
10th International Society for Music Information Retrieval Conference (ISMIR 2009)  
 

 
MULTIPLE F0 ESTIMATION IN THE TRANSFORM DOMAIN

Christopher A. Santoro+* Corey I. Cheng*# 
 

 

+LSB Audio 
Tampa, FL 33610 

chris@lsbaudio.com 

 

*University of Miami 
Music Engineering Technology 

Frost School of Music 
Coral Gables, FL 33124 

 

#University of Miami 
Department of Electrical and 

Computer Engineering 
coreyc@miami.edu 

 
ABSTRACT 

A novel algorithm is proposed to estimate the 
fundamental frequencies present in polyphonic acoustic 
mixtures expressed in a transform domain. As an 
example, the algorithm operates on Modified Discrete 
Cosine Transform (MDCT) coefficients in order to 
demonstrate the utility of the method in commercially 
available perceptual audio codecs which use the MDCT. 
An auditory model is developed along with several 
optimizations that deal with the constraints of processing 
in the transform-domain, including an interpolation 
method, a transform-domain half-wave rectification 
model, tonal component estimation, and sparse 
convolution. Test results are separated by instrument and 
analyzed in detail. The proposed algorithm is shown to 
perform comparably to state of the art time-domain 
methods.  

1. INTRODUCTION 

Perceptually coded formats such as mp3 and AAC have 
become the dominant storage and distribution format for 
commercial digital music. These formats are popular 
because they greatly reduce bandwidth and memory 
requirements related to transmission and storage. As a 
result of the successes of these formats, portable media 
players are becoming increasingly important platforms 
for the analysis and synthesis of digital media. These 
devices have limited processing power and battery life, 
and therefore require analysis and synthesis algorithms 
with minimal computational complexity where possible. 
     One emerging family of algorithms that is finding 
increased applicability in music information processing 
is multiple fundamental (F0) estimation. Loosely 
speaking, the purpose of multiple F0 estimation is to 
estimate the perceived pitches of multiple harmonic 
series, such as those created by the human voice or 
various musical instruments, when sounding 
concurrently. Multiple F0 estimation finds widespread 
use as a front-end to various pitch tracking and source 
separation algorithms. 
     State of the art analysis algorithms are typically 
designed to begin their operations on uncompressed 
PCM audio signals in the time-domain. Because music 
files on portable devices are stored in a perceptually 
coded format, they must first be decoded before the 
algorithms can begin their analysis. For example, many 

perceptual audio codecs spend considerable resources in 
using the well-known Inverse Modified Discrete Cosine 
Transform (IMDCT) to synthesize a time-domain signal 
during the decoding process. Therefore, it would be 
especially advantageous to avoid this expensive 
decoding process where possible, and operate directly 
on the native MDCT representation used in a 
perceptually coded file. 
     This work adapts a state of the art multiple F0 
estimation algorithm to operate directly on a transform-
domain representation used in modern audio codecs as a 
starting point for this research. Very few authors have 
researched transform-domain processing. Previous 
works include beat detection [1], music/speech 
classification [2], and sinusoidal analysis [3]. A primary 
reason for the limited body of work related to F0 
estimation algorithms is the limited frequency resolution 
used in transform-based audio coders. When working in 
the transform domain, we are stuck with whatever frame 
size the coder uses. A secondary difficulty with 
transform domain processing is that some time-domain 
processes do not easily lend themselves to operation in 
the transform-domain. In this work several novel 
modifications to the auditory model are proposed that 
successfully mitigate both of these limitations. A third 
difficulty with transform domain processing is that 
processing in some transform domains, such as the 
MDCT domain, can be problematic because of some of 
the aliasing properties of the transforms [10].  
     We propose an algorithm for multiple F0 estimation 
in the transform domain that adapts the work of Klapuri 
[4] to function in the MDCT domain. Like [4], the 
proposed algorithm uses a model of the human auditory 
system along with iterative estimation and cancellation 
to estimate component F0s, as the auditory model 
described by Klapuri consists of an auditory filterbank 
followed by half-wave rectification and low pass 
filtering. However, in this work, each of these processes 
is adapted to operate in the transform-domain. We also 
incorporate modifications to the iterative estimation 
portion of the algorithm by Paz [6] in order to improve 
performance.  

2. OVERVIEW OF REFERENCE ALGORITHM 

The design of the proposed algorithm is based on the 
work of Klapuri [4]. The basic framework of Klapuri’s  
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Figure 1. Overview of reference multiple F0 estimation 
method 

 
Figure 2. Detail of auditory model used in reference 
method 

method is shown in Figure 1. A key feature of the 
algorithm is the auditory model, shown in Figure 2. The 
auditory model used by Klapuri consists of a 70 channel 
gammatone filterbank design, using the 
computationally efficient implementation by Slaney 
[11], followed by half-wave rectification and low-pass 
filtering. Finally, a Discrete Fourier Transform (DFT) is 
taken in each channel, and the spectra in each channel 
are summed to create a summary magnitude spectrum. 
     To identify F0s, the salience of each candidate F0 is 
calculated using (1), where USMS is the summary 
magnitude spectrum, Kτ,m is a region where each partial 
is expected to be based on the period (τ) of the F0 and 
the harmonic number (m), and ω(τ,m) is an 
exponentially decreasing weighting function dependent 
on F0 and harmonic number. 

 

 
(1) 

 
     The salience can be interpreted as a measure of the 
perceptual strength of each candidate F0. On each 
iteration, the F0 with the highest salience is chosen. Its 
partials are then identified and partially subtracted from 
the mixture according to an exponentially decreasing 
weighting scheme. This process is repeated until a 
known number of F0s have been estimated. In Klapuri’s 
work the polyphony considered to be known a priori in 
most cases. 

3. PROPOSED ALGORITHM 

Our proposed algorithm comprises three main stages: 
interpolation, a low complexity transform-domain 
auditory model plus iterative estimation and subtraction. 
The algorithm makes changes mainly to the auditory 
model and adds transform domain interpolation to the 
front  end  of  the  salience  calculation  in  an attempt to 

 
Figure 3. Example of interpolation process. In this 
figure the peak has been shifted to the left after 
interpolation based on the distribution of energy around 
the old peak. 
 
deal with the limited frequency resolution of the 
transform-domain representation used in audio codecs. 

3.1. Interpolation of MDCT coefficients 

As stated previously, one of the fundamental limitations 
of transform-domain processing is that we are stuck 
with whatever frame size the codec uses. Codecs like 
AAC use large frame sizes of 2048 samples for tonal 
content, and smaller frame sizes of 256 samples for 
transients [9]. A frame size of 2048 samples at 44.1 kHz 
yields a frequency resolution of roughly 21.5 Hz. Since 
F0s are more closely spaced at lower frequencies in 
contemporary western scales, this means that a peak in 
one MDCT bin can span as many as six notes. In fact, 
F0s are not spaced more than 21 Hz apart until the 4th 
octave (E4 or 330 Hz). If nothing is done to address 
this, this means that any peak corresponding to an F0 
below 330 Hz could be one of many F0s. This assumes 
an equal tempered scale. The details of other tuning 
systems will be different. 
     To solve this problem, we use a simple interpolation 
method in the transform-domain. While this method 
does not increase the real frequency resolution of the 
transform-domain representation, it does have the effect 
of shifting peaks to a more accurate location 
corresponding to the true F0, making estimates of 
frequency when peak picking more accurate. The 
implementation of this method consists of zero 
padding/upsampling, then performing a zero order hold 
and low pass filtering. An upsampling factor of 3 was 
used here, but any odd factor may be used.  
     The low pass filtering was implemented as a simple 
FIR filter, which takes the form of a convolution with a  
sinc function. We found a filter length of 24 samples to 
be adequate for an upsampling factor of 3. An example 
of the result of the interpolation process is shown in 
Figure 3. 
     What is left as a result of the interpolation process 
can no longer be called a realistic MDCT spectrum, but 
this is of no consequence to the proposed algorithm. 
What we do have at this point is a reasonable estimation 
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of the magnitude spectrum of our signal, and a better 
estimation of true peak locations due to the interpolation 
process. It is important to remark that this is a 
computationally expensive process, which could 
probably be replaced by a less intensive interpolation 
method. However, this method was chosen here for its 
simplicity and good results. 

3.2. Transform-Domain Auditory Model 

After interpolation, the spectrum is passed onto a 
transform-domain auditory model, where we implement 
a modified version of the Unitary model of human pitch 
perception, proposed by Meddis [7]. In this section, we 
describe our modifications and improvements to the 
model’s four following steps: 

 
1. The stimulus is passed through a filterbank of 

band-pass filters, which simulate the action of 
the basilar membrane. 

2. Each sub-band signal is compressed, half wave 
rectified, and low-pass filtered to obtain the 
time domain amplitude envelope. 

3. Periodicity estimation is carried out on each 
sub-band. 

4. Periodicity information from each sub-band is 
combined across channels. 

 
     Step 1 of the unitary model is said to mimic the 
frequency selectivity of the inner ear. Typically a 
gammatone filterbank implementation by Slaney is 
used, although the number of channels necessary to 
achieve good results is debated. Depending on the 
application, previous works using auditory models use 
as few as 2 channels [8] and as many as 70 [4]. For this 
reason, we implemented filterbanks with 8, 16, 32, 64, 
and 70 channels to explore the effect on performance of 
the algorithm. If the number of channels can be reduced, 
then the computational complexity of the algorithm can 
be reduced significantly. 
     Step 2 of the unitary model processes information 
contained in the time domain amplitude envelope of the 
stimulus signal. Many musicians know the information 
we are looking for here as beating. Beating occurs when 
two sinusoids that have slightly different frequencies 
cancel and/or reinforce each other periodically. The 
fundamental period of the beating corresponds to the 
difference in frequency between the two sinusoids. 
Thus, this process (half wave rectification and low pass 
filtering) can be considered as a way of analyzing the 
intervals between harmonics, which corresponds to the 
F0 of a harmonic sound. This type of information is 
called spectral interval information. 
     Steps 3 and 4 are merely ways to extract the 
periodicity of the time-domain amplitude envelope, 
which is reinforced in step 2. Typically an 
autocorrelation function (time-domain) or a Discrete 
Fourier Transform (frequency-domain) is used in each 
channel. Given these processes, it is easy to see why we 
do not want a large number of channels if it is not 
necessary. 

     Some of these steps lend themselves easily to a 
transform domain implementation, while others prove 
more difficult. For example, step 1 of the auditory 
model is trivial in the transform domain. The auditory 
filterbank can be implemented easily by a matrix 
multiply if we store the magnitude response of each 
channel in an N × nC matrix, where N is the number of 
coefficients in our upsampled MDCT spectrum and nC 
is the number of channels in our filterbank. The 
magnitude response of each channel of the auditory 
filterbank can be obtained easily by first obtaining a 
standard time-domain design, and processing each 
channel with an impulse. Taking the magnitude DFT of 
the result yields the magnitude response of each 
channel. Since the filterbank is static, it can be 
calculated once, and the magnitude response can simply 
be stored in memory.  

Step 2 of the auditory model is the most difficult to 
adapt for the transform domain. It is not obvious how 
half-wave rectification can be translated into the 
transform domain. However, Klapuri [5] points out that 
half wave rectification can be modeled as a convolution 
operation. The mathematical details of that argument are 
beyond the scope of this paper, but the interested reader 
is encouraged to check the source for an in depth 
analysis. Instead, we simply note that since the goal of 
this step of the model is to reinforce spectral interval 
information, that a convolution operation is an intuitive 
method for extracting that information. 

There are two difficulties with the convolution of 
spectra to extract spectral interval information. One is 
that spectra have a DC offset due to the fact that all 
magnitude coefficients are positive. This causes a 
triangular shaped buildup around DC that obscures 
peaks indicating prominent spectral intervals. The other 
is that the process is prohibitively expensive 
computationally, especially since this is a process that 
must be performed on each channel individually. A 
standard way to attack the first problem is to subtract 
the mean from the signal. Not only does this not work in 
this case because the DC offset is caused by a small 
region of disproportionately large peaks, but it also does 
not address the second problem. We propose here a 
method for solving both of these problems based on 
tonal component estimation. 

Since we are looking for intervals between peaks, 
we begin the process by finding the locations of the 
peaks in the subband spectrum. This is called tonal 
component estimation (TCE). First, the derivative of 
each subband is taken. Next, the derivative is used to 
analyze the slope of each peak. Using a sliding window 
of 15 coefficients, local maxima are found by 
identifying locations in which the derivative transitions 
from a positive value to a negative value, and the 
difference between the two is greater than some 
threshold. The mean of each subband signal was found 
to be a good threshold, though this value may be 
changed to adjust sensitivity. Once we have identified 
the locations of tonal components, we replace each peak  
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Figure 4. Comparison of TCE and sparse convolution 
to traditional convolution of MDCT spectra. 

 
with a single spike that has the same amplitude as the 
peak. 

Using this process, each subband signal is reduced 
to only the most pertinent information (i.e., the locations 
and magnitudes of harmonics). This transforms the 
signal into a sparse vector, since most of the elements in 
each subband signal are now zeros. Next, a sparse 
convolution may be used to extract spectral interval 
information. This process is shown in Figure 4 and 
compared to a standard convolution. Not only does it 
solve the problem of DC buildup, but it also reduces the 
computational complexity drastically. 

The result of this process is a vector of extracted 
spectral interval information, Vc. By combining this 
with the original subband spectrum, we can obtain both 
spectral interval and spectral location information. 
Therefore, we calculate a weighted combination of the 
original spectrum (Xc), using (2), where α is a simple 
parameter which can be used to adjust the importance of 
spectral interval information. Yc is the resulting signal in 
each channel after the half wave rectification process. 

 

 
(2) 

 
Step 3 of the auditory model is performed by a DFT 

in the reference method. Here, we are already in the 
frequency domain, so this step can be skipped, yielding 
a large computational savings. Step 4 is also trivial and 
is computed by summing across channels to create a 
summary magnitude spectrum, USMS. This is shown in 
(3). In this step, channels that have peaks in the same 
location in their Vc components (meaning their spectral 
interval information is in agreement) reinforce each 
other to accentuate (or in some cases, reproduce) the 
peaks corresponding to the F0s in the mixture.  

 

           

 
(3) 

 

3.3. Iterative Estimation and Subtraction 

Once the summary magnitude spectrum has been 
calculated, the algorithm performs an iterative 
estimation and subtraction process largely similar to that 
in the reference algorithm. On each iteration, the 
salience is calculated for all fundamental candidate 
periods τ as described in (1). The candidate period with 
the maximum salience is chosen to be an F0. Next, we 
attempt to identify the peaks that contributed to the 
salience of the currently estimated F0. An adaptive 
scheme is used to capture peaks as well as their side 
lobes, which was developed by Paz [6] and was found 
to improve performance significantly. First local 
maxima are identified within each region defined by 
Kτ,m. Next, the boundaries are expanded until they lie at 
adjacent local minima. Once this is completed, a 
detected spectrum UD is formed consisting of the 
partials of the estimated fundamental. These partials are 
then weighted by the same weighting function that was 
used to calculate the salience. This allows us to remove 
some of the energy in each partial, but not all of it. This 
is critical for cases in which multiple sounds have 
partials that overlap. 

Finally, a residual spectrum UR is formed by 
subtracting UD from USMS. The process of calculating 
the salience and estimating the partials of F0s is 
repeated on UR a number of times that is equal to the 
polyphony, which is known a priori. The estimated F0s 
are then quantized to the nearest frequency value 
corresponding to a valid note on the equal tempered 
scale, with A4 corresponding to 440Hz.  

4. RESULTS 

The proposed algorithm was tested in a similar manner 
to the reference algorithm. Polyphonic mixtures of 2, 4, 
and 6 notes were created from four different types of 
instruments: Saxophone, Flute, Violin, and Cello. 
Sample recordings of individual notes were used from 
the University of Iowa1 database. For each polyphony 
and instrument, 100 mixtures were created by lining up 
the onsets of notes and mixing them at equal RMS 
levels. Each individual file was then encoded using the 
LAME mp3 encoder2 at 128 kbps. The results presented 
in all tests for the reference algorithm are based on a 
careful implementation based on the information given 
in the papers published by the author. 

4.1. Decoder Model 

To modify an actual decoder to return just MDCT 
coefficients (prior to taking the IMDCT and performing 
overlap and add) would have taken considerable time 
and effort. Instead, we constructed a simplified decoder 
                                                             
1 http://theremin.music.uiowa.edu/MIS.html 
2 http://lame.sourceforge.net/ 
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Figure 5. Multiple F0 estimation error rates for several musical instruments and several polyphonies. The reference 
method is in black. The proposed algorithm is tested for a Unitary model of hearing having 8, 16, 32, and 70 frequency 
bands. 

model that fully decodes the mp3 file and then reverses 
the last two steps by windowing and then taking the 
MDCT. 

While a real partial decoder would be best, we 
consider this decoder model to be a sufficient first 
attempt at multiple F0 estimation in the transform-
domain. To implement the MDCT, we used a “fast 
MDCT” which utilizes an FFT with two rotations to 
perform an MDCT. In order to have a consistent basis 
for comparison with the reference algorithm, we used a 
frame size of 46ms, which corresponds to 2048 time-
domain samples. This is also the largest frame size used 
in AAC [9]. 

4.2. F0 Estimation Results 

The results of the F0 estimation tests for each 
instrument and filterbank design are shown in the top of 
Figure 5.  

Error rate is calculated in the same manner as in the 
reference. The most important result of the F0 
estimation results is that performance is roughly equal 
for filterbank designs with as few as 16 channels. The 
algorithm performed significantly worse when using 
less than 16 channels. Interestingly, a 16 channel 
filterbank design of the range of 60 Hz to 2.2 kHz 
roughly corresponds to a 1/3 octave filterbank design 
(which would have 19 channels in this case). This is a 
common psychoacoustically motivated design for 
equalizers in stereo systems. This result is important, as 
it demonstrates that we can drastically reduce the 
complexity of our filterbank while paying a minimal 
performance penalty. 

Additionally, the results show that the algorithm 
performs well, outperforming the reference algorithm in 
most cases. The error rates published here are slightly 
higher than previously published for the reference using 
a 46ms window. This could be due to implementation 
inaccuracies or a discrepancy in test material. 

4.3. Chroma Estimation Results 

In some applications, the exact octave that a note is 
from may not be as important as the chroma of the note. 
That is, in a mixture that contains the notes C3, E4, and 
G3, an estimation of C, E, and G may be sufficient. To 
investigate the proposed algorithm’s perfomance in 
chroma estimation, the F0 estimation tests were re-run, 
but this time octave errors were not counted as errors. 
The results in the bottom half of Figure 5 show that the 
error rates dropped drastically for all instruments except 
for Cello. Error rates for each filterbank design with 
more than 8 channels were less than 5% for low 
polyphonies. This shows that a majority of the errors 
from the F0 estimation tests were octave errors. 

4.4. Discussion 

While the proposed algorithm’s performance was 
impressive on each task, the question still remains as to 
why the Cello performed so poorly, while the other 
instruments performed well. One would think that the 
inharmonicity of stringed instruments as well as the low 
frequency range of the cello played a part. An analysis 
of the distribution of samples for each instrument was 
conducted and this revealed that indeed the cello had a 
distribution that occupied a significantly lower range 
than the other instruments. This is likely to have played 
a larger role than inharmonicity, since the algorithm had 
no problem dealing with the violin samples.  

This reveals a primary weakness of the proposed 
algorithm. It does not seem to deal well with lower F0s. 
This is most likely due to inadequate frequency 
resolution for F0s below the 3rd octave. A higher 
upsampling rate in the interpolation stage may mitigate 
this somewhat, but this would increase computational 
complexity. 
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Figure 6. Polar comparison of flute (left) and cello 

(right) sample distributions, by chroma (angle) vs. 
octave (radius). 

5. CONCLUSIONS AND FUTURE WORK 

In conclusion, we have shown here that it may be 
possible to perform multiple F0 estimation entirely in 
the transform-domain. We have adapted a state of the 
art algorithm to work in the transform-domain, which 
includes a model of human pitch perception. We have 
shown that upsampling and interpolation of MDCT 
coefficients is a viable strategy for mitigating the 
inadequate frequency resolution of frame sizes native to 
perceptual audio coders. However, we have also found 
that F0s in the lower octaves still remain a problem due 
to limited frequency resolution. 

For the purposes of comparing this algorithm 
against other multiple F0 estimation algorithms, it 
would be useful to use a MIREX database [12] for 
future test material. This would provide more reliable 
grounds on which to make comparisons. The test 
material used here was intended to be as close as 
possible to that used in the reference method. 
Furthermore, while a large effort was made to 
accurately implement the reference algorithm, mistakes 
will always be made because limited publication space 
inevitably causes some details to be left out. 

Future work should also include a more detailed 
decoder model, as well as further experimentation with 
different upsampling factors and filterbank designs. The 
MDCT spectra used for this investigation, while fine for 
a starting point on this research, are certainly not an 
exact representation of what we would see coming from 
an actual decoder. Strategies will need to be developed 
to deal with the limitations of more realistic 
representations of MDCT coefficients in perceptually 
coded files. While this work does not address these 
tedious details, it lays the groundwork for an evolution 
in that direction. 
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