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ABSTRACT

Multi-pitch estimation of sources in music is an ongoing
research area that has a wealth of applications in music in-
formation retrieval systems. This paper presents the sys-
tematic evaluations of over a dozen competing methods
and algorithms for extracting the fundamental frequencies
of pitched sound sources in polyphonic music. The eval-
uations were carried out as part of the Music Information
Retrieval Evaluation eXchange (MIREX) over the course
of two years, from 2007 to 2008. The generation of the
dataset and its corresponding ground-truth, the methods by
which systems can be evaluated, and the evaluation results
of the different systems are presented and discussed.

1. INTRODUCTION

A key aspect of many music information retrieval (MIR)
systems is the ability to extract useful information from
complex audio, which may then be used in a variety of
user scenarios such as searching and organizing music col-
lections. Among these extraction techniques, the goal of
multiple fundamental frequency (multi-F0) estimation is
to extract the fundamental frequencies of all (possibly con-
current) notes within a polyphonic musical piece. The ex-
tracted representations usually either take the form of a
1) list of pitches vs. time; or, 2) a MIDI-like representa-
tion that contains individual notes and their onset and off-
set times. These representations represent an intermediary
between the audio and the score. While automatic tran-
scriptions systems concern themselves with generating the
actual score of music being analyzed, the intermediate rep-
resentation generated by multi-F0 systems is useful in its
own right. Such information can be very useful for other
MIR systems as higher level features: to define the struc-
ture of the song, to make a better search or recommenda-
tion based on the score, or for F0-guided source separation.
Recently, there has been great interest in multi-F0 estima-
tion.

To understand the current state of art, starting in 2007,
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the MIREX [3] organized a multi-F0 evaluation task. This
task can be considered as an evolution and superset of the
previous MIREX audio melody extraction tasks. For more
information on audio melody extraction, we refer the reader
to [13]. The MIREX multiple-F0 task consists of two sub-
tasks built around the two pitch representations mentioned
earlier. The first subtask is called Multiple-F0 Estimation
(MFE). In MFE, systems are required to return a list of
active pitches at fixed time steps (analysis frames) of a
polyphonic recording. The second subtask is called Note
Tracking (NT). In the NT subtask, systems are required to
return the note F0, onsets and offsets of note events in the
polyphonic mixture, similar to a piano-roll representation.

The MIREX multiple-F0 task attracted many researchers
from around the world. In the 2007 MFE subtask, there
were a total of 16 algorithms from 12 labs. For the NT
subtask, there were 11 algorithms from 7 labs. In 2008,
there were a total of 15 algorithms from 10 labs for MFE
and 13 algorithms from 8 labs for NT.

This paper serves to discuss the current performance of
multi-F0 systems and to analyze the results of the MIREX
algorithm evaluations. The paper is organized as follows.
The rest of Section 1 describes the main approaches and
challanges to MFE and NT. Section 2 describes the eval-
uation process. Section 2.1 describes the dataset and Sec-
tion 2.2 defines the evaluation metrics. Section 3 discusses
the results and some approaches from the MIREX 2007
and 2008 MFE and NT subtasks. Section 4 provides some
concluding remarks.

1.1 An Overview of Multiple-F0 Estimation and Note
Tracking Methods

There are many methods for F0 estimation and note track-
ing and an in-depth coverage of the many possible tech-
niques is beyond the scope of this paper. Instead, we will
provide a very brief overview of methods. Table 1 shows
the participants of the MIREX 2007 and 2008 MFE and
NT subtasks and their proposed methods. All systems use
a time-frequency representation of the input signal as a
front-end. The time-frequency representations include short-
time Fourier transforms [1,2,6,10,11,13,15], auditory filter
banks [16, 17], wavelet decompositions [5] and sinusoidal
analysis [18]. Characteristics of the spectrum such as har-
monicity [5,10,14,17,19], spectral smoothness [11], onset
synchronicity of harmonics [18] are often used to extract
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F0s either by grouping harmonics together or calculating
scores for different F0 hypotheses.

A large cross-section of techniques use nonnegative ma-
trix factorization (NMF) to decompose the observed mag-
nitude spectrum into a sparse basis. Fundamental frequen-
cies can then be determined for each basis vector, and the
onsets/offsets are computed from the amplitude weight of
each basis throughout a piece. Some systems follow classi-
fication approaches which attempt to find pre-trained notes
in the mixture. In general, it is possible to categorize the
methods used into two groups in terms of how they ap-
proach polyphony. In the first group, systems extract F0s
for the predominant source in the polyphonic mixture. The
source is subsequently canceled or suppressed and the next
predominant F0 is estimated. This procedure goes on iter-
atively until all sources are estimated. In the second group,
systems attempt to estimate all F0s jointly.

2. EVALUATION

Extracting pitch information from polyphonic music is a
difficult problem. This is why we choose to subdivide the
task into the two MFE and NT subtasks. MFE defines a
lower level representation for multiple-F0 systems. In this
subtask, the systems estimate the F0s of active sources for
each analysis frame.In many multi-F0 systems, frame-level
F0 estimation is a precursor to the NT subtask. In the NT
subtask, the systems are required to report the F0, onset
and offset times of every note in the input mixture. Origi-
nally, additional timbre-tracking subtasks were envisioned
for the MIREX multi-F0 task. Timbre tracking requires
that the systems return the F0 contour and the notes of
each individual source (e.g., oboe, flute, etc.) separately.
However these subtasks were canceled due to lack of par-
ticipation.

2.1 Creating the Dataset and the Ground-truth

The MIREX multi-F0 dataset consists both of recordings
of a real-world performance and pieces generated from
MIDI. The real-world performance is a recording of L.
van Beethoven Variations from String Quartet Op.18 N.5.
which is adapted and arranged for a woodwind quintet which
consists of bassoon, clarinet, flute, horn and oboe. The
piece was chosen due to its highly contrapuntal nature where
the lines of each instrument are fairly different but sound
harmonious when played together. Also, the predominant
melodies alternate between instruments. The recording was
done at the School of Music at the University of Illinois at
Urbana-Champaign. First, the members of the quintet were
recorded playing together where each performer was close
mic‘ed. Second, each part was then recorded in complete
isolation while the performer listened to and played along
with the other parts previously recorded through headphones.
The rerecording was done in isolation because there was
significant bleed through of other sources into each instru-
ments microphone during the ensemble recording. The
MIREX 2007 dataset consisted of five different 30-second
sections that were chosen from the nine minute recording.

The MIREX 2008 data set added two more 30-second sec-
tions for a total of seven. The sections were chosen based
on high activity of all sources. The isolated instruments
from those sections were mixed to form mixtures start-
ing from duet (two polyphony) to quintet (five polyphony).
This results in four clips per section where each clip is
generated by introducing an extra instrument to the mix-
ture. There was no normalization during mixing, so each
source‘s loudness in the mixture depends on how it was
performed by the musician.

To create the ground-truth set, monophonic pitch detec-
tors were used on the isolated instrument tracks using a 46
ms window and a 10 ms hop size. The pitch detectors used
were Wavesurfer, Praat and YIN. The pitch contours gen-
erated were manually inspected and corrected by experts to
get rid of common monophonic pitch detector errors such
as voiced / unvoiced detection and octave errors. To cre-
ate the ground-truth for the NT subtask, the isolated instru-
ment recordings were annotated by hand to determine each
note’s onset, offset and its F0 by inspecting the extracted
monophonic pitch contour, the time domain amplitude en-
velope and the spectrogram of the recording.

The second, MIDI-based, portion of the dataset comes
from two different sources. The first set was generated
by [18] by creating monophonic tracks rendered and syn-
thesized from MIDI files using real instrument samples
from the RWC database [8]. The monophonic tracks were
created such that no notes overlap so that each frame in the
track is strictly monophonic. The ground-truth for MFE
was extracted using YIN. The ground-truth for the NT sub-
task was generated using the MIDI file. Two 30-seconds
sections with 4 clips from two to five polyphony were used
from this data. The second set, which was used only for the
note tracking subtask, was generated by [12] by record-
ing a MIDI-controlled Disklavier playback piano. Two
one-minute clips were used from this dataset for the note
tracking subtask. The ground-truth was generated using
the MIDI files.

2.2 Evaluation Methods and Metrics

This section describes the evaluation methods used in MIREX
2007 and 2008. The MFE and NT subtasks have different
methods for evaluation.

2.2.1 Multi-F0 Estimation Evaluation

As mentioned earlier, the multi-F0 task represents a frame-
level estimation of F0s where submitted systems were re-
quired to report active F0s every 10 ms. Many different
metrics are used to evaluate this subtask. We begin by
defining precision, recall and F-Measure as:

Precision =
∑T

t=1 TP (t)∑T
t=1 TP (t) + FP (t)

(1)

Recall =
∑T

t=1 TP (t)∑T
t=1 TP (t) + FN(t)

(2)

F-measure =
2× precision× recall

precision + recall
(3)
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Systems Code Front End F0-Est Method Note Tracking method Ref
Cont AC STFT NMF with sparsity constraints NMF with sparsity constraints [2]
Cao, Li CL STFT Subharmonic sum, cancel-iterate N/A [1]
Yeh et al. YRC Sinusoidal an. Joint Estimation based on spectral features HMM tracking [18]
Poliner, Ellis PE STFT SVM classification HMM tracking [13]
Leveau PL Matching pursuit Matching Pursuit with harmonic atoms N/A [10]
Raczyński et al. SR Constant-Q trans. Harmonicity constrained NMF N/A [14]
Durrieu et al. DRD STFT GMM source model, cancel-iterate N/A [4]
Emiya et al. EBD STFT Derived from note tracking HMM Tracking [6]
Egashira et al. EOS Wavelets Derived from note tracking EM fit of Harmonic Temp. Models [5]
Groble STFT MG Scoring on pre-trained pitch models. N/A [9]
Pertusa, Iñesta PI STFT Joint Estimation based on spectral features Merge notes [11]
Reis et al. RFF STFT Derived from note tracking Genetic Alg. [15]
Ryynänen, Klapuri RK Auditory model Derived from note tracking HMM note and key models [16]
Vincent et al. EBD ERB filter-bank Derived from note tracking Harmonicity constrained NMF [17]
Zhou, Reiss ZR RTFI N/A Harmonic grouping, onset detection [19]

Table 1. Summary of submitted multi-F0 and note tracking systems.

Since not all sources are active during any given analysis
frame, the number of F0s in each time step of the ground-
truth varies with time. For that reason, TP , FP and FN
are defined as a function of time (frame index, t) as fol-
lows: “true positives” TP (t) are calculated for frame t,
based on the number F0s that correctly correspond between
the ground-truth F0 set and the reported F0 set for that
frame. “False positives” FP (t) are calculated as the num-
ber of F0s detected that do not exist in the ground-truth
set for that frame. The notion of “false negatives” FN(t)
however, becomes more problematic. We first begin by
defining the notion of a negative. We define negatives
based on the maximum polyphony of a each musical clip.
Therefore, a quartet clip has a polyphony of four. Nega-
tives in the ground-truth for each frame are calculated as
the difference of the total polyphony and the number of
F0s in the ground-truth. Similarly, the number of negatives
for each frame in the reported F0 transcriptions are the dif-
ference between the total polyphony and the number of re-
ported F0s. Therefore, the false negatives for each frame,
FN(t), is calculated as the difference between the number
of reported negatives at frame t and the number of nega-
tives in the ground-truth at frame t. Therefore, false nega-
tives represent the number of active sources in the ground-
truth that are not reported. The TP (t),FP (t) and FN(t)
are summed across all frames to calculate the total num-
ber of TP s, FP s and FNs for a given musical clip. From
these measures, we can calculate an overall accuracy score
as:

Accuracy =
∑T

t=1 TP (t)∑T
t=1 TP (t) + FP (t) + FN(t)

(4)

This is a measure of overall performance bounded be-
tween 0 and 1 where 1 corresponds to perfect transcrip-
tion. However, it does not explain the types of errors that
can happen. Therefore, we turn our attention to measures
which better identify the types of errors multi-F0 systems
make. We first note that not every instrument is active
at every time frame. For example, an instrument in the
mixture might be inactive through most of a piece’s dura-
tion and active for only a relatively short amount of time.

There are different kind of errors that can happen in es-
timating and reporting F0 candidates. An F0 of a source
can be missed altogether, substituted with a different F0,
or an extra F0 can be inserted (“false alarm” or false pos-
itive). To explain these types of errors, a measure called
the frame-level transcription error score defined by [7] and
used for music transcription by [12] is used. The benefit
of this error measure is that this single error score can be
decomposed into the three aforementioned types of errors,
namely a miss, substitution, or false alarm. The total error
score is defined as

Etot =
∑T

t=1 max(Nref (t), Nsys(t))−Ncorr(t)∑T
t=1 Nref (t)

(5)

where Nref (t) is the number of F0s in the ground-truth
list for frame t, Nsys(t) is the number of reported F0s and
Ncorr(t) is the number of correct F0s for that frame. This
error counts the number of returned F0s that are not correct
(they are either extra or substituted F0s) and the number of
F0s that are missed. The total error is calculated by sum-
ming the frame level errors and normalizing by the the total
number of F0s in the ground-truth. The maximum bound
of this error score is directly correlated with the number
of F0s returned. Not returning anything will result in a
score of 1 while perfect transcription will yield a score of
0. However, the total error is not necessarily bounded by
1. This total error can be decomposed into the sum of three
sub-errors. The substitution error is defined as

Esub =
∑T

t=1 min(Nref (t), Nsys(t))−Ncorr(t)∑T
t=1 Nref (t)

(6)

The substitution error counts the number of ground-truth
F0s for each frame that were not returned, but some other
incorrect F0s were returned instead. These types of errors
can be considered substitutions. This score is bounded be-
tween 0 and 1.

Missed errors are defined as

Emiss =
∑T

t=1 max(0, Nref (t)−Nsys(t))∑T
t=1 Nref (t)

(7)
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which counts the number of F0s in the ground-truth that
were missed by the system with no substitute F0s being
returned. This error is also bounded between 0 and 1.

False alarms are defined as

Efa =
∑T

t=1 max(0, Nsys(t)−Nref (t))∑T
t=1 Nref (t)

(8)

which counts the number of extra F0s returned that are
not substitutes. Every extra F0 after the number of F0s in
the ground-truth list is counted as false alarm. The upper
bound of this error depends on the number of F0s returned.
All errors are normalized by the total number of F0s in the
ground-truth. The error is good measure for this task be-
cause it enables us to explain different types of errors and
can also provide a single measure for comparison.

2.2.2 Note Tracking Evaluation

In the note tracking subtask, systems are required to return
a list of notes where each note is designated by its F0, on-
set and offset time. The evaluation of this subtask is more
straightforward then the frame-level subtask. We can think
of the ground-truth list as a fixed collection of events where
each event is defined by three variables, F0, onset and off-
set. Due to the difficulty of detecting offsets in a highly
polyphonic mixture, the evaluations were calculated using
two different scenarios. In the first scenario, a returned
note event is assumed to be correct if its onset is within
a +/-50 millisecond range of a ground-truth onset and its
F0 is within +/- a quarter tone (3%) of the ground-truth
pitch. Here, the offset times are ignored. In the second sce-
nario, in addition to the previous onset and pitch require-
ments, the correct returned note is required to have an off-
set time within 20% of ground-truth note’s duration around
the ground-truth note’s offset value, or within 50 millisec-
onds of the ground-truth note’s offset, whichever is larger.
For these two cases, precision, recall and F-measure are
calculated where true positives are defined as the returned
notes that conform to the previously mentioned require-
ments and false positives were defined as the ones that do
not. We also define an additional measure called Overlap
Ratio (OR). The OR for a ith correct note in the returned
list is defined as

ORi =
min(tref

i,off , tsys
i,off )−max(tref

i,on, tsys
i,on)

max(tref
i,off , tsys

i,off )−min(tref
i,on, tsys

i,on)
(9)

where tsys
i,off and tsys

i,on are the offset and the onset times
of the correctly returned note and tref

i,off and tref
i,on are the

offset and onset times of the corresponding ground-truth
note. An average OR score is a good measure of how much
the correct returned note overlaps with the corresponding
ground-truth note. This information is especially useful
when the correct notes are calculated based on the onset
only.

3. RESULTS AND DISCUSSION

The evaluation results of two iterations of the MIREX multi-
F0 estimation task (2007-2008) are presented here. We
first turn our attention to the frame-level MFE subtask.
Figure 1 shows the precision, recall, and accuracy scores
for all submitted MFE systems over the two years. In gen-
eral, systems have improved in accuracy over the course of
the two years.

In Figure 2, a bar graph of the total error is shown for
each of the systems. Each total error bar is subdivided into
the three types of errors that constitute it namely, miss er-
rors, substitution errors, and false alarm errors. It is evident
that different systems present different trade-offs in terms
of the types of errors. Referring back to Fig. 1, one can see
that some systems have a very high precision compared to
their accuracy such as those by PI, EBD and PE [6,11,13].
PI has the highest precision in both years. The reason be-
hind this is that most of the F0s reported by these systems
are correct, but they tend to under-report and miss a lot of
active F0s in the ground-truth. This type of behavior is also
evident in Fig. 2. While PI systems have the lowest total
error score, there are very few false alarms compared to
miss errors. PI achieves a low number of local false pos-
itives by taking into account a temporal salience of each
combination of pitches. The results are post-processed by
either merging/ignoring note events or using a weighted
directed acyclic graph (wDAG).

Similarly, EBD and PE use hidden Markov models for
temporal smoothing, and also have a relatively high miss
error. RK [16] and YRC [18] have balanced precision, re-
call, as well as a balance in the three error types, and as
a result, have the highest accuracies for MIREX 07 and
MIREX 08, respectively. On the other hand, some sys-
tems like half of the CL submissions, have a high recall
compared to their precision accuracy. CL returned a fixed
(maximum) number of F0s for every frame regardless of
the input polyphony in order to maximize recall.

The top two submissions share similar approaches. Both
YRC and PI(1,2) generate a pool of candidate F0s for each
frame and combine the candidates into hypotheses to jointly
evaluate the present F0s. YRC first estimates an adap-
tive noise level, and extracts sinusoidal components. The
algorithm then extracts F0 candidates until all the sinu-
soidal components are explained in the signal, as well as
a polyphony inference stage that estimates the number of
concurrent sources. All combinations of F0 candidates
are evaluated by a score function based on smoothness
and harmonicity, among others, and the best set is cho-
sen. Finally, a tracking method is performed by first con-
necting F0 candidates across frames to establish candidate
trajectories and then pruning them using HMMs. PI takes
a similar approach in that, once again, joint F0 hypothe-
ses are evaluated using saliency scores based on properties
such as spectral smoothness and candidate loudness. Post-
processing either takes into account local signal character-
istics taken from adjacent frames or uses wDAGs for F0
note merging or pruning. The top performing algorithm
from 2007, RK uses an auditory inspired model for anal-
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Figure 1. Precision, recall and accuracy for MIREX 07 and MIREX 08 MFE subtask ordered by accuracy.

ysis, and uses HMMs for note models and for note transi-
tions, after a musical key estimation stage, in an attempt to
incorporate some musicological information into the pro-
cess.

For the NT subtask, Fig. 3 shows the precision, recall,
and F-measures of the onset-offset based evaluation of the
note tracking systems. We notice that in the NT onset-
offset evaluation, performance is relatively poor. The likely
explanation of this performance stems from the difficulty
in properly defining an offset ground-truth in the data sets.
In the woodwind data set, offset ground-truth was defined
on the monophonic recordings of each track where the off-
set was labeled at very low loudness. Once mixed, other
signals can dominate the low level of a source at the tail
end of its decay such that the offset within the mixture
is somewhat ambiguous. For the MIDI-generated piano
dataset, offset is defined based on the MIDI file, and does
not take into account the natural decay and the reverbera-
tion of the piano. Therefore, in the woodwind dataset, the
offset time may be overestimated, whereas in the MIDI-
generated dataset, the offset may be underestimated. Due
to the inherent difficulty of properly defining offset, we
also evaluate based strictly on note onset. The onset-based
evaluation results of the NT subtask can be seen in Fig. 4.
More detailed results and significance tests can be found at
the MIREX wiki pages. 1

4. CONCLUSION

Inspecting the methods used and their performances, we
cannot make generalized claims as to what type of ap-
proach works best. In fact, statistical significance testing
showed that the top three methods were not significantly
different. However, systems that go beyond simple frame-
level estimation methods and incorporate temporal con-
straints or other note tracking methods seem to perform
better. It is plausible that timbral/instrument tracking can
improve MFE even more. A future direction for evaluation
would then be to add an instrument tracking subtask that

1 http://www.music-ir.org/mirex/2007/index.php/MIREX2007 Results
http://www.music-ir.org/mirex/2008/index.php/MIREX2008 Results
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Figure 2. Error scores for MIREX 07 and MIREX 08 MFE
subtask ordered by total error.
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Figure 4. Precision, recall and F-measure based on note
onset only for the MIREX 07 and MIREX 08 NT subtask.

would lead to a more complete music transcription task.
The music transcription field is advancing but the problem
is still far from being solved and there is a great room for
improvement.
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