
10th International Society for Music Information Retrieval Conference (ISMIR 2009)

ACCELERATING NON-NEGATIVE MATRIX FACTORIZATION FOR
AUDIO SOURCE SEPARATION ON MULTI-CORE AND MANY-CORE

ARCHITECTURES

Eric Battenberg
Parallel Computing Laboratory

University of California, Berkeley
ericb@eecs.berkeley.edu

David Wessel
Center for New Music and Audio Technologies

University of California, Berkeley
wessel@cnmat.berkeley.edu

ABSTRACT

Non-negative matrix factorization (NMF) has been suc-
cessfully used in audio source separation and parts-based
analysis; however, iterative NMF algorithms are compu-
tationally intensive, and therefore, time to convergence is
very slow on typical personal computers. In this paper,
we describe high performance parallel implementations of
NMF developed using OpenMP for shared-memory multi-
core systems and CUDA for many-core graphics proces-
sors. For 20 seconds of audio, we decrease running time
from 18.5 seconds to 2.6 seconds using OpenMP and 0.6
seconds using CUDA. These performance increases allow
source separation to be carried out on entire songs in a
number of seconds, a process which was previously im-
practical with respect to time. We give insight into how
such significant speed gains were made and encourage the
development and use of parallel music information retrieval
software.

1. INTRODUCTION

Even though music information retrieval (MIR) research
is growing in importance and popularity, we have yet to
see widespread adoption of MIR techniques in end-user
applications. Part of this may be due to the ubiquity of on-
line music recommendation services such as Pandora and
Last.fm that use hand-labeled data and collaborative fil-
tering as a basis for their recommendations, but also, the
overall computational complexity of many MIR techniques
makes their use outside of powerful compute clusters in-
feasible. The rate of progress of MIR research could be
greatly improved if the execution time of MIR techniques
was reduced enough to allow for quicker evaluation and
tuning of algorithm parameters and more frequent real-
world usage.

An emphasis on creating fast implementations has seen
some attention, though not nearly enough. Tzanetakis pro-
duced submissions to MIREX 2007 using the Marsyas au-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2009 International Society for Music Information Retrieval.

dio processing framework that ran orders of magnitude faster
than the submissions of competitors while producing com-
parable results [1]. For example, in the audio mood clas-
sification task, the multi-core Tzanetakis implementation
completed in 2 minutes, while competing implementations
took between 8 minutes and 3 hours. Even for research
implementations, such large speed differences can signifi-
cantly impact the usability of MIR software.

In this paper, we describe our efforts to speed up percus-
sive source separation based on non-negative matrix fac-
torization (NMF), an unsupervised learning technique that
has been used in audio source separation and parts-based
analysis [2] [3] [4] [5]. Since NMF dominates the compu-
tation time in such a source separation task, it is an impor-
tant computational procedure to optimize.

The goal of this paper is to demonstrate the dramatic
speedup that can be achieved by multi-core and many-core
implementations of multimedia applications and to encour-
age MIR researchers to develop and reuse high performance
parallel implementations of important MIR procedures.

In Section 2, we explain the importance of producing
parallel MIR applications. Section 3 covers the practical
considerations for audio source separation based on NMF.
In Section 4, we introduce the OpenMP and CUDA parallel
programming models. Section 5 details the design of our
parallel implementations and gives insight into techniques
important to parallelizing MIR applications. Finally, Sec-
tion 6 concludes with suggestions on how MIR can most
benefit from parallel computing.

2. PARALLELIZING MULTIMEDIA
APPLICATIONS

Percussive source separation is a useful first step in such
MIR tasks as drum transcription, rhythm summarization,
and beat tracking. By extracting an audio signal containing
only percussive instruments, the task of rhythmic analysis
can be greatly simplified. Helen and Virtanen [6] use NMF
along with a support vector machine (SVM) to accomplish
this. The drum track extractor we use as a target for perfor-
mance optimization is similar to that presented in [6] but
includes additional complexity optimizations and percus-
sive features introduced in [7].

Computation time in this system is dominated by NMF,
which makes up about 80% of the CPU time (18.5 seconds

501



Poster Session 3

of the 23.1 seconds total) in a Matlab implementation run
on 20 seconds of audio. In order to increase throughput,
the NMF step must be optimized.

Because single-core CPU performance increases have
been hindered by power concerns, limits on memory speed,
and diminishing returns on instruction level parallelism,
the focus of computer science research has turned strongly
towards parallel architectures and programming models [8].
Applications programmers can no longer develop a sequen-
tial implementation of their software and hope that future
uniproccessor speedups will provide the necessary com-
puting power to make their application useful. Instead, the
exponentially increasing number of processing elements,
or cores, in current architectures must be exploited to max-
imize performance.

Multi-core CPU architectures are already commonplace
in workstations, servers, and laptops, so parallelizing code
to utilize available cores will lead to significant perfor-
mance increases for most users. In addition, the majority
of personal computers today ship with many-core graph-
ics processors contained on the system’s video card. Cur-
rent high-end graphics processors (GPUs) ship with tens of
processors each capable of executing operations on large
data vectors. The end result is a highly data-parallel archi-
tecture that can be used for general computation (not just
graphics rendering) thanks to programming frameworks like
OpenCL [9] and Nvidia’s CUDA [10].

CUDA has been successfully used to achieve very high
performance on a variety of applications that rely on signal
processing and machine learning. Examples include a fast
GPU-based support vector machine implementation that
achieves up to 135× speedup over LIBSVM [11], a large
vocabulary speech recognition engine with 10× speedup
over sequential versions [12], and an image contour detec-
tor that achieves 114× speedup [13]. To help put these
numbers in perspective, the 114× speedup represents a re-
duction in runtime from 4 minutes to 2 seconds.

We aim to achieve such dramatic performance gains
with NMF-based source separation.

3. NON-NEGATIVE MATRIX FACTORIZATION
FOR AUDIO SOURCE SEPARATION

Non-negative matrix factorization can be used for audio
source separation by decomposing a spectrogram matrix
into two matrices which contain source-wise spectral con-
tributions and time-varying gains. NMF can be phrased as
the optimization problem:

Given an M × N non-negative matrix X ∈ RM×N
+ ,

find matrices W ∈ RM×K
+ and H ∈ RK×N

+ that mini-
mize the cost function f(X,WH).

3.1 Cost Function

Rather than using the mean-squared error between X and
the product WH as the cost function, we use a matrix ver-
sion of the Kullback-Leibler divergence:

D(X‖WH) =
∑
ij

(
Xij log

Xij

(WH)ij
−Xij + (WH)ij

)
(1)

It has been shown in [3] that this divergence cost func-
tion achieves better audio source separation results than
mean-squared error.

3.2 Multiplicative Updates

Lee and Seung [14] have proposed an algorithm based on
gradient-based multiplicative updates for minimizing the
above optimization problem. For the divergence cost func-
tion, we alternate between updates on the two matrices us-
ing the following expressions

H← H. ∗
WT X

WH

WT1
, W←W. ∗

X
WHHT

1HT
(2)

Where division is carried out element-wise, “.∗” is element-
wise multiplication, and 1 represents an M ×N matrix of
ones and is used to compute row and column sums.

It is important to note that, because the optimization
problem is not convex in both W and H, the above up-
dates do not necessarily converge to a global minimum.
To address this problem, researchers typically use multiple
random initializations and choose the best result. Adding
extra computation time by running multiple trials cannot
be done without significant justification since time to con-
vergence can be in the minutes when operating on just sec-
onds of audio.

co
m

p
o
n
e
n
ts 1

2

3

components

1 2 3

hi-hat
snare drum
bass drum

W

H

frames

fr
e
q
u
e
n
cy

 b
a
n
d
s

100 200 300 400 500 600

100

200

300

400

500

Figure 1. A spectrogram matrix for a basic rock beat sur-
rounded by its factor matrices W and H computed using NMF.
The component-wise gain matrix H has been aligned with the
corresponding drum score.

3.3 Initialization

Other approaches use a deterministic initialization based
on the structure or statistics of the matrix X or derived
from knowledge about the domain. We use an approach
based on the latter [7], which uses a subset of discrete co-
sine transform basis functions and typical drum spectra as

502



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

the initial columns of W. For our purposes, the initializa-
tion choice does not directly affect the speed with which
the updates in eq. (2) are executed, but it can affect the
overall number of iterations required for convergence. To
eliminate this dependence, we will only focus on optimiz-
ing the speed of a set number of iterations rather than time
to convergence.

3.4 Matrix Dimensions

An additional consideration that must be made is the di-
mensionality of the spectrogram matrix that is to be fac-
torized. To adequately represent drum sounds in both time
and frequency, a length 4096 Hann window is used to ex-
tract each analysis frame and a hop size of 256 is used to
shift the window in time. For 20 seconds of audio sam-
pled at 44.1kHz, this gives us a matrix of size 2049×3445
(number of positive frequency bins × number of analysis
frames). Since such high frequency resolution (∼10Hz)
is not required at higher frequencies, we use a Bark-based
perceptual dimensionality reduction [7] on the columns of
X to arrive at a matrix of size 512 × 3445. After NMF
is carried out on this smaller matrix, we can interpolate to
return to the original frequency scale if necessary. Lastly,
we choose an inner dimension for the factor matrices W
and H of K = 30. This represents the number of sources
involved in the separation.

Using these dimensions, our implementations require
about 60MB of memory per minute of audio, making entire-
song decomposition feasible from a memory standpoint.

Next we introduce the programming models that will be
used to parallelize the NMF algorithm.

4. OPENMP AND CUDA

4.1 OpenMP

OpenMP is a standardized API that enables parallel execu-
tion on shared-memory multi-core machines [15]. OpenMP
has been implemented for C, C++, and Fortran and is sup-
ported in Visual C++ 2005, the Intel compiler, and gcc 4.2
and above. The beauty of OpenMP lies in its ability to par-
allelize existing sequential code by annotating it with com-
piler directives. OpenMP automatically forks threads that
execute on separate processors according to the directives.

OpenMP very conveniently parallelizes loops contain-
ing independent iterations using a single directive. The
element-wise array multiplication shown below can be split
amongst nt cores using a leading #pragma directive.

#pragma omp parallel for num_threads(nt)
for(i=0;i<N;i++)

c[i] = a[i]*b[i];

A reduction, which operates on multiple pieces of data
and returns a single result, can be carried out using a re-
duction clause in the for pragma. In the example below,
the reduction operator is addition, so we are returning the
sum of an array. The first pragma creates a team of nt
threads that are each assigned a chunk of the work in the
for loop. After each thread completes its work, the values

contained in each thread’s private variable s are summed
into a single final variable s.

s = 0;
#pragma omp parallel num_threads(nt)
#pragma omp for reduction(+:s)

for(i=0;i<N;i++)
s += a[i];

4.2 CUDA

CUDA encompasses both the parallel device architecture
used in newer Nvidia GPUs and the extensions to the C
language used to program the CUDA architecture for gen-
eral purpose computation. CUDA code compiled using
Nvidia’s nvcc is executed on the host, or CPU, which then
issues instructions to the device or GPU. Host code typi-
cally contains control flow instructions and memory move-
ment operations between host memory and device mem-
ory, while device code is made up of kernels, which are
functions written to execute in a Single Program, Multi-
ple Data (SPMD) fashion, i.e. each thread running on the
device during kernel invocation executes the kernel code
independently on whatever chunk of data is assigned to the
thread.

Teams of threads can also share memory. As of CUDA
2.1, threads can be grouped into thread blocks of up to size
512. Threads within the same block are executed on the
same processor and can all access special on-chip shared
memory, which is necessary for inter-thread communica-
tion. Because separate thread blocks cannot share data,
they can be executed independently on separate proces-
sors. Therefore, a kernel that uses a large number of thread
blocks should scale well on future GPUs with more pro-
cessors.

In the box below, we see a kernel that performs element-
wise addition. Each thread runs the vecAdd function sep-
arately and computes an array index from its thread ID,
block ID, and block size, and operates on the array ele-
ments located at that index. In the main function, the kernel
is invoked with B thread blocks each containing N threads,
so B ×N should be equal to the size of the arrays.

// kernel definition
__global__ void vecAdd(float* a,

float* b, float* c){
int i = threadIdx.x+blockIdx.x*blockDim.x;
c[i] = a[i] + b[i];

}

int main(){
. . .
// kernel invocation
vecAdd<<<B,N>>>(a,b,c);

}

Device kernels are physically executed in groups of 32
adjacent threads called warps. Warps are most efficient
when the group of threads can be executed in a completely
SIMD (Single Instruction, Multiple Data) manner, i.e. each
thread in the warp does the exact same thing but to dif-
ferent data. Inserting control flow statements into a ker-
nel that cause threads within the same warp to execute

503



Poster Session 3

different code (this is referred to as a “divergent” warp)
forces the affected threads to be run sequentially rather
than concurrently. Double-precision hardware support is
currently lacking in CUDA, which is why we focus on
single-precision implementations in this work.

CUDA is designed to achieve high throughput on highly
data-parallel computations. Luckily, most multimedia ap-
plications (especially music) exhibit a large amount of data
parallelism.

5. PARALLEL IMPLEMENTATION

5.1 Important Kernels

To help organize our NMF implementation, we decompose
the updates in eq. (2) into the most important computa-
tional kernels, including dense matrix multiplication, col-
umn and row sums, and element-wise vector arithmetic.
Each of the kernels will be called sequentially, but individ-
ual kernels will be heavily parallelized and optimized.

The kernel that will do the most work in terms of float-
ing point operations (flops) is the Single-precision GEneral
Matrix Multiply, or SGEMM. For the matrix dimensions
listed at the end of Section 3.4, the four SGEMMs in eq. (2)
require about 423 Mflops. The element-divides require
about 3.6 Mflops, the sums about 0.1 Mflops, and the element-
multiplies about 0.1 Mflops. To prevent dividing by zero,
a small constant (called EPS) is added to every element in
each divisor matrix, which produces a non-trivial amount
of work (3.6 Mflops). Also, in order to check for conver-
gence, we compute the divergence cost function (1) every
25 iterations, which computes the sum of 1.8 × 106 log-
based values.

Even though the SGEMMs contain the vast majority of
the work, other operations, namely the slow floating-point
divides and the sums, can end up using a lot of compute
time. Divides are inherently slow operations and can take
tens of clock cycles on certain architectures. While the
sums contain relatively few total operations, a parallelized
sum will require inter-thread communication which can be
very slow. Since a highly optimized SGEMM routine is
available in most vendor BLAS libraries, our implemen-
tation goal was to tune the remaining kernels so that the
SGEMMs dominate the overall computation time. Practi-
cally speaking, significantly outperforming our Matlab im-
plementation (which takes 18.5 seconds to run 200 itera-
tions on a Core 2 Duo T9300) was a more exciting goal.

5.2 OpenMP Implementation

As stated before, OpenMP makes it very easy to parallelize
existing sequential code for a multi-core shared-memory
machine. Using the two types of for pragmas from Sec-
tion 4.1 we can parallelize the sums and element-wise arith-
metic. Since the element divides are numerous, slow, and
do not require inter-thread communication, it makes sense
to parallelize their loop. The row and column sums, how-
ever, require a lot of communication for the amount of ad-
dition work done per core (since the partial sum computed

by each core must be sent to another core), so paralleliz-
ing the reduction loop actually led to a slower kernel. The
larger sum in the divergence cost function not only con-
tains lots of addition but a slow log-based computation,
so the work to communication ratio was befitting parallel
speedup.

For the SGEMMs, we use Intel’s Math Kernel Library
(MKL) ver. 10.0.1.014, which is heavily optimized to take
advantage of memory hierarchy and SIMD instructions.
MKL uses OpenMP under the hood, so the number of threads
used for the SGEMMs can be controlled in the same way
as our parallel loops.

Performance results for the OpenMP implementation
are shown in Figure 2 for a dual-socket Intel Core i7 920
machine which has 8 cores and 16 hardware threads. The
best performance is seen at 14 threads and is about 4.3×
faster than the single-threaded run. The most significant
speed up is seen in the SGEMM since it has the highest
work to communication ratio, but other time-consuming
kernels benefit as well. Running this implementation on
the Core 2 Duo T9300 with 2 threads takes 8.9 seconds,
which is 2× faster than our optimized Matlab implementa-
tion using 2 threads.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12
Element Multiply
Row/Col Sums
Add EPS
Divergence
Element Divide
SGEMM 

Threads

Ti
m

e 
fo

r 2
00

 it
er

at
io

ns
 [s

ec
]

11.25

2.60

Figure 2. Performance results for the OpenMP implementation
on a dual-socket Intel Core i7 920

5.3 CUDA Implementation

Writing a CUDA implementation takes a bit more thought.
First, the matrices must be copied to GPU memory. Copies
between CPU and GPU are relatively slow (ideally 3 GB/s
over the PCI bus), and it’s best to avoid them except dur-
ing initialization or when returning results. This means
that in our case it’s better to perform all of the matrix com-
putations on the GPU to avoid extra copies even if certain
operations are better suited for the CPU.

Element-wise arithmetic is completely data-parallel and
is easily accomplished with code similar to that in Sec-
tion 4.2. Other kernels, including the SGEMMs and sums,
require a bit of inter-thread communication and are not so
trivially parallelized on CUDA.

5.3.1 SGEMM

Luckily, an optimized SGEMM routine is available in the
CUBLAS 2.1 library that achieves 60% of theoretical peak

504



10th International Society for Music Information Retrieval Conference (ISMIR 2009)

performance for large matrices on current GPUs [17]. For
the Geforce GTX 280, 60% of peak amounts to 373 Gflops/s.
For our particular matrix multiplications of dimensions [512×
30× 3445], [30× 512× 3445], and [512× 3445× 30], the
CUBLAS SGEMM achieves 117, 147, and 104 Gflops/s
respectively on this GPU. Even though these are relatively
small SGEMMs, we should still be able to do better.

Upon inspection of the paper [17] that describes the
methods used in the current CUBLAS SGEMM, we dis-
covered that threads operate on matrix sub-blocks with di-
mensions 16 and 64. With this in mind, we tried zero
padding our matrices to multiples of 16, 32, and 64. We
found that simply padding the matrices to multiples of 32
resulted in an effective throughput (not counting operations
on zero-padded areas) of 264, 196, and 85 Gflops/s for
each SGEMM size. Since the NMF algorithm uses two
SGEMMs of the first size, this results in an SGEMM run-
ning time reduction from 0.71 to 0.52 seconds for 200 iter-
ations.

5.3.2 Reduction

Because parallel reductions, such as sums, mins, and maxes,
are not included in standard libraries, we will have to write
our own routines. A tutorial on optimizing reductions in
CUDA is available in the CUDA SDK [18]. This overview
presents optimization strategies that can be used to greatly
improve the speed of large power-of-2-size reductions and
shows how a 30× speedup can be achieved for a 4.2× 106

length sum over a naive binary tree implementation.
A binary tree reduction can be constructed in various

ways. Using the shared memory of a thread block, we
can perform a series of two-element reductions. Two ways
to organize the overall reduction are shown in Figure 3.
In both versions, each thread in the thread block starts by
reading an array element from global memory into shared
memory. Then threads are assigned to carry out two-element
sums.

The difference lies in which threads work on which ar-
ray elements. Method 1 interleaves working and non-working
threads which act on adjacent elements. Method 2 se-
quentially assigns working threads so there are contigu-
ous blocks of working and non-working threads. This de-
creases the number of divergent warps. Also, the memory
accesses are strided rather than adjacent to reduce the num-
ber of simultaneous memory bank accesses (since shared
memory locations are cyclically assigned to memory banks)
[16].

In addition to reorganizing the tree traversal, other op-
timizations –such as explicit loop unrolling and allowing
each thread to read and sum multiple array elements into its
shared memory location before the tree traversal begins–
improve performance a bit. These techniques had to be
adapted for non-power-of-2-size arrays, but they greatly
improved the speed of the large 1.8 × 106 length diver-
gence sum.

For the smaller 512 and 3445 length column and row
sums, these techniques were not quite enough, and the CUDA
kernel ran much slower than a sequential CPU version. In

0 1 2 3

0 1

0

0 2

0

4 6

0 4

0 1 2 3 4 5 6 70 1 2 3 4 5 6 7

tim
e
 ste

p
s

1 2 3 4 5 6 7 8

6 12108

14 22

6 7 8

1210 6 7 85

836 22 1210 6 75

5

1 2 3 4 5 6 7 8

3 472

10 2

6 15 8

47 6 15 826

11

36 2 47 6 15 826

1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8

Thread
IDs

Shared
Memory

Interleaved Reduction Strided Sequential Reduction
Global

Memory

Method 1 Method 2

Figure 3. Two methods of shared memory reduction

order to produce more concurrent work (in terms of thread
blocks), we can compute all 30 of the column or row sums
simultaneously. This is accomplished by launching a 2D
grid of thread blocks, in which the first dimension rep-
resents which of the 30 sums is being computed and the
second dimension indexes the thread blocks within the in-
dividual sum. This final optimization produced staggering
speedup for the 30 smaller sums as shown in Figure 4.

increasing optimization
0.0000

0.0200

0.0400

0.0600

0.0800

0.1000

0.1200

0.1400

0.1600

0.1800
Time to sum 30 columns of length 512 (200 iterations) original inter

leaved
+sequential thread 
assignments
+strided memory 
accesses
+unroll last warp
+completely unroll
+multiple 
reads/thread
+concurrent reduc
tions

tim
e 

[s
ec

]

0.155

0.0027

Figure 4. Cumulative effect of various optimizations on running
time of 200 iterations of the 30 column sums

5.3.3 CUDA Performance Results

The results for the CUDA implementation compared to
OpenMP and Matlab implementations are shown in Fig-
ure 5. The Matlab implementation is optimized for single-
precision vector operations and uses the dimensionality re-
duction technique mentioned in Section 3.4. Our Matlab
implementation runs about 3× faster than a naive Matlab
implementation that doesn’t use dimensionality reduction.
The OpenMP version runs more than twice as fast as the
Matlab version on the same machine, and shows significant
speedup when using more threads on the Core i7; however,
the non-linear speedup between 1 and 14 threads suggests
that the OpenMP version will not scale well to more cores.

Our CUDA implementation shows great performance
on the older Geforce 8600 GTS, which has 4 multiproces-
sors at 1.46 GHz. The newer Geforce GTX 280, with 30
multiprocessors at 1.3GHz, runs the CUDA implementa-
tion over 30× faster than the optimized Matlab implemen-
tation and 18× faster than the single-threaded OpenMP

505



Poster Session 3

Core 2 Duo T9300 [2]
Core i7 920 [1]

Core 2 Duo T9300 [2]
Core i7 920 [14]

8600 GTS [GPU]
GTX280 [GPU]

0

2

4

6

8

10

12

14

16

18

20

Element Multiply

Row/Col Sums

Add EPS

Divergence

Element Divide

SGEMM 

Processor Model [threads used]

Matlab OpenMP CUDA

0.603

18.5

11.2

8.87

2.59 2.41

Figure 5. Running time comparison for 200 iterations of
512×30×3445 NMF using optimized implementations in Mat-
lab, OpenMP, and CUDA on different architectures

version on the Core i7 920. Both of these GPUs are mar-
keted to consumers for desktop gaming and graphics so
are quite affordable compared to many of the professional-
grade cards.

Additional speedup is possible with future GPUs with
more multiprocessors and greater memory bandwidth. As
stated earlier, CUDA programs scale well if kernels have
a large number of independent thread blocks. The rela-
tively small size of the matrix operations doesn’t guaran-
tee strong scaling in the future, but in this case, additional
speedup is not necessarily required. For audio source sep-
aration, the NMF already performs at 33× real-time on the
GTX 280.

6. DISCUSSION AND FUTURE WORK

After achieving such significant speedup on the NMF step
of percussive source separation, the next step would be
to parallelize the remaining pieces of the complete source
separation process. As with the bulk of signal process-
ing and machine learning routines, these steps are all very
data-parallel (since individual audio frames can be pro-
cessed independently) so would benefit from paralleliza-
tion.

When choosing between OpenMP and CUDA for pro-
gramming MIR applications, it is important to note that
while CUDA can achieve superior performance on newer
GPUs, the programmer effort required is much greater than
with OpenMP, which is a better starting point for those who
already know how to program in C. We must also remem-
ber that parallel MIR applications do not necessarily have
to be coded from scratch. Many MIR techniques can be as-
sembled from basic building blocks that already have fast
parallel implementations. In addition to standard libraries
like MKL, fftw, and CUBLAS, many researchers have re-
leased parallel implementations of important routines.

We will be releasing Python modules for the implemen-
tations described in this paper so that other researchers
can benefit from the speed gains. We feel that sharing
high-performance, user-friendly tools in order to encour-
age more widespread use of parallel implementations within

the MIR community is an important step in increasing the
practicality of MIR techniques.

7. REFERENCES

[1] G. Tzanetakis: “Marsyas submissions to MIREX
2007”, MIREX 2007, 2007. URL: http://www.music-
ir.org/mirex/2008/abs/mirex2007.pdf

[2] D. Lee and H. Seung: “Learning the parts of objects by non-negative
matrix factorization,” Nature, Vol. 401, pp. 788–791, 1999.

[3] T. Virtanen: “Monaural sound source separation by nonnegative ma-
trix factorization with temporal continuity and sparseness criteria,”
IEEE Transactions on Audio, Speech, and Language Processing,
Vol. 15, No. 3, pp. 1066–1074, 2007.

[4] P. Smaragdis and J. Brown: “Non-negative matrix factorization for
polyphonic music transcription,” IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics, pp. 177–180, 2003.

[5] A. Cont, S. Dubnov, D. Wessel: “Realtime Multiple-Pitch and
Multiple-Instrument Recognition for Music Signals Using Sparse
Non-Negative Constraints,” Proceedings of the International Confer-
ence on Digital Audio Effects (DAFx), 2007.

[6] M. Helen and T. Virtanen: “Separation of drums from polyphonic
music using nonnegative matrix factorization and support vector ma-
chine,” Proc. EUSIPCO, 2005.

[7] E. Battenberg: “Improvements to Percussive Compo-
nent Extraction Using Non-Negative Matrix Factoriza-
tion and Support Vector Machines,” Masters Thesis, Uni-
versity of California, Berkeley, December 2008. URL:
http://cnmat.berkeley.edu/publications/author/Battenberg

[8] K. Asanovic, R. Bodik, et al.: “The landscape of parallel computing
research: A view from Berkeley,” Electrical Engineering and Com-
puter Sciences, University of California at Berkeley, Technical Report
No. UCB/EECS-2006-183, December, 2006.

[9] A. Munschi: “OpenCL: Parallel computing on the GPU and CPU,”
SIGGRAPH08: ACM SIGGRAPH 2008 classes, 2008.

[10] J. Nickolls, I. Buck, et al.: “CUDA: Scalable parallel programming,”
ACM Queue, April, 2008.

[11] B. Catanzaro, N. Sundaram, and K. Keutzer: “Fast support vector ma-
chine training and classification on graphics processors,” Proceedings
of the 25th international conference on Machine learning, pp. 104–
111, 2008.

[12] J. Chong, Y. Yi, et al.: “Data-Parallel Large Vocabulary Continuous
Speech Recognition on Graphics Processors,” Proceedings of the 1st
Annual Workshop on Emerging Applications and Many Core Archi-
tecture (EAMA), pp. 23–25, 2008.

[13] B. Catanzaro, B. Su, et al.: “Efficient, high-quality image contour
detection,” International Conference on Computer Vision, 2009.

[14] D. Lee and H. Seung: “Algorithms for Non-negative Matrix Fac-
torization’,” Advances In Neural Information Processing Systems,
pp. 556–562, 2001.

[15] Open MP Architecture Review Board: OpenMP application pro-
gramming interface, Ver. 2.5, May 2005.

[16] “Nvidia CUDA Programming Guide,” Ver. 2.1, URL: devel-
oper.download.nvidia.com/compute/cuda/2 1/toolkit/
docs/NVIDIA CUDA Programming Guide 2.1.pdf, 2008.

[17] V. Volkov and J. Demmel: “Benchmarking GPUs to tune dense linear
algebra,” Supercomputing 08, 2008.

[18] M. Harris: “Optimizing parallel reduction in CUDA,” Nvidia Cuda
SDK 2.1, URL: http://developer.download.nvidia.com/compute/cuda/
sdk/website/projects/reduction/doc/reduction.pdf, 2008.

Research supported by Microsoft and Intel funding (Award #20080469)
and by matching funding by U.C. Discovery (Award #DIG07-10227)

506


