-

dio data into sequences of normalized chroma vectors, we

use dynamic time warping (DTW) to synchronize the two

sequences. Here, the main idea is to build up a cross-

similarity matrix by computing the pairwise distance be-

tween each score chroma vector and each audio chroma

vector. In our implementation, we simply use the in-

ner vector product for the comparison. An optimum-cost

alignment path is determined from this matrix via dynamic

programming. To speed up this computationally expensive

procedure, we use an efficient multiscale version of DTW.

6 MATCHING PROCEDURE

The task of the matching procedure is to find sections in the

audio interpretation that are considered similar to a given

query of score data. In this paper, we use a variant of the

subsequence dynamic time warping algorithm for this task.

For details we refer to the literature [2]. As in the case of

synchronization, both the audio data and the score data are

first converted to feature sequences. Each feature vector

from the score query is compared to each feature vector

from the audio database by means of a suitable local cost

measure. The results of this comparison are stored in a

cost matrix, see Figure 2. Finding candidate matches from

this cost matrix means finding paths connecting the bot-

tom row and the top row of the matrix. In particular, we

are interested in paths p where the sum of the local cost of

the matrix cells covered by the path is as small as possible.

Such paths are calculated using dynamic programming by

iteratively advancing from the bottom left towards the top

right using a constrained set of allowed step directions en-

suring that a path never runs backwards in time. For each

matrix cell, the minimum cost of any valid path leading to

that cell is saved in a so-called accumulated cost matrix.

Matches are then identified by finding minima in the top

row of the accumulated cost matrix.

Given a query bar sequence Q, the match-

ing procedure outputs a set of matches M(Q) =
{(p1, c1), . . . , (pN , cN )}, where pi is a path connecting

the top and bottom rows and ci ∈ R≥0 is the cost of
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Figure 2. Illustration of the subsequence DTW cost matrix

for a score query with a length of two measures accounting

for 11 seconds of MIDI data (Beethoven Sonata 3, Opus 2

No 3, Adagio, measures 16–17). An excerpt of 27 seconds

of audio data including one correct match is displayed. The

optimum-cost path p for the correct match is rendered as a

sequence of squares connected by lines.

the path pi. The results are ranked with respect to the

path cost. The choice of allowed step directions can be

varied and associated step weights can be introduced to

favor certain directions and behaviors. Several settings for

step directions and step weights will be discussed in our

experiments in Section 8.

7 EVALUATION PROCEDURE

Sheet music-audio matching depends on a multitude of pa-

rameters and settings used in the steps of creating MIDI

events, creating feature sequences, and performing the

matching procedure. In this work, we are interested in find-

ing out which parameters work best for the task of sheet

music-audio identification. We do this by evaluating and

comparing several parameter sets on a test dataset consist-

ing of a collection of musical tracks, with each track being

represented by one sheet music representation and one au-

dio interpretation.

In the evaluation, we perform the matching procedure

on a set of test queries. For each test query Q, we then eval-

uate the matching results M(Q) using a set of ground truth

hits H(Q) and a suitable confusion measure. To calculate

the confusion measure, we first identify which matches

output by the matching procedure correspond to ground

truth hits. Let T = [t0, t1] ∈ H(Q) be the ground truth hit

and (p, c) ∈ M(Q) be a match whose path p corresponds

to the time interval T ′ = [t′0, t
′
1] in the audio. The match

(p, c) is then considered to correspond to the ground truth

hit T , if both the durations and the locations roughly coin-

cide. More precisely, with ∆ := t1 − t0 and ∆′ := t′1 − t′0
we require that

|∆′ −∆| < 0.2∆ and |t′1 − t1| < 0.2∆.

In the following, we call a match that corresponds to

a ground truth hit a correct match and a match that does

not correspond to a ground truth hit an incorrect match.

Let M(Q) = {(p1, c1), . . . , (pN , cN )} be the set of all

matches for a query Q, and let C ⊆ [1 : N ] be the set of

indices of correct matches and I ⊆ [1 : N ] be the set of

indices of incorrect matches. The confusion measure we

Figure 3. Scape plot for Beethoven’s Piano Sonata no.7

op.10 no.3 Rondo (Allegro) using the confusion measure

ΓH,M .

use in this paper is a binary-valued function ΓH,M that on

input Q takes the value 1 if at least one ground truth hit

in M(Q) has no corresponding match or if there is an in-

correct match with lower cost than the highest-cost correct

match, and 0 otherwise:

ΓH,M (Q) :=







1 missed ground truth hit

1 mini∈I ci < maxi∈C ci

0 otherwise.

In other words, ΓH,M (Q) = 0 if all ground truth hits are

found and are ranked higher than any incorrect match. In

case of ΓH,M (Q) = 1 we also speak of confusion.

Using the results of sheet music-audio synchronization

that have been calculated in a preprocessing step, a set of

ground truth hits can be calculated for any input query se-

quence of bars Q that is a substring of δ. This allows us to

test each track using a grid of queries that covers not only

the whole track but also a wide range of query lengths.

The results can be nicely visualized in a so called scape

plot [10]. Figure 3 shows a scape plot using the confusion

measure ΓH,M . Time runs from left to right. The lowest

row shows the results for the shortest query length. The

query length successively increases when moving upwards

in the plot. The darker shaded areas indicate confusion.

From Figure 3, one can see that longer queries lead to

less confusion and better separability of correct and in-

correct matches. The plot also reveals where in the track

and up to what query lengths the confusion happens. To

not only be able to visually compare parameters for each

individual track, but to also enable comparisons for the

whole dataset, we summarize the results of all queries in

one number per track by simply averaging over the com-

plete grid of queries. Subsequently, we calculate the av-

erage over all tracks to end up with a single number for

each set of parameters. If one parameter set works better

than another parameter set, this fact should manifest in a

lower average ΓH,M value. Note that one should not com-

pare absolute values of the confusion measure for differ-

ent tracks or datasets, because the absolute values depend

on too many uncontrolled factors like the content-induced

confusion, the tempo of the audio interpretation, and the

content-dependent “uniqueness” of bars. Therefore, we

keep datasets fixed, when studying the effects of using
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Composer Work Instrumentation #Pages #Tracks Duration

Beethoven Piano Sonatas 1–15 Piano 278 54 5h 01min

Liszt
“A Symphony to Dante’s Divina

Commedia”
Symphonic Orchestra 145 2 44min

Mendelssohn Concert in E minor, Op.64 Violin and Orchestra 55 3 26min

Mozart String Quartetts 1–13 String Quartett 190 46 2h 46min

Schubert
“Die schöne Müllerin”, “Winter-

reise” and “Schwanensang”
Singer and Piano 257 58 3h 04min

Table 1. Information and statistics on the test dataset used for evaluation.

Figure 4. ΓH,M values averaged over the complete dataset

for every combination of 5 tempo estimation strategies and

4 step direction and cost settings. Lower values are better.

different parameters by comparing the confusion measure

values.

8 EXPERIMENTS AND RESULTS

Using the procedures described in the previous sections,

there are many aspects whose effect on sheet music-audio

identification should be investigated. Due to space lim-

itation, we restrict ourselves to investigating the effects

of different tempo estimation strategies in combination

with different step settings and cost settings in the sub-

sequence DTW. In particular, we test five tempo estima-

tion strategies: fixedXXXbpm: Fixed tempo of XXX

beats per minute, with XXX taking the values 50, 100
and 200. fixedAudio: Fixed mean tempo of the

corresponding audio interpretation (estimated via man-

ually annotated π and the duration of the audio file).

adaptiveMax100bpm: The tempo is determined indi-

vidually for each bar by taking into account the number

of different onset times within the bar. The tempo is cho-

sen such that the duration of the bar is 200ms times the

number of different onset times. This leads to bars with

runs of short-duration notes being slowed down compared

to bars with long notes. Additionally, a maximum tempo

of 100bpm is used to limit the difference between slow and

Figure 5. Tempo distribution of the test dataset being

weighted the same way as the results in Figure 4

fast bars.

We use four different step and cost settings for

the subsequence DTW. classic: Step vectors

(1, 0), (0, 1), (1, 1) and cost weights 1, 1, 1. focussed:

Step vectors (2, 1), (1, 2), (1, 1) and cost weights 2, 1, 1.

offset: Same as classic, but with an additional cost

offset of 1 which is added to each cell of the local cost

matrix. normalized: The same as classic, but with

an additional modification at the stage of calculating the

accumulated cost matrix. At each matrix cell, the cost

being compared for making the decision about which

step vector leading to this cell delivers the minimum

accumulated cost are normalized by the accumulated path

length up to this cell. This normalization prevents short

paths being preferred over long paths, even if the short

paths have a higher average cost.

The dataset used for testing consists of 5 sheet music

books covering a range of instrumentations and complex-

ities, see Table 1. One audio inpterpretation per track is

included. For each track in the dataset, we calculate the

ΓH,M value for a grid of queries similar to the one used to

create the scape plot in Figure 3. We start with a query

length of 5 bars and use a hop size of 5 bars to move

throughout the track. The query length is successively in-

creased by 5 bars up to a maximum query length of 40
bars.

Figure 4 shows the results for testing all 20 combina-

tions of settings on the test dataset. The ΓH,M values il-

lustrated in the figure are average values calculated by first

taking the average over all tracks within each scorebook,

and then taking the average over all scorebooks. This way,

each of the five different types of instrumentation and com-

plexity gets the same weight. Since we are measuring ef-

fects that depend on the tempo, we also need to look at the
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distribution of tempi of the tracks in the test dataset. Figure

5 shows the distribution of tempi being weighted the same

way as the results in Figure 4 and confirms that there is no

bias towards slower or higher tempi that might distort our

results.

From the results in Figure 4 we can see that both the

tempo estimation strategy and the tested step direction and

cost settings clearly have an effect on the average amount

of confusion. The best overall results are achieved by the

setting focussed when using the mean tempo of the

audio interpretation. This was expected, since this set-

ting is more focussed towards the diagonal direction and,

therefore, benefits the most from the fact that the tempo

is known. However, in cases where the difference be-

tween the estimated tempo and the actual tempo of the

interpretation becomes too large, the lack of flexibility

leads to confusion, as can be seen for the tempo strategies

fixed50bpm and fixed200bpm.

In the cases, where the tempo of the audio interpretation

is assumed to be unknown, the best results are achieved by

the setting classic using the fixed50bpm tempo es-

timation strategy. Both settings classic and offset

work best when the estimated tempo is low. A possible ex-

planation for this effect is that the accumulating cost lead

to a preference of short paths. Shorter paths contain less

steps and therefore accumulate less cost. When looking at

the cost matrix depicted in Figure 2, one may think of the

optimum-accumulated-cost paths tending to make short-

cuts towards the top of the cost matrix instead of following

the lane of minimum local cost. This effect leads to ad-

ditional confusion when the estimated tempo of the sheet

music data is high compared to the actual tempo of the au-

dio interpretation.

The setting normalized delivers better results than

the classic and offset settings for every tempo es-

timation strategy except for the fixed50bpm. For that

strategy, however, it clearly falls behind and leads to even

worse results than in the fixed100bpm case. A possible

explanation is that, in contrast to the settings classic

and offset, the setting normalized does not prefer

shorter paths over longer paths. This seems to be an ad-

vantage when the estimated tempo is not too low, but in

the fixed50bpm case, the lack of a driving force towards

keeping the path connecting the bottom and top rows short

causes paths to become much more sensitive to noise and

local dissimilarities.

The adaptiveMax100 yields only a tiny improve-

ment over the fixed100bpm estimation. The reason for

that probably is that the difference between the two strate-

gies usually affects only the slower pieces. A test run using

only the slower pieces might lead to a bigger advantage for

the adaptive strategy.

9 CONCLUSIONS

We introduced and discussed the task of sheet music-audio

identification, which is identifying sections of an audio

recording where a given query sequence of bars from the

sheet music is played. Two approaches to solving the task

have been described, a semi-automatic approach using syn-

chronization and a fully automatic approach using match-

ing techniques. We proposed a workflow that allows for

evaluating the matching approach by using results from

the more reliable synchronization approach. This work-

flow includes contributions that make it possible to per-

form synchronization and matching even for complex or-

chestral scores. We introduced the idea of using scape plots

to visualize results of matching or retrieval tasks that are

performed on a grid of test queries covering a complete

track of music over a wide range of query lengths. Finally,

we performed an evaluation using a subsequence DTW

based matching technique for the task of sheet music-audio

identification. Results were presented and discussed for

different sets of settings and tempo estimation strategies.

In our future work, we would like to investigate more

aspects of sheet music-audio identification to answer ques-

tions like the following: Which features work best? What

is the optimum feature resolution? Can the results be im-

proved by using a harmonic model on the MIDI events cre-

ated from the sheet music? What influence do OMR errors

have on the results? Besides comparing the amount of con-

fusion, we are also interested in comparing the temporal

accuracy of matches.

10 ACKNOWLEDGEMENTS

We would like to express our thanks to the Bavarian State

Library in Munich for their cooperation and for providing

the sheet music scans.

11 REFERENCES

[1] C. Fremerey, M. Müller, F. Kurth, and M. Clausen: “Auto-
matic Mapping of Scanned Sheet Music to Audio Record-
ings,” Proc. ISMIR, Philadelphia, USA, pp. 413–418, 2008.

[2] M. Müller: Information Retrieval for Music and Motion,
Springer, 2007.

[3] F. Soulez, X. Rodet, and D. Schwarz: “Improving Poly-
phonic and Poly-instrumental Music to Score Alignment,”
Proc. ISMIR, Baltimore, USA, pp. 143–148, 2003.

[4] N. Orio: “Alignment of Performances with Scores Aimed at
Content-Based Music Access and Retrieval,” Proc. ECDL,
Rome, Italy, pp. 479–492, 2002.

[5] C. Raphael: “Aligning Music Audio with Symbolic Scores
Using a Hybrid Graphical Model,” Machine Learning,
Vol. 65 No. 2–3 pp. 389–409, 2006.

[6] R.B. Dannenberg and C. Raphael: “Music Score Align-
ment and Computer Accompaniment,” Communications of
the ACM, Vol. 49 No. 8 pp. 38–43, 2006.

[7] R.J. Turetsky and D.P.W. Ellis: “Ground-Truth Transcrip-
tions of Real Music from Force-Aligned MIDI Syntheses,”
Proc. ISMIR, Baltimore, USA, pp. 135–141, 2004.

[8] J. Pickens, J.P. Bello, G. Monti, T. Crawford, M. Dovey, and
M. Sandler: “Polyphonic Score Retrieval Using Polyphonic
Audio Queries: A Harmonic Modeling Approach,” Proc. IS-
MIR, Paris, France, pp. 140–149, 2002.

[9] I.S.H. Suyoto, A.L. Uitdenbogerd, and F. Scholer: “Search-
ing Musical Audio Using Symbolic Queries,” IEEE Transac-
tions on Audio, Speech, and Language Processing, Vol. 16
No. 2 pp. 372–381, 2008.

[10] C. Sapp: “Comparative Analysis of Multiple Musical Per-
formances,” Proc. ISMIR, Philadelphia, USA, pp. 497–500,
2008.

650



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

.

SMERS: MUSIC EMOTION RECOGNITION
USING SUPPORT VECTOR REGRESSION

Byeong-jun Han, Seungmin Rho Roger B. Dannenberg Eenjun Hwang 
School of Electrical Engineering 

Korea University 
{hbj1147, smrho}@korea.ac.kr 

School of Computer Science 
Carnegie Mellon University 

rbd@cs.cmu.edu 

School of Electrical Engr.
Korea University 

ehwang04@korea.ac.kr

ABSTRACT

Music emotion plays an important role in music retrieval, 
mood detection and other music-related applications. 
Many issues for music emotion recognition have been 
addressed by different disciplines such as physiology, 
psychology, cognitive science and musicology. We 
present a support vector regression (SVR) based music 
emotion recognition system. The recognition process 
consists of three steps: (i) seven distinct features are ex-
tracted from music; (ii) those features are mapped into 
eleven emotion categories on Thayer’s two-dimensional 
emotion model; (iii) two regression functions are trained 
using SVR and then arousal and valence values are pre-
dicted. We have tested our SVR-based emotion classifier 
in both Cartesian and polar coordinate system empirically. 
The result indicates the SVR classifier in the polar repre-
sentation produces satisfactory result which reaches 
94.55% accuracy superior to the SVR (in Cartesian) and 
other machine learning classification algorithms such as 
SVM and GMM.  

1. INTRODUCTION

With the recent advances in the field of music informa-
tion retrieval, there is an emerging interest in (automati-
cally) analyzing and understanding the emotional content 
of music. Due to the diversity and richness of music con-
tent, many researchers have been pursuing a multitude of 
research topics in this field, ranging from computer 
science, digital signal processing, mathematics, and sta-
tistics applied to musicology and psychology. Many 
computer scientists [1][2] have focused on music retriev-
al by using musical meta-data (such as title, genre or 
mood) as well as low-level feature analysis (such as pitch, 
tempo or rhythm), while music psychologists [3][4] have 
been interested in studying how music communicates 
emotion.  

Currently, there is no standard method to measure and 
analyze emotion in music. However, a psychological 
model of emotion has found increasing use in computa-
tional studies. Thayer’s two-dimensional emotion mod-

el [5] offers a simple but quite effective model for plac-
ing emotion in a two-dimensional space. In the model, 
the amount of arousal and valence is measured along the 
vertical and horizontal axis, respectively

The goal of this paper is to develop a music emotion 
recognition system for predicting the arousal and valence 
of a song based on audio content. First, we analyzed sev-
en different musical features (such as pitch, tempo, loud-
ness, tonality, key, rhythm and harmonics) and mapped 
them into eleven categories of emotion: angry, bored, 
calm, excited, happy, nervous, peaceful, pleased, relaxed, 
sad and sleepy. This categorization is based on Juslin’s 
theory [3] along with Thayer’s emotion model [5]. Se-
condly, we adopt support vector regression (SVR) [6] as 
a classifier to train two regression functions for predict-
ing arousal and valence values based on the low-level 
features, such as pitch, rhythm and tempo, extracted from 
music. In addition, we compared our SVR-based method 
with other classification algorithms such as GMM (Gaus-
sian Mixture Model) and SVM (Support Vector Ma-
chine) to evaluate the performance.  

In the following section, we present a brief overview 
on the current state-of-the-art music recognition systems, 
and emotion models. In Section 3, we illustrate a musical 
feature extraction scheme and give an overview of our 
proposed system. Section 4 describes our proposed SVR-
based music emotion recognition method. Experimental 
results are given in Section 5. In the last section, we con-
clude the paper with some observations and future work. 

2. RELATED WORK 

Many researchers have explored models of emotions and 
factors that give rise to the perception of emotion in mu-
sic. Many other researchers investigate the problem of 
automatically recognizing emotion in music. 

2.1 Music and Emotion 

Traditional mood and emotion research in music has fo-
cused on finding psychological and physiological factors 
that influence emotion recognition and classification. 
During the 1980s, several emotion models were pro-
posed, which were largely based on the dimensional ap-
proach for emotion rating.  

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies 
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. 

© 2009 International Society for Music Information Retrieval  
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Figure 2. System diagram of the SMERS 

The dimensional approach focuses on identifying 
emotions based on their location on a small number of 
dimensions such as valence and activity. Russell’s [7] 
circumflex model has had a significant effect on emotion 
research. This model defines a two-dimensional, circular 
structure involving the dimensions of activation and va-
lence. Within this structure, emotions that are across the 
circle from one another, such as sadness and happiness, 
correlate inversely. Thayer [5] suggested a two-
dimensional emotion model that is simple but powerful in 
organizing different emotion responses: stress and energy. 
The dimension of stress is called valence while the di-
mension of energy is called arousal.  

As shown in Figure 1, the two-dimensional emotion 
plane can be divided into four quadrants with eleven 
emotion adjectives placed over them. We use eleven 
types based on Juslin’s theory and Thayer’s emotion 
model.  

During the last decade, many researchers have investi-
gated the influence of music factors like loudness and to-
nality on the perceived emotional expression [3][5]. They 
analyzed those factors using diverse techniques, some of 
which are involved in measuring psychological and phy-
siological correlation between the state of particular mus-
ical factor and emotion evocation. According to the [3], 
Juslin and Sloboda investigated the utilization of acoustic 
cues in the communication of music emotions by perfor-
mers and listeners and measured the correlation between 
emotional expressions (such as anger, sadness and happi-
ness) and acoustic cues (such as tempo, spectrum and ar-
ticulation).  

2.2 Music Emotion Recognition  

Automatic emotion detection and recognition in speech 
and music is growing rapidly with the technological ad-
vances of digital signal processing and various effective 
feature extraction methods. Emotion recognition can 
play an important role in many other potential applica-
tions such as music entertainment and human-computer 
interaction systems.  

One of the first studies of emotion detection in music 
is presented by Feng et al. [8]. Their work, based on 

Computational Media Aesthetics (CMA), analyzes two 
dimensions of tempo and articulation which are mapped 
into four categories of moods: happiness, anger, sadness 
and fear. Lie et al. [4] developed a hierarchical frame-
work for extracting music emotion automatically from 
acoustic music data. They used music intensity to 
represent the energy dimension of Thayer model, and 
timbre and rhythm for the stress dimension.  

FEELTRACE [9] is software that is designed to let 
observers track the emotional content of stimuli (such as 
words, faces, music, and video) as they perceive it and 
taking full account of gradation and variation over time. 
Yang et al. [10] developed a music emotion recognition 
(MER) system from a continuous perspective and 
represented each song as a point in the emotion plane.  
They also proposed a novel arousal/valence computation 
method based on regression theory.  

3. IMPLEMENTATION

In this paper, we implemented a music recognition sys-
tem, called SMERS (SVR-based Music Emotion Recog-
nition System). The system diagram is shown in Figure 2 
and the details are described as follows. 

3.1 System Description 

The SMERS mainly consists of three steps: (i) Feature 
extraction: Seven distinct musical features are extracted 
and analyzed (Details are described in the Section 3.3); 
(ii) Mapping: Extracted features are mapped into eleven 
emotion categories on Thayer’s two-dimensional emo-
tion model; (iii) Training: The system uses extracted fea-
tures as input vectors to train the SVR. We use two dis-
tinct SVR functions in a polar coordinate system: one is 
for distance from origin (0, 0) to the emotion in a Thay-
er-like coordinate system, and the other is for angle. Us-
ing these two trained SVRs, the system predicts each 
song’s emotion. Based on empirical test results, the polar 
coordinate system is a better representation than the ob-
vious Cartesian coordinates. (More details about training 
procedure in both Cartesian and polar coordinate sys-
tems are presented in Section 4.1). 

 
Figure 1. Modified Thayer’s 2-dimensional emotion 

model 
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3.2 Dataset

The music dataset for training the SMERS is made up of 
165 western pop songs. We collected the 15 songs in 
each of eleven categories of emotion from the large mu-
sic database, All Music Guide [11], which provides 180 
emotional categories for classifying entire songs. To 
build classifiers we used Support Vector Regression 
(SVR) and our implementation is based on the LIBSVM 
library [12], which gives almost full functionalities for 
SVR training.  

3.3 Musical Features

In this paper, we consider various musical features in-
cluding scale, intensity, rhythm, and harmonics and use 
them as an input vector in the emotion recognition system.  

3.3.1 Scale 

Scale is an overall rule of tonic formation of music. In 
our study, we defined scale as a set of key, mode, and to-
nality. For accurate scale features, we first analyzed the 
chromagram for representing the frequencies in musical 
scales. After that, we applied the key profile matrix by 
Krumhansl [13]. The following equations show the 
process of combining chromagram and key characteriza-
tion:  

MatrixKeyProfileC ��Tonality
� �)(max IdxTonalityKey �

 (1)
KeyIndex

 (2)
, where vector C has 12 elements and represents the 
summed chromagram analyzed for each acoustic frame. 
KeyProfileMatrix is a key profile matrix, which is com-
posed of 12-by-24 elements. KeyIndex indexes KeyProfi-
leMatrix, where KeyIndex=1,2,…,24. After the inner 
product of C and KeyProfileMatrix in Equation (1), we 
obtain a tonality score for each key. Finally, we can ob-
tain the most appropriate key by picking the key having 
maximum tonality in Equation (2). 

3.3.2 Average Energy (AE) 

Average energy (AE) of the overall wave sequence is 
widely adopted to measure the loudness of music. Also, 
standard deviation (�) of AE measures the regularity of 
loudness. Those are defined as: 
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, where x is an input discrete signal, t is the time in sam-
ples, and N is the length of x in samples. 

3.3.3 Rhythm 

Rhythm, which is composed of rhythmic features such as 
tempo and beat, is one of the most important elements in 
music. Beat is a fundamental rhythmic element of music. 
Tempo is usually defined as the beats per a minute 
(BPM) which is used to represent the global rhythmic 

feature of music. Tempo and regularity of beats can be 
measured in various ways. For beat tracking and tempo 
analysis, we used the algorithm by Ellis et al. [14]. The 
features we use are overall tempo (in beats per minute) 
and the standard deviation of beat intervals, which indi-
cates tempo regularity. 

3.3.4 Harmonics 

Harmonics can be observed in musical tones. In mono-
phonic music, harmonics are easily observed in the spec-
trogram. However, it is hard to find harmonics in poly-
phony, because many instruments and voices are per-
formed at once. To solve this problem, a method to com-
pute harmonic distribution yields 

� � � � � �� ��
�

�
M

k
kfff

1
X,XminHS

 
(4)

Here, M denotes the maximum number of harmonics 
considered, f is the fundamental frequency, and X is the 
short-time Fourier transform (STFT) of the source signal. 
In the equation, the min function is used in such a way 
that only the strong fundamental and strong harmonics 
result in a large value for HS. In our implementation, we 
measured average of each frequency using (4) and then 
computed their standard deviation to define the harmonic 
feature. 

4. EMOTION RECOGNITION 

4.1 Training Process 

There are some essential conditions needed for effective 
emotion recognition. Firstly, the regression function 
should be trained as perfectly close to ground-truth as it 
can. If the trained regression function cannot generate 
proper Arousal/Valence (AV) values for a music emotion 
adjective, the separation policy also cannot act in a prop-
er way. Secondly, a proper music emotion separation pol-
icy on the AV plane should be presented. It acts like a 
decoder or quantizer of AV values. If the separation poli-
cy does not reflect the natural mapping between emotion 
adjectives and AV values, system might have to learn 
more complex mapping from features to the AV values. 

Our music emotion separation policy in the AV plane 
is shown in Figure 3. In case of Cartesian representation, 
the emotion of a song can be represented by (a, v), where 
a denoting arousal and v denoting valence and their 
ranges are a [-1,1] and v [-1,1], respectively. There 
are also 5 separating lines: v=v(+), v=v(-), v=0, a=a(+), and 
a=a(-). These lines separate the AV plane in 11 areas. As 
shown in Figure 3, each area has a center point, which is 
drawn as a black dot. These dots are used as the ground-
truth data for training SVRs. On the other hand, the blank 
dots are outputs of the SVR-based on feature vectors ex-
tracted from songs. 
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For training our emotion classifier, we need two dis-
tinct SVR functions. One is for training an arousal value 
and the other is for a valence value. The training is per-
formed by the musical features of songs as input and the 
center values of each music emotion as the desired output. 
Our test verifies whether or not the outputs (arousal and 
valence values) of trained regression functions are within 
the range of the proper music emotion in AV plane.  

Using Cartesian coordinates, we found that some emo-
tions such as “Peaceful” and “Bored” are misclassified 
into the “Calm” emotion category in the center of the AV 
plane. We decided to train using polar coordinates as the 
desired output to see if that would produce better results.  

Assume that Emotionc and Emotionp represent an emo-
tion in Cartesian and polar coordinate systems, respec-
tively. We can calculate the distance and angle values of 
each emotion and transfer the coordinate system from 
Cartesian to polar using the following equa ions: t
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4.2 Classification Methods 

4.2.1 Support Vector Regression (SVR)-based Training 

The basic idea of regression is to determine a function 
that accurately approximates target values using input 
values. SVR [6] is an application of SVM to find the 
mapping function between input and output. There are 
two major training strategies of SVR. One is �-SVR, 
which employs �-insensitive loss function to solve the 
quadratic optimization problem. However, �-SVR has the 
following limitations: � should be set before training the 
SVR model. Also, it is hard to anticipate the range of � in 
most problems. The other strategy, named �-SVR [15], 

solves the limitations of �-SVR by limiting the task of 
finding � to the quadratic optimization problem. 

For the training sets {(x1, y1), (x2, y2), …, (xn, yn)} with 
xi Rn, yi R, and i=1, 2, …, n. The relation between the 
input xi and output yi can be mapped by an optimal re-
gression function f(x) by SVR training. As the result of 
training, the difference between trained function output 
from input and ground-truth of input should be lower 
than the error �. Assuming linearity, f can be represented 
as the following hyperplane: f(x) = �·�(x) + b, where 
� Rn, b R, and � denotes a nonlinear transformation 
from Rn to a high-dimensional space. 

Our goal is to find the value � and b. The values of x 
can be determined by solving following quadratic opti-
mization problem: 
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, where C is a constant value. With some data points �i 
and �i

*, we can write � to , so that f 

can be rewritten as: 
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, where k is known as the kernel function. On the other 
hand, (7) can be solved by transforming to the Lagrange 
function and getting its multipliers, �i and �i

*, as indi-
cated in [16]. These are called support vectors and mea-
ningful when they are nonzero values. Also we can get 
optimal b and � by the Kuhn-Tucker condition. In our 
system, we employed Radial Basis Function (RBF) as a 
kernel function instead of using linear or polynomial 
functions due to its flexibility.  

4.2.2 Support Vector Machine (SVM)-based Training 

For emotion classification, we used multi-class SVM. 
Since SVM classifies only one class at a time, we trained 
11 SVMs to classify each emotion separately. This set of 
classifiers receives input feature vectors extracted from 
music. Each classifier generates a probability that the 
music has a specific emotion. The highest probability 
value determines the final selection of a single emotion 
label for the music. 

4.2.3  Gaussian Mixture Model (GMM)-based Training 

All musical features are modeled using Gaussian Mixture 
Models (GMMs). We use 7 Gaussian models for arousal 
and valence sets. Each GMM is trained using the Expec-
tation Maximization (EM) algorithm. The step of GMM-
based classification is as follows: first of all, 3 and 4 
GMMs were trained for labeling arousal and valence, re-
spectively. Next, the two GMMs sets produce two classi-
fications for arousal and valence, respectively. For exam-
ple, the GMMs set for arousal labeling could classify A is 

Figure 3. Music emotion separation policy in AV 
plane (in both Cartesian and polar representation) 
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lower than -1/3, between -1/3 and 1/3, or higher than 1/3. 
In final step, music emotion is determined by combining 
the results from two GMMs sets. 

5. EXPERIMENTS AND RESULTS 

In this section, we evaluate the effectiveness of our emo-
tion recognition system in terms of accuracy. Coefficients 
for SVR, SVM and GMM and kernels are very critical to 
performance. In our experiment, we tried to find the op-
timal classification parameters empirically. We also con-
sidered the �-fold cross-validation method in order to 
prevent the over-fitting problem. We tested �-fold cross-
validations using different � values.  

The best SVR training parameters and optimum values 
in both Cartesian and polar representation are shown in 
Table 1 and 2, respectively. We searched for optimal val-
ues of all parameters (except “# of folds in cross valida-
tion”) in steps of about 7%. Moreover, cross validations 
were carried out 54 times for each step.  

In order to evaluate Cartesian coordinate system-based 
classification methods, we employed three types of clas-
sifiers: SVMs with one-to-one training policy, SVR, and 
GMM. First of all, in SVMs-based classification, one-to-
one training policy was employed, since SVM does not 
support multi-classification basically. In SVR-based clas-
sification, we trained two regression functions to 
represent arousal and valence respectively. Finally, 
GMM was trained following the procedure in Section 

4.2.3. On the other hand, in polar coordinate system-
based classification, two SVRs, which represent distance 
and angle respectively, were trained. 

5.1 Confusion Matrix 
Confusion matrices of each coordinate system combined 
with each classifier are presented in Figure 4. As shown 
in Figure 4, the errors of both SVMs and SVR in Carte-
sian coordinate system were comparably higher than both 
GMM in Cartesian coordinate system and SVR in the po-
lar coordinate system. 

The result of SVMs in the Cartesian coordinate system, 
presented in Figure 4(a), was good on specific music 
emotions such as angry, bored, and peaceful. However, 
most other diagonal elements had poor results.  

The change from multi SVMs to SVR increased the 
performance as shown in Figure 4(b). On average, 9.5 

Table 1. SVR training parameters and obtained opti-
mums in Cartesian representation
Name of parameters Range Optimum
Nu (�) 2-5 ~ 2-0.1 2-1.7 
Gamma of RBF (g) 2-20 ~ 2-0.1 2-8.3 
Cost (C) 1 ~ 215 27.4 

 

Table 2. SVR training parameters and obtained opti-
mums in polar representation
Name of parameters Distance Angle 
Nu (�) 2-8 2-8 
Gamma of RBF (g) 2-10 2-4 
Cost (C) 28 26 
mean squared error 0.02498 0.09834 

 
(a) (b) (c) 

  

Table 3. Classification result

Classifiers Coordinate 
System Accuracy 

SVMs Cartesian 32.73% 
SVR Cartesian 63.03% 
GMM Cartesian 91.52% 
SVR polar 94.55% 
GMM polar 92.73% 

(d) (e)  

Figure 4. Confusion matrices: Cartesian coordinate system with (a) SVMs (b) SVR 
(c) GMM, and polar coordinate system with (d) GMM and (e) SVR. 

 

655



Poster Session 4  
 

songs were correctly classified, but still some emotions 
had errors. It can be seen that 12.73% of songs (21 
songs) were misclassified into calm in Figure 4(b). This 
indicates that the calm problem should be solved first. 

The result in Figure 4(c) and (d) is better than Figure 
4(a) and (b). Most diagonal elements were well classified. 
In the case of GMM in the Cartesian coordinate system, 
12.8 songs on average were classified correctly. However, 
there is still a concentration of misclassification in some 
emotions such as angry (4 songs), sad (5 songs), and 
sleepy (2 songs). However, SVR in the polar coordinate 
system showed that the imbalanced classifications were 
significantly reduced: the average number of correct clas-
sification was 14.2 songs, and also, misclassification was 
concentrated only in relaxed (2 songs) and sleepy (3 
songs). 

5.2 Accuracy
The results are shown in Table 3. In the experiments 

based on Cartesian coordinate systems, maximum accu-
racy was 91.52% (151 of 165 samples). By changing 
coordinate system into polar, the accuracy was increased 
to 94.55% (156 of 165 samples) using SVR and 92.73% 
(153 of 165 samples) using GMM. 

6. CONCLUSIONS AND FUTURE WORK 

In this paper, automatic emotion recognition of music has 
been evaluated using various machine learning classifica-
tion algorithms such as SVM, SVR and GMM. In our 
experiment, it is shown that the SVR-based classification 
in the polar coordinate system remarkably improved the 
accuracy of the emotion recognition from 63.03% to 
94.55%. However, the GMM classification with polar 
coordinates only improved from 91.52% to 92.73%. 

For further research, more perceptual features should 
be considered and other classification algorithms such as 
fuzzy and kNN (k-Nearest Neighbor). We also plan to 
compare the result of machine learning (ML)-based emo-
tion recognition with human performed arousal/valence 
data. 
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ABSTRACT

Music perception is highly intertwined with both emotions
and context. Not surprisingly, many of the users’ informa-
tion seeking actions aim at retrieving music songs based
on these perceptual dimensions – moods and themes, ex-
pressing how people feel about music or which situations
they associate it with. In order to successfully support mu-
sic retrieval along these dimensions, powerful methods are
needed. Still, most existing approaches aiming at inferring
some of the songs’ latent characteristics focus on identi-
fying musical genres. In this paper we aim at bridging
this gap between users’ information needs and indexed mu-
sic features by developing algorithms for classifying mu-
sic songs by moods and themes. We extend existing ap-
proaches by also considering the songs’ thematic dimen-
sions and by using social data from the Last.fm music por-
tal, as support for the classification tasks. Our methods
exploit both audio features and collaborative user annota-
tions, fusing them to improve overall performance. Eval-
uation performed against the AllMusic.com ground truth
shows that both kinds of information are complementary
and should be merged for enhanced classification accuracy.

1. INTRODUCTION

General music perception – i.e. how we think and talk about
music – is heavily influenced by emotions and context.
Consequently, users’ music information seeking behavior
also reflects the importance of opinion/mood and theme
associations for music songs. Searching for music usu-
ally is an exploratory and social process, in which peo-
ple make use of collective knowledge, as well as the opin-
ions and recommendations of other people [1]. Related is
their need for contextual metadata expressing, for exam-
ple, which situations/events are often associated with the
songs. Thus, besides directly searching or browsing music
by artist or title, associated usage, theme/main subject and
mood/emotional state are used in every third (navigational)
query [1]. Similarly, [2] found that the majority of music
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queries from a search engine log falls into these categories
– 30% of the queries are theme-related (e.g. “party music”,
“wedding songs”) and 15% target mood information. Such
statistics thus show the necessity of indexing music collec-
tions according to mood and theme classes.

Hence, our goal in this paper is to automatically derive
mood and theme metadata for music tracks to better cover
diverse facets reflecting the complex real-world music in-
formation needs of users. With the “mood of a song” we
denote the state or the quality of a particular feeling in-
duced by listening to that song (e.g. aggressive, happy, sad,
etc.). The “theme of a song” refers to the context or situa-
tion which fits best when listening to the song, e.g. at the
beach, night driving, party time, etc.

Currently available state-of-the-art music search engines
still do not explicitly support music retrieval based on mood
and theme information, and content-based approaches try-
ing to address this problem mainly focus on identifying
the moods of songs and do not tackle the thematic aspects
of the music resources. Several works in Music Informa-
tion Retrieval have shown a potential to model the mood
from audio content (like [3–6], see [7] for an extensive
review). Although this task is quite complex, satisfying
results can be achieved if the problem is reduced to sim-
ple models [7]. However, an important limitation of these
approaches is that they concentrate on the mood only ex-
pressed in the audio signal itself and can not capture other
sources of emotionality.

Apart from analyzing the low-level features of music
resources to identify the songs’ corresponding mood or
theme, another powerful source of information that can be
used are Web 2.0 portals. Collaborative tagging platforms
have become extremely popular in recent years – users as-
sociate descriptive keywords to various types of content
(e.g. pictures, Web pages, music). Especially for multi-
media data, such as music, the gain provided by the newly
available textual information is substantial, since with most
prominent search engines on the Web, users are currently
still constrained to search for music using textual queries.

The contributions of the paper are twofold:

• We show the feasibility of automatic music classifi-
cation according to contextual aspects like themes.

• We successfully exploit collective knowledge in form
of tags in order to complement the intrinsic informa-
tion derived from audio features.
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The algorithms can be used in various ways: predicted
mood and theme labels can be indexed to enrich the meta-
data index of music search engines enabling a more social
and context-aware search (or browsing). Besides, such la-
bels will be valuable for recommendation and playlist gen-
eration, e.g. for listening to “Party Time”-like songs.

2. RELATED WORK

Music enrichment recently focuses on deriving mood in-
formation based on extracted acoustic data [3–5]. [3] pro-
poses a content-based method, tailored to classical music,
that uses the Thayer’s model [8] for classification. For de-
tecting the mood of music, timbre, intensity and rhythm,
features are extracted and a Gaussian Mixture Model is
used to model each feature set. In [4], the authors propose
a schema such that music databases are indexed on four la-
bels of music mood: “happiness”, “sadness”, “anger” and
“fear”. The relative tempo of the music tracks, the mean
and standard deviation of average silence ratio are used to
classify moods, using a neural network as classifier. For
automatically detecting mood for music tracks, [5] uses a
set of 12 mood classes which are not mutually exclusive.
However, the main focus of the paper is creating a ground
truth database for music mood classification.

Several existing papers aim at automatically inferring
additional information from available content as well as
(user generated) metadata. [9] present a music retrieval sys-
tem that uses supervised multiclass Naı̈ve Bayes classifica-
tion for learning a relationship between acoustic features
and words from expert reviews on songs, thus enabling
query-by-text for music. Similarly, [10, 11] aim at enrich-
ing songs with textual descriptions for improving music
IR. [10] uses a variant of the AdaBoost algorithm, Filter-
Boost, in order to predict social tags of the songs based
on the information captured in the audio features. Never-
theless, the tags learned by the classifier pertain to multi-
ple categories of tags (genres, styles, moods and contexts)
and there is no special focus on mood and theme-related
tags, like in our case. [11] compares five methods for col-
lecting tags: user surveys, harvesting social tags, annota-
tion games, mining web documents and auto-tagging audio
content. Again, here there is no discussion about the per-
formance of the described methods for predicting mood
and theme tags. Moreover, both [10, 11] are not compara-
ble with our approach, since there is no clear definition for
mood and theme classes and the data sets on which evalu-
ation was performed differ from ours.

[12] and [13] investigate social tags for improving mu-
sic recommendations – [12] to attenuate the cold-start prob-
lem by automatically predicting additional tags based on
the learned relationship between existing tags and acous-
tic features, [13] to make better recommendations based
on the latent factors hidden in user-tag-item relations. For
this, the authors successfully apply Higher Order Singular
Value Decomposition on the triplets. Again, while both ap-
proaches make use of Last.fm to predict (the likelihood) of
all kinds of tags, our work explicitly focuses on inferring
mood and theme annotations.

In [14], Last.fm user tags have been used together with
content-based features for automatic genre classification.
Two classification strategies are proposed that make im-
plicit use of tags: A graph of music tracks is constructed
that captures their semantic similarity in terms of tags as-
sociated. Both the baseline low-level feature only clas-
sifier as well as a single-layer classifier, considering au-
dio features and implicit tag similarity simultaneously, are
clearly outperformed by a double-layer classifier, which
firsts learns genre labels based on audio information and
then iteratively updates its models considering the tag-based
neighborhood of tracks.

Thus it seems that especially for multimedia user gen-
erated tags are valuable, since low-level features may not
be expressive enough. [15] found that Last.fm tags define a
low-dimensional semantic space which - especially at the
track level highly organized by artist and genre - is able
to effectively capture sensible attributes as well as mu-
sic similarity. Somewhat complementary to our approach,
[16] aims at studying the relationships between moods and
artists, genres and usage metadata. As a test set for the
experiments, the authors use AllMusic.com, Epinions.com
and a subset of Last.fm data. The authors point out an in-
teresting finding: Many of the individual mood terms were
highly synonymous, or described aspects of the same un-
derlying mood space. The experiments also showed that
decreasing the mood vocabulary size in some ways clari-
fied the underlying mood of the items being described.

We use Last.fm’s valuable folksonomy 1 information for
inferring mood and theme labels for songs. While in ear-
lier experiments only tags were used for deriving moods,
themes and styles/genres [17], in this paper we also inves-
tigate fusion with audio-based methods. Extending exist-
ing music metadata enrichment studies, we fuse social tags
and low-level audio features of the tracks to infer mood
or theme labels showing that both sources provide helpful
complementary information.

3. DATA SETS

AllMusic.com. In 1995, the AllMusic.com (AMG) web-
site was created as a place and community for music fans.
Almost all music genres and styles are covered, ranging
from the most commercial/popular to very obscure ones.
Not only genres can be found on AllMusic.com, but also
reviews of albums and artists within the context of their
own genres, as well as classifications of songs and albums
according to themes, moods or instruments. All these re-
views and classifications are manually created by music
experts from the AllMusic.com team, therefore the data
found here serves as a good ground truth corpus.

For our experiments, we collected AllMusic.com pages
corresponding to music themes and moods, finding 178
different moods and 73 themes. From the pages corre-
sponding to moods and themes, we also gathered informa-
tion related to which music tracks fall into these categories.
This way, we ended up with 5,770 songs. Looking at the

1 folk + taxonomy: collaboratively created classification scheme
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songs identified in each of the categories, we have 8,158
track-mood and 1,218 track-theme assignments. On aver-
age songs are annotated with 1.73 moods and 1.21 themes
respectively, with maximum number of annotations of 12
and 6 respectively.

Last.fm. For the tracks collected from AllMusic.com,
we obtained the Last.fm tags users had assigned to these
songs together with the corresponding frequencies. Last.fm
is a popular UK-based Internet radio and music commu-
nity website. In a comparative study on tagging [2] found
that the majority of the generally accurate and reliable user
tags on Last.fm fall into the genre category (60%). Consid-
erably less frequent are tags referring to moods/opinions/
qualities (20%) or themes/context/usage (5%) of the music
songs. According to [15], at the track level the tags often
name the genre and artist of a song. As not all AllMu-
sic.com songs have user tags in Last.fm, our set of tracks
is reduced to 4,737. Using the AudioScrobbler API, we
collected in total 59,525 different tags for this set of songs.

Audio. For each track from the previous collections
found in our audio database, we have a 30 seconds excerpt
in mp3 format with a bitrate of 192 kbps. From these au-
dio tracks, we automatically extracted several state-of-the-
art MIR audio features of different type: timbral, tonal,
rhythmic including MFCCs, BPM, chroma features, spec-
tral centroid and others. Please refer to [7] for a complete
list. For each excerpt of the data set, its 200ms frame-based
extracted features were summarized with their component-
wise means and variances. At the end of the process, we
obtained 240 low-level and mid-level audio features.

4. MOOD AND THEME CLASSIFICATION

For predicting themes and moods, we base our solution on
social knowledge – i.e. collaboratively created tags asso-
ciated to music tracks – extracted from Last.fm, as well as
on audio information. Building upon already provided user
tags, on the audio content of music tracks, or on combina-
tions of both, we build multiclass classifiers to infer addi-
tional annotations corresponding to moods and themes.

4.1 AllMusic.com Class Clustering

Given that the number of classes existing in AllMusic.com
is quite large (e.g. 178 different moods) with many of the
individual terms being highly synonymous or denoting the
same concept in well known models of emotions 2 [16],
clustering was applied to the initial set of AllMusic.com
moods as well as the themes.

Mood Clustering. For comparison reasons, we choose
the five mood categories used for the MIREX Audio Music
Mood Classification Track (see Table 1). Each of the clus-
ters is a collection of five to seven AllMusic.com mood la-
bels that together define the cluster. These categories were
proposed in [16], derived from a popular set (of Top Songs,
Top Albums). The MIREX mood clusters effectively re-
duce the diverse mood space, and yet root in the social-

2 Moods are considered to be similar to emotions, but being longer in
duration, less intensive and missing object directedness

Nr. MOOD CLUSTERS – MIREX
MM1 Passionate, Rousing, Confident, Boisterous, Rowdy
MM2 Rollicking, Cheerful, Fun, Sweet, Amiable/Good natured
MM3 Literate, Poignant, Wistful, Bittersweet, Autumnal, Brooding
MM4 Humorous, Silly, Campy, Quirky, Whimsical, Witty, Wry
MM5 Aggressive, Fiery, Tense/Anxious, Intense, Volatile, Visceral

Nr. MOOD CLUSTERS – THAYER

MT1

high energy / high stress: Tense/Anxious, Angst-Ridden,
Spooky, Eerie, Rowdy, Fiery, Angry, Fierce, Provocative,
Boisterous, Hostile, Aggressive, Volatile, Rebellious,
Confrontational, Paranoid, Outrageous, Unsettling, Brittle

MT2

high energy / low stress: Rollicking, Exuberant, Happy,
Sexy, Exciting, Energetic, Party/Celebratory, Intense,
Gleeful, Lively, Cheerful, Fun, Rousing, Freewheeling,
Carefree, Passionate, Playful, Gritty, Joyous,

MT3

low energy / low stress: Calm/Peaceful, Sentimental,
Cathartic, Soft, Romantic, Springlike, Warm, Precious,
Laid-Back/Mellow, Confident, Hypnotic, Naive, Intimate,
Innocent, Relaxed, Soothing, Dreamy, Smooth, Gentle

MT4

low energy / high stress: Sad, Melancholy, Detached,
Whimsical, Gloomy, Ironic, Snide, Somber, Autumnal,
Wry, Wintry, Plaintive, Yearning, Austere, Bittersweet,
Fractured, Bleak, Cynical/Sarcastic, Bitter, Acerbic

Table 1. (Samples from) Mood clusters

cultural context of pop music 3 . Restricting our data set
to tracks whose assigned moods fall into exactly one of
these categories, we had 1192 distinct songs left for ma-
chine learning. To balance cluster size for our multiclass
classifiers the cutoff was set to 200 instances per cluster.

Since many AllMusic.com mood labels and thus the cor-
responding songs classified by human experts are not used
in MIREX, we as well experimented with the well known
two-dimensional models of emotion/mood. In the Thayer
energy-stress model [8], emotions are classified along the
two axes of (low - high) energy and (low - high) stress.
Thus, the two factors divide the mood space into the four
clusters “exuberance”, “anxious/frantic”, “depression” and
“contentment”. Similarly, Russell/Thayer’s bipolar model
differentiates emotions based on arousal and valence. In
the psychological literature there is little agreement on the
number of basic emotional categories or dimensions. How-
ever, the Thayer model has been proven useful for mu-
sic classification and the four categories resulting seem
a fair compromise: reducing the mood space to enable
clear classificatory distinction and still providing valuable
extra-musical metadata for exploratory information needs.
During clustering all AllMusic.com labels were manually
mapped into the two-dimensional mood space by the au-
thors adopting a similarity sorting method as described be-
low for themes. The four resulting clusters are shown to-
gether with some example AllMusic.com labels in Table 1.
Again, clusters were balanced by randomly choosing 403
instances for each cluster.

Theme Clustering. Since AllMusic.com themes do
not directly correspond to human emotions, mapping the
73 theme terms into the mood spaces used before was not
possible (though themes may often be strongly related to
specific moods). For manual clustering, we adopted a simi-
larity sorting procedure, in which all AllMusic.com themes
written on cards were sorted by the authors into as many
and as high piles as appropriate. Co-occurrence matrices

3 http://www.music-ir.org/mirex2007/index.php/
Audio_Music_Mood_Classification
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Nr. THEME CLUSTERS

T1
Party Time, Birthday Party, Celebration, Prom, Late Night,
Guys Night Out, Girls Night Out, At the Beach, Drinking,
Cool & Cocky, TGIF, Pool Party, Club, Summertime

T2 Sexy, Seduction, Slow Dance, Romantic Evening, In Love
New Love, Wedding, Dinner Ambiance

T3

Background Music, Exercise/Workout Music, Playful
The Sporting Life, Long Walk, The Great Outdoors, Picnic,
Motivation, Empowering, Affirmation, The Creative Side,
Victory, Day Driving, Road Trip, At the Office

T4

D-I-V-O-R-C-E, Heartache, Feeling Blue, Breakup, Regret,
Loss/Grief, Jealousy, Autumn, Rainy Day, Stay in Bed,
Solitude, Reminiscing, Introspection, Reflection, Winter,
Sunday Afternoon

Table 2. Theme clusters

were built and added to find good groupings by analyzing
the clusters. Unclear membership of singular labels was
resolved after discussion. Applying this method resulted
in a theme list with 13 labels. Classes containing too few
songs are discarded in order to have a minimal representa-
tive learning corpus for the classifier, such that the remain-
ing four theme clusters (Table 2) contain 74 songs each.

4.2 Classification

The core of our mood and theme classification methods are
multiclass classifiers trained on the AllMusic.com ground
truth using tags or audio information as features. We ex-
periment both with classifiers created separately for the
two different types of features we consider, which are then
combined in order to produce for each song a final mood/
theme classification, as well as with a classifier taking as
input a combination of audio and tag features. After sev-
eral experiments, we could observe that SVM classifiers
with Radial Basis Function (RBF) kernel performed best
for the case of audio input features (it outperformed Lo-
gistic Regression, Random Forest, GMM, K-NN and De-
cision Trees), whereas in the case of tag features, Naı̈ve
Bayes Multinomial achieved the best performance. Addi-
tionally, the linear combination of the separate classifiers
for audio and tag features performed better than the clas-
sifier trained on the combination of audio and tag features.
Only the best obtained classification results are presented
in this paper. We have classifiers trained for the whole set
of classes (i.e. either for moods or themes) and these classi-
fiers produce for every song in the test set a probability dis-
tribution over all classes (e.g. over all moods). The highest
probability is considered in order to assign the songs to the
corresponding class. We experimented with feature selec-
tion based on automatic methods (e.g. Information Gain)
but the results showed that the full set is better suitable for
learning, even though it contains some noise.

Algorithm 1 presents the main steps of our classifica-
tion approach, where classifiers are trained separately for
the two different types of input features – tags and audio
information. We show the algorithm for mood classifica-
tion, the case of themes classification being similar.

Step 1 (optional) of the algorithm above aims at reduc-
ing the number of mood classes to be predicted for the
songs. If two classes are clustered, the resulted class will
contain all songs which have been originally assigned to

any of the composing classes. As we need a certain amount
of input data in order to be able to consistently train the
classifiers, we discard those classes containing less than a
certain number of songs 4 assigned (step 2).

Alg. 1. Mood classification
Input:ftype – feature type

ftype =

{
0, for tag features;
1, for audio features.

M – mood classes to be learned
Stotal – set of songs

1: Apply clustering method to cluster moods (see Section 4.1)
2: Select classes of moodsM to be learned

For each mood class
If the class does not contain at least X songs

Discard class
3: Classifier learns a model
3a: Split song set Stotal into

Strain = songs used for training the classifier
Stest = songs used for testing the classifiers’ learned model

3b: Select features for training the classifier
If (ftype = 0) // tag features

For each song si ∈ Strain

Create feature vector Ft(si) = {tj |tj ∈ T}, where
T = set of tags from all songs in all mood classes

tj =

{
log(freq(tj) + 1), if si has tag tj ;
0, otherwise.

Else // audio features
For each song si ∈ Strain

Create feature vector Fa(si) = {aj |aj ∈ A}, where
A = set of audio features from all songs in all mood classes
aj = standardize(aj)

3c: Train and test classifier
If (ftype = 0) // tag features

Train Naı̈ve Bayes (NB) on Strain using {Ft(si); si ∈ Strain}
Test Naı̈ve Bayes (NB) on Stest

Else // audio features
Train SVM on Strain using {Fa(si); si ∈ Strain}
Test SVM on Stest

4: Classify songs into mood classes
For each song si ∈ Stotal

If (ftype = 0) // tag features
Compute probability distribution Pt(si) as
Pt(si) = {pNB(mj |si);mj ∈M}
Assign si tomj , wheremax(pNB(mj |si))

Else // audio features
Compute probability distribution Pa(si) as
Pa(si) = {pSV M (mj |si);mj ∈M}
Assign si tomj , wheremax(pSV M (mj |si))

After selecting separate sets of songs for training and
testing in step 3a, we build the feature vectors correspond-
ing to each song in the training set (step 3b). In the case
of features based on tags, the vectors have as many ele-
ments as the total number of distinct tags assigned to the
songs belonging to the mood classes. The elements of a
vector will have values depending on the frequency of the
tags occurring along with the song. We experimented with
different variations for computing the vector elements, but
the formula based on the logarithm of the tag frequency
provided best results. Audio features are standardized for
better suitability with the SVM classifier. Here, a one-
vs-one multiclass approach was taken with the parameters
selected via grid search (C and gamma with 3-fold cross
validation method). Probability estimations are made by
pairwise coupling [18].

Once the feature vectors are constructed, they are fed
into the classifier and used for training. The assignment
of a song to a class is done based on the maximum pre-
dicted probability for a song among all possible classes

4 The threshold depends on the type of clustering and class type. The
exact numbers are given in Section 4.1.
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Classifier Class R P F1 Acc
SVM (audio) Mood MIREX 0.450 0.442 0.420 0.450
NB (tags) Mood MIREX 0.565 0.566 0.564 0.565
Comb (α = 0.7) Mood MIREX 0.575 0.573 0.572 0.575

SVM (audio) Mood THAYER 0.517 0.515 0.515 0.517
NB (tags) Mood THAYER 0.539 0.542 0.539 0.539
Comb (α = 0.8) Mood THAYER 0.570 0.569 0.569 0.569

SVM (audio) Themes clustered 0.528 0.581 0.522 0.527
NB (tags) Themes clustered 0.595 0.582 0.575 0.595
Comb (α = 0.9) Themes clustered 0.625 0.617 0.614 0.625

Table 3. Experimental results: P , R, F1, Acc for the dif-
ferent classifiers and mood/theme classes

(step 4). As already mentioned, we also experiment with a
linear combination of the predictions of the two separately
trained classifiers (details are presented in Algorithm 2).

Alg. 2. Mood classification – classifiers’ linear combination
Input: M – mood classes to be learned

Stotal – set of songs

1: For each song si ∈ Stotal

Compute Pa(si) = {pSV M (mj |si)} = {pa(mj |si)}
and Pt(si) = {pNB(mj |si)} = {pt(mj |si)} (see Alg. 1, step 4)

2: For each α=0.1,...,0.9, step=0.1
For each song si ∈ Stotal

For each moodmj ∈M
pat(mj |si) = α · pa(mj |si) + (1− α) · pt(mj |si)

Assign si tomj , wheremax(pat(mj |si))
Compute P ,R,Acc, F1

3: Select α = αbest that produces best results for P ,R,Acc, F1
4: Classify songs into mood classes, using αbest for weighting the

probabilities outputted by the audio-based classifier and (1− αbest) for
weighting the probabilities predicted by the tag-based classifier.

The two different classifiers are first trained to make
predictions for all songs in the collection. For producing
a linear combination of the classifiers as final output, we
then experiment with different values of the α parameter.

5. EVALUATION

For measuring the quality of our theme and mood predic-
tions, we compare our output against the AllMusic experts’
assignments, using Precision (P ), Recall (R), Accuracy
(Acc) and F1-Measure (F1) for the evaluation. We present
the best results achieved among all our experimental runs
(10-fold cross validations) in Table 3. These runs corre-
spond to the different combinations of classifiers (audio-
based, tag-based, or linear combinations of the two) and
classes to be predicted (themes or moods clustered accord-
ing to Mirex or Russell/Thayer resp.).

For both moods and themes, we observe that the clas-
sifiers relying solely on audio features perform worse than
the pure tag-based classifiers. However, combining the two
types of classifiers leads to improved overall results. For
the moods clustered according to Mirex, Russell/Thayer
and themes manually clustered, the best values of α are
0.7, 0.8 and 0.9 respectively. These values indicate a higher
weight for the audio-based classifiers, though their achieved
performance is poorer than that of the tag-based classifiers.
This fact is easily explainable, due to the different types of
classifiers considered: SVM for audio features and Naı̈ve

Bayes for tag features. It is known that Naı̈ve Bayes pro-
duces probabilities close to 1 for the most likely identified
class, whereas for the rest of classes, the probabilities are
closer to 0. On the other hand, SVM produces more even
probability distributions, therefore the high probabilities
outputted by Naı̈ve Bayes need to be evened out through
a lower α weight. The variations of the F1 measure with
α are depicted in Figure 1. The biggest variations are to
be found in the case of moods clustered according to the
Russell/Thayer model, where for values of alpha starting
with 0.7 we observe a sharp drop of the F1 value. For
Mirex mood classes the F1 values start to deprecate with
α values greater than 0.8.

The baseline accuracy for a random classifier trying to
assign songs to the Russell/Thayer mood classes or to the
theme clusters is 0.25, while for the Mirex mood classes it
would be 0.2. The linear combination of the classifiers im-
proves accuracy in the range of 10 to 27.7% for moods and
18.5% for themes over audio-based classifiers. Overall,
results are better for theme classification, indicating that
themes are easier to distinguish.

Figure 1. F1 values when varying the α parameter

Analyzing the confusion matrices for the best perform-
ing approaches (Figure 2), we observe some prominent
confusion patterns: in the case of Mirex clustering, in-
stances belonging to class MM1 are often misclassified
into MM2, MM4 instances into MM3. Similarly, MT3
instances are wrongly classified into MT4 for the case of
Russell/Thayer clustered moods; also MT1 and MT4 are
often confused. For the latter, the energy dimension does
not seem to ease differentiation, given that high stress (neg-
ative valence) is characteristic for both classes. T3 and T1
are the difficult theme classes. Further refinement of these
classes should be considered for future work, in order to
eliminate this kind of ambiguities (e.g. Exercise/Workout
music might be as well considered Party-like music).

It is difficult to directly compare our results to the re-
lated work cited, as each paper uses a different number of
classes. Moreover, experimental goals, ground truth and
evaluation procedures vary as well, or detailed descriptions
are missing. Comparing to the best algorithms submitted to
the MIREX task, we achieve results with lower accuracy.
However, knowing that the algorithm used in this paper for
audio classification is the same as submitted to MIREX in
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Figure 2. Confusion matrix for the best approaches

2007 [19] (obtaining 60.5% accuracy), our conclusion is
that the difference comes from the ground truth data. The
hypothesis is that our results here are lower because we
did not filter the training and test instances using listeners.
Moreover for the MIREX collection, listeners were asked
to focus on audio only (not lyrics, context or other), which
makes it much easier then to classify using audio-based
classifiers. In that context, the classification task on our
MIREX-like AllMusic.com ground truth is more difficult.

6. CONCLUSION

Previous attempts to associate mood labels to music songs
often rely on lyrics or audio information for clustering or
classifying song corporas. Our algorithms exploit both au-
dio information and social annotations from Last.fm for
automatically classifying songs according to moods and
themes and thus enriching music tracks with information
often queried for by users. Themes capturing contextual
aspects of songs, in particular, is a facet not considered so
far in the literature. The algorithms proposed in this paper
rely either on user tags, on audio features, or on combina-
tions of both. Results of an evaluation performed against
AllMusic.com experts’ ground truth indicate that provid-
ing such mood and theme information is feasible. The re-
sults show that audio and tag information is complemen-
tary and should be merged in order to achieve improved
overall classification performance. Using our algorithm,
music also becomes searchable by associated themes and
moods, providing a first step towards effectively searching
music by textual, descriptive queries.

For future work, some of the promising ideas to be fur-
ther investigated refer to refinements of the moods and
themes clusters, as well as to other possible combinations
of the audio and tag-based classifiers, i.e. metaclassifiers.
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ABSTRACT

In this paper we present fast and scalable methods to access
relevant data from music scores stored in an XML based
notation format, with the explicit goal of using scores in
real-time audio processing frameworks. Quick and easy
access is important when accessing or traversing a score,
for instance for real-time playback. Any time complexity
improvement in these contexts is valuable, while memory
constraints are usually less important. We show that with
some well chosen design choices and precomputation of
the necessary data, runtime time complexity of several key
score manipulation operations can be reduced to a level
that allows use in a real-time context.

1. INTRODUCTION

In real-time audio processing software, the use of music
scores is not commonplace. To fill that gap, we started the
construction of a small C++ software library for handling
MusicXML files, specially tailored for use in real-time au-
dio processing software frameworks and streaming appli-
cations. Since a score is for many people a well-known
way to represent music, we consider this important func-
tionality that has been strangely absent in real-time audio
frameworks until now.

Being able to use XML-encoded digital music scores
natively in real-time environments has clear advantages over
the alternatives that are often used now, like MIDI [1] or
the development of an own ASCII-based format. The abil-
ity to use the countless mature software tools that are avail-
able for XML parsing and processing is the main reason to
prefer XML-based formats over others. Nowadays most
score file formats encode very detailed information, and
XML formats can be easily extended or stripped to add or
remove information, without needing to adapt the parser,
which is much more difficult with binary or plain text file
formats. Also most upcoming web developments are cen-
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tered around XML-based standards (the semantic web etc.).
For all of the aforementioned reasons, we will only con-
sider XML-based file formats here.

MusicXML [2, 3] is the most widely used XML-based
file format for scores at the moment, but others exist. MEI
[4, 5] is a mature alternative and provides valuable func-
tionality to encode versioning and history tracking in doc-
uments. The WEDELMUSIC format [6] was developed as
all-round multimedia format in an academic context and
seems not to be under active development anymore, but its
legacy can more recently be found in MPEG SMR [7] and
IEEE P1599/MX [8], that are both striving to include score
information in a broader multimedia context.

We widen the scope of this paper to all of the aforemen-
tioned formats, as they are all XML-based and use similar
hierarchies to encode scores. The principles outlined in
this paper here thus hold for any of these formats. Also the
programming language is of lesser importance: in any ma-
jor object-oriented programming language, the argumenta-
tion for the design decisions will hold.

2. PROBLEM STATEMENT AND
REQUIREMENTS

In real-time audio processing, audio data is processed frame
by frame, the necessary operations need to be performed
within a certain time, and then the results are written to an
output buffer. The frames are usually kept small to min-
imize delays. This leads to very strict time constraints,
as also the operating system’s scheduler will lay claim to
some time for other processes or interrupts.

A music score is layered on several levels (voices, in-
strument parts, chords), but these layers are often very much
interlinked (like voice crossing). This makes it unfeasible
to find an ideal single XML hierarchy to represent a score.
The result is that notes, voices and/or parts that are active
at the same time can be found encoded in very different
places in the file. If you need to access all notes occuring
at a single moment, you may need to access data at tens to
hundreds of different positions in the score file. Processing
time is very limited, and user interactivity or display of the
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score require also quick access to random positions in the
score. This makes it becomes quickly undesirable to do the
necessary data structure traversals in real-time, based only
on the existing XML hierarchy.

XML-based score data formats tend to produce really
large data structures: common uncompressed score files
contain easily up to 250KB of text for a single A4 size page
of piano solo music. When parsed into memory, this results
in a relatively large XML tree. Since we envisioned use in
real-time environments, we want to absolutely minimize
any calculation time that is needed ’on-line’ (during pro-
cessing). There is no time to traverse an entire XML-tree to
find the data that we need to access, as is commonplace in
the visitor design pattern [9] as used in libmusicxml [10].

Because data that is ’scheduled’ to occur at the same
time, can be heavily dispersed throughout the file, a SAX-
based approach to XML-parsing becomes difficult, and a
DOM model is easier to handle. This made us decide to
write our own data structure for the score, firmly based on
the existing hierarchy of the format but with a few extra
additions in functionality and precalculation of data. In the
following sections of this paper, we will elaborate on the
additions that we had to make to keep run-time calcula-
tion load as low as possible. To be able to parse XML files
encoded in UTF-16, routines provided by the Unicode con-
sortium can be used for the conversion of UTF-16 to UTF-
8 data [11].

We set out to write a software library that could be used
from real-time audio plug-in frameworks, as there are VST
[12], AudioUnits [13] or RTAS [14]. In the end, we want to
be able to use and manipulate a music score in a sequencer
the same way we can use and manipulate an audio track.
We need:

• quick access to all data.

• an easy method for timewise browsing through a score.

• easy extendability.

• cross-platform operation, documentation, testing ...

On top of that, in practice we need to adhere to sev-
eral guidelines for real-time programming, amongst which
some important ones are [15] :

• not allocating or deallocating memory

• avoiding denormalized floating point numbers

3. IT’S ABOUT TIME

3.1 Timestamping

Music scores are generally structured as follows: scores
contain multiple parts or instruments, each of which con-
sists of a series of measures that contain the notes. A score

or a part can be subdivided into several sections, or within
a measure, multiple voices may be separately encoded. We
leave intermediate levels like these out here for clarity.
Coda, segno and other repeat signs influence at what ab-
solute time certain notes need to be played. This makes
that music scores are rarely written to file in a way that is
linear in time. The standard MIDI file format (SMF) comes
close, but was never meant to be used for score encoding.

MusicXML stores timing information different than other
formats: it only stores the note order and note length, and
not the absolute position in the score at which the note
occurs. This system was derived from the MuseData for-
mat [16]. In a real-time environment, we need absolute
timestamps in order to know at any given time where we
are in the score. These timestamps thus need to be cal-
culated if they are not present. The quarter note as a unit
of absolute time is the most convenient choice. This is
portable across scores, whichever time signature they have,
and across recordings, whichever tempo they are played in.

In MusicXML, in order to know at what absolute time
in the score a specific note occurs, one needs to add up the
length of all previous measures, and the previous notes in
the same measure. This is a too intensive computation in
real-time, therefore we need to precompute any absolute
time values that we need in our application. The easiest
way to do this is to keep track of a global absolute time
value during parsing, and store a timestamp in every ele-
ment that we encounter.

Having timestamps in the data structure has the follow-
ing effect on run-time operations, with n the number of
elements that need to have such a timestamp:

• worst-case time complexity to compute absolute time
values in real-time decreases from O(n) to O(1),

• when a change occurs in the score, these values need
to be updated throughout the score, introducing a
penalty of O(n).

These figures assume that the notes in a measure are
already sorted based on time, and that the timestamp of
previous elements can be used to update the timestamp of
later ones. Sorting on time is easy to accomplish by cre-
ating or overloading a comparison operator and running
a generic sorting algorithm after parsing. In general, all
time-modifying elements in the file format need to be pro-
cessed during parsing to calculate timestamps for all notes.
We found it handy to also store the time at which a certain
timed element ends.

We need to add here that the increased complexity when
changes occur to the score (measures or notes added, deleted
or moved), rarely outweighs the benefits of having a times-
tamp on all elements for the applications that we envision.
Fast access to useful data is the most important for us, and
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in real-time applications, especially when user interactiv-
ity is in play, score access operations tend to occur thou-
sands of times more often than score manipulation opera-
tions. If large-scale content manipulation of scores needs
to be done very often, tools like XQuery are more fit for
the job [17, 18].

3.2 Some notes on tempo and repetitions

In order to be able to accomodate easily for tempo changes
or other elements that affect playback (rallentando, accelerando
etc.), we tilted this performance timing information out of
the score, and transferred it to a separate datastructure. An
elegant solution is the use of a warping function, map-
ping playback time (in seconds) to score time (in quarter
notes). The first derivative of this function is the equiva-
lent of the local tempo at a certain time. Smooth increases
or decreases in tempo can be modeled using splines. Cu-
bic Hermite splines are a good choice since those can be
calculated based only on two points and the tempo at these
points. When constraints are applied to keep the function
strict monotonously increasing, an inverse of that function
exists which could eventually be used to encode informa-
tion about performance, like lyricism.

Also affecting playback are structural elements, as there
are repeat, coda, segno, ... Since these are usually limited
in number and smooth transitions are not applicable here,
this data can be stored easiest in a simple table, storing the
timestamp values of all sections. When repeats should be
skipped, one can just adapt this table, eliminating the need
to do processing on the entire score data structure.

Going from playback time to score time ( illustrated in
fig. 1 ) then comes down to deciding with what time in
quarter notes this corresponds, through the previously de-
fined warping function. If sections are repeated or skipped,
offsets to this time need to be added or subtracted, accord-
ing to the information in the structure table. That way,
we come to a corresponding timestamp value in the score
structure itself, which can be used to access the necessary
data.

Note that in this way, changes in tempo or performance
information do not require updating the calculated times-
tamps in the score, which would be a rather costly oper-
ation as mentioned previously. As long as the score data
itself remains unchanged, data related to performance and
overall structure (repeats etc.) are kept outside the score
itself and are quickly and easily accessible and modifiable.
This is useful in applications needing some form of audio-
to-score alignment [19].

4. STRUCTURE AND DESIGN

4.1 Indexing collections

A score contains a number of parts, a part contains a num-
ber of measures, a measure contains a number of notes: it

Figure 1. Flowchart: from real time to score timestamps

is clear that collections are an important feature in scores.
These collections often need to be accessible in multiple
ways. For fast direct access, a vector-like construction
is ideal: accessing an element is then done in constant
time. But a standard XML parser will store elements in
a tree structure. In this tree, notes can be interleaved with
other data (like harmony indications, certain dynamics el-
ements), and are not necessarily ordered on timestamp.

To gain fast access to the most important data, we im-
plement indices in the data structure, sorted on the criteria
we wish to use for retrieval. We obtain fast access to notes
by, during parsing, storing them in a map keyed on the
timestamp that it has been given. When we need to search
for a certain note occurring at a certain time, we can easily
retrieve it (a map generally uses a binary search), and it-
erating over all notes in order can still be done in constant
time using the best fit iterators.

Using sorted indexes to access certain structures intro-
duces:

• searching for a certain element can be done in O(log(n))
instead of O(n).

• accessing a specific element takes O(log(n)) for maps
and O(1) for arrays.

• when a change occurs, the indexes might need to be
updated. The cost depends on the operation being
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performed and the data structure used for the index.
Insertion or deletion on a map takes only O(log(n)),
but if resorting an array is needed, the penalty is O(n
log(n)).

Implementing collections with these properties can be
done by designing proper templates for them - [20] is an
excellent resource on this. Templates are specifically meant
to define operations and algorithms independent of type,
and can thus be used for any type of element, while still
making specializations based on type possible. Operator
overloading is a useful programming trick to add additional
accessing functionality.

4.2 Cursors and Listeners

For browsing through a score, an iterator system is most
elegant. Most programmers are very familiar with this
kind of interface. Preferably, a score iterator for real-time
use corresponds to a position marker on a sequencer track,
we’ll therefore call them cursors. The cursor needs ac-
cess to the tempo and structure information from the score.
Multiple cursors on a single score are an asset, but to avoid
discrepancies when multiple cursors are used, only one
structure table and tempo function should exist for each
score. The cursor’s internal logic is then responsible for
translating the time information from the sequencer to the
relevant position in the score.

To keep track of the position in the score, a cursor keeps
track of:

• its current position in quarter notes (timestamp)

• for each part, the current measure (this allows for
multimetric music)

• for that measure, the next note that needs to be played.

In real-time software, a cursor is moved forward or back-
ward by very small increments. Using the adapted internal
score structure, moving the cursor forward comes down to:

• calculate the target timestamp of the cursor.

• for each part in the score, repeat the following un-
til the next note’s timestamp is scheduled after the
target timestamp:

– if the next note’s timestamp is before the target
timestamp, go to the next note

– if there are no more notes in the current mea-
sure, go to the next measure

This could be even more simplified improved upon by
collecting all notes of a score together and abstracting away
the different measures and parts. But in practice, we found
that we often needed to know at a certain moment which

Figure 2. Simplified component diagram of the overall
design

measure that a currently played note was in, and to what
part it belonged. We consider it easier to keep track of this
information in the cursor and request it from there, then to
ignore it there but later have to obtain it through the score
anyway. The number of measure crossings and the number
of parts is also usually limited compared to the number of
notes.

As mentioned earlier, intermediate levels in the score
hierarchy, like voices or sections, can exist. Each sup-
plementary level may add a nested loop to the aforemen-
tioned cursor moving algorithm, so it is beneficial to keep
the number of different levels low. The trade-off between
removing intermediate levels, keeping the original struc-
ture and accessing its information, and performance ben-
efits or losses in different scenario’s is difficult to make,
and in the end the performance is highly dependent on the
scores used: if a large amount of nested loops is kept, a
single voice melody score will likely still be iterated over
very fast, while traversing an orchestral score will go much
slower. On the other hand, by eliminating too many loops
we risk to need to introduce a large amount of intermedi-
ate variables in the cursor to keep track of all the necessary
information, and updating and testing against these also
takes time.

A cursor interface can be easily combined with the im-
plementation of an observer pattern [9]. That way, when
the cursor passes a note, it can notify another part of the
software and trigger an event. In the observer pattern, one
or more listeners can be attached to a cursor. The cursor
then only needs to notify all of its listeners that an event
was encountered. This system can be further generalized
to enable notifications to be triggered at whatever element
that is encountered in a score, and have them pass data for
the listeners.

A simplified component diagram of the overall design
of the score handling library is shown in fig. 2 .
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5. IMPLEMENTATION

The library that we developed is part of a larger project,
implemented as VST plugin [12]. It is meant to serve as
prototyping platform for applications that use both audio
and scores in real-time hosts. A screenshot is shown in fig.
3.

As a practical example, if we want simple playback, a
cursor is put on the score at the beginning of the score,
and incremented in small steps corresponding to the length
of the audio data in the processing function of the plugin.
When notes are encountered, an event is sent to a spe-
cific listener, that will take the note and some other nec-
essary information to generate MIDI events out of it. The
start events are sent back to the host, while the stop events
are stored in a scheduler to be used when they are neces-
sary. If another event should happen when a note, measure,
crescendo, or whatever element in the score is encountered,
a developer would only need to write his/her own listener,
connect it to the cursor, and configure the cursor in such a
way that it reacts to the element needed.

To display the score, we use exactly the same setup,
only now the cursor is not moved over a timeline, but over
a frame on the screen. A cursor is set on the position cor-
responding with the left viewport boundary as defined by
the GUI’s zoom data, scroll data (scrollbars) and window
plane. When the screen is redrawn, the cursor is moved
to the right viewport boundary. A listener is notified at
each note that is encountered, which draws the note onto
the window when necessary. There can be several thou-
sands of these events triggered to draw a single score when
zoomed out. Nevertheless we experienced that zooming
and scrolling go fluently using this design, even if they
force several redraws of the screen each second, each time
generating a large flow of events.

While fig. 3 only shows a piano roll representation of
the notes in the score, the cursor system combined with
an implementation of the observer pattern, allows to create
other visualizations as well. We might add dynamics in-
formation, incorporate or leave out information about the
tempo, or leave the notes out and only show rests - the
list goes on, and any custom visualization can be created
based on the same system that is used for MIDI playback
or setting parameters in a plugin. In our work we haven’t
gone that far though, and we will focus in the near future
on the development of real-time plugins using scores for
e.g. audio-to-score matching, rather than on visualization.

6. CONCLUSION

The use of music scores is not yet commonplace in many
real-time applications - usually a MIDI representation is
used as substitute. In this paper we have presented our ef-
forts to create a library to enable the use of music scores
file formats natively in such environments. We have sin-
gled out the design desicions that were taken in order to

Figure 3. GUI of a prototype application, showing a basic
piano roll representation of Joplin’s Elite Syncopations.

come to a performant library. These considerations are ap-
plicable over the boundaries of file formats and computer
languages.

In the applications that we envision, the benefits of fast
information retrieval from the score and score browsing
outweigh the slightly increased complexity on rarely used
operations and the precomputation needed. The design
considerations presented herein ensure that the computa-
tional load during processing is kept to a minimum.
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ABSTRACT

We present an automatic genre classification technique mak-
ing use of frequent chord sequences that can be applied on
symbolic as well as audio data. We adopt a first-order logic
representation of harmony and musical genres: pieces of
music are represented as lists of chords and musical gen-
res are seen as context-free definite clause grammars using
subsequences of these chord lists. To induce the context-
free definite clause grammars characterising the genres we
use a first-order logic decision tree induction algorithm.
We report on the adaptation of this classification frame-
work to audio data using an automatic chord transcription
algorithm. We also introduce a high-level harmony rep-
resentation scheme which describes the chords in term of
both their degrees and chord categories. When compared
to another high-level harmony representation scheme used
in a previous study, it obtains better classification accura-
cies and shorter run times. We test this framework on 856
audio files synthesized from Band in a Box files and cov-
ering 3 main genres, and 9 subgenres. We perform 3-way
and 2-way classification tasks on these audio files and ob-
tain good classification results: between 67% and 79% ac-
curacy for the 2-way classification tasks and between 58%
and 72% accuracy for the 3-way classification tasks.

1. INTRODUCTION

To deal with the ever-increasing amount of digital music
data in both personal and commercial musical libraries some
automatic classification techniques are generally needed.
Although metadata such as ID3 tags are often used to sort
such collections, the MIR community has also shown a
great interest in incorporating information extracted from
the audio signal into the automatic classification process.
While low-level representations of harmonic content have
been used in several genre classification algorithms (e.g.
chroma feature representation in [1]), little attention has
been paid to how harmony in its temporal dimension, i.e.
chord sequences, can help in this task. However, there

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

seems to be a strong connection between musical genre and
the use of different chord progressions [2]. For instance, it
is well known that pop-rock tunes mainly follow the classi-
cal tonic-subdominant-dominant chord sequence, whereas
jazz harmony books propose different series of chord pro-
gressions as a standard. We intend to test the extent to
which harmonic progressions can be used for genre classi-
fication.

In a previous article [3] we have shown that efficient and
transparent genre classification models entirely based on
a high-level representation of harmony can be built using
first-order logic. Music pieces were represented as lists of
chords (obtained from symbolic files) and musical genres
were seen as context-free definite-clause grammar using
subsequences of any length of these chord lists. The gram-
mar representing the genres were built using a first-order
logic decision tree induction algorithm. These resulting
models not only obtained good classification results when
tested on symbolic data (between 72% and 86% accuracy
on 2-class problems) but also provided a transparent ex-
planation of the classification to the user. Indeed thanks
to the expressiveness of first-order logic the decision trees
obtained with this technique can be presented to the user
as sets of human readable rules.

In this paper we extend our harmony-based approach to
automatic genre classification by introducing a richer har-
mony representation and present the results of audio data
classification. In our previous article we used the inter-
vals between the root notes of consecutive chords. Root
interval progressions capture some degree information and
do not depend on the tonality. Thus when using root in-
tervals no key extraction is necessary. However, one root
interval progression can cover several degree sequences.
For instance the degree sequences “IV-I-IV” and “I-V-I”
are both represented by the root interval sequence “perfect
fifth-perfect fourth”. To avoid such generalisations we in-
troduce here another representation of harmony based on
the degrees (i.e. I, V, etc.) and chord categories (i.e. min,
7, maj7, etc.). In addition such a representation matches
the western representation of harmony and thus our clas-
sification models (i.e. decision trees or sets of classifica-
tion rules describing the harmony) can be more easily in-
terpreted by the users. Finally since degrees are relative
to the key, a key estimation step is now needed. This is a
requirement but not a limitation as nowadays many chord
transcription algorithms from audio (e.g. [4,5]) do also per-
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form key estimation.
The paper is organised as follows: In Section 2 we re-

view some existing studies using high-level representation
of harmony for automatic genre classification. In Section
3 we present the details of our methodology, including the
knowledge representation and the learning algorithm em-
ployed in this study. In Section 4 we present the classifica-
tion results of our first-order logic classification technique
before concluding in Section 5.

2. RELATED WORK

Only a few studies have considered using higher level har-
monic structures, such as chord progressions, for automatic
genre recognition.

In [6], a rule-based system is used to classify sequences
of chords belonging to three categories: Enya, Beatles and
Chinese folk songs. A vocabulary of 60 different chords
was used, including triads and seventh chords. Classifi-
cation accuracy ranged from 70% to 84% using two-way
classification, and the best results were obtained when try-
ing to distinguish Chinese folk music from the other two
styles, which is a reasonable result as both western styles
should be closer in terms of harmony.

Paiement et al. [7] also used chord progressions to build
probabilistic models. In that work, a set of 52 jazz stan-
dards was encoded as sequences of 4-note chords. The au-
thors compared the generalization capabilities of a proba-
bilistic tree model against a Hidden Markov Model (HMM),
both capturing stochastic properties of harmony in jazz,
and the results suggested that chord structures are a suit-
able source of information to represent musical genres.

More recently, Lee [8] has proposed genre-specific
HMMs that learn chord progression characteristics for each
genre. Although the ultimate goal of this work is using the
genre models to improve the chord recognition rate, he also
presented some results on the genre classification task. For
that task a reduced set of chords (major, minor, and dimin-
ished) was used.

Finally, Perez-Sancho et al. [9] have investigated if 2,
3 and 4-grams of chords can be used for automatic genre
classification on both symbolic and audio data. They report
better classification results when using a richer vocabulary
(seventh chords) and longer n-grams.

3. METHODOLOGY

Contrary to n-grams that are limited to sequences of length
n the first-order logic representation scheme that we adopt
can employ chord sequences of variable length to charac-
terise a musical genre. A musical piece is represented as
a list of chords. Each musical genre is illustrated by a se-
ries of musical pieces. The objective is to find interesting
patterns, i.e. chord sequences, that appear in many songs
of one genre and do not (frequently) appear in the other
genres and use such sets of patterns to classify unknown
musical pieces into genres. As there can be several inde-
pendent patterns and each of them can be of any length
we use a context-free definite-clause grammar formalism.

Finally to induce such grammars we use TILDE [10], a
first-order logic decision tree induction algorithm.

3.1 Knowledge representation

In the definite clause grammar (DCG) formalism a sequence
over a finite alphabet of letters is represented as a list of
letters. Here the chords (e.g. G7, Db, BM7, F#m7, etc.)
are the letters of our alphabet. A DCG is described using
predicates. For each predicate p/2 (or p/3) of the form
p(X,Y) (or p(c,X,Y)), X is a list representing the se-
quence to analyse (input) and Y is the remaining part of the
list X when its prefix matching the predicate p (or property
c of the predicate p) is removed (output). In the context-
free grammar (CFG) formalism, a target concept is defined
with a set of rules.

Here our target predicate is genre/4, where genre(g,
A,B,Key) means the song A (represented as its full list
of chords) in the tonality Key belongs to genre g. The
argument B, the output list (i.e. an empty list) is neces-
sary to comply with the definite-clause grammar represen-
tation. We are interested in degrees and chord categories
to characterise a chord sequence. So the predicates consid-
ered to build the rules are degreeAndCategory/5 and
gap/2, defined in the background knowledge (cf. Table
1). degreeAndCategory(d,c,A,B,Key) means

rootNote(c ,[c|T],T,Key). rootNote(c ,[cm|T],T,Key).
rootNote(c s,[cs|T],T,Key). rootNote(c s,[csm|T],T,Key).
. . . . . .
category(min,[cm|T],T). category(maj,[c|T],T).
category(min,[csm|T],T). category(maj,[cs|T],T).
. . . . . .
degree(1 ,A,B,cmajor) :- rootNote(c ,A,B,cmajor).
degree(1 s,A,B,cmajor) :- rootNote(c s,A,B,cmajor).
. . .
degreeAndCategory(Deg,Cat,A,B,Key) :-
degree(Deg,A,B,Key), category(Cat,A,B).

gap(A,A).
gap([ ,A],B) :- gap(A,B).

Table 1. Background knowledge predicates used in the
first-order logic decision tree induction algorithm. For
each chord in a chord sequence its root note is identified us-
ing the rootNote/4 predicate. The degrees are defined
using the degree/4 predicate and the key. The chord
categories are identified using the category/3 predicate
and finally degrees and categories are united in a single
predicate degreeAndCategory/5.

that the first chord of the list A has degree d and category c.
The gap/2 predicate matches any chord sequence of any
length, allowing to skip uninteresting subsequences (not
characterised by the grammar rules) and to handle large
sequences (for which otherwise we would need very large
grammars). In addition we constrain the system to use at
least two consecutive degreeAndCategory predicates
between two gap predicates. This guarantees that we are
considering local chord sequences of a least length 2 (but
also larger) in the songs.
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∧ degreeAndCategory(6_,min,E,F,Key)

g1 g2

?

degAndCat(1_,maj,A,C,Key)
degAndCat(7_,min,A,C,Key)
gap(A,C) ∧ degAndCat(1_,maj,C,D,Key)
   ∧ degAndCat(5_,7,D,E,Key)
gap(A,C) ∧ degAndCat(5_,7,C,D,Key)
   ∧ degAndCat(6_,min,D,E,Key)
gap(A,C) ∧ degAndCat(5_,7,C,D,Key)
   ∧ degAndCat(2_,min,D,E,Key)
gap(A,C) ∧ degAndCat(7_,min,C,D,Key)
   ∧ degAndCat(1_,maj,D,E,Key)
gap(A,C) ∧ degAndCat(5_,7,C,D,Key)
   ∧ degAndCat(3_,min,D,E,Key)
gap(A,C) ∧ degAndCat(3_,min,C,D,Key)
   ∧ degAndCat(5_,7,D,E,Key)

 g1g2g2 | g1g3
 g1g3 | g1g2g2

g1g1g2g2 | g3 * 

g1g1g2 | g2g3

 g2 | g1g1g2g3

 g1g3 | g1g2g2

 g2 | g1g1g2g3

 g2 | g1g1g2g3

Learning examples : [C,G7,Am] g1      [C,G7,Dm] g2      [Bm,C] g3      [Bm,C,G7,Am] g1      [C,G7,Em,G7,Am] g2

degAndCat(6_,min,E,F,Key)
degAndCat(2_,min,E,F,Key)
degAndCat(3_,min,E,F,Key)
gap(E,F) ∧ degAndCat(3_,min,F,G,Key)
    ∧ degAndCat(5_,7,G,H,Key)
gap(E,F) ∧ degAndCat(5_,7,F,G,Key)
    ∧ degAndCat(6_,min,G,H,Key)

 g1g1 | g2g2 * 

 g2 | g1g1g2

 g2 | g1g1g2

 g2 | g1g1g2

 g2 | g1g1g2

gap(A,C) ∧ degreeAndCategory(1_,maj,C,D,Key)
               ∧ degreeAndCategory(5_,7,D,E,Key)

g3

Equivalent set of rules (Prolog program):
genre(g1,A,B,Key) :- 
  gap(A,C),degAndCat(1_,maj,C,D,Key),
  degAndCat(5_,7,D,E,Key),degAndCat(6_,min,E,F,Key),!
genre(g2,A,B,Key) :- 
   gap(A,C),degAndCat(1_,maj,C,D,Key),
   degAndCat(5_,7,D,E,Key),!
genre(g3,A,B,Key).

gap(A,C) ∧ degreeAndCategory(1_,maj,C,D,Key)
              ∧ degreeAndCategory(5_,7,D,E,Key)

g3?
True False True False

True False

Figure 1. Schematic example illustrating the induction of a first-order logic tree for a 3-genre classification problem (based
on the 5 learning examples on top). At each step the partial tree (top) and each literal (or conjunction of literals) considered
for addition to the tree (bottom) are shown together with the split resulting from the choice of this literal (e.g. g1g1g2|g2
means that two examples of g1 and one of g2 are in the left branch and one example of g2 is in the right branch). The literal
resulting in a the best split is indicated with an asterisk. The final tree and the equivalent ordered set of rules (or Prolog
program) are shown on the right. The key is C Major for all examples. For space reasons degAndCat is used to represent
degreeAngCategory.

An example of a simple and short grammar rule we can
get using this formalism is:
genre(genre1,A,B,Key) :-
gap(A,C),degreeAndCategory(5 ,7,C,D,Key),
degreeAndCategory(1 ,maj,D,E,Key),gap(E,B).
Which can be translated as : “Some music pieces of genre1
contain a dominant 7th chord on the dominant followed by
a major chord on the tonic” (i.e. a perfect cadence).
But more complex rules combining several local patterns
(of any length larger than or equal to 2) separated by gaps
can also be constructed with this formalism.

3.2 Learning algorithm

To induce the harmony grammars we apply TILDE’s deci-
sion tree induction algorithm [10]. TILDE is a first order
logic extension of the C4.5 decision tree algorithm [11].
Like C4.5 it is a top-down decision tree induction algo-
rithm: at each step the test resulting in the best split is
used to partition the examples. The difference is that at
each node of the trees instead of attribute-value pairs, con-
junctions of literals are tested. TILDE uses by default the
gain-ratio criterion [11] to determine the best split and the
post-pruning is the one from C4.5. TILDE builds first-
order logic decision trees which can also be represented
as ordered sets of rules (or Prolog programs). In the case
of classification, the target predicate of each model rep-
resents the classification problem. A simple example il-
lustrating the induction of a tree from a set of examples
covering three genres is given in Figure 1.

First-order logic enables us to use background knowl-
edge (which is not possible with non relational data min-
ing algorithms). It also provides a more expressive way
to represent musical concepts/events/rules which can be
transmitted as they are to the users. Thus the classification
process can be made transparent to the user.

4. EXPERIMENTS AND RESULTS

4.1 Training data

4.1.1 Audio data

The data used in the experiments reported in this paper has
been collected, annotated and kindly provided by the Pat-
tern Recognition and Artificial Intelligence Group of the
University of Alicante. It consists in a collection of Band
in a Box 1 files (i.e. symbolic files containing chords) from
which audio files have been synthesised and it covers three
genres: popular, jazz, and academic music. The symbolic
files have been converted into a text format in which only
the chord changes are available. The Popular music set
contains pop, blues, and celtic (mainly Irish jigs and reels)
music; jazz consists of a pre-bop class grouping swing,
early, and Broadway tunes, bop standards, and bossanovas;
and academic music consists of Baroque, Classical and
Romantic Period music. All the categories have been de-
fined by music experts who have also collaborated in the
task of assigning meta-data tags to the files and rejecting
outliers. The total amount of pieces is 856 (Academic
235; Jazz 338; Popular 283) containing a total of 120,510
chords (141 chords per piece in average, a minimum of 3
and a maximum of 522 chords per piece).

The classification tasks that we are interested in are rela-
tive to the three main genres of this dataset: academic, jazz
and popular music. For all our experiments we consider
each time the 3-way classification problem and each of the
2-way classification problems. In addition we also study
the 3-way classification problem dealing with the popu-
lar music subgenres (blues, celtic and pop music). We do
not work on the academic subgenres and jazz subgenres
as these two datasets contain very unbalanced subclasses,

1 http://www.pgmusic.com/products bb.htm
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some of them being represented by only a few examples.
Because of this last characteristic removing examples to
get the same number of examples per class would lead to
poor models built on too few examples. Finally resampling
can not be used as TILDE automatically removes identical
examples.

For each classification task we perform a 5-fold cross-
validation. The minimal coverage of a leaf (a parameter in
TILDE) is set to 5.

academic/jazz/popular Root Int D&C 3 D&C 7th
Accuracy (baseline = 0.40) 0.619 0.759 0.808
Stderr 0.017 0.015 0.014
# nodes in the tree 40.8 31.0 18.4
# literals in the tree 66.2 90.6 50.8
academic/jazz Root Int D&C 3 D&C 7th
Accuracy (baseline = 0.59) 0.861 0.872 0.933
Stderr 0.014 0.014 0.011
# nodes in the tree 11.0 16.4 10.4
# literals in the tree 19.0 46.0 30.8
academic/popular Root Int D&C 3 D&C 7th
Accuracy (baseline = 0.54) 0.731 0.824 0.839
Stderr 0.020 0.017 0.016
# nodes in the tree 17.0 12.4 11.0
# literals in the tree 27.6 36.4 31.8
jazz/popular Root Int D&C 3 D&C 7th
Accuracy (baseline = 0.55) 0.828 0.811 0.835
Stderr 0.015 0.016 0.015
# nodes in the tree 13.4 17.0 10.6
# literals in the tree 23.2 50.6 29.0
blues/celtic/pop Root Int D&C 3 D&C 7th
Accuracy (baseline = 0.36) 0.709 0.703 0.746
Stderr 0.027 0.028 0.026
# nodes in the tree 11.4 16.2 14.0
# literals in the tree 20.4 45.8 40.4

Table 2. Classification results on manual chord transcrip-
tions using a 5-fold cross-validation. The number of nodes
and literals present in a tree gives an estimation of its com-
plexity. “Root Int” refers to the root intervals representa-
tion scheme. “D&C 3” and “D&C 7th” refers to the degree
and chord category representation scheme respectively ap-
plied on triads only and on triads and seventh chords.

4.1.2 Chord transcription

The chord transcription algorithm based on harmonic pitch
class profiles (HPCP [12]) we apply is described in [13]. It
distributes spectral peak contributions to several adjacent
HPCP bins and takes peak harmonics into account. In ad-
dition to using the local maxima of the spectrum, HPCPs
are tuning independent (i.e. the reference frequency can be
different from the standard tuning), and consider the pres-
ence of harmonic frequencies. In this paper, the resulting
HPCP is a 36-bin octave independent histogram represent-
ing the relative intensity of each 1/3 of the 12 semitones of
the equal tempered scale. We refer to [13] for a detailed
description of the algorithm.

The algorithm can be tuned to either extract triads (lim-
ited to major and minor chords) or triads and seventh chords

(limited to major seventh, minor seventh and dominant sev-
enth). Other chords such as diminished and augmented
chords are not included in the transcription (as in many
transcription systems) because of the tradeoff between pre-
cision and accuracy. After pre-processing, only the chord
changes (i.e. when either the root note or the chord cate-
gory is modified) are kept. Notice that when dealing with
the symbolic files (manual transcription) the mapping be-
tween the representations is based on the third (major or
minor). Since only the chord changes were available in the
symbolic files (no timing information) it was not possible
to compute the transcription accuracy.

4.2 Validating our new harmony representation
scheme

We first study if our new harmony representation scheme
based on degrees and chord categories (D&C) can compete
with our previous representation scheme based on root in-
tervals (Root Int.). For that we test these two harmony
representations on clean data, i.e. on the manual chord
transcriptions. We test the degree and chord category rep-
resentation scheme on both triads-only (D&C 3) and triads
and seventh manual transcriptions (D&C 7th). The results
(i.e. test results of the 5-fold cross-validation) of these ex-
periments are shown in Table 2.

The D&C representation scheme obtains better results,
with accuracies always as high as or higher than the root in-
terval representation scheme classification accuracies. Fur-
thermore the complexity of the models is not increased
when using the D&C representation compared to the root
interval representation. Indeed, the number of nodes and
literals in the built models (trees) are comparable. Using
the seventh chord categories leads to much higher accu-
racies, lower standard errors and lower complexity than
when only using the triads.

We also tested these representation schemes when the
learning examples are audio files (cf. Section 4.3 for more
details on these experiments). However the root interval
experiments on audio data were so slow that we were un-
able to complete a 5-fold cross-validation. We estimate the
time needed to build one (2-class) model based on the root
interval audio data to 12 hours in average, whereas only 10
to 30 minutes are needed to build a D&C 3 (2-class) model
on audio data and around 1 hour and a half for a D&C
7th (2-class) model. In conclusion the degree and category
representation scheme outperforms the root interval repre-
sentation scheme on both classification accuracy and run
times.

4.3 Performances on audio data

We now test if our first-order logic classification frame-
work can build good classification models when the learn-
ing examples are automatic chord transcriptions from au-
dio files (i.e. noisy data). This is essential for the many
applications in which no symbolic representation of the
harmony is available. The results of this framework when
using the degree and chord category representation scheme
on audio data are shown in Table 3.
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academic/jazz/popular D&C 3 D&C 7th
Accuracy (baseline = 0.39) 0.582 0.575
Stderr 0.017 0.017
# nodes in the tree 59.2 66.8
# literals in the tree 171.2 198.4
academic/jazz D&C 3 D&C 7th
Accuracy (baseline = 0.59) 0.759 0.743
Stderr 0.018 0.018
# nodes in the tree 26.4 31.8
# literals in the tree 76.0 93.8
academic/popular D&C 3 D&C 7th
Accuracy (baseline = 0.55) 0.685 0.674
Stderr 0.020 0.021
# nodes in the tree 25.8 26.4
# literals in the tree 72.2 74.0
jazz/popular D&C 3 D&C 7th
Accuracy (baseline = 0.54) 0.789 0.773
Stderr 0.016 0.017
# nodes in the tree 22.4 28.8
# literals in the tree 66.0 86.0
blues/celtic/pop D&C 3 D&C 7th
Accuracy (baseline = 0.35) 0.724 0.668
Stderr 0.027 0.028
# nodes in the tree 13.2 14.8
# literals in the tree 38.8 43.2

Table 3. Classification results on audio data using a 5-fold
cross-validation.

Although the accuracies are still good (significantly abo-
ve the baseline), it is not surprising that they are lower than
the results obtained for clean data (i.e. manual transcrip-
tions). The noise introduced by the automatic chord tran-
scription also leads to a higher complexity of the models
derived from audio data. Also using the seventh chords
leads to slightly less accurate models than when using tri-
ads only. The opposite result was obtained with the manual
transcription data, where the seventh chord representation
scheme outperformed the triads representation scheme. We
surmise that the reason for this difference is the fact that the
automatic chord transcription algorithm we use is much
less accurate when asked to use seventh chords than when
asked to use triads only.

Concerning the classification tasks, all the 2 and 3-class
problems are solved with accuracies well above chance
level. The 3-class popular music subgenres classification
problem seems particularly well handled by our framework
with 72% and 67% accuracy when using respectively tri-
ads and seventh chords. The best 2-class classification re-
sults (between 74% and 79% accuracy) are obtained when
trying to distinguish jazz from another genre (academic or
popular). Indeed the harmony of classical and popular mu-
sic can be very similar, whereas jazz music is known for its
characteristic chord sequences, very different from other
genres harmonic progressions.

4.4 Transparent classification models

To illustrate the transparency of the classification models
built using our framework we present here some interest-

ing rules with high coverage extracted from classification
models generated from symbolic data. Notice that the clas-
sification models are trees (or ordered sets of rules), so a
rule in itself can not perform classification both because of
having a lower accuracy than the full model and because
the ordering of rules in the model is important to the classi-
fication (i.e. some rule might never be used on some exam-
ple because one of the preceding rules in the model covers
this example). To illustrate this for each of the following
example rules we provide its absolute coverage (i.e. if the
order was not taken into account) on each genre.

The following rule was found in the popular subgenres
classification models:
[coverage: blues=42/84; celtic=0/99; pop=2/100]
genre(blues,A,B,Key) :-
gap(A,C),degreeAndCategory(1 ,7,C,D,Key),
degreeAndCategory(4 ,7,D,E,Key),gap(E,B).
“Some blues music pieces contain a dominant seventh chord
on the tonic directly followed by a dominant seventh chord
on the subdominant (IV).”

The following rules were found in the academic/jazz/pop-
ular classification models:
[cov.: jazz=273/338; academic=42/235; popular=52/283]
genre(jazz,A,B,Key) :-
gap(A,C),degreeAndCategory(2 ,min7,C,D,Key),
degreeAndCategory(5 ,7,D,E,Key),gap(E,B).
“Some jazz music pieces contain a minor seventh chord on
the supertonic (II) directly followed by a dominant seventh
chord on the dominant.”
[cov.: jazz=173/338; academic=1/235; popular=17/283]
genre(jazz,A,B,Key) :-
gap(A,C),degreeAndCategory(6 ,7,C,D,Key),
degreeAndCategory(2 ,min7,D,E,Key),gap(E,B)
“Some jazz music pieces contain a dominant seventh chord
on the submediant (VI) directly followed by a minor sev-
enth chord on the supertonic (II).”

Finally the following rules were found in the academic/
jazz classification models:
[cov.: academic=124/235; jazz=6/338; popular=78/283]
genre(academic,A,B,Key) :-
gap(A,C),degreeAndCategory(1 ,maj,C,D,Key),
degreeAndCategory(5 ,maj,D,E,Key),gap(E,B).
“Some academic music pieces contain a major chord on
the tonic directly followed by a major chord on the domi-
nant.”
[cov.: academic=133/235; jazz=10/338; popular=68/283]
genre(academic,A,B,Key) :-
gap(A,C),degreeAndCategory(5 ,maj,C,D,Key),
degreeAndCategory(1 ,maj,D,E,Key),gap(E,B).
“Some academic music pieces contain a major chord on
the dominant directly followed by a major chord on the
tonic.”
Note that the lack of sevenths distinguishes this last com-
mon chord change from its jazz counterparts. Indeed the
following rule has a high coverage on jazz:
[cov.: jazz=146/338; academic=0/235; popular=15/283]
genre(jazz,A,B,Key) :-
gap(A,C),degreeAndCategory(5 ,7,C,D,Key),
degreeAndCategory(1 ,maj7,D,E,Key),gap(E,B).
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5. CONCLUSION AND FUTURE WORK

In this paper we showed that our genre classification frame-
work based on harmony and first-order logic and previ-
ously tested on symbolic data in [3] can also directly learn
classification models from audio data that obtain a classi-
fication accuracy well above chance level. The use of a
chord transcription algorithm allows us to adopt a high-
level representation of harmony even when working on
audio data. In turn this high-level representation of har-
mony based on first-order logic allows for human-readable,
i.e. transparent, classification models. We increased this
transparency by introducing a new harmony representa-
tion scheme, based on the western representation of har-
mony which describes the chords in terms of degrees and
chord categories. This representation is not only musi-
cally more meaningful than a previous representation we
adopted, it also got better classification results and the clas-
sification models using it were built faster. Testing our
model on manual transcriptions we observed that using
seventh chords in the transcription task could consider-
ably increase the classification accuracy. However the au-
tomatic transcription algorithm we used for these experi-
ments was not enough accurate when using seventh chords
and we could not observe such improvements when using
audio data.

Future work includes testing several other chord tran-
scription algorithms to see if they would lead to better clas-
sification models when using seventh chords. We also plan
to use these chord transcription algorithms to study how
the accuracy of classification models built on transcriptions
evolves with the accuracy of these transcriptions. In addi-
tion the audio data used in these experiments was gener-
ated with MIDI synthesis. This is generally cleaner than
CD recordings, so we expect a further degradation in re-
sults if we were to use audio recordings. Unfortunately we
do not possess the corresponding audio tracks that would
allow us to make this comparison. We intend to look for
such recordings and extend our audio tests to audio files
that are not generated from MIDI. Finally with these ex-
periments we showed that a classification system based
only on chord progressions can obtain classification results
well above chance level. If such a model based only on
one dimension of music (harmony) can not compete on its
own with state-of-the-art classification models, we believe
– and intend to test this hypothesis in future experiments
– that if such an approach is combined with classification
models based on other dimensions (assumed orthogonal)
such as rhythm and timbre we will improve on state-of-
the-art classification accuracy.
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ABSTRACT

This paper presents SongExplorer, a system for the ex-
ploration of large music collections on tabletop interfaces.
SongExplorer addresses the problem of finding new inter-
esting songs on large music databases, from an interaction
design perspective. Using high level descriptors of musi-
cal songs, SongExplorer creates a coherent 2D map based
on similarity, in which neighboring songs tend to be more
similar. All songs are represented as throbbing circles that
highlight their more relevant high-level properties, and the
resulting music map is browseable and zoomable by the
users who can use their fingers as well as specially de-
signed tangible pucks, for helping them to find interesting
music, independently of their previous knowledge of the
collection. SongExplorer also offers basic player capabili-
ties, allowing the users to organize the songs they have just
discovered into playlists which can be manipulated as well
as played and displayed. In this paper, the system hard-
ware, software and interaction design are explained, and
the usability tests carried are presented. Finally, conclu-
sions and future work are discussed.

1. INTRODUCTION

Since the popularization of the Internet and broadband con-
nections, the amount of music which we are exposed to,
has been increasing permanently. Nowadays, many web-
sites do offer very large collections of music to the user,
either free of charge (e.g. Magnatune 1 , Jamendo 2 ) or on
a fee-paying basis (e.g. iTunes 3 , The Orchard 4 ). Such a
number of available and still undiscovered music records
and songs seems too difficult to manage in a sorting and
searching-by-keyword way. In order to solve this problem
and help users to discover new music, many online mu-
sic recommendation services have been created (e.g. Pan-

1 http://www.margatune.com
2 http://www.jamendo.com
3 http://www.apple.com/itunes/
4 http://www.theorchard.com
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bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

dora 5 , Last.fm 6 ). One of the main drawbacks of most
current music recommenders, independently of the recom-
mendation mechanisms and algorithms they employ (user
profiling, experts-based knowledge, statistical models, etc.),
is that they apply information filtering techniques to the en-
tire collections, in order to extract and display only a subset
of songs that the system believes the user could enjoy. By
doing it this way, the user loses the opportunity to discover
many new songs which are not presented by the system,
whatever the cause may be.

To solve this problem, we propose to construct maps
of the entire collections of songs and allow users to ex-
plore them in novel ways. Maps are widely used to explore
spaces and also concepts. Although most commonly used
to depict geography, maps may represent any space, real
or imagined, without regard to context or scale. We use
conceptual maps to discuss ideas, we organize data in 2D
spaces in order to understand it, and we can get our bear-
ings using topographical maps. SongExplorer’s maps are
constructed using MIR techniques that provide the high-
level descriptors needed successfully organizing the data;
they do not filter or hide any content, thus showing the
complete collection while highlighting some of the songs’
characteristics.

Therefore, SongExplorer provides intuitive and fast ways
for promoting the direct exploration of these maps. In
the last years, several successful projects have shown that
tangible, tabletop and multitouch interfaces exhibit useful
properties for advanced control in general (such as con-
tinuous, real-time interaction with multidimensional data,
and support for complex, skilled, expressive and explo-
rative interaction) [4] and for the exploration of bidimen-
sional spaces in particular [2]. Following this trend, Song-
Explorer allow users to interact with the maps directly with
their hands, touching the surface with their fingers and ma-
nipulating physical tokens on top of it. In the following
section we will comment some of the most relevant previ-
ous works, related to the two main aspects of our project,
i.e. (i) the visualization of musical data, and (ii) the direct
manipulation of this or any other type of data, in a tabletop
interaction context.

5 http://www.pandora.com
6 http://www.last.fm
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2. RELATED WORK

2.1 Visualization of music collections

In the field of visualization, there is an extensive bibliog-
raphy on the representation of auditory data. In the partic-
ular case we are focusing on, that of the visual organiza-
tion of musical data, solutions often consist in extracting
feature descriptors from data files, and creating a multidi-
mensional feature space that will be projected into a 2D
surface, using dimensionality reduction techniques.

A very well known example of this method is the work
Islands of Music by Pampalk [13], which uses a landscape
metaphor to present a large collection of musical files. In
this work, Pampalk uses a Self Organizing Map (SOM) [9]
to create a relief map in which the accumulation of songs
are presented as the elevation of the terrain over the sea.
The islands created as a result of this process roughly cor-
respond to musical genres.

A later attempt to combine different visualizations on
a single map was also created by Pampalk et al [14]. By
using different parameters to organize the SOM, they cre-
ated several views of the collection, later interpolating the
different solutions for creating a smooth combination of
situations with which to explore new information.

Beyond the 2D views, an interesting work on music
collections visualization, which distributes the songs on a
spherical surface, thus avoiding any edge or discontinuity,
is described by Leitich and Topf [11].

In the aforementioned examples, a topological metaphor
is taken in advantage to enable users exploring big collec-
tions of data. A different and original visualization ap-
proach is chosen in Musicream [1], an interesting example
of exploratory search in music databases, using the search
by example paradigm. In Musicream, songs are repre-
sented using colored circles, which fall down from the top
of the screen. When selected, these songs show their title
on their center, and they can be later used to ”fish” similar
ones.

2.2 Tangible tabletop interaction

In the domain of Tabletop and Tangible User Interfaces
(TUI) there is also a growing interest in working with mu-
sical applications. As a matter of fact, from the Audiopad
[15] to the Reactable [5], music performance and creation
has arguably become the most popular and successful ap-
plication field in the entire lifetime of this interaction par-
adigm. This is, according to Jordà [4], because of the spe-
cific affordances of this type of interfaces: support of col-
laboration and sharing of control; continuous, real-time in-
teraction with multidimensional data; and support of com-
plex, expressive and explorative interaction. In this sense,
and although less prolific than the applications strictly con-
ceived for musical performance, some interesting works
have also been developed to interact with large music col-
lections.

Musictable [16] takes a visualization approach similar
to the one chosen in Palmpalk’s Islands of Music, to create
a two dimensional map that, when projected on a table, is

Figure 1. reactiVision framework schema.

used to make collaborative decisions to generate playlists.
Another adaptation into the tabletop domain is the work
from Hitchner et al [3], which uses a SOM to build the
map and also creates a low resolution mosaic that is shown
to the user. The users can redistribute the songs on this
mosaic and thus changing the whole distribution of SOM
according to the user’s desires.

We believe this paper also represents a real contribu-
tion to the tangible/tabletop user interface community. As
noted before, it has been proposed very recently [4] that
they can be especially adequate for complex and non-task
oriented types of interaction, which could include real-time
performance, as well as explorative search. The topic ad-
dressed by this paper (N-Dimensional navigation in 2-D)
has never been addressed before within tabletop interfaces.

3. HARDWARE

SongExplorer is a tabletop application, i.e. a computer ap-
plication meant to run on a tangible and multitouch sur-
face, designed for the exploration and discovery of new
music. In this section we discuss its main hardware com-
ponents.

As schematized in Fig.1, the system is made of a translu-
cent plastic surface, some infrared lamps for diffused illu-
mination, an infrared camera for the detection of the user
interaction, and a projector for the projection of the visual
feedback on the table surface. The surface is round, as in
the Reactable case, for encouraging collaboration [5].

The tracking software is based on reacTIVision [6], an
open-source framework for the recognition of fingers and
objects tagged with fiducials. The images showing the
fiducial markers that are stuck into the physical pucks, and
the fingers that are in contact with the translucent surface,
are captured by the infrared camera and processed by reac-
TIVision. For each video frame, this software component
sends the corresponding data (which includes the positions
and IDs of the identified objects and fingers) to SongEx-
plorer, using the TUIO protocol [7]. SongExplorer subse-
quently identifies the gestures and the actions performed
on the table surface, and proceeds with the appropriate
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responses, finally generating the output image that is dis-
played by the projector on the translucent surface.

4. SOFTWARE

This section describes the main components of the Song-
Explorer software: feature extraction, visualization and in-
teraction.

4.1 Feature Extraction

SongExplorer uses all the songs included in the Magnatune
online database, which comprises a total of 6666 songs
weighting more than 26 GB. Being Creative Commons-
licensed, this library is used in many research projects.
These songs are processed by an in-house music anno-
tation library developed at the Music Technology Group
(MTG) [10], and the results are transformed to binary files
that can be loaded by the system using the Boost 7 C++
library.

4.2 Visualization

From the whole set of available annotated features gener-
ated by the annotation library, we are curently using the
most high-level properties together with the BPM:

• Beats Per Minute (BPM)

• Happy probability

• Sad probability

• Party probability

• Acoustic probability

• Aggressive probability

• Relaxed probability

All these high level features are independent, and even the
moods, which try to cover all the basic emotions, do not
depend on each other (i.e. a song could be both sad and
happy) [10]. The emotional features can, in fact, be con-
sidered binary, with their values indicating the probability
of this feature being true.

With this data, a multidimensional feature space (of 7
dimensions) is constructed, in which each song is a sin-
gle data point with its position defined by these 7 features,
all of them being normalized between 0 and 1. From this
multidimensional data we construct a 2D space which pre-
serves its topology, and we present it to the user, who will
then be able to explore it.

Similarly to other visualization works, a SOM is used
to distribute the data on the 2D space. Our implementa-
tion of the Kohonen network uses a circular, hexagonally-
connected neuron grid, in order to fit the shape of the inter-
active surface. As opposed to the original implementation
of SOM [9], a restriction was added to prevent more than
one song falling into a single neuron, so that every rep-
resentation in the 2D space should be visible and equally
distant from its direct neighbors, as shown in Fig. 2.

In the visualization plane, every song is represented by
a colored circle, throbbing at the song’s BPM. Since there

7 http://www.boost.org

Figure 2. Detail of the hexagonal structure of the grid.

seems to be a strong agreement about the usefulness of art-
work to recognize albums or songs [11, 12], depending on
the zoom factor, the actual artwork may be shown in the
center of each song.

Additionally, colors are used to highlight the different
properties of the songs. The coupling {feature → color}
was defined with an online survey where 25 people had
to pair the high-level tags to colors. The color candidates
were 7 basic colors with maximum saturation and light-
ness: red, blue, green, brown, cyan, yellow and magenta.
Subjects were only able to choose the best color represen-
tation for each tag. The results were: aggressive-red (with
an agreement of 100%), relaxed-cyan (43.5%), acoustic-
brown (52%), happy-yellow (39%), party-magenta (48%)
and sad-blue (56.5%).

For every song, its corresponding property value is mapped
into the saturation of the related color (0 meaning no sat-
uration thus resulting on a grey color, 1 corresponding to
full saturation), while the lightness is kept to the maximum
and the hue is obviously linked to the emotional feature se-

Figure 3. Colors highlighting high-level properties: sad,
party, happy, relaxed, aggressive and acoustic (Best seen
in color, colors modified for B/W printing).
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Figure 4. The tangibles of SongExplorer: playlist naviga-
tor, color changer, magnifying glass and navigation menu

lected, as described in the previous color pairings (Fig. 3
shows the effect of different highlights on the songs). An
option to see colors representing genres is also provided,
although in that case the pairing between genres and col-
ors is done randomly.

4.3 Interaction

From a users perspective, SongExplorer is a table that shows
dynamic images on its surface, which can be manipulated
in several ways, using both the fingers as well as some spe-
cial pucks we will call tangibles, and which will be de-
scribed later.

4.3.1 Multitouch interaction

Basic finger interaction includes single and multiple finger
gestures, and the use of one or two hands. The simplest
gesture, selecting and clicking, is implemented by touch-
ing a virtual object shown on the table surface, with a sin-
gle finger and for more than 0.4 seconds. In order to distin-
guish them from the selection action, other finger gestures
involve the use of two simultaneous fingers for each hand.
That way, using only one hand, users can translate the map
and navigate through it, while the use of both hands al-
lows rotating and zooming the map (see Fig. 5). It should
be noted that most of these gestures have become de-facto
standards in multitouch and tabletop interaction [8].

4.3.2 Tangible interaction with pucks

Additionally, SongExplorer tangibles also include 4 trans-
parent Plexiglas objects of about 50cm2 each, each one
with a different shape and a different icon that suggests its
functionality, as described in Table 1. These pucks, which
can be kept on the table frame outside the interactive zone
(see Fig. 4), become active and illuminated when they get
in contact with the interactive surface. As indicated below,
some (like the color changer or the navigator) will apply to
the whole map, while others (such as the magnifying glass)
apply to the selected song.

• The color changer puck allows selecting and high-
lighting one of the different emotional properties of the
whole song space. For example, changing the map to
red allows us to see the whole map according to its
aggressive property, with fully red dots or circles cor-
responding to the more aggressive songs, and grey dots
to the least aggressive ones. Apart from helping to find
songs based on a given property, the resulting visual

Figure 5. Virtual Map movement (up) and zooming
(down)

cues also help to memorize and recognize the explored
zones of the map.

• When placed on top o a song, the magnifying glass
puck allows seeing textual information on this particu-
lar song, such as the song title, the album, the authors
name, as well as the artwork.

• The navigation puck displays a navigation menu, which
allows the user to perform actions related to the move-
ment and zooming of the map, such as returning to the
initial view, or zooming and centering on the currently
playing song.

• The playlist navigator puck allows the creation and
management of the playlist, as described below.

4.3.3 Managing playlist and playing back songs

SongExplorer has the ability of creating and managing playlists.
Playlist are graphically represented on the surface as a con-
stellation, in which the stars (i.e. the corresponding songs
it contains) are connected by lines establishing their play-
ing order (see Fig. 6). Most stars show a white stroke,
except for the one that is currently playing (red), and the
one the playlist navigator is focusing on (green).

Playlists allow several actions using both the fingers and
the playlist navigator puck. When clicking on a song, this
is automatically added to the playlist. Users can start play-
ing a song by clicking on any star of the playlist. Similarly,
crossing out a star removes the corresponding song from
the list. A song will stop playing either when it reaches its
end, when the song is deleted from the playlist or when an-
other song is selected for playing, and a playlist will keep
playing until its end, unless it is stopped with the playlist
navigator puck. This object allows several additional ac-
tions to be taken on the playlist, such as navigating through
its songs and showing information about the focused song
in the same way the magnifying glass does.

5. EVALUATION

Some user tests have been undertaken in order to evaluate
the system, focusing on the interface design. The evalu-
ation consisted in three areas: subjective experience, ade-
quacy of the visualization and the organization, and inter-
action.
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Symbol Name Description

playlist navigator Permits to run over the songs on the playlist

color changer Allows to highlight features of the songs

magnifying glass Shows information about songs

navigation menu Provides a way to return to known situations

Table 1. Tangibles used in SongExplorer

Figure 6. Playlist and Playlist navigator

5.1 Experiment Procedure

To carry out the tests, an interactive table with SongEx-
plorer up and running was provided. The system was al-
ways on an initial state at the beginning. One subject at
a time was doing the test. First of all, a little explanation
about the purpose, visualization and interaction was given.
Then the subject was asked to find something interesting
in the music collection. No time limit was imposed, and
the subject was observed along the process. At the end of
the activity, the subject was told to fill a questionnaire, on
which she had to rate, using a Likert scale of 10 levels 8 ,
the several aspects of each area. They could also write sug-
gestions at the end of the test.

5.2 Results

After doing the tests the results were quite positive (see
Table 2). Regarding the personal experience with SongEx-
plorer, the subjects enjoyed the experience, discovered new
and interesting music, felt comfortable, and found it useful

8 10: Totally agree, 0: Totally disagree.

µ1/2 IQR

Enjoyed the experience 8 1
Discovered new music 8 1

Felt comfortable 8 1.5
Found it useful 9 0.5

Found colors correct 8 1.5
Found categories suitable 7 1
Found graphics adequate 9 1.5

Table 2. Evaluation Results. µ1/2: Median, IQR: In-
terquartile range.

to find interesting music. So the overall experience seemed
to be good; we have to notice the low deviation, indicating
that there was an agreement about these opinions.

Focusing on the visualization process, there was also a
common opinion about the suitability of the colors used.
This is not a surprise, as they were extracted from an on-
line poll (details on subsection 4.2). The categories (for-
merly the high-level properties from the annotation soft-
ware) were suitable, according to the subjects, for the pur-
pose of describing music. The graphics were also evalu-
ated (meaning the adequacy of icons, the metaphor song-
circle, the panels...) and also appreciated.

For the evaluation of the interaction, this paper will not
enter into details, because of its extension, but the results
were also quite positive. The level of understanding of ev-
ery gesture and tangible of SongExplorer was tested, as
well as their difficulty of use and usefulness. The only no-
ticeable result was that there seemed to be an inverse cor-
relation between previous experiences with tabletops and
the perceived difficulty of finger gestures.

Finally there was a general demand for more music-
player capabilities like pause or a progress bar for jumping
to the middle of the song. The option of bookmarking and
storing playlist was also desired.

6. CONCLUSIONS AND FURTHER WORK

We have presented SongExplorer, a new system for large
music collections exploration, based on similarity and high
level property highlighting that can allow users to find in-
teresting new music.

679



Poster Session 4

The user tests have shown that this system can be a good
tool for discovering new, valuable music to the users. And
this forces us to think about its possible real world applica-
tions. As long as this type of interfaces are uncommon,
it is not intended for personal use because of its physi-
cal nature (size) and its hardware requirements. But other
uses than the personal one can be imagined. For instance,
some researchers from the annotation software communi-
cated their desire to use SongExplorer to test the reliability
of its annotation systems. Using the virtual map they can
easily search for inconsistencies. This can be extended to
other annotation software systems.

As another real world user case, it would be useful, as
a way of promoting music in stores, to have this system
available to their customers. An additional feature could
be created allowing users to highlight their favorite music
so they can then find similar music near to the ones they
like, to optionally buy the records afterwards.

In the future versions of SongExplorer, we want to give
it the ability of storing playlists, give the user the option of
rating songs, adding common player-like capabilities like
jumping to the middle of a song, searching songs using ac-
tual records (using identifiers on the CD cases) and proba-
bly more features.

Video:

http://www.vimeo.com/4796964
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ABSTRACT

We describe a method of indexing and efficiently searching

music melodies based on their continuous dominant fun-

damental frequency (f0) contours without obtaining note-

level transcriptions. Each f0 contour is encoded by a re-

dundant set of wavelet coefficients that represent its shape

in level-normalized form at various locations and time sc-

ales. This allows a query melody to be exhaustively com-

pared with variable-length portions of a target melody at

arbitrary locations while accounting for differences in key

and tempo. The method is applied in a Query-by-Humming

(QBH) system where users may search a database of record-

ed pop songs by humming or singing an arbitrary part of

the melody of an intended song. The system has fast re-

trieval times because the wavelet coefficients can be ef-

fectively indexed in a binary tree and a vector distance

measure instead of dynamic programming is used for com-

parisons. Using automatic pitch extraction to obtain all

f0 contours from acoustic data, the method demonstrates

practical performance in an experiment with an existing

monophonic data set and in a preliminary experiment with

real-world polyphonic music.

1. INTRODUCTION

It has been suggested in the past that using “continuous”

(or frame-based) pitch contours may result in more robust

matches of music melodies [1] compared to using sym-

bolic string representations (usually note transcriptions).

Both methods require reliable extraction of the dominant

pitch contour from both query and target for matches to be

successful, but the latter approach requires an extra tran-

scription stage of converting the continuous contours to

symbolic strings, which can exacerbate the effect of pitch

tracking errors because it makes hard decisions on note

boundaries and quantization levels. However, the former

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2009 International Society for Music Information Retrieval.

approach also has the major drawback of high computa-

tional complexity, especially when applying string match-

ing techniques to handle differences in tempo and key as

well as the well-known insertion, deletion, and substitu-

tion errors. Piecewise approximations of the contours have

been used for greater efficiency [2], but this still requires

query and target melodies to have roughly similar tempi.

Another problem in melody search is the length and

location of queries within their target songs. Query-by-

Humming(QBH) applications often limit queries to spe-

cific music phrases or hooks, hence simplifying the search

space, but in other melody search scenarios, the query may

be a completely random portion of a song, e.g. a briefly au-

dible segment of a tune in a TV commercial that the viewer

wishes to identify.

In this study, we present a method that tries to address

both issues – the computational complexity when using

continuous pitch contours and allowing the search of par-

tial melodies at arbitrary locations – by using redundant

wavelet transformations to index and match pitch contours.

The method avoids edit-distance comparisons and instead

uses distance measures between fixed-dimension vectors

while explicitly resolving tempo and key differences from

the very beginning of the search process. This is done by

dividing target melodies into overlapping, level-normalized

segments over a range of lengths and using wavelets to

efficiently represent the segments and match them with

queries. The wavelet coefficients are stored in vectors that

are in turn indexed in a binary K-D Tree [3] for fast search.

Although rhythmic inconsistencies within queries are ig-

nored for computational efficiency, the results show that in

practice we can achieve reasonable performance. Search-

ing continuous pitch contours at arbitrary locations was

tried in the past [4], but computation-intensive dynamic

programming was used for the matching.

While we agree that symbolic melody descriptions are

the future for robust melody-matching, with reliable music

modeling and transcription methods pending we believe it

worthwhile to explore the use of continuous pitch contours

in a somewhat traditional, signal-matching framework that

is fast enough for practical use.

In addition, it is hard to tell from QBH experiments

using MIDI target data how well the same system would
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perform on arbitrary polyphonic music for which the tran-

scriptions are unavailable and must be extracted automat-

ically and crudely. Assuming perfect note transcriptions

could lead to QBH methods that are overly sensitive to

the integrity of the transcription and turn out to have little

value in such real-world scenarios. Therefore, in this study

we also conduct a preliminary QBH experiment on “real-

world” data, i.e., commercial recordings of polyphonic mu-

sic from which dominant pitch contours are obtained using

an automatic f0 tracking method.

Wavelets [5] have a rich history of diverse applications

in the areas of signal coding and matching. In particu-

lar, they have been used in the past to match whole image

contours [6] with robustness to affine transformations, and

also to encode f0 contours for speaker identification [7].

In the former case, the wavelet coefficients were used to

match whole contours, while in the latter, to encode the

f0 contour using compact dyadic wavelet coefficients. In

our study, to match f0 contours for the purpose of melody

matching, we employ “redundant” sets of wavelets defined

on non-integer scale and time indices to encode segments

of varying locations and time scales.

Note that throughout this paper, we conveniently as-

sume that “main melody” and “dominant pitch contour”

both mean “dominant f0 contour,” although strictly speak-

ing, all three concepts have subtle differences.

2. INDEXING VIA REDUNDANT WAVELETS

2.1 Brief Overview of Wavelets and Notation

0 0.5 1

−1

0

1

t

Figure 1. The Haar wavelet, ψ(t)

It is well known that a real, continuous-time signal x(t)
may be decomposed into a linear combination of a set of

wavelets that form an orthonormal basis of a Hilbert Space

[5]. First, we define a wavelet as

ψm,n (t) = 2−m/2ψ
(

2−mt− n
)

(1)

form,n ∈ R (real numbers) wherem is a dilation factor, n

is a displacement factor, and ψ(t) is some mother wavelet

function. In this paper, we use the Haar Wavelet in Fig.1.

It is easy to see that the support of (1), then, is

t ∈ [n2m, (n+ 1) 2m) (2)

The corresponding wavelet coefficient of a signal x(t) is

〈x (t) , ψm,n (t)〉 =

∫ +∞

−∞

x (t)ψm,n (t) dt (3)

It is well known that whenm,n are integers j, k ∈ Z (inte-

gers), {ψj,k} form an orthonormal basis and x(t) is a linear
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Figure 2. Example query pitch contour q(t) with support

[0, T ) and “dyadic-equivalent” wavelets ψm,n that corre-

spond to some of the dyadic wavelets ψj,k of q(Tt). The

vertical dotted line indicates T . The wavelet amplitudes in

the figure are not plotted to scale.

combination of the resulting “dyadic” wavelet coefficients:

x (t) =
∑

j,k∈Z

〈x (t) , ψj,k (t)〉ψj,k (t) (4)

Since signals are often represented by a compact set of co-

efficients, we can efficiently compare real signals using

∫ +∞

−∞

{x (t)− y (t)}
2
dt =

∑

j,k∈Z

(〈x, ψj,k〉 − 〈y, ψj,k〉)
2

(5)

Throughout this paper, we always assume m,n ∈ R and

j, k ∈ Z .

2.2 Application of Wavelets to Pitch Contour

Matching

Assume some query f0 contour q(t), shown in Fig. 2.

Also assume a pitch contour p(t) of a target song, shown

in Fig. 3 representing the “dominant” f0 in a piece of poly-

phonic music. The query contour closely resembles a por-

tion of the target contour, and our goal is to locate this

segment. Given two contour segments representing iden-

tical melody, there are two different types of scaling that

must be considered before attempting to directly compare

them. The first one is in frequency, resulting from differ-

ence in musical key, which will cause one contour to be a

scaled version of the other in the linear frequency domain.

In the log-frequency domain, it will be a linear translation.

The second scaling is in the time domain, resulting from

difference in tempo. Notice that the two example melodies

are sung at different speeds. The query is about 17 seconds

long, while the matching segment in the target is about 12

seconds long. Both of these issues prevent us from directly

comparing p(t) and q(t), and they will now be addressed.

2.2.1 Key Normalization

First, assume some signal x(t) defined arbitrarily on [0, 1)
and 0 elsewhere. Since ψj,0 = 2−j/2 in [0, 1) when j > 0,

we have

〈x, ψj,0〉 = 2−j/2Sx (j > 0) , Sx ,

∫ 1

0

x (t) dt (6)
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Also note that 〈x, ψj,k〉 = 0 in [1, 0) for j > 0 and k 6= 0.

From these relations it follows that the wavelet expansion

of x(t) can be decomposed as follows:

x (t) =
∑

j≤0,k∈Z

〈x, ψj,k〉ψj,k +
∑

j>0,k=0

〈x, ψj,k〉ψj,k

+
∑

j>0,k 6=0

〈x, ψj,k〉ψj,k

= xN (t) + Sx

∑

j>0,k=0

2−j + 0 = xN (t) + Sx (7)

where we have defined

xN (t) ,
∑

j≤0,k∈Z

〈x, ψj,k〉ψj,k (8)

From the orthogonality property of the wavelets, and the

fact that x(t) is 0 outside of [0, 1), note that

〈xN , ψj,k〉 =

{

〈x, ψj,k〉 (j, k) ∈ W
0 all other j, k

(9)

where we define the set W of tuplets (j, k) that correspond

to the dyadic wavelets in [0, 1):

W =
{

(j, k) : j ≤ 0, 0 ≤ k ≤ 2−j − 1, j ∈ Z, k ∈ Z
}

(10)

Now, assume another signal y(t) = x(t) + c in [1, 0) and

0 elsewhere. Since Sy = Sx + c, we can see from (7)

that yN (t) = xN (t). Hence, for any arbitrary x(t) and

y(t) on [0, 1), we can obtain “level-normalized” signals

xN (t) and yN (t) that are independent of constant bias. In

our case, “level” is in fact “key” when x(t) and y(t) are

log-frequency pitch contours, since key shifts will result in

constant biases. To compute their mean squared distance

in a “level(key)-normalized” way, we use, instead of (5),

∫ +∞

−∞

{xN (t)− yN (t)}
2
dt =

∑

j,k∈W

(〈x, ψ〉 − 〈y, ψ〉)
2

(11)

2.2.2 Time and Key Normalization of the Query

Assume that the query signal q(t) is defined arbitrarily in

[0, T ) and 0 elsewhere. The first step is to time-scale it

into a “time-normalized” signal q′(t) defined on [0, 1) and

0 elsewhere:

q′ (t) , q (Tt) (12)

Using (3) and (1), it is easy to see that

〈q′ (t) , ψj,k (t)〉 = T−1/2 〈q (t) , ψm,n (t)〉

m = j + log2 T, n = k (j, k ∈ Z) (13)

Fig. 2 shows ψm,n for (j, k) ∈ W when j = 0,−1, and

−2, which corresponds to m = log2 T , −1 + log2 T , and

−2 + log2 T , respectively. The wavelets {ψm,n} could be

regarded as the “dyadic-equivalent” wavelets of q(t) – the

wavelets applied to q(t) that are equivalent to the dyadic

wavelets applied to its time-normalized version q′(t).
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Figure 3. Example target pitch contour p(t) and a re-

dundant set of wavelets with design parameters D = 3,

M = 12, V = 2, and E = 3 encoding the contour at dif-

ferent locations over a range of time scales. The bold bro-

ken line shows the segment resembling the query in Fig.2,

and the bold lines show the “dyadic-equivalent” wavelets

that encode this segment

Now, if we only compute those wavelet coefficients for

(j, k) ∈ W , we can obtained the key-normalized, time-

normalized signal q′N (t). From (9) and (13), we have

〈q′N , ψj,k〉 =







T−1/2 〈q, ψm,n〉
(j,k)∈W

m=j+log
2

T,n=k

0 all other j, k

(14)

2.2.3 Normalization and Redundant Encoding of Targets

For the target pitch contour p(t), we do a redundant wavelet

analysis so that we can search multiple, overlapping sec-

tions of varying time scales in p(t). Some sort of regular-

ity must be imposed on the scale factors and analysis in-

tervals so that the coefficients can be used efficiently. Note

that there can be many ways to do this, and here we are

proposing one such method. While we present a general
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formulation of our design, the easiest way to understand

this section is by studying the specific example in Fig.3.

We compute a “redundant” set of wavelet coefficients

{〈p, ψm,n〉 : u, v, w}, where we set

m =
M − u

D
− v, u = 0, 1, · · · ,D − 1, v = 0, 1, · · · , V

(15)

The constant D represents the amount of resolution in the

time scales over which the redundant analysis is done. M >

D represents some upper limit in m, u is a time scale fac-

tor, v is a nonzero integer, and V < M
D represents some

lower limit in m. For each m, the possible values of n are

n =
1

2E−v
w, w = 0, 1, · · · (16)

E > V represents the amount of time resolution. Fig. 3

shows the wavelets with D = 3, M = 12, V = 2 and

E = 3.

Now, consider the part of p(t) in

t ∈ [n02
m0 , (n0 + 1) 2m0) (17)

which is exactly the support of ψm0,n0
by (2). We also

constrain m0 and n0 to conform to (15) and (16):















m0 =
M − u0

D
− v0

0 ≤ u0 ≤ D − 1, 0 ≤ v0 ≤ V,

u0, v0 ∈ Z

n0 =
1

2E
w0 w0 ≥ 0, w0 ∈ Z

(18)

The time-normalized version of this portion of p(t), as-

suming zero elsewhere, is

p′ (t) =

{

p (2m0 (t+ n0)) t ∈ [0, 1)
0 elsewhere

(19)

It is easy to see that the corresponding key-normalized,

time-normalized signal p′N (t) will have wavelet coefficients

〈p′N , ψj,k〉 =















2−m0/2 〈p, ψm′,n′〉
(j,k)∈W

m′=m0+j

n′=k+2−jn0

0 all other j, k

(20)

Now, from (15), (16), and (18) one can see that all coef-

ficients 〈p, ψm′,n′〉 required above can always be found in

the set of wavelets {〈p, ψm,n〉 : u, v, w} up to scale level

j = v0 − V . One can also notice that many wavelet coef-

ficients can be “reused” in the sense that they contribute to

more than one contour segment. In the example in Fig.3,

we see {ψm′,n′} for j = 0,−1,−2 with m0 = 11
3 and

n0 = 14
8 , which encode the section of p(t) that pertains to

the query q(t) in Fig.2.

Using the wavelet coefficients in (14) and (20), we can

compute the distance between the key- and time-normalized

query q′N (t) and target segment p′N (t) using (11). The dis-

tance will be an approximation, since we cannot take the

coefficients over the entire set W but over a finite number

of scale levels that provides sufficient accuracy (e.g., j = 0
to j = −4 for a 7s pitch contour sampled at 10ms).

To account for variations in tempo, we compare seg-

ments over a range of values of m0. Note first that if

the query and target had the same tempo, we should have

m0 = log2 T , which would produce portions of p(t) with

length T in (17), to obtain the most accurate match. Now,

if we allow the query’s tempo to be as slow as half the tar-

get’s tempo and as fast as twice the target’s tempo, we can

let m0 vary within the range

−1 + log2 T < m0 < 1 + log2 T (21)

which results in around 2D different values of m0 accord-

ing to the system design.

2.2.4 Two-Stage Search of Arbitrary Target Locations

Query coefficients

Binary search

over K-D tree

Candidate list

Linear rescoring

using full set of coefficients

Final ranked list

j=0

j = -2 j = -1j = -3

Target

DB

Figure 4. Schematic overview of two-stage search. In this

example, 7 wavelet coefficients are indexed by a K-D Tree,

and 15 coefficients are used for the linear rescoring.

The variable n0 in (19) controls the location of the tar-

get segment compared with the query. The resolution of

the wavelet locations can be controlled to find a good com-

promise between speed and accuracy. For efficient com-

parison of a query with a large number of targets, the pos-

sible dyadic-equivalent coefficients embedded in every tar-

get (i.e., the coefficients in (20)) can be indexed as co-

ordinates in a binary K-D Tree [3] with a fixed number

of dimensions. Each leaf in the tree coarsely represents

a melodic fragment in the target database. At the first

stage of the search, the query coefficients are appropri-

ately scaled to form a search sphere that is used to find tree

leaves that are spatially close to the query, resulting in a list

of candidate melody fragments. At the second stage, a lin-

ear search is conducted over the candidates using a larger

number of coefficients to more accurately compute (11),

which is then used to rank the results as shown in Fig.4.

In practice, no more than 31 wavelet coefficients (j =
0 to j = −4 in W) are usually sufficient to represent a

melody segment with length 7s sampled every 10ms. In

such a case, the first 7 coefficients (j = 0 to j = −2
in W) can be indexed in the K-D tree, while the full 31

coefficients are used in the linear rescoring stage.

In terms of computational complexity, if dynamic pro-

gramming(DP) were used to search for a query of length

Lq[frames] in a target of length Lt[frames], scores would

have to be calculated for LqLt coordinates (assuming no
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pruning). If a linear search were used with the proposed

method, we would need to compute only kLt(k << Lq)
vector distances, where k is essentially a constant since the

number of wavelet coefficients (as in Fig.3) increases lin-

early with Lt. The addition of a K-D tree further reduces

this number drastically, making the computational gains of

the proposed method even more apparent.

3. EXPERIMENT

3.1 Pitch Contour Extraction
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Figure 5. (a) Log magnitude of log-frequency spectrum

(dark is high) from 82.4 Hz to 3.84 kHz of a segment of

Yesterday by The Beatles. Frequency components of both

voice and instrumental accompaniment are clearly visi-

ble. (b) Pitch contour of segment with hand-marked note

boundaries (broken vertical lines) and corresponding lyrics

in select locations (full lyrics are “Suddenly, I’m not half

the man I used to be, there’s a shadow hanging over me”)

A simple method based on known techniques was used

to obtain dominant f0 contours from music recordings. The

Constant-Q Transform [8] of each music signal was taken

to obtain spectral components on a log-frequency scale.

Fig.5(a) shows the spectrogram for a segment of Yesterday

by The Beatles. Next, we assigned scores for each (t, f)
on the time-frequency plane by computing weighted sums

of the spectral components at harmonics of f [9]. After

limiting the range of the dominant pitch via some heuris-

tics, we applied dynamic programming on the t− f plane

of scores to obtain a continuous pitch contour [10] that

maximizes the sum of pitch scores along its path. Fig.5(b)

shows the pitch contour obtained for the Yesterday exam-

ple. While the overall structure of the contour reflects the

vocal melody of this part of the song, we can notice that in

the non-vocal sections between “Suddenly” and “I’m” and

between “to be” and “there’s”, the dynamic programming

picked up the pitch of the strings in the background. In-

flections in vocal pitch inevitably produced during singing,

and other minor deviations from what is probably the “true”

music score are also reflected in the continuous contour.

However, we made no attempt to identify and compensate

for any such deviations or discriminate between vocal and

non-vocal sections, and directly used the whole pitch con-

tour from every target in the database in our experiments.

3.2 QBH Test
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Figure 6. Search performance for (a) MIREX 2006 test set

and (b) “real-world” test set. The vertical axis represents

the inclusion rate(%), and the horizontal axis is the number

of search results.

Two experiments were conducted: the first on mono-

phonic music to validate our method with existing QBH

tasks, and the second on polyphonic music to make a pre-

liminary assessment of its use in real-world scenarios. For

both experiments, the dominant f0 contour was automati-

cally extracted from query and target data using the afore-

mentioned method. Contours were sampled every 10ms.

For the first experiment, we used the MIREX 2006 QB-

SH test set (see description in [2]). All target data in this set

are monophonic MIDI data, so we first converted them to

WAV format. Each song in the database was 29.9s long on

average (17 hours total for the database of 2,048 songs).

Fig.6(a) shows the inclusion rate for varying number of

search results, i.e., the rate at which the correct melody

was ranked within the top n of all returned results. For

n = 20, the inclusion rate was 84.9%, which is signif-

icantly lower than the state-of-the-art [2], 96.4%. Note,

however, that the latter system constrained the queries to

occur at only the beginning of music phrases. Since al-

most all queries in the MIREX 2006 test set start at the

beginning of their targets, such a data set would greatly

favor systems with such constraints. Our proposed sys-

tem, on the other hand, made no assumptions on starting

locations and exhaustively searched over all possible loca-

tions, limited only by the wavelet parameters. Also, tempo

variation is taken into account from the very beginning of

the search, not just at the latter fine search stage. Hence,
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the search space was larger, which resulted in more room

for confusion. At the same time, the search time for each

query was usually less than one second on a 3.2GHz pro-

cessor depending on system parameters.

For the second experiment, we used a “real-world” data-

base consisting of 613 acoustic recordings of songs with

instrumental accompaniment, totaling around 37 hours of

audio (average 3.6 minutes per song). 155 of the songs

were from the RWC Music Database [11], and the rest

were commercially-distributed pop songs. A preliminary

set of queries were obtained from six non-professional sing-

ers – three male, and three female. Each person was asked

to sing several easy and well-known songs including “Ha-

ppy Birthday,” “The Alphabet Song,” and “Are You Sleep-

ing, Brother John?” from which query segments at random

locations were extracted. Each query was 5∼12 seconds

long, and there were a total 50 queries. We informally

verified that the songs in the target database correspond-

ing to these queries had reasonably clear dominant f0’s,

but there were still noticeable errors in the f0 extraction

due to instrumental accompaniment, like in the example in

Fig. 5(b). Fig. 6(b) shows the inclusion rate for a varying

number of search results. The inclusion rate was 86% for

n = 5 and 88% for n = 20, which seems similar to that of

another state-of-the-art system [12] that also allows queries

to begin at random locations but uses a MIDI database. We

are cautious in directly comparing the performance of the

two systems, however, because they differ in experimental

setup. Nevertheless, our results are promising because we

used a database of polyphonic recordings instead of MIDI

data. Larger data sets and larger numbers of queries will

have to be used in the future to more rigorously assess real-

world performance.

4. CONCLUSION AND FUTURE WORK

We have proposed an efficient method of indexing and mat-

ching music melodies based on their continuous pitch con-

tours while allowing partial matches at arbitrary locations

using redundant wavelet transformations. By directly com-

paring continuous pitch contours instead of their note tran-

scriptions as in most existing methods, we avoid the com-

pounding of transcription errors. On the other hand, our

method is also computationally efficient because it uses

the mean squared sum between fixed vectors instead of dy-

namic programming, while at the same time being able to

adjust for differences in tempo and key. Experiments were

conducted on both existing monophonic MIDI databases

and preliminarily on real-world recordings with instrumen-

tal accompaniment to show that the system can be prac-

tically applied, even when using a simple mean squared

distance measure between key- and time-normalized con-

tour segments. While the system still depends on reliable

dominant pitch extraction, minor pitch tracking errors did

not hurt performance because the overall pitch and rhythm

structure of contours was compared. One trade-off for the

system’s efficiency is that it does not explicitly account for

rhythmic variations within queries as do techniques based

on string-matching. Much work is being done in the MIR

community toward model-based symbolic representations

that allow a more modular framework for indexing and

search, such as via HMMs, and we plan to leverage the

insights gained in our work to this end.
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ABSTRACT 

In this paper we look at the problem of classifying music 
audio as tonal or atonal by learning a low-dimensional 
structure representing tonal relationships among keys. 
We use a training set composed of tonal pieces which in-
cludes all major and minor keys. A kernel eigenmap 
based method is used for structure learning and discov-
ery. Specifically, a Diffusion Maps (DM) framework is 
used and its parameter tuning is discussed. Since these 
methods do not scale well with increasing data size, it 
becomes infeasible to use these methods in online appli-
cations. In order to facilitate on-line classification an out-
of-sample extension to the DM framework is given. The 
learned structure of tonal relationships is presented and a 
simple scheme for classification of tonal-atonal pieces is 
proposed. Evaluation results show that the method is able 
to perform at an accuracy above 90% with the current 
data set.  

1. INTRODUCTION 

Audio key estimation is an important aspect of MIR. It 
informs many other tasks including music analysis, seg-
mentation, cover song detection, modulation tracking, 
local key finding and chord recognition. In order to esti-
mate the key, most key finding models use a similarity 
metric between predetermined reference features and the 
analyzed features from the audio. All of these approaches 
assume that the fragment of the piece being analyzed 
contains tonal music and furthermore that musical con-
tent is in a single key. These models generally lack me-
chanisms to detect music that is not tonal and hence 
would make best-guess estimates regardless of the tonal 
quality of the input. One important question, which is the 
topic of this paper, is how to determine whether a piece 
belongs to the tonal idiom: whether there are clear and 
unambiguous tonal implications or not.   

In this work, we explore the utility of dimensionality 
reduction, manifold learning and structure discovery in 
the context of tonal versus atonal music audio classifica-
tion. We investigate the possibility of learning a low-
dimensional structure representing tonal relationships 
among pieces. We report on experiments that utilize Dif-
fusion Maps to perform dimensionality reduction and 
feature extraction from high-dimensional spectral data. 

We use a set of audio recordings representative of all 24 
keys as the reference training set and test the model with 
tonal and atonal audio fragments to evaluate its perfor-
mance.  

The structure of the paper is as follows: The next sec-
tion makes reference to related work and explains the 
concept of tonalness. Section 3 describes kernel methods 
and DM in particular. This section also discusses the tun-
ing of the width parameter of DM. Section 4 outlines the 
main outcomes and describes the evaluation method. Sec-
tion 5 concludes the paper.   

2. RELATED WORK 

Temperley describes a probabilistic framework on sym-
bolic data for measuring tonal implication, tonal ambigu-
ity and tonalness for pitch-class sets [1]. According to 
his definition, tonal implication is the key implied by the 
pitch-class set being used. Ambiguity refers to whether a 
pitch set implies a single key or several keys. Tonalness 
is the degree to which a set is characteristic of common-
practice tonality. In this sense, our work relates directly 
to the concept of tonalness. Our assumption is that a 
piece that conforms to pitch distributions of common 
practice tonality will have certain spectral properties that 
distinguish it from other types of pitch distributions such 
as those found in twelve-tone music or polytonality. 
These spectral properties, or so called spectral signa-
tures, have native representations in a high-dimensional 
space and therefore need to be mapped to low-
dimensional features to be useful - not only for classifi-
cation purposes but also for visualization and geometric-
al interpretations. The remainder of the paper discusses a 
method to classify music audio based on the degree of 
tonalness.  

In her thesis, Gómez applied her key finding method 
to an atonal piece by Schoenberg [2]. She observed that 
the correlations of her Harmonic Pitch Class Profile 
(HPCP) with the major and minor profiles, that are de-
rived from Krumhansl's work, remained low throughout 
the piece, indicating ambiguity. 

Izmirli reported on the performance of a template 
based key finding algorithm using a low-dimensional 
representation obtained through dimensionality reduction 
[3]. He graphed the performance of his method as a 
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function of the number of dimensions and noted that 2 
and 3 dimensions produced acceptable accuracy for the 
particular model he was using.  

Purwins briefly discusses poly-tone analysis and ton-
al ambiguity in relation to Pitch Class Profiles that he 
uses in his key finding algorithm [4]. 

3. DIMENSIONALITY REDUCTION, MANIFOLD 
LEARNING AND STRUCTURE DISCOVERY 

3.1 Method 

In general, given a set of training data we would like to 
infer some parameterization of it such that new data can 
be efficiently compared to the training data. The parame-
terization can then be used for many different purposes 
including classification. In the following we present a 
method that performs dimensionality reduction on a train-
ing set of tonal audio in order to find a representative 
structure. The resulting low dimensional representation is 
then used to determine whether new input data resembles 
the training data or not; more specifically, if it is tonal or 
atonal. This section describes the method of dimensional-
ity reduction used and a scalable extension for new data. 

3.2 Kernel Methods 

In contrast to the standard linear methods such as Prin-
cipal Component Analysis (PCA) and Multidimensional 
Scaling (MDS) for dimensionality reduction, nonlinear 
methods are better suited to preserving local geometry. 
This is due to the fact that they attempt to approximate 
manifolds in the high-dimensional space by considering 
connectivity between neighboring points as opposed to 
capturing the global nature of the data. Nonlinear me-
thods include Isometric Feature Mapping (ISOMAP), 
Kernel PCA and a class of kernel eigenmap methods in-
cluding Laplacian Eigenmaps, Locally Linear Embedding 
(LLE), Hessian Eigenmaps (Hessian LLE) and Local 
Tangent Space Alignment (LTSA). In [5] Coifman and 
Lafon show that the kernel eigenmap methods are special 
cases of a general framework based on diffusion 
processes. Here, we follow a formulation for dimensio-
nality reduction, manifold learning and data parametriza-
tion based on DM [5]. The major advantages of this ap-
proach over PCA and MDS are that it is nonlinear and 
preserves local structures. Kernel eigenmap methods rely 
on the idea that eigenvectors of a transition matrix 
representing the distances between points in the input 
space can be interpreted as coordinates on the data set. 

3.3 Diffusion Maps 

The concept of diffusion maps stems from dynamical 
systems and it is based on a Markov random walk on the 
graph of the data. The proximity of the data points is 
modeled as diffusion distances according to the affinity 
between neighboring points. DM preserves local geome-

try present in the high-dimensional input while perform-
ing dimensionality reduction.  

Assume the data set containing k elements is given by 
X={x0, x1, x2, ...,xk-1} with xi element of Rm. A pairwise 
similarity matrix L is calculated using a Gaussian kernel 
with parameter ε : 

22

),( ε
ε

ji xx
jiji exxwL −−
==                       (1) 

Furthermore, a diagonal normalization matrix is defined 
to make the sum of the rows of L equal 1: 

∑=
j

jiii LD                               (2) 

The normalized graph Laplacian is then given by the 
Markov matrix LDM 1−= . In order to find a mapping, 
Φ , from Rm to Rn, where m > n, an eigen-decomposition 
of M is performed. The eigenvectors and eigenvalues can 
be found by solving the equivalent generalized eigenva-
lue problem φλφ DL = . When ε in Eq. 1 is large enough, 
M is fully connected and has a unique eigenvalue of 1. 
From the remaining k-1 eigenvalues, n of the largest 

0≥≥ n...1> 21 ≥≥ λλλ  and their corresponding eigen-
vectors nφφφ ,...2,1 can be retained to map input samples 
from the high-dimensional space onto the lower dimen-
sional feature space. The mapping is given by  

)](),...(),([: 2211 iiix nni φλφλφλ→Φ                       (3) 

where index i in )(inφ represents the i'th element of the 
eigenvector. 

3.4 Determining ε 

The width parameter, ε, controlling the Gaussian in Eq. 1 
has an effect on the locality of the structure captured. For 
example, a relatively small ε will capture the local struc-
ture better. However, if ε is too small then matrix L will 
have many small elements and hence, low connectivity, 
which will prevent it from capturing the desired structure. 
An unnecessarily large value on the other hand will cause 
the method to overlook the local structure. Although the 
value of this parameter is data dependent, fortunately, its 
choice can be automated. 

 Several approaches have been proposed to determine 
the optimal value of ε. The average of the distances be-
tween nearest neighbors in the data set are used in [6]. 
Another method is to adjust the parameter until every 
point has a significant connection to at least one neigh-
bor. We follow the approach used in [7]. The method 
consists in searching for a point on the linear segment of 
the log-log graph of  )(εT and ε, where 

  ∑∑=
i j

ji xxwT ),()( εε                          (4) 

688



10th International Society for Music Information Retrieval Conference (ISMIR 2009)  
 

The graph contains two asymptotes, )(lim εε T∞→ and 
)(lim 0 εε T→ which are connected by an approximately 

linear line. We choose ε corresponding to the midpoint 
between the asymptotes in this graph. 

3.5 Scalability and Out-of-Sample Extensions 

Kernel methods described in the previous section have 
been successfully applied to dimensionality reduction and 
manifold learning. They are, however, computationally 
expensive and do not scale well to large data sets. They 
also do not directly accommodate new data and in that 
sense are limited to their training set requiring a new run 
every time new data is to be added. 

Out-of-sample extensions are approximations that 
utilize the original eigen-decomposition to compute the 
mapping of new samples that do not belong to the origi-
nal data set. In [8] the authors discuss how to compute 
out-of-sample extensions for various kernel methods. We 
employ the Nystrӧm extension to find the mapping of the 
new data point as follows: 

∑ ∑
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Once  is calculated, it is substituted for the 

corresponding eigenvectors in Eq. 3 to obtain the position 
in the lower dimensional feature space. 

)..1(
~
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Calculation of the Nystrӧm extension is computation-
ally light. The denominator of Eq. 5 can be precalculated 
and the numerator is just a scaled sum of k vectors.  

4. LEARNING TONAL STRUCTURE 

4.1 Geometric Models of Pitch and Key 

Many geometric models of pitch and key space have been 
proposed that originate from music theory and cognitive 
science. These include structures such as a circle, torus, 
helix and double helix (See for example [9] and [10]). 
Furthermore, most of these geometric structures are cyc-
lic at one if not at multiple levels. In its simplest form, we 
know that key arrangements of the 12 major keys moving 
in fifths forms a circle. Similarly minor keys follow the 
same pattern. Obviously, this is based on the assumption 
that the music is performed in an equal tempered system.  

In [11] it has been demonstrated that this or another 
cyclic structure can be captured from the audio of musi-
cal instruments playing diatonic scales. In this 2-
dimensional space, points that represent key centers are 
organized in such a way that if we draw lines between the 
closely related keys the resulting arrangement forms a 
closed loop visiting each key center once.  

4.2 Learning Structure from Audio Data 

In this work, we explore the utility of structure discovery 
in the context of tonal versus atonal music audio. We ob-

tain a chroma representation similar to [12] from the 
Hanning windowed short-time Fourier Transform. A 12-
element chroma vector is obtained by summing the semi-
tone frequency ranges of the amplitude spectrum accord-
ing to pitch-class equivalence. That is, the semitone fre-
quency range around the fundamental frequency of a 
note, the range around its octave and its second octave 
etc. all map to a single bin in the chroma vector.  

Initially, we employed the method outlined in Section 
3 to test if it was able to learn a low-dimensional struc-
ture using only recordings of tonal music. The training 
data, X, comprised of chroma vectors calculated from ini-
tial fragments of 289 pieces containing compositions 
mainly from the common practice period. Each point in 
the data set, xi, represents the average of 30 seconds of 
music taken from the beginning of each piece. This dura-
tion was determined experimentally and can be chosen to 
be shorter without significantly effecting the algorithm's 
output. Note that the training is unsupervised and al-
though the key labels are known from the titles of pieces 
they are not part of the input. The key distribution of the 
data set, although not completely uniform, is such that the 
lowest number of pieces in the same key is 9. For a col-
lection of this size, a completely even distribution would 
require 12 pieces for each of the 24 keys. Although it 
would have been possible to either trim all pieces to the 
same number or add more pieces to bring the key totals to 
the same level, the current distribution was kept to ob-
serve the sensitivity of the DM algorithm to the density 
of samples on the manifold. It should be mentioned that 
sampling density is a main concern for many manifold 
learning algorithms and may need special attention if the 
spatial distribution is unbalanced. 

 

 
Figure 1. The input data set consisting of tonal pieces 
mapped to the first two dimensions. A circular structure 
resembling the circle-of-fifths is captured for the chro-
ma representation (left) and for the spectral representa-
tion (right). 

 
The left plot in Figure 1 shows the mapping Φ with 
2=n  in response to the input data set, X, based on the 

chroma representation as described above. The out-of-
sample extension is not used for this part. A circular 
structure is clearly visible in the figure which means it 
was able to capture some kind of circularity. Then again, 
this highly resembles the circle-of-fifths pattern. We veri-
fied the order of keys by analyzing their key labels to 
make sure the neighboring clusters were in a fifths rela-
tionship. There was considerable scatter within classes 
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that belong to the same key. There was also significant 
overlap between classes, yet, the circle-of-fifths pattern 
was evident. The output for the spectral representation is 
shown in the right plot in Figure 1. These vectors are the 
same spectral vectors used to calculate the chroma repre-
sentation. The reason for inclusion of the spectral vectors 
is to see if DM is able to obtain a mapping on par with or 
better than the traditional chroma representation. It 
should be noted that the uneven density of points does 
manifest itself in both plots without loss of generality of 
the result. 

To further demonstrate the circle-of-fifths pattern we 
used chroma templates obtained from the audio of mono-
phonic instrument sounds playing major scales. Each of 
the 12 templates consists of a single scale over multiple 
octaves. The details of the construction of the templates 
can be found in [13] and [14]. The templates were 
mapped using the out-of-sample method with respect to 
the tonal training data, X, described above. The results 
are shown in Figure 2. Here, each template represents an 
ideal key position in the feature space and the projection 
serves as a demonstration of the circle-of-fifths relation-
ship among the 12 major keys. A similar order has also 
been observed for minor keys. 

 
 

Figure 2. Mapping of audio templates to the first two 
dimensions. The labeled points representing the major 
templates are superimposed on the chroma based repre-
sentation in Figure 1 (left). 

4.3 Training and Test Data for Evaluation 

Starting from the observation that a data set containing 
pieces in all 24 keys results in the constellations shown in 
Figure 1, we turn to testing the DM model with tonal and 
atonal data using the out-of-sample extension described 
above. For this part we added 25 complete atonal pieces 
composed by Boulez, Schoenberg and Webern. Both the 
tonal and atonal pieces were segmented into 10-second 
fragments. There are 599 atonal fragments and 925 tonal 
fragments in the data set. Each fragment is represented as 
a point, xi, found by dividing the spectral or chroma vec-
tors by their L2 norm, and an associated tonal/atonal label 
serving as ground truth for evaluation purposes. The fre-
quency ranges of interest for both representations are 55 - 
2000 Hz. The training data set was constructed as fol-

lows: 60% of the tonal points were randomly chosen and 
were used to train the DM model. The remaining 40% 
were added to the test set accompanied by an equal num-
ber of points randomly chosen from the atonal set. After 
calculating the original mapping using 60% of the tonal 
points, the out-of-sample calculations were performed on 
the test set. Figure 3 shows the mapping of the test results 
onto the first two dimensions. These results are overlaid 
with the training points to show the nature of generaliza-
tion the extension brings.  

 
 

Figure 3. Training and test data mapped to the first two 
dimensions: chroma based inputs (top) and spectrum 
based inputs (bottom). Tonal training data are shown 
with dots (.), the tonal test data are shown with circles 
(○) and the atonal test data are shown with pluses (+). 

4.4 The Tonal-Atonal Classifier 

As can be easily observed from Figure 3, the tonal train-
ing points and the tonal test points tend to appear at posi-
tions closer to the outer circular pattern whereas the aton-
al test points tend to appear near the center. Therefore, 
we simply choose to use the Euclidean norm of a point in 
the feature space to quantify its tonalness as defined in 
Section 2. For the 2-dimensional case, the performance of 
the classifier is given by the peak classification accuracy 
in which a circle acts as the class boundary. It should be 
noted that although we treat the problem as a two-class 
classification task in this paper, in fact, the calculated to-
nalness is a continuous entity and is indeed correlated 
with the degree of the musical fragment's tonal implica-
tion. The distances in the feature space can be used to 

690



10th International Society for Music Information Retrieval Conference (ISMIR 2009)  
 

quantify the degree of tonalness. A study of the tonalness 
of transpositional type pitch class sets can be found in 
[15].  

4.5 Results 

An average accuracy was calculated by running the 
above classification 10 times. The chroma based classifi-
cation resulted in an average accuracy of 91.2% and the 
spectrum based classification resulted in 90.4% accuracy. 

As an alternative feature we ran a classification task 
based on the variance of the chroma and spectrum vec-
tors (xi) to see how they compared with the presented me-
thod. The intuition was that the chroma vector corres-
ponding to tonal pieces would have more variance com-
pared to atonal pieces because it would exhibit a strong 
interleaved response across bins of the vector. i.e. say, for 
C major, one would expect the bins corresponding to the 
white keys to be strong and those of the black keys to be 
weak.  On the other hand, atonal pieces would have a 
more uniform spread across the bins. The chroma va-
riance feature performed at 84.9% accuracy. The same 
reasoning does not really apply to the spectrum vectors 
because they are fairly sparse compared to the chroma 
vectors but nevertheless we tested the feature and ob-
tained 64.4% accuracy; very low as expected.  

5. CONCLUSION 

In this paper we have discussed a method based on Dif-
fusion Maps to perform tonal-atonal classification of mu-
sic audio. Initially, we learn a low-dimensional structure 
representing pitch distributions that pertain to the tonal 
idiom. We then extend the learned mapping to new points 
and test the performance of the method. The learned cyc-
lic structure is demonstrated through a display of the pro-
jected circular constellation of the training points and the 
projection of major scale templates representing ideal key 
locations in relation to this constellation. The use of the 
learned cyclic structure in quantifying tonalness is also 
discussed. Finally, results are presented for the tonal-
atonal classification task for chroma representations as 
well as raw spectral representations. The results are en-
couraging and promising. Future work involves exploring 
more general mechanisms for calculating the structure 
similarity between training and test structures, and find-
ing optimal training sets for faster and more efficient op-
eration. 
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ABSTRACT 

In this paper we present the EASY (Electro-Acoustic 
muSic analYsis) Toolbox software system for assisting 
electro-acoustic music analysis. The primary aims of the 
system are to present perceptually relevant features and 
audio descriptors via visual designs to gain more insight 
into electro-acoustic music works and provide easy-to-
use “click-and-go” software interface paradigms for prac-
tical use of the system by non-experts and experts alike. 
The development of the EASY system exploits MIR 
techniques with particular emphasis on the electro-
acoustic music repertoire – musical pieces that concen-
trate on timbral dimensions rather than traditional ele-
ments such as pitch, melody, harmony, and rhythm. The 
project was mainly inspired by the lack of software tools 
available for aiding electro-acoustic music analysis. The 
system’s frameworks, feature analysis algorithms, along 
with the initial analyses of pieces are presented here. 

1. INTRODUCTION 

The idea for EASY Toolbox originated between 1999-
2000 in the form of a master’s thesis entitled “Salient 
Feature Extraction of Musical Instrument Signals” [11] 
which included a Java-based feature extraction and visu-
alization software called Jafep (Java Feature Extraction 
Program). Since then, the project has somewhat been 
dormant, at least in direct relation to its original intention. 
Portions of the research evolved to automatic instrument 
recognition studies and further lead to the FMS software 
synthesis system [10] and most recently has developed 
into the EASY Toolbox to assist in the analysis of elec-
tro-acoustic music.  

There is much interest and on-going research in MIR 
on various dimensions of music and a wealth of research 
can be found in pertinence to traditional music especially 
popular music. Some examples include rhythm analysis, 
melody analysis, tonality, traditional harmony, music rec-
ommendation, genre classification, instrument identifica-
tion, and composer identification to name a few [2,16]. 
As far as MIR techniques and its applications in the area 
of music are concerned, much of the focus seems to be 
outside the realm of electro-acoustic music. One of the 
reasons for the scarcity in MIR-based research for elec-
tro-acoustic music may perhaps be attributed to the need 
for MIR researchers to be interested and actively be in-
volved in composing or be deeply engaged in electro-
acoustic music on a musical level. Another reason for this 

somewhat imbalance may be that the community seems to 
prioritize resources to the more standard musical reper-
toire that the general public accesses.  

Some works related to the topic of music analysis soft-
ware include Jafep (Java Feature Extraction Program), 
jAudio, Wavesurfer, Vivo, JRing, SoniXplorer, Sonic 
Visualizer [1, 3, 4, 6, 8, 11, 14], and others [17, 18]. Jafep 
is a Java-based feature extraction system for displaying 
feature vectors in a two-dimensional canvas and includes 
a harmonic follower designed mainly for analysis of mu-
sical instruments which is similar to jAudio. However, 
jAudio further concentrates on providing a feature extrac-
tion library/repository. Wavesurfer is a system for speech 
research and displays waveforms, pitch information, 
spectrograms, and formants. Vivo and JRing focus on 
pitch-based music, where JRing additionally deals with 
incorporating traditional scores for musicological studies. 
SoniXplorer is an interesting application which again 
primarily pays attention to traditional and popular music 
using self-organizing clustering algorithms. The Sonic 
Visualizer seems to be designed to address traditional 
music also, that is, pieces involving pitch, harmony, and 
rhythm. Although it has the ability to display audio fea-
tures, perhaps due to the original design of the software 
architecture, when analyzing electro-acoustic music type 
signals, the visualization environment does not seem to 
be ideally suited for such situations. Marsyas (and to a 
lesser degree MIR Toolbox) is probably the most exten-
sive environment for MIR research. It seems especially 
well suited for “DSP experts” and for the more experi-
enced software developers/researchers but is perhaps not 
ideal for “users” who are looking for out-of-the-box 
software applications with simple and intuitive GUI inter-
faces as well as viewing capabilities – ready to use appli-
cations for specific purposes.  

The EASY Toolbox is a modest initial step towards 
applying MIR theories with particular emphasis on elec-
tro-acoustic music focusing on its potential in gaining 
musical insights based on salient feature extraction tech-
niques and clustering with the primary objective being 
that of an analytical tool wrapped with an intuitive GUI 
environment. 

2. THE EASY TOOLBOX 

2.1 Core Concept 

One of the important characteristics of numerous electro-
acoustic music, especially those pieces that are in the tape 
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music genre, is that they are often concerned with aspects 
of timbre and sound color opposed to traditional musical 
elements such as pitch, harmony, and rhythm. However, 
although there are examples of software systems for ana-
lyzing “pitch-based music” as discussed in the introduc-
tion, there does not seem to be much of any software that 
is available for the analysis of music that do not adhere to 
those time-honored musical parameters. There is much 
software available for viewing raw waveforms and spec-
trograms but that type of information does not really of-
fer too much insight by itself. Hence, our approach is to 
utilize salient feature extraction techniques as the basis 
for music analysis to uncover hidden information that is 
timbrally and perceptually relevant and perhaps even 
helpful in revealing additional data about a given work. 
We have also included segmentation/clustering algo-
rithms using model-based and distance-based techniques. 
The algorithms that are implemented and used for dis-
playing various features are hidden from the user as 
much as possible in order to render an easy-to-use inter-
face. Furthermore, we have attempted to present the fea-
ture vectors in intuitive ways by plotting data in the 
time/frequency-domain and timbre spaces using 3D re-
presentation/navigation techniques. With a straightfor-
ward “click-and-go” environment provided by EASY, we 
hope that users will be encouraged to explore various 
timbral dimensions thereby help better understand sound 
objects and music.  

2.2 EASY Features 

2.2.1 The  EASY Interface 

The two main canvases in EASY are time-domain and 
frequency-domain displays as shown in Figure 1. 

Figure 1. Screenshot of EASY 

The approach of designing the EASY interface was dri-
ven by the aim of providing the user a 3D visualization 
environment for sonic exploration and interaction. For 
example, the waveforms for stereo files or multichannel 
files are presented in a cascading style along with the cor-
responding spectrogram.   

The control areas of EASY include time/frequency-
domain parametric control and feature selection for anal-

ysis/display. Standard functionalities such as zoom-in, 
zoom-out, 3D navigation/rotation, viewing options inhe-
rited from MATLAB®, the real-time input DAQ option 
(see Section 2.2.3), and a transport control are also in-
cluded. Further controls are available for clustering and 
segmentation such as feature selection for clustering, 
number of clusters, and clustering algorithms as further 
discussed in Section 3. 

2.2.2 EASY 3D Timbre Space Plots: the timbregram 

EASY provides intuitive 3D timbre space representations 
adopted from [7] for sonic exploration which we call 
timbregrams. Figure 2 shows a timbregram example of a 
time-sequenced three instrument signal – bass guitar fol-
lowed by clarinet and French horn with three timbre di-
mensions (spectral spread, spectral centroid, and spectral 
flux).  

 
Figure 2. Timbre Space Example 

The dots and dashed lines portray the 3D timbral tra-
jectory as a function of time where the right pointing tri-
angle refers to the beginning of the sample and the left 
pointing triangle the end of the sample. Each node 
represents a time unit equal to the frame/hop size. During 
audio playback, feature vector following occurs not only 
in the time-domain and frequency-domain canvases but 
also in the timbregram canvas itself (displayed in a sepa-
rate window as shown in Fig. 1). This allows intuitive 
observation of sonic events via synchronization between 
the visuals and the audio that is played back. 

2.2.3 “Real-Time” and MATLAB® Data Acquisition 
Toolbox 

One of the advantages in using MATLAB® is the incred-
ible resource of toolboxes available for data analysis and 
manipulation. One such example is the Data Acquisition 
(DAQ) Toolbox used for real-time analysis applications. 
The EASY system exploits the DAQ for analyzing and 
displaying input signals (mic/line input) in “real-time.” It 
can display one or multiple features (selectable by the 
user) in the time and frequency-domain as well as the 
timbregram canvas.  
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2.3 EASY Algorithms 

A total of 26 features in the time and frequency-domain 
are implemented in this current version of EASY – am-
plitude envelope, amplitude modulation, attack time, crest 
factor, dynamic tightness, frequency modulation, low en-
ergy ratio, noise content, pitch, release time, sound field 
vector, temporal centroid, zero-crossing rate, 3D spectral 
envelope, critical band, harmonic compression, harmonic 
expansion, inharmonicity, MFCC, modality/harmonicity/ 
noisiness, spectral centroid, spectral flux, spectral jitter, 
spectral roll-off, spectral shimmer, and spectral smooth-
ness. Many of the feature extraction algorithms them-
selves were developed in the FMS Toolbox [10, 12] and 
have been customized for use in EASY. Below, we pre-
sent a short description of a select number of new fea-
tures that we developed. 

The dynamic tightness feature measures the quantized 
time-amplitude histogram on a frame-by-frame basis and 
provides insights into the “tightness” or “holiness” of the 
distribution of quantized sample values. This idea is 
shown in Figure 3 showing a highly compressed electric 
bass slide sample displaying a densely populated bed of 
samples throughout the amplitude axis bounded by the 
compressor threshold value. 

 
Figure 3. Electric Bass Slide: Compressed  

Modality/harmonicity/noisiness is a method for ana-
lyzing a signal in terms of its harmonic, modal, and noise 
content. As shown in Figure 4, the harmonicity, modality, 
and noise floor levels of a signal are computed and dis-
played over time. One way of computing the harmonicity 
and modality is via the fundamental frequency (f0) and 
the drift (ek) in Hz. ek is found by first determining spec-
tral peaks, followed by computing their distances with 
respect to the closest ideal harmonic locations. The mod-
ality (“excessive inharmonicity”) of each harmonic com-
ponent can be then computed as the ratio of the drift and 
the fundamental frequency. As expressed in Equation (1) 
and (2), taking the mean of the inharmonicities of all the 
harmonics can be used to derive the modality of a signal. 
 

k
fefeModality k 001 /.../ ++

=  (1) 

 Harmonicity = 1 – Modality (2) 
   

Harmonicity/
(1 - Modality)

Time

Noise 
Floor

Harmonicity 
Profile

Modality 
Profile

Figure 4. Modality/Harmonicity/Noisiness 

The computation of the noise floor is based on sound 
flatness measure (SFM) – the ratio of the geometric mean 
and the arithmetic mean which has been used in speech 
research to extract voiced and unvoiced signals. When 
the signal is considered to be above the noise threshold 
(via SFM), the fundamental frequency is estimated which 
is then followed by modality analysis. On the other hand, 
if the signal’s SFM value is determined to be below the 
noise threshold, it will be considered as noise. Another 
feature included in EASY is the multi-channel sound 
field vector developed by Travis Scharr while at Tulane 
University. This feature enables mutli-channel audio file 
display as a vector sum of the energy in each of the audio 
channels as a function of time.  

3. SEGMENTATION ALGORITHMS 

The two segmentation methods that we developed are 
based on clustering and distance measurement-based 
techniques as described in this section. 

3.1 Model-based Segmentation: Clustering 

The model-based approach for segmentation exploits a 
timbral feature vector clustering scheme. The audio input 
is first subjected to a silence detector followed by frame-
by-frame feature extraction. The N-dimensional feature 
space is then piped to the clustering algorithm (eg. k-
means). The clusters are then remapped to the time-
domain in a color-coded fashion for visual clarity as 
shown in Figure 5.  

3.2 Distance-based Segmentation 

The distance-based segmentation algorithm applies statis-
tical analysis of extracted features selectable by the user. 
The statistical analysis itself uses a long-term windowing 
scheme (main frames) to compute the average feature tra-
jectory on a window-by-window (via sub-frames) basis – 
each sub-frame represents a single data point. Each main 
frame is then analyzed for its mean and standard devia-
tion – the standard deviation is the distance measure used 
for segmentation. The distance can be computed via Euc-
lidian distance, Kullback-Leibler distance, Bhattacharyya 
distance, Gish distance, Entropy loss or Mahalanobis dis-
tance. 
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Figure 5. Time-Remapping in Clustering-based Segmen-
tation for 3 Features 

4. PREMLINARY ANALYSIS RESULTS 

We used two pieces to conduct preliminary analysis of 
electro-acoustic works – Machine Stops (Tae Hong Park) 
and Riverrun (Barry Truax). We chose Machine Stops as 
we have first-hand detailed knowledge about the con-
struction of the piece and Riverrun as it’s not only an 
electro-acoustic masterpiece, but also because it is very 
much based on timbral compositional strategies.  
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Figure 6. Segmentation Map of Machine Stops 

A number of general observations could be made 
just by using single features such as modal-
ity/harmonicity/noisiness (MHN), dynamic tightness 
(DT), spectral centroid (SC), and the spectrogram (SG) 
itself. The extracted information included insights about 
where harmonic sections started and ended, where more 
modal sections occurred (via MHN), locating timbrally 
bright sounding parts (SC), exposing dynamically com-
pressed areas (DT), and observing overall energy distri-
butions and shifts (SG). However, what was most inter-
esting in our initial analysis was discovering “segmenta-
tion maps,” “timbregram trajectories,” and “segmenta-

tion/cluster tracks” as shown in Figures 6, 7, and 8. 
Looking at the segmentation map we can generally iden-
tify four sections (A, B, C, A’) via the color-coded seg-
mentation regions and the amplitude envelope. The intro 
A (labeled as “birth”) shows a triangular structure with 
a general build-up of energy. This is mirrored，slightly 
fragmented，in A’ during the “death” phase of the piece 
which illustrates the overall arching shape of the piece 
itself. A’ also includes an extended portion of the begin-
ning part of the piece, adding a prolongation of decay 
towards the end (the “machine” coming to a “stop”). 
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Figure 7. Segmentation/Cluster tracks (Machine Stops) 

Figure 7 which displays the decomposition of the seg-
mentation map into individual “cluster tracks,” further 
exposes this build up and loss of energy of parts A and 
A’ and also depicts the introduction of section C (cluster 
f) as new material (○5  in Figure 8). Section B generally 
represents a sparse timbral construct exemplified by sin-
gle and harmonically distorted sine-waves (in the HMN 
analysis plot, harmonicity is maximal in region B – not 
shown here).  

Normalized 

spectral centroid  
Figure 8. Timbregram Trajectory of Machine Stops  

As shown in the timbregram plot (Figure 8) we can 
clearly view (when following the cursor during playback) 
the timbral trajectory which generally follows ○1  to ○2 , 
○3 , ○4 , and ○5  during the “birth” and “development” sec-
tions of the piece. The timbregram is also useful in dis-
playing continuous timbral changes between cluster a, b, 
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and e while also showing abrupt jumps in the timbre 
space between clusters e and a as well as a and f. The 
closing triangular portion follows the inverse trajectory 
○3  to ○1 .  
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Figure 9. Timbregram and Segmentation Map of  

Riverrun 

A similar analysis was conducted for Riverrun where 
we concentrated in particular on the segmentation map, 
cluster tracks, and timbgregram. It was quite straightfor-
ward to identify sectional divisions in the spectrogram as 
expected, but what was particularly interesting in the 
timbrgram was the finding that, unlike in Machine Stops, 
the colonization of the timbre space portrayed a distinct 
separation of one particular cluster from the rest – the 
timbral cluster pertaining to the closing section of the 
piece with high spectral centroid as shown in Figure 9. At 
the same time, the continuous development as described 
in [13] of Riverrun can also be clearly seen in Figure 91 
beginning from a sparse quiet group of droplets, develop-
ing to rivulets, streams, and massive oceans towards the 
main part of the piece. Various feature sets have been 
employed in generating clusters, segmentation maps, and 
timbregrams. Interestingly enough, for the majority of the 
cases, the ensuing results have been quite similar when 
interpreting the various plots. The shapes, however, at 
times looked quite different in the timbregrams for ex-
ample, but the overall timbral trajectories usually gravi-
tated to the same conclusions. The same was also true 
when changing the number of clusters. In general, more 
clusters gave finer detail in grouping subtleties in the 
timbre space, whereas smaller number of clusters merged 
closely spaced clusters into a “supercluster." This is evi-
dent in Figure 9, where the ultimate section of the piece 
becomes one large cluster extending vertically (amplitude) 
when employing 5 clusters. 

5. SUMMARY AND FUTURE WORK 

5.1 Summary 

In this paper we presented a new software system for as-
sisting analysis of electro-acoustic music with particular 
emphasis on timbre. We described the functionalities of 
the toolbox, some of the feature extraction algorithms, the 

timbre space display interface, real-time possibilities us-
ing EASY, conducted preliminary analysis of two musi-
cal examples, and discussed pattern recognition modules 
to help reveal structural elements of an audio signal. The 
system has been designed with ease of use in mind by 
providing a “click-and-go” interface while at the same 
time offering advanced options for more detailed para-
metric control.  

5.2 Future Work 

The current version of the EASY Toolbox already in-
cludes 26 features but we foresee that more features, es-
pecially those that are specific to electro-acoustic music 
will be encountered in the future as we further develop 
this system. To facilitate adding new features we plan on 
providing a template for third party development. We 
plan to further extensively test and use the EASY Tool-
box for analyzing a number of classic electro-acoustic 
works and expect to report our findings in the near future. 

One very interesting and potentially exciting area that 
could provide promising application for EASY is exploit-
ing more pattern recognition techniques on feature vec-
tors to analyze for “horizontal” and “vertical” relation-
ships and correlations in a given audio signal. That is, 
analyzing and displaying feature trajectories and patterns 
not only by comparing frames as one unit but also ana-
lyzing the vertical relationships vs. time as shown in Fig-
ure 9.  
This could be very useful in displaying detailed relation-
ships between frames, sections, motifs, formal structures, 
referential cues, and many other patterns that can provide 
insights into the music under scrutiny. One way of im-
plementing such a feature would be using labels to dis-
play various icons in the time/frequency-domain can-
vases and timbregram, which will further allow for anno-
tation possibilities. 

Another area that we are interested in exploring is the 
literature concerning cognitive studies especially those 
that are related to mood and sound [5, 15]. We are not 
explicitly interested in measuring mood per se but we 
would also like to examine other angles to help extract 
perceptual and cognitive dimensions from the music that 
is being analyzed. 

On top of providing analysis results from feature vec-
tors, we also plan on offering supplementary cultural in-
formation acquired from the Internet via search engines 
and online digital libraries.  One approach is using search 
strings as implemented in jWebMiner [9], which is a 
software package for extracting cultural features from the 
web using hit counts. Current MIR technologies such as 
fingerprinting, artist identification, and genre classifica-
tion are used for automatically recommending similar 
musical styles, composers, and artists. Although these 
technologies have not been specifically applied to “music 
analysis” software systems that we know of, we foresee 
great potential in incorporating and exploiting such tech-
nologies not just for electro-acoustic music alone, but 
also for musical research, musicological studies, peda-
gogy, and composition in general. It is not difficult to 
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imagine being able to have easy access to supplementary 
information such as scores, program notes, com-
poser/performer/“machine” biographical information, 
graphics/pictures/videos, or any other related materi-
als/media at one’s fingertips and at the click of one but-
ton. 

 
Figure 10. Verticality AND horizontality 

Although the current software version is already a 
stand-alone MATLAB® application and can run on any 
machine that has the MATALB® run-time library, we 
plan on porting it to faster and more efficient compiler-
based platforms like Cocoa. 
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ABSTRACT

Symbolic music information retrieval is one of the most
underrepresented areas in the field of MIR. Here, sym-
bolic music means common practice music notation–the
musician readable format. In this paper we introduce
a novel rule-based symbolic music retrieval mechanism.
The Scripting system–ENP-Script–is augmented with MIR
functionality. It allows us to perform sophisticated retrieval
operations on symbolic musical scores prepared with the
help of the music notation system ENP.

We will also give a special attention to visualization of
the query results. All the statistical queries, such as his-
tograms, are visualized with the help of common music
notation where appropriate. N-grams and more complex
queries–the ones dealing with voice leading, for example–
are visualized directly in the score.

Our aim is to demonstrate the power and expressivity
of the combination of common music notation and a rule-
based scripting language through several challenging ex-
amples.

1. BACKGROUND

Music (especially Classical music) is primarily a written
tradition. Throughout the centuries musical compositions
have been preserved in music notation. It is the most com-
plete and widespread method that we know of for notating
the complex and interrelated properties of a musical sound:
pitch, intensity, time, timbre, and pace. [1] Common music
notation is also an invaluable tool in the field of music in-
formation retrieval. In this paper we introduce a symbolic
music retrieval mechanism based on a scripting language
called ENP-Script [2] and music notation system ENP [3].

ENP-script is a rule-based object oriented scripting lan-
guage that is here augmented with MIR functionality. The
extensions allow the user to perform retrieval operations on
scores prepared with the help of ENP and visualize the re-
sults in a meaningful way. ENP-Script allows us to define
complex and musically relevant queries using it’s pattern-
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matching language. It has a uniform and simple syntax.
The structural elements of the score (e.g., notes, beats,
measures, melodies, harmony, voice-leading, etc.) are ac-
cessed using a symbolic naming scheme where a collection
of reserved keywords is used to denote the objects of inter-
est.

On the score level the retrieval system is based on
ENP’s underlying music representation. ENP provides
several interesting features in terms of the present applica-
tion: (1) it can be used to store music using a wide range of
notational styles (Western musical notation roughly from
17th century onward, including 20th century notation);
(2) it can be used as a user-interface component allowing
us to construct both eye-catching and functional visualiza-
tions of MIR data; (3) it provides access to its notational
data structures, allowing the user to inspect the properties
of the notational objects (e.g., time, pitch, duration); and
(4) it provides a rich library of standard and user-definable
expressions allowing us to annotate the score with analyt-
ical information [4]. One further detail of interest is that
ENP scores can be written using both mensural (metric)
and non-mensural (piano roll like) notation. The system
described in this paper works without modifications on
both types of notation. This makes it possible to use this
system for applications dealing with contemporary music.

In this paper, we will also give a special attention to vi-
sualization. All the statistical queries, such as histograms,
are visualized with the help of common music notation
where appropriate. N-grams and more complex queries are
visualized directly in the score. Both approaches allow us
to associate the query results directly with the correct mu-
sical objects.

A few approaches have been introduced where the aim
is to use some kind of symbolic notation as the basic for
MIR queries (see, e.g., [5–13]. Most of these systems,
however, primarily address large databases of music en-
coded in an array of formats, such as MIDI, Kern, Mu-
sicXML [14], etc. Most of the approaches can be seen
as MIR tool chains comprising of several small or even
larger utilities chained together. Humdrum is an example
of such a system. In [13] Humdrum is even married with
Perl [15] and LilyPond [16] to create kind of a meta tool
chain. Other approaches use various music formats like
GUIDO [17] in [6, 8, 9]; Kern in [5, 8]; and MusicXML
in [18].

At the moment the presented retrieval system can be
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seen as an Analytic/Production MIR System [19]. We
concentrate predominantly on posing questions on a sym-
bolic musical score rather than retrieving information from
a large music database. Querying a database of all Bach
Chorales, for example, is however not out of the scope of
the present approach.

Our retrieval system is part of PWGL [20] which is
freely available for Macintosh OS X (Intel and PPC ver-
sions) and for Windows atwww.siba.fi/PWGL .

The rest of the paper is organized as follows. Section 2
illustrates how a collection of archetypal MIR assignments
can be solved using our retrieval system. The examples are
divided roughly into two categories: statistical and analyt-
ical. We end the paper with some concluding remarks and
outlines for future work.

2. EXAMPLES

While mass queries can tell certain kinds of facts about the
music in the database our approach emphasizes the musical
meaningfulness of the query. On the one hand one might
find out that Bach violated X times the rule Y in Z chorals.
On the other hand one might want to reveal these cases in a
musical score and study why this may have happened. To
be able to do so requires a flexible searching mechanism
and flexible notational and visualization tools.

In this section we present a collection of examples
based on more or less archetypal MIR assignments. The
section is divided roughly in two parts. In the first part
we concentrate on statistical queries and more or less tra-
ditional visualizations. The second part, in turn, turns
focus on more analytical queries and visualizes the re-
sults in the score. Altogether, we will address several
subjects, e.g., histograms, counting, pitch-class set theory,
rhythm, etc. Some of the case studies borrow shamelessly
from the Humdrum example database presented athttp:
//music-cog.ohio-state.edu/Humdrum/ .

Each subsection is accompanied with a code example
and potentially also a visualization of the result. It is notin
the scope of this paper to give an exhaustive review of the
Scripting syntax. The code examples require a little knowl-
edge about Lisp programming language but they should be
clear and simple enough to be followed by anyone with
some background in programming.

Apart form the examples presented in this paper, many
other types of queries could easily made with the current
system including those about pitch-class set theory, voice-
leading, word painting, harmonic analysis, etc.

The most important points of interest in the following
examples are: (1) the terseness and expressivity of the
query definitions, (2) the descriptiveness of the visualiza-
tion, and (3) the overall versatility of the system.

2.1 Statistical Queries

2.1.1 Histograms

One of the prototypical MIR tasks is the histogram.
The musical score used as a starting point for Examples

1–4 is the guitar transcription by Andrés Segovia of the

Tango op. 156a by Isaac Albéniz. The beginning of the
score is shown in page 6 (Figure 6).

Example 1 shows the retrieval rule to generate a pitch
histogram of the given score. The pattern given in line
1 means that the rule applies to every note object in the
score, thus the traditional wild card* . ?1 is a vari-
able to which every note in the score is bound one by one.
histogram is a special MIR function that takes care of
gathering the values and visualizing the result.

After the execution of the script the pertinent visualiza-
tion method is called to generate the pitch histogram shown
in Figure 1. Instead of the traditional horizontal bar graph
we use here a vertical arrangement instead. The histogram
values are also shown against a set of piano keys to give a
better idea of the register (middle-C is highlighted using a
shade of grey).

One special aspect of this particular histogram (includ-
ing the ones shown in Figures 2 and 3) is that the result can
be played back. Either as a whole or by selecting a subset
of the result shown. Especially, in case of tonal music,
an aural examination of the pitch histogram could among
other things reveal potential problems in the integrity of
the source material.

Furthermore, as the histogram is realized with the help
of ENP, it itself can be scripted to select and highlight
pitches above certain threshold, for example.

Example 1 An ENP-script collecting histogram values
from a score.

1 ( * ?1
2 (?if
3 (histogram :value (m ?1))))

Figure 1. A traditional pitch histogram plotted using ENP
as a visualization tool (Albéniz: Tango op. 156a).
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2.1.2 Harmony Histogram

In addition to horizontal events (i.e., melody, as in Exam-
ple 1) with ENP-Script it is also possible to access the ver-
tical (harmonic) dimension of the score.

Scores are partitioned by ’harmonic slices’ (resembling
’moments’ in [5]). A harmonic slice is a vertical entity
defined as a point in time when any note event begins or
ends in any part. This structural component allows us to
perform queries involving simultaneity.

Example 2 shows a script accessing the harmonic slices
to produce a ’moment’ histogram. This can be accom-
plished simply by introducing the keyword:harmony
in the pattern matching part (see line 1). This instructs the
script to access all the vertical elements of the score instead
of the horizontal ones. Compared to Example 1 the change
is minimal but the effect is dramatic.

Another point of interest is the form
(m ?1 :complete? t) given at the end of

line 1. This is in fact a condition and it is used here due
to the implementation of the scripting engine and cannot
be explained in-depth in the score of this paper. Suffice to
say that in addition to accessing the total harmony (i.e., all
the notes sounding at a given point in time) we can also
access partial harmonic formations (e.g., subsets of the
sounding harmony). As we are here interested only in the
total harmonies hence the condition.

Furthermore, line 2 introduces yet another additional
condition to skip any grace notes that are abundant in our
example score. In line 4 we simply record the pitch values
of the harmony given by(m ?1) as a list of midi values,
e.g., (60 64 67).

Example 2 A script collecting histogram values of type
harmony.

1 ( * ?1 :harmony (m ?1 :complete? t)
2 (?if (unless (some #’grace-note-p
3 (m ?1 :object t))
4 (histogram :value (m ?1)))))

The result is shown as a histogram with the relevant
parts visualized using common practice notation. In the
analysis same kind of chords are grouped together irre-
spective of register, or pitch spelling. That means that,
e.g., all major chords are identified as equal (i.e., pitch-
class set 3-11B).1 Furthermore, in the histogram the so
called prime form is shown. This is why, for example, the
second to last entry, the seventh chord, is displayed in first
inversion.

2.1.3 Counting

Our next example demonstrates the ability of the scripting
mechanism to access only parts of the given score. Exam-
ple 3 shows a simple counting script where we count the
number of events in the score. Here, instead of counting all
the events we restrict the search to measures 8–16 (see line

1 The system used here is similar to that of Forte except that the let-
ters A or B are added to distinguish between two inversionally related
transpositional set-classes, e.g., 3-11A is the minor triad, and 3-11B is its
inversion, the major triad.

Figure 2. A ’moment’ histogram (Albéniz: Tango op.
156a).

1). Our analysis reveals that there are 96 events combined
in the measures 8–16 in the Tango by Albéniz.quantity
in line 3 simply increments a counter when presented with
a new event. Note, that this script counts allnote events.
We could similarly count allchords by inserting the key-
word :chord after the variable?1 .

Example 3 A script counting the number of events in a
score from measure 8 through 16.

1 ( * ?1 :measures (8_16)
2 (?if
3 (quantity :value ?1)))

For comparison we give the following Unix script in
Humdrum performing the equivalent operation:

yank -n = -r 8-16 Tango | census -k

2.1.4 Rhythmic Patterns

Next, we define a search based on the rhythmic dimension
of the score. We aim to determine the most common rhyth-
mic pattern spanning a measure. Example 4 shows the re-
trieval script. Once again our script has changed relatively
little. The keyword :measure shown in the first line
denotes that we want to access measure objects this time.
Thus, the variable?1 is here bound in succession to ev-
ery measure object found in the score. As we want to ac-
cess the whole rhythmic entity inside the measure we add
once again the condition(m ?1 :complete? t) .
This ensures that the body of the script is executed only
when the rhythm for the entire measure is known. In line
4 we read the rhythmic definition cached by the system in
a list form.
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Example 4 A script for determining the most common
rhythmic pattern spanning a measure.

1 ( * ?1 :measure (m ?1 :complete? t)
2 (?if
3 (histogram :value
4 (read-key ?1 :rtm-pattern))))

We define here the rhythm histogram again using ENP
and common music notation as it allows us to visualize
the data in a straightforward manner. Figure 3 shows a
part of the rhythm histogram displaying the actual rhythms
in rhythm notation and the corresponding values as a bar
graph.

Figure 3. A per measure rhythm histogram (Tango op.
156a by Albéniz).

The above is certainly more descriptive than, let’s say,
producing print-outs like this:

((23 ((1 (1 1 1)) (1 (1 1))))
(18 ((1 (1)) (1 (1 1)))) ...)

2.2 Analytical Queries

2.2.1 Rhythmic Patterns

Another kind of rhythmic query is presented in Example
5. Here, instead of counting all the possible rhythms we
restrict our search to certain kind of rhythmic pattern. Fur-
thermore, we have chosen to visualize the result of the
query directly in the score. Figure 4 shows all the occur-
rences of our rhythmic pattern enclosed inside rectangles
(drawn in red color in the original score). To save space
we show here only the right-hand melody of the original
composition (measures 1–8 of Humoresque in G♭ major
by Antonin Dvořák).

The retrieval script is now a bit more complex than
in the previous cases. The pattern matching part reads
( * ?1 ?2 ?3 ?4 as in this script we are now inter-

ested in the rhythmic formation between four consecutive
notes.match-rtm? in line 3 is a special function that is
used match the score rhythms against a given pattern.

Deciphering the rhythm matching syntax can be at first
quite challenging and it requires some knowledge about the
internal representation of ENP (see, e.g., [21]). We cannot
give a comprehensive review of the format here. However,
the line 5 defines a pattern where an event having a dura-
tion of 2 units is followed by a rest (a negative number)
with a duration of 1 unit and another event with the dura-
tion of 1 unit. The durations are relative instead of abso-
lute. The aforementioned pattern is repeated twice in row

5. This description is translated to the following rhythmic
pattern:

Example 5A script searching for a given four-note rhyth-
mical pattern in a score.

1 ( * ?1 ?2 ?3 ?4
2 (?if
3 (when (match-rtm?
4 (1
5 ((?1 2) -1 (?2 1) (?3 2) -1 (?4 1))))
6 (add-expression ’score-expression
7 ?1 ?2 ?3 ?4
8 :color :red))))

Figure 4. A specific rhythmic pattern visualized in the
score (Humoresque in G♭ major by Antonin Dvořák).

2.2.2 N-grams

N-grams have been used extensively in MIR in both mono-
phonic and polyphonic contexts (see, e.g., [19,22]). In our
next example we will show how to represent n-grams with
the scripting language and how to mark them in a score.
Naturally, instead of marking the n-grams in the score we
could have recorded the statistical distribution of n-grams
and display them in the same manner as displayed in Fig-
ure 2.

Example 6 shows the script definition. This particular
script is demonstrating yet another interesting ability ofthe
scripting system. Here, instead of defining a fixed pattern,
as in the previous examples, we write the script in a dy-
namic fashion. The pattern matching part becomes now
quite minimalistic again. The complexity of the search lies
inside the script definition. In order to represent any n-
gram the user is require to change only the list of context
lengths enumerated in line 3. Here, we use a list(2 3)
denoting di- and tri-grams respectively. The body of the
script from line 4 onwards is written so that any sized n-
grams can be found and visualized. In line 6 we add an
ENP expression in the score displaying the extent of the n-
gram and also the sizes of the consecutive intervals as can
be seen in Figure 5.
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3. DISCUSSION

Currently this retrieval system is not suitable for very large
corpus of data. The mechanism used here requires that the
whole score is read in the memory and that all the musi-
cal objects are instantiated. One could possibly provide an
alternative loading mechanism that creates only the nec-
essary data structures needed for the scripting language
to operate. This would most likely guarantee much more
shorter loading times and in turn facilitate larger searches.

Our system needs to support more input formats. Not
only MIDI and the native ENP file formats but also at least
MusicXML and perhaps even Kern.

However, at its present state the system is capable of
performing very sophisticated and complex queries. Also
the visualization capabilities are second to none. The abil-
ity to be able to mix common music notation with statis-
tical graphics is also beneficial and allows us to represent
the query result in a musician readable way.

The presented notational front-end combined with our
scripting engine allows us to query, annotate and analyze
musical scores and visualize the results in a manner prob-
ably not matched by any other software package.
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Example 6A script to visualize n-grams directly in an ENP score. Here,di- and tri-grams are shown. Simply by editing
the parameter list shown in line 3 (n-grams) it is possible tovisualize n-grams of any size. No other changes are necessary.

1 ( * ?1
2 (?if
3 (let ((n-grams ’(2 3)))
4 (iter (for n-gram in n-grams)
5 (?incase-let (intervals (m ?1 :L (1+ n-gram) :data-access : int :complete? t))
6 (add-expression ’group (m ?1 :L (1+ n-gram) :object t)
7 :kind :bracket-at-end
8 :info (format () "˜{˜3,@d ˜ˆ|˜}"
9 intervals)))))))

Figure 5. N-grams visualized directly in the score using a dynamically adapting script.

Figure 6. Tango op. 156a by Isaac Albéniz notated with ENP (transcribed for Guitar by Andrés Segovia).
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ABSTRACT 

Music boundary detection is a fundamental step of music 
analysis and summarization. Existing works use either 
unsupervised or supervised methodologies to detect 
boundary. In this paper, we propose an integrated 
approach that takes advantage of both methodologies. In 
particular, a graph-theoretic approach is proposed to fuse 
the results of an unsupervised model and a supervised one 
by the knowledge of the typical length of a music section. 
To further improve accuracy, a number of novel 
mid-level features are developed and incorporated to the 
boundary detection framework. Evaluation result on the 
RWC dataset shows the effectiveness of the proposed 
approach. 

1. INTRODUCTION 

Popular songs usually comprise several music sections 
such as intro, verse, chorus, bridge and outro. A music 
boundary is the time point where a section transits to 
another. Identifying such boundaries is important because 
it allows us to divide a song into semantically meaningful 
sections. This information can also be applied to music 
summarization [1] and thumbnailing [2] to facilitate 
music browsing and structure-aware playback [3]. 
Boundary detection also serves as a front-end processor 
for music content analysis since it provides a local 
description of each section rather than a global but coarse 
representation of the whole song [5]. 

Although there is a rich literature in music theory about 
music structure analysis for symbolic music (e.g. [20]), 
music boundary detection for music signals is still a 
challenging task because precise pitch detection in poly- 
phonic music is not yet achievable. Under this condition, 
most work on music boundary detection utilizes the 
similarity between short-term (e.g., 23ms) audio frames 
within a song to identify the repetitive parts and divide a 
song into a number of sections [1–3, 6–8]. A more recent 
work formulates boundary detection as a clustering 
problem and considers that the audio frames of each 
cluster belong to the same music section [9]. 

The accuracy of this unsupervised approach, however, 
may be limited because only the information of a song 
itself is exploited. For example, identifying repetitive 
parts cannot correctly identify the boundary between two 
adjacent music sections that always occur successively in 

 
a song. On the other hand, clustering-based methods tend 
to produce over-segmented results if the acoustic property 
of the frames in a music section varies greatly. Using 
histograms to gather statistic of spectral characteristics of 
neighboring audio frames [9] does not necessarily solve 
the problem because the histograms of two adjacent 
frames are usually similar, making boundary detection 
even more difficult. 

To address the aforementioned drawbacks, Turnbull et 
al formulate music boundary detection as a supervised 
problem and train a binary classifier to classify whether a 
time point is a boundary or not [10]. In this way, we can 
mine more information from a large number of training 
songs and identify features that are relevant to boundary 
detection. 

However, because a supervised system is pre-trained 
by using the training data and fixed afterwards, it is not as 
adaptive to test songs as its unsupervised counterpart. The 
detection accuracy may significantly degrade when the 
characteristics of the training data and a test song are 
considerably different. For instance, if the system detects 
boundary according to the energy level in a certain 
frequency range, the system may not work for a song 
whose energy in that frequency range maintains high 
throughout the song. 

Based on the above observations, we propose to take 
advantage of both methodologies by aggregating the 
results of an unsupervised model and a supervised one. In 
this way, we can exploit the discriminative information 
provided by the training data and the song-specific 

Figure 1. A schematic diagram of the proposed music 
boundary detection system. 
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information of a test song at the same time. Moreover, to 
better capture the discriminative characteristics of a 
boundary, we further propose a number of novel 
mid-level features, including novelty score, dissonance 
level and vocal occurrence. Comparing to low-level 
features such as the spectral properties, these mid-level 
features carry more semantic meaning that improves 
music boundary detection. 

A schematic diagram of the proposed system is shown 
in Fig. 1. An input song is partitioned by the beat onsets 
and represented by a set of low-level and mid-level 
features. The probability of each beat onset of being a 
boundary is then computed by both supervised and 
unsupervised methods with the features extracted from 
the subsequent beat interval. We then model the beat 
onsets as the vertices of a directed graph, with the vertex 
weights determined by the probability of being a 
boundary and the edge weights determined based on the 
music knowledge of the typical length of a music section 
[7, 11]. Finally, we formulate music boundary detection 
as a shortest path problem and identify the true 
boundaries by the Viterbi algorithm [18]. 

The paper is organized as follows. Section 2 describes 
the feature representation of music, including low-level 
and mid-level features. Section 3 elaborates on the system 
framework and the adopted supervised and unsupervised 
approaches. Experimental result is presented in Section 4. 
Section 5 concludes the paper. 

2. MUSICAL REPRESENTATION 

Before feature extraction, each song is converted to a 
standard format (mono channel and 22,050 Hz sampling 
rate) and partitioned into several beat intervals by the beat 
onset detection algorithm BeatRoot [12]. We adopt beat 
interval instead of frame as the basic time unit because 
the characteristics of a song are more likely to be 
consistent within a beat interval and because a music 
boundary tends to occur at a beat onset [7]. 

2.1 Low-level Features  
For low-level local features, we use 40-dim Mel-scale 
cepstral coefficients (MFCCs), 24-dim chromagram, and 
52-dim fluctuation patterns (FPs) [19] to represent the 
timbre, harmony, and rhythm aspects of music. We 
extract MFCCs and chromagram with a 40ms and 
non-overlapping sliding window and aggregate the 
frame-level features within each beat interval by taking 
the mean and the standard deviation. FPs are computed 
directly for each beat interval. These features have been 
found useful for music boundary detection [10]. Note 
these features only capture the local property of music. 

2.2 Mid-level Features 
Below we describe three mid-level features: novelty score, 
dissonance level, and vocal occurrence. While the first 
one is originally proposed by Cooper et al in [4], it has 
been used in an unsupervised setting rather than as a 
mid-level feature in a supervised one. On the other hand, 
though the latter two features have been studied in the 
context of music theory [21], few attempts have been 

made to incorporate them to the task of music boundary 
detection for raw audio signals. 

2.2.1 Novelty Score  
The novelty score is computed by two steps [4]. First, a 
similarity matrix is constructed by measuring the 
similarity of the low-level feature vectors of every two 
beats in a song. In this matrix, the two segments beside 
the boundary produce two adjacent square regions of high 
within-segment similarity along the main diagonal and 
two rectangular regions of low between-segment 
similarity off the main diagonal. As a result, each 
boundary produces a checkerboard pattern in the matrix 
and the beat interval that boundary occurs is the crux of 
this checkerboard. To identify these patterns, we correlate 
a Gaussian-tapered checkerboard kernel along the main 
diagonal of the similarity matrix to compute the so-called 
novelty scores, which measures both the dissimilarity 
between two different adjacent segments beside each 
potential boundary as well as the similarity within these 
segments. We define the term segment here to represent a 
set of consecutive beat intervals and the term section as a 
segment which is semantically meaningful (such as verse, 
chorus or bridge).1 

In this work, we compute three novelty scores based on 
the three low-level features. Because the novelty scores 
of adjacent beats tend to be similar,2 we also divide the 
novelty score of a certain beat interval by the sum of the 
novelty scores of neighboring beat intervals and use the 
normalized score as additional feature, resulting in a total 
of 6 features for each beat interval. 

2.2.2 Dissonance Level  
It is known in musicology that the relaxation or release of 
tension plays an important role in the transition of music 
sections. Because changes in tension often occur when 
dissonance giving way to consonance [13], we develop a 
novel feature based on the dissonance level of music. We 
first define the dissonant intervals according to the 
relationship between the pitches of two notes that cause 
tension (e.g., Tritone and Minor Second [14]), and then 
compute the dissonance level as the weighted sum of the 
corresponding dissonant intervals from the unwrapped 
chromagram of a beat, 
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where yt denotes the dissonance level of a beat t, q 
denotes the interval that has q semitones between the two 
notes, D is the set of dissonant intervals, cm is the mth bin 
of the chromagram, and kq is a constant corresponding to 
q, which is empirically set according to the ratio of 
frequencies of the two pitches in q. The denominator is a 
normalization term. 

                                                           
1 While a segment can be of arbitrary length, the length of a 
section often follows a typical pattern, see Section 3.3. 
2 The novelty scores of adjacent beats are similar because the 
submatrices of the similarity matrix of these beats overlap a lot. 
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We compute the dissonance level for each beat interval 

and obtain a sequence of dissonance levels. We compute 
the derivative from the resulting sequence as the 
dissonant features to capture the changes in tension,  
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where p denotes the window size. In this work, we set p 
to 1 and 2 and generate a two dimensional dissonance 
level feature. Fig. 2 illustrates the relationship between 
music boundary and dissonance level; clearly the music 
boundaries occur right after peaks of dissonance level 
(the rise and relax of tension). 

2.2.3 Vocal Occurrence 
In pop/rock songs, the time points that a vocalist sings 
often correspond to the music boundaries. For example, if 
a beat onset falls in the middle of a segment with pure 
instrument and another segment with singing voice, it is 
very likely a music boundary. Furthermore, because a 
music section is comprised of several music phrases,3 a 
transition of music sections must also be a transition of 
music phrases. Therefore, if a beat onset falls in a short 
instrumental interval between two vocal music phrases, it 
is more likely to be a music boundary. 

In light of the above observation, we train a 
vocal/non-vocal classifier by support vector machine 
(SVM) [15], with MFCC as the feature representation, to 
estimate the probability of the vocal occurrence for each 
beat interval. If the sum of these probabilities from the 
beat intervals in a segment exceeds a threshold, we regard 
the segment as a vocal segment. More specifically, the 
vocal occurrence feature of a certain beat interval is 
computed as follows. For a beat interval, if both of its 
neighboring segments are non-vocal, the vocal occur- 
ence is set to 0; if only one of the neighboring segments 
is non-vocal, the vocal occurrence is set to 1. When both 
neighboring segments are vocal, we set the vocal 
occurrence according to the following formula:                                  
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where zt is the vocal occurrence feature of beat interval t, 
                                                           
3 Several music phrases constitute a music section. 

vt is the probability estimate of beat interval t generated 
by the vocal/non-vocal SVM classifier, and ω is the 
window size that represents the length of the segment. 
We vary the value of ω and generate a multi-dimensional 
feature vector. In this work we set the value of ω to 8 and 
12. An illustrative example is shown in Fig. 3. The first 
red line labels a transition from a non-vocal section (intro) 
to a vocal section (verse). The green circles label two 
obvious transition points of music phrases, while the 
latter one is in fact a transition point of music sections. 
We can see the corresponding vocal occurrence feature is 
highly correlated to music boundaries. A pitfall of this 
feature is that it may regard every phrase boundary as a 
section boundary and result in over segmentation. The 
use of other features may offset this mistake. 

Representing the acoustic properties of music by these 
low-level and mid-level features, we then employ the 
system described below to detect boundaries. 

3. SYSTEM DESCRIPTION 

In this section, we first introduce the supervised and 
unsupervised approaches adopted in our system. Both 
approaches estimate the possibility of each beat onset of 
being a music boundary. Second, we describe how we 
integrate these two estimations with the music knowledge 
of typical section length. 

3.1 Supervised Estimation 
We train a SVM classifier with polynomial kernel and 
probability estimates to obtain the possibility of a beat 
onset being a music boundary. The label for a beat 
interval is marked 1 if a boundary occurs at that beat 
onset and 0 otherwise. Besides mid-level features, we 
also use the low-level features to train the classifier 
because low-level features also contain some relevant 
information. For example, a drum-fill is usually played 
when a music section ends; this characteristic can be 
detected by FP. For a test song, the SVM model 

Figure 3. Top: the possibility of vocal estimated by SVM 
for a part of Billie Jean by Michael Jackson. The two red 
lines label a transition from intro to verse and a transition 
from verse to bridge. The green circles label two obvious 
transition points of music phrases. Bottom: corresponding 
vocal occurrence feature. 

 

Figure 2. The dissonance level of a part of Billie Jean by 
Michael Jackson. The two red lines label a transition from 
verse to bridge and a transition from bridge to chorus. 
These boundaries occur right after high dissonance levels.
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computes the probability of the occurrence of a boundary 
at every beat onset. We utilize this probability as the 
output of the supervised approach. 

3.2 Unsupervised Estimation 
As for the unsupervised part, we construct three similarity 
matrices based on the kinds of low-level features and 
detect the peaks of the mean of the novelty scores from 
these matrices. We then use these peaks to divide the test 
song into a number of segments [4]. The low-level 
features of a segment are integrated to one vector by 
taking the mean and the standard deviation and a distance 
matrix among the segments is constructed by computing 
the pairwise distance between these vectors. The 
normalized cut algorithm [16] is then performed on the 
distance matrix to group these segments into acoustic 
similar clusters. At each beat interval, we further count 
the cluster indices of neighboring beat intervals within a 
predefined window size and establish two histograms: 
one for the beat intervals preceding to the beat onset, and 
the other for the subsequent beat intervals. The Euclidean 
distance of the resulting histograms can represent the 
possibility of a music boundary occurs at the designated 
beat onset, and the ratio of this possibility value of a beat 
onset to the sum of the possibility values of its 
neighboring ones is regarded as the estimation of the 
unsupervised approach. 

3.3 Integration 
Because music sections tend to have some typical length 
(e.g., 8 or 16 bars) [7, 11], it should be beneficial to 
incorporate this knowledge to the music boundary 
detection framework. As Fig. 4 illustrates, we construct a 
directed graph G = (V, E) to integrate the estimates of 
supervised and unsupervised models and to take 
advantages of this music knowledge. In this graph, a 
vertex represents a beat onset, with the weight of it 
determined by the weighted sum of the estimates of 
supervised and unsupervised models 

1i i iv u sw p k p= + ,    (4) 

where wvi denotes the weight of a vertex i, pui and psi are 
the probability estimates produced by an unsupervised 
model and a supervised one respectively, and k1 is a 
parameter balancing the effect of the two models. The 
music knowledge of section length is incorporated as 
follows. If there exists the possibility that vertices vi and 
vj are two successive music boundaries, we form an edge 
between these two vertices. The weight of the edge is 
determined by the music knowledge of the length of a 
music section. We gather the statistics from training data 
to obtain the probability of two beats with specific 
temporal distance being music boundaries. That is, the 
weight of eij equals to the weight of emn if j–i equals to 
n–m. To achieve this goal, a histogram is constructed by 
simply counting the number of beats of each music 
section from the training data. 

Therefore, a path in this constructed graph can be 
regarded as a set of music boundaries. We further define 
the weight of a path B as the sum of the weights of its 
constituent edges and vertices, 

 

2B v ev B e B
w w k w

∈ ∈
= +∑ ∑ ,  (5) 

where wv and we are the weights of a vertex and an edge 
in B, and k2 is a constant to balance the effects of vertices 
and edges. We regard wB as the probability of the 
associated beat onsets being correct music boundaries. 

Because the path with maximum wB consists of 
vertices that are most likely the music boundaries, we 
formulate the problem as a shortest path problem and 
employ the Viterbi algorithm [18] to solve it,  

* arg max BB
B w= ,   (6) 

where B* denotes the optimal solution. In practice, we 
only apply Viterbi to a feasible number of paths to reduce 
the complexity.  

4. EXPERIMENT 

4.1  Experimental Setup 
We conduct an empirical evaluation on the RWC music 
dataset [17], which contains 100 pieces of song that are 
originally produced for experiment; most of the pieces 
(80%) are recorded according to 1990s Japanese chart 
music, while the rest resemble the 1980s American chart 
music. RWC dataset provides clear annotations of music 
boundaries and is adopted in many literatures in music 
boundary detection [6, 10].  

We evaluate the performance in terms of precision (the 
proportion of true boundaries among the detected ones), 
recall (the proportion of true boundaries in the ground 
truth that are detected by the system), and f-score (the 
harmonic average of precision and recall). A detected 
boundary is considered correct if it falls within 1.5 
seconds of the ground-truth, which is stricter than the one 
used in prior work [9] and should be reasonable for 
real-world applications. 

For the unsupervised methods, we process each of the 
100 songs independently and take the average result. For 
the supervised methods, we evaluate the system with 

Figure 4. The directed graph G of a song, which has n 
beat onsets (vertices) and k—1 possible section lengths 
(possible jumps). The vertex weights are determined by 
the probability of being a boundary and the edge weights 
are determined based on the music knowledge of the 
typical length of a music section [7, 11]. We assume that 
every music section contains at least one beat interval.  
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stratified five-fold cross validation: 20 random songs are 
held out as test data and the rest are used for training. The 
evaluation is iterated five times to get the average result. 

4.2 Results 
We first evaluate the supervised approach with different 
feature representations, including low-level and mid-level 
features. To compare the performance against previous 
work, we also implement the difference feature and its 
derivative proposed in [10]. The difference feature is 
computed by sliding a window along the audio signal and 
comparing the statistic of low-level features in the first 
half of the window with the ones in the second half. A 
beat onset is detected as a boundary if its probability 
estimate assigned by SVM exceeds a threshold. Instead of 
using a fixed threshold, we adaptively set the threshold of 
each song to be the mean plus one standard deviation of 
the probability estimates of the song. 

The evaluation result is shown in Table 1. The three 
low-level features bring about similar accuracy, with FPs 
slightly worse than the other two, implying that the 
characteristics of music boundaries are represented more 
in timbre and rhythm. The direct concatenation of the 
three low-level features, which are denoted as local (L) in 
the table, further improves the f-score to 0.2206.  

We then compare four mid-level features, including the 
difference feature proposed in [10]. It can be found that, 
with much lower feature dimension, the use of mid-level 
features achieves similar or superior performance to that 
attained by low-level features. The novelty score, in 
particular, achieve an f-score of 0.2549 that significantly 
outperform all other low-level or mid-level features. We 
can also find that the difference feature does not perform 

well, which possibly due to the disregard of the similarity 
of the beats in each segment. 

The combination of mid-level and low-level features 
only brings about slight improvement, which somewhat 
implies that most of the information carried by low-level 
features has already been well represented by the 
mid-level features. The combination of novelty score (N), 
dissonance level (D), vocal occurrence (V), and local 
features (L) achieves the highest f-score of 0.2641.  

We then compare the two unsupervised methods 
described in Section 3.2. For the cluster-based method, 
we simply mark the boundary of two consecutive 
segments that are associated with different clusters as a 
music boundary without smoothing. The result is shown 
in Table 2. As expected, the clustering-based approach 
exhibits a remarkably high recall but a relatively low 
precision. For the histogram-based method, we consider 
the segments whose probability estimates exceed a 
threshold as boundaries. The threshold value is set in the 
same way as in the supervised methods. The performance 
of the histogram-based method is slightly worse than the 
clustering-based one, showing that gathering statistics of 
neighboring frames does not improve the precision of 
boundary detection. Moreover, it can be noted that in our 
evaluation the unsupervised approaches generally 
outperform the supervised counterparts, showing that the 
ability of the unsupervised approach to be adaptive to 
each test song is essential in boundary detection.  

Finally, we evaluate the performance of integrating the 
result of unsupervised and supervised methodologies. For 
comparison, we further implement a baseline method that 
simply sums up the supervised and unsupervised 
estimates with the same weight as the one in proposed 
graph-theoretical fusion method without exploiting the 
music knowledge of section length.  

The result is also shown in Table 2. It can be found that 
simply taking the average has achieved a higher f-score 
than any of the supervised-only or unsupervised one, 
showing that the two methodologies are indeed 
complementary and the fusion of them is plausible. The 
proposed graph-theoretical fusion further improves the 
f-score to 0.4094, which greatly outperform the taking 
average baseline, especially in recall. This result shows 
the integration of the two methodologies and the 
incorporation of music knowledge are essential to music 
boundary detection.  

A sample segmentation result is displayed in Fig. 5. In 
this example, all the boundaries can be correctly detected 
by the proposed system. Nevertheless, there is an over 
segmentation problem because the characteristics of the 
segments of the same music section may be incoherent. 

Feature # 
feature Precision Recall F-score

MFCC 40 0.1910 0.2574 0.2142
chromagram 24 0.1665 0.2131 0.1842
fluct. pattern 52 0.1906 0.2190 0.2019
local (L) 116 0.1982 0.2629 0.2206
difference [10] 6 0.1602 0.2519 0.1885
novelty (N) 6 0.2427 0.2770 0.2549
dissonance (D) 2 0.2109 0.2505 0.2198
vocal (V) 2 0.2128 0.2687 0.2240
N+L 122 0.2354 0.2900 0.2594
N+D+V 10 0.2322 0.2909 0.2592
N +D+V+L 126 0.2461 0.2932 0.2641

 
Table 1. Evaluation result of different features used in 
supervised musical boundary detection methods. 

Approach  Method Precision Recall F-score 
Supervised only N +D+V+L 0.2461 0.2932 0.2641 
Unsupervised only Cluster-based (normalized cut) [9] 0.2770 0.5166 0.3517 

Histogram-based 0.3068 0.3428 0.3124 
Directly sum  0.3274 0.3470 0.3385 
Integrated with section length Viterbi algorithm [18] 0.3800 0.4452 0.4094 

 
 Table 2. Evaluation result of different musical boundary detection methods. 
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To resolve this problem, we are working on incorporating 
more music knowledge and mid-level features. 

5. CONCLUSION 

In this paper, we have presented an integrated system 
that combines the information from supervised approach, 
unsupervised approaches, and music knowledge. We 
formulate music boundary detection as a shortest path 
problem and employ the Viterbi algorithm to solve it. We 
also propose a number of novel mid-level features to 
better capture the discriminative characteristics of music 
boundaries. Experiments conducted on the RWC dataset 
show significant improvement over the state-of-the-art 
supervised-only and unsupervised-only methods. 
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ABSTRACT

Imperfect and internal rhymes are two important fea-
tures in rap music often ignored in the music information
retrieval community. We develop a method of scoring
potential rhymes using a probabilistic model based on
phoneme frequencies in rap lyrics. We use this scoring
scheme to automatically identify internal and line-final
rhymes in song lyrics and demonstrate the performance
of this method compared to rules-based models. Higher
level rhyme features are produced and used to compare
rhyming styles in song lyrics from different genres, and
for different rap artists.

1. INTRODUCTION

Song lyrics have received relatively little attention in mu-
sic information retrieval, but can provide data about song
style or content that is missing from raw audio files or user-
input tags. Recent work focusing on lyrics [1–3] involves
using lyric text to extract song topic, theme, or mood in-
formation; the pattern and sound of the words themselves
is usually ignored.

These sound features are central to rap music, providing
information about vocal delivery and rhyme scheme. This
data can be characteristic of different rappers, as MCs often
boast of the uniqueness and superiority of their rhyming
style. Lyric rhymes have previously been studied as an
aid in characterizing different musical genres [4], but this
prior work ignores two stylistic features of rap lyrics: im-
perfect rhymes, where syllable end sounds are similar but
not identical, and internal rhyme, which occurs in the mid-
dle of lines.

To study these features, we have developed a system
for automatic detection of rap music rhymes. We train a
probabilistic scoring model of rhymes using a corpus of
rap lyrics known to be rhyming, using ideas derived from
bioinformatics. We then use this model to find and catego-
rize various rhymes in different song lyrics, and assess the
model’s success. Finally, we calculate high-level statistical
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rhyme scheme features to attempt to quantitatively model
and compare rhyming styles between artists and genres.
Our work allows the automated study of new features in
rap music, and may be extensible to other genres of song
lyrics or for poetry analysis.

2. BACKGROUND

Hip hop music is characterized by lyrics with intermit-
tent rhymes being rhythmically chanted (rapped) to an ac-
companying beat. In “Old School” rap (dating from the
late 1970s to mid 1980s), lyrics typically followed a sim-
ple pattern and contained a single rhyme falling on the
fourth beat of each bar [5]. Contemporary rap features
more varied delivery and many complex rhyme stylistic el-
ements that are often overlooked. Key among these are
rhymes that are imperfect, extended, or internal. Holtman
[6] provides a good overview of the abundance of imper-
fect rhyme in rap lyrics. A normal rhyme involves two syl-
lables that share the same nucleus (vowel) and coda (end-
ing consonants). Two syllables form an imperfect rhyme if
one of these two parts does not correspond exactly. How-
ever, these types of rhymes are not just composed of vow-
els and consonants being paired randomly; there is a con-
straint to the amount of dissimilarity in these rhymes, de-
termined by the shared articulatory features of matching
phonemes.

In Holtman’s hierarchy, the most similar consonants are
nasals, fricatives, and plosives differing only in place of
articulation, as in the line-ending /m/ and /n/ phonemes in:

Entertain and tear you out of your frame
Leave you in a puddle of blood, then let it rain. [7]

(Rhyming syllables in quoted lyrics are displayed with
the same font style.) Less similar consonant pairs include
those with the same place of articulation, but differing in
voice or continuancy, such as the /k/ and /g/ pair in:

Bring a bullet-proof vest, nothin’ to ricochet
Ready to aim at the brain, now what the trigger say? [7]

Vowels are most similar when differing only in height or
“length” (advanced tongue root), such as the penultimate
vowels in:

I’m the alpha, with no omega
Beginning without the, end so play the. [7]

Holtman’s work is largely taxonomic and describes
known rhymes, rather than discovering them. Hence, we

711



Oral Session 8: Lyrics

used a statistical model of phonetic similarity based on
frequencies in actual rap lyrics. However, the patterns we
automatically discovered largely validate her taxonomy.

Rap music often features triplet or longer rhymes with
unstressed syllables following the initial stressed pair,
which may span multiple words (mosaic rhymes). Longer
rhymes can also include more than one pair of stressed
syllables:

Maybe my sense of húmor gets ı́nto you
But girl, they can make a perfúme from the scént of you.
[8]

(Here the accents mark the syllables with primary stress.)
Finally, contemporary rap music features dazzlingly com-
plex internal rhyme. Alim [9] analyzes Pharoahe Monch’s
1999 album Internal Affairs [10] as a case study, and iden-
tifies chain rhymes, compound rhymes, and bridge rhymes.
Chain rhymes are consecutive words or phrases in which
each rhymes with the previous, as in:

New York City gritty committee pity the fool that
Act shitty in the midst of the calm the witty, [10]

where “city”, “gritty”, “committee”, and “pity” participate
in a chain. Compound rhymes are formed when two pairs
of line internal rhymes overlap within a single line. A good
example of this is given in “Official”:

Yo, I stick around like hockey, now what the puck
Cooler than fuck, maneuver like Vancouver Canucks,
[10]

where “maneuver” and “Vancouver” are found between
“fuck” and “Canucks.” Bridge rhymes are internal rhymes
spanning two lines:

How I made it you salivated over my calibrated
RAPS that validated my ghetto credibility
Still I be PACKin agilities unseen
Forreal-a my killin abilities unclean facilities. [10]

Here, we call pairs in which both members are internal
(such as “agilities” / “abilities”) bridge rhymes, and those
where the first word or phrase is line-final (such as “cali-
brated” / “validated”), link rhymes.

3. FINDING RHYMES AUTOMATICALLY: A
PROBABILISTIC MODEL

We modeled our rhyme detection program after local align-
ment protein homology detection algorithms using BLO-
SUM (BLOcks of amino acid SUbstition Matrix) [11]. In
this framework, pairs of proteins are modeled as sequences
of symbols generated either randomly or based on shared
ancestry (homology). Pairs of matched amino acids re-
ceive a log-odds score in the BLOSUM matrix M: a pos-
itive score indicates the pair more likely co-occurs due to
homology, and a negative score indicates the pair is more
likely to co-occur due to chance. Scores are in log-odds:
M[i, j] = log2(Pr[i, j|H]/ Pr[i, j|R]), where H is a model
of related proteins (obtained by counting the frequency
with which we see symbols i and j matched to each other
in proteins known to be homologous) and R is the fre-
quency of the symbols i and j in random proteins (obtained

from frequency counts over all proteins). If a pair of pro-
tein sequences contains regions in which the amino acids
align to give high scores, the pair is considered to be ho-
mologous.

In our work, song lyrics are transcribed into sets of se-
quences of syllables, with each sequence corresponding to
a line of text. Similar to Kawahara’s [12] treatment of con-
sonants in Japanese rap lyrics, probabilistic methods are
used to calculate similarity scores for any given pair of syl-
lables. Phonemes which match with each other in rhyming
phrases more often than expected by chance receive pos-
itive scores, while those which match less often than ex-
pected receive negative scores. Regions with syllables that,
when matched to each other, have total score surpassing a
threshold are identified as rhymes.

4. RHYMING SYLLABLES

To generate models of rhyming and randomly co-occurring
syllables in rap lyrics, we needed a data set of known
rhymes. Our training corpus includes the lyrics of 31
influential albums from the “Golden Age” of rap (1984-
1994), chosen because they received the highest rating
from The Source, the top-selling US rap music magazine
of the time, plus nine additional albums by influential
artists from the time period (Run-DMC, LL Cool J, The
Beastie Boys, Public Enemy, Eric B. and Rakim). We
downloaded lyrics from the Web and manually corrected
them to fix typos and ensure that pairs of consecutive lines
ended with matching rhymes, yielding 27,956 lines of
lyrics (13,978 rhymed pairs), approximately 700 lines per
album.

We first transcribe plaintext lyrics into sequences of
phonemes using a wrapper we built around the Carnegie
Mellon University (CMU) Pronouncing Dictionary [13],
which gives phonemes and stress markings for words in
North American English. We augmented the dictionary
with slang terms and common elements of hip-hop vernac-
ular (e.g., the “-in” ending in “runnin’ ”, or the “-a” ending
in “brotha” or “killa”), and reduced the stress assigned
to common one-syllable words of minor significance in
rhyme (“a”, “I”, etc.). To handle words not found in
the augmented dictionary, we added the Naval Research
Laboratory’s text-to-phoneme rules [14].

5. SCORING POTENTIAL RHYMES

To generate a log-odds scoring matrix for rhyming syl-
lables, we need models for random syllables and for
rhymes. For any pair of syllables i and j, the random
model, Pr[i, j|Random], gives the likelihood of i and j
being matched together by chance while the rhyme model,
Pr[i, j|Rhyme], gives the likelihood of i and j being paired
in a true rhyme. As in BLOSUM [11], the log-odds score
is calculated as ln(Pr[i, j|Rhyme]/ Pr[i, j|Random]). To
avoid overfitting, we reduce each syllable to its vowel
(nucleus), end consonants (coda), and stress—the relevant
features for determining rhyme. We approximate the coda
by taking the first half (rounded up) of the consonants
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between adjacent pairs of vowels. Both models are trained
using the occurrence frequencies of phonemes in the
training data.

In the random model, the likelihood of vowel a match-
ing with vowel b is calculated by taking the product of the
frequencies of a and b. The likelihoods for consonants and
varying stress are calculated in the same manner. For the
rhyming model, the likelihood of vowels a and b being
matched is calculated by taking the number of times a and
b are seen matching in known rhymes, and dividing by the
total number of matched vowel pairs in known rhymes.
Then the log-odds score for the vowels is calculated as
vowelScore(a, b) = ln(Pr[a, b|Rhyme]/ Pr[a, b|Random]).

The likelihood for consonants is more complicated
since we must also consider unmatched consonants when
aligning syllable codas of differing size. We use an iterated
approach to solve these problems. In the first pass over
the training data, we produce initial vowel and consonant
scoring matrices by calculating the statistics above. We
consider rhymes in paired lines to be all syllables follow-
ing the final primary-stressed syllable, after Holtman [6].
In the second pass, we identify the start of rhymes by
moving backwards from the end of the line while initial
scores for stressed syllables are positive. We perform
global alignment [15] on matched codas to determine
frequencies for consonants pairing with other consonants,
and being unmatched at the start or end of the coda. This
distinction is useful since some consonants (such as /l/ and
/r/) are more likely to be unmatched at the beginning of
clusters, and others (often coronals, such as /d/ and /z/)
are more likely to be unmatched at the ends of clusters. A
simple example of this is found in the repeated occurrences
of “alarmed” rhyming with “bomb” in Public Enemy’s
“Louder Than A Bomb.” [16]

Using these frequency statistics, we produce the
rhyming model and log-odds scores for consonants and
stress in the same way as for vowels. Finally, we normal-
ize the consonant score by dividing by the length of the
coda to avoid the problem of syllables with long codas
having the consonant score dominate. Intuitively, “win”
and “gin” rhyme as well as “splints” and “mints.” Since
all the constituent scores are log-odds, they can be added
together to form a combined probabilistic log score. The
final score for two given syllables is the sum of the vowel
score, normalized consonant score, and stress score.

Tables 1 and 2 show the pairwise scoring matrices. The
symbols “ *” and “* ” indicate scores for unmatched con-
sonants at the beginning and end of codas, respectively.
High scores for pairs like (/m/,/n/) and (/k/,/p/) largely val-
idate Holtman’s hierarchy [6].

6. RHYME DETECTION ALGORITHM

With our probabilistic scoring method for matched sylla-
bles in place, we need a procedure to identify internal and
end rhymes. Our technique is a variant on local align-
ment [15]; for each syllable, we identify its closest pre-
ceding rhyming syllable, and longest preceding rhyming
phrase within the current and previous lines. For example,

AA AE AH AO AW AY EH ER EY IH IY OW OY UH UW
AA 2.3 -3.3 -0.8 1.6 -1.7 -2.7 -7.2 -0.6 -3.9 -4.8 -3.9 -1.0 -1.7 -3.3 -3.9
AE 2.1 -1.5 -6.6 -1.9 -3.3 -1.5 -3.4 -1.8 -2.0 -4.3 -4.6 -4.5 -3.7 -6.7
AH 2.2 -1.2 -1.4 -1.4 -0.6 -0.2 -1.7 -0.3 -3.0 -1.0 -0.6 -0.9 -1.5
AO 3.1 -1.0 -3.8 -6.5 -1.1 -3.9 -4.2 -6.3 -0.3 -0.4 1.1 -3.3
AW 3.8 -0.3 -6.0 -4.2 -5.7 -6.0 -5.7 -2.0 -2.9 -4.5 -1.4
AY 2.5 -4.2 -1.1 -7.0 -1.8 -3.2 -4.3 -1.1 -5.7 -6.4
EH 1.9 -1.2 -1.5 0.2 -2.1 -7.0 -4.5 -6.1 -4.3
ER 3.9 -5.6 -1.5 -5.5 -1.6 -2.7 -1.3 -2.6
EY 2.5 -3.4 -2.7 -4.4 -4.3 -5.8 -6.5
IH 2.0 -0.9 -7.1 0.2 -2.2 -3.7
IY 2.4 -4.4 -4.2 -5.8 -6.4
OW 2.8 -4.0 -2.5 -1.5
OY 4.9 0.1 -3.7
UH 2.6 -0.5
UW 3.1

Table 1. Scoring Matrix for Vowels

given the line

Unobtainable to the brain it’s unexplainable what the
verse’ll do [10]

from Pharoahe Monch’s “Right Here,” the middle “ain”
syllables all rhyme, while the whole of “unexplainable”
also rhymes with “unobtainable.”

For every pair of consecutive lines in a set of lyrics,
we first construct a two-dimensional matrix of the score
for every pair of syllables. Entries in this matrix (corre-
sponding to pairs of syllables in the lines) are selected as
“anchors” if they have score above a threshold and con-
tain a stressed syllable or are line-final. From these anchor
positions, rhymes are extended forward, ensuring that the
length-normalized score is above a syllable threshold. In
addition to the iterative extension, a “jump”-type exten-
sion is also allowed, in which one or two syllables can be
skipped over if the following syllable pair is an anchor type
with score above a higher threshold. This was included
since longer polysyllabic mosaic rhymes often contain one
or two syllables that do not rhyme in the midst of three
or four that do. A good example of this can be found in
Fabolous’ “Can’t Deny It”:

I keep spittin’, them clips copped on those calicos
Keep shittin’, with ziplocks of that Cali ’dro [8]

where the two lines rhyme in their entirety, with the excep-
tion of “them”/“with” and “those”/“that.”

We filtered the set of rhymes to remove one-syllable
rhymes including unstressed syllables, as these tended to
be noise. After a set of rhymes was identified, we removed
duplicates and consolidated consecutive and overlapping
rhymes together.

7. VALIDATING THE METHOD

Our first test verifies that our probabilistic score for sylla-
ble rhyming is better at identifying perfect and imperfect
rhymes than rules-based phonetic similarity measures. We
did a 10-fold cross validation where we chose 36 albums
from the training data, trained a rhyme model for those al-
bums, and used it to score the known rhyming lines from
the other four albums (true positives) as well as randomly
selected lines from those four albums (presumed to be true
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B CH D DH F G JH K L M N NG P R S SH T TH V Z ZH * *
B 4.3 -4.8 1.1 0.4 -5.5 1.9 1.9 -6.9 -0.3 -0.5 -1.6 -5.5 0.1 -0.9 -1.6 -4.6 -1.0 -4.3 2.3 0.3 -2.5 -0.6 -1.5
CH 4.2 -1.6 -4.9 -0.3 0.3 0.4 1.5 -6.8 -6.6 -2.8 -5.5 1.1 -6.7 0.3 0.6 0.9 1.4 -6.1 -2.0 -2.5 -6.0 -2.6
D 2.3 -7.0 -7.6 0.1 0.2 -3.1 -1.7 -2.2 -2.2 -3.0 -1.8 -0.9 -9.0 -2.1 0.2 0.0 -0.2 0.0 -4.6 -0.2 1.2
DH 3.5 -5.6 -5.1 -4.2 -0.4 -0.2 -2.0 -7.5 -5.6 -6.2 -1.4 -7.0 -4.8 -0.3 1.3 2.8 1.1 -2.6 -6.0 -3.4
F 3.4 -1.2 -4.9 -0.3 -1.5 -1.3 -3.5 -1.6 1.1 -2.7 1.1 1.2 -0.9 4.0 0.6 -7.3 -3.2 -1.4 -2.9
G 4.2 1.9 0.0 -0.2 -1.0 -1.9 -5.7 -0.6 -0.8 -2.5 -4.9 -1.1 -4.5 0.3 -0.3 -2.7 -0.9 -2.8
JH 5.2 -6.3 -1.5 0.1 -0.5 -4.8 -0.2 -0.3 -0.6 0.6 -1.1 -3.6 1.4 1.0 4.1 -5.3 0.5
K 2.6 -2.9 -2.1 -2.6 -1.3 1.7 -2.1 -0.7 -0.6 0.9 0.5 -1.8 -3.1 -4.7 -1.0 -1.8
L 2.8 -1.8 -1.8 -2.8 -8.1 -0.5 -2.9 -6.6 -2.9 -6.3 -1.3 -1.6 -4.5 0.4 -1.0
M 2.7 1.8 0.7 -3.2 -1.2 -2.9 -1.1 -2.5 0.4 -0.6 -3.7 -4.2 -0.8 -1.7
N 2.2 1.2 -2.5 -1.0 -2.3 -0.7 -1.5 -0.6 -1.5 -2.1 -5.1 -0.4 -2.3
NG 4.1 -6.8 -2.7 -2.3 -5.3 -3.5 -5.0 -2.1 -2.0 -3.2 0.2 -3.9
P 3.3 -2.0 -1.1 -0.7 1.1 0.9 -0.6 -7.9 -3.8 -0.7 -0.8
R 2.8 -2.3 -0.8 -1.2 -6.1 -2.1 -2.2 -4.3 1.7 -0.7
S 2.6 2.4 -1.0 1.0 -2.4 0.5 0.0 0.6 0.6
SH 5.2 -0.6 -4.1 -1.3 -0.2 3.6 -5.8 -7.7
T 1.7 1.6 -0.9 -9.2 -5.2 0.0 0.7
TH 4.4 0.5 -6.1 -2.0 -5.4 -0.6
V 2.9 -0.4 1.6 -1.2 -1.7
Z 2.6 3.0 -1.3 1.1
ZH 6.8 -3.7 -5.6

Table 2. Scoring Matrix for Consonants

negatives). We developed implementations of the mini-
mal mismatch of articulatory features and Kondrak align-
ment [17] metrics to compare the performance of these
scoring measures, which are based on the physical process
of the human voice. We show receiver operator character-
istic (ROC) curves comparing the true positive rate to false
positive rate when varying the score threshold for each of
the three methods in Figure 1. The probabilistic method
significantly outperforms both simpler rules-based meth-
ods.

Figure 1. ROC curves for the three different scoring meth-
ods, comparing percentage of actual rhymes found by algo-
rithm on the y-axis with percentage of unrelated syllables
detected as rhyming on the x-axis

Next, we considered false positives and negatives for
detected end rhymes, using the score threshold of 1.5
(meaning matched syllables are at least e1.5 times more
likely to rhyme than expected by chance). Out of 1000
pairs of unrelated random lines from our training data,
79 syllables were marked as parts of end rhymes (“false
positives”) by our procedure. Of these, 22 were in fact

true rhymes, with scores higher than 3.0. 30 were near-
rhymes; that is, that they could be found (though less
frequently) as line final rhymes in actual lyrics. Usu-
ally scoring above 2.0, they included matches such as
“stiff”/“fit”, “pen”/“thing”, and “cling”/“smothering”,
with more than one articulatory difference or different
stress. 14 matched end syllables (often suffixes), typically
with high scores (greater than 3.0). Examples such as
“weaker”/“drummer” and “tappin’”/“position”, may have
exact matches, but are not relevant rhymes due to their
lack of stress. The remaining 13 moderately high scoring
(between 1.5 and 2.5) pairs featured either high consonant
scores (like “bust”/“test”) or high vowel scores due to
matching rare vowel sounds (“box”/“wrong”).

From a set of 1000 matched pairs of lines, we used the
iterative method (moving backwards from the end of the
line while scores for stressed syllables are positive) to see
which true rhymes would be missed. Pairs with all such
matches scoring less than 1.5 were marked and treated as
false negatives. Out of 132 such syllables, the largest group
(48) were moderately low scoring (between -1.0 and 1.5)
pairs participating in polysyllabic and mosaic rhymes. A
good example of this is “battery”/“battle me” in Eric B.
and Rakim’s “No Omega” [7]; many of these were flanked
by high scoring pairs, and would be included in rhymes us-
ing the jump extension described in the above section. 35
were very low scoring pairs (less than 0.0) which were ei-
ther caused by words having been transcribed improperly
or the lack of a true rhyme in the lyrics. 22 were caused
by the rhyme start being extended too far back and start-
ing with a low positive scoring pair. Again, this would
not cause problems in our actual detection algorithm since,
in that case, rhymes are extended forward from stressed
anchors. 17 were caused by differences between the ac-
tual pronunciation and the dictionary’s pronunciation (“po-
ems” treated as one syllable, or “battles” specifically being
pronounced to rhyme with “shadows”). Finally, 10 were
caused by deliberate mismatch in syllable stress.

The probabilistic model is quite good at finding both
perfect and imperfect rhymes. Quite few syllable pairs
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(less than 15 in the 1000 line pairs) scored highly without
being perceivably rhyming, and most low scoring “true”
rhyme pairs take part in complex mosaic and polysyllabic
rhymes.

Finally, we used our model on a set of manually an-
notated rap lyrics, to measure the ability of the program
to find both internal and line-final rhymes. We used five
songs of varying style: the Beastie Boys’ “Intergalac-
tic”, a Grammy-winning song in the old-school style;
Pharoahe Monch’s “The Truth” (featuring Common and
Talib Kweli) and “Right Here”, which were annotated by
Alim [9] and feature high rhyme density and a compli-
cated scheme; Jay-Z and Eminem’s “Renegade”, which
features very high rhyme density; and Fabolous’ “Trade
It All (Part 2)”, a song specifically mentioned by Alim
for its prevalence of long (five or six syllable) rhymes.
We show the ROC curves for this test set in Figure 2; the
best overall performance is for specificity and sensitivity
just above 60%. Most “false positive” are rhymes that
were not annotated due to lack of rhythmic importance
or accidental omission. False negatives included several
where the performer created a rhyme from words that do
not appear to rhyme as text, and some longer rhymes that
were cut off prematurely due to too many non-rhyming
syllables within them and lower scoring syllable pairs
surrounding them. Finally, some rhymes were missed due
to intervening rhymes being found between the rhyming
parts, particularly when the threshold for rhymes is set
low. This is especially evident in the ROC curves at lower
cut-off thresholds, where true positive rates peak around
80% and begin to decline as the threshold is lowered.

8. EXPERIMENTS

We used our procedure to examine a variety of features
about the rhymes in several sets of lyrics. We computed
the number of syllables per line, the number of rhymes
per line, the number of rhymes per syllable, average end
rhyme scores, and proportion of rhymes having two, three,
four, or more syllables. We also counted all of the complex
rhyming features (bridge, link, chain and internal rhymes)
per line.

We hypothesized that these features would show dif-
ferences between genres of popular music, and calculated
them for four sets of data: the top 10 songs from Bill-
board Magazine’s 2008 year-end Hot Rap Singles chart;
the top 20 songs from the 2008 year-end Hot Modern Rock
Songs chart; the first 400 lines of Milton’s “Paradise Lost”
[18], as a similar-sized sample of non-rhyming verse; and
the top 10 songs from the 1998 year-end Hot Rap Singles
chart. To compare the verses most of all, the song lyrics
were modified to remove intro/outro text, repeated lines,
and additional choruses. Our results are in Table 3. High
end rhyme scores are indicative of song lyrics in general
(relative to unrhymed verse); rap has higher rhyme density,
internal rhyme, link rhymes, and bridge rhymes. Interest-
ingly, blank verse and rock lyrics have similar amounts of
rhyming per line, but rock lyrics have more rhymes per syl-
lable. The data from 1998 and 2008 rap songs suggest that

in their rhyming pattern, there has not been much shift in
style.

Rap ’08 Rap ’98 Rock Blank
Number of Lines 476 613 502 400
Number of Syllables 4646 6492 4053 4146
Syllables per Line 9.76 10.59 8.07 10.37

Number of Rhymes 794 1118 476 393
Rhymes per Line 1.67 1.82 0.95 0.98
Rhymes per Syllable 0.17 0.17 0.12 0.09
Rhyme Density 0.28 0.27 0.19 0.12
Average End Score 5.28 5.21 4.36 2.49

per Syllable 3.75 3.67 4.01 2.28

Doubles per Rhyme 0.23 0.29 0.15 0.18
Triples per Rhyme 0.08 0.06 0.04 0.03
Quads per Rhyme 0.02 0.03 0.05 0.00
Longs per Rhyme 0.03 0.02 0.04 0.01

Internals per Line 0.62 0.60 0.27 0.28
Links per Line 0.20 0.28 0.13 0.16
Bridges per Line 0.43 0.48 0.28 0.40
Chaining per Line 0.32 0.18 0.15 0.07

Table 3. Rhyme Features for Different Genres

We also hypothesized that features of individual rap-
pers might also be informative, so we produced these
statistics for albums by nine famous MCs from a diverse
range of styles and eras: Run-DMC, Rakim, Notorious
B.I.G., 2Pac, Jay-Z, Fabolous, Eminem, 50 Cent, and Lil’
Wayne. Features were calculated for segments of at least
40 lines to produce means and standard deviations of the
statistics for each album. The results indicate that many
of these features can be characteristic of different artists’
styles. For example, Run-DMC’s (1984) old-school style
has lower rhyme density and less internal rhyme with an
average of 1.5 rhymes per line and only 6% of rhymes
being longer than 2 syllables; while Rakim (1987), known
for his more complex style, is detected as using more
internal rhymes (0.63 per line to Run-DMC’s 0.48) and
more rhymes longer than 2 syllables (12%). Rival rappers
Notorious B.I.G. (1994) and Tupac Shakur (1995) display
fairly similar style characteristics: 28% of their rhymes
are 2 syllables long, 6% are three syllables, and 3% are
longer. However, Biggie’s lines are significantly shorter in
length, with, on average, 10.8 syllables to 2Pac’s 11.6.

Artists from the early 2000s like Jay-Z (2001), Eminem
(2000), and especially Fabolous (2001) favour longer
rhymes, with 15%, 17%, and 30% respectively of their
rhymes being longer than 2 syllables. They also have the
most rhyme density overall, with 2.2, 2.3, and 1.9 rhymes
per line respectively. Jay-Z and Eminem tend to use
more internal rhyme as well, having 0.8 internal rhymes
per line–about 25% higher than the average among other
MCs. Although he portrays a “thug” persona, 50 Cent
(2003) uses the most syllables per line (12.1), while Lil’
Wayne (2008) has the fewest (10.2). However, he manages
high rhyme density (0.3 rhymed syllables for each syllable
used) with relatively few (only 1.8) rhymes per line. In
general, we find that automatic rhyme detection can yield
characteristic data about performers and genres.
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Figure 2. Rhyme Detection Syllable ROC Curves for Different Songs. The y-axis indicates the percentage of true rhymes
identified by the algorithm, while the x-axis shows the percentage of automatically identified rhymes not considered to be
true rhymes.

9. CONCLUSION

Using a probabilistic scoring model, we were able to iden-
tify both perfect and imperfect rhymes with a higher level
of accuracy then simpler rules-based methods. The heuris-
tic rhyme detection methods achieved moderate success at
finding both internal and line-final rhymes in song lyrics.
More importantly, statistical features of these rhymes did
correspond to real world characterizations of rhyme style,
and many of these features are quite consistent within in-
dividual artists’ lyrics and varied between different artists.
This leads to the possibility that automatically calculated
rhyme statistics can be used to make meaningful catego-
rizations and recommendations based on rhyme style.
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ABSTRACT

We introduce the music exploration system SLAVE , which
is based upon previous developments of our group. SLAVE

manages multimedia music collections and allows for mul-
timodal navigation, playback, and visualization in an ef-
ficient and user-friendly manner.1 While previously the
focus of our system development has been the simultane-
ous exploration of digitized sheet music and audio, with
SLAVE we enhance the functionalities by video and lyrics
to achieve a more comprehensive music interaction. In this
paper, we concentrate on two aspects. Firstly, we integrate
video documents into our framework. Secondly, we in-
troduce a graphical user interface for semi-automatic fea-
ture extraction, indexing, and synchronization of heteroge-
neous music collections. The output of this GUI is used
by SLAVE to offer both high quality audio and video play-
back with time-synchronous display of digitized sheet mu-
sic and content-based search.

1. INTRODUCTION

Various aspects of a piece of music can be described
by different types of music documents, such as scans of
sheet music, symbolic data (e.g., MIDI, MusicXML), text
(e.g., lyrics, libretti, music analysis), audio recordings, and
video. In modern digital music libraries large collections
of these music documents are stored. The availability of
digital music collections naturally leads to the necessityof
providing tools to automatically process, analyze and pre-
pare this multimedia data for an efficient and user-friendly
access. Equally, user interfaces for an adequate multi-
modal presentation of and interaction with the music doc-
uments need to be provided. The last years have witnessed
substantial progress in developing automated MIR pro-
cessing procedures to compute synchronization and index-

We gratefully acknowledge support from the German Research
Foundation DFG. The work presented in this paper was supported by the
PROBADO project (http://www.probado.de/, grant INST 11925/1-1) and
the ARMADA project (grant CL 64/6-1).

1 While ”multimodal” refers to the perception of music through differ-
ent modalities (user perspective), ”multimedia” correspondsto the differ-
ent media types (data perspective).
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ing information for multimedia music collections [1–4, 6].
In the area of digitalization of multimedia library contents,
efforts both towards better automatized digitization tech-
niques and semantic integration of multimedia documents
are noticeable [5,6]. Furthermore there are several propos-
als for user interfaces to access and present digital music
databases in a multimodal manner [1,6–9].

The most frequently encountered digitally available
types of music representation are scanned sheet music,
symbolic score data and audio recordings. Therefore most
of the presented techniques and frameworks mainly focus
on one or several of these data types. However, there is
another type of music representation, which can provide
library users, musicians and musicologists with rich infor-
mation on the pieces of music. Today, most live perfor-
mances are filmed and distributed to a broad audience via
video DVD and television. Besides recordings of live per-
formances also specific video productions of pieces of mu-
sic are available. Hence, the extension of the functionali-
ties of multimodal frameworks to support video documents
and the development of user interfaces for video integra-
tion suggest themselves.

A holistic presentation using as many different media
sources and types as possible can support the process of ex-
periencing the music as well as analyzing the music with
respect to different aspects. Prospective conductors, for
example, might be interested in watching music videos to
learn or compare the conducting style of different conduc-
tors. Providing tools to allow fast and smooth comparison
between and browsing within interpretations are desirable
for this purpose.

In this paper, we introduce theScore-Lyrics-Audio-
Video-Explorer (SLAVE ), which is based upon previous de-
velopments of our group. As enhancement, we propose the
integration of videos into SLAVE to converge to a holistic
exploration of music using various types of music docu-
ments in an integrated manner. Furthermore, we introduce
a graphical user interface for the semi-automatic process-
ing of multimedia music collections to generate indexing
and synchronization structures as well as other derived data
types. Note that for videos, we solely use the audio track
to perform all required calculations.

The rest of this paper is organized as follows. The
subsequent Section 2 provides information on the under-
lying techniques of feature extraction and music synchro-
nization. In Section 3 the workflow for processing music
collections and a GUI for a user-friendly management of
the workflow are described. Section 4 presents the inter-
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Figure 1. Illustration of the scan-video synchronization,
using the first measures of the 2nd movement of Liszt’s
Faust Symphony. (a) Scanned sheet music. (b) Chroma-
gram of the sheet music. (c) Audio chromagram. (d) Au-
dio track extracted from the video. (e) Music Video. The
scan-video synchronization (double-headed arrows) is ob-
tained by chromagram-alignment, see Section 2.2.

face SLAVE and in particular the integration of video doc-
uments into this system. The paper closes in Section 5 with
prospects on future work.

2. UNDERLYING TECHNIQUES

In this section, we describe the methods needed to pro-
cess, match and align various types of music documents.
The basic idea of the presented processing methods is to
transform all music document types into a common fea-
ture representation, which allows for direct comparison
and alignment independent of the input document types.
In this context, chroma-based music features have proven
to be a good mid-level representation [10, 11]. At first,
the input documents are transformed into sequences of
12-dimensional chroma vectors, where each vector repre-
sents an energy distribution over the twelve pitch classes of
the equal-tempered scale. In Western music notation, the
chroma are commonly indicated by the pitch spelling at-
tributes C, C#, D, . . . , B. By considering short-time statis-
tics, these chroma features are transformed into the robust
and scalable CENS features, see [12] for details. As an ex-
ample, the CENS sequences for an extract of scanned sheet
music and the CENS features of the corresponding video

section are displayed in Figure 1 (b) and (c). Throughout
this paper, chroma features with a sample rate of10 Hz
are applied, whereas CENS features of different sample
rates are generated and used for alignment and indexing
purposes.

2.1 Deriving Chroma-based Features

To time-align two music documents (e.g., sheet music and
a video recording) describing the same piece of music,
both documents are transformed into CENS features.

The transformation of scanned sheet music into CENS
features requires several processing steps, see [13]. At
first, using standard software for optical music recogni-
tion (OMR), the scanned score data is analyzed and trans-
formed into musical note parameters. Subsequently, based
on the gained pitch and timing information, the chroma
features can essentially be computed by identifying pitches
that belong to the same chroma class. The CENS se-
quences are gained from these features as previously de-
scribed. During the feature extraction, a constant tempo of
the piece of music represented by the scanned sheet music
is assumed.

For a detailed description on methods for CENS fea-
ture generation of audio recordings, we refer to the litera-
ture [10,12]. In principle, in our application the audio sig-
nal is transformed into chroma features by using short-time
Fourier transforms in combination with binning strategies.

To enable the generation of CENS features from video
files, the audio track of the video recording is extracted and
the feature computation for audio recordings is applied.

2.2 Music Synchronization

Figure 1 gives an example of the alignment procedure for
the scanned sheet music and a video recording of the first
measures of the2nd movement of Liszt’s Faust Symphony.
As described before, the first step for the synchronization
of two music documents is, to convert both into a common
and meaningful feature representation. Based on these fea-
tures, multiscale dynamic time warping techniques (Ms-
DTW) are employed to determine the synchronizations be-
tween music documents. The essential idea of MsDTW is
to recursively compute alignment paths for coarse feature
resolutions and project them to the next higher resolution
level, where they subsequently are refined. Further details
on the MsDTW method are available, e.g., in [14,15].

During the described synchronization, we assume that
the music documents match with respect to their musical
structure so that only local and global tempo-variations
need to be considered. In Section 3 we go into details on
how to deal with structural differences during score-audio
and score-video alignment. For information on synchro-
nization of structurally differing audio recordings, see [16].

3. SEMI-AUTOMATIC DATA PROCESSING

To allow for a fast and user-friendly generation of all data
files used by the SLAVE system (Section 4), the automation
of all required computing steps is desirable. As a first step
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Figure 2. TheContentCreator interface for semi-automatic data processing.

towards full automation, we present theContentCreator in-
terface, see Figure 2, for the generation of synchronization
information, indexing structures, and further data types for
music collections consisting of score scans, audio record-
ings, and videos.

TheContentCreator interface aims at providing an intu-
itive GUI to support the process chain required to generate
all metadata used by the SLAVE system. Within this con-
text, metadata refers to data files containing information
that ranges from indexing and synchronization structures
to score and CD cover images used by SLAVE for visual-
ization purposes. As shown in Figure 2, the workflow is di-
vided into several interdependent stages. The generation of
the results for each stage can be triggered individually. The
integrated arrows help to clarify the dependencies between
the various stages and also display the different paths for
the generation of metadata. Due to the selected division of
the workflow into individually triggered stages, the manual
manipulation of intermediate files before continuing to the
next stage is possible. At the moment, some stages merely
generate default or, due to the error-prone OMR, erroneous
data files. At these points, a manual rework is essential for
a successful workflow. Further details on this issue are ad-
dressed in Section 3.2.

During the usage of theContentCreator, three different

types of data files can be distinguished. The input files (la-
bel 1 in Figure 2) mark the starting point of the process
chain and currently consist of scanned pages of a music
book, audio recordings, and videos. The second are the
intermediate data types (labels2 − 6). These files are re-
quired for the process chain but do not contain informa-
tion directly used by the SLAVE system. By contrast, the
last type of files (labels7 − 9 and unlabeled boxes) con-
tains metadata. The output stages not further mentioned in
this paper generate metadata like texture data for rendering
the sheet music pages, information on length and name of
the audio and video tracks, and data structures for content-
based retrieval.

Methods to save and restore the current state as well as
the possibility to export the created metadata for runtime
usage with SLAVE are provided.

3.1 Workflow for semi-automatic music alignment

In the following, we describe the chain of stages involved
in the process of time-aligning a music book to various
interpretations (video and audio).

As first step, the input data needs to be selected and
loaded to the application (label1). The ContentCreator
interface enables the management of arbitrary numbers of
audio and video interpretations of a piece of music (right-
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hand box) and the synchronization of these interpretations
to a scanned music book representing the same piece of
music (left-hand box).

To extract the score information from the scanned score
pages, OMR is performed (label2) and the resulting data
are subsequently merged into a singleSymbolicScore file
(label 3). This file thereby contains various music informa-
tion such as note events, key signatures, time signatures,
staff information, accidentals, and information on instru-
mentation and transposition, required for the generation of
chroma-based features.

When aiming at the alignment of a whole music book to
a set of video or audio recordings, the individual scanned
pages of the music book need to be related to the differ-
ent tracks of the music book. Therefore in the next step, a
file containing information on the tracks contained in the
music book is generated (label4). Besides the musical in-
formation stored in theSymbolicScore files, generated in
stage3, a score also contains information on repetitions
and jumps. This data is extracted from the OMR output
and saved in the next stage (label5). Together with the
jump information of the video and audio interpretations,
this data contributes fundamentally to the success of the
synchronization process. On generating the CENS features
of the scanned sheet music, the given jump information
is employed to ensure structural accordance with the re-
spective features of the video and audio recordings. Sub-
sequently, the CENS features of all loaded audio and video
files are generated as described in Section 2.1 (label6).

Prior to the execution of the synchronization, there are
two more steps to be conducted. After splitting the mu-
sic book into various tracks in stage4, these need to be
mapped to the audio and video files of each loaded inter-
pretation (label7). Currently, manual rework is required, if
the order of the videos or the audio tracks of the interpre-
tation does not coincide with the track order of the music
book. There are already proposals for a feature based, au-
tomatable creation of mapping information, which can be
integrated into theContentCreator interface, see [1]. Fi-
nally, the jump and repetition instructions extracted from
the score scans might not be consistent with the repeti-
tions and jumps actually performed in the specific audio
or video recording. Therefore, the last stage (label8) be-
fore the synchronization consists of the generation of this
data for all loaded video and audio interpretations.

After passing all stages described before, the synchro-
nization information for the music book and the loaded
video and audio interpretations are computed (label9), us-
ing the MsDTW approach mentioned in Section 2.2. The
CENS features of the music book are computed on de-
mand, considering the structural information of the audio
or video track used for the current synchronization process.

3.2 Reworks during the workflow

The individual stages of the presented workflow are autom-
atized as far as possible. For stages, where currently no
adequate computational methods exist to enable automa-
tion, default data files, which need to be reworked by the
user, are generated. The user can modify those data files

or can import previously generated data files into the cur-
rently reworked stage. At the moment, parts of theSymbol-
icScore file (transposition information for the contained in-
struments, label3) and the interpretation specific jump and
repetition information for video and audio recordings (la-
bel 8) might need manual correction. In addition, in stage
3, 4, 5, and7 manual adjustments might be required for
complex pieces of music or low quality music book scans.

To extend the workflow managed by theContentCre-
ator to larger music collections, the applied techniques are
currently integrated into the PROBADO library service sys-
tem build up at the Bavarian State Library, see [1].

4. THE SLAVE SYSTEM

Recently, various computer tools were created to enable
the management and presentation of multimedia music col-
lections. However, so far those tools mostly concentrate on
sheet music and audio recordings. In this section, we want
to present the SLAVE system, which aims at a user-friendly
and holistic exploration of music in a multimodal manner.

SLAVE is based upon theSyncPlayer system, presented
in [7]. TheSyncPlayer offers – besides basic audio player
functionalities – the possibility of adding plug-ins for mul-
timodal music presentation and audio analysis (e.g., a
plug-in for the visualization of the musical structure of the
current piece of music). SLAVE provides a renewed GUI
and includes some of the techniques already available in
the SyncPlayer as well as some new features. The new
framework is envisioned as user interface for the library
service system set up at the Bavarian State Library as part
of the PROBADO project. First system developements to-
wards SLAVE were recently presented in [1].

The framework consists of several user interfaces for
multimodal music presentation, navigation and content-
based retrieval. The central component is theScoreViewer
interface shown in Figure 3, which offers the visualiza-
tion of the scanned pages of the underlying music book.
When audio playback is started, the corresponding mea-
sures within the sheet music are highlighted based on the
synchronization information created by theContentCre-
ator system described in Section 3. Some additional fea-
tures of theScoreViewer are automatic page turning dur-
ing playback, navigation within the music book, and user-
friendly music retrieval based on the query-by-example
paradigm. The latter is implemented by enabling the user
to select a region within the sheet music using the mouse
pointer. The issued query is processed by determining the
corresponding audio clipping of the currently active in-
terpretation and performing content-based music retrieval.
For details on the employed matching and indexing tech-
niques, we refer to [17].

There might exist several interpretations of the same
piece of music, which match to the given music book. The
name of the currently active audio interpretation, as well as
an icon showing a corresponding CD cover are displayed
in the upper left corner of theScoreViewer interface. To
seamlessly switch to a different interpretation, a list con-
taining information on all loaded interpretations is avail-
able by clicking on the current cover icon.
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Figure 3. TheScoreViewer interface for multimodal music
presentation and navigation. During video or audio play-
back the corresponding musical measures within the sheet
music are highlighted. A smooth change between different
interpretations of a piece of music is possible.

Figure 4. The VideoViewer shows the currently played
video of the chosen video interpretation and allows brows-
ing within the video as well as within the list of video files
of the interpretation.

To include music videos, we added theVideoViewer in-
terface which offers basic video player functionalities, see
Figure 4. As for the audio recordings, during video play-
back, the corresponding measures of the sheet music are
highlighted. The smooth change between different video
and audio interpretations of the piece of music via the
ScoreViewer interface enables the comparison of different
music document types. Furthermore the content-based mu-
sic query was extended to allow the usage of video extracts
as queries and to include video interpretations in the search
indices and result lists.

Although, simultaneously looking at both theVideo-
and theScoreViewer might be hard for the user, having
a time aligned view on the score constitutes several ad-
vantages. In longer video recordings, it might be cumber-
some to search for a specific point in time within the video,
whereas using the score for navigation is easier and faster.
Furthermore with respect to conductings of classical mu-
sic, it might be of interest to compare recordings of several
different conductors at the same musical position. Using
the capability of smooth switching between interpretations

or performing a content-based query using the sheet music
can help to facilitate these tasks.

4.1 Further Extensions

In this section we want to give a preview on further func-
tionalities and interfaces which will be added to SLAVE for
a holistic music presentation.

4.1.1 LyricsViewer

Currently, SLAVE enables the combined presentation of
scanned music books, audio recordings and videos. How-
ever, text documents like libretti of operas and lyrics of
song cycles are additional ingredients of digital music col-
lections. Therefore, our current work aims at the integra-
tion of a LyricsViewer. Foundations for this development
are the previously introduced Karaoke Display and Lyrics
Seeker of ourSyncPlayer system [18]. As for theScore-
Viewer, the currently vocalized words of the song text will
be highlighted during video or audio playback. Addition-
ally, search mechanisms based on the lyrics will be sup-
ported by theLyricsViewer interface.

4.1.2 InterpretationSwitcher

In addition to SLAVE , we enhanced theSyncPlayer sys-
tem [7] (see Figure 5), which is basically a predecessor of
our new system, to support video documents.

First, the audio player component of theSyncPlayer
was modified to allow for the playback of video files and
for the inclusion of videos into playlists. Additionally we
implemented theInterpretationSwitcher plug-in which is
basically an extension of theAudioSwitcher plug-in [7].
The InterpretationSwitcher offers the possibility to switch
between different audio and newly video interpretations of
a piece of music during playback. On changing to a differ-
ent interpretation the current playback position in the piece
of music is retained and the playback seamlessly continues
within the chosen interpretation.

Figure 5 shows an example of two audio interpreta-
tions and one video of the second movement of Liszt’s
Faust Symphony. The sliders enable the user to change
to an arbitrary playback position within one of the inter-
pretations. The playback symbols to the left of the sliders
mark, which interpretation is currently playing and enable
smooth switching between the interpretations. First steps
towards the integration of similar functionalities to SLAVE

are presented in [19].

4.2 Applications of SLAVE and the VideoViewer

The availability of video documents in the framework pre-
sented in this paper offers several advantages for musi-
cians, musicologists, music lovers, and others. As men-
tioned before, prospective conductors might be able to use
the proposed system to compare the work of different con-
ductors within the same piece of music. Looking at more
complex pieces of music – as orchestral works – compar-
ing the orchestration and the arrangement of the orchestra
might be of interest. Thinking of operas even stage design-
ers, make-up artists and costume designers might have an
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Figure 5. SyncPlayer with InterpretationSwitcher plug-in
and video player. TheInterpretationSwitcher enables the
selection of several video or audio interpretations of the
same piece of music. Using the sliders and the playback
symbols on the left, the user can smoothly switch between
and browse within the interpretations.

interest to compare different stagings. The possibility of
smooth changes between various interpretations and score
based navigation offers thereby significant support. Fur-
thermore, looking at the area of dance, choreographers and
dance theorists might benefit from these tools as well.

We therefore hope to experience great acceptance of the
newly integrated video capabilities of our framework by
the various target groups.

5. CONCLUSIONS

In this paper, we reported on a new user interface for semi-
automatic processing of video, audio and score collections
to generate synchronization information, indexing struc-
tures and metadata required for a holistic presentation of
these heterogeneous music collections. We also presented
the multimodal music management framework SLAVE and
the inclusion of music videos as further music document

type. Especially, we introduced the possibility of video
playback and simultaneous score highlighting.

Besides the extensions described in this paper, the de-
velopment of new functionalities and interfaces especially
for video documents are envisioned, e.g., after the synchro-
nization of various videos, during the playback of one ref-
erence video, the other sources can be shown time aligned
to this video. For playback, only the audio track of the ref-
erence is used. This type of application will enable a more
convenient and direct comparison of video interpretations.
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ABSTRACT 

Optical music recognition (OMR) is one of the most 
promising tools for generating large-scale, distributable 
libraries of musical data. Much OMR work has focussed 
on instrumental music, avoiding a special challenge vocal 
music poses for OMR: lyric recognition. Lyrics compli-
cate the page layout, making it more difficult to identify 
the regions of the page that carry musical notation. Fur-
thermore, users expect a complete OMR process for vocal 
music to include recognition of the lyrics, reunification of 
syllables when they have been separated, and alignment 
of these lyrics with the recognised music. Unusual lay-
outs and inconsistent practises for syllabification, how-
ever, make lyric recognition more challenging than tradi-
tional optical character recognition (OCR). This paper 
surveys historical approaches to lyric recognition, out-
lines open challenges, and presents a new approach to 
extracting text lines in medieval manuscripts, one of the 
frontiers of OMR research today. 

1. INTRODUCTION 

Researchers in music information retrieval (MIR) have 
gradually been building bigger databases of music that 
will enable large-scale computational musicology. One 
tool to expedite the development of such databases for 
older music is optical music recognition (OMR), the 
musical analogue to optical character recognition (OCR). 
When developing databases of vocal music, however, 
OMR alone is not enough: lyrics need to be recognised 
and stored along with the music, and because of certain 
particularities of musical notation, standard OCR tools 
are often insufficient for this task. Moreover, lyrics com-
plicate the page layout, making it more difficult to con-
duct the basic image processing necessary to feed the 
OMR and OCR pipelines 

Vocal music predominates among medieval music 
manuscripts, copied by hand from the ninth through the 

sixteenth centuries, as well as early printed music from 
the fifteenth and sixteenth centuries. These sources pose 
still more challenges for OMR and lyric recognition. Due 
to the relatively loose document production techniques of 
the time, page layouts can be highly non-standard and 
oriented more for display than consumption. Further-
more, as a result of ageing, early music documents are 
often in physically poor condition. Typical problems in-
clude non-uniform illumination, stains, and irregular page 
shape. Ink frequently has bled through from the reverse 
side of the page or shows through as a result of high-
contrast microfilm photography. All of these degradations 
can inhibit the performance of segmentation (identifying 
the regions of the image that correspond to musical nota-
tion, lyrics, or other elements) and recognition (interpret-
ing image shapes as musical notes or letters) [1]. Finally, 
scanning conventions for early documents themselves can 
require extra preprocessing to remove elements like rulers 
and colour bars before images are even sent to an OMR 
system [2]. 

This paper outlines some previous approaches to lyric 
recognition, highlights the open challenges, especially 
with respect to early documents, and presents two tools 
we have developed to facilitate work with digital images 
of early music: a new lyric editor for the Aruspix OMR 
package [3] and a new technique for extracting lyric lines 
from digital facsimiles of medieval manuscripts.  

2. BACKGROUND 

OMR systems have been working to handle lyrics for 
some time, and most systems share common challenges. 
One is layout analysis: how can these systems determine 
which regions of a page carry music and which lyrics? 
Some systems rely on heuristics based on projections, run 
lengths, and other local image features, generally seeking 
to extract the music first and define the remaining regions 
as text [3,4]; others run OCR first, using those regions 
where the system successfully identifies letters as lyric 
regions [6]. Once the regions have been separated, most 
systems then send the music regions and lyric regions to 
parallel OMR and OCR pipelines for fuller processing. 

OCR itself is difficult for lyrics, however, because of 
inconsistent syllabification [6]. When sung over many 
notes, lyric words are usually (but not always) separated 
into their constituent syllables, which poses problems for 
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traditional OCR methods that rely on statistical language 
models with word dictionaries [7,8]. The need for sylla-
bicated dictionaries limits the number of languages avail-
able for OCR and increases the number of unrecognised 
inflections [9]. Early documents add another twist on ac-
count of archaic spellings and scribal abbreviations [10]. 
Some systems sidestep these concerns by noting that the 
output of standard OCR on these documents is often good 
enough for users to be able to locate documents in a data-
base [11], but for archival purposes, the ultimate goal of 
these systems is to have lyrics that are complete and ac-
curate. 

3. EDITING LYRICS WITH ARUSPIX 

No automatic lyric recognition system will ever be per-
fect, however, and because digital archivists are among 
the primary target users for recognition software, these 
mistakes need to be corrected. These corrections can in-
cur significant labour expenses in the absence of efficient 
software tools, to the point that, as we have seen in [11], 
sometimes they are not made at all. From the perspective 
of software design, then, an integrated editor for lyrics is 
a useful adjunct to any OMR package for vocal music. 
We chose to extend Aruspix, an open-source OMR appli-
cation that already includes an integrated editor for musi-
cal symbols, to include a new editor for lyrics. 

In the model underlying our lyric editor, lyrics are as-
sociated with notes in a many-to-one relationship, i.e., 
each musical note can be associated with one or more 
lyric elements. The user can modify these relationships 
and the lyrics themselves with a convenient graphical 
interface that pairs the editing region with the analogous 
portion of the original music image, as illustrated in 
Figure 1. Similar to the music editor in Aruspix, our lyric 
editor operates in one of two modes: Lyric Editing, which 
allows users to change the location of lyrics and their as-
sociated notes, and Lyric Insertion, which allows users to 
enter new lyrics and modify existing ones. Using this edi-

tor, any recognition errors can be identified and correctly 
quickly, which reduces labour costs for archival projects 
and facilitates rapid production of ground truth for re-
searchers. 

4. A METHOD FOR LYRIC-LINE EXTRACTION 

Text-line detection is the first step in most OCR systems, 
and a great number of approaches have been developed 
for different types of documents: projection-based meth-
ods, grouping methods, and the Hough transform, among 
others [12]. Our lyric-line extraction algorithm, illustrated 
in Figure 2, is derived from an approach to text-line de-
tection that is optimal for undulating lines [13,14]. Al-
though lyrics are laid out less consistently than the text in 
text-only documents, they are almost always grouped 
along straight horizontal lines. After the removal of the 
staves, these straight lyric lines contrast sharply with the 
undulating lines, also detected by these algorithms, that 
trace the path of musical notes. More specifically, if base-
lines of both lyrics and notes are generated, the former 
will be almost straight while the latter will be highly 
curved and undulating. Thus, a line of lyrics can be ex-
tracted with confidence if many straight segments are 
found along the line. This assumption is fairly safe when 
there are a good number of words within a lyric line, e.g., 

 

Figure 1. Screenshot of the lyric editor in Aruspix. The 
original image appears in the top pane. The lower pane 
contains the lyric editor. Each lyric is linked to a note; in 
this case, the word inter is linked to the third note on the 
top staff. 

Figure 2. Workflow for extracting lyric lines. During 
preprocessing, the image is binarised and staves are re-
moved. A three-step extraction process follows for lyrics. 

O
rig

in
al

 im
ag
e Im

ag
e 

w
ith

ou
t s

ta
ff

 
St

af
fs

pa
ce

 h
ei

gh
t Ly
ric

-li
ne

 m
as

k 

Staff     
  Removal 

Lyric-line     
       Detection 

Baseline detection     
Mark local minimum 
vertices 

Detect potential 
baseline segments 

Merge adjacent po-
tential segments 

Validate potential 
baselines 

Lyric baseline frag-
ments 

Lyric height estimation     
Lyric fragment 
reconstruction 

Lyric height 
estimation 

Lyric height 

Lyric-line region re-
construction 

B
in
ar
is
at
io
n 

St
af

f r
em

ov
al

 / 
St

af
fs

pa
ce

 e
st

im
at

io
n 

724



10th International Society for Music Information Retrieval Conference (ISMIR 2009)  
 

 
 (a) Original image 

 

 
(c) Local minima after staff-removal. 

 
 
 
 

 
(b) Reconstructed staff lines 

 
 

 
(d) Extracted lyric lines 

 
 

 
they are arranged particularly sparsely. 

Figure 3. Results of text-line extraction. Image (a), the original image, illustrates some of the layout challenges 
inherent to medieval documents. Reconstructed staff lines from our staff-removal step appear in (b). The “local 
minima” of each connected component appear in (c), and the final output of lyric-line extraction is in (d).  

/ 

725



Oral Session 8: Lyrics  
 

the lyric lines in Figure 3(a), but it can miss lyrics when 
they are arranged particularly sparsely. 
Before detecting the lyric lines, the images must be 

preprocessed by global deskewing and staff removal. Be-
cause music recognition takes place in a distinct, parallel 
process, we developed a new staff-removal algorithm that 
damages noteheads slightly but removes staff lines more 
reliably in degraded documents than traditional tech-
niques. The technique is in the style of the median-filter 
approach in [15]. Local horizontal projections and verti-
cal run-length coding are used to estimate staff-space 
height and staff height. These values are used to construct 
a directional median-filter window in the form of a thin 
vertical bar. The bar is set to be tall enough to remove 
staff lines while remaining short enough to preserve notes 
and lyrics. Because the window is thin, this filter is able 
to remove curved staff lines effectively. Unlike some ap-
proaches, our algorithm is also able to locate the lyrics in 
documents without staff lines, e.g., early Aquitanian 
chant manuscripts; for such images, we obviously skip 
the staff-removal filter. A sample of staff lines extracted 
by this algorithm appears in Figure 3(b). 

Following preprocessing, our method has three broad 
steps: baseline detection, estimation of lyric height, and 
reconstruction of lyric regions. 

Baseline estimation begins by binarising the image 
(classifying pixels as foreground or background) and 
identifying all connected components of foreground 
pixels. Every component is represented by groups of 
vertices constituting the “local minima” of the compo-
nent: the component is broken into vertical strips that are 
about as wide as a staff space is high, and the point clos-
est to the bottom of the page is retained as a local mini-
mum for the component. Figure 3(c) illustrates a chart of 
these local minima for one of our test images. 

We then “connect the dots” to extract baselines. Each 
unconnected local minimum is connected to its nearest 
neighbour with respect to a quadratic thresholding func-
tion that weights the distance between the two points and 
the angle between them, privileging short distances and 
approximately horizontal lines (see Figure 4). This thres-
holding function is rather strict, and so unless lyrics are 
packed densely across a line, the connected baseline seg-
ments usually underscore individual words or letters ra-
ther than longer lyric lines. A second pass with a more 
permissive thresholding function is made to connect suf-
ficiently long segments extracted from the first pass. 
Finally, all connected segments are validated to ensure 
that they contain a reasonable number of local minima 
and have an overall horizontal slope. This final validation 
step removes any segments that might arise from musical 
lines with repeated notes or sequences of notes that are 
close in pitch space. 

In extracting the baselines, we discard all information 
about the height of the lyrics, and so it is necessary to re-
construct lyric regions from the baselines. The process is 
the inverse of marking the local minima: for each local 
minimum identified in a baseline, the corresponding con-

nected component is included in the lyric region. Some of 
these connected components, however, include non-lyric 
elements, especially when lyric elements close to a staff 
overlap with low notes. In order to compensate for these 
problems, an upper bound for lyric height is chosen based 
on the size of a staff space. Connected components above 
this upper bound are cropped. 

After the lyric height has been estimated, complete 
lyric-line regions are generated from the baselines. In the 
absence of other information about page layout, the lyric 
lines are extended from the left-most to the right-most 
points of the page. A simple peak-picking process along 
the y-axis groups extracted baselines that are part of 
common lyric lines; the peak picking is tuned with the 
estimated lyric height as described above. In our experi-
ments, a simple linear regression on the baselines com-
bined with estimated lyric height yields good lyric re-
gions in most cases, although when the pages are non-
linearly skewed, higher-order polynomials are necessary. 

We tested our algorithm on a set of 40 images from the 
Digital Image Archive of Medieval Music (DIAMM) 
chosen for their particularly challenging layouts [16]. A 
sample image is presented in Figure 3(a), and the output 
of our algorithm on this image is presented in Figure 
3(d). Note in particular that the algorithm proved robust 
to the two-column format. Despite the challenging lay-
outs and (in some cases) considerable document degrada-
tion, our algorithm was able to recall 80.4 percent of the 
text lines with 88.4 percent precision overall. For clean 
images, however, the results are nearly perfect: there was 
only one recall error across our 12 cleanest samples with 
100-percent precision. 

5. SUMMARY AND FUTURE WORK 

Automatic lyric recognition is challenging for any musi-
cal document on account of varied page layouts and in-
consistent syllabification. This challenge is exacerbated 
for early music documents, which suffer from an even 
wider variety of layouts and, often, significant degrada-
tion. We have developed software that helps researchers 
generate ground truth quickly for early music documents 
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Figure 4. Thresholding function for connecting local 
minima of the connected components. The boundary 
is quadratic and privileges horizontal directions. 
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and that helps archivists correct any errors in automatic 
recognition with minimum labour cost and musical sense. 
We have also extended approaches for document image 
analysis for historical text documents to be sensitive to 
the particularities of music manuscripts, resulting in reli-
able text-line extraction from a number of difficult older 
documents. 

This work is in progress, and we are currently using 
data we have extracted from these systems to experiment 
with full-scale recognition using features similar to those 
in [7] and a variety of labelling models, including hidden 
Markov models [17] and conditional random fields [18]. 
The long-term goal of our project is to produce a set of 
extensions to Aruspix that will make it a fully functional 
OMR system for early vocal music, including OMR for 
medieval plainchant notations and automatic lyric recog-
nition for the most common languages of the period. 
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ABSTRACT

Music classification has been widely investigated in the
past few years using a variety of machine learning approach-
es. In this study, a corpus of 3367 folk songs, divided
into six geographic regions, has been created and is used
to evaluate two popular yet contrasting methods for sym-
bolic melody classification. For the task of folk song clas-
sification, a global feature approach, which summarizes a
melody as a feature vector, is outperformed by an event
model of abstract event features. The best accuracy ob-
tained on the folk song corpus was achieved with an en-
semble of event models. These results indicate that the
event model should be the default model of choice for folk
song classification.

1. INTRODUCTION

Computational folk music analysis is gaining increasing
interest in recent years, revitalized by the developing field
of computational ethnomusicology and also by interest in
non-Western musics, the availability of advanced music
data mining methods capable of dealing with very large
data sets, and the existence of expanding folk song corpora
on the internet. A mechanical process that can accurately
locate new folk songs into geographical regions, proposed
as early as the 1950s [1], can now be developed. In this
work we describe and investigate two very different ma-
chine learning methods for folk song classification. Folk
songs from six different European regions will be used,
and the classification task is to assign unseen songs to their
correct regions.

The more precise objective of this study is to determine
whetherglobal featuremodels are outperformed by meth-
ods based onevent featuresfor the task of folk song clas-
sification. A global feature encapsulates information about
a whole piece into a single value: numeric, nominal, or
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pitch 74 75 77 74 70 79 81 82
melodic interval ⊥ +1 +2 -3 -4 +9 +2 +1
melodic contour ⊥ u u d d u u u
duration ratio ⊥ 1 1 1 4 1/4 1 6
average pitch 76.5
rel. freq. M3 0.143

Huron contour ascending

Figure 1. Excerpt of the English folk tune “Harding’s
Folly’s Hornpipe”, illustrating the contrast between global
features (lower three) and event features (upper four).

Boolean. Using global features, pieces can be simply re-
expressed as feature vectors and a wide range of standard
machine learning algorithms can then be applied [2, 3].
Event features, on the other hand, do not summarize a
piece into a single value, but rather view a piece as a se-
quence of events, each event with its own features. A stan-
dard technique for working with sequential symbolic mu-
sic data expressed as event features is then-gram model,
which is particularly well-known for language modeling, a
word in language being roughly analogous to an event in
music.

Figure 1 illustrates a short melodic fragment, the first
measures of an English tune called “Harding’s Folly’s Horn-
pipe”, expressed using both event features “pitch”, “me-
lodic interval”, “melodic contour”, “duration ratio”, anda
few global features “average pitch”, “rel. freq. M3” (rela-
tive frequency of major thirds), and “Huron contour”.

Despite many different proposals of global feature sets,
and studies comparing a few feature sets to one another [4],
there has not yet been a rigorous and systematic study com-
paring the relative efficacy of global features versusn-
gram models for music classification. In this paper, we
study four different global feature sets for the task of folk
song classification. All feature sets are used for well-known
classification techniques such as naive Bayes, logistic re-
gression, SVM,k-nearest neighbours and decision trees.
These results will be compared with both a simplen-gram
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Origin # pieces avg notes/piece
England 990 (29.4%) 93
France 393 (11.7%) 71
Ireland 798 (23.7%) 105
Scotland 445 (13.2%) 119
S.E. Europe 123 (3.7%) 118
Scandinavia 618 (18.3%) 94
Total 3367

Table 1. TheEuropa-6collection: the number of pieces
and the average number of notes per piece in each region.

event model of linked interval/duration and its extension,
the multiple viewpoint model [5].

Based on the fact that event models take into account se-
quential structure, the hypothesis of this study is that event
models will outperform global feature models on the task
of folk song classification. The remainder of this paper
describes the methods and results employed in the explo-
ration of this hypothesis.

2. METHODS

In this section we describe the global feature approach and
the event models, and we detail the monophonic data set
used for training.

2.1 Experimental data set

To explore the performance of these models, we compare
their relative efficiency in terms of classification accura-
cies on a very large corpus of folk songs, which we call the
Europa-6collection. This is a collection of folk songs from
6 countries/regions of Europe: see Table 1 for the classes
and the piece counts in each class. The classification task
is to assign unseen folk songs to their correct region of ori-
gin. Initially, 3724 pieces were selected by Li et al. [6]
out of a collection of 14,000 folk songs transcribed in the
ABC format. The collection was pruned to 3367 pieces by
filtering out duplicate files. This was done by clustering all
pieces into groups containing identical Jesser feature vec-
tors (Section 2.2). If a group contained pieces spanning
different regions (e.g., England and Ireland), all pieces in
the group were discarded due to this ambiguity in annota-
tion, otherwise just one piece of the group was retained.
Furthermore, we retained only the highest note of double
stops present in some instrumental folk songs. To focus
on core melodies rather than performance elaboration, we
removed all grace notes, trills, staccato, and ignored re-
peated section indications. Time and key signatures were
retained. Since most of these pieces have no tempo indica-
tion, all tempo indications that were present were removed.
Finally, by means of abc2midi we generated a clean quan-
tized MIDI corpus, and removed all dynamic (velocity) in-
dications generated by the style interpretation mechanism
of abc2midi.

2.2 Global feature models

There have been many proposals of global feature sets.
Volk et al. [4] provide an evaluation of several global fea-
ture sets for the task of comparing folk songs for melodic
similarity, and several more sets can be found in the litera-
ture. In our experiments, we chose four:

• The first is theAlicanteset of 28 global features, pro-
posed by Ponce de Léon and Iñesta, applied to clas-
sification of 110 MIDI tunes in jazz/classical/pop
genres [2]. From this set, we re-implemented a com-
pact subset: the top 12 selected by [2]: Table 1.

• The second is theFantasticset: 92 features com-
puted by the program called Feature ANalysis Tech-
nology Accessing STatistics (In a Corpus), currently
developed by Müllensiefen [7] (v0.9, downloaded
from [8]). For this study, we only include the global
features based on a single melody, which reduces the
set to 37 features. In addition to some basic descrip-
tive statistics based on pitch and duration, this set
also includes a few entropy-based features, and some
contour features derived from the work of Steinbeck
[9] and Huron [10]. Moreover, the set of 37 fea-
tures include some statistics of so-calledm-typesthat
take into account some local sequential note order.
By default, Fantastic segments the scores and com-
putes the features on the created phrases, but we in-
stead report results without segmentation since these
achieved globally better results.

• TheJesserset contains 40 pitch and duration statis-
tics [11]. The pitch-based features are simple rel-
ative interval counts, like “amajsecond” (ascending
major second). Similar features are present for all
ascending and descending intervals in the range of
the octave. Almost all features were implemented,
only the feature “numlines” was not applicable for
folk song classification based on melody.

• The last set is theMcKayset of 101 global features,
developed for the classification of orchestrated (in-
strumentation and dynamics) MIDI files [3]. Im-
portantly, these features were used in the winning
2005 MIREX symbolic genre classification exper-
iment which used orchestrated files for evaluation.
The features were computed with McKay’s software
package jSymbolic (version 12.2.0) from [12]. A
few attributes “harmonicity of two strongest rhyth-
mic pulses” and “strength ratio of two strongest rhyth-
mic pulses” were removed due to runtime and nu-
merical errors caused by their computation using the
jSymbolic tool. For the analysis of theEuropa-6
corpus, many features such as those based on in-
strumentation, dynamics, polyphonic texture, glis-
sando had the same value for every piece and were
removed. The final McKay set contains a total of 62
features.

The four global feature sets above are summarized in
Table 2. In this table, we also indicate for each feature
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Global feature set # features pitch duration
Alicante 12 7 2
Fantastic 37 21 15
Jesser 39 31 6
McKay 62 35 5

Table 2. Global feature sets used in our experiments. The
last two columns show the number of features that are de-
rived from pitch and duration.

set how many features are derived from pitch or duration.
A feature is derived from pitch (duration) when at least
one pitch (duration) value is inspected for the feature com-
putation. Most features are derived from pitch or dura-
tion, spanning from very basic features like “variability of
note duration” to more abstract ones, such as “tonalness”
or “interval distribution normality”. Examples of features
that are not derived from pitch or duration are descrip-
tors such as “has meter changes” and “average time be-
tween attacks”, or more specific ones like “polyrhythms”
or “strength of strongest rhythmic pulse”. In the Fantastic
set some features are based on both pitch and duration, like
the step contour and interpolation contour features. These
four global feature sets were also chosen as they do not
show much overlap in semantic content, aside from some
very basic features such as “number of notes” and “pitch
range”.

A global feature set summarizes a piece as a feature
vector, which can be viewed as a data point in a feature
space. The classification task can thus easily be addressed
with standard machine learning techniques, for which tool-
boxes are available. The underlying idea is to assess the
discriminative power of a global feature set by looking at
its performance in terms of classification accuracies.

2.3 Event models

In contrast to global feature models, event models take into
account the sequential structure of the melody. A type of
event model commonly used for statistical language mod-
eling is then-gram model [13]. In ann-gram model for
music, the probability of a pieceeℓ = [e1, . . . , eℓ] is ob-
tained by computing the joint probability of the individual
events in the piece:

p(eℓ) =

ℓ∏

i=1

p(ei | ei−1), (1)

with suitable restrictions on the contextei−1, for example,
for a trigram modelei−1 is restricted to[ei−2, ei−1]. The
conditional event probabilitiesp(ei | ei−1) are estimated
by the n-gram counts of the training data. In addition,
Method C smoothing [13] is used to handle the zero fre-
quency problem. To usen-gram models for melody clas-
sification, for each class a separate model is built and the
predicted class of a piece is the class whose model gener-
ates the piece with the highest probability.

Presented with sparse data,n-gram models for music

cannot model the pitch or duration directly, hence the mu-
sic events must first be clustered into more abstract equiva-
lence classes by applying functions calledviewpoints[14].
Examples of viewpoints are “melodic interval” or “dura-
tion contour”, which obviously lead to event features that
are less sparse than the concrete music events in the cor-
pus. Particularly useful arelinkedviewpoints, which cap-
ture correlation between abstract classes, for example, a
linked viewpoint of melodic interval and duration, mean-
ing we represent every event as a pair of its melodic inter-
val and duration.

For a viewpointτ , the event sequenceeℓ is transformed
to the abstract feature sequenceτ̂ (eℓ) = [τ(e1), . . . , τ(eℓ)],
and Equation 1 can be adapted as follows, resulting in the
viewpoint model:

p(eℓ) =

ℓ∏

i=1

p(τ(ei)|τ̂ (ei−1)) × p(ei|τ(ei)). (2)

The first factor in (2) is the probability of the abstract fea-
ture using ann-gram model, and the second factor is the
probability of the concrete event given the abstract feature,
which is modeled by a uniform distribution.

An extension is themultiple viewpoint model, an en-
semble of viewpoints used in aggregation to compute the
probability of a sequence. Multiple viewpoints have been
used with success in symbolic music processing tasks such
as melody prediction and generation [5] and melody seg-
mentation [15]. To combine the predictions ofk view-
pointsτ1, . . . , τk, one straightforward way is to use the ge-
ometric mean of the component viewpoint predictions:

p(eℓ) =
1

Z
×

(
k∏

i=1

pτi
(eℓ)

)1/k

(3)

whereZ is a normalization factor. In the Results section, a
multiple viewpoint model will be contrasted with both an
n-gram model and a global feature model.

3. RESULTS

In this section we report on the experimental results on
the Europa-6collection. For the evaluation of the global
feature sets, we used a standard machine learning tool-
box called Weka (version 3.6.1) [16] which is documented
in [17]. Weka contains many different algorithms for clas-
sification: we used the well-known classifiers Naive Bayes,
k-nearest neighbours, decision trees (J48), Support Vec-
tor Machines (SVM) and Logistic regression. The feature
sets were compared by computing classification accuracies
for each of these classifiers, which were all obtained by
10-fold cross validation. Default Weka configuration pa-
rameters were used for all classifiers. Results are reported
in Table 3. To measure the difficulty of this classification
task, note that always predicting the most frequent class
(England) will achieve an accuracy of only 29.4%. For the
method ofk-nearest neighbours we explored many values
of k, andk = 20 seemed to yield the best results in gen-
eral. We observe that the McKay and the Jesser features
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Feature set Alicante Fantastic Jesser McKay
# features 12 37 39 62

Naive Bayes 45.3 52.5 47.1 53.8
Decision tree 48.2 47.3 58.8 58.4
SVM 51.0 57.6 63.4 66.7
kNN (k=20) 52.7 51.3 61.9 60.7
Logistic regr. 51.9 46.5 63.8 67.8

Table 3. Classification accuracies of the global feature sets on theEuropa-6collection, obtained by 10-fold cross validation.

Feature selection methodJoined set CfsSubsetEval ClassifSubsetEval PCA
(BestFirst) (Naive Bayes) (top 13)

# features 150 41 20 13

Naive Bayes 55.7 60.0 63.9 61.6
Decision tree 59.1 62.7 59.1 53.5
SVM 69.7 68.3 61.6 64.3
kNN (k=20) 65.9 66.3 61.9 64.3
Logistic regr. N/A 69.5 49.4 63.8

Table 4. Classification accuracies of the sets created by various feature selection methods, obtained by 10-fold cross
validation.

obtain the highest accuracies, and the best overall result is
obtained with logistic regression on the McKay features,
with an accuracy of 67.8%.

Before comparing these results to those obtained with
the event models, we explored whether there might be a
compact optimal global feature set for the task of classi-
fication of folk tunes. Therefore, we have created a fifth
global feature set containing all global features from the
Alicante, Fantastic, Jesser and McKay sets. On this joined
set, we performed various feature selection methods, either
by evaluating attribute subsets on their predictive value,
like correlation-based feature selection or classifier subset
evaluators, or by using single-attribute evaluators, by mea-
suring the information gain of each attribute or by apply-
ing principal component analysis. Several search strategies
were explored for the subset evaluators, and for the single-
attribute evaluators we searched for the optimal number
of top features to include. The best results obtained are
detailed in Table 4. The maximum result of 69.7% is ob-
tained on the full joined set with a Support Vector Machine.
This confirms the known strength of an SVM classifier
when dealing with high dimensional feature vectors. The
overall best performing compact subset was found with a
correlation-based feature set evaluator and a greedy hill-
climbing search (BestFirst) as described in [18], obtaining
69.5% with a multi-class classifier using logistic regres-
sion. It was not possible to compute the accuracy with that
classifier on the full joined set, as the computation was too
heavy.

To evaluate the event models on theEuropa-6, we im-
plemented a 10-fold cross validation scheme. With a pen-
tagram model of a linked viewpoint of melodic interval and
duration, the obtained classification accuracy is72.7%,
significantly higher than even the best of the global fea-

ture models. For the multiple viewpoint model we used an
ensemble of four viewpoints, the same collection as used
by [5]:

• a linked viewpoint of melodic interval, and pitch class
interval from the reference pitch class of the piece.
The latter is calculated assuming the major mode;

• a linked viewpoint of melodic interval and inter-onset
interval (time difference between two successive on-
sets, which will be different than an event’s duration
in the presence of rests);

• a simple viewpoint that returns the pitch of an event;

• a linked viewpoint of pitch class interval from the
reference pitch and first metric level. The latter is a
Boolean viewpoint which is true if an event is at the
beginning of a bar.

In the multiple viewpoint mode, each of the above has
its own pentagram model, and the component viewpoints
are combined as described in Equation (3). As expected,
this multiple viewpoint model achieves a significantly high-
er accuracy than the linked viewpoint of76.0%. This is the
best result we have yet obtained on theEuropa-6corpus.

4. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a first systematic study for folk
song classification, comparing two well-known methods to
approach this task, namely global feature models and event
models. The hypothesis of the event model was validated,
since the results show that four established global feature
sets using standard classifiers were outperformed by a very
simplen-gram model of a linked viewpoint, and even more
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by the multiple viewpoint model. We have explored meth-
ods to find an optimal global feature set by joining the four
sets and by performing attribute selection, and we observe
a slight improvement, but the event models still achieve
higher classification accuracies. We believe the event mod-
els perform better, precisely because they retain sequential
information that global features do not take into account.
In order to identify folk song regions, one needs to capture
the inner structure of a musical phrase. The event model
should thus be the default model of choice for folk song
classification.

There are still some other types of models that we would
like to consider in our future work, such as methods where
one focuses on the development of a good similarity or dis-
tance measure between pieces [19]. Another type of model
that has not been thoroughly explored for classification is
a pattern model, where one uses a collection of musical
patterns and classifies a piece according to the patterns it
contains [20]. Another question we want to address is if
these results still hold for polyphonic music. Global fea-
ture models can easily be expanded to polyphony. Event
models, however, are harder to extrapolate to polyphony,
because we then have to deal with the problem of finding a
suitable harmonic representation and segmentation.
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ABSTRACT

Even though folk songs have been passed down mainly by

oral tradition, most musicologists study the relation be-

tween folk songs on the basis of score-based transcrip-

tions. Due to the complexity of audio recordings, once

having the transcriptions, the original recorded tunes are

often no longer studied in the actual folk song research

though they still may contain valuable information. In this

paper, we introduce an automated approach for segment-

ing folk song recordings into its constituent stanzas, which

can then be made accessible to folk song researchers by

means of suitable visualization, searching, and navigation

interfaces. Performed by elderly non-professional singers,

the main challenge with the recordings is that most singers

have serious problems with the intonation, fluctuating with

their voices even over several semitones throughout a song.

Using a combination of robust audio features along with

various cleaning and audio matching strategies, our ap-

proach yields accurate segmentations even in the presence

of strong deviations.

1. INTRODUCTION

Generally, a folk song is referred to as a song that is sung

by the common people of a region or culture during work

or social activities. Since many decades, significant ef-

forts have been carried out to assemble and study large

collections of folk songs [7, 12]. Even though folk songs

were typically transmitted only by oral tradition without

any fixed symbolic notation, most of the folk song research

is conducted on the basis of notated music material, which

is obtained by transcribing recorded tunes into symbolic,

score-based music representations. After the transcription,

the audio recordings are often no longer studied in the ac-

tual research. Since folk songs are part of oral culture, one

may conjecture that performance aspects enclosed in the

recorded audio material are likely to bear valuable infor-

mation, which is no longer contained in the transcriptions.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2009 International Society for Music Information Retrieval.

Furthermore, even though the notated music material may

be more suitable for classifying and identifying folk songs

using automated methods, the user may want to listen to

the original recordings rather than to synthesized versions

of the transcribed tunes.

It is the object of this paper to indicate how the orig-

inal recordings can be made more easily accessible for

folk song researches and listeners by bridging the gap be-

tween the symbolic and the audio domain. In particular, we

present a procedure for automatically segmenting a given

folk song recording that consists of several repetitions of

the same tune into its individual stanzas. Using folk song

recordings of the Onder de groene linde (OGL), main chal-

lenges arise from the fact that the songs are performed by

elderly non-professional singers under poor recording con-

ditions. The singers often deviate significantly from the

expected pitches and have serious problems with the into-

nation. Even worse, their voices often fluctuate by several

semitones downwards or upwards across the various stan-

zas of the same recording. As our main contribution, we in-

troduce a combination of robust audio features along with

various cleaning and audio matching strategies to account

for such deviations and inaccuracies in the audio record-

ings. Our evaluation on folk song recordings shows that

we obtain reliable segmentations even in the presence of

strong deviations.

The remainder of this paper is organized as follows. In

Sect. 2, we describe the relationship of these investigations

to folk song research and describe the folk song collec-

tion we employ. In Sect. 3, we show how the recorded

songs can be segmented and annotated by locally com-

paring and aligning the recordings’ feature representations

with available transcriptions of the tunes. In particular,

we introduce various methods for achieving robustness to

the aforementioned pitch fluctuations and recording arti-

facts. Then, in Sect. 4, we report on our systematic ex-

periments conducted on a representative selection of folk

song recordings. Finally, in Sect. 5, we indicate how our

segmentation results can be used as basis for novel user

interfaces, sketch possible applications towards automated

performance analysis, and give prospects on future work.

Further related work is discussed in the respective sections.
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2. FOLK SONG RESEARCH

Folk song reseach has been carried out from many different

perspectives. An important problem is to reconstruct and

understand the genetic relation between variants of folk

songs [12]. Furthermore, by systematically studying en-

tire collections of folk songs, researchers try to discover

musical connections and distinctions between different na-

tional or regional cultures [7]. To support such research,

several databases of encoded folk song melodies have been

assembled, the best known of which is the Essen folk song

database, 1 which currently contains roughly 20000 folk

songs from a variety of sources and cultures. This collec-

tion has also been widely used in MIR research.

Even though folk songs have been passed down mainly

by oral tradition, most of the folk song research is con-

ducted on the basis of notated music material. How-

ever, various folk song collections contain a considerable

amount of audio data, which has not yet been explored at

a larger scale. One of these collections is Onder de groene

linde (OGL), which is part of the Nederlandse Liederen-

bank (NLB). The OGL collection comprises several 7277

Dutch folk song recordings along with song transcriptions

as well as a rich set of metadata. 2 This metadata in-

cludes date and location of recording, information about

the singer, and classification by (textual) topic. OGL con-

tains 7277 recordings, which have been digitized as MP3

files. Nearly all of recordings are monophonic, and the

vast majority is sung by elderly solo female singers. When

the collection was assembled, melodies were transcribed

on paper by experts. Usually only one strophe is given in

music notation, but variants from other strophes are reg-

ularly included. The transcriptions are somewhat ideal-

ized: they tend to represent the presumed intention of the

singer rather than the actual performance. For about 2500

melodies, transcribed stanzas are available in various sym-

bolic formats including LilyPond, 3 from which MIDI rep-

resentations have been generated (with a tempo set at 120
BPM for the quarter note).

An important step in unlocking such collections of

orally transmitted folk songs is the creation of content-

based search engines. The creation of such a search engine

is an important goal of the WITCHCRAFT project [8].

The engines should enable a user to search for encoded

data using advanced melodic similarity methods. Further-

more, it should also be possible to not only visually present

the retrieved items, but also to supply the corresponding

audio recordings for acoustic playback. One way of solv-

ing this problem is to create robust alignments between re-

trieved encodings (for example in MIDI format) and the

audio recordings. The segmentation and annotation pro-

cedure described in the following section exactly accom-

plishes this task.

1 http://www.esac-data.org/
2 The OGL collection is currently hosted at the Meertens Institute

in Amsterdam. The metadata of the songs are available through www.

liederenbank.nl
3 www.lilypond.org
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Figure 1. Representations of the beginning of the first stanza of
NLB73626 (a) Score representation. (b) Chromagram of MIDI
representation. (c) Smoothed MIDI chromagram (CENS). (d)
Chromagram of audio recording (CENS). (e) F0-enhanced chro-
magram (see Sect. 3.4).

3. FOLK SONG SEGMENTATION

In this section, we present a procedure for automatically

segmenting a folk song recording that consists of sev-

eral repetitions of the same tune into its individual stan-

zas. Here, we assume that we are given a transcription

of a reference tune in form of a MIDI file. Recall from

Sect. 2 that this is exactly the situation we have with the

songs of the OGL collection. In the first step, we trans-

form the MIDI reference as well as the audio recording

into a common mid-level representation. Here, we use

the well-known chroma representation, which is summa-

rized in Sect. 3.1. On the basis of this feature representa-

tion, the idea is to locally compare the reference with the

audio recording by means of a suitable distance function

(Sect. 3.2). Using a simple iterative greedy strategy, we

derive the segmentation from local minima of the distance

function (Sect. 3.3). This approach works well as long as

the singer roughly follows the reference tune and stays in

tune. However, this is an unrealistic assumption. In par-

ticular, most singers have significant problems with the in-

tonation. Their voices often fluctuate by several semitones

downwards or upwards across the various stanzas of the

same recording. In Sect. 3.4, we show how the segmenta-

tion procedure can be improved to account for poor record-

ing conditions, intonation problems, and pitch fluctuations.

3.1 Chroma Features

In order to compare the MIDI reference with the au-

dio recordings, we revert to chroma-based music features,

which have turned out to be a powerful mid-level represen-

tation for relating harmony-based music, see [1, 6, 9, 11].
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Figure 2. Magnitude responses in dB for some of the pitch fil-
ters of the multirate pitch filter bank used for the chroma compu-
tation. Top: Filters corresponding to MIDI pitches p ∈ [69 : 93]
(with respect to the sampling rate 4410 Hz). Bottom: Filters
shifted half a semitone upwards.

Here, the chroma refer to the 12 traditional pitch classes

of the equal-tempered scale encoded by the attributes

C, C♯, D, . . ., B. Representing the short-time energy con-

tent of the signal in each of the 12 pitch classes, chroma

features do not only account for the close octave relation-

ship in both melody and harmony as it is prominent in

Western music, but also introduce a high degree of robust-

ness to variations in timbre and articulation [1]. Further-

more, normalizing the features makes them invariant to dy-

namic variations.

It is straightforward to transform a MIDI representation

into a chroma representation or chromagram. Using the

explicit MIDI pitch and timing information one basically

identifies pitches that belong to the same chroma class

within a sliding window of a fixed size, see [6]. Fig. 1

shows a score and the resulting MIDI reference chroma-

gram. For transforming an audio recording into a chroma-

gram, one has to revert to signal processing techniques.

Most chroma implementations are based on short-time

Fourier transforms in combination with binning strate-

gies [1]. In this paper, we revert to chroma features ob-

tained from a pitch decomposition using a multirate pitch

filter bank as described in [9]. The employed pitch fil-

ters possess a relatively wide passband, while still prop-

erly separating adjacent notes thanks to sharp cutoffs in

the transition bands, see Fig. 2. Actually, the pitch filters

are robust to deviations of up to ±25 cents 4 from the re-

spective note’s center frequency. The pitch filters will play

an important role in Sect. 3.4. Finally, in our implementa-

tion, we use a quantized and smoothed version of chroma

features referred to as CENS features [9] with a feature res-

olution of 10 Hz (10 features per second), see (c) and (d) of

Fig. 1. For technical details, we refer to the cited literature.

3.2 Distance Function

We now introduce a distance function that expresses the

distance of the MIDI reference chromagram with suitable

subsegments of the audio chromagram. More precisely,

let X = (X(1),X(2), . . . ,X(K)) be the sequence of

chroma features obtained from the MIDI reference and

4 The cent is a logarithmic unit to measure musical intervals. The
semitone interval of the equally-tempered scale equals 100 cents.
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Figure 3. Top: Distance function ∆ for NLB73626 using orig-
inal chroma features (gray) and F0-enhanced chroma features
(black). Bottom: Resulting segmentation.

let Y = (Y (1), Y (2), . . . , Y (L)) be the one obtained

from the audio recording. In our case, the features X(k),
k ∈ [1 : K], and Y (ℓ), ℓ ∈ [1 : L], are normalized

12-dimensional vectors. We define the distance function

∆ := ∆X,Y : [1 : L] → R ∪ {∞} with respect to X and

Y using a variant of dynamic time warping (DTW):

∆(ℓ) :=
1

K
min

a∈[1:ℓ]

(

DTW
(

X , Y (a : ℓ)
)

)

, (1)

where Y (a : ℓ) denotes the subsequence of Y starting at

index a and ending at index ℓ ∈ [1 : L]. Furthermore,

DTW(X,Y (a : ℓ)) denotes the DTW distance between X
and Y (a : ℓ) with respect to a suitable local cost measure

(in our case, the cosine distance). The distance function ∆
can be computed efficiently using dynamic programming.

For details on DTW and the distance function, we refer

to [9]. The interpretation of ∆ is as follows: a small value

∆(ℓ) for some ℓ ∈ [1 : L] indicates that the subsequence

of Y starting at index aℓ (with aℓ ∈ [1 : ℓ] denoting the

minimizing index in (1)) and ending at index ℓ is similar

to X . Here, the index aℓ can be recovered by a simple

backtracking algorithm within the DTW computation pro-

cedure. The distance function ∆ for NLB73626 is shown

in Fig. 3 as gray curve. The five pronounced minima of ∆
indicate the endings of the five stanzas of the audio record-

ing.

3.3 Audio Segmentation

Recall that we assume that a folk song audio recording ba-

sically consists of a number of repeating stanzas. Exploit-

ing the existence of a MIDI reference and assuming the

repetitive structure of the recording, we apply the follow-

ing simple greedy segmentation strategy. Using the dis-

tance function ∆, we look for the index ℓ ∈ [1 : L] min-

imizing ∆ and compute the starting index aℓ. Then, the

interval S1 := [aℓ : ℓ] constitutes the first segment. The

value ∆(ℓ) is referred to as the cost of the segment. To

avoid large overlaps between the various segments to be

computed, we exclude a neighborhood [Lℓ : Rℓ] ⊂ [1 : L]
around the index ℓ from further consideration. In our strat-

egy, we set Lℓ := max(1, ℓ− 2
3K) and Rℓ := min(L, ℓ +

2
3K), thus excluding a range of two thirds of the reference

length to the left as well as to the right of ℓ. To achieve the

exclusion, we modify ∆ simply by setting ∆(m) := ∞
for m ∈ [Lℓ : Rℓ]. To determine the next segment S2,
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the same procedure is repeated using the modified dis-

tance function, and so on. This results in a sequence of

segments S1, S2, S3, . . .. The procedure is repeated until

all values of the modified ∆ lie above a suitably chosen

quality threshold τ > 0. Let N denote the number of re-

sulting segments, then S1, S2, . . . , SN constitutes the final

segmentation result, see Fig. 3 for an illustration.

3.4 Enhancement Strategies

Recall that the comparison of the MIDI reference and the

audio recording is performed on the basis of chroma rep-

resentations. Therefore, the segmentation algorithm de-

scribed so far only works well in the case that the MIDI

reference and the audio recording are in the same musical

key. Furthermore, the singer has to stick roughly to the

pitches of the well-tempered scale. Both assumptions are

violated for most of the songs. Even worse, the singers of-

ten fluctuate with their voice by several semitones within

a single recording. This often leads to poor local minima

or even completely useless distance functions as illustrated

Fig. 4. To deal with local and global pitch deviations as

well as with poor recording conditions, we use a combina-

tion of various enhancement strategies.

In our first strategy, we enhance the quality of the

chroma features similar to [4] by picking only dominant

spectral coefficients, which results in a significant atten-

uation of noise components. Dealing with monophonic

music, we can go even one step further by only picking

spectral components that correspond to the fundamental

frequency (F0). More precisely, we use a modified au-

tocorrelation method as suggested in [3] to the estimate

the fundamental frequency for each audio frame. For each

frame, we then determine the MIDI pitch having a cen-

ter frequency that is closest to the estimated fundamen-

tal frequency. Next, in the pitch decomposition used for

the chroma computation, we assign energy only to the

pitch subband that corresponds to the determined MIDI

pitch—all other pitch subbands are set to zero within this

frame. Finally, the resulting sparse pitch representation is

projected onto a chroma representation and smoothed as

before, see Sect. 3.1. The cleaning effect on the result-

ing chromagram, which is also referred to as F0-enhanced

chromagram, is illustrated by (d) and (e) of Fig. 1.

Even though the folk song recordings are monophonic,

the F0 estimation is often not accurate enough in view of

applications such as automated transcription. However,

using chroma representations, octave errors as typical in

F0 estimations become irrelevant. Furthermore, the F0-

based pitch assignment is capable of suppressing most of

the noise resulting from poor recording conditions. Fi-

nally, local pitch deviations caused by the singers’ into-

nation problems as well as vibrato are compensated to a

substantial degree. As a result, the desired local minima of

the distance function ∆, which are crucial in our segmen-

tation procedure, become more pronounced. This effect is

also illustrated by Fig. 3.

Next, we show how to deal with global pitch deviations

and continuous fluctuation across several semitones. To
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Figure 4. Distance functions ∆ (light gray), ∆trans (dark gray),

and ∆fluc (black) for the song NLB73286 as well as the resulting
segmentations.

Stanza 1 2 3 4 5 6 7 8 9 10

12 shift 5 5 5 4 4 4 4 3 3 3
24 shift 5.0 5.0 4.5 4.5 4.0 4.0 3.5 3.5 3.0 3.0

Table 1. Shift indices (cyclically shifting the audio chroma-
grams upwards) used for transposing the various stanzas of the
audio recording of NLB73286 to optimally match the MIDI ref-
erence, see also Fig. 4. The shift indices are given in semitones
(obtained by ∆trans) and in half semitones (obtained by ∆fluc).

account for a global difference in key between the MIDI

reference and the audio recording, we revert to the ob-

servation by Goto [5] that the twelve cyclic shifts of a

12-dimensional chroma vector naturally correspond to the

twelve possible transpositions. Therefore, it suffices to

determine the shift index that minimizes the chroma dis-

tance of the audio recording and MIDI reference and then

to cyclically shift the audio chromagram according to this

index. Note that instead of shifting the audio chromagram,

one can also shift the MIDI chromagram in the inverse di-

rection. The minimizing shift index can be determined ei-

ther by using averaged chroma vectors as suggested in [11]

or by computing twelve different distance functions for the

twelve shifts, which are then minimized to obtain a sin-

gle transposition invariant distance functions. We detail on

the latter strategy, since it also solves part of the problem

having a fluctuating voice within the audio recording. A

similar strategy was used in [10] to achieve transposition

invariance for music structure analysis tasks.

We simulate the various pitch shifts by considering all

twelve possible cyclic shifts of the MIDI reference chro-

magram. We then compute a separate distance function

for each of the shifted reference chromagrams and the orig-

inal audio chromagram. Finally, we minimize the twelve

resulting distance functions, say ∆0, . . . ,∆11, to obtain a

single transposition invariant distance function ∆trans :
[1 : L] → R ∪ {∞}:

∆trans(ℓ) := mini∈[0:11]

(

∆i(ℓ)
)

. (2)

Fig. 4 shows the resulting function ∆trans for a folk song

recording with strong fluctuations. In contrast to the orig-

inal distance function ∆, the function ∆trans exhibits a

number of significant local minima that correctly indicate
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the segmentation boundaries of the stanzas.

So far, we have accounted for transpositions that refer to

the pitch scale of the equal-tempered scale. However, the

above mentioned voice fluctuation are fluent in frequency

and do not stick to a strict pitch grid. Recall from Sect. 3.1

that our pitch filters can cope with fluctuations of up to

±25 cents. To cope with pitch deviations between 25 and

50 cents, we employ a second filter bank, in the following

referred to as half-shifted filter bank, where all pitch fil-

ters are shifted by half a semitone (50 cents) upwards, see

Fig. 2. Using the half-shifted filter bank, one can compute

a second chromagram, referred to as half-shifted chroma-

gram. A similar strategy is suggested in [4, 11] where gen-

eralized chroma representations with 24 or 36 bins (instead

of the usual 12 bins) are derived from a short-time Fourier

transform. Now, using the original chromagram as well as

the half-shifted chromagram in combination with the re-

spective 12 cyclic shifts, one obtains 24 different distance

functions in the same way as described above. Minimiza-

tion over the 24 functions yields a single function ∆fluc

referred to as fluctuation invariant distance function. The

improvements achieved by this novel distance function are

illustrated by Fig. 4. Table 1 shows the optimal shift in-

dices derived from the transposition and fluctuation invari-

ant segmentation strategies, where the decreasing indices

indicate to which extend the singer’s voice rises across the

various stanzas of the song.

4. EXPERIMENTS

Our evaluation is based on a dataset consisting of 47 repre-

sentative folk song recordings selected from the OGL col-

lection, see Sect. 2. The evaluation audio dataset has a to-

tal length of 156 minutes, where each of the recorded song

consists of 4 to 34 stanzas amounting to a total number of

465 stanzas. The recordings reveal significant deteriora-

tions concerning the audio quality as well as the singer’s

performance. Furthermore, in various recordings the tunes

are overlayed with sounds such as ringing bells, singing

birds, or barking dogs, and sometimes the songs are inter-

rupted by remarks of the singers. We manually annotated

all audio recordings by specifying the segment boundaries

of the stanzas’ occurrences in the recordings. Since for

most cases the end of a stanza more or less coincides with

the beginning of the next stanza and since the beginnings

are more important in view of retrieval and navigation ap-

plications, we only consider the starting boundaries of the

segments in our evaluation. In the following, these bound-

aries are referred to as ground truth boundaries.

To assess the quality of the final segmentation result,

we use precision and recall values. To this end, we check

to what extent the 465 manually annotated stanzas within

the evaluation dataset have been identified correctly by the

segmentation procedure. More precisely, we say that a

computed starting boundary is a true positive, if it coin-

cidences with a ground truth boundary up to a small toler-

ance given by a parameter δ measured in seconds. Other-

wise, the computed boundary is referred to as a false pos-

itive. Furthermore, a ground truth boundary that is not in

Strategy F0 P R F α β γ

∆ − 0.898 0.628 0.739 0.338 0.467 0.713
∆ + 0.884 0.688 0.774 0.288 0.447 0.624

∆trans − 0.866 0.817 0.841 0.294 0.430 0.677

∆trans + 0.890 0.890 0.890 0.229 0.402 0.559

∆fluc − 0.899 0.901 0.900 0.266 0.409 0.641

∆fluc + 0.912 0.940 0.926 0.189 0.374 0.494

Table 2. Performance measures for various segmentation strate-
gies using the tolerance parameter δ = 2 and the quality threshold
τ = 0.4. The second column indicates whether original (−) or
F0-enhanced (+) chromagrams are used.

δ P R F

1 0.637 0.639 0.638
2 0.912 0.940 0.926
3 0.939 0.968 0.953
4 0.950 0.978 0.964
5 0.958 0.987 0.972

τ P R F

0.1 0.987 0.168 0.287
0.2 0.967 0.628 0.761
0.3 0.950 0.860 0.903
0.4 0.912 0.940 0.926
0.5 0.894 0.944 0.918

Table 3. Dependency of the PR-based performance measures on
the tolerance parameter δ and the quality threshold τ . All values
refer to ∆fluc using F0-enhanced chromagrams. Left: PR-based
performance measures for various δ and fixed τ = 0.4. Right:
PR-based performance measures for various τ and fixed δ = 2.

a δ-neighborhood of a computed boundary is referred to as

a false negative. We then compute the precision P and the

recall R boundary identification task. From these values

one obtains the F-measure F := 2 · P · R/(P + R).

Table 2 shows the PR-based performance measures of

our segmentation procedure using different distance func-

tions with original as well as F0-enhanced chromagrams.

In this first experiment, the tolerance parameter is set to

δ = 2 and the quality threshold to τ = 0.4. Here, a tol-

erance of up to δ = 2 seconds seems to us an acceptable

deviation in view of our intended applications. For exam-

ple, the most basic distance function ∆ with original chro-

magrams yields an F-measure of F = 0.739. Using F0-

enhanced chromagrams instead of the original ones results

in F = 0.774. The best result of F = 0.926 is obtained

when using ∆fluc with F0-enhanced chromagrams. Note

that all of our introduced enhancement strategies result in

an improvement in the F-measure. In particular, the recall

values improve significantly when using the transposition

and fluctuation-invariant distance functions.

A manual inspection of the segmentation results showed

that most of the false negatives as well as false positives

are due to deviations in particular at the stanzas’ begin-

nings. The entry into a new stanza seems to be a problem

for some of the singers, who need some seconds before

getting stable in intonation and pitch. A typical example

is NLB72355. Increasing the tolerance parameter δ, the

PR-based performance measures improve substantially, as

indicated by Table 3 (left). For example, using δ = 3 in-

stead of δ = 2, the F-measure increase from F = 0.926
to F = 0.953. Other sources of error are that the tran-

scriptions sometimes differ significantly from what is ac-

tually sung, as is the case for NLB72395. Here, as was

already mentioned in Sect. 2, the transcripts represent the

presumed intention of the singer rather than the actual per-

formance. Finally, structural differences between the var-
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ious stanzas are a further reason for segmentation errors.

The handling of such structural differences constitutes an

interesting research problem, see Sect. 5. In a further ex-

periment, we investigated the role of the quality threshold

τ on the final segmentation results, see Table 3 (right). Not

surprisingly, a small τ yields a high precision and a low

recall. Increasing τ , the recall increases at the cost of a de-

crease in precision. The value τ = 0.4 was chosen, since it

constitutes a good trade-off between recall and precision.

Finally, to complement our PR-based evaluation, we in-

troduce a second type of more softer performance mea-

sures that indicate the significance of the desired minima.

To this end, we consider the distance functions for all songs

with respect to a fixed strategy and chroma type. Let α
be the average over the cost of all ground truth segments

(given by the value of the distance function at the corre-

sponding ending boundary). Furthermore, let β be the av-

erage over all values of all distance functions. Then the

quotient γ = α/β is a weak indicator on how well the de-

sired minima (the desired true positives) are separated from

possible irrelevant minima (the potential false positives).

A low value for γ indicates a good separability property of

the distance functions. As for the PR-based evaluation, the

soft performance measures shown in Table 2 support the

usefulness of our enhancement strategies.

5. APPLICATIONS AND FUTURE WORK

Based on the segmentation of the folk song recordings,

we now sketch some applications that allow folk song

researchers to include audio material in their investiga-

tions. Once having segmented the audio recording into

stanzas, each audio segment can be aligned with the MIDI

reference by a separate MIDI-audio synchronization pro-

cess with the objective to associate note events given by

the MIDI file with their physical occurrences in the au-

dio recording, see [9]. The synchronization result can be

regarded as an automated annotation of the entire audio

recording with available MIDI events. Such annotations

facilitate multimodal browsing and retrieval of MIDI and

audio data, thus opening new ways of experiencing and re-

searching music [2]. Furthermore, aligning each stanza of

the audio recording to the MIDI reference yields a multi-

alignment between all stanzas. Exploiting this alignment,

one can implement interfaces that allow a user to seam-

lessly switch between the various stanzas of the recording

thus facilitating a direct access and comparison of the au-

dio material [9]. Finally, the segmentation and synchro-

nization techniques can be used for automatically extract-

ing expressive aspects referring to tempo, dynamics, and

articulation from the audio recording. This makes the au-

dio material accessible for performance analysis, see [13].

For the future, we plan to extend the segmentation sce-

nario dealing with the following kind of questions. How

can the segmentation be done if no MIDI reference is

available? How can the segmentation be made robust to

structural differences in the stanzas? In which way do

the recorded stanzas of a song correlate? Where are the

consistencies, where are the inconsistencies? Can one ex-

tract from this information musical meaningfully conclu-

sions, for example, regarding the importance of certain

notes within the melodies? These questions show that the

automated processing of folk song recordings constitutes

a new challenging and interdisciplinary field of research

with many practical implications to folk song research.
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ABSTRACT

In folk song research, appropriate similarity measures can
be of great help, e.g. for classification of new tunes. Sev-
eral measures have been developed so far. However, a par-
ticular musicological way of classifying songs is usually
not directly reflected by just a single one of these measures.
We show how a weighted linear combination of different
basic similarity measures can be automatically adapted to
a specific retrieval task by learning this metric based on a
special type of constraints. Further, we describe how these
constraints are derived from information provided by ex-
perts. In experiments on a folk song database, we show that
the proposed approach outperforms the underlying basic
similarity measures and study the effect of different levels
of adaptation on the performance of the retrieval system.

1. INTRODUCTION

Folk song researchers detect and document relations be-
tween folk songs and their performances. This helps to
understand oral transmission. Today, folk song researchers
can digitally encode their transcriptions using common mu-
sic notation editors and use computational methods to de-
tect similarities between songs. However, as there are dif-
ferent ways to detect features in music, there are many dif-
ferent ways to compare songs. Usually, a single compu-
tational similarity value will not match directly with the
classification criteria that a musicologist applies. There-
fore, we choose a weighted linear combination of different
basic similarity measures. Depending on the retrieval task
at hand, the optimal weighting (with best retrieval perfor-
mance) of such a complex similarity measure may differ.

In this paper, we describe a metric learning approach
that can derive a good weighting in a semi-supervised man-
ner. We apply constraint-based metric learning and formal-
ize the weight adaptation as an optimization problem that
is solved by gradient descent. Constraints that guide the
adaptation process can be derived from an existing classi-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

fication of tunes from a collection. We compare different
ways of employing the derived similarities to support dif-
ferent browsing and classification tasks in a system that
accepts both previous classified and unclassified queries.

The main contribution of this paper lies in describ-
ing and evaluating a general methodology that allows folk-
song researches to automatically generate complex task-
specific similarity metrics from basic similarity measures.

2. RELATED WORK

Metric learning has been a topic of interest in general in-
formation retrieval for some time, as using a suitable simi-
larity measure is crucial for the performance of many com-
monly used approaches for clustering, classification or rank-
ing. The general objective is either to get a query closer to
the relevant objects (in a classic retrieval scenario) or to re-
fine the decision boundary between relevant and irrelevant
objects (in a classification scenario which does not nec-
essarily require a query). The highly subjective nature of
perception and the large variety of ways to represent and
compare music in many “plausible” ways make it hard to
manually define and tweak a metric according to the char-
acteristics of the input data and the specific retrieval task.
Consequently, there exist only few approaches for direct
manipulation of the metric as described e.g. in [1] and [2].
In contrast to this, our approach allows a semi-supervised
metric adaptation. This requires some labeled objects as
training data. For the experiments discussed in this paper,
such data was already provided. However, if such informa-
tion is not available a priori, a relevance feedback approach
is usually taken where a user is asked to judge on the rele-
vance of some objects.

The idea of incorporating relevance feedback to improve
the performance of an information retrieval system goes
back to the 1970s [3]. Since, it has been widely applied
and further elaborated – primarily in text but also in im-
age retrieval. Recently, in the field of music information
retrieval, several approaches using explicit feedback have
been presented that adaptively combine the results of dif-
ferent music representation schemes [4], associate differ-
ent music similarity perception models with users [5], learn
to discriminate between similar and dissimilar pieces [6],
adapt to the way of querying by taking into account user-
specific humming errors [7], or generate user-adaptive play
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lists [8–11]. Alternatively, the required information may
be collected through the analysis of user actions such as
the skipping behavior [12] or manual rearrangement of ob-
jects on a map through drag & drop [13].

All these approaches are related to the one presented in
this paper in that they rely on some form of metric adapta-
tion. Our approach differs from these in two ways. First, it
targets a significantly different application scenario. Sec-
ond, none of the above approaches is based on constrained
metric learning, which is applied here, except for the ap-
proach presented in [13] that uses similar constraints to
guide the clustering of a self-organizing map.

3. OUR APPROACH

The goal of this work is to assist a folk song researcher
in classifying new tunes (Section 3.1). Fundamental to
this task is the computation of similarities between tunes.
Different measures were developed in the past (Section
3.2). However, a particular musicological way of classi-
fying songs is usually not directly reflected by just one of
these measures. We show here how a weighted measure
derived from a certain classification scheme can be auto-
matically learned (Section 3.3). Based on this measure, we
can support the classification of new items by presenting
a ranked list (ordered by similarity) of already classified
tunes (Section 3.4).

3.1 Expert classification support

Folk song researchers at the Meertens Institute study and
classify folk song variants. Besides other means, songs
are traditionally classified by assigning them a so called
melody norm. This classification captures aspects of musi-
cal similarity and historical relationships. One tune cannot
be part of more than one class.

The WITCHCRAFT project supports researchers by pro-
viding a system that enables browsing by musical content.
The system’s similarity measures operate on symbolic rep-
resentations of tunes (Humdrum ∗ ∗ kern and MIDI for-
mat). A query melody is usually specified by clicking on a
search link besides a database item. The system then ranks
database tunes according to a chosen similarity measure.

Two types of ranking lists are supported by switching
on/off a filter that is based on tune classification. In unfil-
tered mode, the tune-ranking-list presents all tunes ordered
by similarity. This is handy when looking for all variants
of a given song. In filtered mode, the class-ranking-list
presents only the best ranked melody from each class. 1

Therefore, much fewer items are shown. This is handy
when classifying a previously unclassified song or when
questioning an existing classification.

3.2 Basic tune similarity measures

In this paper, we distinguish between basic similarity mea-
sures simj(t1, t2) as introduced in the following and lin-
ear combinations thereof (Eq. (1)). Note that the basic

1 We found that taking the maximum leads to better results than taking
the average of all the similarities.

similarity measures in this paper are themselves complex
constructions of often more basic musical and mathemati-
cal transformations [14, 15]. However, in future work, we
plan to also use more basic building blocks. In our ex-
periments, we consider 14 similarity measures. However,
the methods proposed in the following work with any set
of measures. 11 of the 14 measures are taken from the
Simile package. 2 These are rawEd, diffEd, nGrSumCo,
nGrUkkon, harmCorE, rhytFuzz, rhytGaus, opti1, opti3,
accents opti1 and accents opti2. Two distance measures
are based on the spectra of Laplacean and Adjacency graphs
[16] and one is an unpublished pitch sequence edit dis-
tance, implemented by us. All distance measures were
transformed to a similarity through sim = (1 + dist)−1.

3.3 Estimating a weighted similarity

Having given a certain number of expert classifications, the
question remains whether we can find an optimal weight-
ing of different tune similarity measures to reflect the simi-
larity underlying these expert classifications. In particular,
we are interested in the following weighted sum of n sim-
ilarity measures:

simw(t1, t2) =
n∑

j=1

wjsimj(t1, t2), (1)

with wj ≥ 0, and
∑n

j=1 wj = 1.
The weight vector w can be learned by methods of con-

strained clustering, which target on learning a metric [17,
18]. In particular, must-link-before (MLB) constraints [18]
can be used. Originally, MLB constraints were proposed
for hierarchical clustering to describe the hierarchical rela-
tion between three different items. The constraint (ix, iy, iz)
states that items ix and iy should be linked on a lower hier-
archy level than items ix and iz . For our problem at hand,
we can use a similarity interpretation instead, i.e., items ix
and iy should be more similar than items ix and iz .

Given a certain query tune q, we know from the expert
classification, which other tunes tr belong to the same (rel-
evant) class and which tunes ti are irrelevant. As the tunes
of the same class should be ranked first and, thus, should
be more similar, we can build MLB constraints of the fol-
lowing form: (q, tr, ti), which implies that

sim(q, tr) > sim(q, ti). (2)

Hence, the goal is to learn a weight vector w, with which
the fewest of the MLB constraints known for a certain
query are violated. This can be achieved with a gradient
descent search similar to the work in [18]. During learn-
ing, all constraint triples (q, tr, ti) are presented to the al-
gorithm several times until convergence is reached. If a
constraint is violated by the current similarity measure, the
weighting is updated by trying to maximize

obj (q, tr, ti) = simw(q, tr)− simw(q, ti), (3)

2 http://doc.gold.ac.uk/isms/mmm/SIMILE_algo_
docs_0.3.pdf
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which can be directly derived from (2). This leads to the
weight update rule of each individual weight wj

wj = wj + η∆wj , with (4)

∆wj =
∂obj (q, tr, ti)

∂wj
= simj(q, tr)− simj(q, ti) (5)

where η is the learning rate defining the step width of each
adaptation step.

However, this computation does not ensure the bounds
on wj given earlier. To achieve this, an additional step is
added that, first, sets all negative weights to 0 and then
normalizes the weights to sum up to 1. The complete algo-
rithm is summarized in Figure 1.

learnWeights(query tune q, tunes T , expert classifi-
cation C, ∀k = 1..n : similarity simk)
Determine constraints MLB from T and C
Initialize w: ∀j : wj := 1/n
repeat

for all (q, tr, ti) ∈ MLB do
if simw(q, tr) ≤ simw(q, ti) then
∀j : compute ∆wj

∀j : wj := max(0, wj + η∆wj)
sumw =

∑
j wj

∀j : wj := wj/sumw

end if
end for

until convergence
return w

Figure 1. The weight learning algorithm

This algorithm learns an individual weighting wq based
on the set of MLB constraints for a single query q. How-
ever, a weighting that works well for several queries would
be more useful. In specific, it is interesting to learn class
weightings wcl(t) that hold for all queries of the same class
cl(t) of a tune t and an overall weighting wa that holds
for all queries. These can be computed by the same algo-
rithm using the combined constraint sets from all consid-
ered rankings.

3.4 Querying with unclassified tunes

The approach from the previous section can learn an op-
timal similarity measure based on an expert classification.
If new tunes are added to a collection, no expert classifica-
tion is available at first and, hence, no weights optimized
for this query are available based on which a ranking list
could be build. If there is no perfect global measure that
can be applied to all queries, a different strategy can be
followed for this query to build the ranking.

This is based on the already known good weightings of
all database tunes, which were determined by the method
described in the previous section. If we assume that similar
songs also have a similar optimal weighted similarity, we
can estimate a weighting for the new query tune q by pick-
ing the weighting scheme of the closest tune tbest in the
database. This can be seen as a case-based approach [19]

where each tune in the database and its associated weighted
similarity correspond to a case and these stored cases are
used to decide how to handle the new case, i.e., how to
weight concerning the query tune.

However, this does not yet fully solve the problem, be-
cause a weighting scheme is already required to find the
closest tune tbest for a query. A straight forward approach
is to use an overall weighting wa. Alternatively, the more
specific class weighting wcl(t) or the individual tune weight-
ing wt associated with each database tune t can be used,
because we already know that these similarities are well
suited for comparing any tune with t. 3 We will select the
case with the largest (local) similarity and use its weight-
ing to finally rank all tunes in the database according to the
query tune q: wbest = arg maxwt simwt(q, t).

For ranking, we can also use any of the weightings asso-
ciated with the closest case tbest, i.e., wtbest , wcl(tbest) and
wa, where the latter is obviously the same for any database
tune. In Section 4.4, we use the notation w2 ◦ w1 to in-
dicate that the first step (closest case selection) was per-
formed using a similarity based on w1 and the second step
(ranking) is based on w2.

4. EXPERIMENTS

We conducted experiments to study how well the different
weighting techniques perform for already classified (Sec.
4.2) and unclassified tunes (Sec. 4.4) with respect to the
two different ranking lists (Sec. 4.1). Further, we analyzed
the stability of the learned weighting schemes (Sec. 4.3).

4.1 Dataset and measure evaluation method

Our evaluation is done on 360 well understood single melo-
dic strophes (one strophe per recording) described in [20].
The tunes are classified into 26 disjunct classes. For each
pair of tunes all 14 basic similarity measures are consid-
ered. These 14 · 3602 similarity values are precalculated
and need not be recomputed in the learning algorithm and
in the construction of ranking lists.

As in the application system (Sec. 3.1), our algorithms
produce for each (combined) similarity measure and query
tune a tune-ranking-list of all database tunes and a class-
ranking list. Both are ordered by decreasing computed
similarity. All tunes with the same class as the query are
marked as being a relevant result. This gives the ground
truth for evaluating the ranked lists. As measures, we com-
pute the average precision and average recall per rank on
the tune-ranking-lists for the set of evaluated queries. For
evaluation of class-ranking lists, we are interested in the
position of the correct class in such a list. We present
here the number of misclassifications at rank 1, the average
rank of the correct class and the average inverse rank over
all considered queries. The latter average is less sensitive
for single extremely bad class retrievals.

3 Please note that in this case different weightings are used to compute
the similarity to different database tunes, which leads to local distortions
of the similarity space around each case. While such a locally distorted
metric is unsuitable for the computation of the entire ranking, it may still
be useful to retrieve only tbest as shown in the experiments in Sec. 4.4.
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4.2 Querying with classified tunes

In this section we study the retrieval performance of learned
weights (cf. Sec. 3.3) and, thus, whether an automatically
determined combination of different existing similarity mea-
sures performs better than the individual ones. We con-
sider three weightings of different specificity as motivated
in Section 3.3: query-specific weighting wq , class-specific
weighting wcl(q) and overall weighting wa. The preci-
sion/recall curves for these cases are shown in Fig. 3 (left).
Additionally, the performance plots of the two best basic
similarity measures, rawEd and opti1 have been included
into the figure for comparison. Table 1 (top) shows the cor-
responding evaluation of the class-ranking-lists, ordered
by best performance, which gives the same order for all
three measures, i.e., average rank of correct class (smaller
is better), average inverse rank (larger is better), and the
number of wrong classifications (inspecting the first rank).

Not surprisingly, using wq for similarity computation
results in the best retrieval performance. It marks the upper
bound of what can be achieved with the learning algorithm.
Further, it can be observed that wcl(q) indeed performs bet-
ter than wa. However, if weights get more specific, the
danger of overfitting exists. We will discuss this problem
in Section 4.4. Nevertheless, this evaluation indicates that
there might not be a single perfect overall similarity mea-
sure that can be used in general. Instead data/problem spe-
cific measures might be needed, which are especially inter-
esting if they can be determined automatically as through
our presented method.

It is interesting to see, that the overall weight performs
worse than the best basic similarity measure (rawEd) in
most precision/recall regions (although only slightly) but
that rawEd performs worse than all shown measures for
the class-ranking-lists. This is caused by the convergence
behavior of the algorithm, which is not guaranteed to find
a global optimum but a local one.

4.3 Stability of the weighting scheme

In order to assess the stability of the individual weighting
schemes throughout the different classes, we conducted
two experiments. In the first experiment, we analyzed the
individual weightings obtained for the classified tunes (cf.
Section 4.2) with respect to the classes. The following two
measures were computed for each class:

The average pairwise inner-class similarity is computed
as the average of the similarity of the weightings for all
pairs of tunes within the specific class:

siminner(C) = average
t1,t2∈C,t1 6=t2

{
simcos

(
wt1 ,wt2

)}
. (6)

Analogously, the average pairwise cross-class similarity is
computed as the average of the similarity of the weightings
for all pairs of tunes where one tune belongs to the specific
class and the other to a different class:

simcross(C) = average
t1∈C,t2 /∈C

{
simcos

(
wt1 ,wt2

)}
. (7)
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Figure 2. Average pairwise inner- and cross-class similar-
ity of the individual weightings per class (sorted).

For the comparison of two weightings the cosine similarity

simcos

(
wt1 ,wt2

)
=

wt1 ·wt2

‖wt1‖‖wt2‖
(8)

was used. Fig. 2 shows the computed values for all classes
(sorted by descending inner-class value for better readabil-
ity). The inner-class value is always significantly higher
than the respective cross-class value. It can be concluded
that the individual weightings of tunes belonging to the
same class are in general distinct from those belonging
to others which explains the usefulness of class weights
(wcl(q) in Sec. 4.2). The generally high cross-class values
(above 0.5) can be interpreted as an indicator for the exis-
tence of a useful overall weighting scheme (wa in Sec. 4.2).

For the second experiment, we left out one to five rel-
evant tunes selected randomly from a ranking during the
learning process for individual weights. The procedure
was repeated ten times for each number of excluded tunes.
We then compared the 5 · 10 resulting weighting schemes
with the one learned with all available information. To save
time, we limited the number of tunes used as queries to two
for each of the 26 classes resulting in 2 · 26 · 5 · 10 = 2600
samples compared.

The number of excluded tunes did not seem to have a
large observable effect in our experiment. The different
weights learned for the same tune with a differing set of
relevant tunes were almost identically with an average sim-
ilarity of 0.969 (σ = 0.086). Only a few outliers could be
measured, the worst with a minimal similarity of 0.278.
From the results we can conclude that the learning algo-
rithm still produces stable results even if almost half of the
relevant tunes are removed.

4.4 Querying with unclassifed tunes

In this section we study the retrieval performance for pre-
viously unclassified tunes, i.e., for which no previously
learned weight wq or wcl(q) exists. Following the case-
based approach described in Sec. 3.4, Fig. 3 (middle and
right) shows the respective precision/recall curves. We there-
by consider two different real-world situations.

In the first case (Fig. 3; middle) the query tune repre-
sents a new tune and is therefore not part of the weight
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learning. However, the other tunes of the same class are
already in the database and therefore used for learning.
But of course, the system does not know during ranking
which ones these are. In the other case (Fig. 3; right) all
tunes from the query tune’s class were not used for learn-
ing, simulating an entirely new class that shall be added
to the database. Thus, no information on this class was
available for learning. This is of course an even harder
case. For computation of the precision and recall values,
all tunes were ranked according to the query tune, includ-
ing the songs of the unknown class. For both scenarios, we
used weights with different specificity in the two steps of
the case-based approach (cf. Sec. 3.4).

As expected, the comparison of both diagrams shows
that the performance of the learned measures is lower for
the harder case of a new class than in the case of a new
tune from a known class. The rawEd measure can thereby
be used as a point of comparison, because it has the same
curve in both cases. It showed that the more specific weight-
ings, most notably wt ◦wt, are much better in the middle
graph than in the right one. This is because members of the
same tune family can be detected as a case, if they are al-
ready in the database. However, specific weightings from
other tune families are less fitting. Thus, the approach fails
for a new tune family, where no good specific measures
are in the database yet. In the middle graph, wa is best
used to establish a case and wt of that case to finally rank:
wt ◦ wa. This approach is also quite good in the right
graph, although using only wa is slightly better. rawEd
is better at the end of the ranking, while it is worse at the
beginning. This is also reflected in the evaluation of class-
ranking-lists (Tab. 1). Here, rawEd performs worst. With
respect to automatic classification, wa performs best with
the fewest errors in the first rank. A comparison of wt◦wa

with wcl(t)◦wa would be interesting, but the experimental
data for wcl(t) ◦wa is not available, yet.

As a remark it shall be noted that the described method-
ology of simulating new tunes is very time-consuming be-
cause for each considered query the learning has to be re-
done without the respective information. Therefore, the
experiments were done with only 78 query melodies, three
melodies from each melody norm. For the development of
new similarity measures, the biased evaluation without re-
sampling as used in Section 4.2 can be used to get a rough
idea of which measure might be more promising. How-
ever, it can never replace a final unbiased evaluation as in
this section. Furthermore, the choice of melodies showed a
significant impact on the results. Using, e.g., only the ref-
erence melodies from [20], the learned measures perform
much better in comparison to rawEd - also in the most
challenging case, while other query tunes are harder to
handle. For our evaluations we used the reference melody
and two randomly picked other melodies.

5. CONCLUSION

We described an adaptive metric learning approach based
on constrained clustering that can be used in folk song re-
search to learn a task-specific similarity measure in form of

Table 1. Evaluation of the class-ranking-lists. Top: clas-
sified tunes (Sec. 4.2). Middle: unclassified tunes of a
known class (Sec. 4.4). Bottom: unclassified tunes of an
unknown class (Sec. 4.4).

Measure Rank Inverse 1st Wrong
wq 1.042 0.989 6 / 360
wcl(q) 1.083 0.985 9 / 360
opti1 1.169 0.975 14 / 360
wa 1.172 0.974 14 / 360
rawEd 1.233 0.967 16 / 360
wt ◦wa 1.218 0.969 4 / 78
wa 1.231 0.981 2 / 78
wt ◦wt 1.244 0.957 5 / 78
wcl(t) ◦wcl(t) 1.346 0.976 2 / 78
rawEd 1.410 0.946 5 / 78
wa 1.218 0.982 2 / 78
wt ◦wa 1.244 0.971 3 / 78
wt ◦wt 1.282 0.942 7 / 78
wcl(t) ◦wcl(t) 1.359 0.970 3 / 78

a weighted linear combination of several basic similarity
measures. Individual, class and overall weightings provide
different levels for specificity of the adaptation. Experi-
ments on a data set of pre-classified folk songs showed that
the combined similarity measures using these weightings
can outperform the original basic similarities for ranking
and automatic classification.

Future experimental work comprises incorporating more
basic similarity measures that capture different aspects of
the tunes to be classified. Further, the impact of the dif-
fering value distributions (within the fixed [0, 1] interval)
for the different basic similarities needs to be studied in
further experiments as it might cause a bias in the learned
weighting schemes.

Future musicological work includes studying clusters of
similar weightings. As different weightings represent dif-
ferent metrics, they select different features that separate
melody classes. Within a melody norm, several distinct
weight clusters suggest the introduction of sub-melody-
norms that might be helpful for folk song research. On
the other hand, weight clusters shared by different melody
norms could be studied to improve the case-based approach.
If, e.g., rhythmically ragged melodies generally lead to
higher weighted rhythmical similarity measures, then rag-
gedness should be used to select weights instead of rhyth-
mical similarity. For a better support of folk song research-
ers, the algorithm should be integrated into a graphical user
interface. In this context, possible interaction scenarios,
e.g., for expert-driven development of new similarity mea-
sures, could be examined.
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Figure 3. Precison / Recall plots for tune-ranking-lists. Left: classified tunes. Middle: unclassified tunes of a known class.
Right: unclassified tunes of an unknown class.
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ABSTRACT 

This paper builds an understanding how music is cur-
rently listened to by small (fewer than 10 individuals) to 
medium-sized (10 to 40 individuals) gatherings of peo-
ple—how songs are chosen for playing, how the music 
fits in with other activities of group members, who sup-
plies the music, the hardware/software that supports song 
selection and presentation. This fine-grained context em-
erges from a qualitative analysis of a rich set of partici-
pant observations and interviews focusing on the selec-
tion of songs to play at social gatherings. We suggest fea-
tures for software to support music playing at parties. 

1. INTRODUCTION 

Our experience of music includes both individual and 
group settings. When music is heard in social situations 
[1] the question which follows is: who selects the music? 

In this paper we explore issues of social music selection 
in the context of small private gatherings such as parties. 
The portability of digital music, on devices such as iPods, 
enables people to easily bring their own music but the 
selection of music to be played is largely based on the 
social roles of the participants. Ethnographic methods are 
used to understand these settings and so inform the de-
sign of systems for supporting shared music experiences. 

Section 2 outlines previous work on social music sys-
tems. We then describe our methods and discuss the sup-
port provided by media players. Section 5 outlines the 
collaborative nature of music selection and we conclude 
by comparing our results with existing systems.  

2. EXISTING SOCIAL MUSIC SYSTEMS 

There is “little in the literature to suggest how to design 
new and unique tools that facilitate social music use 
within and between the different contexts in which people 
work, play, and otherwise live their lives” [2]. Rentfrow 

and Gosling [3] show that music plays an important part 
in many peoples’ lives. Music is a conversation topic, 
“individuals’ music preferences convey consistent and 
accurate messages about their personalities” and music-
genre stereotypes are used when forming opinions of oth-
ers [3]. Further, “synchronized music consumption 
among people in physical proximity, as it happens in 
clubs or during parties, can create a strong emotional 
connection, more than what an asynchronous download 
of music over distance could provide” [4]. 

However, North et al. [1] note that a “lack of ecological 
validity” constrains much of the research on the social 
and psychological impact of music in everyday life. 
North et al. also report that their “data indicate that the 
great majority of listening episodes occurred in the pres-
ence of other people”. Several systems have been de-
signed to enhance this shared experience of music. 

Several social music systems (e.g. SocialPlaylist [5], 
tunA [4], Push!Music [6]) use personal mobile technol-
ogy, such as iPods, PDAs and mobile phones, reflecting 
the increasing portability of music collections [7]. Liu 
and Reimer [5] recommend that such systems provide 
smooth integration between personal and social modes, as 
inevitably users will occasionally prefer individual selec-
tions. In tests of Push!Music the “sharing of music be-
came a prompt for social interaction, but this happened 
only between users who already knew each other and 
were socializing face-to-face” [6]. Nettamo et al. [8] note 
that even though mobile music is widespread, music in 
the home is often played via computers and that the 
“home PC acted as music hub”. 

An alternative to these person-to-person mobile forms of 
shared music is to allow voting or collaborative recom-
mendation in public spaces. Deployment of the Jukola 
system [9] allowed users to express their musical prefer-
ences and this encouraged “debate, conversation and ne-
gotiation around music.” [9]. Pering et al. [7] used inter-
views and observations of music in shared spaces to iden-
tify four key types of stakeholders:  providers, contribu-
tors, proprietors, and listeners. Pering et al also note that 
the use of audio in shared spaces today may well soon be 
generalized to other media such as photos and video [7]. 

The MUSICtable system is designed for a further context 
of use, the “private social gathering” [10]: 

The user interface of the PC-based digital music 
player clearly does not support music selection by 
multiple people in a social situation. One manifesta-
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tion…is…“separate party syndrome,” wherein a small 
number of people tend to gather around the desktop 
computer … dominating the selection of music.  

The PartyVote system [11] takes the voting concept from 
Jukola and applies it in small group situations such as 
parties. Both PartyVote and MUSICtable also include 
visualizations to provide awareness feedback to the vot-
ers. The Smart Party [12] reflects the preferences of users 
by dividing a party into several rooms, where each 
room’s music adapts to the preferences of the people pre-
sent, changing as guests move around the party. Bluemu-
sic supports the same idea, personalization by being 
there, using Bluetooth from portable devices [13]. 

Many of these systems are designed without an obvious 
grounding in the detailed behavior of users with current 
music technology in social situations [2]. In this paper we 
investigate the use of music in these “private social gath-
erings” through ethnographic methods. We also compare 
our findings with those from other social music settings 
and consider the interaction between the setting, the us-
ers’ roles, the technology and the resulting experience. 

3. DATA GATHERING 

Our research uses data collected in a third year university 
HCI course. The course focuses on qualitative and quan-
titative techniques for gaining an understanding of user 
needs, goals, and preferences, and using these insights to 
inform the user requirements and initial prototyping 
stages of a user-centered software development effort.  
This course adopts the ‘practical approach’ to incorporat-
ing ethnography into software design, as advocated by 
Randall et al. [14]. Students work individually over the 
semester to design and prototype a system based around 
the given focus application, where their designs are in-
formed by a series of ethnographic investigations into 
behavior associated with the application domain.   

In 2008, the students explored the problem of designing 
a system to support groups of people in selecting and 
playing music. They began by performing participant 
observations of social gatherings that included music, 
with the observations focusing on how the music is cho-
sen for playing, how the music fits in with the other ac-
tivities being conducted, who supplies the music, and 
how/who changes the songs or alters the volume. The 
students then explored subjective social music experi-
ences through interviews, both of themselves (‘auto-
ethnographies’ [15]) and of a friend. These interviews 
explored aspects of a social gathering that made it more, 
or less, likely for attendees to participate in selecting the 
songs, and the social factors that made attendees feel 
more, or less, comfortable in selecting and playing mu-
sic. The students also critiqued the usefulness of existing 
systems for collaborative music selection and playing in 
social situations. 

Thirty student investigators gathered ethnographic data 
(Table 1). The students were encouraged to construe ‘so-
cial gathering’ very broadly, and so performed partici-
pant observations in a variety of settings (including car 
trips, bars, café’s, private homes, and religious institu-
tions) and with a range of size (from two friends in a 
dormitory room to a hundreds at a rave). For this paper 
we focus on small- (10 or fewer attendees) and medium-
sized gatherings (from 10 to 40 attendees), that are not 
professionally organized or occur in commercial settings 
(e.g., informal parties in student flats, birthday parties, a 
Friday night get-together, a computer gaming session, 
etc.). Music might be the primary focus of the event 
(e.g., a gathering to listen to a friend’s new CDs) or be a 
part of the background (e.g., a quiet evening of conversa-
tion). This focus often shifts—a party may begin with a 
meal accompanied by soft music, move to louder music 
and dancing, and cycle back and forth through the eve-
ning. 

A set of 43 participant observations met these criteria:  
29 small- and 14 medium-sized gatherings. The observa-
tions lasted from a minimum of 15 minutes to a maxi-
mum of 4 hours, with an average of a little over 2 hours 
(113 minutes). A total of 88 interviews provided deeper 
interpretations of the observation experiences. In the fol-
lowing sections, the investigators are identified by a let-
ter/number code (e.g., Participant K, Participant A2). 

Table 1. Characteristics of student investigators 
Male Female National Origin Count 

34 6 NZ/Australia 14 
  China 9 
  Mid-East 5 
  Other 2 

Grounded Theory methods [16] were used to analyze the 
student summaries of their participant observations, in-
terviews, and system critiques. With Grounded Theory, 
the researchers attempt to generate theory from data, 
through an inductive analysis of the data. This present 
paper teases out the behaviors and social issues that in-
fluence how songs are selected for playing at parties. 

4. MEDIA AND MUSIC PLAYER SUPPORT  

The participant observations reference a staggering array 
of music media and players. While the majority of social 
gatherings were supported by digital media and players, 
as was expected, two included cassette tapes and several 
included ‘old school’ music CD players with only the ru-
dimentary play, pause, and skip controls. The limitations 
imposed by cassettes and basic CD players are signifi-
cant: it is not possible to browse through a cassette or a 
CD on a simple player; the songs must be played in the 
original sequence; both contain a limited number of 
songs, and skipping past songs that are disliked or that do 
not fit the developing atmosphere of the party further re-
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duces the play time. Physically changing a cassette or CD 
introduces silences that may break the mood (though in 
practice it can be faster to physically swap out a CD than 
for an inexperienced user to wrestle with selecting songs 
using an unfamiliar piece of software).  

An advantage of the cassette and simple CD player is that 
they can highlight musical knowledge or expertise in 
their owner. A carefully compiled party-themed mix cas-
sette or mix CD can showcase the creator’s ability to es-
tablish and sustain a mood—though at the cost of not be-
ing able to fine-tune the songs or their sequence of play 
as the event unfolds. 

Portable MP3 players and computer–based music systems 
feature in the majority of gatherings reported in the par-
ticipant observations, some quite elaborate (for example, 
[D] describes a setup in which ‘the music was on a com-
puter in another room and being streamed to the X-box 
360 via a wireless network. The TV and X-box are con-
nected to an amplifier that powers the surround speakers 
and the sub-woofer’). Similar home computer based mu-
sic setups are described in [8]. The MP3 players, laptops, 
and portable hard drives can support extensive music 
collections, but is there ever enough storage space? 
(‘Music was provided by me, but it was limited because I 
had a selection of songs on a 250GB hard drive …’  [U]).  

An MP3 player is not ideal as the primary device for se-
lecting and playing songs; the limited physical controls 
(in particular, the lack of a keyboard) and the small or 
non-existent display (‘the information you can see at one 
time is limited’ [X]) make it difficult to search or browse 
through a collection to select songs. The larger display of 
a laptop or desktop computer affords music organization 
software that includes a larger set of searching and 
browsing facilities, but these more busy interfaces can be 
confusing to unfamiliar users. Further, there is no stan-
dard music organizer (Winamp, Windows Media Player, 
iTunes, and the command line MPlayer are mentioned in 
the participant observations and interviews), so the likeli-
hood of a party-goer encountering an unfamiliar setup is 
high. As will be discussed in Section 5, fear of making 
mistakes while selecting music can deter people from 
participating in the selection of songs in a social situation. 

5. COLLABORATIVE SELECTION OF MUSIC 

We describe patterns in the social setting and expecta-
tions for playing, choosing, and changing music. 

5.1 The Host, Guest of Honor, and Guests 

A social gathering generally includes at least one Host 
(who may provide the venue and initiate implicit or ex-
plicit invitations, and who feels a sense of responsibility 
for creating an enjoyable occasion), and one or more 
Guests (attendees at the event). If music is a part of the 
event—and it commonly is—then the host can be ex-

pected to provide the initial stock of songs for a party and 
the hardware/software needed to play them. Choosing 
appropriate music is a significant responsibility:  the set 
of songs played at an event and the order of play can have 
a dramatic impact on the atmosphere (Section N) of the 
event. Poor selection can have social repercussions:  for 
example, Participant D reports of an interviewee that, 
‘…she likes to host parties and have friends over and if 
they thort [sic] she had crap music or played crap music 
then they would not come over any more.’ 

Before the party, the Host creates the initial party playlist.  
This preparation may occur at the beginning of the party 
itself ([D]: ‘me and one of the others spent about 30 min 
on the computer in the other room creating a play list of 
songs to be listened to’), or begin well in advance ([C]: 
“downloading music for the party a few days before-
hand’). Frequently the playlist is crafted specifically for 
the event, but a Host may also develop a generic, re-
usable Party collection. 

Sometimes Guests contribute to the party collection, be-
forehand or at the beginning of the party or as the party 
progresses--though the latter might be a bit of an insult to 
the host, as the unsolicited provision of supplemental mu-
sic implies that the host’s selections are not suitable ([D], 
of interviewee: ‘if [the music at the party] ‘sucked’ then 
she would bring a CD or something so that she could 
change it.’).  The Host is more likely to invite Guests to 
contribute songs to a party if the Host is unsure of their 
musical tastes or if it is a formal or commemorative occa-
sion (for example, a 21st birthday party). The Host retains 
responsibility, however for selecting the final party play-
list from the pool of contributions. 

Some parties (eg, birthday) feature a special Guest.  The 
Guest of Honor may or may not also be the Host, but the 
Guest of Honor assumes a similar role. Where the Host’s 
song selections might be later altered by Guests (Section 
5.2), the Guest of Honor’s usually are not—changes to a 
Guest of Honor’s playlist would constitute a more serious 
breach of party protocol.  For example, Participant G re-
ports, ‘The music was selected by one person only, 
throughout the entire night. This person was the birthday 
girl. … The ipod was sitting on the stereo during the 
party, but it was made clear that nobody else was to ad-
just the music, except for the birthday girl.’ 

5.2 The Invitation 

The Host normally assumes initial control over the music 
selection; as the event progresses, the Host may maintain 
control throughout the occasion, or may pass control to 
others. Permission to alter the gathering’s playlist is 
passed through The Invitation: the Host explicitly or im-
plicitly invites others to browse available collections and 
select songs. A Host might overtly encourage Guests to 
add, delete, or re-order songs on the playlist (‘As host I 
will always make a short play list, long enough to last un-

749



Oral Session 9-B: Sociology and Ethnomusicology  
 

til most people arrive, then encourage anyone who com-
ments on the music to change it.’ [X]), or might more 
subtly indicate that alterations are acceptable by leaving 
the control to the music playing device in an easily acces-
sible spot. 

5.3 Maintaining the Atmosphere 

While music is generally not the main focus for the gath-
erings described in the participant observations, it was an 
integral part of the occasions. Awareness of the music 
naturally ebbs and flows. When conversation flags, 
Guests are more attentive to the songs playing (music ‘is 
there because during the breaks when people are not talk-
ing, the atmosphere feels awfully quiet so music helps 
lighten the mood’ [K]). A song can spark new conversa-
tion by serving as a reminder of earlier occasions (‘Par-
ticipant A mentioned on more than one occasion a song’s 
significance in his life, e.g. “When I was at school we 
used to play this song on our stereos at lunchtime”’ [L]). 
Guests frequently show an interest in discussing unfamil-
iar songs (eg, [L] reports that Guests would ‘occasionally 
ask questions or make comments about a certain song 
like, “who sings this song, I really like it” or “we should 
get this song”). An interest in learning more about new 
music is expected given that the music was selected in 
anticipation that it matches the Guests’ tastes. 

A common pattern is for a gathering to begin with quieter 
or less obtrusive music during an initial ‘socializing’ 
phase, move to ‘faster, louder and less organized’ [A] 
songs, and then end the evening with ‘chilling out’ music. 
A skilled Host monitors the Guests’ interest in the music 
and its affect on the gathering’s ambiance, and modifies 
the music when necessary to create or enhance the appro-
priate atmosphere (‘During the night there were a number 
of situations where the music and the mood needed to 
change’ [I]).  

5.4 Skipping, Sampling, Searching, and Browsing 

Changes to the party playlist are of two types:  deletion of 
undesirable songs and insertion of new songs. The usual 
case for deletion is to stop the current song that is playing 
and move to another song—skipping. The simplest strat-
egy for choosing a replacement song is simply to skip se-
quentially through the playlist, playing a few moments of 
each song (sampling) until an acceptable one is encoun-
tered. The audio effect is less than ideal, given the abrupt 
ends of skipped songs, but one benefit for the user is that 
the interaction is selecting a new song involves simply 
clicking a single ‘next song’ button.  Skipping is also the 
strategy of choice for Guests who are unfamiliar with the 
unfamiliar with the searching/browsing facilities of the 
music software (‘…people will feel uncomfortable [if 
they] stand in front of the computer for a long time, while 
they are finding the music they want to listen [to]’ [T]), 
and/or Guests who do not want to expose their ignorance 
of the gathering’s preferred music genres:  

‘…when I get told [to] change the music I will 
simply skip enough songs until I find an improve-
ment … For me this is mostly because I do not 

remember song names or even mainstream artists. 
If I have to chose music I have to resort to one of 
the limited number of artists I know or pick ran-
domly.’ [X] 

Sampling may also occur outside the context of skipping, 
when a Guest or Host attempts to identify desirable songs 
from a pool of potential additions to the party playlist. If 
the individual cannot identify songs by the available 
metadata, then a ‘good’ sample is needed to decide 
whether to include a song on the playlist (where ‘good’ 
probably includes the chorus or other characteristic sec-
tion of the song, rather than the beginning; ‘often they 
want to skip to the chorus of a song to find out if it is the 
song they actually want’ [G].  

Searching and browsing to select songs are more rarely 
reported in the participant observations than skipping and 
sampling. Searching for a specific song requires some 
confidence that that song is actually accessible, and pos-
sibly knowledge of its approximate location on the physi-
cal device (‘Participant B requested that another song she 
knew to be on the laptop be played. Participant A then 
queued up the requested song (which resided in a differ-
ent directory)’ [L]). Effective browsing (in the absence of 
sampling) require a deep familiarity with the specific 
songs in the collection: [X] reports of one successful 
browser that ‘he has a much broader knowledge [of mu-
sic] …  he is able to scroll through large number of music 
titles and understand what many of them sound like based 
on the artist and title given and decide if they would be 
appropriate.’ 

6. SUPPORTING SOCIAL MUSIC USE 

The specific music organization and selection software 
mentioned in the participant observations and interviews 
include Winamp, Windows Media Player, iTunes, and the 
command line MPlayer. Given that music is frequently an 
integral part of social, festive occasions, it is surprising 
that only iTunes avoids a clinical, ‘somewhat dark’ [X] 
appearance. It seems appropriate that interfaces should 
enhance the enjoyment and entertainment that people ex-
perience when listening to music and interacting with 
music collections—interfaces should be attractive and 
playful, appropriate to an enjoyable social gathering. 

Existing music organization software was found to be 
adequate for supporting the Host in developing the initial 
party playlist—which is not surprising, given that the 
Host is usually interacting with his/her personal system 
and music collection. Difficulties arise when Guests or 
multiple Hosts contribute to the pre-party development of 
the initial party playlist (Section 5.1).  Songs arrive on a 
variety of media (flash drives, MP3 players, CDs, exter-
nal hard drives, downloaded from the Web), and in trans-
ferring them to the Host’s system it is easy to lose meta-
data (artist, title, genre, etc.) or to discover that metadata 
values and schemes are incompatible (particularly genre). 
Better support is needed for creating a pool from multiple 
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sources, and integrating them into a single (possibly 
ephemeral) collection. 

As contributions are pooled, event-specific information is 
easily lost (eg, who contributed a song, which party 
Guests it might appeal to, and so forth)—further stressing 
the Host as s/he makes the final decisions on which songs 
to eliminate. Additional support for merging contribu-
tions into a draft playlist would be welcome—perhaps by 
encouraging contributing Guests to annotate groups of 
songs with a justification for its inclusion (for example, 
whether the songs have a strong beat for dancing, are 
suitable for chilling out at the end of the evening, etc.). 
An annotation facility is particularly important because 
inclusion criteria can be complex, idiosyncratic, and not 
well-matched to conventional metadata; eg, songs ‘that a 
lot of people would know so they would sing along’ [D], 
or songs suitable for both high school age and ‘old(er) 
guests’ [I].  It could be helpful to allow pre-party con-
tributors to view the draft playlist and cast votes for the 
retention / deletion of songs, with the Host retaining ulti-
mate responsibility for setting the initial playlist.  

Creating the initial party playlist requires a great deal of 
insight into the musical tastes of the Guests and the an-
ticipated atmosphere of the party, and a great deal of skill 
to match those to the available songs. It is difficult to see 
how this can be automated effectively. Smart Party [12], 
for example, automatically builds playlists from party at-
tendees’ personal music devices—a strategy that initially 
appears reasonable.  But music in personal collections 
may not be suitable for public listening.  An earlier study 
reports that subsets of a personal collection may represent 
‘guilty pleasures’ (music that does not fit the public per-
sona of the collection owner) [17], and it could be awk-
ward to have those songs appear in a public party playlist. 
More fundamentally, personal favorites may not be suit-
able for a given social occasion:  ‘music in a group situa-
tion that is good for that occasion can be vastly different 
than music I would usually listen to normally. … music 
that is listened to with other people and when you are less 
focused on it can be different to your usual tastes or that 
you will put up with it even if you don’t like it that much 
to not distance yourself from the group you are with.’ [R] 

Voting systems such as Jukola [9] and Party Vote [11] 
may finesse the potential social minefields of correctly 
interpreting when The Invitation has been given (Section 
5.2), by providing an impartial mechanism for suggesting 
alterations to the music lineup without offending the Host 
(Section 5.1), and generally foiling ‘pushy people, some-
one who just plays their own music and wont [sic] take 
any consideration for others’ [E]. These systems, like the 
old-fashioned jukeboxes they derive from, clearly give 
permission to choose music—that is their primary func-
tion. [F] explicitly makes this connection, commenting 
that he particularly likes jukeboxes because ‘the fact that 
the whole system is set up just so party goers can select 

music made me feel totally comfortable with using it to 
select the music I wanted to hear.’ 

As social gatherings are an opportunity to be exposed to 
new music (Section 5.3), it should be easy for Guests to 
access further information about the songs that are 
played. At a minimum this should include an easy-to-read 
screen that features basic song metadata (artist, title), 
with access to more detailed records (eg, lyrics, genre, 
‘maybe a little trivia associated with the song/artist’ [L]).  
A few participant observations report Guests attempting 
to use the party’s music software to learn more about a 
song, but an inexpert user can too easily select a song to 
play when intending to view its metadata (‘This would 
cause people to get annoyed as they would be listening to 
a song and then someone would skip to a different one 
part way through [D]). Ideally there would be a clear dif-
ferentiation between the interface elements that support 
playing music and those elements that support brows-
ing/searching collections. 

The skipping strategy for moving past songs that are dis-
liked or that are inappropriate to the gathering’s mood 
can itself disrupt the party’s atmosphere; it is annoying 
and disconcerting for the song to stop abruptly (‘People 
will have a notice when the song was changed in the 
middle…’  [T]). The availability of a crossfade effect to 
smooth song transition would not completely solve the 
problem, but would be an improvement. 

Sampling, or listening to brief portions of a song to make 
a play / no play decision (Section 5.4), could be made 
more efficient by allowing the user to skip to the chorus 
or other readily identifiable song extract (e.g., [18]). 
Alternatively, though aurally not as satisfactory, the 
system could support skimming through a song by 
increasing the speed of play (‘allows them to quickly 
listen to the feature of the song’ [P]). 

A common scenario for sampling involves using it to 
build up a sequence of songs to play. But for the music 
management software encountered in the participant ob-
servations, it was difficult to ‘stack’ selections, so the 
person choosing plays samples until a single acceptable 
song is identifies; that plays, and then sampling begins 
again. If this occurs during the party, the mood can be 
significantly disrupted. Ideally, the user would be able ‘to 
(privately) listen to previews of songs, … to make in-
formed decisions on the music they select’ [L], similar to 
the ‘previewing’ of tracks in professional DJ software. 

Effectively supporting music searching and browsing 
(Section 5.4) remains an open research problem.  Several 
student investigators suggested the inclusion of lyrics 
metadata would be the simplest and most straightforward 
way to support both direct search and browsing (by al-
lowing the user to ‘skim’ a song without hearing the 
audio). Lyrics would also be helpful for gathering at-
tendees who wished to sing along to the music. 
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The clearest directive that emerged from the participant 
observations was the importance of a simple, clean inter-
face design, preferably with large, clearly labeled controls 
whose operation do not require fine motor movements. 
Interaction sequences should be brief and each step in a 
sequence should be clearly signaled, in large font (‘nor-
mally the University student would absolutely drink beer 
while having a party’ [Y]).  

7. CONCLUSIONS 

This study presents a rich picture of collaborative music 
selection among a large group of (primarily) university 
students in New Zealand. As such, the insights gained 
must be treated cautiously—a logical next step is to ‘tri-
angulate’ through further studies involving participants 
with different backgrounds.  

The environmental conditions revealed in the party ob-
servations differ significantly from the austere, controlled 
environment of a usability laboratory—and so lab testing 
would be likely to miss significant issues. Testing of a 
collaborative music system should occur in authentic en-
vironments and real social situations, to ensure that the 
interface is usable with, for example, limited lighting, a 
noisy setting, and intoxicated users. 
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ABSTRACT

This paper analyses how audio features related to different
musical facets can be useful for the comparative analy-
sis and classification of music from diverse parts of the
world. The music collection under study gathers around
6,000 pieces, including traditional music from different
geographical zones and countries, as well as a varied set
of Western musical styles. We achieve promising results
when trying to automatically distinguish music from West-
ern and non-Western traditions. A 86.68% of accuracy is
obtained using only 23 audio features, which are represen-
tative of distinct musical facets (timbre, tonality, rhythm),
indicating their complementarity for music description. We
also analyze the relative performance of the different facets
and the capability of various descriptors to identify certain
types of music. We finally present some results on the
relationship between geographical location and musical
features in terms of extracted descriptors. All the reported
outcomes demonstrate that automatic description of au-
dio signals together with data mining techniques provide
means to characterize huge music collections from differ-
ent traditions, complementing ethnomusicological manual
analysis and providing a link between music and geogra-
phy.

1. INTRODUCTION

Most of existing Music Information Retrieval (MIR) tech-
nologies and systems focus on mainstream popular music
from the so-called ”Western tradition”. The term Western
is generally employed to denote most of the cultures of
European origin and most of their descendants. The un-
availability of scores for most musical traditions makes
necessary to work with audio recordings, and some re-
cent works have studied if the available techniques and
descriptors for audio content description are suitable when
analyzing music from different traditions [12].

We provide in [3] an initial contribution in this direc-
tion, with the goal of analyzing the descriptive power of

Permission to make digital or hard copies of all or part of this work for
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not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

tonal features to discriminate Western vs non-Western mu-
sic material. These tonal features are derived from chroma
representations, computed using an interval resolution of
10 bins per semitone and representative of the employed
tuning system and gamut. We found that tonal descriptors
were able to distinguish these two classes with an 80%
accuracy using different classifiers and an independent set
for testing. The music collection was made of 1,500 pieces
from different areas of the world. In a similar way, Liu et
al. have recently performed a study on the classification,
by means of Support Vector Machines, of a music collec-
tion of 1,300 pieces containing Western classical music,
Chinese and Japanese traditional music, Indian classical
music and Arabic and African folk music [7]. The best
result (84.06%) was obtained using timbre features, and
the results for standard chroma features was very low. This
might indicate that one semitone resolution is not accurate
enough to represent non-equal tempered scales and gamuts
found in various cultures.

The goals of this paper can be summarized as follows:
first, to analyze the contribution of the different facets of
music description (timbre, rhythm, tonality) for the au-
tomatic classification of Western vs non-Western music;
second, to evaluate the validity of the different features to
characterize certain types of music; and third, to inves-
tigate the relationship between extracted descriptors and
geographical location of the analyzed pieces (latitude and
longitude). In order to do that, we have gathered a music
collection covering traditional music from different geo-
graphical zones and countries as well as a varied set of
Western musical styles. Up to our knowledge, the relation-
ship between geography and extracted descriptors has not
been addressed in any previous existing piece of literature,
and the present study provides an attempt in this direction.

2. METHODOLOGY

2.1 Music collection

For this study, we gathered a music collection comprising
5,905 pieces from different musical traditions and styles.
They were manually divided into Western and non-Western
categories and labelled according to the musical genre and
geographical location (area and country).

For non-Western music, we gathered a total of 3,185
audio recordings distributed by geographical region, as
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Figure 1. Distribution of the music collection.

defined by UNESCO 1 . They were distributed among the
different countries and labelled according to the country of
origin and geographical region. We defined the categories
Pacific, Greenland, Central Asia, Asia, Arab States and
Africa. These samples contain representative recordings
of traditional music from different countries, discarding
those having some Western influence (e.g. equal-tempered
instruments). They were extracted from CD collections
used for ethnomusicological studies (field recordings and
compilations of traditional music).

We also considered 2,720 recordings from Western mu-
sic assigned by UNESCO to the region Europe and North
America. A set of this data was gathered from commercial
CDs and is scattered across different musical genres (alter-
native, blues, classical, country, disco, electronica, folk,
funk, hip-hop, jazz, metal, pop, reggae, rock and soul).
A subset of the ”Western” collection that was chosen has
been widely used within the MIR community [6, 10, 11].
We also added a collection of traditional music from West-
ern countries (Europe and American folk). This data was
labelled according to country of origin and musical genre.

Figure 1 shows the class distribution of the music col-
lection under study. For Western music, we have distin-
guished between three main classes: classical, traditional
music and a general class called modern that groups the
remaining musical genres. For non-Western material, we
have grouped the different countries into the mentioned
categories. As it can be seen in the figure, classes are
not equally distributed. One reason for that is the vari-
ability of pieces available to our analysis, which made
it very hard to find the same number of excerpts for all
the considered countries (e.g. we only found around 10
pieces for countries such as Vanuatu, Oman, Zimbabwe or
Tanzania while the number of pieces for traditional music
of European countries had to be restricted to 90 excerpts
per country). On the other hand, geographical regions

1 http://portal.unesco.org/geography

differ on the number of countries and musical traditions.
For instance, there were few recordings from Greenland
compared to the different styles present in Asia (includ-
ing Indian music for instance). We will minimize the
impact that this might have in the classification problem
by balancing the distribution of Western vs non-Western
material.

For this study we analyzed the first 30 seconds of each
musical piece, and we discarded few non representative
parts containing silences or ambiguous introductions (the
music on these introductions was not related to the overall
content of the piece).

2.2 Feature extraction

A main goal of this study is to provide a multi-faceted de-
scription of the music collection and compare the relative
performance of different musical facets (tonal, timbre and
rhythm) for comparative analysis of music from around the
world. In order to do that, extracted audio features are
related to these different facets:

Tonality: tonal features are related to the pitch class
distribution of a piece, its pitch range or tessitura and the
employed scale and tuning system. The features in this
group include the tuning frequency, which estimates the
frequency used to tune a musical piece if we consider
an equal-tempered scale. This feature is expected to be
close to zero for pieces tuned in this temperament. High-
resolution pitch class distributions are also obtained as the
Harmonic Pitch Class Profile (HPCP), computed with a
resolution of 10 bins per semitone and averaged for the
analyzed segment. We also obtain a ”transposed” version
of the HPCP that we call the THPCP, by ring shifting
the HPCP vector according to the position of the maxi-
mum value. Some tonal features are then derived from
them (equal-tempered deviation, non-tempered energy ra-
tio and diatonic strength). We finally consider a dissonance
measure and a descriptor called octave centroid, which
is obtained from a multi-octave fundamental frequency
representation and corresponds to the geometry centre of
the played pitches. We compute this description on a
frame basis and then obtain the average and variance for
the considered segment. This set of features was used in a
previous study [3].

Timbre: we gather here a standard set of timbre fea-
tures including loudness, spectral flux, spectral flatness,
roughness, MFCCs and energy computation in bark bands.
These features are computed in a frame basis, and we then
obtain statistical measures such as maximum and mini-
mum value, mean and variance. Timbre features are ob-
tained as explained in [9].

Rhythm: in terms of rhythmic features, we consider
different attributes such as the estimated global tempo for
the analyze excerpt as well as some features obtained from
Inter-Onset Interval (IOI) histograms (peak positions and
values) and onset rate (number of onsets per second). The
algorithm for rhythmic feature computation is based on the
system described in [2].
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Drum: this group is composed by a set of song-level
percussion descriptors computed from the output of a tran-
scription system that detects drum kit events (i.e. bass
drum, snare drum and hi-hat) [5]. Other instruments sound-
ing like them are probably detected and considered as
being them. These song-level descriptors include: the
ratio between the number of detected events per instrument
and the total number of onsets (e.g. bass drum/total), the
ratio between the number of instances among instruments
(e.g. bass drum/hi-hat), the number of detected events
per minute (e.g. hi-hat/min) and the peak values of the
histogram of the inter-instrument intervals.

2.3 Classification algorithms

We have approached several classification methods but,
for the sake of summarization, we only present the results
obtained for Support Vector Machines (SVM), considered
as one of the best-performing learning algorithms currently
available. We have employed the data mining software
RapidMiner [8] 2 , which implements SVM using LibSVM
[1].

We have used a grid search facility available in Rapid-
Miner to find the following optimal values for the kernel
function: linear (u′·v), polynomial ((γ·u′·v+coef0)degree)
and radial basis function (e−γ·|u−v|

2
). coef0 has been set

to its default value (coef0 = 0) and a grid search has been
run to find the optimal values of kernel type, γ, degree and
C, which corresponds to the cost parameter that controls
the trade off between allowing training errors and forcing
rigid margins. A soft margin then permits some misclas-
sifications. Increasing the value of C increases the cost
of misclassifying points and forces the creation of a more
accurate model that may not generalize well 3 . We have
adopted an evaluation procedure based on 10-fold cross-
validation over equally-distributed classes.

3. RESULTS

3.1 Distribution of features

In order to have a preliminary idea of the usefulness of
the different features for comparative analysis, we provide
here some analysis of the feature distributions. Figure 2
shows the distribution of the tuning descriptor for Western
and non-Western music. As expected, the distribution of
tuning deviation with respect to 440 Hz is centered on 0
cents for Western music and equal distributed between -
50 and 50 cents for non-Western pieces. We also find
some differences in other tonal descriptors such as equal-
tempered deviation, representing the deviation from an
equal-tempered scale, which also appears to be lower for
Western than for non-Western music (see Figure 3).

We can also analyze the feature distribution for the
different geographical areas and musical genres. One ex-
ample is shown in Figure 4, where we represent the dis-
tribution of the drum/total descriptor, for the different ge-
ographical areas and musical styles. This descriptor rep-

2 http://rapid-i.com
3 http://www.dtreg.com/svm.htm

Figure 2. Distribution of tuning frequency (normalized
value) for non-Western (top) and Western music (bottom).

Figure 3. Distribution of equal tempered deviation (nor-
malized value) for non-Western (top) and Western music
(bottom).

resents the presence of drum sounds (or other instruments
with similar sound) in the analyzed piece. As expected,
we observe that the values for this feature are high for the
class modern (including musical genres such as jazz, pop
and rock) and African music (with a significant presence of
percussive instruments), and are low for classical music.

3.2 Western vs non-Western classification

Our goal here is to have a classifier that automatically
assigns the label ”Western” or ”non-Western” to any audio
file that is input and analyzed with the mentioned features.
We are aware of the limitations of the concept of Western
as opposed to non-Western, as this is a first step towards
the definition and formalization of stylistic features proper
to different kinds of music.

For the Western vs non-Western categories, the achieved
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Figure 4. Distribution of the drum/total descriptor for the
different geographical areas and musical genres.

classification results for the different feature sets are sum-
marized in Table 1. The second row indicates the accuracy
of timbre features after applying an attribute evaluation
method for feature selection, correlation-based feature se-
lection (CFS) [4]. This algorithm selects a near-optimal
subset of features that have minimal correlation between
them, and maximal correlation with the to-be-predicted
classes. This procedure was performed 10 times by means
of a 10-fold cross-validation procedure, and only the tim-
bre features that were selected more than 8 times were
considered. They include descriptors based on spectral
MFCCs, Bark-band energy, spectral flux and roughness.

The last row indicates the accuracy after applying the
same feature selection method to the whole feature set.
The feature-selection procedure was performed 10 times
as well by means of a 10-fold cross-validation procedure,
and only the features that were selected 10 times were
considered. The selected features include a combination
of tonal (tuning frequency, deviations from equal tempered
scale and relative intensity of the fourth and fifth degree of
a diatonic scale), timbre (features derived from MFCCs,
energy in bark bands and spectral flux) and drum features
(number of detected hit-hat and bass-drum per minute).

As a general conclusion, we observe that the highest
classification accuracy, 88.53%, is obtained using timbre
features. Nevertheless, the number of features for this set
is very high (176 descriptors). Using a feature selection
procedure, the set can be reduced to 25 timbre features
with a 83.36% of accuracy. As the non-Western collec-
tion contains many field recordings, we think that timbre
descriptors may be related to recording quality instead
of musical properties of the pieces under study. In this
regard, we observe that 81.23% of accuracy is obtained
by using 41 tonal features, and, using the feature selection
procedure described above, 23 features from the different
sets yield to a global accuracy of 86.88%. This descriptor
set should be considered robust to recording quality.

We can also see that the performance for rhythmic and

Figure 5. Classification errors (%) for timbre descriptors.

Figure 6. Classification errors (%) for tonal descriptors.

drum features is very low, indicating that these descrip-
tor sets are incomplete to discriminate Western from non-
Western material. This was expected because Western
music includes pieces without drums (e.g. classical and
traditional music) and without a steady rhythm. Looking
at the F-measure for Western and non-Western classes, we
do not find significant differences for timbre, tonal and
drum features. Nevertheless, we observe that the value of
F-measure for Western music is more than 10% lower than
for non-Western music when using rhythmic features. In
general, the low performance of rhythmic descriptors may
suggest that the implemented features only represent peri-
odicity and tempo of music with a steady rhythm, but can
be insufficient to capture more subtle rhythmical aspects of
classical and traditional music.

3.3 Classification accuracy for different musical
genres and traditions

Figures 5 to 8 present the percentage of classification errors
per each class for the different feature sets. We observe
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Set Nb Kernel function parameters
(type, degree, cost, gamma) Accuracy (%) F-measure W F-measure non-W

Timbre 176 polynomial, 3, C=8.87, gamma=0.4 88.53 0.8856 0.8850
Timbre (CFS) 25 polynomial, 3, C=8.87, gamma=0.4 83.36 0.8345 0.8327
Tonal 41 linear, C= 2.14 81.23 0.8152 0.8095
Rhythm 23 linear, C= 2.14 62.02 0.5520 0.6704
Drum 17 radial basis function, C= 0.0, gamma= 0.4 69.83 0.7036 0.6929
Selection (CFS) 23 radial basis function, C= 0.0, gamma= 0.4 86.88 0.8600 0.8765

Table 1. Accuracy using SVM classifier and a grid search procedure.

Figure 7. Classification errors (%) for rhythmic descrip-
tors.

that traditional music is the most misclassified Western
class for all the feature sets. The reason for that may be
that traditional pieces are closer to non-Western material
with respect, for instance, to instrumentation (e.g. a small
number of instruments, similar recording conditions) or
tonality (e.g. high degree of ornamentation or scales with
deviations from equal tuning).

On the other hand, we observe that more than 60% of
the classical excerpts are not correctly classified when us-
ing rhythmic descriptors, and only 25% when using drum
descriptor. We can think that these feature sets may con-
sider Western music as having a constant rhythm and with
a high presence of drum sounds, and that classical pieces
differ from this assumption. We also observe that arabic
music is sometimes labeled as Western when using tonal
features, as found in [3].

3.4 Geographical location and feature distance

We can also analyze the correspondence between audio
features and geographical location by studying the geo-
graphical distribution of feature values. In order to do that,
we have computed a set of statistics over the audio features
for the considered countries. Figure 9 shows an example
of the geographical distribution of the equal-tempered de-
viation feature. We observe that low values are found in
Europe, United States and Australia, while higher values

Figure 8. Classification errors (%) for drum descriptors.

are found in African and Asian music.
We have then studied the correlation of audio features

averages and the average latitude and longitude coordi-
nates for each country. In the Pearson correlation com-
putation, the Bonferroni method was used to adjust the
observed significance level for the fact that multiple com-
parisons were made. The following average descriptors
showed a low (i.e., 0.3 < |r| < 0.45) but significant
correlation with the geographical coordinates:

Latitude: 3rd peak of the Inter-Onset Interval histogram,
transposed chroma features (2nd, 3rd, 5th, 7th and 9th
equal-tempered positions), chroma features (7th, 10th and
12th equal-tempered positions), equal tempered deviation
and non-tempered energy ratio.

Longitude: 4th peak of the Inter-Onset Interval his-
togram and number of onsets per second.

From the previous list, it is worth to note that latitude
is mostly associated to tonal features, while longitude is
more associated to rhythmic descriptors. We can also
build a regression model for latitude using only the above-
mentioned 13 significant descriptors, yielding a correlation
value of 0.59. Regarding longitude, the correlation is 0.31.
These initial observations need to be carefully re-assessed
in the context of theories that might relate geographical
and climate variables to constraints on musical instrument
construction or on music-centred social activities.
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Figure 9. Geographical distribution of the equal tempered
deviation descriptor (normalized value).

4. CONCLUSIONS AND FUTURE WORK

We have presented an empirical approach to the compar-
ative analysis of music audio recordings based on tonal,
timbre and rhythmic features using a music collection from
various parts of the world. We tried to automatically dis-
tinguish music from Western and non-Western traditions
by means of automatic audio feature extraction and classi-
fication. An accuracy of 86.68% was obtained for a music
collection of around 6,000 pieces, using only 23 features
from different musical facets. This confirms that tim-
bre and rhythmic descriptors complement high-resolution
tonal features for the characterization of music from var-
ious cultures. Furthermore, each feature set helped to
discriminate certain types of music (e.g. drum features
were suitable to identify pieces from the modern category).

As a future work, we would like to extent this analysis
to more specific music collections and complement our
current description from an ethnomusicology perspective.
In this regard, we will attempt the clustering of the pieces
in terms of musical culture. Ideally, we should then be able
to define and formalize stylistic features proper to different
traditions, and approach genres not just geographically
but as a set of traits. We think that this will help to
refine our descriptors and similarity measures accordingly.
We also plan to complement the current collection with
music from the UNESCO region Latin America and the
Caribbean and explore influences and ”frontier music”
with this procedure.

As a final consideration, we conclude that existing MIR
techniques are of great interest for the comparative study
of all existing music traditions in the world, and audio
description tools have a great potential to assist in eth-
nomusicological research. We hope that the present work
contributes to the understanding of our musical heritage by
means of computational modeling.
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ABSTRACT

The wide range of vocal styles, musical textures and re-
cording techniques found in ethnomusicological field re-
cordings leads us to consider the problem of automatic-
ally labeling the content to know whether a recording is a
song or instrumental work. Furthermore, if it is a song,
we are interested in labeling aspects of the vocal texture:
e.g. solo, choral, acapella or singing with instruments. We
present evidence to suggest that automatic annotation is
feasible for recorded collections exhibiting a wide range
of recording techniques and representing musical cultures
from around the world. Our experiments used the Alan
Lomax Cantometrics training tapes data set, to encourage
future comparative evaluations. Experiments were con-
ducted with a labeled subset consisting of several hun-
dred tracks, annotated at the track and frame levels, as
acapella singing, singing plus instruments or instruments
only. We trained frame-by-frame SVM classifiers using
MFCC features on positive and negative exemplars for
two tasks: per-frame labeling of singing and acapella
singing. In a further experiment, the frame-by-frame clas-
sifier outputs were integrated to estimate the predominant
content of whole tracks. Our results show that frame-by-
frame classifiers achieved 71% frame accuracy and whole
track classifier integration achieved 88% accuracy. We
conclude with an analysis of classifier errors suggesting
avenues for developing more robust features and classifi-
er strategies for large ethnographically diverse collec-
tions.

1. INTRODUCTION

We explore approaches for MIR and ethnomusicology to
support each other in the area of cross-cultural research
and to contribute new tasks and observations to both
fields. Ethnomusicological recordings constitute a major
challenge to MIR tools, due to their musical, acoustic and
technical diversity, so they can help improve our under-
standing of machine-music interaction. MIR methods are

also driving interest in larger-scale, data-intensive cross-
cultural studies in music. 

Ethnomusicological recordings document music-
al repertories outside of Western classical and popular
music, often those that are endangered or extinct today.
These recordings are used for education or research on
these repertories. Some collections have been commer-
cially released by record labels or cultural organizations
[1]. Now, due to easily accessible recording equipment,
the volume of recordings is growing exponentially. This
poses new challenges in managing ethnomusicological
collections which can hold up to hundreds of thousands
recorded items with tens to thousands of hours of record-
ings, though only a fraction of these are currently digit-
ized [2].

Recording quality within collections varies
greatly and there is often little or no information about
the technical and acoustic context for the recording.
Sometimes the singer or the leading instrument are not
the most dominant part of the recording; social contexts
vary greatly from the concert or album settings common
in Western musical culture; field recordings often contain
sounds of social and natural environments as well as oth-
er noise conditions. However, the greatest challenge is the
variance in musical material: even if a given collection is
homogeneous, the content will differ greatly from West-
ern music so requiring new MIR approaches.

This paper concerns automatic annotation, both
at the frame level and track level, of ethnomusicological
field recordings. The qualitative nature of their research
requires us to approach ethnomusicologists carefully
when proposing new technology. For example, a single
classification error can have a far reaching impact on in-
terpretation, so we must consider classification errors and
their causes and document these for users of automatic-
ally labeled archives. To this end, we give an overview of
previous work in Section 2, describe our classification
experiments in Section 3, present our results and offer de-
tailed observations on classifier errors in Section 4 and
conclude in Section 5.

2. PREVIOUS WORK

Downie [3] and Tzanetakis et al. [4] have stressed the
need for research on ethnomusicological collections. But
publications in this area are still rare in large part due to
there being few recorded collections available with an-
notations to use as ground truth data. Tzanetakis et al. [4]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page.

© 2009 International Society for Music Information Retrieval 

759



Oral Session 9-B: Sociology and Ethnomusicology

provide an overview of MIR work related to non-West-
ern musical content and suggests basic guidelines for this
kind of study, but this work does not consider cross-cul-
tural research, involving heterogeneous collections,
which we are predominantly interested in.  

Previous systems for detection of singing em-
ploy frame-by-frame classification on data consisting
primarily of Western popular music [5,6,7]. These stud-
ies employ MFCC features, sometimes with derivatives
and other spectral features, combined with statistical
models using combinations of Neural Networks, HMMs,
GMMs or SVMs to classify into two categories: frames
containing singing and non-sung frames. Temporal
smoothing is often applied to reduce labeled region frag-
mentation [6]. Our work differs in the variance of both
acoustic and musical conditions of the training and test-
ing data and in the detailed consideration of classifier er-
rors with respect to this variation.

Wembu and Baumann [8] suggested that SVM
classifiers yield slightly better results than HMMs and
GMMs. Only a few studies used frame-by-frame labeling
of the ground truth [9] which we consider to be essential
to accurate evaluation. Two MIR studies are related to
singing in non-Western cultures: singer identification in
Greek Rembetiko [9] and in South Indian Carnatic music
[10]. Both of these employed MFCCs. The latter team
used signal separation for distinguishing between vocal
and instrumental frames. 

Other studies involving non-Western music re-
cordings consider single musical cultures or repertories,
each of which provides some homogeneity of the music-
al material. Several researchers performed rhythmic ana-
lysis and classification based on beat features for such
repertories like Malay, Greek, Central African traditional
music as well as Afro-Cuban music [11,12,13]. Chordia
et al. [14] found a statistical measure based on pitch
classes that distinguishes between different ragas. Srid-
har and Geetha [10] developed Carnatic interval cepstral
coefficients (CICC), based on the division of the octave
in 22 Sruti, to better suit the tonality structure of the Indi-
an Carnatic music. 

Holzapfel et al. [9] compiled a database of
Rembetiko singers for their artist recognition experi-
ment. They deliberately chose recordings that are very
similar in style to avoid identification due to style differ-
ences. They labelled training data frame-by-frame with
one second window hop. They used aggregate “world
model” GMMs to distinguish vocal from instrumental
frames using intersection of the maximum-likelihood and
minimum likelihood frames of opposing classifiers. This
technique resulted in a classification accuracy of 99%.
The data set included historical grammophone record-
ings, but the study was for a homogenous musical style
over 21 Rembetiko singers.

Cross-cultural MIR studies include discriminat-
ing mood taxonomy of Chinese traditional music and
Western classical music [15], retrieval through metric
similarity for Greek and Central African music [12] and
a study on metrical ambiguity in Bossa Nova, Gahu,
Rumba, Soukous, Son, and Shiko [16].

We take a more general approach. To establish a
model for cross-cultural research we require a suffi-

ciency of training data to account for variance caused by
difference in cultural origins, in recording techniques and
in musical textures.  

3. VOCAL/INSTRUMENT CLASSIFICATION 

The purpose of our study is the evaluation of the base-
line performance of widely-used MIR methods on an eth-
nographically diverse data set and to gain insight into fu-
ture research potential by performing a detailed analysis
of any misclassifications. We prepared a data set consist-
ing of excerpts taken from the Lomax Cantometrics train-
ing tapes collection [17,18] which contains a high degree
of cultural, technical and textural variance since the data
was originally collected to find correlations between mu-
sical style and cultural traits such as social organization
of a society. 

3.1 Data

The Lomax data set consisted of 1000 tracks from all
over the globe including recordings sung in different lan-
guages, music played on “exotic” instruments, singing,
polyrhythmic as well as rhythmically free melodies, non-
diatonic, non-tempered scales, a great diversity of voice
timbres, rhythms, harmonies and textures from hetero-
phonic to uncoordinated, with considerable variation in
the social organization of the performing group.

For our experiments we used 355 of approxim-
ately 1000 sound samples. Of these 355 tracks 297 con-
tain singing and 58 are purely instrumental. Of the
singing tracks 185 are a'capella singing and 112 contain
accompanying instruments; 110 are sung solo, 130 are
choral and 57 contain both solo and group singing; 166
tracks contain primarily male singing (solo or group), 60
female singing and 51 mixed male and female singing, 10
are sung by children. More than 50 cultures are represen-
ted in the database from 5 continents as well as from
large and small islands. Instruments include all kinds of
idiophones (rattles, drums, frame drums, sticks,
gamelans, xylophones), aerophones (flutes, clarinets,
trumpets, tuba, didgeridoo), chordophones (all kinds of
lutes, zithers, bow chordophones like fiddles and classical
violins).

We received the audio in MP3 128kbt/sec,
44,1kHz. Files had durations of between 10 and 150
seconds. For each audio file we extracted 20-band Mel
Frequency Cepstral Coefficients (MFCC). These were ex-
tracted using a short-time Fourier transform with hop size
100ms (2205 samples), window length 185.76ms (8192
samples), FFT length 16384 samples (2.69Hz frequency
bins). For classification and evaluation we developed
tools in Matlab using the libsvm package [19].

Audio files were annotated at the whole track
level as being predominantly sung acapella (sa), instru-
mental (i) or singing plus instruments (si). For a subset
we performed frame-by-frame labelling at 50ms incre-
ments: 111 for singing (sa + si) vs purely instrumental (i)
and 77 for acapella singing (sa) vs instrumental or accom-
panied singing (i + si). 
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3.2 Frame-level and track-level classification

The first experiment was to determine the performance of
frame-by-frame two-class SVM classifiers consisting of
a) frames with singing, consisting of (sa) acapella and
singing with instruments (si), verses instruments only (io)
and b) acapella frames (sa) versus non-acapella frames;
i.e. frames containing singing with instruments (si) and
frames containing instruments only (io). The positive and
negative training labels used for the binary SVM classifi-
ers are summarized in Table 1. 

Building on these two classifiers, we defined a
third task to classify whole tracks as predominantly
acapella singing (SA), instruments only (IO) or singing
plus instruments (SI). The method used for the third task
was whole-track integration of the frame-by-frame two-
class SVM classifier outputs from the first two tasks.

Classifier Labels + Labels -

Sung Frame (s) (sa) (si) (io) 

Acapella Frame (sa) (sa) (si) (io)

Table 1: training labels for binary classifiers used in the
experiments.

For the first round of our experiment we conducted leave-
one-out cross-validation on 36 songs labelled frame-by-
frame for singing (s) vs. pure instrumental (si) and 30
tracks for acapella singing (sa) vs instrumental (si). We
tested on whole songs so that the test set did not consist
of frames drawn from any training track.

In the second round we used 111 labelled tracks
for cross-validation (77 tracks for pure singing vs instru-
mental classifier). We applied different ways of prepro-
cessing features to obtain better results: i.e. removing the
first MFCC band, unit-norming feature vectors, detecting
and removing quiet frames. We also incorporated tempor-
al aspects of features in two ways: derivatives of the fea-
ture vectors and concatenation of sequences of three to
five feature vectors. These modifications did not influ-
ence our results significantly.

A third experiment was conducted for the sung
(s) vs pure instrumental (io) classifier for which we
trained an SVM model on all 111 frame-by-frame la-
belled songs and predicted labels using this model for a
test set of 244 new tracks, of which 237 contained
singing and 7 were purely instrumental. We integrated the
classifier output labels to construct whole song predic-
tions for the test set using 30% sung frames as a threshold
for a sung track. We compared these predictions with our
manual annotation of the test songs to evaluate accuracy.

4. RESULT

The results are summarized in Tables 2-4. The first exper-
iment yielded a mean accuracy of 74% for the sung frame
classifier and 77% for the acapella frame classifier. There
were a number of problem cases which had a major im-
pact on prediction accuracy, these are discussed in the
next section. When recordings from these problem groups

were removed from the data set, the mean accuracy of the
cross-validation on remaining 27 songs was 87.9% with
18% standard deviation for the sung frame classifier, a
substantive improvement. For the next round of the ex-
periment we paid special attention to these problem cases
and included additional tracks with these characteristics
into the training set.

For the third experiment, the accuracy was 83.6%
for sung track classification and 62.2% of acapella tracks
in the collection were correctly identified. However, 97%
of tracks labeled as sung contained singing which means
that the false positive rate for instrumental tracks was im-
pacting performance. We discuss the false positives in the
next section as well as what might be done to improve
classifier performance.

27 tracks (problem
cases excluded)

Mean accuracy 87.9%

Std. deviation 18.0%

36 tracks Mean accuracy 73.6%

Std. deviation 26.0%

111 tracks Mean accuracy 71.5%

Std. deviation 22.4%

Mean recall singing 83.9%

Mean precision singing 52.6%

Mean recall pure instrumental 76.1%

Mean precision pure instrumental 60.5%

Table 2: singing vs. pure instrumental classifier: leave-
one-out cross-validation results.

27 tracks (problem
cases excluded)

Mean accuracy 85.3%

Std. deviation 19.5%

30 tracks Mean accuracy 77.4%

Std. deviation 26.6%

77 tracks Mean accuracy 71.1%

Std. deviation 22.4%

Mean recall singing 85.2%

Mean precision singing 51.9%

Mean recall pure instrumental 76.7%

Mean precision pure instrumental 58.9%

Table 3: acapella singing vs. instrumental classifier:
leave-one-out cross-validation results.

Singing vs pure in-
strumental classifier 

Acapella singing vs in-
strumental classifier 

Nr training tracks 111 77

Nr test tracks 244 278

Accuracy 83.61% 62.23%

Recall positive 85.65% 42.28%

Precision positive 97.13% 76.83%

Recall negative 14.29% 85.27%

Precision negative 2.86% 56.12%

Table 4: whole track tests results.
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5. PROBLEM CASES ANALYSIS

5.1 False positives / false negatives analysis

In general, the reasonable accuracy of our frame-by-
frame classifiers, which is further improved in the whole
track predictions, suggests this kind of classification can
be achieved independently of the origin of musical mater-
ial and the variance in stylistic parameters.

Similar results of the first and the second round
show that we were able to include some of the variance
of the data which caused problems in the first round into
the training set of the second round. The following sec-
tions outline our analysis of the errors of classification
and what might have caused them.

The following instrumental sounds were pre-
dicted badly during the first experiment and also negat-
ively influenced the ability of the classifiers to predict
singing when they were present in the training set:

1. woodwind instruments with a lot of “air” in the
sound, like pan pipes also organs, mouth organs

2. shortly plucked or hammered instruments, like
mbira, xylophone or marimba, some lutes

3. the dominant instrument playing the melody was
misclassified as singing 

4. tracks containing both singing and instruments
were misclassified as purely instrumental

5. well blended choral singing with a wide pitch
range was misclassified as instrumental

6. yodeling was misclassified as instrumental

Cases 3 and 4 could be practically eliminated in the
second round of cross-validation with more training data.
The performance of the classifiers with the other problem
cases has improved with additional training data, but ex-
amples of these cases were still present among false pos-
itives/false negatives in the second round.

In the second experiment there were some tracks
that were misclassified: mbira and mouth organ,
gamelans and xylophones, flutes and clarinets (especially
when played while “singing” into them) could “cheat” the
classifier yielding frame-by-frame accuracies of 30% and
lower in these cases. False instrumenttal positives were
caused by the Russian state choir with very well blended,
wide ranging vocals; the raspy, narrow, heterophonic
choral singing of Marajin from Australian Arnhemland; a
gospel choir with the roaring sound of Louis Armstrong
and an extremely high soprano voice. 

Another group of tracks with had classification
results close to chance. These also included the examples
from above plus:

i. choral singing of complex interlocked motivic
structures; this is what Victor Grauer [20] calls
pygmy/bushmen style. Also interlocked pan
pipes playing, which he considers to be evolu-
tionary related to the pygmy/bushmen style

ii. discoordinated singing in a big group
iii. fiddles, whistles, country/blues guitar and mouth

har
iv. wind section of a classical orchestra

The whole track tests problem cases analysis exposed
similar problem cases (mbira, xylophones, flutes, disco-
ordinated singing, narrow, low pitched voice, complex
polyphonic choral performance) but also introduced new
cases which apparently were not included into the train-
ing data, such as singing with strong accents, like e.g.
Native Americans from the Iroquois Confederacy; voice
imitating instruments, e.g. percussion; sprechgesang
(very fast spoken/sung text).

To summarize, following classes of sounds are
likely to cause misclassification:

1. Instrumental:
• All kinds of idiophones: drums, percussions,

rattles; xylophones; lamellohpones like mbira;
gongs like gamelans

• Aerophones: flutes, clarinets, whistles, pan pipes
(but not bagpipes), mouth harp, mouth organ 

• Fiddle and guitar, all kinds of lutes
2. Vocal (solo and homophonic):

• Singing voice with extreme characteristics: very
low or very high pitched; very narrow, nasal or
raspy; voices with significant non-harmonic
components in the spectrum; brilliance (strong
higher frequency components) in the voice; yo-
deling.

• Voice imitating instruments or singing with very
strong accents

• sprechgesang, very fast spoken/sung text
3. Polyphonic textures

• contrapuntal, heterophonic, interlocked as well
as discoordinated performances in a wide range,
by an orchestra and/or a choir 

Recording quality is an important factor for classification
accuracy. Though the quality of audio on Cantometrics
training tapes is much more varied then of any modern
collection of classical or popular music, it is considerably
better than many ethnomusicological datasets. We ob-
served misclassification of recordings with extreme
sound distortion, but in general the classifiers were able
to cope with significant variation in recording quality.

Temporal changes presumably play an important
role in distinguishing singing. As is known from speech
signal processing, human speech as well as singing con-
tains speech formants which are specific for each vocal
('a', 'e', 'i', 'o', 'u') and change from syllable to syllable.
This kind of change in the formants is absent in the spec-
trum of practically all musical instruments.

We tried incorporating temporal changes, using
MFCC derivatives, into the features but that didn't show
any significant difference in the result. This suggests us-
ing a shorter hop size and window size for our features.
The shorter hop size will increase the number of features
so this will likely push the running time for experiments
above acceptable durations.

5.2 Future Research

A MIREX-like comparison of performance on the Canto-
metric training tapes dataset would determine the best
and cheapest approach and would uncover models impli-
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citly relying on musical features of a specific culture like
Western popular musics. Also systematic research into
the feature selection for this type of classification is
needed. 

The next step in approaching the question of
generalization with respect to cultural origin and musical
style would be to test the SVM model we have trained on
other musical collections. Will we be able to detect
singing within collections of classical music, popular mu-
sic, folk songs, non-Western recordings? If not, how
much training data is missing, what kind of variance is
not covered by our training set? Is the goal of having a
single model to detect singing in all music achievable? 

The statistical framework using SVMs of our ex-
periments is scalable for use with tens of thousands of
tracks. The training on 111 tracks takes a few minutes and
prediction takes about 1 sec per song on a current high-
end laptop. Prediction runs sequentially on every song,
thus the testing is O(n) of the number of tracks to be pre-
dicted. With the current model we expect the approximate
running time of prediction for 10 000 tracks to be less
than 3 hours on our system. Assuming the generality of
the model, it allows our software to be applied to much
bigger collections of any musical style and origin.

It is also apparent that the same statistical infra-
structure can be used to automatically classify other
frame-level musical features. This will need a new round
of frame-by-frame as well as whole track labeling. We
plan to use this approach to classify tracks with singing
into solo and choral singing, male, female and mixed
singing, to detect specific style patterns like yodeling and
drones. It also suggests that we should segment audio ac-
cording to the prediction of more general classifiers and
design hierarchical classification, for instance male/fe-
male on segments with singing; or otherwise to use this
segmentation as a preliminary step for other techniques,
such as pitch extraction for solo singing.

Combining these features with musical paramet-
ers obtained by other techniques (such as the amount of
percussivity) or of a larger scope (such as average pitch)
one would get a multi-facet description of the musical
style of a track. Such a representation of a musical style
applied to the Cantometrics training tapes opens up vari-
ous possibilities: to study geographic distribution of a
musical parameter, a combination of parameters or style
patterns (e.g. choral vs. solo singing or yodel); to revise
delineation of music cultures; to study the dynamics of
musical style spread and influence. Since this style de-
scription is compact and can be extracted automatically
from audio, it is easy to add further tracks to the data set
and continually refine this research. 

6. CONCLUSION

In this paper we presented our work on manual annota-
tion of a diverse ethnomusicological collection for the
purposes of testing MIR tools for automatic annotation.
We conducted three experiments that served to demon-
strate good performance on the data set for the task of la-
beling regions of different types of sung tracks versus

non-sung tracks. We also presented an analysis of errors
that suggests strategies for improving the overall accur-
acy of such classifiers.

We would like to see these methods applied to larger
real world collections in ethnomusicological archives en-
hancing access to our cultural heritage. Practically every
public ethnomusicological archive has poorly annotated
holdings. Also small private archives are growing fast
and could benefit from this kind of automatic annotation.
Today, more than ever, technological infrastructure is
needed for these types of recordings: archives are chal-
lenged to open up their collections, to make them “user-
friendly”, to provide not only content, but added value
like expertise, easy access and fun. Having a whole col-
lection annotated in a consistent way would allow the
design of new user interfaces that are able to graphically
represent style patterns and regions. Social tagging could
be used to counter the errors generated in automatic an-
notation. Combined with archivists' expertise and moder-
ation, this approach will enable archives to close gaps in
annotation and offer hands-on activities to their user com-
munities.
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