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Preface 

 

On behalf of the organizing committee, we would like to express our warmest welcome to all participants of the 

12th International Society for Music Information Retrieval Conference (ISMIR 2011) in Miami Beach, one of the 

southernmost cities of the United States, that enjoys semi-tropical weather, the beautiful Atlantic ocean, a rich 

Latin-American culture, and exotic trees, flowers, birds, and animals. 

The present volume contains the complete manuscripts of all peer-reviewed papers presented at ISMIR 2011. A 

total of 224 papers entered the review process, out of which 36 papers were selected for oral and 97 for poster 

presentation (a 59% acceptance rate). The acceptance decisions were based on 869 reviews and meta-reviews 

written by 219 reviewers and Program Committee members. As in previous years, the reviews were doubly 

blinded (i.e., both the authors and the reviewers were anonymous). A rebuttal phase was included in which the 

authors were allowed to answer the reviewers’ concerns, and the reviewers could discuss these afterward in an 

anonymous manner. The mode of presentation was determined after the accept/reject decisions and has no relation 

to the quality of the papers or the number of pages allotted in the proceedings. Papers were chosen for oral pres-

entation based on the topic and broad appeal of the work. Table 1 summarizes the ISMIR publication statistics. 

As in the past few years of ISMIR the selected submissions are presented over a period of 3.5 days, preceded 

by a day of tutorials. Two tutorials are presented in parallel during the morning and two in parallel during the af-

ternoon. In the morning, Thierry Bertin-Mahieux, Matt Hoffman, and Dan Ellis present the Million Song Dataset, 

a recently-released database of one million contemporary songs with audio features and metadata; they also dis-

cuss how MIR researchers can explore this exciting new dataset. Also in the morning, Meinard Müller and Joan 

Serrà present a tutorial on content-based music retrieval and state-of-the-art techniques for query-by-example in 

the wide sense. In the afternoon, David De Roure and Kevin Page present the Linked Data approach to explore 

large-scale distributed music data on the web, and Anja Volk and Frans Wiering discuss how musicological do-

main knowledge can be turned into a valuable resource for MIR researchers. 

The subsequent 3.5-day program features two distinguished keynote speakers. The first keynote is by David 

Huron, Professor of The Ohio State University; he will speak about the future of music and music-related tech-

nology. The second keynote is by Jon Vanhala, Vice President for Digital Initiatives at Def Jam / Universal. He 

will speak about digital initiatives from the perspective of a former musician working in the music industry.  

The program also features a variety of special events. On Thursday, we have talks and a poster session for the 

annual Music Information Retrieval Evaluation eXchange (MIREX), an evaluation where cutting-edge methods 

are put to a test in a variety of realistic MIR tasks. Another special event is the Future of MIR, f(MIR), 

mini-conference, which features an industrial panel session with panelists from Google, Last.fm, SoundCloud, 

and The Echo Nest, and the aforementioned keynote talk by Jon Vanhala. A special session on the last day of the 

conference is dedicated to the presentation of late-breaking research results and demonstration of applications that 

are of interest to the MIR community. Abstracts of these presentations will be published online. 
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 As for social gathering, this year we are experimenting with a new idea of having a concert of music com-

posed by participants. We are holding the concert of these peer-reviewed selected pieces on Tuesday evening 

along with a reception. On Wednesday, we will set out on Biscayne Bay on a cruise ship for our conference ban-

quet. We sincerely hope that this conference will be an exciting, memorable one for each attendee. 

ISMIR2011 is made possible by the hard work of many people: those who took various organizational roles in 

it, those who assisted them, those who present their work at it, the reviewers, and those who come to participate in 

it. Our special thanks go to the ISMIR2011 Corporate Sponsors, Gracenote, and SoundCloud, for their generous 

support. We would like to acknowledge the selfless effort of the organizational team: our music chair Roger Dan-

nenberg, late-breaking/demo chair Bryan Pardo, tutorials chair Michael Casey, f(MIR) chairs Thierry Ber-

tin-Mahieux and Jason Hockman, MIREX chair Stephen Downie, publication chair Ching-Hua Chuan, registra-

tion chair Dingding Wang, and finances chair Tao Li. Last, but not least, our sincere gratitude goes to all the Uni-

versity of Miami and Florida International University organizations, staff members, and students for their tre-

mendous help in both organizing and executing ISMIR2011. 

 

Mitsunori Ogihara  

ISMIR 2011 General Chair 

 

Anssi Klapuri and Colby Leider 

ISMIR 2011 Program Chairs 

  Presentations Total 

Papers 

Total 

Pages 

Total 

Authors 

Unique 

Authors 

Pages / 

Paper 

Authors / 

Paper 

U. Authors / 

Paper Year Location Oral Posters 

2000 Plymouth 19 16 35 155 68 63 4.4 1.9 1.8 

2001 Indiana 25 16 41 222 100 86 5.4 2.4 2.1 

2002 Paris 35 22 57 300 129 117 5.3 2.3 2.1 

2003 Baltimore 26 24 50 209 132 111 4.2 2.6 2.2 

2004 Barcelona 61 44 105 582 252 214 5.5 2.4 2.0 

2005 London 57 57 114 697 316 233 6.1 2.8 2.0 

2006 Victoria 59 36 95 397 246 198 4.2 2.6 2.1 

2007 Vienna 62 65 127 486 361 267 3.8 2.8 2.1 

2008 Philadelphia 24 105 105 630 296 253 6.0 2.8 2.4 

2009 Kobe 38 85 123 729 375 292 5.9 3.0 2.4 

2010 Utrecht 24 86 110 656 314 263 6.0 2.9 2.4 

2011 Miami 36 97 133 792 395 322 6.0 3.0 2.4 
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Keynote Talk 
 

Designing the Future – An Affective Neuroscience Approach 
 
David Huron 
Professor 
School of Music, Ohio State University 
 
Abstract 

What is the future of music and music-related technology? In this lecture, I argue that cultural and technological 

changes are ultimately shaped by human emotions. These emotions, in turn, reflect underlying values that arose 

from evolutionary-adaptive goals. Values such as friendship, social status, cultural identity, security, health, humor, 

novelty, engagement, etc. are concretely manifested in technological devices and services. Each successive tech-

nological generation more closely echoes the emotional organization of human brains. Using this insight, I offer a 

new theory of design. I argue against the traditional concept of efficiency as defined by Carnot (1824), and propose 

that the efficiency of any design is best measured by the degree to which contradictory human values are reconciled.  

I suggest that “applied science” is not a good characterization of engineering, and instead suggest that engineers are 

better regarded as “applied moral philosophers” who transform reality in order to minimize ethical (or value) di-

lemmas. 

 

Biography 
David Huron is Arts and Humanities Distinguished Professor at the Ohio State University. At different times in 

his career Dr. Huron has been a Professor of Music, an Associate Professor of Psychology, and an Adjunct Professor 

of Engineering. Originally from Canada, Huron received a Ph.D. in musicology in 1989 from the University of 

Nottingham (England). In addition to laboratory-based research, Huron's activities also involve field studies among 

various cultures in Micronesia. His book “Sweet Anticipation: Music and the Psychology of Expectation” (MIT 

Press) received the 2007 Wallace Berry Award from the Society for Music Theory. David is also the creator of the 

Humdrum Toolkit – Unix-based software tools for music research. 
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f(MIR) Keynote Talk 
 

Digital initiatives: a music industry perspective 
 
Jon Vanhala 
SVP Digital & Business Development  
Island Def Jam Music Group/Universal Music Group 
 
 
Biography 

At Island Def Jam Music Group, Jon creates breakthrough programs for his label and global superstars Kanye 

West, Justin Bieber, Rihanna, Jennifer Lopez, Bon Jovi, and many others. His focus continues to be on instigating 

and activating new channels from creators to consumers. Jon oversees new business development, digital marketing, 

new technologies, brand integration, and content development at IDJ. Currently most excited about applications and 

content across all screens, all platforms as well as creating new innovations in engagement with brands and their 

agencies. 

Over a 17-year career that started in the intern pool at Universal Music Group, Jon has moved markets from 

multiple angles: sales, marketing, brand partnership, and digital innovation. He rose through the Universal ranks to 

SVP Digital & Strategic Marketing for Verve Music Group, led expansion as SVP Digital Initiatives, Content De-

velopment & Sponsorship for music fest startup Festival Network, LLC., led business development for multiple 

clients in technology and media with his own consultancy, and returned to UMG to lead Digital and Business De-

velopment at IDJ. Prior to having a day gig, Jon was a full time working class musician/arranger having performed 

sessions, shows, and live with artists who have defined genres, including Muddy Waters, The Temptations, Dr. John, 

Ray Charles, and Diana Krall.  
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Industrial Panel Discussion 

 

Organizers 
 Thierry Bertin-Mahieux (Columbia University) 
 Jason Hockman (McGill University) 
 
Moderator 
 Matthias Mauch (Queen Mary, University of London) 
 
Panelists 
 Douglas Eck (Google) 
 Mark Levy (Last.fm) 
 Petar Djekic (SoundCloud)  
 Brian Whitman (The Echo Nest) 
 

Abstract 
   In this panel practitioners from industry will discuss how their companies are currently using music information 

retrieval (MIR) techniques to solve problems for their customers. Panelists will also discuss emerging areas of 

MIR research that are particularly relevant for commercial applications. Audience members will have the 

opportunity to ask questions of the panelists. 
 
Biographies 

Matthias Mauch is currently Research Fellow with the London-based internet music recommendation company 

Last.fm. He studied mathematics at the universities of Rostock, and Padua, graduating in 2005 with a Diplom 

thesis in collaboration with the Max Planck Institute for Demographic Research. He received his PhD from Queen 

Mary, University of London in 2010 for his work on computational modelling and transcription of chords from 

audio, and went on to work as Post-Doc Researcher at the National Institute of Advanced Industrial Science and 

Technology in Japan. In January 2012 Matthias will return to the Centre for Digital Music at Queen Mary as 

Royal Academy of Engineering Research Fellow. 

 

Douglas Eck is a research scientist at Google, Mountain View. Before joining Google in 2011, Douglas Eck 

was an Associate Professor in Computer Science at University of Montreal. His PhD research (Indiana University, 

2000) investigated the dynamics of model neurons in response to music-like rhythmic patterns and he went on to 

do work in computational music cognition. More recently he has focused on large-scale machine learning 
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approaches to music recommendation, including work in learning informative representations of music audio. At 

Google he has been working on the music recommender for Music Beta by Google. 
 

Mark Levy leads the Music Information Retrieval team at Last.fm, where he is responsible for radio playlisting 

and real-time recommender systems, as well as large-scale data analysis. Besides developing in C++ and Python, 

Mark has published numerous articles for IEEE and ACM journals and conferences, on subjects ranging from 

mood analysis in social tags to understanding the long tail in music listening, and he continues to be an active 

member of the research community. He has degrees in Computer Science and Musicology, and was a professional 

musician for many years. 
 

Petar Djekic leads the product management and user experience of SoundCloud's search and content tools. 

Over the years, Petar has led numerous teams across a wide range of applications - from email and search services 

to technology products and consumer software. Petar holds an M.B.A. from the University of Cologne, where he 

worked at the Department of Media Management and researched technology adoption across different industries. 
 

Brian Whitman teaches computers how to make, listen to, and read about music. He received his doctorate 

from the Machine Listening group at MIT’s Media Lab in 2005 and his masters from Columbia University’s 

Natural Language Processing group. His research links automatically extracted community knowledge of music 

to its acoustic properties to “learn the meaning of music.” His composition and sound art projects consider the 

effects of machine interpretation of large amounts of media, such as the first actual “computer music” (as in music 

for computers) or “Eigenradio.” As the co-founder and CTO of the Echo Nest Corporation, Brian architects an 

open platform with billions of data points about the world of music: from the listeners to the musicians to the 

sounds within the songs. 
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Tutorial 1 
 

Million Song Dataset 
Thierry Bertin-Mahieux (Columbia University) 
Matthew D. Hoffman (Columbia University) 
Daniel P.W. Ellis (Columbia University) 
 

Abstract 
This tutorial introduces the Million Song Dataset, a freely available collection of audio features and metadata for 

a million contemporary popular music tracks. The dataset was recently released, and the main goals of this tutorial 

are: 1) explain the content of the dataset, including the additional data on cover songs, lyrics, tags, user data, ..., and 

2) demonstrate that working with such an amount of data is easier than it looks in terms of code, computational 

resources, etc. Thus the first part of the tutorial will present the project and resources, the second one will entirely 

consist of live demonstrations using Python, MATLAB, SQLite and AWS map/reduce. No prior knowledge of the 

dataset is required. This tutorial is of particular appeal to the researchers working on: music recommendation, music 

similarity, automatic tagging, cover song recognition, song segmentation, artist identification, lyrics analysis, web 

data mining, and library science/music management. 

 

Biographies 
Thierry Bertin-Mahieux is a Ph.D. candidate at LabROSA, Columbia University, under the supervision of Prof. 

Ellis. He is interested in the application of machine learning to multimedia and music in particular, with a preference 

for large-scale problems. Prior to Columbia, he did his M.Sc. at the University of Montreal with Prof. Douglas Eck 

on music tagging and recommendation. He is the general chair of f(MIR) and one of the creators of the Million Song 

Dataset. 

Matthew D. Hoffman is a postdoctoral researcher in the Department of Statistics at Columbia University. He 

received his Ph.D. in Computer Science from Princeton University in 2010. His research interests are in audio signal 

processing, content-based music information retrieval, machine learning, statistical modeling, and the associated 

computational issues. 

Daniel Ellis is an Associate Professor in the Electrical Engineering Department, Columbia University, New York. 

His Laboratory for Recognition and Organization of Speech and Audio (LabROSA) is concerned with all aspects of 

extracting high-level information from audio, including speech recognition, music description, and environmental 

sound processing. He also runs the AUDITORY e-mail list of 2000 researchers worldwide in perception and 

cognition of sound. He was a Research Assistant at the MIT Media Lab, and spent several years as a Research 

Scientist at the International Computer Science Institute, Berkeley, CA, where he remains an external fellow. 
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Tutorial 2 

 

Audio Content-based Music Retrieval 

Meinard Müller (Saarland University and MPI Informatik) 
Joan Serrà (Universitat Pompeu Fabra) 
 

Abstract 
Even though there is a rapidly growing corpus of available music recordings, there is still a lack of audio 

content-based retrieval systems allowing to explore large music collections without manually generated annotations. 

In this context, the query-by-example paradigm is commonplace: given an audio recording or a fragment of it (used 

as query or example), the task is to automatically retrieve all documents from a given music collection containing 

parts or aspects that are similar to it. Here, the notion of similarity used to compare different audio recordings (or 

fragments) is of crucial importance, and largely depends on the application in mind as well as the user requirements. 

In this tutorial, we present and discuss various content-based retrieval tasks based on the query-by-example 

paradigm. More specifically, we consider audio identification, audio matching, version (or cover song) 

identification and category-based retrieval. A first goal of this tutorial is to give an overview of the state-of-the-art 

techniques used for the various tasks. Furthermore, a second goal is to introduce a taxonomy that allows for a better 

understanding of the similarities, and the sometimes subtle differences, between such different retrieval scenarios. 

In particular, we elaborate on the differences between fragment-level and document-level retrieval, as well as on 

various specificity levels found in the music search and matching process. 

 

Biographies 
Meinard Müller received his Ph.D. degree in computer science from Bonn University, Germany, in 2001. After 

postdoctoral research in combinatorics at Keio University, Japan, he finished his Habilitation at Bonn University in 

the field of multimedia retrieval. Currently, Meinard Müller is a member of the Saarland University and the 

Max-Planck Institut für Informatik, where he leads the research group Multimedia Information Retrieval & Music 

Processing. His research interests include audio signal processing, music processing, and motion processing. 

Joan Serrà received his Ph.D. in Information and Communication Technologies from Universitat Pompeu Fabra, 

Barcelona, Spain, in 2011. He is currently a postdoctoral researcher with the Artificial Intelligence Research 

Institute (IIIA) of the Spanish National Research Council (CSIC) in Bellaterra, Barcelona. His research interests 

include music information retrieval, machine learning, complex systems, signal processing and time series analysis, 

and music perception and cognition.  
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Tutorial 3 

 

Practical Linked Data for MIR Researchers 
David De Roure (University of Oxford) 
Kevin Page (University of Oxford) 
 
Abstract 

Linked Data is an approach that combines structured semantics with the large-scale distributed architecture 

proven through the World Wide Web, and is proving to be an approach with great potential that has generated 

significant interest in the MIR and the wider music community (borne out by several papers and demonstrations at 

previous ISMIR and other conferences). It is a means by which we can use, publish, enhance, and most importantly 

link between the growing number of de-centralised information sources in the web of data, so as to develop new 

MIR systems that are improved by their access to these datasets, and which increase their utility by making results 

more readily consumable and linkable to the rest of the Semantic Web. 

This tutorial takes a whole-system approach with coverage of information representation through all stages of the 

MIR research cycle, and as such is appropriate for all music information researchers who have an interest in how the 

Semantic Web and Linked Data can support and enhance their work. Code examples will be provided in a largely 

complete form, with exercises focused on creation and manipulation of the data models rather than any specific 

programming or scripting language. This tutorial will provide a focused and practical application of Semantic Web 

technologies to the MIR domain.  

 

Biographies 
David De Roure is Professor of e-Research in the Oxford e-Research Centre where he has particular 

responsibility for research in Digital Humanities including computational musicology. Closely involved in the UK 

e-Science programme, his research projects draw on Web 2.0, Semantic Web, scientific workflow and pervasive 

computing technologies. He focuses on the co-evolution of digital technologies and research methods in and 

between multiple disciplines. He has an extensive background in Web and Linked Data, runs the myExperiment.org 

social website and is a Web Science champion for the Web Science Trust. 

Kevin Page is a researcher in the Oxford e-Research Centre, University of Oxford, UK. His work on web 

architecture and the semantic annotation and distribution of data has, through participation in several UK, EU, and 

international projects, been applied across a wide variety of domains including sensor networks, music information 

retrieval, clinical healthcare, and remote collaboration for space exploration. He has previously undertaken 

undergraduate lecturing, demonstrating, and supervision, and led and delivered Further Education courses in 

programming.  
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Tutorial 4 

 

Musicology 

Anja Volk (Utrecht University). 
Frans Wiering (Utrecht University) 

 

Abstract 
MIR researchers’ fondest enemies are the musicologists. Apparently sharing a common lust for music, we have to, 

and at times even want to interact with them, but their strange behaviour never ceases to baffle us. Why do they react 

so negatively to our cool technology, giving us only ill-defined concepts and crappy ground truths in return? This 

tutorial proposes an anthropological excursion into the strange territory of musicology, where we will meet the 

natives and explore their habits and value systems. We will discuss how musicological domain knowledge can be 

turned into a valuable resource for MIR researchers. We will draw up a number of guidelines that will help MIR 

researchers to interact successfully with musicologists when you meet them on your own. 

This tutorial is aimed at all MIR researchers who are curious about musicology. Researchers who are motivated 

by a love for music but possess little formal training in music and therefore need to depend on ‘domain knowledge’ 

in their research will especially benefit from this tutorial. It is helpful but not necessary for participants to have a 

basic knowledge of elementary music theory. No advanced knowledge is needed and the presenters will aim at 

maximum accessibility and understandability of the content. 

 

Biographies 
Anja Volk holds masters degrees in both Mathematics and Musicology and a PhD in the field of computational 

musicology from Humboldt University Berlin. After two post-doc periods at the University of Southern California 

and Utrecht University, she was awarded a grant which allows her to start her own research group. She is currently 

an Assistant Professor at the Department of Information and Computing Sciences of Utrecht University 

(Netherlands). Her current project investigates music similarity in an interdisciplinary manner comprising Music 

Information Retrieval, Musicology and Cognitive Science.  

Frans Wiering received his Ph.D. from the University of Amsterdam in 1995 (published by Routledge, 2001). He 

is currently an Assistant Professor at the Department of Information and Computing Sciences of Utrecht University 

(Netherlands). His present research is in music information retrieval and digital critical editions of music. He was a 

Visiting Scholar at Stanford University and a Visiting Fellow at Goldsmiths College, University of London. He 

co-organised the Dagstuhl Seminar Knowledge representation for intelligent music processing (January 25-30, 

2009) and was General Chair of ISMIR 2010. 
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AN AUDITORY STREAMING APPROACH FOR MELODY EXTRACTION
FROM POLYPHONIC MUSIC

Karin Dressler
Fraunhofer Institute for Digital Media Technology IDMT, Ilmenau, Germany

kadressler@gmail.com

ABSTRACT

This paper proposes an efficient approach for the identifica-
tion of the predominant voice from polyphonic musical au-
dio. The algorithm implements an auditory streaming model
which builds upon tone objects and salient pitches. The
formation of voices is based on the regular update of the
frequency and the magnitude of so called streaming agents,
which aim at salient tones or pitches close to their preferred
frequency range. Streaming agents which succeed to assem-
ble a big magnitude start new voice objects, which in turn
add adequate tones. The algorithm was evaluated as part of a
melody extraction system during the MIREX audio melody
extraction evaluation, where it gained very good results in
the voicing detection and overall accuracy.

1. INTRODUCTION

Melody is defined as a linear succession of tones which is
perceived as a single entity. One important characteristic
of the tone sequence is the smoothness of the melody pitch
contour. There are different techniques to avoid large fre-
quency intervals in the tone sequence – at present two main
algorithm types can be distinguished:

On the one hand, there are probabilistic frameworks that
combine pitch salience values and smoothness constraints
in a cost function that is evaluated by optimal path find-
ing methods like the hidden Markov Model (HMM), the
Viterbi algorithm or dynamic programming (DP). On the
other hand, there are rule based approaches that trace multi-
ple F0 contours over time using criteria like magnitude and
pitch proximity in order to link salient pitch candidates of
adjacent analysis frames. Subsequently, a melody line is
formed from these tone-like pitch trajectories, using rules
that take the necessary precautions to assure a smooth melodic
contour. Of course such a division is rather artificial. It is

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

easy to imagine a system that uses tone trajectories as input
for a probabilistic framework. And vice versa a statistical
approach can be used to model tones. In fact, Ryynänen
and Klapuri have implemented a method for the automatic
detection of singing melodies in polyphonic music, where
they derive a HMM for note events from fundamental fre-
quencies, their saliences and an accent signal [8].

There are many stable probabilistic relationships that can
be observed in melody tone sequences [6]. This fact makes
the application of a statistical model so useful, because such
characteristics can easily be expressed mathematically in or-
der to find the optimal succession of tones. Hence, most
approaches to voice processing are statistical methods that
accomplish the tone trajectory forming and the identifica-
tion of the melody voice simultaneously [4, 5, 7]. Rao and
Rao advocate DP over variants of partial and tone tracking,
but also clearly state the problems of most statistical meth-
ods [7].

While for rule-based approaches alternative melody lines
can be recovered quite easily, there is no effective possibil-
ity to retrieve alternative paths for DP approaches, because
the mathematical optimization of the methods depends on
the elimination of concurrent paths. Hence, it is not easy to
state whether the most likely choice stands out from all other
paths. This problem is most evident if two or more voices
of comparable strength occur simultaneously within a mu-
sical piece. Work towards a solution to this problem was
presented in [7], giving an example for DP with dual fun-
damental frequency tracking. The system tracks an ordered
pair of two pitches, but it cannot ensure that the two contours
will remain faithful to their respective sound sources.

Another challenging problem is the identification of non-
voiced portions, e.g. frames where no melody voice occurs.
The simultaneous identification of the optimal path together
with the identification of melody frames is not easy to ac-
complish within one statistical model, so often the voic-
ing detection is performed by a separate processing step.
Nonetheless, optimal path finding algorithms may be con-
fused by breaks in the tone sequence, especially because
the usual transition probabilities do not apply in between
melodic phrases.
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Figure 1. Overview of the voice estimation algorithm

In this paper, we present an algorithm for the identifi-
cation of predominant voices in music that addresses some
of the above-mentioned problems. Although no statistical
model is implemented, probabilistic relationships that can
be observed in melody tone sequences are exploited.

2. METHOD

2.1 Overview

Figure 2.1 shows an overview of the algorithm. The in-
put to the proposed algorithm are the tone objects and/or
salient pitches of the current frame. The formation of mu-
sical voices is a continuous process destined by the frame-
wise evolution of so-called streaming agents, which are dis-
tributed along the frequency spectrum. A streaming agent
gains power by the capturing of salient tones or pitches.
Moreover, it changes its position in the frequency spectrum
in order to move towards salient sounds. Voice objects can
be derived from the streaming agents. Then, adequate tone
objects are assigned to the respective voices. Finally, the
melody voice is chosen from the set of voices. The main cri-
terion for the selection is the magnitude of the voice. Only
tone objects of the melody voice qualify as melody tones.

2.2 Formation of Streaming Agents

The voice detection is based on 18 streaming agents (SA).
Each streaming agent denotes a very simple voice forma-
tion unit, which independently selects a succession of strong
tones or pitches. It is mainly characterized by its magnitude
Āsa, and two frequency based measures: a variable position
f̄sa and a fixed home position fsa home, which are both given
in cent. The home positions of the streaming agents are dis-
tributed evenly with a distance of 300 cent over the allowed
melody frequency range.

Over time, each streaming agents gradually moves to-
wards the selected sound sources and assembles a magni-
tude corresponding to the rating magnitude of the captured
tone objects.
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Figure 2. Gaussian Weighting Functions

2.2.1 Selection of Tones

In each analysis frame, the streaming agents searches for
strong tones and pitches. In the further description, we refer
only to tone objects, although the method can be also used
for frame-wise estimated pitch magnitudes as described for
example in [3]. For the identification of the best matching
tone a rating is calculated from four criteria:

• magnitude: The tone magnitude Atone is a good indi-
cator for the perceptual importance of a tone.

• frequency distance weight: It is due to the fixed home
position that each SA may pick different notes in a
polyphonic signal. While at the one hand a strong se-
lection criterion is the magnitude of the tone object,
at the other hand the agent’s choice is strongly biased
towards its own home position. The frequency dis-
tance ∆f in cent between the tone’s pitch ftone and the
streaming agent’s home position fsa home enters into
the rating as a weighting factor that is calculated us-
ing a Gaussian function w1(∆f):

w1(∆f) = e−0.5
(∆f)2

6402 (1)

Figure 2.2.1 shows the weighting function, which reaches
half the maximum value at a frequency difference of
approximately 750 cent.

• frequency deviation: Human listeners draw particular
attention to all sounds with changing attributes. If a
tone has a varying frequency deviation (persistently
more than 20 cent frequency difference in between
analysis frames) the rating is doubled. Accordingly,
the deviation factor D is set to one or two in the final
rating.

• capture mode: There should be a tendency of the SA
to continuously track an already captured tone object.
If a tone object has already been captured by a SA,
the rating for the tone object is boosted by the factor
C = 1.5. Otherwise, the factor is set to one. (See
section 2.2.2 for a detailed explanation of the capture
mode.)
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The rating is estimated for all streaming agents and fi-
nally, each streaming agent ”picks” only one tone – the ob-
ject with the maximum rating magnitude Arating:

Arating = D · C ·Atone · w1(ftone − fsa home) (2)

For the rating of pitches the boost factorsD and C are omit-
ted – the rating is simply the product of pitch magnitude and
the frequency distance weight.

2.2.2 Modes of Tone Capturing

As the streaming agent approaches salient sound sources,
two different modes are distinguished within the tone cap-
turing process: aim and captured. In the aim mode the
streaming agent aims at a distinct tone object and moves
slowly towards the selected pitch or tone.

In order to capture a tone, the SA must aim at the distinct
tone for a specific time span. The demanded time depends
on the difference between the variable position of the SA f̄sa

and the tone’s frequency ftone
1 . As long as the SA aims at

the same tone object, a capture counter n is incremented in
each analysis frame. The tone is captured if 2 :

n >
1

30

∣∣f̄sa − ftone
∣∣ . (3)

As the SA moves towards the selected pitch, the frequency
difference between tone and streaming agent becomes smaller
during the capturing process. Since the adaptation speed of
the variable position f̄sa depends on many parameters, the
duration needed to capture a tone cannot be immediately
assessed from the frequency difference between successive
notes. As soon as the SA aims at a sound object in a differ-
ent frequency region, the capture counter is set to zero.

The mode captured might not be reached by every tone
in very complex or noisy music signals. Yet, it is not neces-
sary that a tone is captured by a streaming agent to qualify
as a melody tone. The aim mode is generally sufficient to
ensure the propagation of the streaming agents towards the
most significant sound sources. Still, the additional mode
enhances the movement of the streaming agent towards the
selected tone objects.

2.2.3 Magnitude Update

The streaming agent is able to increase its magnitude Āsa

whenever it reaches the capture mode captured. The mag-
nitude it assembles depends on the current rating magnitude
of the selected tone as given in equation 2, but without tak-
ing into account the boosting factor C. The slightly altered
rating magnitude is labeled A∗rating. The use of this rating
magnitude implies that a streaming agent which captures a

1 All frequencies are measured in cent.
2 The condition assumes a hop-size of 5.8 ms between two analysis

frames.

tone far away from the home positions will not build up a
high magnitude.

However, for the computation of the magnitude, the ini-
tial ratingA∗rating is weighted by a second frequency distance
weighting which exploits the distance between the variable
position of the streaming agent f̄sa and the tone’s frequency
ftone. The weighting function remains the same: the Gaus-
sian functionw1 given in equation 1. The additional weight-
ing assures that the streaming agent profits more from tone
magnitudes which are close to its current position f̄sa.

In order to update the magnitude values we use the expo-
nential moving average (EMA) 3 :

Āsa → αx · Āsa + (1− αx) ·A∗rating · w1(ftone − f̄sa). (4)

The start value for the iterative calculation of the EMA is
zero. The smoothing factorαx depends on the current weighted
rating A∗rating · w1(ftone, f̄sa). If the current value is higher
than the actual EMA value, αx corresponds to a half life pe-
riod of 1 second, otherwise the half life period is set to 500
ms. If the streaming agent is only in aim capture mode, the
magnitude of the streaming agent is damped with a half life
period of 500 ms.

2.2.4 Position Update

The streaming agent changes its variable position f̄sa to-
wards salient tones or pitches. The speed of the position
adaptation is mainly determined by three factors:

• the tone’s magnitude: the bigger the tone magnitude
in comparison to the long term average weightings,
the faster the SA changes its position.

• the distance between captured tone and the streaming
agent’s home position: the SA tends to move faster
towards its own home position. This behavior ensures
the stream segregation for a cycle of quickly alternat-
ing high and low tones as described in [1, chapter 2].

• the frequency deviation: the SA moves faster towards
frequency modulated tones.

• the capture mode: the SA moves faster towards cap-
tured tones.

From this it follows that the basic weighing for the posi-
tion update is similar to the rating magnitude Arating for the
tone selection process as given in equation 2. In order to

3 The EMA applies weighting factors to all previous data points which
decrease exponentially, giving more importance to recent observations
while still not discarding older observations entirely. The smoothing factor
α determines the impact of past events on the actual EMA. It is a number
between 0 and 1. A lower smoothing factor discards older results faster. A
more intuitive measure than the smoothing factor is the so called half-life
period. It denotes the time span over which the initial impact of an observa-
tion decreases by a factor of two. Taking into account the desired half-life
th and the time period between two EMA calculations ∆t ≈ 5.8ms, the
corresponding smoothing factor is calculated as follows: α = 0.5∆t/th .
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estimate the significance of the current rating magnitude, it
has to be set into relation with the ratings of previous anal-
ysis frames. That’s why we introduce a position magnitude,
which is the exponential moving average of previous rat-
ings:

Āpos → α1.5s · Āpos + (1− α1.5s) ·Arating. (5)

In order to adapt the variable position f̄sa of the streaming
agent, the current rating is set into relation with the EMA of
previous ratings:

f̄sa →
Āposf̄sa + (1− α500ms) ·Arating · ftone

Āpos + (1− α500ms) ·Arating
. (6)

The initial value for the iterative calculation is the home
position fsa home. Parameter α500ms is a smoothing factor,
which corresponds to a half life time of 500 ms 4 .

2.3 Formation of Voices

The positions and magnitudes of the 18 streaming agents are
the foundation for the voice estimation. Figure 3 shows how
the progress of the multiple streaming agents is influenced
by salient tone objects. It can be noted that the approximate
progression of musical voices is already suggested by the
distribution of the streaming agents.

Each streaming agent which poses a local magnitude max-
imum is a candidate for the formation of a voice object. This
means that each voice object is in general linked to a stream-
ing agent with the peak magnitude compared to the magni-
tude of the neighboring agents. Of course, the local maxi-
mum may shift from one streaming agent to another. In this
case, the voice may gradually change the assigned link to a
neighboring streaming agent within the duration of approx-
imately 20 analysis frames. The position of a voice fvoice

is defined by the position f̄sa of the linked streaming agent.
The magnitude of the voice Avoice is defined by the streamer
magnitude Āsa. If the voice is currently adapting to a new
streaming agent, weighted average values of the concerning
two streaming agents are used.

If a streaming agent with a local maximum magnitude
is not assigned to a voice object, it may start a new one.
However, a new voice is created only if the streaming agent
is more than 4 streaming agents away from a any stream-
ing agent linked to another voice, or if the frequency dif-
ference between the streaming agent and all other existing
voices is greater than 600 cent. A voice object is eliminated
if the voice magnitude is smaller than 5 percent of the global
maximum voice magnitude or if two voices aim at the same
streaming agent. In the latter case the voice with the smaller
magnitude is eliminated.

4 Since the position weight depends on many factors, parameter α does
not exactly set any half life period for the position update. Yet the corre-
sponding time span gives a reference point for the approximate adaptation
speed.

2.4 Adding Tones to Voices

Now that voice objects have been defined, adequate tone ob-
jects must be added. The only voice tone candidate is actu-
ally the currently selected tone of the corresponding stream-
ing agent. If the voice is adapting to a new streaming agent,
the closest streaming agent is used as a reference. Several
measures are taken to ensure a reliable voicing detection.
This means even if the corresponding streaming agent has
selected a tone, the tone candidate has to be validated in or-
der to qualify as a voice tone.

2.4.1 Distance Threshold

Although the proposed algorithm does not apply a common
statistical model, it takes advantage of the most eminent
probabilistic relationships in melodic tone sequences [6]: 1)
Melodies consist typically of tones that are close to one an-
other in pitch. 2) There is a strong tendency for a regression
to the mean pitch.

The frequency of the voice represents the weighted av-
erage frequency of the recently selected tone objects, so in
a way the voice position can be seen as the adaptive com-
putation of the mean pitch. Consequently, the best voice
tone candidates are close to the actual voice position. Ade-
quate voice tones have to be within an octave range of the
actual voice position. Another obvious thing to do would be
the adjustment of the magnitude thresholds according to the
frequency distance. This idea is implemented in the short
term magnitude threshold described in section 2.4.3.

2.4.2 Global Long Term Magnitude Threshold

The global long term magnitude threshold is implemented
as an adaptive threshold that is valid for all voices. It decays
with a half life period of 5 seconds. If a tone magnitude
appears which is larger than the current long term magni-
tude value, the magnitude threshold is updated to the new
maximum.

The magnitude of the candidate voice tone is compared
to the long term maximum value. In order to pass the global
threshold, tones should not be more than 8 dB below the
decaying maximum value. Still, other criteria may alter the
effective threshold value – in the best case the allowed dy-
namic range is increased from 8 dB to 20 dB:

• The capture level of the assigned streaming agent and
its two neighbors are evaluated. Depending on how
many streaming agents are in capture mode captured
concerning the candidate voice tone, the effective thresh-
old may decreased to 14 dB below the decaying max-
imum. On the other hand, the threshold is increased
for all tones that are not selected (aimed) by at least 5
streaming agents in the long term average.

• A variation of the fundamental frequency (vibrato or
glides) increases the noticeability of tones. In this
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Figure 3. Streaming Agents: It can be seen how the streaming agents (thin lines) move towards salient tones and pitches. To
maintain clarity salient pitches are not shown. The identified tone objects are indicated by dark bold lines. When the bass voice
comes in, some streaming agents turn to the bass voice as it is closer to their preferred home position.

case the threshold is lowered by 6 dB.

2.4.3 Short Term Magnitude Threshold

The short term magnitude threshold is estimated separately
for each voice. It secures that shortly after a strong tone is
finished no weaker tone is included as a voice tone, so it is
especially useful to bridge small time gaps between strong
tones of a voice. Furthermore, the threshold delays the in-
clusion of tones that are far away from the current voice po-
sition. To achieve this the tone magnitude is again weighted
with a frequency distance weight, evaluating the frequency
offset between tone and voice:

w2 = r + (1− r) · w1(ftone − fvoice). (7)

Figure 2.2.1 shows that the weighting function w2 is asym-
metric. Tones in the lower frequency range of an instrument
or the voice are often softer. Hence, parameter r is set to
0.4 for tones with a lower frequency than the current voice
position, otherwise r = 0.2.

The short term threshold is adaptive and decays with a
half life time of 100 ms. If a weighted tone magnitude
w2 ·Atone appears which is larger than the current short term
magnitude threshold, the threshold is updated to the new
maximum. The tone passes the threshold if it is no more
than 6 dB below the current threshold value.

2.5 The Identification of the Melody Voice

The most promising feature to distinguish melody tones from
all other sounds is the magnitude. The magnitude of the
tones is of course reflected by the voice magnitude. Hence,
in general the voice with the highest magnitude is selected
as the melody voice. It may happen that two ore more voices
have about the same magnitude and thus no clear decision
can be taken. In this case, the voices are weighted accord-
ing to their frequency: voices in very low frequency regions
receive a lower weight.

3. EVALUATION

3.1 Qualitative Evaluation

A striking advantage of the proposed method is its compu-
tational efficiency and the continuously updated voice in-
formation in real time. Moreover, the algorithm is flexi-
ble enough to track a variable number of concurrent voices.
This is the main reason for the good melody detection ac-
curacy for instrumental music excerpts with two or more
strong voices like the one shown in figure 4.

The segregation of notes into different auditory streams
depends on many aspects – like for example the magnitude,
frequency and timbre of tones. Psychoacoustic experiments
have shown that the grouping of tones also depends on the
rate [1]. Due to the delayed capturing of tone objects, the
presented method is able to take into account temporal as-
pects of the evolving signal. For example a series of alternat-
ing high and low tones will be integrated into one auditory
stream at a low playback speed. Yet, with increasing rate
high and low tones are grouped into individual voices.

Nonetheless, it must be noted that many aspects of hu-
man perception cannot be covered. Although the algorithm
allows a broad dynamic range for melody tones, in some in-
terpretations an even greater dynamic range can be found,
especially if the melody is sung by a human. Still, by low-
ering the magnitude thresholds many tones from the accom-
paniment will be selected by mistake. A simple magnitude
threshold cannot avoid all errors.

3.2 MIREX Audio Melody Extraction Task

The presented method for the detection of predominant voices
has been implemented as part of a melody extraction algo-
rithm which was evaluated at the Music Information Re-
trieval Evaluation eXchange (MIREX) [2]. Algorithm pa-
rameters regarding the width and the shape of the weight-
ing functions as well as the timing constants of the adaptive
thresholds have been adjusted using the melody extraction
training data of ISMIR 2004 and MIREX 2005. Although
the presented parameter sets maximize accuracy in the two
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Figure 4. Voices: When the bass voice comes in, a second voice object is created. Two predominant voices are recognized: the
melody voice (blue) and the bass voice (pink).

Algorithm

proposed 90.9 41.0 80.6 73.4 24
dr1 92.4 51.7 74.4 66.9 23040
dr2 87.7 41.2 72.1 66.2 524

91.3 51.1 72.2 65.2 26
pc 79.3 40.3 64.1 62.9 4677

61.0 29.4 73.3 56.6 3726
cl2 80.3 57.4 63.5 55.2 33
cl1 93.0 80.7 63.5 52.2 28
hjc1 43.6 9.7 66.1 50.5 344
hjc2 43.6 9.7 51.1 49.0 584
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Figure 5. Melody Extraction Results of MIREX 2009

data sets, acceptable results are achieved on a wide parame-
ter range. Moreover, the MIREX results show that the given
settings generalize well on different kinds of data.

Table 5 shows the analysis results for systems that per-
form voicing detection. The melody extraction algorithm
achieved the best overall accuracy and at the same time stands
out due to very short run-times. The Raw Pitch measure
represents the estimation performance for all voiced frames.
For this measure the evaluation is constrained to time in-
stants where the melody voice is present. The measure Over-
all Accuracy requires a voicing detection – the algorithm
has to indicate whether the melody voice is present in the
current frame or not. The MIREX results show that the im-
plemented method allows a high Voicing Recall and at the
same time a low Voicing False Alarm.

4. CONCLUSION

In this paper we presented an efficient approach to auditory
stream segregation in polyphonic music. The MIREX re-
sults show that the proposed method allows a reliable iden-
tification of the predominant voice in different kinds of poly-
phonic music. The qualitative evaluation shows that the al-
gorithm mimics some characteristics of stream segregation
in the human auditory system, taking into account the mag-
nitude of tones, note intervals and playback speed. How-

ever, timbral features are not exploited to group tones. In
order to reach a higher accuracy an instrument/singing voice
recognition is required.
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ABSTRACT

This paper addresses the problem of extracting vocal melodies
from polyphonic audio. In short-term processing, a timbral
distance between each pitch contour and the space of human
voice is measured, so as to isolate any vocal pitch contour.
Computation of the timbral distance is based on an acoustic-
phonetic parametrization of human voiced sound. Long-
term processing organizes short-term procedures in such a
manner that relatively reliable melody segments are deter-
mined first. Tested on vocal excerpts from the ADC 2004
dataset, the proposed system achieves an overall transcrip-
tion accuracy of 77%.

1. INTRODUCTION

Music lovers have always been faced with a large collec-
tion of music recordings or concert performances for them
to choose from. While successful choices are possible with
a small set of metadata, disappointment still recurs because
the metadata only provides limited information about the
musical contents. This has motivated researchers to work
on systems that extract essential musical information from
audio recordings. Hopefully, such systems will enable per-
sonalized recommendations for music purchase decisions.

In this paper, we focus on the extraction of vocal melodies

from polyphonic audio signals. A melody is defined as a
succession of pitches and durations; as one might expect,
melodies represent the most significant piece of information
among all the features one can identify from a piece of mu-
sic. In various musical cultures including popular music in
particular, predominant melodies are commonly carried by
singing voices. In view of this, this work aims at analyzing a
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singing voice accompanied by musical instruments. Instru-
mental accompaniment is common in vocal music, where
the main melodies are exclusively carried by a solo singing
voice, with the musical instruments providing harmony. In
brief, the goal of the analysis considered in this work is
finding the fundamental frequency of the singing voice as
a function of time.

The specific problem outlined above is challenging be-
cause melody extraction is prone to interference from the
accompaniment unless a mechanism is in place for distin-
guishing human voice from instrumental sound. [6], [13],
and [9] determined the predominant pitch as it accounts for
the most of the signal power among all the simultaneous
pitches. The concept of pitch predominance is also pre-
sented in [12] and [2], which defined the predominance in
terms of harmonicity. For these methods, the problem proves
difficult whenever the signal is dominated by a harmonic
musical instrument rather than by the singing voice. [3] and
[5] realized the timbre recognition mechanism by classifi-
cation techniques; on the other hand, pitch classification
entails quantization of pitch, which in turn causes loss of
such musical information as vibrato, portamento, and non-
standard tuning.

The contribution of this paper is an acoustic-phonetic
approach to vocal melody extraction. To make judgments
about whether or not each particular pitch contour detected
in the polyphonic audio is vocal, we measure a timbral dis-
tance between the pitch contour and a space of human voiced

sound derived from acoustic phonetics [4]. In this space,
human voiced sound is parameterized by a small number of
acoustic phonetic variables, and the timbral distance from
the space to any harmonic sound can be efficiently estimated
by a coordinate descent search that finds the minimum dis-
tance between a point in the space and the point representing
the harmonic sound.

The proposed method offers practical advantages over
previous approaches to vocal melody extraction. By im-
posing acoustic-phonetic constraints on the extraction, the
proposed method can better distinguish human voice from

25



Oral Session 1: Melody and Singing

instrumental sound than the predominant pitch estimators in
[2, 6, 9, 12, 13]. Furthermore, with pitch contours composed
of continuous sinusoidal frequency estimates taken from in-
terpolated spectra, the proposed method is free from the
quantization errors in pitch estimation that are commonly
encountered by classification-based systems [3, 5].

Figure 1. Short-term processing for vocal melody extrac-
tion. The goal is to extract a vocal pitch contour around
time point t from the polyphonic audio. TDM stands for
timbral distance measurement.

2. OVERVIEW OF SHORT-TERM PROCESSING

In this section, we consider the problem of extracting a vo-
cal pitch contour around time point t from the polyphonic
audio, provided that a singing voice exists at t. As shown in
Figure 1, the extraction proceeds in three steps: 1) detect-
ing pitch contours that each start before and end after t, 2)
measuring the timbral distance between each of the detected
contours and the space of human voiced sound, and 3) ex-
tracting the most salient pitch contour among any detected
contours that lie in the space of human voiced sound.

In particular, the pitch contours simultaneously detected
in Step 1 form a set of candidates for the vocal pitch contour.
If exactly one vocal exists at this moment, then the vocal
contour may be identified by timbre. Timbral distance mea-
surement is intended here to provide the timbral information
essential to the identification. In contrast to frame-based
processing, here the duration of processing depends on how
far pitches can actually be tracked continuously away from
t in the analyzed audio. At the frame rate of 100 frames per
second, it is observed that most pitch contours last for more
than 10 frames; obviously, one would expect more reliable
timbral judgments from contour-based processing than from
frame-based processing.

3. PITCH CONTOUR DETECTION

In this section, we describe the procedure for detecting pitch
contours around time point t from the polyphonic audio. It
starts by detecting multiple pitches from the audio frame
at t. Next, pitch tracking is performed separately for each
detected pitch, from t forwards, and then also from t back-
wards, as depicted in Figure 2. Consequently, this procedure
gives as many pitch contours as pitches are detected at t.

Figure 2. Bi-directional multi-pitch tracking around time
point t.

3.1 Pitch Detection

In order to detect pitches at the time point t, we apply si-
nusoidal analysis to the short-time spectrum of the poly-
phonic audio signal at t. The analysis extracts (quadrati-
cally interpolated) frequencies of the loudest three peaks in
the first-formant section (200–1000 hertz) of the magnitude
spectrum. The loudness of a sinusoid is computed by cor-
recting its amplitude according to the trends in the 40-phon
equal-loudness contour (ELC) [8], which quantifies the de-
pendency of human loudness perception on frequency. For
each extracted sinusoidal frequency f̃ (hertz), the procedure
“detects” up to three pitches in the 80–1000 hertz vocal pitch
range, at f̃ , f̃/2, and f̃/3, regarding the sinusoid as the fun-
damental, the second partial, or the third partial of a pitch.
As a result, the pitch detector gives nine pitches at the most
for the time point t. The ambiguity among the first three
partials will not be resolved until a selection is made among
pitch contours.

3.2 Pitch Tracking

Suppose that we are now appending a new pitch to the end
of a growing pitch contour. Calculation of the new pitch
proceeds in three steps: 1) finding in the new spectrum a set
of sinusoids around (within one half tone of) the first three
partials of the last pitch in the contour, 2) finding among the
sinusoids the one with the highest amplitude, and 3) dividing
the frequency (hertz) of this sinusoid by the corresponding
harmonic multiple (1, 2, or 3). In other words, the pitch
contour is guided by nearby high-energy pitch candidates.
The growth of a pitch contour stops once the amplitude of
the loudest partial drops (cumulatively) from a peak value
by more than 9 dB, i.e., a specific form of onset or offset
is detected, with the loudness of each partial evaluated over
the entire contour as a time average.

4. TIMBRAL DISTANCE MEASUREMENT

In this section, we develop a method for measuring the tim-
bral deviation of a pitch contour C from human voiced sound,
which is based on an acoustic-phonetic parameterization of
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human voiced sound, and finding within the space of human
voiced sound the minimum distance from C, as illustrated in
Figure 3.

Figure 3. Measuring the timbral distance between a pitch
contour (star) and the space of human voiced sound.

4.1 Parameterization of Human Voiced Sound

In order to model the space of human voiced sound, it is
desirable to identify every point in the space with a set of
acoustic-phonetic parameters. To this end, we let each short-
time magnitude spectrum of human voiced sound be repre-
sented by seven parameters: the amplitude, the fundamental
frequency, the first three formant frequencies, and the nasal
formant and anti-formant frequencies [11]. Such a parame-
terization is appropriate for specifying human voiced sound
in that sinusoidal parameters of the voice can be obtained
from the acoustic-phonetic parameters through well-defined
procedures. Obviously, partial frequencies of the human
voiced sound can be derived as integer multiples of the fun-
damental frequency. On the other hand, partial amplitudes
of the human voiced sound can be derived on the basis of
formant synthesis [4], which has been applied to synthesiz-
ing a wide range of realistic singing voice [15].

Consider a point in the space of human voiced sound

s = (a, f0, f1, f2, f3, fp, fz)
T , (1)

where a is the amplitude (in dB), f0 is the fundamental fre-
quency (in quarter tones), f1, f2, and f3 are the first three
formant frequencies (in hertz), and fp and fz are the nasal
formant and anti-formant frequencies (in hertz). Amplitude
of partials can be calculated from s by [4]

ap
i = a + 20 log10

∣∣∣∣∣∣UR(ifh
0 )KR(ifh

0 )
∏

n∈If

Hn(2π · ifh
0 )

∣∣∣∣∣∣ ,

(2)
where ap

i is the amplitude of the ith partial in dB, i ≤ 10,
fh
0 denotes the fundamental frequency in hertz:

fh
0 = 440 · 2(f0−105)/24, (3)

UR(·) represents the (radiated) spectrum envelope of the
glottal excitation [4]:

UR(f) =
f/100

1 + (f/100)2
, (4)

KR(·) represents all formants of order four and above [4]:

20 log10 KR(f) ≈ 0.72
(

f
500

)2

+ 0.0033
(

f
500

)4

,

f ≤ 3000,
(5)

If = {1, 2, 3, p, z}, and Hn(·) represents frequency response
of formant n [4]:

Hn(ω) =
1(

1− jω
σn+jωn

) (
1− jω

σn−jωn

) , n = 1, 2, 3, p,

(6)

Hz(ω) =

(
1− jω

σz + jωz

)(
1− jω

σz − jωz

)
. (7)

In (6), ωn is the frequency of formant n in rad/s, i.e., ωn =
2πfn, and σn is half the bandwidth of formant n in rad/s,
which can be approximated as a function of ωn by a poly-
nomial regression model [7].

4.2 Distance Minimization

Suppose that the instantaneous pitch values in contour C
have mean fC . Now, let the vector

x = (a, f1, f2, f3, fp, fz)
T (8)

denote any point on the hyperplane f0 = fC in the space
of human voiced sound. Then we can define the distance
between x and C as

DC(x) =

√∑10
i=1

(
aq
i
−ap

i

σa

)2

, (9)

where aq
i is the mean amplitude (in dB) of the ith partial of

C, ap
i is the amplitude (computed as in (2)) of the ith partial

of x, and σa is an empirical constant set to 12. The timbral
distance between C and the space of human voiced sound
can now be measured as

min
x∈X

DC(x), (10)

where X describes constraints imposed on the formant fre-
quencies:

X =


x ∈ R6

∣∣∣∣∣∣∣∣∣∣∣∣

250 ≤ f1 ≤ 1000
600 ≤ f2 ≤ 3000
1700 ≤ f3 ≤ 4100
200 ≤ fp ≤ 500
200 ≤ fz ≤ 700
fp, fz ≤ f1 ≤ f2 ≤ f3


. (11)
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The accuracy in determining whether or not C is vocal
depends on how well the distance in (9) is numerically min-
imized. To be specific, if C is vocal and the timbral distance
between C and the space of human voiced sound is over-
estimated due to distance minimization being trapped in a
local minimum, then C may very likely turn out to be mis-
taken by the procedure for an instrumental contour. Our
numerical experience revealed that the best of twenty local
searches for the minimum defined in (10), which are ini-
tialized respectively with twenty different reference points,
shows great consistency in associating vocal pitch contours
with short timbral distances. These reference points differ
only in the oral formant frequencies f1, f2, and f3, with nu-
merical values taken from the gender-specific averages for
ten vowels of American English [10]: i, I, E, æ, A, O, U, u,
2, and Ç. Although each individual search is local by nature
and can only be expected to give a local minimum in some
neighborhood of the corresponding starting point, the global
minimum can be found as long as it can be reached from one
of the twenty initial points.

Figure 4. Each update in the local search for the minimum
distance consists of a series of one-variable subproblems.

The local search for the minimum defined in (10) may
be achieved with any local optimization technique. Here we
use a simple coordinate descent algorithm, as represented in
Figure 4, where each (all-variable) update consists of a se-
ries of one-variable updates. Each one-variable update min-
imizes the distance with respect to the variable alone while
fixing the other variables. For instance, the update of the
formant frequency f2 in the jth all-variable update operates
on the current point

(a(j), f
(j)
1 , f

(j−1)
2 , f

(j−1)
3 , f (j−1)

p , f (j−1)
z )T (12)

by computing

f
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f2∈I2
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(a(j), f

(j)
1 , f2, f
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3 , f

(j−1)
p , f

(j−1)
z )T

)
,

I2 = {f2 ∈ R | 600 ≤ f2 ≤ 3000, f
(j)
1 ≤ f2 ≤ f

(j−1)
3 }.

(13)
In our implementation, the subproblem (13) is solved by
finding a local minimum over a 100-hertz-spaced sampling

of f2 around f
(j−1)
2 . The subproblem for updating the am-

plitude a can be solved analytically, as it is equivalent to
minimizing a quadratic function of a. The final numerical
solution to the problem (10) is refined by continuing the
local search with a 10-hertz spacing of formant frequency
sampling.

5. PITCH CONTOUR SELECTION

In this section, we present a procedure for selecting the vo-
cal pitch contour from a set of pitch contours detected around
time point t. To begin with, it prunes those pitch contours
that have been associated with a long timbral distance from
the space of human voiced sound. A pitch contour is ac-
cepted only if the timbral distance does not exceed the em-
pirical threshold of

√
−2 log 0.4. In addition, if the mean

amplitude over even partials of a pitch contour exceeds that
over odd partials by more than 7 dB, the contour is rejected,
taken as the octave below a true pitch contour.

Secondly, the procedure prunes some pitch contours that
can be seen as an overtone as related to another pitch con-
tour. To this end, the overlap time interval between each
pair of contours is calculated, and the pitch interval between
two contours is determined on the basis of the mean pitch
during the overlap. The procedure rejects any pitch contour
that has a mean pitch at the 2nd, 3rd, or 4th partial of another
contour.

Lastly, the procedure selects the loudest pitch contour
from any contours that survived the prunings, thereby pro-
viding a mechanism for identifying the predominant lead
vocal out of several simultaneous singing voices. The loud-
ness of each pitch contour is defined as the mean of its
instantaneous loudness values, which are each calculated
by summing the linear-scale, ELC-corrected instantaneous
power over the partials.

6. LONG-TERM PROCESSING

At the excerpt level, the goal of processing is an interleaved
sequence of vocal pitch contours and pauses. To this end, we
maintain a list of visited frames throughout the segmentation
process. A frame is considered visited whenever a vocal
pitch contour has been extracted whose duration covers the
frame.

Suppose that at this moment the procedure has extracted
k vocal pitch contours from the excerpt, with the list of vis-
ited frames updated accordingly. The procedure attempts to
extract the (k + 1)th contour around time point t, which is
set to the unvisited frame that has the highest signal loud-
ness among all the unvisited frames. Here, the loudness
of a frame is calculated by summing the linear-scale, ELC-
corrected power over sharp peaks in the spectrum. The sharp-
ness threshold of each spectral local maximum is set to 9
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dB above the mean amplitude over the neighboring 5 fre-
quency bins. In case that the new contour should overlap
with an existing contour, the new contour would be trun-
cated to resolve the conflict. This procedure continues until
the loudness of every unvisited frame is below the excerpt-
wide median. These remaining unvisited frames form the
final pauses between vocal pitch contours.

7. EXPERIMENTS

In this section, to provide comparison of our method with
some existing methods, we conduct vocal melody extraction
experiments on a publicly available dataset.

7.1 Dataset Description

The dataset is a subset of the one built for the Melody Ex-
traction Contest in the ISMIR2004 Audio Description Con-
test (ADC 2004). The whole ADC 2004 dataset consists of
20 audio recordings, each around 20 seconds in duration,
among which eight recordings have instrumental melodies,
and the other twelve have vocal melodies. Since this work
considers vocal melodies only, experiments are carried out
exclusively on the 12 vocal recordings, including four pop
song excerpts, four song excerpts with synthesized vocal,
and four opera excerpts. The dataset has been in use in
several Music Information Retrieval Evaluation Exchange
(MIREX) contests since 2006; therefore, it affords exten-
sive comparison among methods.

Before melody extraction, each audio file in the dataset
is resampled at 11,025 hertz and constant-Q transformed [1]
(Q = 34) into a sequence of short-time spectra. Each result-
ing spectrum is a quarter-tone-spaced sampling of a contin-
uous spectrum that is capable of resolving the interference
between two half-tone-spaced sinusoids from 21.827 hertz
all the way to 5,428.6 hertz.

7.2 Performance Measures

In the experiments documented here, the tested system gives
vocal melodies in the format of a voicing/pitch value for
each frame (at the rate of 100 frames per second). If a frame
is estimated to be within the duration of a vocal pitch con-
tour, the output specifies the pitch estimate for the frame;
otherwise, the output specifies that the frame is estimated to
be not voiced.

MIREX adopts several measures for evaluating the per-
formance of a melody extraction system [14]. In the first
place, to determine how well the system performs voicing
detection, we use the voicing detection rate, the voicing false
alarm rate, and the discriminability. The voicing detection
rate is computed as the fraction of frames that are both la-
beled and estimated to be voiced, among all the frames that
are labeled voiced. The voicing false alarm rate is computed

as the fraction of frames that are estimated to be voiced but
are actually not voiced, among all the frames that are not
voiced according to the reference transcription. The dis-
criminability combines the above two measures in such a
way that it can be deemed independent of the value of any
threshold involved in the decision of voicing detection:

d′ = Q−1(PF ) + Q−1(1− PD), (14)

where Q−1(·) denotes the inverse of the Gaussian tail func-
tion, PF denotes the false alarm rate, and PD denotes the
detection rate.

Second, to determine how well the system performs pitch
estimation, we use the raw pitch accuracy and the raw chroma
accuracy. The raw pitch accuracy is computed as the frac-
tion of frames that are labeled voiced and have pitch esti-
mated within one quarter tone of the true pitch, among all
the frames that are labeled voiced. To focus on pitch class
estimation while ignoring octave errors, we compute the raw
chroma accuracy, which is computed in the same way as the
raw pitch accuracy, except that the pitch is here measured in
terms of chroma, or pitch class, a quantity derived from the
pitch by wrapping the pitch into one octave.

Finally, the performance of voicing detection and pitch
estimation can be measured jointly by the overall transcrip-
tion accuracy, defined as the fraction of frames that receive
correct voicing classification and, if voiced, a pitch esti-
mate within one quarter tone of the true pitch, among all
the frames.

Table 1. Experimental results.

7.3 Results

The results are listed in Table 1. The overall transcription
accuracies listed in the column titled “All” range from 61%
to 96% and have their average at 77.007%. The minimum
is found at the excerpt “opera_fem2.” A close look at a sig-
nificant error made in the analysis of this excerpt revealed
that the system mistakenly selected the octave below a true

29



Oral Session 1: Melody and Singing

vocal pitch contour because the octave had a timbral dis-
tance of

√
−2 log 0.41, slightly shorter than the upper limit

set for a vocal contour. Still, the distance measured for the
true vocal pitch contour was much shorter, at

√
−2 log 0.98.

This suggests that a relative threshold for the timbral dis-
tance may be implemented along with the absolute threshold
to further improve the accuracy. To see the effect of timbral
distance measurement on the average accuracy, we repeated
the experiments with the distance threshold set to infinity, so
that no contour was pruned because of a large timbral devi-
ation from human voiced sound. This turned out to reduce
the mean accuracy from 77.007% to 75.233%, which veri-
fies the benefit of timbral distance measurement. The raw
pitch accuracies in the column titled “Voiced” are highly
correlated with the overall transcription accuracies, which
suggests that further improvement of this system should be
made in pitch estimation, not in voicing detection. The col-
umn titled “Chroma” contains raw chroma accuracies sim-
ilar to the raw pitch accuracies, which suggests that octave
errors were successfully avoided by the system.

Shown in Table 2 is a comparison of the proposed method
with the MIREX 2009 submissions in terms of the over-
all transcription accuracy (OTA). Notably, if the proposed
method had entered the evaluation in 2009, it would have
ranked 5th out of a total of 13 submissions. Moreover, the
accuracy of the proposed system is within 10% of the high-
est accuracy in the 2009 evaluation.

Table 2. Comparison with the MIREX 2009 Audio Melody
Extraction results.

8. CONCLUSION

We have presented a novel method for vocal melody extrac-
tion which is based on an acoustic-phonetic model of human
voiced sound. The performance of this method is evaluated
on a publicly available dataset and proves comparable with
state-of-the-art methods. 1
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ABSTRACT

Evaluation of singing skill is a popular function of karaoke
machines. Here, we introduce a different aspect of evaluat-
ing the singing voice of an amateur singer: “enthusiasm”.
First, we investigated whether human listeners can evaluate
enthusiasm consistently and whether the listener’s percep-
tion matches the singer’s enthusiasm. We then identified
three acoustic features relevant to the perception of enthu-
siasm: A-weighted power, “fall-down”, and vibrato extent.
Finally, we developed a system for evaluating singing en-
thusiasm using these features, and obtained a correlation
coefficient of 0.65 between the system output and human
evaluation.

1. INTRODUCTION

Karaoke is a form of singing entertainment found world-
wide, which enables anyone to sing like a professional. Karaoke
machines not only provide backing music for singing, but
also evaluate the singer’s voice as another entertaining fea-
ture. Studies of analyzing the singing voice have been mak-
ing progress. For example, Nakano et al. reported good re-
sults of a system for classifying “good” and “poor” singing
based on SVM [2]. Mayor et al. proposed a categorization
and segmentation system for singing voice expression using
pre-defined rules and HMM [1]. In this paper, we describe
our attempt to develop a new service for karaoke: a system
for evaluating the singer’s enthusiasm.

By “enthusiasm”, we mean how eager the singer is to
sing. The term “enthusiasm” for singing a song as used
in this paper is a translation of the Japanese word nessho,
which literally means “hot singing” and is often used for ex-
pressing the energy of a singer’s performance. As karaoke
is the entertainment for amateur singers, we believe that
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singing skill is not the only aspect worth evaluating because
poor singers can never get a high score. However, even poor
singers can sing enthusiastically, so we focused on this as-
pect. We consider that a system which evaluate singing en-
thusiasm would be an exciting service for amateur karaoke
users.

Singing enthusiasm is similar to the emotion of music
[3], especially the “arousal-calm” aspect. However, there
are significant differences between enthusiasm and emotion.
First, enthusiasm is not an expressed emotion. Karaoke is
basically a form of self-entertainment, and most karaoke
singers who sing enthusiastically are not trying to convey
their enthusiasm to the audience but are just enjoying them-
selves. Also, enthusiasm is not an induced emotion, because
a listener who listens to an enthusiastically-sung karaoke
song does not necessarily become excited. In our opinion,
enthusiasm is more like an attitude of singing, rather than an
emotion.

As our study on objectively evaluating enthusiasm was a
new attempt, there were several issues to investigate:

• Is a feeling of “enthusiasm” shared by many listeners?

• Is enthusiastic singing also perceived to be “enthusi-
astic” by listeners?

• What are the physical features related to enthusiasm?

• How can we build a system that evaluates enthusiasm
automatically?

This paper is organized as follows. In Sections 2 and
3, we describe the procedures and results of analyzing a
singing voice corpus and subjective evaluations, and show
that humans can perceive enthusiasm appropriately. In Sec-
tion 4, we describe our method for choosing acoustic fea-
tures of a singing voice and discuss the efficiency of each
feature. In Section 5, we describe an overview and evalua-
tions of the system.
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2. SINGING VOICE CORPUS

2.1 Selection of a Song

For this first study on singing enthusiasm using a simple and
reliable scheme, we decided to use just one pop song for all
the experiments. “Itoshi no Ellie” by the Southern All Stars
(which was covered as “Ellie My Love” by Ray Charles)
was finally selected as it satisfied the following conditions:

• Not too difficult for amateur singers to sing both “en-
thusiastically” and “normally” i.e., no extremely high,
low or long notes.

• Well known by all the singers and human subjects of
the subjective evaluation (Japanese, in our research).

All the recordings should be in the same key because dif-
ferences of key may affect the subjective evaluations. Con-
sidering the vocal range of amateur singers, we chose to use
C-Maj. transposed from the original key of D-Maj. As a
result, the lowest note is E3 and the highest is G4 for male
singers (it can be an octave higher for female singers). The
tempo is 69-70 bpm.

2.2 Recording Procedures

Thirty-four singers participated in the recording, none of
whom were professional singers. The sound accompani-
ment, which had been directly recorded using a karaoke
machine beforehand, was played through headphones and
the singers sang along to it. The singers sang into a mi-
crophone on a stand with a pop-filter attached to prevent
handling noise and pop noise. The singers were instructed
not to move much during the recording and stay almost a
constant distance from the microphone. In order to obtain
various voices with a wide range of enthusiasm and to label
singers’ intended enthusiasm to each voice, they were each
asked to sing two times, once “enthusiastically” and once
“normally”. The singers themselves could choose in which
style to sing first, and informed us before they sang.

The voices were recorded at 44.1-kHz/16-bit sampling in
a soundproof chamber.

3. SUBJECTIVE EVALUATIONS

We conducted subjective evaluations for the following three
purposes: (1) investigate whether humans can perceive singing
enthusiasm using the same criteria, (2) investigate whether
listeners can distinguish whether singers sang enthusiasti-
cally or not, and (3) investigate listeners’ intuition about the
enthusiasm, and obtain clues for choosing acoustic features
for automatically evaluating singing enthusiasm.

Figure 1. Stimuli for subjective evaluations (parenthesized
words are English words)

Evaluation word Value
enthusiastic 2
neither selected 1
not enthusiastic 0

Table 1. Evaluation words and the values for the subjective
evaluations

3.1 Stimuli

For the subjective evaluations, we chose short stimuli (about
1.5 to 9 seconds) from the recordings to facilitate the decision-
making. Figure 1 shows the prepared stimuli.

In this study, the absolute sound-pressure level (SPL) is
of no interest because the SPL depends on not only the mag-
nitude of a singer’s voice but also the distance between the
singer and the microphone. As our method should be ap-
plied to karaoke machines, it is difficult to measure the mag-
nitude of the singer’s voice precisely, so we decided to ex-
clude the effect of absolute SPL, even though our prelimi-
nary experiment proved that absolute SPL is important for
perception of enthusiasm. All the stimuli were normalized
to the same power after passing through a high-pass filter
(80 Hz cut-off) to reduce low-frequency noise.

As Figure 1 shows, two sets of stimuli were prepared. Set
A was a collection of 272 stimuli of a phrase that appears
four times in the song with the same melody and the same
lyrics, and set B was a collection of four varieties of phrases,
each of which was sung 68 times. (B1) is the beginning of
this song, (B2) is from the early part, (B3) is from the middle
part (the bridge or the climax) and (B4) is from the last part.

3.2 Evaluation Procedure

For each set of stimuli, 30 human subjects were asked to
listen to the stimuli, and selected one of three evaluation
words for each stimulus. Table 1 shows the evaluation words
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and the associated values. Evaluations were conducted for
each set of stimuli using the same procedure as follows:

1. The subjects listened to the stimuli through headphones
in a soundproof chamber and the volume was fixed for
all the subjects.

2. For training, the subjects evaluated 20 stimuli selected
at random.

3. The subjects evaluated 100 stimuli for three times.
The stimuli were selected so that each stimulus was
evaluated by almost the same number of subjects. The
stimuli used in the training phase were excluded.

4. After the evaluation, the subjects filled in a question-
naire about the vocal features they felt relevant to en-
thusiasm.

After the evaluation, one stimulus had 30 to 36 evaluation
values given by 10 or 12 subjects. We took the average of
all evaluation values, and the average was regarded as the
result of the subjective evaluation for that stimulus.

3.3 Results

In order to investigate whether the subjects perceived singing
enthusiasm consistently, we examined the correlation be-
tween the evaluation values given by a subject and the aver-
age of those given by all the other subjects.

Let xsi ∈ {0, 1, 2} be an evaluation value for stimulus s
given by the i-th subject. Let x̄si be

x̄si =
1

Ns − 1

∑
j ̸=i

xsj (1)

where Ns is the number of subjects who evaluated the stim-
ulus s. Then calculate ρi, which is the correlation coefficient
between xsi and x̄si with respect to s. If ρi is high, it means
that the i-th subject evaluated the stimuli in the same way as
the other subjects. Note that we calculated ρi for sets A and
B independently, which are represented by ρA

i and ρB
i .

Figure 2 is a histogram of ρA
i and ρB

i . This figure shows
that the correlation coefficients are more than 0.7 for most
of the subjects, so it is reasonable to suppose that the sub-
jects perceived singing enthusiasm consistently. We can
also observe that the correlation coefficients for set B are
higher than those for the set A. This difference was caused
by phrase-by-phrase differences in enthusiasm. Set A con-
tained only one phrase, while set B had four phrases taken
from different parts of the song. Different parts of the song
had different enthusiasm; for example, phrase B1 (the first
part) had smaller subjective evaluation values than phrase
B3 (the hook line), which matches our intuition.

Next, we investigated the relationship between “intended
enthusiasm” and “perceived enthusiasm.” In this experi-
ment, we asked singers to sing the song with two degrees

Figure 2. Correlation coefficients of the evaluations by the
number of subjects

(a) set A (b) set B

Figure 3. Average of subjective evaluation for different
singing styles (the error bars represent the standard devia-
tion)

of enthusiasm: “enthusiastic” and “normal”, to see whether
this “intended enthusiasm” could actually be perceived by
the subjects or not. To answer this question, we calculated
the average of subjective evaluation values for the two “in-
tended enthusiasm” sets. The results are shown in Figure 3.
The paired Wilcoxon-signed rank test revealed significant
differences (p<0.01) for both sets A and B, indicating that
the subjects could distinguish the “intended enthusiasm” by
listening to the voice.

Finally, we asked the subjects to describe the features
of the singing voice that they felt were relevant to the per-
ception of enthusiasm. Table 2 summarizes the features re-
ported by the subjects. As the goal of this questionnaire was
to identify acoustic features for automatically evaluating en-
thusiasm, we excluded opinions that were not related to the
acoustic aspect of singing.

4. ACOUSTIC PARAMETERS

We examined several acoustic features for automatically eval-
uating enthusiasm based on the results of the questionnaire.
The fundamental frequencies (F0) were extracted at 10-ms
intervals using The Snack Sound Toolkit [4], and converted
into log-scale (cent scale).
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loud voice
strong attack
sudden rise in loud voice
loud voice on high notes
articulated dynamics
strong articulation of each note
scooping up the pitch at the beginning
pitched on key
pitched higher than the correct note
stable pitch
voice with vibrato

enthusiastic forceful voice
shouting voice
bright voice
hoarse voice
keeping forced voice until just before the release
clearly pronounced lyrics
articulated consonants
strong breath sounds
portamento
some improvisation of rhythm
some improvisation of melody
getting into the rhythm
soft voice
monotonous voice
pitched clearly off key
pitched lower than the correct note

not forceless voice
enthusiastic dark voice

muffled voice
breathy voice
released in short
not getting into the rhythm

Table 2. Factors relevant to enthusiasm listed in the ques-
tionnaires

4.1 Examined Features

First, we focused on the loudness of the voice. Some sub-
jects reported that they felt the “loud voice” was more enthu-
siastic, although all the stimuli were normalized to the same
power. We guessed that this happened because the stimuli
had different loudness levels. As the loudness depends not
only on the power of the signal but also on its frequency, the
“loud voice” might have larger loudness even though the
physical power of all stimuli were equal. To investigate the
relationship between loudness and enthusiasm, we calculate
the A-weighted power of the stimuli, and examined a cor-
relation between the A-weighted power and the enthusiasm.
We used the A-weighted power instead of the loudness be-
cause it can be calculated more easily, and is widely used in
acoustic measurements such as sound level meters. We de-
signed an FIR filter which implements the A-weighting [6]
shown in Figure 4, and calculated the power of the signals
in dB after applying the filter.

Second, we focused on the change of power. There were
several opinions on the change of sound power, such as
“strong attack” or “strong articulation of each note.” We
examined the first derivatives of sound power (∆ power) of

Figure 4. A-weighting curve

the voices as a physical feature expressing change of sound
power, and took the maximum values for the feature. The
∆power was computed by

∆P (n) =

{
n0∑

k=−n0

P (n + k)k

}
/

n0∑
k=−n0

k2 (2)

where P (n) is the power at the n-th frame and n0 is the
number of side frames. The conditions were decided by
the preliminary experiment: the frame size was 20 ms, the
frame shift was 10 ms and the number of side frames was 4.

Third, we examined features related to F0 change at the
beginning or end of a phrase. From the questionnaire, opin-
ions concerning F0 change were observed such as “scoop-
up” pitch at the beginning of phrases. Figure 5 shows an
example of F0 with scoop-up and fall-down. Observing F0s
of recorded voices, we found some of them were scoop-
ing up at the beginning, and some were falling-down at the
end of phrases. The durations were within about 250 ms
for both, and the frequency extent was under about 2000
cent for scoop-up, and under about 900 cent for fall-down.
These features were described by Mayor et al. [1] as kinds
of singing expressions, however no researches have revealed
the relevance of the features to human perception of the
singing voice.

As an acoustic feature that expresses these kinds of F0
change, we calculated the root mean square error (RMSE)
value of F0 in regions of a constant duration, using Eq. (3):

ERMS(ts, T ) =

√√√√ 1
T

ts+T−1∑
t=ts

(Fmax(ts, T ) − F0(t))2 (3)

Fmax(ts, T ) = max
0≤t<T

F0(ts + t) (4)

where F0(t) is the fundamental frequency of the t-th frame,
ts is the beginning time of the calculation region, and T is
the length of the region. The duration T was 200 ms. Here,
a phrase is defined by a region not shorter than 500 ms with
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continuous F0. We calculate two RMSE values correspond-
ing to scoop-up and fall-down:

Eup = ERMS(tS , T ) (5)

Edown = ERMS(tE − T, T ) (6)

where tS and tE are the beginning and end of the phrase,
respectively.

Finally, we examined vibrato-related features. Vibrato
is one of the most basic features of the singing voice, and
many studies have revealed its acoustic features. The results
of the questionnaire suggested that vibrato is an important
factor relevant to human perception of enthusiasm.

To detect vibrato, we computed “vibrato likeliness” pro-
posed by Nakano et al. [2] Short-time Fourier transforma-
tion with a 32-point (320 ms) hanning window was applied
to ∆F0(t) which is the first-order finite differential of F0(t).

The amplitude spectrum X(f, t) is expected to have a
sharp peak range in the vibrato rate. Vibrato likeliness Pv(t)
is defined by Eq. (9) using the power Ψv(t) and the sharp-
ness Sv(t).

Ψv(t) =
RH∑

f=RL

X̂(f, t) (7)

Sv(t) =
RH∑

f=RL

|∆f X̂(f, t)| (8)

Pv(t) = Ψv(t)Sv(t) (9)

where X̂(f, t) is X(f, t) normalized over f , and ∆f X̂(f, t)
is the first-order derivative of X̂(f, t) with respect to f . RL

and RH are 5 and 8 Hz, respectively. Then we detect vibrato
when Pv(t) is higher than a threshold and F0(t) crosses its
regression line more than five times, as shown in Figure 6.

We derived three parameters of vibrato: (1) the rate Vr

[Hz], (2) the extent Ve [cent], and (3) the ratio of time with
vibrato in all the vocal regions Vt calculated as follows:

Vr =
1
N

N∑
i=1

1
2ri

(10)

Ve =
1
N

N∑
i=1

ei (11)

Vt =
1

tF0

N∑
i=1

ri (12)

where N , ri, and ei are as shown in Figure 6 and tF0 is the
total time of detected F0. However, if (Vr < 5 or Vr > 8) or
(Ve < 30 or Ve > 150), the values were discarded because
such values are likely to be caused by fine F0 fluctuation or
analysis error. Note that the three vibrato parameters are 0
for voices when no vibrato is detected.

Figure 5. An example of scoop-up and fall-down

Figure 6. Calculation of vibrato-related feature

4.2 Results

As an evaluation of acoustic features, we calculated the cor-
relation coefficient between individual features and the aver-
age human evaluation of enthusiasm. The results are shown
in Table 3. From these results, we picked up three features
that had relatively high correlations for both sets A and B:
A-weighted power, Edown, and Ve.

The maximum ∆power and Eup gave only low correla-
tion for set B. All of the three vibrato-related features gave
relatively high correlation because the correlation between
these three features are high (from 0.70 to 0.88), therefore
we chose only one of these features.

The A-weighted power gave the best correlation among
the examined features. From our observation, the A-weighted
power seemed to be related to the quality of voice. The voice
with high A-weighted power did not only sounded louder
but also gave a clear and rich impression. The A-weight
amplifies the frequency range around 3 kHz, which coin-
cides with the frequency of the singing formant [5]. The A-
weighted power and existence of the singing formant may
be related, but the singing formant was not necessarily ob-
served clearly in the voice even when the voice had high
A-weighted power.

5. SINGING ENTHUSIASM EVALUATION SYSTEM

5.1 System Overview

Based on the observations described in the previous section,
we constructed the Singing Enthusiasm Evaluation System
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Set A Set B B1 B2 B3 B4
A-weighted power 0.47 0.54 0.36 0.50 0.51 0.49
Max. ∆power 0.23 -0.22 0.05 0.13 -0.10 -0.09
Eup 0.20 0.07 -0.09 0.21 0.14 -0.12
Edown 0.35 0.36 0.13 0.38 0.29 0.50
Vibrato time Vt 0.37 0.30 0.42 0.25 0.30 0.36
Vibrato extent Ve 0.37 0.37 0.38 0.27 0.38 0.47
Vibrato rate Vr 0.37 0.37 0.39 0.29 0.38 0.47

Table 3. Correlation coefficients between acoustic parame-
ters and subjective evaluations

(SEES), as outlined in Figure 7. The SEES consists of three
subsystems: SEES front-end, core and back-end.

The SEES front-end consists of a high-pass filter for noise
reduction, signal power normalizer, and F0 extractor. The
SEES core is the main part of the system, and extracts the
acoustic features: the A-weighted power, the RMSE for fall-
down and the vibrato extent. The SEES back-end is the
part where final evaluation values are computed by linear
sum features. The multiplier coefficients correspond to the
weights of the features and they must be determined before-
hand. In our experiment, the coefficients were determined
by a multiple linear regression analysis on set A using the
subjective evaluation values as the response variables and
feature values as the explanatory variables.

5.2 Evaluation of the System

Finally, we evaluate the system by comparing the system’s
output with the human evaluation values. Set A was used as
a training set for determining the multiplier coefficient. We
examined both sets A and B for testing the system, which
corresponded with the closed test and open test, respectively.

The results are shown in Figure 8. The correlation coeffi-
cients between the system output and the human evaluation
were 0.60 for set A (closed test), and 0.65 for set B (open
test). We obtained good correlations not only for set A but
also for set B, so we consider the system will produce stable
evaluations for various melodies and lyrics.

6. CONCLUSIONS

In this paper we introduced “enthusiasm” as an aspect of
evaluating the singing voice for karaoke, and obtained the
following results by experiments.

First, subjective evaluations revealed that humans per-
ceive singing enthusiasm almost consistently, and listeners
can distinguish whether singers are singing enthusiastically
or not only by listening to the voice.

Second, questionnaires revealed three effective acoustic
features of voices: the A-weighted power, the RMSE for
fall-down and the vibrato extent.

Finally, we developed a singing enthusiasm evaluation

Figure 7. Overview of the SEES

(a) input: set A (closed) (b) input: set B (open)

Figure 8. Comparison of SEES output and subjective eval-
uations

system using the three features and achieved correlation co-
efficients of more than 0.6 for unknown input.

As a future work, we need to evaluate our system us-
ing various inputs such as different songs that contain more
variations of key, tempo, and genre.
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ABSTRACT

We investigate fully automatic recognition of singer traits,
i. e., gender, age, height and ‘race’ of the main performing
artist(s) in recorded popular music. Monaural source sepa-
ration techniques are combined to simultaneously enhance
harmonic parts and extract the leading voice. For evalu-
ation the UltraStar database of 581 pop music songs with
516 distinct singers is chosen. Extensive test runs with Long
Short-Term Memory sequence classification reveal that bi-
nary classification of gender, height, race and age reaches
up to 89.6, 72.1, 63.3 and 57.6 % unweighted accuracy on
beat level in unseen test data.

1. INTRODUCTION

Singer trait classification, that is, automatically recogniz-
ing meta data such as age and gender of the performing
vocalist(s) in recorded music, is currently still an under-
researched topic in music information retrieval, in contrast
to the increasing efforts devoted to that area in paralinguistic
speech processing. Speaker trait recognition is often used in
dialog systems to improve service quality [1], yet another
important area of application is forensics where it can de-
liver cues on the identities of unknown speakers [9]. Like-
wise, applications in music processing can be found in cate-
gorization and query of large databases with potentially un-
known artists – that is, artists for whom not enough reliable
training data is available for building singer identification
models as, e. g., in [12]. Robustly extracting a variety of
meta information can then allow the artist to be identified
in a large collection of artist meta data, such as the Inter-
net Movie Database (IMDB). In addition, exploiting gender
information is known to be very useful for building models
for other music information retrieval tasks such as automatic
lyrics transcription [11].
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Current research in speech processing suggests that the
automatic determination of age in full realism is challeng-
ing even in clean, spoken language [16]. On the other hand,
it is well known that age as well as body shape (height and
weight) have acoustic correlates [4,10] that can be exploited
for automatic classification [13]; additionally, it has been
shown that demographic traits including ethnicity can be de-
rived from spoken language [6]. In comparison to speech,
recognition of singer traits is expected to be an even more
challenging task due to pitch variability, influence of voice
training, and presence of multiple vocalists as well as instru-
mental accompaniment. Previous research dealt with gen-
der identification of unseen artists in recorded popular mu-
sic [17], which could be performed with over 90 % accuracy
in full realism by extracting the leading voice through an ex-
tension of non-negative matrix factorization (NMF) [3].

Still, to our knowledge, few, if any, studies exist on
recognition of other singer traits in music. Hence, we intro-
duce three new dimensions to be investigated: age, height
and race. Our annotation scheme is inspired by the TIMIT
corpus commonly used in speech processing, which pro-
vides rich speaker trait information. As such, we adopt
the term ‘race’ from the corpus’ meta-information—though
modern biology often neither classifies the homo sapiens
sapiens by race nor sub-categories for collective differen-
tiation in both physical and behavioral traits. While current
molecular biologic and population genetic research argues
that a systematic categorization may not suffice the enor-
mous diversity and fluent differences between geographic
population, it can be argued that when aiming at an end-
user information retrieval application, a classification into
illustrative, archetypal categories is desirable.

For evaluation of automatic singer-independent classifi-
cation, we extended the UltraStar database [15] with de-
tailed annotation of singer traits (Section 2). Furthermore,
we improve extraction of the leading voice by filtering of
drum accompaniment (Section 3). The classification by
Bidirectional Long Short-Term Memory Recurrent Neural
Networks (BLSTM-RNN) is briefly outlined in Section 4.
Comprehensive evaluation results are presented in Section 5
before conclusions are drawn in Section 6.
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2. ULTRASTAR SINGER TRAITS DATABASE

Our experiments build on the UltraStar database proposed
in [17] for singer-independent evaluation of vocalist gender
recognition, containing 581 songs commonly used for the
‘UltraStar’ karaoke game, corresponding to over 37 h to-
tal play time. Note that using highly popular songs is no
contradiction to the goal of recognizing unknown artists,
but rather a requirement for establishment of solid ground
truth. The database is split according to the first letter of
the name of the performer into training (A, D, G, . . . ), de-
velopment (B, E, H, . . . ) and test partitions (0-9, C, F, . . . ).
The ground truth tempo is provided and lyrics are aligned to
(quarter) beats. The annotation of the database was substan-
tially extended beyond gender information: The identity of
the singer(s) was determined at beat level wherever possible.
This is particularly challenging in case of formations such
as ‘boy-’ or ‘girl-groups’, in which case the ‘singer diariza-
tion’ (alignment of the singer identity to the music) was de-
termined from publicly available music videos. Then, infor-
mation on gender, height, birth year and race of the 516 dis-
tinct singers present in the database was collected and multi-
ply verified from on-line textual and audiovisual knowledge
sources, including IMDB, Wikipedia and YouTube. All an-
notation was performed by two male experts for popular mu-
sic (24 and 28 years old).

In a multitude of cases, two or more singers are singing
simultaneously. In [17], which only dealt with gender recog-
nition, the case that male and female vocalists are singing in
‘duet’ was treated as a special case, where the corresponding
beats were excluded from further analysis. To extend this
paradigm to the now multi-dimensional annotation, we de-
rived the following scheme: For nominal traits (gender and
race), the beats were marked as ‘unknown’ unless all simul-
taneously present artists share the same attribute value. For
continuous-valued traits (age and height), the average value
was calculated, since in formations the individual artists’
traits are usually similar. This procedure was also followed
to treat performances of formations where an exact singer
diarization could not be retrieved, by assuming presence of
an ‘average singer’ throughout. In case that the desired at-
tribute is missing for at least one of the performing vocalists,
the corresponding beats were marked as ‘unknown’.

The distribution of gender and race among the 516
singers are shown in Figures 1a and 1b. Age (Figure 1c)
and height (Figure 1d) are shown as box-and-whisker plots
where boxes range from the first to the third quartile and
all values that exceed that range by more than 1.5 times the
width of the box are considered outliers, depicted by cir-
cles. Unlike gender, height, and race, the age distribution
can only be given on beat level since age is not well defined
per artist (due to different recording dates) nor per song (due
to potentially multiple singers per song). The continuous-
valued attributes height and age were discretized to ‘short’

# beats train devel test Σ

no voice (0) 90 076 75 741 48 948 214 765
gender

female (f) 32 308 23 071 9 739 65 118
male (m) 55 505 49 497 37 686 142 688
? 86 253 771 1 110

race
white (w) 67 525 62 003 40 479 170 007
b/h/a 16 378 9 465 7 136 32 979
? 3 996 1 353 581 5 930

age
young (y) 48 510 42 056 25 682 116 248
old (o) 34 074 24 596 18 712 77 382
? 5 315 6 169 3 802 15 286

height
short (s) 29 638 24 946 8 562 63 146
tall (t) 30 177 30 146 23 452 83 775
? 28 084 17 729 16 182 61 995
Σ 177 975 148 562 97 144 423 681

Table 1: Number of beats per trait, class and set (train /
devel /test) in the UltraStar singer trait database. ‘b/h/a’:
black / hispanic / asian. ‘Unknown’ (?) includes simultane-
ous performance of artists of different gender / race, as well
as those with unknown ground truth.

(s, < 175 cm) and ‘tall’ (t, ≥ 175 cm), respectively ‘young’
(y, < 30 years) and ‘old’ (o, ≥ 30 years); the thresholds
are motivated by the medians of the traits (175 cm resp.
28 years) to avoid sparsity of either class. For race, the pro-
totypical classes ‘White’, ‘Black’, ‘Hispanic’ and ‘Asian’
were annotated. The smaller classes ‘Black’, ‘Hispanic’ and
‘Asian’ were subsumed due to great sparsity of ‘Hispanic’
and ‘Asian’ singers: Our goal is to evaluate our system on all
data for which a ground truth is available. ‘Unknown’ beats
are excluded from further analysis. From the manual singer
diarization and collection of singer meta data, the beat level
annotation is generated automatically, resulting in the num-
ber of beats and according classification tasks shown in Ta-
ble 1. To foster further research on the challenging topics
introduced in this paper, the annotation (singer meta-data,
voice alignments, song list with recording dates and parti-
tioning) is made publicly available for research purposes at
http://www.openaudio.eu.

3. MONAURAL SOURCE SEPARATION METHODS

A major part of our experiments is devoted to finding the
optimal preprocessing by source separation for recognition
of vocalist gender, age, height and race. To this end, we in-
vestigate harmonic enhancement as in [8,17] and extraction
of the leading voice as in [3], as well as a combination of
both.
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Figure 1: Distribution of gender, race, and height among 516 singers in the UltraStar Singer Trait Database. Distribution of
age is shown on beat level, since it is dependent on recording date.

3.1 Enhancement of Harmonic Parts

Enhancement of harmonic parts is performed following
[17]. It is based on a non-negative factorization of the mag-
nitude spectrogram obtained by Short-Time Fourier trans-
form (STFT) that is computed using a multiplicative up-
date algorithm for NMF minimizing the Kullback-Leibler
divergence. We then use a Support Vector Machine (SVM)
to discriminate between components (spectra and their
time-varying gains) corresponding to percussive or non-
percussive signal parts. The classifier is trained on a man-
ually labeled set of NMF components extracted from popu-
lar music as described in [15]. The features for discrimina-
tion of drum and harmonic components exactly correspond
to those used in [15]. For straightforward reproducibility
of our experiments, we used the default parameters of the
publicly available 1 drum beat separation demonstrator of
the source separation toolkit openBliSSART [18]: frame
rate 30 ms, window size 60 ms, and 100 iterations. 50 NMF
components are used; for 20 components thereof, the spec-
tral shape w is pre-initialized from typical drum spectra de-
livered with the openBliSSART demonstrator. To allow the
algorithm to use different sets of components for the indi-
vidual sections of a song, chunking into frame-synchronous
non-overlapping chunks is performed as in [17].

3.2 Leading Voice Separation

The second method used to facilitate singer trait identifi-
cation is the leading voice separation approach described
in [2, 3]. In this model, the STFT of the observed signal
at each frame is expressed as the sum of STFTs of vocal and
background music signals. These are estimated by an unsu-
pervised approach: The voice STFT is modelled as product
of source (periodic glottal pulse) and filter STFTs while no

1 http://openblissart.github.com/openBliSSART

specific constraints are set for the background music signal
because of its wide possible variability. The estimation of
the various model parameters is then conducted by iterative
approaches based on NMF techniques following a two step
strategy. The first step provides an initial estimate of the pa-
rameters while the second step is a constrained re-estimation
stage which refines the leading melody estimation and in
particular limits sudden octave jumps that may remain after
the first estimation stage. To ensure best reproducibility of
our results, we used an open-source implementation 2 of the
algorithm with default parameters. Chunking was applied as
in [17].

3.3 Combined Source Separation Approaches

When the algorithm described in the last section is applied
to popular music, it turns out that part of the drum track
may remain after separation. Hence, for this study, we con-
sidered cascading of both separation techniques: harmonic
enhancement after leading voice separation (LV-HE), and
vice versa (HE-LV). Thereby time domain signals are syn-
thesized inbetween the two separation stages, in order to be
able to use different NMF parameterizations for both algo-
rithms.

4. EXPERIMENTAL SETUP

4.1 Acoustic Features

The features exactly correspond to those used in [15] and
were extracted for each beat using the open-source toolkit
openSMILE [5]. We consider the short-time energy, zero-,
and mean-crossing rate known to indicate vocal presence. In
addition we extract values from the normalized autocorrela-
tion sequence of the DFT coefficients, namely voicing prob-
ability, F-zero and harmonics-to-noise ratio (HNR). F-zero

2 Software available at http://www.durrieu.ch/phd/software.html
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is the location of the highest peak of the autocorrelation se-
quence aside from the maximum at zero. HNR is computed
by the value of this peak. Pitch and voice quality parame-
ters have been successfully used in paralinguistic informa-
tion assessment from speech [16]. We further calculate Mel
frequency cepstral coefficients (MFCC) 0–12 and their re-
spective first-order delta regression coefficients which are
known to capture the characteristic qualities of individual
voices for singer identification [12]. Thus, altogether we
employ a set of 46 time-varying features. The employed
configuration of the openSMILE toolkit is provided for fur-
ther reproducibility at http://www.openaudio.eu.

4.2 Classification by BLSTM-RNN

As in [17], sequence classification with Bidirectional Long
Short-Term Memory (BLSTM) recurrent neural networks
(RNNs) has been observed greatly superior to beat-wise
static classification by SVMs or Hidden Naive Bayes on the
vocalist gender recognition task (90.77 % beat level accu-
racy on original signals vs. 72.78 % resp. 76.17 %), we opt
for this classifier for our study. BLSTM-RNNs unite the
concept of bidirectional RNNs (BRNNs) with Long Short-
Term Memory (LSTM) [7]. BRNNs use two separate hid-
den layers instead of one, both connected to the same input
and output layers, of which the first processes the input se-
quence forwards and the second backwards. The network
therefore always has access to the complete past and the fu-
ture context in a symmetrical way. Consequently, it must
have the complete input sequence at hand before it can be
processed; however, this is not a restriction in the context of
our application. In short, the LSTM concept allows the net-
work to access potentially unlimited range of context, and
to learn when to store, use, or discard information acquired
from previous inputs or outputs. This makes (B)LSTM-
RNNs useful for sequence classification tasks where the re-
quired amount of context is unknown a priori.

4.3 BLSTM Topology and Training

We trained individual BLSTM networks for each classifi-
cation task. As in [17], the networks had one hidden layer
with 80 LSTM memory cells for each direction. The size
of the input layer was equal to the number of features (46),
while the size of the output layer was equal to the number
of classes to discriminate (2–3). Its output activations were
restricted to the interval [0; 1] and their sum was forced to
unity by normalizing with the softmax function. Thus, the
normalized outputs represent the posterior class probabil-
ities. The songs in the test set were presented frame by
frame (in correct temporal order) to the input layer, and each
frame was assigned to the class with the highest probability
as indicated by the output layer. For network training, su-
pervised learning with early stopping was used as follows:

We initialized the network weights randomly from a Gaus-
sian distribution (µ = 0, σ = 0.1). Then, each sequence
(song) in the UltraStar training set was presented frame by
frame to the network. To improve generalization, the or-
der of the input sequences was determined randomly, and
Gaussian noise (µ = 0, σ = 0.3) was added to the input
activations. The network weights were iteratively updated
using resilient propagation [14]. To prevent over-fitting, the
performance (in terms of classification error) on the valida-
tion set was evaluated after each training iteration (epoch).
Once no improvement over 20 epochs had been observed,
the training was stopped and the network with the best per-
formance on the validation set was used as the final network.
As the race recognition problem is particularly unbalanced,
slight modifications were employed for the training proce-
dure: A fixed number of 20 epochs was run to avoid over-
fitting to the validation set, and the standard deviation of
the Gaussian noise on the input activations was increased to
σ = 0.9.

5. RESULTS

Our primary measure for evaluating performance of au-
tomatic singer trait recognition is unweighted accuracy
(UA)—i. e., the average recall of the classes—on beat level.
Due to class imbalance (Table 1) it represents the discrim-
ination power of the classifier more closely than ‘conven-
tional’ weighted accuracy (WA) where recalls of the classes
are weighted with their a-priori probabilities. Note that both,
random guessing or always picking the majority class would
achieve a UA of 33.33 % in ternary and 50.00 % in binary
classification tasks.

5.1 Results on Beat Level

In order to highlight the difficulty of the evaluated singer
trait recognition tasks in full realism, we first evaluated the
BLSTM-RNN on the task to recognize the presence of a
singer. It turns out that this can be done with over 75 %
UA when using the leading voice extraction – note that this
algorithm usually extracts the leading instrument when no
voice is present, hence the task remains non-trivial. Best re-
sults on the 2-class gender recognition task are obtained by
the proposed combination of source separation algorithms
(LV-HE, 89.61 % UA) while in the 3-class task, best UA is
achieved by the LV algorithm alone (69.29 % UA). Notably,
this is higher than it would be expected if accuraries of voice
activity and 2-class gender recognition were independent. 2-
class recognition of race delivers up to 63.30 % UA when
including HE preprocessing, while LV alone downgrades
performance compared to the original. Furthermore, we ob-
serve that height recognition can be robustly performed at
up to 72.07 % UA when using HE-LV preprocessing, which
boosts the UA by over 7 % absolute compared to no pre-
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Preprocessing
[%] – HE LV LV-HE HE-LV
task classes UA WA UA WA UA WA UA WA UA WA
voice 0/1 74.55 74.50 73.82 73.84 75.77 75.81 75.40 75.41 75.09 75.11
gender 0/m/f 63.75 68.54 65.65 68.91 69.29 71.31 67.90 70.41 68.52 70.44

m/f 86.67 91.09 88.45 91.91 86.93 91.12 89.61 93.60 87.76 92.50
race 0/w/b+h+a 48.17 63.84 47.46 63.02 49.37 65.46 49.23 63.63 48.40 63.77

w/b+h+a 60.44 65.82 63.30 76.98 55.05 76.18 62.57 78.67 62.78 75.16
age 0/y/o 51.02 57.61 50.00 57.14 53.50 59.85 51.26 58.86 50.01 57.72

y/o 55.30 55.60 57.55 56.56 53.93 53.63 55.97 54.89 54.69 54.17
height 0/s/t 53.94 66.79 52.35 66.57 58.15 69.30 57.67 68.41 58.91 69.53

s/t 64.70 72.73 62.31 70.67 66.54 73.00 69.65 77.49 72.07 78.26

Table 2: Beat-wise BLSTM-RNN classification of UltraStar test set on 2- and 3-class tasks. Preprocessing: HE = harmonic
enhancement (Section 3.1); LV = leading voice extraction (Section 3.2); LV-HE: HE after LV; HE-LV: LV after HE.

Preprocessing
[%] – HE LV LV-HE HE-LV
task vote on UA WA UA WA UA WA UA WA UA WA
gender 0/m/f 80.9 87.0 81.7 85.6 87.7 90.9 91.3 92.4 87.7 90.9

m/f 86.9 90.1 89.0 90.9 87.7 90.9 89.6 93.9 89.6 93.9
race 0/w/b+h+a 49.8 78.8 53.5 79.7 51.0 78.2 54.0 75.2 48.9 72.2

w/b+h+a 52.8 59.8 62.6 75.9 54.7 73.7 64.4 78.9 61.7 74.4
age 0/y/o 55.2 54.5 54.6 54.1 56.0 54.1 56.9 57.4 50.9 51.6

y/o 54.5 54.5 57.0 55.7 52.2 51.6 53.4 52.5 58.9 58.2

Table 3: Song-wise BLSTM-RNN predictions on UltraStar test set by beat-wise majority vote. Vote among 3-class tasks
(ignoring beats not classified as 0) or 2-class tasks. Height is not included due to the low number of songs (88) with known
ground truth. Preprocessing as in Table 2.

processing. Finally, up to 57.55 % UA are achieved in age
recognition when using HE; while this is clearly below typ-
ical results on spoken language, it is significantly above
chance level (50 % UA) according to a z-test (p < .001).

5.2 Results on Song Level

As a performance estimate for ‘tagging’ entire songs, we
calculated for each scenario the accuracies of majority vote
on beat level compared with the most frequent ground truth
class on beat level. Note that such measurements are more
heuristic in nature, since a song level ground truth cannot
always be established due to typical phenomena in real-life
music such as alternating male / female vocalists. To briefly
comment on the results, song level gender can be recognized
with up to 91.3 % UA, race with 64.4 % UA and age with
58.9 % UA. For gender, estimation from the vote on all (not
only voiced) beats seems to be even more robust than votes
on the 2-class beat level task. LV-HE preprocessing delivers
overall best results.

5.3 Discussion and Outlook

For race, an interdependency with genre could be assumed;
however, the fact that source separation generally improves
the result over the original music suggests that genre is not
the primary information learned by the classifier. Further-
more, genres typically associated with non-white singers
such as hip hop are very sparsely represented in the Ul-
traStar database, which is originally intended for karaoke
applications. Still, the very robust recognition of height is
clearly correlated with robust gender identification, as tall
female singers are sparse in the considered data set.

Compared to ‘usual’ results obtained on spoken lan-
guage, accuracies of age recognition are rather low; the task
seems to be especially challenging on the considered type of
‘chart’ popular music with a prevalence of singers in their
twenties. At least, when using gender-dependent models for
age, 61.63 % UA could be achieved for males; for females
there is not enough training data.

A promising direction for further research may be to in-
vestigate different units of analysis, such as longer-term sta-
tistical functionals that are commonly used in paralinguistic
information retrieval from speech [16], instead of recogni-

41



Oral Session 1: Melody and Singing

tion at the beat level. Still, this is not fully straightforward
due to the feature variation, especially for pitch, which will
necessitate methods for robust pitch estimation and transfor-
mation.

6. CONCLUSIONS

Inspired by previous successful studies on vocalist gender
recognition, we introduced fully automatic assessment of
new paralinguistic traits (age, height and race) in a large col-
lection of recorded popular music. While we could also im-
prove gender recognition close to perfection even on beat
level (up to 93.60 % WA on unseen test data), foremost
we have shown feasibility of race and height classification
in full realism. Even in chart music with a prevalence of
singers from 20–30 years, age recognition could be per-
formed significantly above chance level; still, when aiming
at real-life applications new directions in research must be
taken.

Future work should primarily focus on more variation in
data (particularly concerning age and race) by not only in-
cluding chart music, but also jazz and non-Western music.
Furthermore, we will investigate multi-task learning to ex-
ploit singer trait interdependencies in learning.
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Richard and Jean-Louis Durrieu for their highly valuable
contributions.

8. REFERENCES

[1] F. Burkhardt, R. Huber, and A. Batliner. Application
of speaker classification in human machine dialog sys-
tems. In Christian Müller, editor, Speaker Classification
I: Fundamentals, Features, and Methods, pages 174–
179. Springer, 2007.

[2] J.-L. Durrieu, G. Richard, and B. David. An iterative ap-
proach to monaural musical mixture de-soloing. In Proc.
of ICASSP, pages 105–108, Taipei, Taiwan, 2009.

[3] J.-L. Durrieu, G. Richard, B. David, and C. Févotte.
Source/filter model for unsupervised main melody ex-
traction from polyphonic audio signals. IEEE Trans-
actions on Audio, Speech, and Language Processing,
18(3):564–575, 2010.

[4] S. Evans, N. Neave, and D. Wakelin. Relationships be-
tween vocal characteristics and body size and shape
in human males: An evolutionary explanation for a
deep male voice. Biological Psychology, 72(2):160–
163, 2006.

[5] F. Eyben, M. Wöllmer, and B. Schuller. openSMILE –
the Munich versatile and fast open-source audio feature
extractor. In Proc. of ACM Multimedia, pages 1459–
1462, Florence, Italy, October 2010. ACM.

[6] D. Gillick. Can conversational word usage be used to
predict speaker demographics? In Proc. of Interspeech,
pages 1381–1384, Makuhari, Japan, 2010.

[7] A. Graves. Supervised sequence labelling with recur-
rent neural networks. PhD thesis, Technische Univer-
sität München, 2008.

[8] M. Helén and T. Virtanen. Separation of drums from
polyphonic music using non-negative matrix factoriza-
tion and support vector machine. In Proc. of EUSIPCO,
Antalya, Turkey, 2005.

[9] M. Jessen. Speaker classification in forensic phonetics
and acoustics. In C. Müller, editor, Speaker Classifica-
tion I, volume 4343, pages 180–204. Springer Berlin /
Heidelberg, 2007.

[10] R. M. Krauss, R. Freyberg, and E. Morsella. Inferring
speakers physical attributes from their voices. Journal of
Experimental Social Psychology, 38(6):618–625, 2002.

[11] A. Mesaros and T. Virtanen. Automatic recognition of
lyrics in singing. EURASIP Journal on Audio, Speech,
and Music Processing, 2009. Article ID 546047.

[12] A. Mesaros, T. Virtanen, and A. Klapuri. Singer identi-
fication in polyphonic music using vocal separation and
pattern recognition methods. In Proc. of ISMIR, pages
375–378, 2007.

[13] I. Mporas and T. Ganchev. Estimation of unknown
speakers height from speech. International Journal of
Speech Technology, 12(4):149–160, 2009.

[14] M. Riedmiller and H. Braun. A direct adaptive method
for faster backpropagation learning: the RPROP algo-
rithm. In Proc. of IEEE International Conference on
Neural Networks, pages 586–591, 1993.

[15] B. Schuller, C. Kozielski, F. Weninger, F. Eyben, and
G. Rigoll. Vocalist gender recognition in recorded pop-
ular music. In Proc. of ISMIR, pages 613–618, Utrecht,
Netherlands, August 2010.

[16] B. Schuller, S. Steidl, A. Batliner, F. Burkhardt, L. Dev-
illers, C. Müller, and S. Narayanan. The INTER-
SPEECH 2010 Paralinguistic Challenge. In Proc. of
INTERSPEECH, pages 2794–2797, Makuhari, Japan,
September 2010. ISCA.

[17] F. Weninger, J.-L. Durrieu, F. Eyben, G. Richard,
and B. Schuller. Combining Monoaural Source Separa-
tion With Long Short-Term Memory for Increased Ro-
bustness in Vocalist Gender Recognition. In Proc. of
ICASSP, Prague, Czech Republic, 2011.

[18] F. Weninger, A. Lehmann, and B. Schuller. openBliS-
SART: Design and Evaluation of a Research Toolkit for
Blind Source Separation in Audio Recognition Tasks. In
Proc. of ICASSP, Prague, Czech Republic, 2011.

42



12th International Society for Music Information Retrieval Conference (ISMIR 2011)
  
 

A PERPLEXITY BASED COVER SONG MATCHING SYSTEM 
FOR SHORT LENGTH QUERIES 

Erdem Unal1 Elaine Chew2 Panayiotis Georgiou3 Shr ikanth S. Narayanan3 

1TÜBİTAK BİLGEM 

2Queen Mary, University of London 

3University of Southern California 

1unal@uekae.tubitak.gov.tr  
2elaine.chew@eecs.qmul.ac.uk 
3{georgiou,shri}@sipi.usc.edu 

 
ABSTRACT 

A music retrieval system that matches a short length music 
query with its variations in a database is proposed. In order 
to avoid the negative effects of different orchestration and 
performance style and tempo on transcription and match-
ing, a mid-level representation schema and a tonal model-
ing approach is used. The mid-level representation ap-
proach transcribes the music pieces into a sequence of mu-
sic tags corresponding to major and minor triad labels. 
From the transcribed sequence, n-gram models are built to 
statistically represent the harmonic progression. For re-
trieval, a perplexity based similarity score is calculated be-
tween each n-gram in the database and that for the query.  
The retrieval performance of the system is presented for a 
dataset of 2000 classical music pieces modeled using n-
grams of sizes 2 through 6.  We observe improvements in 
retrieval performance with increasing query length and n-
gram order. The improvement converges to a little over one 
for all query lengths tested when n reaches 6. 

1. INTRODUCTION 
Due to advances in computer and network technologies, the 
development of efficient multimedia data storage and re-
trieval applications have received much attention in recent 
years. In the music domain, motivations for such systems 
can vary from industry objectives such as royalty rights 
management to individual use such as personal database 
organization, music preference list creation, etc.  Due to the 
wide range of expressive and instrumental variations possi-
ble in music pieces, in order for such systems to have the 
necessary performance reliability as to be useful in the in-
dustrial domain, music variation matching must be ad-
dressed. A number of challenges such as feature extraction, 
representation, tempo and key variability, need to be han-
dled with high precision in order to achieve reasonable per-
formances.  

To eliminate the kinds of differences caused by expres-
sive variations or instrumental arrangements of the same 
music piece, researchers have focused on accurately ex-

tracting the types of musical content in which such varia-
tions have minimal or no effect.  

A considerable amount of research focused on the tran-
scription of music signal to MIDI or piano roll representa-
tion for accurate understanding of the note sequence of the 
music. Numerous researchers have modeled sound events 
with known machine learning techniques, in order to detect 
musical notes and their onset and offset times [1,2,3,4 and 
5]. Their results are promising, although not accurate 
enough to provide an extension to a general solution for 
music variations matching.  

Since accurate transcription of multi channel audio is not 
easy, a mid level representation of music is desired. Recent 
research attempts in [6,7 and 8] showed that different repre-
sentation techniques such as extracting the salient melody 
or a chord progression from the music piece could be a 
feasible solutions for polyphonic representation since har-
monic structure tends note to change dramatically with ex-
pressive and instrumental deviations.  

On the other hand, some researchers focused on extract-
ing fingerprints that carry information about the acoustic 
feature distribution of the music piece over time. [9 and 10]  
used chroma based features to directly represent music 
pieces, without labeling and used simple cross correlation 
of chroma vectors for measuring similarity. Kim also 
adopted delta features that represent general movement in 
the harmonic structure of music pieces for more accurate 
representation and retrieval [11].  

Pickens et. al [13] used existing polyphonic transcription 
systems in the literature to abstract note features from mu-
sic audio. The transcription was then mapped to the har-
monic domain. A bi-gram (2-gram) representation, namely 
a 24 × 24 triad (three-note chord) transition matrix was 
used to represent both the query and the music pieces in the 
database. A distance metric between an input transition ma-
trix and the transition matrices available in the database 
was calculated to determine similarity.  

Our study differs from other researchers' who use some 
kind of mid level representation in the similarity metric we 
use, and in that we use a sliding window approach in our 
transcription independent of the exact locations of note on-
sets and offsets. While our strategy loses note level details 
in the audio, it makes our representation more robust to 
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note transcription errors.  In contrast to the retrieval me-
thods reported in  [12 and 13] we tested our model on not 
only bi grams but also higher order n-grams, for n up to and 
including 6, and observed a major boost in the retrieval per-
formance with increasing Markov chain order.   

In later studies, Lavrenko & Pickens [14] used random 
fields to model polyphonic music pieces from MIDI files. 
Using random fields, they automatically induced new high 
level features from the music pieces, such as consonant and 
dissonant chords, progressions and repetitions, to efficiently 
model polyphonic music information.  

The F-measure, Correct Retrieval Accuracy, and Mean 
Reciprocal Rank are used to measure the performance of 
the systems available in the literature. The reported results 
vary with respect to the database selected, its size and the 
complexity of the variations available. Since the algorithms 
used are generally computationally expensive, the experi-
mental databases tend not to be larger than a couple of 
thousand songs. For a more detailed overview of the sys-
tems available in the literature, please refer to [18].   

Most systems, including the ones described above, were 
designed assuming the availability of the entire query and 
target songs from beginning to end. To our knowledge, no 
tests were reported when only short length queries are 
present. In this work, a mid level tonal representation of 
audio and a statistical tonal modeling method for perform-
ing retrieval of short length audio queries is proposed.  

In order to ensure robust transcription against musical 
variations, a 3 dimensional Tonal Space (TS), a toroidal 
version of the Spiral Array model [15] is used. The details 
are explained in Section 2. 12 dimensional Pitch Class Pro-
file (PCP) features are mapped onto the TS and a centroid 
(center of weight) is calculated in order to find the repre-
sentative position of each audio frame in 3D space. A 1-
nearest neighborhood classifier is used for identifying the 
centroids of each frame with respect to triad chord classes. 
A key and tempo invariant time series of triad chord labels 
are then acquired, from which we derive n-gram representa-
tions of each music piece in the database. The similarity 
between the extracted triad series and the n-gram models is 
calculated using the perplexity measure. The flowchart of 
the proposed system can be seen in Figure 1. The paper 
concludes with the explanation of the experimental setup, 
the results and the discussion on future work. 
 

 
Figure 1. Flowchart for the proposed system.  

2. TONAL MUSIC SPACE 

There exists an illustrious history of mathematical and mu-
sic theoretic work on geometric modeling of tonal relation-
ships between pitches, intervals, chords, and keys. A re-
view of these models can be found in [16].  

We use a toroidal version of the Spiral Array for a num-
ber of reasons.  We are interested in a flexible tonal repre-
sentation that combines different tonal features in the same 
space.  The Spiral Array clusters tonal objects that are 
harmonically close; this is especially important for robust 
analysis of audio without exact transcription. 

The model consists of a series of nested helices in three-
dimensional space. The outermost spiral consists of pitch 
classes that form the line or circle of fifths. Pitch classes 
are placed at each quarter turn of the spiral, so that vertical-
ly aligned pitch classes are a major third apart. This net-
work of pitches is identical to the neo-Riemannian tonnetz 
shown in Figure 2. Pitch classes that are in the same triads 
are closely clustered, as are those that are in the same key. 
Chord representations are generated as weighted combina-
tions, a kind of centroid, of their component pitch classes, 
and key representations are constructed from their I, IV, 
and V chords. The details and applications of the Spiral 
Array model are explained in [15][17]. 

 
Figure 2. The tonnetz. Perfect 5th, Major 3rd and Minor 
3rd distances 

The Spiral Array model assumes a cylindrical form to 
preserve enharmonic spellings. In contrast, we wrap the 
model into a torus so as to ignore pitch spelling. The result-
ing pitch class torus is shown in Figure 3. The 24 chord 
representations are then defined by constructing the trian-
gle outlined by each chord’s root, fifth, and third, and cal-
culating the centroid of these vertex points. A chord repre-
sentation is illustrated in Figure 3. While the toroid model 
no longer has the same kinds of symmetries and invariance 
in the cylindrical model, the chord and key regions remain 

44



12th International Society for Music Information Retrieval Conference (ISMIR 2011)  
 

sufficiently distinct for geometric discrimination between 
different chords.  

 
Figure 3. Tonal Space: positions of the 12 pitch classes and 
construction of the C Maj triad chord using C, G and E. 
 

3. FEATURE EXTRACTION 

As discussed earlier, to overcome the effects of incorrect 
transcription, we use a mid level transcription approach for 
the transcription task. The goal is to accurately label each 
frame of music audio with major or minor triad chords.  For 
this, we use the tonal space described in Section 2. We now 
present our feature extraction process.  This process is out-
lined in the top row of boxes in Figure 1. 

Audio Input Frames: 250 ms audio frames with 90% 
overlap is used. A large window with a wide margin of 
overlap is preferred because our goal is to track the general 
harmonic movement and not instantaneous local changes 
that would be expected to be sensitive to variations in in-
struments and expression and thus pose problems for the 
retrieval system’s similarity calculations.  

Pitch Class Profile: 12 dimensional Pitch Class Profile 
(PCP) features are collected from each audio frame. The 
pitch classes extracted range from A0 (27.5 Hz) to A7 
(3520 Hz). From the PCP's, the note weights are mapped to 
pitch class positions in the tonal space, and a centroid is 
calculated in 3D space as shown in Fig 4 (red star).  

Chord Labels: The centroid derived in the fashion de-
scribed above represents a kind of tonal center of the par-
ticular frame. The system aims to capture and record the 
movement of centroids, after they are marked with the most 
appropriate chord label. First, the system classifies the  cen-
troid as one of the triads located in the Tonal Space, using a 
straightforward 1-NN algorithm, like in [15]. The classifi-
cation boundaries are not calculated from training data, but 
deterministically defined as described in Section 2. This 
transcription strategy compensates for variations in spectral 
characteristics and intensity levels when the same notes and 
harmonies are played on different instruments.  

4. N-GRAM MODEL OF HARMONIC SEQUENCES 

We use n-grams to model the harmonic progressions of the 
music pieces. The output of the feature extraction process is 
an L length chord sequence. We describe here the normali-

zation process to make the sequence tempo and key inva-
riant. Such normalization is required because the queries 
and the matching music in the database may be in different 
keys and tempi.  

To ensure key invariance, relative chord changes are ex-
tracted from the transcribed sequence, an approach that has 
also been used by other researchers [19].   

 

 
Figure 4. Mapping from PCP to the Tonal Space. Calcula-
tion of the tonal centroid and its distance to the triad chords. 

Since the window length and overlap rate is high (250ms 
and 90%, respectively), the transcription of the harmonic 
progression contains many chord repetitions. We remove 
these repetitions so as to focus on harmonic changes, rather 
than harmonically stable parts of the music sequence. By 
doing so, tempo variations are also eliminated. The result-
ing harmony sequences thus carry more distinct informa-
tion about the harmonic progression.  

In our experiments, n-grams were selected for modeling 
harmonic progressions. Results for different n-grams are 
reported in Section 6.  The audio coverage range of a 6-
gram in our experiments is between 0.8 seconds and 2.3 
seconds. On average 1.5 seconds of music audio is 
represented by a 6-gram feature set.  

To enable the efficient use of this strategy, smoothing of 
the n-gram models is required. Smoothing is widely used to 
eliminate computational problems caused by non-existing 
n-grams in natural language processing applications. A 
Universal Background Model (UBM) is produced using the 
entire music database and mixed with each individual n-
gram model using a low weight for smoothing (0.9 vs 0.1). 
Finally, the collection of the smoothed  n-grams constitutes 
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our database. We use the SRILM toolkit [20] to create the 
n-gram models, to perform smoothing, and to evaluate the 
model. 

5. RETRIEVAL METHOD 

We use the perplexity measure to evaluate the similarity 
between the n-gram model of each music piece in the data-
base and that of the short-length query sequence. The per-
plexity measure gives the likelihood the query was generat-
ed by a specific probability distribution, namely one of the 
n-gram harmonic progression models in the database.  

The perplexity of a discrete probability distribution p can 
be defined as: 

, 

where H(p) is the entropy of the distribution. Suppose p is 
unknown. One can model the unknown distribution p using 
a training sample drawn from p. Given a proposed model q, 
one can evaluate how successfully q predicts the sample set 
{x1,x2, x3, ... xN} drawn from p using the perplexity meas-
ure.  The perplexity of the model q can be defined as: 
 

.
 

A model q that better predicts the unknown distribution p 
gives higher probabilities of q(xi), which leads to lower 
perplexity.  

Our system first builds n-gram models of the query and 
of each piece in the database. It then uses the perplexity 
measure to determine which of the harmonic progression 
models of the pieces in the database best fits the query se-
quence.   The system then returns an N-best list of the most 
likely candidates.  

6. EXPERIMENTS 

A list of 1000 classical music pieces from famous compos-
ers is selected. For each piece in the list, 2 recordings are 
acquired (one termed the “original” and the other a varia-
tion). The variation can be a different instrumental ar-
rangement of the piece or a recording of the same piece by 
another artist. We replace the ones for which we cannot 
find an additional audio recordings (CD or mp3) with audio 
synthesized from the MIDI version as the variation (about 
250 such MIDI variations are created).  All files are con-
verted to 16 kHz 16-bit wav format. All 2000 files (1000 
originals and 1000 variations) are converted to strings of 
chord labels using the method explained in Section 3. The 
original recordings are used to train n-gram harmonic pro-
gression models that constitute the database. The short 
length test queries are extracted from random parts of each 
music piece. For each of the query pieces, the system aims 
to retrieve the original recording of the target piece in the 
N-best list.  

 
  Length of the query 
  15s 25s 35s Full 
Top-1 
match 

Accuracy 37.6 41.6 42.9 51.6 
MRR - - - - 

Top-5 
match 

Accuracy 55.8 57.4 59.6 63.7 
MRR 60.4 63.6 67.4 70.1 

Top-20 
match 

Accuracy 56.8 59.6 62.6 71.5 
MRR 71.8 75.4 73.2 79.8 

Table 2. Retrieval results (%) for the 6-gram model over 
different query lengths. 

 

 

 
Figure 5: Graph showing the effect of query length on the 
top-N match correct retrieval accuracy for N = 1, 5, and 20 
(actual numbers given in Table 2). 
 

Alongside the N-best list scores, the Mean Reciprocal 
Rank (MRR) measure, which gives the average rank of the 
correct matches in the top-N retrieved results (by percen-
tage), are also calculated. Table 2 shows the retrieval re-
sults for the 6-gram model as it varies with different query 
lengths and different N-best list lengths. The numbers are 
graphed in Figure 5.  

One can see from the results that one of the main deter-
minants of retrieval performance is the length of the query. 
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Since the system retrieves similar songs based on the rela-
tive frequency of n-length subsequences, the longer the 
query, the more its n-gram model resembles that of the tar-
get song.  The number of distinct harmonic progressions 
that identifies the target song is also directly increased with 
query length.  
 

 Length of the query 
  15s 25s 35s full 

n = 6 37.6 41.6 42.9 51.6 
n = 5 36.4 40.2 40.9 49.7 
n = 4 32.5 35.4 37.1 43.4 
n = 3 28.8 35 36.2 42.3 
n = 2 22.6 30.2 33.1 40.2 

Table 3. Top-1 match retrieval accuracy (%) over different 
order n-gram models and different query lengths. 

 
Figure 6: Graph showing the effect of query length and n-
gram size on the top-1 match correct retrieval accuracy (ac-
tual numbers given in Table 3). 
 

Table 3 and Figure 6 present results for different length 
n-grams. It illustrates how the use of higher order n-grams 
(n>2) boosts the system’s performance. For all query 
lengths, larger n-grams yield better results. For all n, longer 
queries yield higher accuracies.  

 

 
Figure 7: Graph of retrieval accuracy ratios as n is in-
creased by one. 

 
Figure 7 shows the graph of the accuracy ratios (an indi-

cator of performance improvement) as the n-gram order is 
increased by one. All numbers are above one, indicating 

that performance improves by increasing the n-gram order. 
It is interesting to note that the ratio of the accuracy for n = 
6 over that for n = 5 converges between 1.03 and 1.05 for 
all query lengths. As shown by these numbers, the perfor-
mance difference between 5-grams and 6-grams is small 
with respect to accuracy. This may be because 5-grams be-
come sufficiently sparse for capturing the unique harmonic 
features of the music pieces. Thus, building 6-gram and 
higher models will likely not have a strongly positive effect 
on retrieval performance for this particular dataset. The tra-
deoff between computation time and retrieval accuracy 
should also be a consideration since building models and 
calculating perplexity for larger n-grams takes more com-
putational power and time.   

7. CONCLUSION 

In this work, a perplexity based audio music retrieval sys-
tem that is robust to instrumental variation is proposed. 
PCP features are extracted from overlapping frames and 
mapped to a 3-dimensional tonal space. A1-NN classifier 
decides the harmonic identity of the particular frame based 
on pre-defined positions of the 24 major and minor triads in 
the tonal space. Key normalization is performed. From the 
classifier output, repetitions are removed so as to focus on 
changes in the series of harmonies. From the resulting har-
monic sequence, n-gram statistics are acquired and a data-
base is constructed. Given a music query, the transcription 
is completed using the same strategy and the similarity be-
tween the transcribed input and the database models is 
computed using the perplexity measure. 

The algorithm is tested on a database of 2000 music 
pieces. While there is room for improvement, the results 
show that, for short length queries, the perplexity-based ap-
proach is capable of finding the target piece. The work 
could be strengthened by testing on a larger dataset with 
more versions of each song. 

To our knowledge, no other study in the literature re-
ports results from short length queries. Our motivation here 
is that royalty rights management systems usually work 
with short length queries and we would like to apply our 
system in such scenarios. The MRR and top-N best list 
scores suggest that a more fine-grained representation may 
be needed in order to more successfully retrieve the target 
piece. Ideally, we would like a retrieval system for which 
the target piece tops the results list, an important criterion 
for royalty rights management applications. 

Future work includes systematically isolating compo-
nents of our system for evaluation and improvements. We 
have used a straightforward feature extraction strategy, 
which should be compared against other methods. We can 
substitute chord labeling algorithms in the literature for the 
particular method used to extract harmonic labels to ex-
amine the impact of chord labeling technique on retrieval 
success. Other further work includes implementing multi 

47



Poster Session 1  
 

stage search algorithms, in order to improve search perfor-
mance with respect to time and accuracy.  
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ABSTRACT

In this paper a humming method for music information re-

trieval is presented. The system uses a database with real

songs and does not need another type of symbolic represen-

tation of them. The system employs an original fingerprint

based on chroma vectors to characterize the humming and

the references songs. With this fingerprint, it is possible to

get the hummed songs without needed of transcription of the

notes of the humming or of the songs. The system showed

a good performance on Pop/Rock and Spanish folk music.

1. INTRODUCTION

In recent years, along with the development of Internet, peo-

ple can access to a huge amount of contents like music. The

traditional information retrieval systems are text-based but

this might not be the best approach for music. There is a

need for retrieving the music based on its musical content,

such as humming the melody, which is the most natural way

for users to make a melody based query [3].

Query by humming systems are having a great expansion

and their use is integrated not only in computer but also in

small devices like mobile phones [10]. A query by hum-

ming system can be considered as an integration of three

main stages: construction of songs database, transcription of

users’ melodic information query and matching the queries

with songs in the database [5].

From the first query by humming system [3] to nowa-

days, many systems have appeared. Most of these systems

use Midi representation of the songs [2], [6], [9] or they pro-

cess the songs to obtain a symbolic representation of the

main voice [8] or, also, these systems may use special for-

mats such as karaoke music [11] or other hummings [7] to

obtain the Midi or other symbolic representation [9] of the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2011 International Society for Music Information Retrieval.

main voice of the songs in the database. In all the cases the

main voice or main melody must be obtained because it is

the normal content of the humming. Somehow, the normal

query by humming systems are based on the melody tran-

scription of the humming queries [5], [7], [11] to be com-

pared with the main voice melody obtained from the songs

in the database.

The approach employed in this paper is rather different

from other proposals that can be found in the literature. The

database contains real stereo songs (CD quality). These

songs are processed in order to enhance the main voice.

Then, the humming as well as the signal with the main voice

enhanced, follow the same process: fingerprints of the hum-

ming and of the main voice are obtained. In this process, it

is not necessary to obtain the onset or the exact tone of the

sound, so, this fingerprint is a robust representation for the

imprecise humming or main voice enhancement.

The paper is organized as follows. Section 2 will present

a general overview of the proposed method. Section 3 will

present the method of enhancement of the main voice of a

stereo sound file. Next, section 4 will propose the finger-

print used to compare the humming and the songs. Section 5

will present the comparison and search methods used in the

proposed system. Section 6 will present some performance

results and finally, Section 7 draws some conclusions.

2. OVERVIEW OF THE PROPOSED METHOD

In this section, a general overview of the structure of the

humming method for MIR is given. Figure 1 shows the

general structure of the proposed method in which both the

humming and the songs with the main voice enhanced fol-

low the same process.

As Figure 1 shows, a phrase fragmentation is needed for

the songs. The reason for this is the following: when people

sing or hum after hearing a song, they normally sing certain

musical phrases, not random parts of the songs [11]. So, the

main voice enhancement will be performed in the phrases

of the songs. The result of the main voice enhancement

of the phrases of the songs and the humming pass through

a preprocessing stage that obtains a representation of these

49



Poster Session 1

��������

�	
�	�
�������	
�	�
������

����
	�	����

����������

����
	�	����

����������

�����	�����

��

�
�	��

��������
�


����
�
���

��	��
�

�	���
��������

�������
����

	
���������

�	�
	
����������

	
�
�����������

Figure 1. General structure of the proposed method.

signals in the frequency domain. Then, the fingerprints are

calculated. The fingerprints are the representation used for

the comparison and search of the humming songs and hum-

ming. Note that, the proposed method does not perform any

conversion to Midi or other symbolic music representation.

Finally, the system provides a list of songs ordered by their

similitude with the humming entry.

3. ENHANCEMENT OF THE MAIN VOICE

The reference method selected to enhance the main voice is

based on the previous knowledge of the pan of the signal to

enhance [1]. The database considered contains international

Pop/Rock and Spanish folk music. In this type of music the

main voice or melody of the songs is performed by a singer

and this voice is placed in the center of the audio mix [4].

In Fig. 2, the general structure of the algorithm of en-

hancement of the main voice is presented. The base of this

algorithm is the definition of the stereo signal produced by

a recording studio. A model for this signal is as follows:

xc(t) =

[
N∑
i=1

acjsj(t)

]
(1)

where: N is the number of sources of the mix, the sub-

script c indicates the channel (1-left and 2-right), acj are

the amplitude-panning coefficients and sj(t) are the differ-

ent audio sources. For amplitude-panned sources it can be
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Figure 2. General structure of the process of enhancement

of the main voice.

assumed that the sinusoidal energy-preserving panning law

is a2j =
√

(1− a2
1j), with a1j < 1.

The spectrogram is calculated in temporal windows of

8192 samples for signals sampled to 44100Hz. This selec-

tion is a balance between temporal resolution (0.18s) and

frequency resolution (5Hz).

The panning mask, Ψ(m, k), is estimated using the me-

thod proposed in [1], based on the difference of the ampli-

tude of the spectrograms of the left channel (SL(m, k)) and

right channel (SR(m, k)). The values of Ψ(m, k) vary from

−1 to 1. To avoid distortions due to abrupt changes in ampli-

tude between adjacent points of the spectrogram produced

by the panning mask, Ψ(m, k), a Gaussian window func-

tion is applied to Ψ(m, k) [1]:

Θ(m, k) = ν + (1− ν) · e−
1

2ξ
(Ψ(m,k)−Ψo)2 (2)

where Ψo is the panning factor to locate (from−1 totally left

and 1 totally right), ξ controls the width of the window that

has an influence in the distortion/interference allowed, that

is, the wider the window, the lower distortion but the larger

the interference between other sources and vice versa. ν is

a floor value to avoid setting spectrogram values to 0.

The enhancement of the main voice is made as:

Svc(m, k) = (SL(m, k) + SR(m, k)) ·Θ(m, k) · β (3)

where Svc(m, k) is the spectrogram of the signal with the

main voice enhanced. Once the spectrogram Svc(m, k) is

obtained, the reverse spectrogram is calculated to obtain the

waveform of the enhanced main voice (Figure 2).
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The parameters of equation 2, have been set experimen-

tally to achieve a good result in our humming method. The

selected values are: ν = 0.15, Ψo = 0 due to the fact that

the desired source is in the center of the mix and ξ is calcu-

lated with the following equation:

ξ = −
Ψc −Ψ2

o

20logA
(4)

where Ψc = 0.2 is the margin around Ψo where the mask

will have an amplitude A such that 20logA = −60dB [1].

There are several conditions that are going to negatively

affect the localization of the main voice; the overlapping of

sources with the same panning and the addition of digital

effects, like reverberation. However, since the aim of the

proposed method is just the enhancement of the main voice,

certain level of interference can be allowed to avoid distor-

tions in the waveform of the main voice.
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signal
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(c) Original main voice signal
without any mixer
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(d) Signal with the enhace-
ment of the main voice

Figure 3. Waveforms of the (a) left channel and the (b)

right channel of an stereo signal. (c) Original main voice

without any mixer. (d) Waveform obtained after the process

of enhancement of the main voice

As an example of the performance of the enhancement

process of the main voice, Figure 3 shows the waveform of

the two channels of a stereo signal (Figure 3(a) and Figure

3(b)), the original main voice (Figure 3(c)) and the wave-

form obtained after our main voice enhancement process

(Figure 3(d)). Theses figures show how the main voice is ex-

tracted from the mix although some distortion appears. This

happens because the gaussian window selected is designed

to avoid audio distortion but it allows some interference.

4. FINGERPRINT CALCULATION

Figure 4, shows the block diagram of the fingerprint cal-

culation procedure for the humming and the music in the
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Figure 4. Block diagram of the fingerprint calculation.

database. Two main stages can be observed: the preprocess-

ing and the chroma matrix calculation. In subsection 4.1,

the preprocessing stage is presented and then, in subsection

4.2, the estimation of the chroma matrix, the fingerprint, is

presented.

4.1 Preprocessing of humming and music database

In the preprocessing, the first step consists on calculate the

spectrum of the whole signal, to determine the threshold.

The threshold is fixed to the 75th percentile of the values of

the power spectrum. This threshold determines the spec-

tral components with enough power to belong to a voice

fragment. Now, the signal is windowed without overlap-

ping with a Hamming window of 8192 samples. For each

window the spectrum is computed. Then, we select the fre-

quency range from 82Hz to 1046Hz, that corresponds to

E2 to C6, because this is a normal range for signing voice.

In this range, a peaks detection procedure is performed.

The local maxima and minima are located and the ascend-

ing and descending slopes are calculated. We consider sig-

nificative peaks the maxima detected over the threshold that

present an ascending or descending slope larger than or equal

to the 25% of the maximum slope found. Between these

peaks, the four peaks with larger power are selected to rep-

resent the tonal distribution of the window. Ideally, the four

peaks selected should correspond to the fundamental fre-

quency and the first three harmonics of the signing note. The

number of peaks has been restricted to four because the ob-

jective is just to gather information of the main voice (mono-

phonic sound), which has several interferences from other

sound sources, or because of the enhacement process of the

main voice (Section 3). If we selected more peaks, these

peaks would corresponding to other notes different from the

notes sung by the main voice and then, the comparison with
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the humming would be worse. In Fig. 5, an example of this

process is shown.
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Figure 5. Example of peaks selected.

Next, the new signal spectrum that contains just the se-

lected peaks, is simplified making use of the Midi numbers.

The frequency axis is converted to Midi numbers, using:

MIDI = 69 + 12log2

(
f

440

)
(5)

where MIDI is the Midi number corresponding to the fre-

quency f . The simplification consists of assigning to each

of the selected peaks the nearest Midi number. When two

or more peaks are fixed to the same Midi number, only the

peak with the largest value is taken into account. The sim-

plified spectrum is represented by Xs(n). In our case, the

first element of the simplified spectrum, Xs(1), represents

the spectral amplitude of the note E2, that corresponds with

the frequency 82Hz (Midi number 40). Likewise, the last

element of the simplified spectrum, Xs(45), represent the

spectral amplitude of then note C6, that corresponds to the

frequency 1046Hz (Midi number 84).

4.2 Chroma matrix

Now, to obtain the fingerprint of each signal, the chroma ma-

trix, the chroma vector is computed for each temporal win-

dow. The chroma vector is a 12-dimensional vector (from

C to B) obtained by the sum of the spectral amplitudes for

each tone, spawning through the notes considered (from E2
to C6). Each k − th element of the chroma vector, with

k ∈ {1, 2, · · · , 12} of the window, t, is computed as fol-

lows:

chromat(k) =

3∑
i=0

Xs((k + 7)mod 12 + 12 · i + 1) (6)

The chroma vectors for each temporal window t are com-

puted and stored in a matrix denominated chroma matrix,

C. The chroma matrix has 12 rows and a column for each

of the temporal windows of the signal analyzed.

In order to unify the dimensions of all the chroma matri-

ces of all the phrase fragments of the songs and humming,

the matrix is interpolated. To perform the interpolation, the

number of selected columns is 86, this value corresponds,

approximately, to 16 seconds. This number of columns has

been selected taking into account the length of the phrase

fragments of the songs in the database and the reasonable

duration of the humming. Let C =
[
F̄1, F̄2, · · · , F̄86

]
, de-

note this matrix, where F̄i, represents the column i in the

interpolated chroma matrix that represents the fingerprint.

In Figure 6, an example of a chroma matrix with interpo-

lation is represented.
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Figure 6. Chroma matrix with interpolation.

5. COMPARISON AND SEARCH METHOD

Once the fingerprint has been defined, the fingerprints for

each phrase fragment of the songs in the database are com-

puted. Now, the task is to find the song in the database that

is the most similar to a certain humming. To this end, the

fingerprint of the humming is obtained, then, the search for

the most similar fingerprint is made. This search is based

on the definition of the distance between the fingerprint of

the humming signal and the fingerprints of the songs in the

database.

The objective is to create a distance vector with length

equal to the number of phrase fragments in the database.

Then, a list of ordered songs from the most similar song to

the less similar one can be obtained. The distance between

fingerprints is computed using:

Dstk(C
humm,Ck) = median ({dkj}) (7)

dkj =
∥∥F̄humm

j − F̄ k
j

∥∥ (8)

where Dstk is the distance of the humming to a phrase frag-

ment k, k is the index of all the phrase fragments in the

database. Chumm is the fingerprint of the humming and C
k
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is the fingerprint of each phrase fragment. The euclidean

distance between columns of the fingerprints dkj , is calcu-

lated. Afterwards, the median of the set of euclidean dis-

tances, {dkj}, is stored in Dstk.

The distance values Dstk are ordered from the smallest

value to the largest value. Now, since for each song several

phrase fragments have been considered, the phrase closest

to the humming is selected to define the closest songs. The

list of similar songs is created likewise.

An illustration of the utilization of the fingerprints to find

similar songs to a given humming is shown in Figure 7. The

fingerprint of a humming (Figure 7(a)), the nearest song,

that is, the corresponding song (Figure 7(b)) and the farthest

song (Figure 7(c) ) are presented. It can be observed how the

fingerprint of the humming and the corresponding song look

very similar. On the contrary, the fingerprint of the farthest

song looks totally different.

(a) Fingerprint of a humming

(b) Fingerprint of the nearest
song

(c) Fingerprint of the farthest
song

Figure 7. Fingerprint of (a) a humming, (b) the nearest song

and (c) the farthest song.

6. RESULTS

The music database used in this study contained 140 songs

extracted from commercial CDs of different genres: Pop/-

Rock and Spanish folk music. The selected phrase frag-

ments of each song are segments of 5 to 20 seconds, de-

pending on the predominant melodic line of each song.

For the evaluation of the system, we have used 70 hum-

mings from three male and three female users, whose ages

are between 25 and 57 years, and 50% of the users have mu-

sical knowledge. The hummings were recorded at a sam-

pling rate of 44.1kHz and the duration of each humming

ranges from 5 to 20 seconds.

The retrieval performance was measured on the basis of

Song accuracy. In general, we computed the Top-N accu-

racy, that is the percentage of humming whose target songs

were among the Top − N ranked songs. The Top-N accu-

racy is defined as:

Top−N accuracy(%) =
#Songs in Top−N

#hummings
× 100%

(9)

Different experiments have been made to test the system ef-

fectiveness as a function of the musical genre. The musi-

cal genre has influence on the harmonic complexity of the

songs, the number of musical instruments played, the kind

of accompaniment and the presence of rhythm instruments

such as drums. All these musical aspects affect in the main

voice enhancement process.

In Table 1, the evaluation of the proposed method in the

complete database, for all hummings, for 5 different rank-

ing are presented. These results are rather similar to the

ones presented in [7] and [8], with the difference that our

method uses real songs instead of other hummings [7] and

our method does not need to obtain the symbolic notation of

neither the database nor the humming [8]. Thus, a mathe-

matical comparison against other systems has not been pos-

sible since other systems found do not use real audio wave-

forms. The Table 1 also includes the Top-N accuracy for

musical genres: Pop/Rock and Spanish folk. It can be ob-

served that the performance of the system is better for the

Spanish folk music. This is due to the fact that in this type

of music the main voice is the most important part in the mu-

sic and does not have digital audio effects like reverberation,

therefore the main voice enhancement process performs bet-

ter.

Table 1. Evaluation of the proposed method in the complete

database for all hummings, Pop/Rock and Spanish folk.

Top-N accuracy (%)

Ranking All Pop/Rock Spanish folk

Top-1 37.12 33.33 47.33

Top-5 52.86 43.14 78.95

Top-10 55.71 45.10 84.21

Top-20 60.00 49.02 89.47

Top-30 61.43 49.02 94.74

In Table 2, the evaluation of the proposed method is done

with the database divided into two music collection: one

corresponding to Pop/Rock music (70% of songs in the data-

base) and other corresponding to Spanish folk music (30%
of songs in the database). The hummings are divided in the

same percentages as the music in the database. In Table 2, it
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Table 2. Evaluation of the proposed method with the

database divided into two music collections: Pop/Rock and

Spanish folk.

Top-N accuracy (%)

Ranking Pop/Rock Spanish folk

Top-1 35.29 57.89

Top-5 45.10 84.21

Top-10 47.06 89.47

Top-20 52.94 94.74

can be observed that the performace of the system is better

for the Spanish folk music, like in the previous experiment

shown in Table 1.

In Figure 8, the evolution of the Top-N accuracy (%) as a

function of N as percentage of the music collection in which

the humming is expected to be found, is shown. This evo-

lution is presented for the complete database, the Pop/Rock

music collection and the Spanish folk music collection. Fig-

ure 8 shows that the Spanish folk music obtains the best re-

sults, as presented the Table 2. This figure also shows that if

the user or the system have some knowledge of the musical

genre, the humming method becames more effective.

Figure 8. Evolution of the Top-N accuracy (%) as a func-

tion of N as percentage of the music collection in which the

humming is expected to be found.

7. CONCLUSIONS
In this paper a humming method for content-based music in-

formation retrieval has been presented. The system employs

an original fingerprint based on chroma vectors to character-

ize the humming and the reference songs. With this finger-

print, it is possible to find songs similar to humming with-

out any transcription or Midi data. The performance of the

method is better in Spanish folk music, due to the main voice

enhancement procedure in relation with the mixing style

used in this type of music, than in Pop/Rock music. The

method performance could be improved if an estimation of

the musical genre is included. Also, the parameters of the

panning window could be tuned for each musical genre to

improve the performance of the main voice enhancement.

Finally, the system could also be made robust to transposed

hummings, employing a set of transposed chroma matrices

for each humming.
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ABSTRACT

Many music information retrieval tasks require finding the
nearest neighbors of a query item in a high-dimensional
space. However, the complexity of computing nearest neigh-
bors grows linearly with size of the database, making exact re-
trieval impractical for large databases. We investigate modern
variants of the classical KD-tree algorithm, which efficiently
index high-dimensional data by recursive spatial partitioning.
Experiments on the Million Song Dataset demonstrate that
content-based similarity search can be significantly acceler-
ated by the use of spatial partitioning structures.

1. INTRODUCTION

Nearest neighbor computations lie at the heart of many
content-based approaches to music information retrieval prob-
lems, such as playlist generation [4, 14], classification and
annotation [12, 18] and recommendation [15]. Typically,
each item (e.g., song, clip, or artist) is represented as a point
in some high-dimensional space, e.g., Rd equipped with Eu-
clidean distance or Gaussian mixture models equipped with
Kullback-Leibler divergence.

For large music databases, nearest neighbor techniques
face an obvious limitation: computing the distance from a
query point to each element of the database becomes pro-
hibitively expensive. However, for many tasks, approximate
nearest neighbors may suffice. This observation has moti-
vated the development of general-purpose data structures
which exploit metric structure to locate neighbors of a query
in sub-linear time [1, 9, 10].

In this work, we investigate the efficiency and accuracy
of several modern variants of KD-trees [1] for answering
nearest neighbor queries for musical content. As we will
demonstrate, these spatial trees are simple to construct, and
can provide substantial improvements in retrieval time while
maintaining satisfactory performance.
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2. RELATED WORK

Content-based similarity search has received a considerable
amount of attention in recent years, but due to the obvious
data collection barriers, relatively little of it has focused on
retrieval in large-scale collections.

Cai, et al. [4] developed an efficient query-by-example
audio retrieval system by applying locality sensitive hashing
(LSH) [9] to a vector space model of audio content. Although
LSH provides strong theoretical guarantees on retrieval per-
formance in sub-linear time, realizing those guarantees in
practice can be challenging. Several parameters must be care-
fully tuned — the number of bins in each hash, the number
of hashes, the ratio of near and far distances, and collision
probabilities — and the resulting index structure can become
quite large due to the multiple hashing of each data point.
Cai, et al.’s implementation scales to upwards of 105 audio
clips, but since their focus was on playlist generation, they
did not report the accuracy of nearest neighbor recall.

Schnitzer, et al. developed a filter-and-refine system to
quickly approximate the Kullback-Leibler (KL) divergence
between timbre models [17]. Each song was summarized by
a multivariate Gaussian distribution over MFCC vectors, and
then mapped into a low-dimensional Euclidean vector space
via the FastMap algorithm [10], so that Euclidean distance
approximates the symmetrized KL divergence between song
models. To retrieve nearest neighbors for a query song, the
approximate distances are computed from the query to each
point in the database by a linear scan (the filter step). The
closest points are then refined by computing the full KL
divergence to the query. This approach exploits the fact that
low-dimensional Euclidean distances are much cheaper to
compute than KL-divergence, and depending on the size of
the filter set, can produce highly accurate results. However,
since the filter step computes distance to the entire database,
it requires O(n) work, and performance may degrade if the
database is too large to fit in memory.

3. SPATIAL TREES

Spatial trees are a family of data structures which recursively
bisect a data set X ⊂ Rd of n points in order to facilitate
efficient (approximate) nearest neighbor retrieval [1,19]. The
recursive partitioning of X results in a binary tree, where
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Figure 1. Spatial partition trees recursively split a data set
X ⊂ Rd by projecting onto a direction w ∈ Rd and splitting
at the median b (dashed line), forming two disjoint subsets
X` and Xr.

Algorithm 1 Spatial partition tree
Input: data X ⊂ Rd, maximum tree depth δ
Output: balanced binary tree t over X

PARTITION(X , δ)
1: if δ = 0 then
2: return X (leaf set)
3: else
4: wt ← split(X ) {find a split direction}
5: bt ← median

({
wT
t x | x ∈ X

})
6: X` ←

{
x | wT

t x ≤ bt, x ∈ X
}

7: Xr ←
{
x | wT

t x > bt, x ∈ X
}

8: t` ← PARTITION(X`, δ − 1)
9: tr ← PARTITION(Xr, δ − 1)

10: return t = (wt, bt, t`, tr)

each node t corresponds to a subset of the data Xt ⊆ X
(Figure 1). At the root of the tree lies the entire set X , and
each node t defines a subset of its parent.

A generic algorithm to construct partition trees is listed as
Algorithm 1. The set X ⊂ Rd is projected onto a direction
wt ∈ Rd, and split at the median bt into subsets X` and Xr:
splitting at the median ensures that the tree remains balanced.
This process is then repeated recursively on each subset, until
a specified tree depth δ is reached.

Spatial trees offer several appealing properties. They are
simple to implement, and require minimal parameter-tuning:
specifically, only the maximum tree depth δ, and the rule for
generating split directions. Moreover, they are efficient to
construct and use for retrieval. While originally developed
for use in metric spaces, the framework has been recently
extended to support general Bregman divergences (including,
e.g., KL-divergence) [5]. However, for the remainder of
this article, we will focus on building trees for vector space
models (Rd with Euclidean distance).

In order for Algorithm 1 to be fully specified, we must
provide a function split(X ) which determines the split di-
rection w. Several splitting rules have been proposed in the

literature, and our experiments will cover the four described
by Verma, et al. [20]: maximum variance KD, principal
direction (PCA), 2-means, and random projection.

3.1 Maximum variance KD-tree

The standard KD-tree (k-dimensional tree) chooses w by cy-
cling through the standard basis vectors ei (i ∈ {1, 2, . . . , d}),
so that at level j in the tree, the split direction is w = ei+1

with i = j mod d [1]. The standard KD-tree can be effec-
tive for low-dimensional data, but it is known to perform
poorly in high dimensions [16, 20]. Note also that if n < 2d,
there will not be enough data to split along every coordinate,
so some (possibly informative) features may never be used
by the data structure.

A common fix to this problem is to choose w as the coor-
dinate which maximally spreads the data [20]:

splitKD(X ) = argmax
ei

∑
x∈X

(
eT
i (x− µ)

)2
, (1)

where µ is the sample mean vector of X . Intuitively, this
split rule picks the coordinate which provides the greatest
reduction in variance (increase in concentration).

The maximum variance coordinate can be computed with
a single pass over X by maintaining a running estimate of the
mean vector and coordinate-wise variance, so the complexity
of computing splitKD(X ) is O(dn).

3.2 PCA-tree

The KD split rule (Eqn. (1)) is limited to axis-parallel direc-
tions w. The principal direction (or principal components
analysis, PCA) rule generalizes this to choose the direction
w ∈ Rd which maximizes the variance, i.e., the leading
eigenvector v of the sample covariance matrix Σ̂:

splitPCA(X ) = argmax
v

vTΣ̂v s. t. ‖v‖2 = 1. (2)

By using the full covariance matrix to choose the split direc-
tion, the PCA rule may be more effective than KD-tree at
reducing the variance at each split in the tree.

Σ̂ can be estimated from a single pass over X , so (assum-
ing n > d) the time complexity of splitPCA is O(d2n).

3.3 2-means

Unlike the KD and PCA rules, which try to maximally re-
duce variance with each split, the 2-means rule produces
splits which attempt preserve cluster structure. This is ac-
complished by running the k-means algorithm on X with
k = 2, and defining w to be the direction spanned by the
cluster centroids c1, c2 ∈ Rd:

split2M(X ) = c1 − c2. (3)

While this general strategy performs well in practice [13],
it can be costly to compute a full k-means solution. In our
experiments, we instead use an online k-means variant which
runs in O(dn) time [3].

56



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

3.4 Random projection

The final splitting rule we will consider is to simply take a
direction uniformly at random from the unit sphere Sd−1:

splitRP(X ) ∼U Sd−1, (4)

which can equivalently be computed by normalizing a sample
from the multivariate Gaussian distribution N (0, Id). The
random projection rule is simple to compute and adapts to
the intrinsic dimensionality of the data X [8].

In practice, the performance of random projection trees
can be improved by independently sampling m directions
wi ∼ Sd−1, and returning the wi which maximizes the
decrease in data diameter after splitting [20]. Since a full
diameter computation would take O(dn2) time, we instead
return the direction which maximizes the projected diameter:

argmax
wi

max
x1,x2∈X

wT
i x1 − wT

i x2. (5)

This can be computed in a single pass over X by tracking the
maximum and minimum of wT

i x in parallel for all wi, so the
time complexity of splitRP is O(mdn). Typically, m ≤ d,
so splitRP is comparable in complexity to splitPCA.

3.5 Spill trees

The main drawback of partition trees is that points near the
decision boundary become isolated from their neighbors
across the partition. Because data concentrates near the
mean after (random) projection [8], hard partitioning can
have detrimental effects on nearest neighbor recall for a large
percentage of queries.

Spill trees remedy this problem by allowing overlap be-
tween the left and right subtrees [13]. If a point lies close
to the median, then it will be added to both subtrees, thus
reducing the chance that it becomes isolated from its neigh-
bors (Figure 2). This is accomplished by maintaining two
decision boundaries b`t and brt . If wT

t x > brt , then x is added
to the right tree, and if wT

t x ≤ b`t , it is added to the left. The
gap between b`t and brt controls the amount of data which
spills across the split.

The algorithm to construct a spill tree is listed as Algo-
rithm 2. The algorithm requires a spill threshold τ ∈ [0, 1/2):
rather than splitting at the median (so that a set of n items
is split into subsets of size roughly n/2), the data is split at
the (1/2 + τ)-quantile, so that each subset has size roughly
n(1/2 + τ). Note that when τ = 0, the thresholds coin-
cide (b`t = brt ), and the algorithm simplifies to Algorithm 1.
Partition trees, therefore, correspond to the special case of
τ = 0.

3.6 Retrieval algorithm and analysis

Once a spill tree has been constructed, approximate near-
est neighbors can be recovered efficiently by the defeatist
search method [13], which restricts the search to only the

Figure 2. Spill trees recursively split data like partition trees,
but the subsets are allowed to overlap. Points in the shaded
region are propagated to both subtrees.

Algorithm 2 Spill tree
Input: data X ⊂ Rd, depth δ, threshold τ ∈ [0, 1/2)
Output: τ -spill tree t over X

SPILL(X , δ, τ)
1: if δ = 0 then
2: return X (leaf set)
3: else
4: wt ← split(X )
5: b`t ← quantile

(
1/2 + τ,

{
wT
t x | x ∈ X

})
6: brt ← quantile

(
1/2− τ,

{
wT
t x | x ∈ X

})
7: X` ←

{
x | wT

t x ≤ b`t, x ∈ X
}

8: Xr ←
{
x | wT

t x > brt , x ∈ X
}

9: t` ← SPILL(X`, δ − 1, τ)
10: tr ← SPILL(Xr, δ − 1, τ)
11: return t = (wt, b

`
t, b

r
t , t`, tr)

leaf sets which contain the query. For a novel query q ∈ Rd
(i.e., a previously unseen point), these sets can be found by
Algorithm 3.

The total time required to retrieve k neighbors for a novel
query q can be computed as follows. First, note that for a spill
tree with threshold τ , each split reduces the size of the set
by a factor of (1/2 + τ), so the leaf sets of a depth-δ tree are
exponentially small in δ: n(1/2 + τ)

δ. Note that δ ≤ log n,
and is typically chosen so that the leaf set size lies in some
reasonable range (e.g., between 100 and 1000 items).

Next, observe that in general, Algorithm 3 may map the
query q to some h distinct leaves, so the total size of the
retrieval set is at most n′ = hn(1/2+ τ)δ (although it may be
considerably smaller if the sets overlap). For h leaves, there
are at most h paths of length δ to the root of the tree, and
each step requires O(d) work to compute wT

t q, so the total
time taken by Algorithm 3 is

TRETRIEVE ∈ O
(
h
(
dδ + n(1/2 + τ)δ

))
.

Finally, once the retrieval set has been constructed, the k
closest points can be found in time O(dn′ log k) by using a
k-bounded priority queue [7]. The total time to retrieve k
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Algorithm 3 Spill tree retrieval
Input: query q, tree t
Output: Retrieval set Xq

RETRIEVE(q, t)
1: if t is a leaf then
2: return Xt {all items contained in the leaf}
3: else
4: Xq ← ∅
5: if wT

t q ≤ b`t then
6: Xq ← Xq ∪ RETRIEVE(q, t`)
7: if wT

t q > brt then
8: Xq ← Xq ∪ RETRIEVE(q, tr)
9: return Xq

approximate nearest neighbors for the query q is therefore

TkNN ∈ O
(
hd
(
δ + n(1/2 + τ)δ log k

))
.

Intuitively, for larger values of τ , more data is spread
throughout the tree, so the leaf sets become larger and re-
trieval becomes slower. Similarly, larger values of τ will
result in larger values of h as queries will map to more leaves.
However, as we will show experimentally, this effect is gen-
erally mild even for relatively large values of τ .

In the special case of partition trees (τ = 0), each query
maps to exactly h = 1 leaf, so the retrieval time simplifies to
O(d(δ + n/2δ log k)).

4. EXPERIMENTS

Our song data was taken from the Million Song Dataset
(MSD) [2]. Before describing the tree evaluation experi-
ments, we will briefly summarize the process of constructing
the underlying acoustic feature representation.

4.1 Audio representation

The audio content representation was developed on the 1%
Million Song Subset (MSS), and is similar to the model pro-
posed in [15]. From each MSS song, we extracted the time
series of Echo Nest timbre descriptors (ENTs). This results in
a sample of approximately 8.5 million 12-dimensional ENTs,
which were normalized by z-scoring according to the esti-
mated mean and variance of the sample, randomly permuted,
and then clustered by online k-means to yield 512 acoustic
codewords. Each song was summarized by quantizing each
of its (normalized) ENTs and counting the frequency of each
codeword, resulting in a 512-dimensional histogram vector.
Each codeword histogram was mapped into a probability
product kernel (PPK) space [11] by square-rooting its entries,
which has been demonstrated to be effective on similar audio
representations [15]. Finally, we appended the song’s tempo,
loudness, and key confidence, resulting in a vector vi ∈ R515

for each song xi.

Next, we trained an optimized similarity metric over audio
descriptors. First, we computed target similarity for each
pair of MSS artists by the Jaccard index between their user
sets in a sample of Last.fm 1 collaborative filter data [6,
chapter 3]. Tracks by artists with fewer than 30 listeners
were discarded. Next, all remaining artists were partitioned
into a training (80%) and validation (20%) set, and for each
artist, we computed its top 10 most similar training artists.

Having constructed a training and validation set, the dis-
tance metric was optimized by applying the metric learning
to rank (MLR) algorithm on the training set of 4455 songs,
and tuning parameters C ∈ {105, 106, . . . , 109} and ∆ ∈
{AUC, MRR, MAP, Prec@10} to maximize AUC score on
the validation set of 1110 songs. Finally, the resulting metric
W was factored by PCA (retaining 95% spectral mass) to
yield a linear projection L ∈ R222×515.

The projection matrix L was then applied to each vi in
MSD. As a result, each MSD song was mapped into R222

such that Euclidean distance is optimized by MLR to retrieve
songs by similar artists.

4.2 Representation evaluation

To verify that the optimized vector quantization (VQ) song
representation carries musically relevant information, we
performed a small-scale experiment to evaluate its predic-
tive power for semantic annotation. We randomly selected
one song from each of 4643 distinct artists. (Artists were
restricted to be disjoint from MSS to avoid contamination.)
Each song was represented by the optimized 222-dimensional
VQ representation, and as ground truth annotations, we ap-
plied the corresponding artist’s terms from the top-300 terms
provided with MSD, so that each song xi has a binary anno-
tation vector yi ∈ {0, 1}300. For a baseline comparison, we
adapt the representation used by Schnitzer, et al. [17], and
for each song, we fit a full-covariance Gaussian distribution
over its ENT features.

The set was then randomly split 10 times into 80%-training
and 20%-test sets. Following the procedure described by
Kim, et al. [12], each test song was annotated by threshold-
ing the average annotation vector of its k nearest training
neighbors as determined by Euclidean distance on VQ repre-
sentations, and by KL-divergence on Gaussians. Varying the
decision threshold yields a trade-off between precision and
recall. In our experiments, the threshold was varied between
0.1 and 0.9.

Figure 3 displays the precision-recall curves averaged
across all 300 terms and training/test splits for several values
of k. At small values of k, the VQ representation achieves
significantly higher performance than the Gaussian represen-
tation. We note that this evaluation is by no means conclusive,
and is merely meant to demonstrate that the underlying space
is musically relevant.

1 http://last.fm
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Figure 3. Mean precision-recall for k-nearest neighbor an-
notation with VQ and Gaussian (KL) representations.

4.3 Tree evaluation

To test the accuracy of the different spatial tree algorithms,
we partitioned the MSD data into 890205 training songs X
and 109795 test songs X ′. Using the optimized VQ repre-
sentations on X , we constructed trees with each of the four
splitting rules (PCA, KD, 2-means, and random projection),
varying both the maximum depth δ ∈ {5, 6, . . . , 13} and
spill threshold τ ∈ {0, 0.01, 0.05, 0.10}. At δ = 13, this
results in leaf sets of size 109 with τ = 0, and 1163 for
τ = 0.10. For random projection trees, we sample m = 64
dimensions at each call to splitRP.

For each test song q ∈ X ′, and tree t, we compute the
retrieval set with Algorithm 3. The recall for q is the frac-
tion of the true nearest-neighbors kNN(q) contained in the
retrieval set:

R(q, t) = |RETRIEVE(q, t) ∩ kNN(q)| /k. (6)

Note that since true nearest neighbors are always closer than
any other points, they are always ranked first, so precision
and recall are equivalent here.

To evaluate the system, k = 100 exact nearest neighbors
kNN(q) were found from X for each query q ∈ X ′ by a full
linear search over X .

4.4 Retrieval results

Figure 4 lists the nearest-neighbor recall performance for all
tree configurations. As should be expected, for all splitting
rules and spill thresholds, recall performance degrades as the
maximum depth of the tree increases.

Across all spill thresholds τ and tree depths δ, the relative
ordering of performance of the different split rules is essen-
tially constant: splitPCA performs slightly better than splitKD,
and both dramatically outperform splitRP and split2M . This
indicates that for the feature representation under considera-
tion here (optimized codeword histograms), variance reduc-

tion seems to be the most effective strategy for preserving
nearest neighbors in spatial trees.

For small values of τ , recall performance is generally
poor for all split rules. However, as τ increases, recall per-
formance increases across the board. The improvements are
most dramatic for splitPCA. With τ = 0, and δ = 7, the
PCA partition tree has leaf sets of size 6955 (0.8% of X ),
and achieves median recall of 0.24. With τ = 0.10 and
δ = 13, the PCA spill tree achieves median recall of 0.53
with a comparable median retrieval set size of 6819 (0.7%
of X ): in short, recall is nearly doubled with no appreciable
computational overhead. So, by looking at less than 1% of
the database, the PCA spill tree is able to recover more than
half of the 100 true nearest neighbors for novel test songs.
This contrasts with the filter-and-refine approach [17], which
requires a full scan of the entire database.

4.5 Timing results

Finally, we evaluated the retrieval time necessary to answer
k-nearest neighbor queries with spill trees. We assume that
all songs have already been inserted into the tree, since this is
the typical case for long-term usage. As a result, the retrieval
algorithm can be accelerated by maintaining indices mapping
songs to leaf sets (and vice versa).

We evaluated the retrieval time for PCA spill trees of
depth δ = 13 and threshold τ ∈ {0.05, 0.10}, since they
exhibit practically useful retrieval accuracy. We randomly
selected 1000 test songs and inserted them into the tree prior
to evaluation. For each test song, we compute the time
necessary to retrieve the k nearest training neighbors from
the spill tree (ignoring test songs), for k ∈ {10, 50, 100}.
Finally, for comparison purposes, we measured the time to
compute the true k nearest neighbors by a linear search over
the entire training set.

Our implementation is written in Python/NumPy, 2 and
loads the entire data set into memory. The test machine has
two 1.6GHz Intel Xeon CPUs and 4GB of RAM. Timing
results were collected through the cProfile utility.

Figure 5 lists the average retrieval time for each algorithm.
The times are relatively constant with respect to k: a full lin-
ear scan typically takes approximately 2.4 seconds, while
the τ = 0.10 spill tree takes less than 0.14 seconds, and
the τ = 0.05 tree takes less than 0.02 seconds. In relative
terms, setting τ = 0.10 yields a speedup factor of 17.8, and
τ = 0.05 yields a speedup of 119.5 over the full scan. The
difference in speedup from τ = 0.10 to τ = 0.05 can be ex-
plained by the fact that smaller overlapping regions result in
smaller (and fewer) leaf sets for each query. In practice, this
speed-accuracy trade-off can be optimized for the particular
task at hand: applications requiring only a few neighbors
which may be consumed rapidly (e.g., sequential playlist
generation) may benefit from small values of τ , whereas

2 http://numpy.scipy.org
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Figure 4. Median 100-nearest-neighbor recall for each splitting rule (PCA, KD, 2-means, and random projection), spill threshold
τ ∈ {0, 0.01, 0.05, 0.10}, and tree depth δ ∈ {5, 6, . . . , 13}. Each point along a curve corresponds to a different tree depth δ,
with larger retrieval size indicating smaller δ. For each δ, the corresponding recall point is plotted at the median size of the
retrieval set (as a fraction of the entire database). Error bars correspond to 25th and 75th percentiles of recall for all test queries.
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Figure 5. Average time to retrieve k (approximate) nearest
neighbors with a full scan versus PCA spill trees.

applications requiring more neighbors (e.g., browsing recom-
mendations for discovery) may benefit from larger τ .

5. CONCLUSION

We have demonstrated that spatial trees can effectively accel-
erate approximate nearest neighbor retrieval. In particular,
for VQ audio representations, the combination of spill trees
with and PCA splits yields a favorable trade-off between
accuracy and complexity of k-nearest neighbor retrieval.
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ABSTRACT

This paper introduces a novel methodology for music sim-
ilarity retrieval based on chord progressions. From each
chord progression, a directed labeled graph containing the
interval transitions is extracted. This graph will be used as
input for a graph comparison method based on simple cy-
cles – cycles where the only repeated nodes are the first and
the last one. In music, simple cycles represent the repetitive
sub-structures of, e.g., modern pop/rock music. By means
of a kernel function [10] whose feature space is spanned
by these simple cycles, we obtain a kernel matrix (similar-
ity matrix) which can then be used in music similarity re-
trieval tasks. The resulting algorithm has a time complexity
ofO(n+m(c+1)), where n is the number of vertices, m is
the number of edges, and c is the number of simple cycles.
The performance of our method is tested on both an idiom
retrieval task, and a cover song retrieval task. Empirical re-
sults show the improved accuracy of our method in com-
parison with other string-matching, and graph-comparison
methods used as baseline.

1. INTRODUCTION

Since the beginning of the 15th century, motivic elements
have made part of Western music, becoming common prac-
tice during the 18th century. We can find numerous exam-
ples of this phenomenon nowadays in modern pop/rock mu-
sic which contain repetitive sub-structures, e.g., the chorus,
verse, etc. According to [5], such repetitive structures, or
motifs, act as cues in music perception. “A cue is a very
restricted entity ... often shorter than the group itself, but
always embodying striking attributes”. This notion of cue,
would let a listener encode information in a more efficient
way, allowing longer structures to be memorized by means
of smaller, more salient, features.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

Although motifs can be found in a song’s harmony or
melody, in this paper we will focus on harmonic motifs for
three reasons: (i) many songs share a part of their harmonic
structure, as the number of chord progressions that are pop-
ular in a musical style (idioms) remain limited, while the
melodic structure can vary greatly from one song to an-
other; (ii) studies in experimental psychology have shown
the essential role of harmony in musical sequence percep-
tion [6]; (iii) although the amount of chord progression data
is increasing thanks to chord estimation algorithms (see e.g.
[13]) and user-generated data (which is readily available from
the web), few efforts have been put on harmony-based sim-
ilarity measures.

On the other hand, human listeners, due to their musical
background, are more susceptible to like songs with a fa-
miliar harmonic structure, but yet different enough from the
songs they already know [14] 1 . We believe, thus, that com-
paring songs thanks to their harmonic motifs would yield
in a similarity measure that takes into account its repetitive
harmonic sub-structures.

One efficient way for motif extraction is the use of graphs.
Motif extraction on graphs has attracted a lot of attention
in the past years, e.g. in community detection [1], or in
graph comparison [10]. A motif is formally defined in [1] as
a connected undirected sub-graph (or weakly connected di-
rected sub-graph) which appears frequently in a graph show-
ing some kind of structure. Examples of motifs are cliques,
paths, cycles, or sub-trees. The method presented in this pa-
per relies on the concept of cycle as a motif for similarity
detection between graphs (isomorphism). By transforming
the chord sequences into graphs, and comparing their simple
cycles, we obtain a similarity measure based on the musical
motifs of a song (see Section 4.1 for a more precise descrip-
tion). The contributions of our work are as follows:

1. It is based on the repetitive harmonic features of
songs (which can be easily extracted from web re-
sources, as done in the present work).

2. The similarity measure deals with large structural

1 This is explained by [12] as ‘the compromise between the repetition
and the surprise” in the expectation of a human listener.
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changes in chord progression (e.g., addition of repe-
titions, bridge, etc.).

3. The similarity matrix can be extracted by means of
kernel functions.

4. The similarity is transposition invariant (the inter-
vals between chords are used, instead of the chords
themselves).

5. We provide a simple, general, methodology for com-
puting similarities from chord progressions (from the
text mining step to acquire the data, to the automatic
classification step with an SVM).

6. We exploit a novel source of user-generated data
that is readily available on the Internet (in form of gui-
tar chord progressions).

7. Empirical tests show that music similarity retrieval
can be performed solely on the basis of chords.

We will briefly review the related work about chord se-
quence similarity in Section 2. Section 3 introduces the
cyclic pattern kernels, on which our method is based. The
details of our algorithm can be found in Section 4, as well
as the graph extraction technique. Empirical testing is pre-
sented on two music retrieval tasks in Section 5, and even-
tually, Section 6 presents our conclusions.

2. RELATED WORK

Harmonic similarity has recently attracted the attention of
the MIR (Music Information Retrieval) community thanks
to the improvement in chord estimation techniques [13], as
well as the increase of the available data. One of the ad-
vantages of harmonic similarity is its ability to infer similar
songs whose melodies differ. In this context, [4] proposes an
approach based on the Tonal Pitch Space (TPS) which com-
pares the change of chordal distance to the tonic over time.
This local distance is then used to build a step function that
computes the global distance between two chord progres-
sions by minimizing the non-overlapping area of the two
step functions. However, this method requires information
about the key of the piece and does not support structural
changes (e.g., introduction of repetitions).

We can also find techniques based on approximate string
matching, such as the one proposed by [9]. This technique
extracts the most similar regions of the two chord sequences,
and computes a distance based on the number of simple op-
erations (insertion, deletion, substitution) that are needed to
transform the first region into the second. This algorithm
has complexity O(nm) where n and m are the length of the
sequences to compare, and edition costs must be provided.

Generative models are the third type of harmony similar-
ity techniques. Such models assume that harmony variations

occur according to an underlying model. The authors of [15]
propose to model chord transitions of a song by means of
a nth-order Markovian model, which serves as basis for
a Kullback-Leibler scoring function. A generative model
based on linguistics has also been applied in [3]. This har-
mony similarity method is based on the assumption of a gen-
erative grammar of tonal harmony. By applying a weighted
version of this grammar, a unique parse tree representing the
chord sequence is obtained for each song – note that context
free grammars produce multiple ambiguous parse trees, thus
a weighting of the rules is needed to choose among all possi-
bilities. In order to measure the similarity of a pair of parse
trees, the largest embeddable tree is extracted. However,
its time complexity is O(min(n,m)nm) and this technique
may reject a sequence which is considered as ungrammati-
cal.

3. CYCLIC PATTERNS KERNEL

Cyclic patterns represent harmonic motifs in chord progres-
sions. In order to extract these motifs for music similarity,
we will rely upon the cyclic pattern kernels from [10]. In
this section we will present the key concepts of this tech-
nique which computes a kernel based on the set of cyclic
and tree patterns of a graph.

3.1 Graphs and cycles

Let us first give some definitions concerning graphs and cy-
cles. Let G = (V,E, label) be a directed graph defined as
a finite set of vertices V , edges E ⊆ [V ]2, and their labels.
The cardinalities of V and E are n and m, respectively. We
define a simple cycle on G as a sequence

C = {v0, v1}, {v1, v2}, ..., {vk−1, vk} (1)

where v0 = vk and all others vi 6= vj for every i, j (1 ≤ i ≤
j ≤ k). Although a cycle may have several permutations,
only one of them (and the same in all cases) will be kept for
our purposes. We can now define the set S(G) as the set of
simple cycles of G, the set of unrestricted cyclic patterns as
C(G), and its relation:

S(G) ⊂ C(G) (2)

Similarly, we can define the set of tree patterns, T (G), as:

T (G) = {T is a connected component of B(G)} (3)

where B is the set of bridges ofG (see [10] for more details).

3.2 Kernel methods

The method presented in this paper belongs to the family of
kernel methods [7, 17], a well-founded technique in statisti-
cal learning which comprises three steps:
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1. A mapping φ of the data from the input space, x, (di-
rected labeled graphs G, in our case) into some mean-
ingful, application-dependent, feature space, F , (sim-
ple cycles):

φ : x→ φ(x) ∈ F (4)

2. An inner product defined in the feature space, φ(x),
in order to obtain the kernel matrix (a positive definite
matrix of similarities):

k(x, y) = 〈φ(x), φ(y)〉 (5)

3. A learning algorithm for discovering patterns in that
space (in our case, an RBF SVM for the automatic
classification based on the similarity matrix).

One interesting property of kernel functions is that, although
the feature space may have infinite dimension (the number
of possible cycles, in our case), it is often possible to com-
pute them in polynomial time. The obtained kernel matrix
can then be used as a similarity matrix for music retrieval
tasks.

3.3 Cyclic patterns kernel function

A cyclic patterns kernel function is proposed by [10], which
takes two graphs as input, extracts their cyclic C(G) and tree
patterns T (G) and uses them to build a mapping ΦCP(G)
into the feature space:

ΦCP(G) = C(G) ∪ T (G) (6)

The cyclic pattern kernel is defined as the set of all simple
cycles and tree patterns that appear in both graphs:

kCP(Gi, Gj) = |C(Gi) ∩ C(Gj)|+ |T (Gi) ∩ T (Gj)| (7)

However, the problem of computing cyclic pattern kernels
is NP -hard. For overcoming this issue, the authors in [10],
restrict the set of cyclic patterns to S(G), so that only sim-
ple cycles are computed (those cycles whose only repeated
nodes are the first and the last one). The advantage of sim-
ple cycles is that they can be computed in polynomial time.
The authors use the algorithm from [16], which extracts the
simple cycles of a graph by means of a depth-first search in
timeO(n+m(c+1)), where n is the number of vertices, m
is the number of edges, and c is the number of simple cycles.
It is important, thus, that there exists a bound (well-behaved
data) on the number of simple cycles for the sake of effi-
ciency of the algorithm. As empirically shown in Section 5
(see Figure 2), this is the case for our chord data.

4. PROPOSED SIMPLE-CYCLE
WEIGHTED KERNEL

In this section we present the proposed kernel, which is a
variant of the cyclic pattern kernels [10] introduced in the

previous section. We propose to focus our kernel only on
simple cycles which will represent the repetitive harmonic
sub-structure of a song. In order to favor longer simple cy-
cles, a weighted (normalized) version of the kernel will be
computed.

4.1 Graph extraction

Chord sequences represent the harmonic progression of a
song which may modulate over time, i.e., its key changes
through time. This is an important issue for the detection of
harmonic similarities, as the transposed chords may not co-
incide. In order to make our method transposition-invariant
we will thus convert the chord sequence into interval se-
quences, from which input graphs will be extracted. As
only structure matters for us, and not the “musical distance”
between a pair of chords (in semitones), a label λi will be
assigned to each chord transition with the same “musical
distance” (key invariant) 2 3 . For example, the transition
C → D#m will share the same label as F → G#m and
its enharmonic C → E[m, i.e.,

(C,D#m) = (C,E[m) = (F,G#m) = λk (8)

Chords C,G,Am,F,C,G,F,C,G,Am,C,G,F,C,G,Am,...
Labels (C,G) = (F,C) = λ1 , (G,Am) = λ2

(Am,F ) = λ3 , (G,F ) = λ4 , (Am,C) = λ5

Intervals λ1, λ2, λ3, λ1, λ1, λ4, λ1, λ2, λ5, λ1, λ4, λ1, ...

Graph

Table 1. Transformation of an extract of the chord progres-
sion of “Let it be” from The Beatles into an interval graph.

By sequentially reading the obtained interval sequence
x = {λ1, λ2, ..., λ1, ..., λl}, we will extract a directed graph
G (see Table 1) where each node represents a chord transi-
tion or interval (n = |{λi}|), and each interval transition is
represented by an edge (m = |{λi → λj}|).

2 For the sake of consistency we have not made the distinction between
ascending or descending intervals.

3 Please note that the chord type (minor, major, diminished, etc.) is
already incorporated in the graph representation through the λ values, e.g.,
(Cdim,Am) = (Edim,C#m) = λk .
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Figure 1. Computation of the simple-cycles weighted kernel on two initial graphs, G1 and G2.

4.2 Kernel function

Based on the algorithm from [10], we build a kernel which
takes any two interval graphs from the input space, extracts
their simple cycles to build a feature space, and computes a
similarity as the weighted inner product in the feature space.
In our case, the mapping function Φ is defined as a mapping
to the set of all possible simple cycles of the graph

G→ ΦSC(G) = S(G) (9)

which represent the repetitive sub-structures of an interval
graph. For a particular graph Gj , its feature vector has en-
tries [φ(Gj)]i which are equal to 1 if the simple cycle with
index i (denoted as cycle i in the sequel) is present in the
graph and 0 otherwise. We then compute the kernel func-
tion as the weighted inner product between the feature vec-
tors (simple cycles vector)

k(x, y) = 〈φ(x), φ(y)〉W̃ = φ(x)TDφ(y) (10)

where D is the normalized diagonal weight matrix

[D]ii = dii =
wi∑

j∈S(Gk)∪S(Gl)
wj

(11)

and wi is the length of the i-th cycle. The motivation for
this weighting is to favor longer cycles, so that two graphs
sharing a long cycle are considered as more similar as two
graphs sharing one short cycle. Furthermore, the kernel
weights are normalized by dividing them by their sum. The
complete procedure is described in Algorithm 1 and an ex-
ample on how to compute the weighted kernel is given in
Figure 1.

5. EMPIRICAL TESTING

To evaluate empirically the retrieval performance of our ker-
nel, two different tasks will be evaluated: (i) a cover song
retrieval task, and (ii) an idiom retrieval task. We will first
present the data used in the experiments, as well as the cho-
sen lexicon. Our simple-cycles weighted kernel method is

Algorithm 1 Simple-cycles Weighted Kernel: computa-
tion of the kernel matrix.
Input:
•maxL > 0: maximum length of extracted simple cy-
cles.
• s1, ..., sr: list of chord sequences to be compared.

Output:
•K: the Simple-cycles Weighted Kernel matrix.

1. for k,l = 1 to r do
2. Transform chord sequences sk and sl into directed

labeled graphs Gk and Gl following the procedure
from Table 1.

3. Extract all simple cycles of length < maxL, S(Gk)
and S(Gl), from Gk and Gl, with the algorithm de-
scribed in [16].

4. Create the feature vectors, φ(Gk) and φ(Gl), of
length |S(Gk) ∪ S(Gl)|, whose entry [φ(Gk)]i = 1
if the i-th cycle is in S(Gk) and 0 otherwise.

5. For all the cycles of S(Gk) ∪ S(Gl), compute the
corresponding elements i of the diagonal matrix D
from Equation (11).

6. Compute [K]kl = φ(Gk)TDφ(Gl).
7. end for

compared to several measures from string matching, as well
as graph comparison techniques.

5.1 The chord data sets

The cover song data set has been extracted from two dif-
ferent sources: the Beatles chord annotations from the Iso-
phonics 4 data base (Queen Mary, University of London),
and the user-generated chord files from the Ultimate-Guitar 5

data base. Although our first source of chord progressions
has already been used in MIR, we are the first to use, to
the best of our knowledge, a popular Internet guitar’s chord

4 isophonics.net
5 www.ultimate-guitar.com
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data base for similarity retrieval. The Ultimate-Guitar data
base contains more than 250,000 user-generated sequences
of guitar’s chords of popular pop/rock music. Although sev-
eral versions are available for each of the Beatles’ songs,
only well-ranked songs have been extracted (5 star rated
songs with at least 5 votes), making a total of 71 songs.
These same songs have been extracted afterwards from the
Isophonics data base, forming 71 classes of two songs each
(142 songs in total), where the songs from the Isophonics
data base are used as query over the remaining 71 songs
from the Ultimate-Guitar data base (one relevant song per
query). Although there exists a well-known MIREX audio
cover song task, this evaluation task takes audio signals as
input while our work is centered on chords, so that it cannot
be applied here.

The idiom data set has been fully extracted from the Ultimate-
Guitar data base and contains 296 songs partitioned in two
classes (101 songs for the first class, sharing a common 4-
chords idiom 6 , and 195 songs for the second class). Both
data sets are available from www.isys.ucl.ac.be/staff/

silvia/research.htm.
In both cases, a modest lexicon containing all major and

minor root chords (flat and sharp) has been used. We be-
lieve that this choice is representative enough for our pur-
pose, while avoiding bad transcription issues from users in
the Ultimate-Guitar data base, e.g., the chord C5 appears
instead of C.

5.2 Cover song retrieval task

Cover song retrieval (see for instance [2]) is a popular task in
MIR which aims at identifying the versions of a given song.
For this purpose, the cover song data set described above
has been used. We query the Ultimate-Guitar database with
each song from the Isophonics chord annotation (the ”query
song”), providing a ranking of the Ultimate-Guitar songs
in decreasing order of similarity with the Isophonics query
song (please see Section 5.1 for more details). The average
ranking position of all retrieved songs, as well as two recall
measures describing the accuracy of our method have been
reported in Table 2: the average first tier (the number of
correctly retrieved songs among the best (nc − 1) matches
divided by (nc − 1) with nc the class size, i.e., in our case
nc = 2), and the average second tier (number of correctly
retrieved songs among the best (2nc − 1) matches divided
by (nc − 1)).

In order to compare our method to other base line meth-
ods, the same methodology 7 has been applied to three string
matching techniques – the edit distance and longest com-

6 The sequence “C,G,Am,F” is considered as an idiom in modern
pop/rock composition. It appears in songs such as Let it be (The Beatles),
and With or without you (U2).

7 Interval sequences have been provided as input for each baseline
method, so that all compared methods are transposition invariant and eval-
uated under similar conditions.

mon subsequence widely used in sequence matching (see,
e.g., [8]) and the all-subsequences kernel [17] which is an
efficient method that compares all sub-sequences of two strings
–, and a graph comparison kernel – the fast sub-tree kernel,
a similarity measure between graphs that is fast to compute
and that outperforms other graph kernels [18]. For methods
needing a parameter, the fast sub-tree kernel and the simple-
cycles kernel, we have chosen a maximum cycle length (tree
depth) of 7 – longer cycles or deeper trees become too song-
specific, and are not of interest for us. Although chosen base
line methods may appear simplistic, our aim is to compare
our algorithm with a variety of methods under the same con-
ditions. Purpose-built methods using different chord repre-
sentations, or needing parameter tuning are not compared in
the present article for obvious reasons of adaptation, leaving
this task for further work.

Although results show no improvement for the first tier,
and just a slight improvement of the second tier (see average
first and second tier in Table 2) from the base line methods,
there is a clear improvement in the average general ranking
of retrieved songs. These results are encouraging for using
the Ultimate-Guitar data base as a future source for chord
progression data.

5.3 Idiom retrieval task

Idioms have recently attracted the attention of MIR as a new
object of musicological interest. An idiom is defined in [11]
as a “prominent chord sequence in a particular style, genre
or historical period”. Users have also discovered this notion
of idiom as shown in a youtube video 8 , where a sequence of
4 chords is used to assemble the melody of several pop/rock
songs. Interestingly, people who liked a few of these songs
tended to also appreciate the others.

We have tried to recover the songs containing the idiom
“C,G,Am,F” (or “I-V-VI-IV”) by applying a 10-fold double
cross validation with an RBF SVM on the idiom data set
from the Ultimate-guitar web site. Classification rates with
a 95% confidence interval are reported in Table 3. These
results show an increase of performance of our method of
7% from the closest base-line method.

Similarity First tier Second tier Average

average average ranking

Edit distance 78.87%± 6.76 87.32%± 5.51 4.169± 1.64

Longest common subs. 60.56%± 8.10 69.01%± 7.66 8.662± 2.59

All-subsequence kernel 28.17%± 7.45 43.66%± 8.22 15.929± 3.32

Fast sub-tree kernel 52.11%± 8.27 61.97%± 8.04 11.943± 2.78

Simple-cycles kernel 78.87%± 6.76 88.73%± 5.24 2.915± 1.09

Table 2. Average first tier, second tier, and average ranking
for the cover retrieval task with 95% confidence intervals.

8 http://www.youtube.com/watch?v=qHBVnMf2t7w
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Similarity Classification rate and

confidence interval

Edit distance 68.56%± 1.53

Longest common subsequence 69.91%± 2.41

All-subsequence kernel 68.56%± 1.53

Fast sub-tree kernel 81.06%± 4.22

Simple-cycles kernel 88.50%± 2.02

Table 3. Classification rates with a 95% confidence interval
for the idiom retrieval task.

Figure 2. Error bar showing the average number of simple
cycles per song and per cycle length of our chord progres-
sions data. 95% confidence intervals are also shown.

6. CONCLUSION AND FUTURE WORK

In this paper we have introduced a simple-cycle similarity
method based on the harmonic progression of a song. We
have presented the notions of a theoretically well-founded
method, and shown its applicability to our problem. This
approach has furthermore been validated on an idiom and
a cover song retrieval task. The obtained results suggest
the utility of extracting repetitive sub-structures for music
similarity purposes by means of a simple-cycles weighted
kernel. Further work will try to improve the presented algo-
rithm by performing an approximate cycle matching, and by
replacing labels by musical distances between chords.
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ABSTRACT

Harmony theory has been essential in composing, ana-
lysing, and performing music for centuries. Since Western
tonal harmony exhibits a considerable amount of structure
and regularity, it lends itself to formalisation. In this paper
we present HARMTRACE, a system that, given a sequence of
symbolic chord labels, automatically derives the harmonic
function of a chord in its tonal context. Among other appli-
cations, these functional annotations can be used to improve
the estimation of harmonic similarity in a local alignment of
two annotated chord sequences. We evaluate HARMTRACE

and three other harmonic similarity measures on a corpus
of 5,028 chord sequences that contains harmonically related
pieces. The results show that HARMTRACE outperforms all
three other similarity measures, and that information about
the harmonic function of a chord improves the estimation of
harmonic similarity between two chord sequences.

1. INTRODUCTION

With the rapid expansion of digital repositories of music,
such as iTunes, Spotify, last.fm, and the like, efficient meth-
ods to provide content-based access to this kind of music
repositories have become increasingly important. To be able
to cluster documents, a notion of the similarity between these
documents is essential. Hence, within Music Information
Retrieval (MIR), the development of musical similarity mea-
sures plays a prominent role. Music can be related in many
different aspects, e.g. melody, genre, rhythm, etc.; this paper
focuses on similarity of musical harmony. Music retrieval
based on harmony offers obvious benefits: it allows for find-
ing cover songs (especially when melodies vary), songs of a
certain family (like Blues or Rhythm Changes), or variations
over a theme in baroque music, to name a few.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

IVIVI V/V

C F D G7 7 C

{Ton TonSub Dom

Figure 1. A typical chord sequence. The chord labels are
printed below the score, and the scale degrees and func-
tional analysis above the score. Tonic, dominant, and sub-
sominant are denoted with Ton, Dom, and sub, respectively.

To be able to understand why two chord sequences are
harmonically related, we believe it is important to examine
chords not only in isolation but also the context in which
they occur. For this, we draw greatly on classical and jazz
harmony theory. In the last decades, many music theorists
have studied tonal harmony and observed that within a se-
quence not every chord is equally important. This suggests
that tonal harmony is organised hierarchically. Within a
sequence of chords, some chords can be removed leaving
the global harmony structure intact, while removing other
chords can significantly change how the chord sequence is
perceived. For example in Figure 1, the D7 chord could be
removed without changing the general structure of the har-
mony, while removing the G7 or the C at the end would
change the harmony structure. This suggests that chords
can have different functional roles, and therefore different
importance.

Nowadays there is a rich body of literature that aims to
explain the order and regularities in Western tonal harmony,
and various ways to analyse the function of a chord in its
tonal context have been proposed [9, 14, 18]. Unfortunately,
the majority of these theories are formulated rather infor-
mally and lack descriptions with mathematical precision or
computational executability. Although there are exceptions,
like the Tonal Pitch Space model [8] and David Temperley’s
Melisma [22], the lack of mathematical precision has ham-
pered the successful application of harmony models to prac-
tical MIR related tasks, such as automatic analysis, similar-
ity estimation, content-based retrieval, or the improvement
of low-level feature extraction.
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Contribution We present HARMTRACE 1 , a system for
analysing Western tonal harmony and determining harmonic
similarity, implemented robustly and efficiently in the pure,
type-safe functional programming language Haskell. It is
flexible, in the sense that it can be easily adapted and main-
tained, robust against noisy data, and capable of displaying
harmonic analyses in a clear way. We evaluate the retrieval
performance of HARMTRACE by comparing it to a baseline
alignment system and to two earlier approaches to harmonic
similarity in a retrieval experiment, using a corpus of 5,028
chord sequences. The results show that HARMTRACE out-
performs all other harmonic similarity measures and that ex-
ploiting knowledge about the harmonic function of a chord
improves retrieval performance.

The rest of this paper is organised as follows. After a
review of related work in Section 2, we explain how an au-
tomatic harmony analysis is performed by a music theoret-
ically founded knowledge system of tonal harmony (Sec-
tion 3). Next, we define harmonic similarity of two se-
quences of annotated chords as the maximum local align-
ment score (Section 4). In Section 5 we compare the re-
trieval performance of HARMTRACE to three other harmonic
similarity measures. Finally, we conclude the paper with
a short discussion on harmonic similarity and pointing out
directions for future research (Section 6).

2. RELATED WORK

Grammatical models of tonal harmony harmony have a long
history in music research, e.g. [9, 15, 20]. The harmony
model of HARMTRACE is based on the generative formalism
proposed by Rohrmeier [16, 17]. He models tonal harmony
as an elaborate recursive context-free grammar (CFG). His
model extends ideas of the Generative Theory of Tonal Mu-
sic (GTTM) [9] and Schenkerian Analysis [18], and cap-
tures form, theoretical harmonic function [14], phrasing, and
modulation. De Haas et al. [4] performed a first attempt at
implementing Rohrmeier’s grammar and using it for defin-
ing harmonic similarity. HARMTRACE transports these ideas
to a functional setting, solving many of the typical problems
accociated with context free parsing.

There exist other systems that address polyphonic mu-
sic similarity, but generally these are embedded into larger
retrieval systems and take audio or score information as in-
put, e.g. [13]. We are aware of two other systems that focus
solely on harmonic similarity and compute similarity values
from textual chord descriptions: the Tonal Pitch Step Dis-
tance (TPSD) [5], and the Chord Sequence Alignment Sys-
tem
(CSAS) [6]. A benefit of evaluating only a similarity mea-
sure is that errors caused by the feature extraction or chord

1 Harmony Analysis and Retrieval of Music with Type-level Represen-
tations of Abstract Chords Entities

labelling methods do not influence the retrieval evaluation.
The TPSD and CSAS are compared elaborately in [3]; we
introduce them briefly here.

The TPSD uses Lerdahl’s [8] Tonal Pitch Space (TPS)
as its main musical model. TPS is a model of tonality that
fits musicological intuitions, correlates well with empirical
findings from music cognition, and can be used to calculate
a distance between two arbitrary chords. The TPS model
takes into account the number of steps on the circle of fifths
between the roots of the chords, and the amount of over-
lap between the chord structures of the two chords and their
relation to the global key.

The general idea behind the TPSD is to use the TPS to
compare the change of perceived chordal distance to the
tonic over time. For every chord, the TPS distance to the
key of the sequence is calculated, resulting in a step func-
tion. Next, the distance between two chord sequences is
defined as the minimal area between the two step functions
over all possible horizontal circular shifts. To prevent that
longer sequences yield larger distances, the score is normal-
ized by the duration of the shortest song.

The CSAS [6] is based on local alignment: by perform-
ing elementary deletion, insertion, and substitution opera-
tions, one chord sequence is transformed into the other. The
actual similarity value is defined as the total sum of all edit
operations at all beat positions. To improve the retrieval per-
formance of the classical alignment approach, Hanna et al.
experimented with various musical data representations and
substitution functions. They found a key-relative represen-
tation, based on the interval between the root of the chord
and the key, to work well and preferred substituting only
when the chord root and triad were not identical. In the ex-
periments in [3] the CSAS outperformed the TPSD in 4 of
the 6 tasks.

3. HARMONY MODEL

The HARMTRACE harmony model implements and extends
the ideas of Rohrmeier [16,17]. However, HARMTRACE dif-
fers from Rohrmeier’s grammar in several aspects. Rohr-
meier’s model is more elaborate, as it includes phrasing and
modulation. However, we believe that modulation and phras-
ing cannot be implemented as context-free rules in the way
Rohrmeier formulates them. Rohrmeier’s CFG allows for
modulating into any key at any point in a sequence; from an
implementation perspective, this would generate too many
ambiguous solutions for a single sequence of chords. Fur-
thermore, whereas Rohrmeier’s grammar aims to explain
the core rules of tonal harmony, our model exhibits a bias
towards jazz harmony, due to the nature of the data used in
Section 5.

We model tonal harmony as a complex Haskell datatype.
To explain our model in a clear manner, that does not re-
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Figure 2. An analysis of the jazz standard Blue Bossa in
C minor. Every chord belongs to a Tonic, Dominant, or
Subdominant category (Ton, Dom, or Sub) and the V/X7

denote chains of secondary dominants.

quire elaborate knowledge of the Haskell programming lan-
guage, we chose a syntax that closely resembles a (very con-
strained) CFG. A CFG defines a language: it accepts only
combinations of words that are valid sequences of the lan-
guage. A collection of Haskell datatypes can be viewed as
a very powerful CFG: the type-checker accepts a combina-
tion of values if their structure matches the structure pre-
scribed by the datatype, and rejects this combination if it
does not. Within HARMTRACE, the chords are the values and
the datatypes represent the relations between the structural
elements in tonal harmony.

3.1 A model of Western tonal harmony

Figure 2 shows an example analysis as produced by HARM-
TRACE. We start by introducing a variable (denoted with
bold font) for the mode of the key of the piece, which can
be major or minor. The mode variable is used to parametrise
all the specifications of our harmony model; some specifi-
cations hold for both modes (m), while other specifications
hold only for the major (Maj) or minor mode (Min). The
mode is displayed as a subscript, which we leave out when
it is clear from the context. Currently, HARMTRACE cannot
yet derive the key of the piece automatically. Hence, to be
able to use key-relative representations, external informa-
tion about the key of the piece is essential.

1 Piecem→ Func+
m

2 Funcm → Tonm | Domm

3 Domm → Subm Domm

m ∈ {Maj,Min}

Spec. 1–3 define that a valid chord sequence, Piecem, con-
sists of at least one and possibly more functional categories.
A functional category classifies chords as being part of a
tonic (Tonm), dominant (Domm), or subdominant (Subm)
structure, where a subdominant must always precede a dom-
inant. The order of the dominants and tonics is not con-
strained by the model, and they are not grouped into larger
phrases.

4 TonMaj → IMaj | IMaj IVMaj IMaj

5 TonMin → Im
Min | I

m
Min IVm

Min Im
Min

6 Domm → V7
m | Vm

7 SubMaj → IVm
Maj | II

m
Maj | . . .

8 SubMin→ IVMin | II
m
Min | . . .

c ∈ {∅,m,7,0}

Spec. 4–8 translate dominants, tonics, and sub-dominants
into scale degrees (denoted with Roman numerals). A scale
degree is a datatype that is parametrised by a mode, a chord
class, and the interval between the chord root and the key.
The chord class is used to constrain the application of certain
specifications, e.g. Spec. 13 and 14, and can represent the
class of major (no superscript), minor (m), dominant seventh
(7), and diminished seventh chords (0). A tonic translates
into a first degree in both major and minor mode, albeit with
a minor triad in the latter case, or it allows for initiation of a
plagal cadence. A dominant type is converted into the fifth
or seventh scale degree with a dominant or diminished class,
respectively. Similarly, a sub-dominant is converted into the
fourth or second degree.

9 IMaj → "C:maj" | "C:maj6" | "C:maj7" | . . .
10 Im

Min → "C:min" | "C:min7" | "C:min9" | . . .
11 V7

m → "G:7" | "G:7(b9,13)" | "G:(#11)" | . . .
12 VII0

m→ "B:dim(bb7)"

Finally, scale degrees are translated into the actual sur-
face chords that are used as input for the model. The chord
notation used is that of Harte et al. [7]. The conversions are
trivial and illustrated by a small number of specifications
above. The model uses a key-relative representation, and
in Spec. 9–12 we used chords in the key of C. Hence, a IMaj
translates to the set of C chords with a major triad, option-
ally augmented with additional chord notes that do not make
the chord minor or dominant. Similarly, V7

Maj translates to
all G chords with a major triad and a minor seventh, etc.

13 Xc
m→ V/X7

m Xc
m

14 X7
m→ V/Xm

m X7
m

c ∈ {∅,m,7,0}
X ∈ {I, II[, II, . . . ,VII}

Spec. 13 accounts for the classical preparation of a scale
degree by its secondary dominant, stating that every scale
degree, independently of its mode, chord class, and root in-
terval, can be preceded by a chord of the dominant class,
one fifth up. The function V/X which transposes an arbi-
trary scale degree X a fifth up. Similarly, every scale de-
gree of the dominant class can be prepared with the minor
chord one fifth above (Spec. 14). These two specifications
together allow for the derivation of the typical and promi-
nently present ii-V motions in jazz harmony.

15 X7
m→ V[/X7

m

16 X7
m→ II[/X0

m
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17 X0
m→ III[/X0

m

The harmony model in HARMTRACE further allows vari-
ous scale degree transformations. Every dominant chord can
be transformed into its tritone substitution with Spec. 15.
This specification uses another transposition function V[/X
which transposes a scale degree X a diminished fifth—a
tritone—up. Likewise, diminished seventh chords are treated
as regular dominant seventh chords without a root and with
a [9 (rule 16). For instance, an A[0, consisting of A[, B, D,
and F, is viewed as a G7[9, which consists of G, B, D, F, and
A[0. An exceptional characteristic of diminished seventh
chords—consisting only of notes separated by minor third
intervals—is that they are completely symmetrical. Hence,
a diminished seventh chord has four enharmonic equivalent
chords that can be reached by transposing the chord a minor
third up with the transposition function III[/X (Spec. 17).
Because we want the application of the Spec. 13–17 to ter-
minate, we limit the number of recursive applications of
these rules. For the technical details about how this is done,
we refer to [10].

We have presented a condensed view on the core spec-
ifications of the model, but due to space limitation we had
to omit some specification for diatonic chains of fifths, bor-
rowings from the parallel mode and the Neapolitan chord
(see Figure 2). For the full specification of the model we
refer to [2] and to the code bundle found online. 2

3.2 Parsing

Having a formal specification as a datatype, the next step is
to define a parser to transform textual chord labels into val-
ues of our datatype. Writing a parser that parses labels into
our datatype would normally mean writing tedious code that
closely resembles the datatype specification. However, in
Haskell we can use datatype-generic programming 3 tech-
niques to avoid writing most of the repetitive portions of the
code. Moreover, not only the parser can be derived auto-
matically, but also a pretty-printer for displaying the har-
mony analysis in tree form, and functions for comparing
these analyses. This makes the development and fine-tuning
of the model much easier, as only the datatype specifications
have to be changed, and the code adapts itself automatically.
For technical details of the implementation and the generic
programming techniques we refer to [10].

Because music is an ever changing, culturally dependent,
and extremely diverse art form, we cannot hope to model
all valid harmonic relations in our datatype. Furthermore,
songs may contain mistakes or mistyped chords, perhaps
feature extraction noise, or malformed data of dubious har-
monic validity. This is problematic if we reject chord se-
quences that do not fit the grammatical specification without

2 http://hackage.haskell.org/package/HarmTrace-0.7
3 Not to be confused with regular polymorphism, as in Java generics.

returning any information about harmony analysis. How-
ever, these problems often occur at a specific position in the
piece and most of the song still makes sense. In HARM-
TRACE we use a parsing library [21] that features error-cor-
rection: chords that do not fit the structure are automatically
deleted or preceded by inserted chords, according to heuris-
tics computed from the grammar structure. For most songs,
parsing proceeds with none or very few corrections. Songs
with a very high error ratio denote bad input or wrong key
assignment, which results in meaningless scale degrees.

Music, and harmony in particular, is intrinsically am-
biguous. Hence, certain chords can have multiple meanings
within a tonal context. This is reflected in the model above.
We control the number of possible analyses by constrain-
ing the application of most specifications. Examples hereof
are the restriction of secondary dominants to scale degrees
of the dominant class, and limiting the number of possible
recursive applications of the secondary dominant rule.

4. SIMILARITY ESTIMATION

After having obtained an harmonic analysis from our model,
a chord is categorised as being part of either a dominant,
sub-dominant, or tonic structure (Spec. 4–8). Furthermore,
we also annotate whether a chord is part of secondary dom-
inant preparation (Spec. 13–14) and label whether it has
been transformed (Spec. 15–17). We hypothesise that these
annotations are helpful in determining harmonic similarity.
Hence, we represent an annotated chord as a quintuple of
the following form: (X , c, func, prep, trans), where X repre-
sents a scale degree, c a chord class (as defined in Section 3),
func the functional category, prep the functional preparation,
e.g. being part of a secondary dominant (V /X), and trans a
scale degree transformation, e.g. a tritone or diminished sev-
enth substitution. For estimating the similarity between two
sequences of these annotated chords we calculate the align-
ment score obtained in a classical alignment procedure [19].

The quality of an alignment heavily depends on the inser-
tion, deletions, match, and mismatch parameters. We use a
constant insertion and deletion penalty of −2 and we define
the similarity between the annotated chords as a function,
sim (ai,b j)→ [−1,6], that takes a pair of chords, ai and b j,
and returns an integer denoting the (dis-) similarity. Here i
and j denote the beat position of ai and b j in the compared
chord sequences A and B.

sim (X1,c1, func1,prep1, trans1) (X2,c2, func2,prep2, trans2) =
if X1 ≡ X2 ∧ c1 ≡ c2 then 2+mprep +mtrans else −1

where mprep = simprep (Prep1,Prep2)
mtrans = if Trans1 ≡ Trans2 then 1 else 0

Within sim, the function simprep→ [0,3] compares two pos-
sible scale degree preparations, returning 3 is the prepara-
tion is identical, 2 if both preparations involve the same fifth
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jump, 1 if they are both a preparation, and 0 in all other
cases.

The final similarity score is obtained by calculating the
optimal alignment between two annotated chord sequences
and normalising the alignment score. Because the prefix of
an optimal alignment is also an optimal alignment, an op-
timal solution can be found by exploiting the dynamic pro-
gramming paradigm. To ensure that the alignment is max-
imal, we construct an array T which stores the cumulative
alignment score so far. T is filled by calculating the recur-
rence below for every combination of annotated chords in
the sequence A and B in a standard dynamic programming
procedure.

T [i, j] = max


M[i, j−1]−2,
M[i−1, j]−2,
M[i−1, j−1]+ sim(ai,b j),
0

The actual alignment can be obtained by keeping track of
the path trough T , starting at T [n,m], where n and m are the
sizes of A and B, respectively. We obtain our final similar-
ity measure, SIM(A,B)→ [0,1], by normalising the sum of
alignment scores, T [n,m], by the sizes of A and B:

SIM(A,B) =
T [n,m]

n
· T [n,m]

m

5. EVALUATION

To evaluate the effect of the HARMTRACE harmony model on
retrieval performance, we compare it to a baseline alignment
system, named TRIADALIGN. In TRIADALIGN we use the
exact same alignment code, but the similarity function for
individual chords, sim, is replaced by simtriad that does not
use any additional model information.

simtriad (X1, triad1) (X2, triad2) =
if X1 ≡ X2 ∧ triad1 ≡ triad2 then 4 else −1

Here, triad denotes only whether the chord is major or mi-
nor, and the X represents the scale degree, as defined in the
previous sections. Note that the TRIADALIGN system is very
similar to the CSAS, but uses slightly different parameters
and normalises the alignment score.

We compare the retrieval performance of HARMTRACE,
TRIADALIGN, TPSD, and CSAS methods (see Section 2) in
a retrieval experiment for which we use the same chord se-
quence corpus as in [3]. This corpus consists of 5,028 unique
user-generated Band-in-a-Box files that are collected from
the Internet. Band-in-a-Box [1] is a commercial software
package for generating musical accompaniment based on a
lead sheet. For extracting the chord label information from
the Band-in-a-Box files we have extended software in [12].

TPSD CSAS TRIADALIGN HARMTRACE

MAP 0.580 0.696 0.711 0.722

Table 1. The mean average precision of the rankings based
on the compared similarity measures.

Within the corpus, 1,775 songs contain two or more sim-
ilar versions, forming 691 classes of songs. Within a song
class, songs have the same title and share a similar melody,
but may differ in a number of ways. They may, for instance,
differ in key and form, in the number of repetitions, or may
simply use different chords at certain positions. Having
multiple chord sequences describing the same song allows
for setting up a cover-song-finding experiment. The title of
the song is used as ground-truth and the retrieval challenge
is to find the other chord sequences representing the same
song. Although the dataset was automatically filtered to ex-
clude identical or erroneous pieces, it still includes many
songs that are harmonically atypical. The reason for this is
that the files are user-generated, and contain peculiar and un-
finished pieces, wrong key assignments, and other errors; it
can therefore be considered a “real life” dataset. The chord
sequence corpus is available to the research community on
request.

We analyse the rankings obtained from the compared sim-
ilarity measures by calculating the Mean Average Precision
(MAP). The MAP is the average precision averaged over
all queries, and is a single-figure measure between 0 and
1 [11, Chap. 8, p. 160]. We tested whether the differences in
MAP are significant by performing a non-parametric Fried-
man test with a significance level of α = 0.05. We chose the
Friedman test because the underlying distribution of the data
is unknown, and, in contrast to an ANOVA, the Friedman
does not assume a specific distribution of variance. 4 To de-
termine which pairs of measurements differ significantly we
conducted a post-hoc Tukey HSD test. This way of signifi-
cance testing is standard in MIREX.

The MAP scores are displayed in Table 1. There are sig-
nificant differences between the runs, χ2(3,N = 1775) =
350, p < 0.0001 and also all pairwise differences are statisti-
cally significant. Hence, we can conclude that HARMTRACE

significantly outperforms the other similarity measures, and
that using the harmonic information obtained by our model
improves similarity estimation on this dataset.

6. DISCUSSION

The results show that using information about the function
of a chord improves harmonic similarity. However, not all
harmony annotations appeared to be beneficial: although in
our experiments the functional categories (Ton, Dom, Sub)

4 All statistical tests were performed in Matlab 2009a.
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did not have a negative effect on the similarity estimation,
they did not improve the harmonic similarity either. Perhaps
the categories are not distinctive enough to be advantageous.
We noticed that similarity measures that did not easily clas-
sify chords as similar performed best.

The retrieval task of Section 5 is a difficult one because
the song class sizes are very small. Often there is only one
related piece in the corpus, and finding it based on its har-
mony alone is challenging. We believe that this is a sound
way of evaluating of harmonic similarity, since nothing else
could have influence the results but the chords available in
the data. Nevertheless, it is stimulating to think about other
ways of evaluating harmonic similarity that go beyond the
concept of a cover-song. A fundamental problem is that cur-
rently there is no good ground-truth that actually captures
the harmonic similarity on a gradual (non-binary) scale. But
how should such a ground-truth be established: by perform-
ing a large scale user study, or by consulting musical ex-
perts? These questions remain unanswered, and pose chal-
lenges for future MIR research.

Besides similarity estimation, a model of tonal harmony
might be useful for answering other MIR-related questions.
For instance, chord labelling or optical music recognition
systems often recognise chords from audio or score data.
Our model could be used to suggest harmonically-fitting so-
lutions when there is high uncertainty in the data. Another
potential application of HARMTRACE would be in the gener-
ation of harmonically well-formed chord sequences for soft-
ware such as Band-in-a-Box. The TPSD and CSAS do not
offer such benefits.

The many possible applications of harmony models, like
the one in HARMTRACE, together with its positive results
in retrieval performance, make us believe that formalising
tonal harmony is crucial in understanding the true nature of
musical harmony and harmonic similarity.
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ABSTRACT

Understanding how we relate and compare pieces of music
has been a topic of great interest in musicology as well as for
business applications, such as music recommender systems.
The way music is compared seems to vary among both indi-
viduals and cultures. Adapting a generic model to user rat-
ings is useful for personalisation and can help to better un-
derstand such differences. This paper presents an approach
to use machine learning techniques for analysing user data
that specifies song similarity. We explore the potential for
learning generalisable similarity measures with two state-
of-the-art algorithms for learning metrics. We use the audio
clips and user ratings in the MagnaTagATune dataset, en-
riched with genre annotations from the Magnatune label.

1. MOTIVATION

In the recent years, increased efforts have been made to
adapt MIR techniques, especially for music recommenda-
tion, to specific contexts or user groups. This is encouraged
by developments in machine learning that make more algo-
rithms applicable to accumulated user data, like user pref-
erences or click-trough data for ranked search results, and
enable the involvement of crowd wisdom into general clas-
sification and distance learning tasks. Moreover, the combi-
nation of different information sources has been proven suc-
cessful for improving music recommendation and for clas-
sification into cultural categories such as musical genres.

This paper shows the results of some experiments on learn-
ing a musical distance metric from user similarity compar-
isons. Similarity models of mixed acoustic and tag features
are trained using comparative user judgent data on song sim-
ilarities. We derive information of the form ”Song A is more
similar to Song B than to Song C”, represented by binary
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rankings, which allows for the application of more generic
algorithms designed for learning from such data.

Although the above type of rating data is not as readily
accessible as customer preference or social network data, it
provides a valuable change of focus from general classifica-
tion and recommendation success towards modelling musi-
cal similarity and the users’ perception of it when engaged
in a comparison task. Thus, instead of targeting a general
relevance criterion, the optimisation task tackled in the fol-
lowing experiments addresses reported perceived similarity,
which only constitutes one of the many variable aspects of
relevance. As distance measures we use Mahalanobis dis-
tance metrics, which allow for a direct analysis as well as
the easy comparison of learning results [5], and therefore
encourage evaluation from a musicological perspective.

2. RELATED WORK

The distance metrics learning in this paper can be seen as
an extension of feature selection techniques developed ear-
lier in the MIR field, regarding feature selection as a binary
weighting of features. E.g., Dash and Liu [4] assembled a
comprehensive survey of general techniques for feature se-
lection in classification tasks. They pointed out attributes
relevant for diverse application scenarios, e.g. compabil-
ity considering dataset size, number of classes or robustness
against noise. These attributes enable a systematic compar-
ison of the various approaches when given the parameters
of a specific application. Pickens [13] categorised selection
techniques for music retrieval using symbolic data, calling
for special attention to features’ musicological properties.

A set-based method for learning a feature weightings was
applied by Allan et al. [1]. Users could specify their per-
ceived similarity using two example song sets: one contain-
ing similar and one dissimilar songs. A detailed discussion
on how to generate a successful stimulus partitioning for
a survey involving comparison within triplets of clips sup-
ported the design of their Balanced Complete Block Parti-
tioning.
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2.1 Optimising Recommendation via Metadata and
User Information

Out of the many data sources available for music descrip-
tion, genre annotations provide particularly valuable data for
indexing and presenting music in recommendation settings.
Musical genre has been used for the general evaluation of
similarity measures, using the correlation of songs’ genres
and data clusters derived from the learned similarity [11,12].

Barrington et al. showed a training of linear combina-
tions of SVM kernels relating to similarity measurements on
acoustic, tagging and web-mined annotation data, for build-
ing classifiers for automatic annotation [3]. They also pro-
vide relevance levels of the different feature types for differ-
ent tag classifiers.

A user-data based similarity measure for multimedia ob-
jects was introduced by Slaney [15]. Here, similarity of ob-
jects was based on users votings for them. Songs which fea-
ture the same grade of likeability by the same group of users
were considered similar. The resulting similarity measure
was evaluated via analysing artist consistency in rankings.
Inferring similarity from similar metadata sources as well as
music blog titles, Slaney et al. evaluated the performance of
several methods for learning a Mahalanobis distance met-
ric for music in [16]. McFee et al. [10] used the MLR al-
gorithm (see below) for parametrising a content-based mu-
sic similarity metric. A Mahalanobis metric was trained on
collected crowd data in form of rankings. This approach is
very similar to ours, but their emphasis has been on the need
for reliable content-based classifiers for music discovery in
sparsely annotated data.

Bade et al. [2] train a set of song-adaptive music similar-
ity msasures for folksongs, inferring training data from ex-
pert classifications: Several known similarity measures for
the symboloc music data and metadata are combined lin-
early via a weighted sum specific to the measured songs,
its corresponding clusters or database. For optimisation,
the expert classification information is transferred into rela-
tive distance statements enforcing the class members to be
nearer than songs from foreign classes.

2.2 Metric Learning from Comparative Ratings

Many common algorithms for metric learning use class an-
notations and nearest neighbour classifications for optimis-
ing and evaluating metrics [18]. As we intend to learn music
similarity from relative comparisons, such approaches are
difficult to apply considering the missing ground truth data
for clusters of perceptually similar music pieces or equiva-
lents.

Based on a framework for Support Vector Machines,
Schultz and Joachims [14] presented an optimisation using
relative constraints we apply on the task of music similarity
learning. Davis et al. formulated a metric learning prob-

lem as an LogDet optimisation task [5]. In this case, a
fully parametrised Mahalanobis metric was learned, allow-
ing for a regularisation towards another predefined Maha-
lanobis metric.

McFee et al. have designed an algorithm for learning a
Mahalanobis metric to rankings (MLR) [9]. In our experi-
ments, MLR is applied to learning a distance metric on mu-
sic, using the implementation provided by the authors. In
their publication mentioned above [10], this algorithm has
been adapted to enable learning from collaborative filtering
data.

3. THE MAGNATAGATUNE DATABASE

The MagnaTagATune database combines the results of a
web-based game called ”TagATune” together with the mu-
sic clips used therein and extracted audio features [7]. These
roughly 30-second long clips are provided by the Magnatune
online music label on a creative commons license. Mag-
natune has labelled the clips in this database with 44 genre-
tags, which are not mutually exclusive. The majority of the
data can be divided into four disjoint main groups using the
genre tags ”classical”, ”electronica”, ”world” and ”rock”,
each containing more than 17% of the total number of clips.
The MagnaTagATune game is a collaborative online game
with two modes: a regular mode for collecting tags and a
bonus mode for collecting similarity ratings.

3.1 Captured Similarity Ratings

We extract relative similarity information from data collected
during the ”bonus” mode of the ”TagATune” game. In that
mode, two players earn points if they vote the same clip as
the outlier out of three clips provided [8]. All votes made
(matching or not) are saved into a histogram hi = {ha, hb, hc}
∈ H for that triplet of songs. 533 such histograms are in-
cluded in the MagnaTagATune database, describing the vote
distribution (between 1 and 153 votes per triplet, 14 on av-
erage). Not counting permutations of triplets, there are 346
unique triplets comprising 1019 unique clips. Many his-
tograms do not show a clear agreement on one outlier. This
may be caused by the diverse nature of the clips, causing
triplets normally to range over various genres, as discussed
in [11]. However, many other variables like users’ cultural
backgrounds can equally affect their decisions. Content is
homogeneously distributed throughout the complete 25863-
clip database, but the small number of triplets available and
the varying number of permutations do not allow for choos-
ing a suitable subset featuring a Balanced Block Partition-
ing. This has been pointet out as important in [1] to obtain a
relatively unbiased survey data set.

The above data was transferred into a ranking represen-
tation like in [9]. Treating the histograms as votings on the
similarity between the outlier and the other clips, for each
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clip Ca, a set rsa of similar and, respectively, dissimilar clips
rda was calculated.

rsa = {b | ∃hi ∈ H : ha < hc ∧ hb < hc} (1)

rda = {c | ∃hi ∈ H : ha < hc ∧ hb < hc} (2)

The complete set of derived rankings is then given by

O =
{

(rsa, r
d
a) | ∃Ca ∧ rsa, rda 6= ∅ ∧ rda ∩ rsa = ∅

}
. (3)

Inconsistent rankings with rda ∩ rsa 6= ∅ were excluded to
enable the following training process. In order to use the
data with other algorithms, we removed further triplets 1 .
All but 12 of the resuting rankings contain a single clip on
each side: |rda| = |rsa| = 1. This resulted in 533 rankings.

3.2 Feature Generation

The MagnaTagATune dataset comes with precalculated fea-
tures for all clips extracted by the ”The Echo Nest” API
1.0, via the ”analyse” interface. These features are also in-
cluded in other online databases such as the Million Song
Dataset 2 . This also allows for a wider application of the
feature extraction procedure detailed below and facilitates
comparability with other studies. Of the wide feature range
provided 3 , we only use the chroma and timbre informa-
tion. The chroma and timbre features are sampled on a non-
uniform time scale. In order to aggregate to the clip level,
we use a k-means based algorithm to extract n = 4 cluster
centres for both of these features. In order to keep the fea-
tures invariant to key, whilst preserving the harmonic and
structural information, the chroma features are then trans-
posed to fit the main key as estimated in the provided fea-
tures, in the first chroma bin. This is achieved using a cir-
cular shift on the n chroma mean vectors. The resulting
shifted chroma mean vectors are now separately normalised
to a maximum value of 1.

The timbre features provided within the dataset very much
resemble the output of a 2-dimensional convolution with
12 different filters, corresponding to characteristic spectral
shapes. After clustering the timbre data to n = 4 mean vec-
tors, these are scaled and clipped to retain 85% of the data
within the interval of [0, 1] for the set of the 1019 clips.
Additionally, the cluster weights for each of the included
chroma and timbre cluster centroids are included in the fea-
tures.

3.2.1 Genre Features

These acoustic features are enriched using the genre tags as-
signed by the Magnatune label. This way, up to four genre

1 Two histograms {ha, hb, hc} and {ha, hb, hd} were removed if they
did not agree on the outlier, except if the outliers were c and d.

2 http://labrosa.ee.columbia.edu/millionsong/
3 http://developer.echonest.com/docs/v4/ static/AnalyzeDocumentation 2.2.pdf

tags are assigned to each of the clips. For each clip, a binary
44-dimensional vector indicates the annotation according to
the tags found for all of the clips in the dataset. The combi-
nation results in one feature vector xi ∈ (R ∩ [0, 1])

148 per
clip Ci, i ∈ {1, · · · , 1019}.

4. LEARNING SIMILARITY FROM
COMPARISONS

The distance measure d(xi, xj) we intend to optimise using
the following algorithms is defined on the clip level. Gen-
erally, our approach and the corresponding features are in-
tended to model a perceived distance, assumed to resemble
the inverse similarity of two songs.

The ranking data in the following experiments has been
approximated as a consensus from decisive triplet histograms,
and is therefore simpler, e.g. contains fewer contradictory
elements than the original data. Concerning the gathering of
the histograms themselves, the authors of [1] emphasise that
both the representation and especially the selection of com-
binations of the rated stimuli, in this case the clips, presented
to the users, affect the balance of the resulting ratings. They
only accept a set containing all possible triplet combinations
of a set of stimuli for an unbiased test. Unfortunately, the
triplets contained in the MagnaTagATune comparison data
and the resulting ratings ri are unbalanced. This may well
include a bias caused by the specific constellation of graph-
ical and acoustical presentations.

Using a metric for modelling song similarity implies sev-
eral assumptions. These assumptions have already been ques-
tioned by Tversky [17], arguing that perceived similarity
is not necessarily a linear, positive definite and symmet-
ric function, which satisfies the triangle inequality. Instead,
perceived similarity, in many circumstances, is assumed be
directional, considering specific functions of the objects in
comparison, e.g. prototype and referent.

However, the properties of a metric support efficient and
robust learning algorithms for dealing with the highly sparse
and often contradictory data involved in learning the song
similarity. Also, metrics have a straightforward geomet-
ric interpretation. Thus, besides the comparison of songs,
frameworks are available for comparing the metrics them-
selves. We now give a quick overview of the family of met-
rics used in our experiments before we focus on the way
they are used in Section 5.

4.1 Mahalanobis distances

The two algorithms summarised below are designed to learn
parametrised distance functions. These functions are special
cases of Mahalanobis distances, which are defined as

dW (xi, xj) =
√

(xi − xj)TW (xi − xj), (4)
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where xi, xj ∈ RN and W ∈ RN×N .
To qualify as a metric, W has to be positive definite

[19]. The algorithms we use only guarantee W to be posi-
tive semidefinite. The corresponding distance functions still
satisfy the conditions of symmetry, non-negativity and the
triangle inequality, but allow for dW (xi, xj) = 0 whilst
xi 6= xj and therefore are called pseudometrics. This func-
tion is the Euclidean metric if W is the unit matrix. As
detailed below, a Mahalanobis distance can be described as
a weighted Euclidean distance applied to previously linearly
transformed features.

4.2 SC03

In [14], Matthew Schultz and Thorsten Joachims present an
SVM approach to learning a distance metric. The function
learned here is parametrised by two matrices, a linear trans-
formationA and the positive semidefiniteW . For our exper-
iments, A = I contains the identity transformation and W
is constrained to be a diagonal matrix. Thus dW describes a
weighted Euclidean distance metric.

In order to use the users’ similarity data rdi and rsi , the
rankings are converted into singular similarity statements of
the form (a,b,c), where the clipCa is more similar toCb than
to Cc. This leads to the following set of triplet constraints:

Q =
{

(a, b, c) | ∃ (rsa, r
d
a) ∈ O : b ∈ rsa ∧ c ∈ rda

}
(5)

For each training triplet (a, b, c), Schultz et al. consider
the squared pointwise difference ∆xi,xj of the transformed
clips’ features, which in this application case reduces to
∆xi,xj = (xi−xj) ·(xi−xj) (note the point-wise product).
The weighted differences of

∆∆
(a,b,c) = (∆xa,xc −∆xa,xb) (6)

are then used as constraints for the following optimisation
problem (with w = diag(W )):

min
w,ξ

1

2
wTw + cSC03 ·

∑
abc

ξabc (7)

s.t. ∀(a, b, c) ∈ Qtrain : wT∆∆
(a,b,c) ≥ 1− ξabc

wi,j ≥ 0, ξabc ≥ 0.

This minimises the loss defined by the sum of the slack
variables ξabc, whilst regularising W using the Frobenius
norm with 1

2‖W‖
2
F . We used the SVM light C++ implemen-

tation 4 to minimise the above term. The software returns
w in form of its support vector expansion, containing the
support (difference) vectors ∆∆

i of the corresponding hy-
perplane and their weights αiyi. w can be easily retrieved
using w =

∑n
i=1 αiyi∆

∆
i .

4 http://svmlight.joachims.org/

4.3 Metric Learning to Rank

In [9], McFee et al. describe an algorithm for learning a
fullly parametrised Mahalanobis distance (see Equation (4))
using ranking information. Presenting an algorithm based
on Structural SVM, they compute W whilst assuring the
margin between the given training rankings and possible dif-
ferent rankings of the training data [10]. This method uses
binary rankings and evaluates results by the relative posi-
tioning of clips marked as relevant or irrelevant. A fully cor-
rect ranking positions the relevant clips rsa before the ones
in rda. The calculation of the associated loss involves stan-
dard IR measures for estimating the ranking loss, e.g. the
area under ROC curve. For selecting the most effective con-
straints, a cutting-planes method [6] is used. Note that clips
not named in the rankings stay neutral and have no effect on
the loss.

The MATLAB R© implementation of the MLR framework,
available online 5 , provides several options for choosing the
cutting-planes method and loss function. In the experiments
below, we selected the AUC-related methods for simplicity.
In the literature, W is regularised by its trace tr(W ), but
the implementation provided by McFee also allows to use a
squared Frobenius norm, similar to the quadratic regularisa-
tion in (7).

5. EXPERIMENTS

All experiments were performed using five-fold cross-vali-
dation on the rankings. The ranking set O was divided into
five disjoint batches of 106 or 107 rankings, respectively.
Each batch was used once as a test set against the remaining
four batches combined as training set. For smaller sized
training sets, subsets were picked randomly from each of the
training batches. The size of the test sets was kept constant
for all training set sizes.

We tested three different variations of learning metrics:
SC03 for learning a weighted Euclidean distance, MLR for
calculating a full Mahalanobis matrix, and MLR with W
constrained to be diagonal. The slack-loss / regularisation
trade-off factors c were set to cmlr = 10000 for both the
diagonal and the full-W MLR, and cSC03 = 100 for the
SC03 algorithm (Section 4.2). The squared Frobenius norm
was used for regularising W in all experiments. These pa-
rameters were determined in earlier experiments using the
present dataset with non-reduced training sets.

For evaluation, we compare the rankings in the ground
truth with rankings induced by the learned distance func-
tions. We also tested an unweighted Euclidean distance met-
ric as a baseline. As we deal with binary rankings as de-
scribed in Section 3.1, any ranking featuring the clips in rsa
before the ones in rda for a query clip a qualifies as correct,

5 http://cseweb.ucsd.edu/˜bmcfee/code/mlr/
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the absolute ranking positions were not taken into account.

5.1 Results

Figure 1 shows the results for running the above configu-
ration on the features described in Section 3.2. The upper
plot (a) shows the percentage of correctly induced rankings
for the three metric learning approaches as well as the re-
sults for an unmodified Euclidean metric, serving as base-
line. With 81.81% correctly reproduced test rankings and a
standard deviation of 4.78% over the five test sets, the fully
parametrised MLR-trained distance produces the best re-
sults, followed by the diagonal-MLR (71.85%, 2.69%) and
SC03 (69.61%, 4.27%), barely superceeding the baseline of
67.74%. Both of the diagonal-W methods score rather low
compared to the MLR-trained metric. Although the number
of variables to determine is rather high, given the feature
dimensionality, MLR proves successful in finding the best
solution, except for the training with less than 50 rankings.
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Figure 1. Results for increasing training set size. Plotted are
the mean percentages of fulfilled rankings. MLR algorithm
(◦), MLR with diagonal W (/), and SC03 (+). The perfor-
mance of the Euclidean metric is represented by a straight
line.

SC03 performs worst in this comparison, even dropping
below the baseline during the medium-sized test-sets. As
can be seen in Figure 1(b), SC03 performs much better than
the diagonal MLR on the training set. This suggests an over-
fitting of SC03 and possibly insufficient influence of the reg-
ularisation loss. Overfitting depends strongly on the choice
of cSC03. The fact that the more flexible fully parametrised
MLR-trained distance metric shows more flexibility towards
the satisfaction of training constraints appears intuitive
(Figure 1(b)). Lesser so, the better generalisation, which
might be explained by the ability to spread the necessary ad-
justments in the metric across many parameters compared to

the diagonally parametrised metrics.
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Figure 2. Results for increasing training set size using PCA
features. Labels are as above.

5.1.1 PCA features

Figure 2 shows the results of applying the metric learning to
a feature set that was reduced to 20 dimensions using Prin-
cipal Component Analysis (PCA). As in the earlier experi-
ment, MLR scores best, with (76.94%, 3.1%). The degrada-
tion may be attributed to the smaller number of parameters
(W ∈ R20×20) available for adapting the metric. However,
when analysing the weights for the single feature dimen-
sions, the ordering (by absolute value of the eigenvalues)
used for determining the relevant pca dimensions does not
correspond to their influence on the rated similarity. Thus,
information relevant for similarity is lost in these PCA re-
duced features, which has been validated by the training of
metrics using more PCA coefficients. In this experiment
with 20 coefficients we compare the ranking of PCA coeffi-
cients, as determined by PCA data variance, with the rank-
ing of PCA coefficients derived from the SC03 weighting.
They differ on average by more than 52% of the index range.

With the PCA features, the SC03 algorithm greatly im-
proves in performance, 75.42% indicating a higher suitabil-
ity of the low-dimensional vector space. This time, a less
effective enforcement of training constraints apparently en-
ables a better generalisation. In contrast, the diagonal MLR
is less able to cope with the data. Especially for the train-
ing sets involving around 300 rankings, the decrease in per-
formance on the test set can be explained by less consis-
tent training sets leading to badly generalising metrics. The
baseline Euclidean metric achieves 66.97% of correct rat-
ings.
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6. DISCUSSION

In the present paper, we apply general algorithms for met-
ric learning to a music similarity modelling task Using sim-
ple and widely available features and comparative similar-
ity ratings, we demonstrated that a considerable proportion
of the ratings can be effectively learned and reproduced us-
ing Mahalanobis distances. This corroborates the initial hy-
pothesis that the ratings sharing some concordant informa-
tion. Whilst with both the original features and the low-
dimensional PCA features the MLR algorithm shows supe-
rior results, the diagonal matrix algorithms show compara-
ble generalisation abilities for the PCA features. However,
PCA seems not suitable for reducing feature dimensionality
in a musical similarity context. Instead, the metric leaning
techniques may hint on the necessary transformations and
on which features may be ommitted.

6.1 Future Work

Despite the sparse and sometimes contradictory nature of
the rankings derived from MagnaTagATune, we find the our
results encouraging to develop more elaborate data sets for
further experiments. Special attention will be given to the
variation of learned metrics when observing different cul-
turally defined user groups. More research has to be done in
the development of specialised regularisation terms for met-
ric learning algorithms, e.g. allowing for a customised W
as a regularisation target [5].
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ABSTRACT

This work introduces Mutual Proximity, an unsupervised
method which transforms arbitrary distances to similarities
computed from the shared neighborhood of two data points.
This reinterpretation aims to correct inconsistencies in the
original distance space, like the hub phenomenon. Hubs are
objects which appear unwontedly often as nearest neighbors
in predominantly high-dimensional spaces.

We apply Mutual Proximity to a widely used and stan-
dard content-based audio similarity algorithm. The algo-
rithm is known to be negatively affected by the high number
of hubs it produces. We show that without a modification
of the audio similarity features or inclusion of additional
knowledge about the datasets, applying Mutual Proximity
leads to a significant increase of retrieval quality: (1) hubs
decrease and (2) the k-nearest-neighbor classification rates
increase significantly.

The results of this paper show that taking the mutual
neighborhood of objects into account is an important aspect
which should be considered for this class of content-based
audio similarity algorithms.

1. INTRODUCTION

A number of audio similarity algorithms which have been
published so far are affected by the so called “hub prob-
lem” [1, 4, 6, 16]. Hubs are over-popular nearest neighbors,
i.e. the same objects are repeatedly identified as nearest
neighbors. The effect is particularly problematic in algo-
rithms for similarity search, as the same “similar” objects
are found over and over again. In 2010 Radovanović et
al. [19] published an in-depth work about hubs, showing
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that they are yet another facet of the curse of dimension-
ality. Radovanović also showed that “bad hubs” (objects
which are a bad retrieval result, in addition to being a hub)
can degrade the retrieval quality of algorithms significantly.

The work of this paper was inspired by these problems
and presents a straightforward method to reduce the “hub
problem” significantly. In the case of the standard audio
similarity algorithm we use in this work we can show how to
reduce its number of hubs while simultaneously increasing
its retrieval quality.

2. RELATED WORK

Nearest neighbor search (NNS) is a well defined task: given
an object x find the most similar object in a collection of
related objects. In the simplest case the problem is solved
by a linear search, computing a distance/similarity between
x and all other objects, sorting the distances/similarities to
return the top k-nearest neighbors.

A natural aspect of nearest neighbor relations is that they
do not need to be symmetric: that is, object y is the nearest
neighbor of x, but the nearest neighbor of y is another object
a (a 6= x). This behavior is problematic if x and y belong
to the same class but a does not, thus it is said a violates the
pairwise cluster stability [3]. Although a is, in terms of the
distance measure, the correct answer to the nearest neighbor
query for y, it may be beneficial to use a distance measure
enforcing symmetric nearest neighbors. Thus a small dis-
tance between two objects would be returned only if their
nearest neighbors concur. Figure 1 illustrates this effect.

Repairing sometimes contradicting, asymmetric nearest
neighbor information in a similarity measure was already in-
vestigated in a number of works. The first publication which
exploits common near neighbor information dates back as
far as 1973. Jarvis and Patrick [11] propose a “Shared Near
Neighbor” similarity measure to improve the clustering of
non-globular clusters. As the name may suggest the Shared
Near Neighbor (SNN ) similarity is based on computing the
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(a)

(a) Original nearest neigh-
bor relations

(b)

(b) Desired nearest neigh-
bor relations

Figure 1: Schematic plot of two classes (black/white filled
circles). Each circle has its nearest neighbor marked with
an arrow: (a) violates the pairwise stability clustering as-
sumption, (b) fulfills the assumption. In many applications
(b) would be the desired nearest neighbor relation for the
dataset.

overlap between the k nearest neighbors of two objects x, y:

SNNk(x, y) = |NNk(x) ∩NNk(y)|. (1)

Shared Near Neighbor similarity was also used by Ertöz
et al. [5] to find the most representative items in a set of
objects. Jin et al. [12] use the Reverse Nearest Neighbor
(RNN) relation to define a general measure for outlier de-
tection.

Other work which takes advantage of the asymmetry of
nearest neighbors to correct the distance space was per-
formed by Pohle et al., who propose a method named Prox-
imity Verification (PV ) [17]. Two objects are considered
similar if both objects have a low nearest neighbor rank
according to their counterpart. An unsupervised technique
using the local neighborhood of objects to improve the re-
trieval accuracy of cover song detection systems is proposed
by Lagrange and Serrà [13].

An effect of high dimensionality which affects particu-
larly NNS is the hub problem. Berenzweig [4] suspected a
connection between the hub problem and the high dimen-
sionality of the feature space. Radovanović et al. [19] were
able to provide more insight by linking the hub problem to
the property of distance concentration in high dimensions.
Concentration is the surprising characteristic of all points in
a high dimensional space to be at almost the same distance
to all other points in that space. It is usually measured as a
ratio between spread and magnitude, e.g. the ratio between
the standard deviation of all distances to an arbitrary refer-
ence point and the mean of these distances. If the standard
deviation stays more or less constant with growing dimen-
sionality while the mean keeps growing, the ratio converges
to zero with dimensionality going to infinity. In such a case

it is said that the distances concentrate. This has been stud-
ied for Euclidean spaces and other `p-norms. Radovanović
presented the argument that in the finite case, some points
are expected to be closer to the center than other points and
are at the same time closer, on average, to all other points.
Such points closer to the center have a high probability of
being hubs, i.e. of appearing in nearest neighbor lists of
many other points.

Hubs were observed in music information retrieval [2],
image [9] and text retrieval [19] making this phenomenon a
general problem for information retrieval and recommenda-
tion algorithms.

A music similarity algorithm which is adversely affected
by the “hub problem” is the method published by Mandel
and Ellis [15]. The algorithm is widely seen as a standard
method for computing music similarity and its hub prob-
lems have already been noticed and investigated (for exam-
ple by Flexer et al. [6]). The algorithm uses a timbre model
computed from the audio signal for music similarity. In its
core the basic method stores the music similarity informa-
tion for each music piece in a single multivariate Gaussian,
which is estimated from the Mel Cepstrum Frequency Co-
efficients [14] (MFCCs) of the audio signal. To compute the
similarity usually closed form solutions of Kullback-Leibler
related divergences are used.

3. AUDIO SIMILARITY

This work uses the basic algorithm from Mandel and El-
lis [15] to compute audio similarity. To compute the features
we use 25 MFCCs for each 46ms of audio with a 23ms hop
size. This corresponds to a window size of 1024 and a hop
size of 512 audio samples at a sampling rate of 22.05kHz.
A Gaussian model is estimated from the MFCC represen-
tation of each song so that finally a single timbre model is
described by a 25-dimensional mean vector, and a 25× 25-
dimensional covariance matrix. We use the Matlab music
analysis (MA) toolbox 1 to compute the features.

To compute the similarity between two timbre models
we use a Jensen-Shannon approximation (js), a stable sym-
metrized version of the Kullback-Leibler divergence from
the multivariate normal (MVN) toolbox 2 .

4. THE METHOD

In this section we introduce a method that is based on: (i)
transforming distances between points x and y into proba-
bilities that y is closest neighbor to x given the distribution
of all distances to x in the data base, (ii) combining these
probabilistic distances from x to y and y to x via the prod-
uct rule. The result is a general unsupervised method to

1 http://www.pampalk.at/ma/
2 http://www.ofai.at/~dominik.schnitzer/mvn
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transform arbitrary distance matrices to matrices of proba-
bilistic mutual proximity (MP). The first step of transforma-
tion to probabilities re-scales and normalizes the distances
like a z-transform. The second step combines the proba-
bilities to a mutual measure akin to shared near neighbor
approaches. By supporting symmetric nearest neighbors the
method leads to a natural decrease of asymmetric neighbor-
hood relations and as a result, to a decrease of hubs.

4.1 Preliminaries

Given a non-empty set M with n objects, each object mx ∈
M assigned an index x = 1..n. We define MP to be used for
a divergence measure d : M ×M → R with the following
properties:

• non-negativity: d(mx,my) ≥ 0,

• identity: d(mx,my) = 0, ⇐⇒ mx = my ,

• symmetry: d(mx,my) = d(my,mx).

Individual elements mx ∈ M are referenced in the text by
their index x. The distance between two elements refer-
enced by their index is denoted as dx,y .

4.2 Mutual Proximity (MP)

In a first step for each element x the average distance µ̂x

and the standard deviation σ̂x of all its distances dx,i=1..n

in M is computed, estimating a Gaussian distance distri-
bution X v N (µ̂x, σ̂x) for each element x (Equation 2).
This is based on the assumption that our data is normally
distributed due to the central limit theorem. The estimated
normal X thus models the spread of distances from x to all
other elements in M :

µ̂x =
1

n

n∑
i=1

dx,i, σ̂2
x =

1

n

n∑
i=1

(dx,i − µ̂x)2.

Figure 2a shows a schematic plot of the probability den-
sity (pdf) function which was estimated for the distances of
x. The mean distance (µ̂x) is in the center of the density
function. Objects with a small distance to x (i.e. objects
with high similarity in the original space) find their distance
on the left-side of the density function. Note that the left-
most distance in the Gaussian is dx,x = 0.

By estimating a normal distributionX from the distances
dx,i=1..n, it is possible to reinterpret the distance dx,y as the
probability that y is the nearest neighbor of x, given the dis-
tance dx,y and normal X (that is the probability that a ran-
domly drawn element z will have a distance dx,z > dx,y):

P (X > dx,y) = 1− P (X 5 dx,y)

= 1−Fx(dx,y).

Fx denotes the cumulative distribution function (cdf) of
the normal distribution defined by X . The probability of an
element being a nearest neighbor of x increases the more
left its distance is on the x-axis of the pdf (cf. Figure 2a). To
illustrate that Figure 2b plots the probability of y being the
nearest neighbor of x given dx,y (the filled area).

Transforming all original distances into the probability
that a point y is a nearest neighbor of x offers a convenient
way to combine this with the opposite view (the probability
x is the nearest neighbor of y) into a single expression.

Definition 1 Under the assumption of independence, we
compute the probability that y is the nearest neighbor of x
given X (the Normal defined by the distances dx,i=1..n) and
x is the nearest neighbor of y given Y (the Normal defined
by the distances dy,i=1..n). We call the resulting probability
Mutual Proximity (MP):

MP (dx,y) = P (X > dx,y ∩ Y > dx,y)

= P (X > dx,y) · P (Y > dx,y),∀dx,y > 0
(2)

Clearly the assumption of independence of P (X) and
P (Y ) will be violated, still MP has, as we will show empiri-
cally, largely positive effects especially in high dimensional
data spaces with high hubness.

4.3 Properties

MP is symmetric MP (dx,y) = MP (dy,x) and its values
are normalized to the interval [0− 1]. Note that the method
can therefore be easily used to linearly combine multiple
different distance measures.

MP will only be high if both nearness probabilities are
high and thus if their distance indicates a close mutual rela-
tionship in terms of their distance distributions. If this is not
the case, i.e., one of the probabilities is small, their MP will
be small too.

4.4 Matlab

The following Octave 3 /Matlab 4 code snippet demonstrates
the simplicity of the method. It computes DMP for a given
n× n distance matrix D:

m = mean(D);
s = std(D);

for i = 1:n
for j = (i+1):n
D_MP(i, j) =

(1 - normcdf(D(i, j), m(i), s(i))) *
(1 - normcdf(D(i, j), m(j), s(j)));

end
end

3 http://www.gnu.org/software/octave/
4 http://www.mathworks.com/products/matlab/
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(b) The shaded area shows the probability that y is the nearest neighbor of
x based on the distance dx,y and X . The closer y is to x (the smaller dx,y)
the higher the probability.

Figure 2: Schematic plot of the probability density function of a normal distribution X v N (µ̂x, σ̂x) which was estimated
from the distances dx.

5. EVALUATION

To evaluate the effects of using MP for the selected au-
dio similarity algorithm we use eight different music col-
lections (see Table 1 for collection characteristics like col-
lection size or numbers of genres). The collection sizes
range from 100 to 16 000 music pieces. Four collections
(homburg [10], ismir2004-train 5 and ismir2004-dev, ball-
room [7]) are public benchmark sets. The other collections
(DB-S, DB-XL, DB-RBA, DB-L) are private benchmark
collections. Each individual song in the collections is as-
signed to a music genre.

5.1 Metrics

The following metrics are used to evaluate the Mutual Prox-
imity transformation with the music similarities:

5.1.1 Leave-One-Out, k-Nearest Neighbor Genre
Classification (Ck)

We compute the k-nearest neighbor classification accuracy
using a leave-one-out genre classification. The k-NN classi-
fication accuracy is denoted withCk. Higher values indicate
more consistent retrieval quality in terms of the class/genre.
It is one of the standard methods to measure the retrieval
quality of audio similarity algorithms.

5.1.2 Goodman-Kruskal Index (IGK)

To evaluate the impact of the MP transformation, we also
compute the Goodman-Kruskal Index [8]. IGK is a ratio
computed from the number of concordant (Qc) and discon-
cordant (Qd) distance tuples. A distance tuple is concordant
if di,j < dk,l and objects i, j are from the same classes and
k, l from different classes. It is is discordant if di,j > dk,l.

5 http://ismir2004.ismir.net/genre contest/index.htm

IGK is bound to the interval [−1; 1]. The higher it is, the
more concordant distance tuples were found, thus indicating
tighter and better clustering.

5.1.3 Hubness (Sk)

We also compute the hubness [19] for each collection. Hub-
ness is defined as the average skewness of the distribution of
k-occurrences (Nk):

Sk =
E
[
(Nk − µNk

)3
]

σ3
Nk

Positive skewness indicates high hubness (high number
of hub objects), skewness values around zero a more even
distribution of nearest neighbors.

5.2 Results

Table 1 displays the full evaluation results of the selected au-
dio similarity algorithm according to the metrics introduced
in the previous section. In the table each collection spans
two rows, the first row showing the evaluation metrics com-
puted for the original data space and the second row listing
the values when using MP.

The collections listed in the table are sorted by their hub-
ness value in the original distance space. From the high
hubness values (1.93 − 9.29) the hub problem of the audio
similarity algorithm can be clearly seen. For example, a sin-
gle hub song in DB-L is occurring in over 10% of all k = 5
nearest neighbor lists in the collection. On the contrary hub-
ness is sharply decreasing when looking at the values MP
produces, which may indicate that MP creates a more evenly
spread object space. The average hubness values per collec-
tion decrease from 4.6 to 1.2; Figure 4 shows the individual
hubness values in a plot. Another metric which increases
for all collections is the Goodman-Kruskal index(IGK), in-
dicating a better separation of genres in the distance space
after using MP.
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Name, # Collection Genres n Distance Ck=1 +/- Ck=5 +/- Sk=5 IGK

DB-S 16 100 js 57.0% 5.0 42.0% 7.2 1.93 0.59
1 MP 62.0% 49.2% 0.65 0.74
ballroom 8 698 js 54.7% 4.9 46.3% 4.8 2.63 0.16
2 MP 59.6% 51.1% 1.05 0.20
ismir 2004 (tr) 6 729 js 82.9% 3.4 73.6% 3.2 3.61 0.35
3 MP 86.3% 76.8% 1.15 0.41
ismir 2004 (tr+dev) 6 1458 js 86.5% 3.8 80.6% 3.3 4.22 0.37
4 MP 90.3% 83.9% 1.31 0.42
homburg 9 1886 js 46.7% 3.7 43.6% 3.1 4.26 0.30
5 MP 50.4% 46.7% 1.33 0.34
DB-XL 21 16778 js 55.9% 5.1 46.6% 5.5 4.69 0.12
6 MP 61.0% 52.1% 1.37 0.19
DB-RBA 36 3423 js 51.4% 4.7 41.6% 4.8 5.77 0.26
7 MP 56.1% 46.4% 1.69 0.31
DB-L 22 2526 js 77.2% 5.0 68.1% 5.7 9.29 0.47
8 MP 82.2% 73.8% 1.16 0.55

Table 1: The detailed evaluation results comparing the use of MP with a standard variant. The evaluation criteria are described
in Section 5.
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Figure 3: Using MP increases the genre 1/5-NN classifica-
tion rates of each music collection significantly.
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Figure 4: Hubness values decrease when using the MP; a
desirable property for a music recommendation algorithm.

We also compute the Ck=1 and Ck=5 genre classifica-
tion rates. When comparing the two values computed for
the original audio similarity measure and MP, we see that
in all collections the retrieval quality in terms of genre clas-
sification rates increases noticeable when MP is used. For
k = 1 classification increases on average by 4.5%-points,
for k = 5 on average by 4.7%-points. Figure 3 and Table 1
(columns +/-) show the increase in 1/5-NN genre classifica-
tion rates per collection.

5.3 Summary

To summarize the evaluation we can see that all metrics we
computed to evaluate the impact of MP lead to significant
improvements in the retrieval quality of the basic audio sim-
ilarity measure proposed by Mandel and Ellis [15] in 2005.
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In the case of the homburg and ismir 2004 music genre
collections its performance is now very close to the reported
performance of the audio similarity algorithm by Pohle et
al. [18] which ranked top in the 2009/10 MIREX (task: au-
dio similarity and retrieval) evaluations. Their quite sophis-
ticated algorithm uses MFCCs, Spectral Contrast features,
“Harmonicness”, “Attackness” and a Rhythm component
(Table 2).

Collection Pohle [18] Mandel [15] Mandel+MP
homburg 50.9% 46.7% 50.4%
ismir 2004 (tr) 87.6% 82.9% 86.3%
ismir 2004 (tr+dev) 90.4% 86.5% 90.3%

Table 2: Nearest-neighbor (k = 1) leave-one-out- genre
classification accuracy comparison using MP. The numbers
from Pohle are taken from the referenced paper [18].

6. DISCUSSION AND FUTURE WORK

The authors find it very exciting to see the potential for im-
provements that one of the most basic content-based audio
similarity algorithms still offers without any modification
of its MFCC similarity features. Without using any class
information and only by using a simple unsupervised trans-
formation rewarding common neighbors, the long standing
problem of hub songs is alleviated and genre classification
rates for the algorithm can be increased significantly.

As Mutual Proximity can be used with arbitrary distance
measures it is also interesting to study the effects of MP on
datasets from different research areas. Preliminary tests in
that direction show that MP has in fact similar beneficial
effects on any high dimensional dataset suffering from high
hubness in its original distance space.
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ABSTRACT 
Due to the cold-start problem, measuring the similarity be-
tween two pieces of audio music based on their low-level 
acoustic features is critical to many Music Information Re-
trieval (MIR) systems. In this paper, we apply the bag-of-
frames (BOF) approach to represent low-level acoustic fea-
tures of a song and exploit music tags to help improve the 
performance of the audio-based music similarity computa-
tion. We first introduce a Gaussian mixture model (GMM) 
as the encoding reference for BOF modeling, then we pro-
pose a novel learning algorithm to minimize the similarity 
gap between low-level acoustic features and music tags 
with respect to the prior weights of the pre-trained GMM. 
The results of audio-based query-by-example MIR experi-
ments on the MajorMiner and Magnatagatune datasets 
demonstrate the effectiveness of the proposed method, 
which gives a potential to guide MIR systems that employ 
BOF modeling.   

1. INTRODUCTION 

Measuring the similarity between two pieces of music is a 
fundamental but difficult task in Music Information Re-
trieval (MIR) research [1] since music similarity is inher-
ently based on human subjective point of view and can be 
bias among people who have different musical tastes and 
prior knowledge. A piece of music contains a variety of 
musical contents, including the low-level audio signal; the 
metadata, such as the artist, album, song name, and release 
year; and a number of high-level perceptive descriptions, 
such as timbre, instrumentation, style/genre, mood, and so-
cial information (e.g., tags, blogs, and explicit or implicit 
user feedback). Among the musical contents, only the au-
dio signal is always available while the metadata and high-
level perceptive descriptions are often unavailable or ex-
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pensive to obtain. Owing to the cold-start problem, measur-
ing the similarity between two pieces of audio music based 
on their low-level acoustic features is critical to many MIR 
systems [2, 3]. These systems are usually evaluated against 
the objective criteria derived from the metadata and high-
level perceptive descriptions, which in fact correspond to 
the subjective criteria that humans use to measure music 
similarity. The similarity gap between the acoustic features 
and human subjective perceptions inevitably degrades the 
performances of the MIR systems. The gap may come from 
an insufficient song-level acoustic feature extraction or rep-
resentation and an ill similarity metric. Therefore, the goal 
of improving audio-based music similarity computation is 
to reduce the gap between audio features and human per-
ceptions, and it can be achieved from a music feature repre-
sentation perspective [3-8] or a similarity learning perspec-
tive [1, 10]. 

Due to the “glass ceiling” of performance that the pure 
audio-based music similarity computation systems have 
faced, several high-level perceptive descriptions, which are 
considered having a smaller gap between the similarity 
computed on them and the subjective similarity of human, 
have been employed in some previous work. For example, 
in [6, 7], an intermediate semantic space (e.g. genre or text 
caption) is used to bridge and reduce the similarity gap. 
During recent years, social information has been very 
popular and become a major source of contextual knowl-
edge for MIR systems. The social information generated by 
Internet users makes the “wisdom of crowds” available for 
investigating the general criteria of human subjective music 
similarity. In [1], the music blogs are exploited to learn the 
music similarity metric of audio features. In [8], the social 
tags are concatenated with the audio features to represent 
music in a query-by-example MIR scenario. Furthermore, 
Kim et al. [9] conduct explicit and implicit user feedback, 
which can be implemented by collaborative filtering (CF, 
the user-artist matrix), to measure artist similarity. Surpris-
ingly, the experimental results show that CF can be a very 
efficient source in music similarity computation. After-
wards, the CF data is used in [10] to learn the audio-based 
similarity metric and significant improvements in query-by-
example MIR performance are achieved with three types of 
song-level representations, namely, acoustic, auto-tag, and 
human-tag representations. 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page.  
© 2011 International Society for Music Information Retrieval 
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In the abovementioned work, music tags are mostly 
treated as part of music features to represent a song [8-10]. 
In this paper, we adopt music tags to create a ground truth 
semantic space to be used to measure human subjective 
similarity for three reasons. First, music tags are human la-
bels that represent human musical perceptions. According 
to previous studies [9, 10], the similarity from tags is highly 
relative to the subjective similarity for evaluation, i.e., the 
similarity gap is relatively small. Second, music tags are 
free-text labels that include all kinds of musical information, 
such as genre, mood, instrumentation, personal preference, 
and metadata, which are used to objectively evaluate the ef-
fectiveness of audio-based similarity computation in previ-
ous work. Third, music tags are generally considered noisy, 
redundant, bias, and unstable when collected from a com-
pletely non-constrained tagging environment, such as 
last.fm. Consequently, several web-based music tagging 
games have been created with a purpose of collecting reli-
able and useful tags, e.g., MajorMiner.org [12] and Tag A 
Tune [13]. In these tagging games, music clips are ran-
domly assigned to taggers in order to reduce the tagging 
bias. Carefully extracting tags with high term frequencies 
and merging equivalent tags can intuitively reduce the 
noisy factors. With a set of well-refined music tags, the se-
mantic space which simulates the human music similarity 
can be established. 

In most audio-based MIR systems, the sequence of short-
time frame-based or segment-based acoustic feature vectors 
of a song is converted into a fixed-dimensional vector so 
that the song-level semantic descriptions (or tags) can be 
incorporated into it. The bag-of-frames (BOF) or bag-of-
segments approach is a popular and efficient way to repre-
sent a set of frame-based acoustic vectors of a song and has 
been widely used in MIR applications [8,10,14]. In the tra-
ditional BOF approach, a set of frame representatives (e.g., 
codebook, denoted as an encoding reference hereafter) are 
selected or learned in an unsupervised manner, then a song 
is represented by the histogram over the encoding reference. 

In the BOF representation vector, each dimension repre-
sents the effective quantity of its corresponding frame rep-
resentative (e.g., codeword) within a song. Based on the ef-
fective quantities, we can estimate the audio-based similar-
ity of two songs. Motivated by the metric learning for au-
dio-based music similarity computation in [1, 10], we could 
learn a metric transformation over the BOF representation 
vector by minimizing the similarity gap between acoustic 
features and music tags. Since the BOF vector is generated 
by the encoding reference, the minimization of similarity 
gap can be achieved by learning the encoding reference ra-
ther than learning a metric transformation on the native 
BOF space. This leads to a supervised method for learning 
the encoding reference from a tagged music dataset to im-
prove the BOF representation. Hopefully, the learned en-
coding reference could better generalize the BOF modeling 
than a stacking transformation over the native metric. 

The remainder of this paper is organized as follows. Sec-
tion 2 describes the audio feature extraction module and 
song-level BOF representation. In Section 3, we introduce 
the method for learning the encoding reference from the 
tagged music data. In Section 4, we evaluate the proposed 
method on the MajorMiner and Magnatagatune datasets in 
a query-by-example MIR scenario. Finally, we summarize 
our conclusions in Section 5. 

2. BAG-OF-FRAMES REPRESENTATION FOR 
ACOUSTIC FEATURES 

2.1 Frame-based Acoustic Feature Extraction 

We use MIRToolbox 1.3 for acoustic feature extraction 
[14]. As shown in Table 1, we consider four types of fea-
tures, namely, dynamic, spectral, timbre, and tonal features. 
To ensure alignment and prevent mismatch of different fea-
tures in a vector, all the features are extracted with the same 
fixed-sized short-time frame. Given a song, a sequence of 
70-dimensional feature vectors is extracted with a 50ms 
frame size and 0.5 hop shift. Then, we normalize the 70-
dimensional frame-based feature vectors in each dimension 
to mean 0 and standard deviation 1. 

Types Feature Description Dim
dynamic rms 1 
spectral  centroid, spread, skewness, kurtosis, en-

tropy, flatness, rolloff 85, rolloff 95, bright-
ness, roughness, irregularity 

11

timbre zero crossing rate, spectral flux, MFCC, 
delta MFCC, delta-delta MFCC 

41

tonal key clarity, key mode possibility, HCDF, 
chroma , chroma peak, chroma centroid 

17

Table 1. The music features used in the 70-dimensional frame-
based music feature vector. 

2.2 The Encoding Reference and BOF Representation 

The BOF approach is argued that each frame of a song 
should not be treated equally, and an isolated frame of low-
level acoustic feature is not representative for high-level 
perceptive descriptions [15]. Besides, the effectiveness of 
BOF modeling is highly impacted by the size of encoding 
reference and will encounter a glass ceiling when the size is 
too large [16]. Our goal of improving the encoding refer-
ence for BOF modeling is twofold: First, we aim at choos-
ing a type of frame representative that gives better gener-
alization ability and a more reliable distance measure crite-
rion. Second, each frame representative should not have 
equal information load during song-level encoding.  

The BOF modeling starts with generating the encoding 
reference from a set of available frames (denoted as F). 
The frames are usually selected randomly and uniformly 
from each song in a music dataset. We use a Gaussian mix-
ture model (GMM) instead of a codebook derived by the K-
mean algorithm as the encoding reference [17]. In the 
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GMM, each component Gaussian distribution, denoted as zk, 
k=1,…,K, corresponds to a frame representative. The GMM 
is trained on F by the expectation-maximization (EM) algo-
rithm, and is expressed as follows: 
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kkkk Np Σμvv π           (1) 

where v is a frame-based feature vector, Nk(·) is the k-th 
component Gaussian distribution with mean vector μk and 
covariance matrix Σk, and πk is the prior weight of the k-th 
mixture component. Given v, the posterior probability of a 
mixture component is computed by: 
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Given a song s with L frames, its BOF posterior-probability 
representation (denoted as vector x) is computed by: 
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where xk is the k-th element in vector x. When encoding a 
frame by GMM, the posterior probability is based on the 
likelihood of each component Gaussian distribution. The 
posterior probability of each mixture component yields a 
soft-assigned encoding criterion which enhances the mod-
eling ability of the GMM-based encoding reference over 
the vector-quantization-based (VQ-based) one. 

Our contention is that the diversity of frame representa-
tives in the encoding reference is proportional to the ability 
of the BOF modeling, i.e., the BOF modeling can involve 
more audio information of a song to be encoded. However, 
like other encoding references (e.g., a set of randomly se-
lected vectors or a trained codebook), the GMM is gener-
ated in an unsupervised manner. The factors that we can 
control includes the number of components in GMM, i.e., 
K, the types of acoustic features used in the frame-based 
vector, and the construction of F. Except for K, the other 
two factors are fixed in the beginning. As K increases, the 
frame representatives become more diverse, but some of 
them are in fact redundant. This motivates us to determine 
the importance of each frame representative in a discrimi-
native way. The EM training for GMM provides the esti-
mation of the data distribution over F, which is assumed to 
follow a mixture of Gaussian distributions, by the maxi-
mum likelihood criterion. The prior πk of the k-th compo-
nent Gaussian represents the corresponding effective num-
ber of frames in training set F. However, the construction 
of F implies that the estimated distribution of F actually 
does not have information about the song-level distribution 
of acoustic feature vectors. In other words, it may not re-
flect the importance of each mixture component when en-
coding a song. In fact, as will be discussed later in Sec. 4, 
our experimental results show that setting the trained priors 
to a uniform distribution improves the MIR performance. 

In light of the observations described above and the ben-
eficial characteristics of music tags, we readily incorporate 
the tagged music data as a supervision guide to determine 
the importance of each mixture component in the GMM.   

3. LEARNING THE AUDIO-BASED SIMILARITY 

In this work, learning the similarity of audio music from 
tagged music data is achieved by learning the encoding ref-
erence to minimize the similarity gap between low-level 
acoustic features and high-level music tags. To this end, we 
conduct learning with respect to the parameters of the 
GMM trained from F. In this paper, we only consider the 
relearning of the prior probabilities, i.e., the pre-learned pa-
rameters μk and Σk, k=1,…,K, are fixed. The proposed itera-
tive learning algorithm has two steps, namely, encoding 
songs into BOF vectors and minimizing the similarity gap 
with respect to the prior probabilities of the GMM.  

3.1 Preliminary 

Suppose there is a tagged music corpus D with N songs. 
Given a song si in D, we have its BOF vector xi∈RK×1, 
which is encoded by the GMM to represent the acoustic 
features, and its tag vector yi∈{0,1}M×1, in which each tag 
is binary labeled (multi-label case) from a pre-defined tag 
set with M tags. Two similarity matrices are defined: SX is 
computed on the N BOF vectors, and SY is computed on the 
N tag vectors. We estimate the acoustic similarity between 
si and sj in D by computing the inner product of xi and xj. 
Therefore, the acoustic similarity matrix SX of D can be ex-
pressed as: 

,XXT
XS =              (4) 

where X is a K-by-N matrix with xi as its i-th column. The 
tag similarity matrix SY of D is expressed as:   

,YYT
YS =             (5) 

where Y is an M-by-N matrix with yi∕||yi|| as its i-th col-
umn. Since each song may have different numbers of tags, 
to ensure that the tag-based similarity of a song itself is al-
ways the largest, we compute the cosine similarity between 
yi and yj in Eq. (5) to estimate the tag-based similarity to 
simulate the human similarity between si and sj. 

The methods for audio-based similarity computation can 
be evaluated by a query-by-example MIR system, i.e., 
given a query song with the audio signal only, the system 
ranks all the songs in the database based on audio-based 
similarity computation only. To evaluate the effectiveness 
of SX, we perform leave-one-out MIR tests to evaluate the 
normalized discounted cumulative gain (NDCG) [18] with 
respect to the ground truth relevance derived by SY. That is, 
each song si in D is taken as a query song in turn, the out-
put ranked list for si is generated by sorting the elements in 
the i-th row of SX in descending order, and the correspond-
ing ground truth relevance is the i-th row of SY. The 
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NDCGi@P, which represents the quality of ranking of the 
top P retrieved songs for query si, is formulated as follows: 
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where Ri(j) is the ground truth relevance (obtained from the 
i-th row of SY) of the j-th song on the ranked list, and QP is 
the normalization term representing the ideal ranking of the 
P songs [18]. Intuitively, if more songs with large ground 
truth relevance are ranked higher, a larger NDCG will be 
obtained. The query-by-example MIR performance on D 
based on SX with respect to SY is evaluated by  
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The larger NDCG in Eq. (7) is, the more effective the audio 
similarity computation for SX is. 

3.2 Minimizing the Similarity Gap 

We define a K-by-K symmetric transformation matrix W 
for the BOF vector space. The transformed BOF vector for 
si is expressed by Wxi, and the new acoustic similarity ma-
trix ST of D can be obtained by: 

,)()( TXXWXWX TT
TS ==           (8) 

where T=WTW. Therefore, minimizing the similarity gap 
between the transformed BOF vector space and human tag 
vector space is equivalent to minimizing the distance or 
maximizing the correlation [19] between the two kernel 
matrices ST and SY with respect to W. In this paper, moti-
vated by the work in [20], we express the N songs in D as 
two random vectors, Zx∈RN×1 for the transformed acoustic 
feature and Zy∈RN×1 for the tag label, which follow two 
multivariate Gaussian distributions Nx and Ny, respectively. 
There exists a simple bijection between the two multivari-
ate Gaussians. Without loss of generality, we assume Nx 
and Ny have an equal mean and are parameterized by (μ, ST) 
and (μ, SY), respectively. Then, the “closeness” between Nx 
and Ny can be measured by the relative entropy KL(Nx || Ny) 
(i.e., the KL-divergence), which is equivalent to d(ST || SY):   

{ },  ||log)(  
2
1)||( 11 NSSSStrSSd YTYTYT −−= −−      (9) 

where tr(·) and |·| are the trace and determinant of a matrix, 
respectively. The minimization of d(ST || SY) can be solved 
by setting the derivative of d(ST || SY) with respect to T to 
zero. The solution that minimizes d(ST || SY) is as follows: 

 ( ) .)(
11* −−= T

YS XXT    (10) 

Since W is symmetric, the optimal matrix W is derived by 
.)( 21** TW =            (11) 

To prevent singularity, a small value 0.001 is added to each 
diagonal element of the matrices that are inversed in solv-

ing W. If we restrict W in Eq. (8) to be diagonal, i.e., we 
ignore the correlation among different dimensions in the 
BOF vector, and define vector w ≡ diag(W), the optimal w* 
is the diagonal of W*: 

),(diag ** Ww =              (12) 

where each element in w* must be greater than zero. The 
derivations of Eqs. (10) and (12) are skipped due to the 
space limitation. 

In the testing phase, each song is first encoded into a 
BOF vector by the GMM using Eq. (3). Then, the audio-
based similarity between any two songs si and sj is com-
puted as xi

TT*xj, where T* can be a full or diagonal matrix 
according to the initial setting of W in Eq. (8). In the ex-
periments, this method with full transformation and diago-
nal transformation is denoted as FullTrans and DiagTrans 
respectively, while the method without transformation is 
denoted as OrigGMM (i.e., the native GMM). 

3.3 Relearning the Priors of the GMM 

Instead of learning a transformation matrix, we can also 
minimize the similarity gap by relearning the prior weights 
of the GMM. We propose a two-step iterative learning 
method, which iteratively updates the prior weights of the 
GMM until convergence. The NDCG in Eq. (7) can be 
used as the criterion for checking the convergence of the 
learning procedure. The minimization of similarity gap im-
plies the improvement in NDCG since the learned ST tries 
to preserve the structure of SY, which is used as the ground 
truth relevance in computing NDCG. If NDCG is no longer 
improved, the learning algorithm stops. The learning 
method is summarized in Algorithm 1. 

According to Algorithm 1, there are two steps in an itera-
tion. Line 05 corresponds to the first step, which encodes 
all songs into their BOF vectors; and lines 11 and 13 corre-
spond to the second step, which minimizes the similarity 
gap with respect to the prior weights of the GMM. Since 
encoding all songs in D is a complicated procedure, di-
rectly optimizing NDCG with respect to the parameters of 
the GMM with Eqs. (1), (2) and (3) is infeasible. Therefore, 
we turn to find an indirect solution that minimizes the simi-
larity gap with respect to the priors of the GMM. We ex-
ploit the property of w* to derive Eq. (13), which serves as 
an indirect optimizer for maximizing the NDCG(D)@N by 
reweighting the prior weights of the GMM. Intuitively, the 
vector w* derived in line 11 plays a role to select mixture 
components in the GMM.  

In the testing phase, each song is encoded into a BOF 
vector by the GMM with the relearned prior weights using 
Eq. (3). Then, the audio-based similarity between any two 
songs si and sj is computed as the inner product of xi and xj , 
without the need to apply any stacking transformation in 
the BOF space. In the experiments, the proposed method 
implemented in this way is denoted as DiagGMM. 
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4. EVALUATIONS 

4.1 Datasets 

We evaluate the proposed method on the MajorMiner and 
Magnatagatune datasets in a query-by-example MIR sce-
nario. Both datasets are generated from social tagging 
games with a purpose (GWAP) [11, 12] to collect reliable 
and useful tag labels. The MajorMiner dataset has been a 
well-known benchmark in MIREX since 2008. The one 
used in this paper is crawled from the MajorMiner website 
in March 2011. It contains 2,472 10-second music clips and 
1,031 raw tags. After exacting the high frequency tags and 
merging the redundant tags, 76 tags are left. The Magnata-
gatune dataset [12], which contains 25,860 30-second au-
dio clips and 188 pre-processed tags, is downloaded from 
[21]. To construct F, we randomly select 25% and 2% of 
frames from the two datasets, respectively. For MajorMiner, 
F contains 235,000 frames, while for Magnatagatune, F 
contains 535,800 frames. The F constructed in this way is 
blind to song-level information. To prevent bias in the tag-
based similarity computation of SY, we ignore the clips la-
beled with fewer tags. For the MajorMiner dataset, 1,200 
clips having at least 5 tags are left. For the Magnatagatune 
dataset, 3,764 clips having at least 7 tags are left. 

4.2 Experimental Results and Discussions 

In the experiments, we repeat three-fold cross-validation 10 
times on the MajorMiner dataset, which is divided into 

three folds at random. In each run, two folds are used for 
training the transformation matrix of the FullTrans and Di-
agTrans methods or relearning the prior weights of the 
GMM for the DiagGMM method, while the remaining fold, 
which serves as both the test queries and the target data-
base to retrieve, is used for the leave-one-out audio-based 
MIR outside test. For the Magnatagatune dataset, all clips 
have been divided into 16 folds to prevent that two or more 
clips originated from the same song occur in different folds. 
We merge the 16 folds into 4 folds and perform four-fold 
cross-validation. The NDCG@P in Eq. (7) is used as the 
evaluation metric in both inside and outside tests.  

First, we examine the learning process of DiagGMM on 
the MajorMiner dataset. Figure 1 shows an example learn-
ing curve in terms of NDCG for one of the three-fold cross-
validation runs. The curve is equivalent to the inside test 
performance evaluated on the training data. We can see that 
the learning curve of DiagGMM (K=256) increases mono-
tonically till convergence, although DiagGMM can only 
improve the NDCG of the training data indirectly as dis-
cussed in Section 3.3. DiagGMM gains an absolute in-
crease of 0.04 in NDCG@10 and 0.002 in NDCG@800. 
The NDCG of FullTrans can be considered an upper bound 
for DiagGMM since it adopts a direct optimization strategy.  

Next, we evaluate OrigGMM and the VQ-based method 
on the MajorMiner dataset. There is no need to divide the 
data into three folds since no supervised learning is in-
volved in the methods.  From the MIR results shown in Ta-
ble 2, we observe that replacing the priors of the GMM 
trained from F with a uniform distribution enhances the 
performance. We also observe that, even with a large K, 
OrigGMM outperforms VQ-based BOF modeling. The re-
sults demonstrate the better modeling ability of the GMM 
over the K-means derived codebook. 

Finally, we compare DiagGMM with three baselines, i.e., 
FullTrans, DiagTrans, and OrigGMM. The results of three-
fold cross-validation on the MajorMiner dataset are shown 
in Figure 2, while the results of four-fold cross-validation 
on the Magnatagatune dataset are shown in Figure 3. From 
Figures 2 and 3, it is obvious that the proposed DiagGMM 
outperforms all other methods in most cases. The conven-
tional BOF approach does face a glass ceiling when K is 

Algorithm 1. The learning algorithm 
Input: Initial GMM parameters {μk, Σk }, k=1,…,K;  

A tagged music corpus D: a set of frames Vi for si, 
i=1,…,N, and tag similarity matrix SY  from Eq. (5);

Output: Learned GMM prior { kπ̂ }; 

01: Initialize )0(
kπ  to be 1/K; 

02: Iteration index  t ← 0;  
03: L(t) ← 0; 
04: while  t ≥ 0 do  
05:    Encode Vi into xi with Eq. (3) using { kk

t
k Σμ ,,)(π };

06:    Compute SX with Eq. (4); 
07:    t ← t + 1; 
08:    L(t) ← NDCG(D)@N with Eq. (7) using SX and SY; 
09:    If  (L(t)-L(t-1))/L(t) < 0 then  
10:         Return )1(ˆ −← t

kk ππ and break; 
11:    Compute w* with Eq. (12) using SX and SY ; 
12:    for k=1,…,K, do 

13:         ;
1
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(where wk is the k-th element in w*) 
14:    end for 
15: end while 
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Figure 1. The learning curve in terms of (a) NDCG@10 and (b) 
NDCG@800 evaluated on the MajorMiner training data. 
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too large, as evidenced by the observation that the perform-
ance of OrigGMM saturates at around K=1,024 for Ma-
jorMiner (10-second clips) and K=2,048 for Magna-
tagatune (30-second clips). The proposed DiagGMM en-
hances the performance over the glass ceiling of OrigGMM 
with a smaller K, e.g., DiagGMM with K=512 outperforms 
OrigGMM with K=2,048 on the MajorMiner dataset. Full-
Trans outperforms DiagTrans and DiagGMM only when K 
is small. However, FullTrans tends to saturate early since it 
has more parameters to train and thus requires more train-
ing data, compared with DiagTrans and DiagGMM. In Fig-
ure 1, the performance of FullTrans shows an upper bound 
of DiagGMM in inside test; however, in outside test, 
DiagGMM outperforms FullTrans except when K is small. 
The experimental results in Figures 2 and 3 demonstrate the 
excellent generalization ability of DiagGMM, which learns 
the similarity of audio music by relearning the priors of the 
GMM instead of a transformation in the BOF vector space. 

5. CONCLUSIONS  

In this paper, we have addressed a novel research direction 
that the audio-based music similarity computation can be 
learned by minimizing the similarity gap or maximizing the 
NDCG measure with respect to the parameters of the en-
coding reference in BOF representation. We have imple-
mented the idea by learning the prior weights of the GMM 
from tagged music data. The experimental results demon-
strate the effectiveness of the proposed method, which 
gives a potential to guide MIR systems that employ BOF 
representation, e.g., the DiagGMM can be directly com-
bined with the codeword Bernoulli average (CBA) method 
[13], a well-known automatic music tagging method.  
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NDCG @5 @10 @20 @30 
OrigGMM (K=2,048) w/o Prior 0.9382 0.9015 0.8753 0.8674
OrigGMM (K=2,048) w Prior 0.9322 0.8992 0.8743 0.8669
VQ-based (K=2,048) Histogram 0.9297 0.8930 0.8721 0.8650

Table 2. The results of OrigGMM and the VQ-based method  on 
the complete MajorMiner dataset (1,200 clips). 
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Figure 2. The results in terms of NDCG@5 and NDCG@10 on 
the MajorMiner dataset with different K. 
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Figure 3. The results in terms of NDCG@5 and NDCG@10 on 
the Magnatagatune dataset with different K. 
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ABSTRACT

We present a novel compression-based method for measur-

ing similarity between sequences of symbolic, polyphonic

music. The method is based on mapping the values of bi-

nary chromagrams extracted from MIDI files to tonal cen-

troids, then quantizing the tonal centroid representation val-

ues to sequences, and finally measuring the similarity be-

tween the quantized sequences using Normalized Compres-

sion Distance (NCD). The method is comprehensively eval-

uated with a test set of classical music variations, and the

highest achieved precision and recall values suggest that the

proposed method can be applied for similarity measuring.

Also, we analyze the performance of the method and dis-

cuss what should be taken into consideration when applying

the method for measurement tasks.

1. INTRODUCTION

Measuring similarity between symbolically encoded music

has been studied extensively, with several approaches ex-

isting. Similarity measuring between pieces of polyphonic

music is far from trivial, but the extensive amount of ap-

plications (for example, query by example music retrieving)

that require such measuring motivates to explore novel tech-

niques for the task.

Here, we present an approach that is based on mapping

the pitches present in a given time frame to tonal centroid

vectors, quantizing the tonal centroid values, and represent-

ing the obtained information as a sequence of characters.

For measuring similarity between sequences, we apply nor-

malized compression distance (NCD) [2], which is a parameter-

free, quasi-universal similarity metric [2].

We believe that NCD is applicable to polyphonic, sym-

bolic music similarity measuring, since there are already

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2011 International Society for Music Information Retrieval.

several existing, well-performing classification and cluster-

ing approaches utilizing NCD as the similarity metric. How-

ever, the previously developed NCD-based methods all seem

to rely on rather crude representations of music, such as sky-

line reduction or melodic contour description, both which

lose a significant amount of tonal information. We wish to

keep as much of the tonal information included as possible

but the amount of parallel pitch values may be large, even

if the octave information is ignored and values are reduced

into a 12-dimension chromagram (also known as pitch class

profile). Therefore, dimension reduction is needed, and for

this, we use a method with musical knowledge. This is

where the tonal centroid representation [4] seems a feasi-

ble solution, as it turns a 12-dimension chromagram into a

6-dimensional representation, still holding most of the har-

monic information and also some of the melodic informa-

tion.

To see how well our approach performs in a particular

similarity measuring task, we use it to determine whether a

given piece of music is a variation of an original theme in-

cluded in the training data. This task is challenging and a

very suitable way to evaluate our method, as it is objective

(in comparison to, for example, genre classification), and

in order to be successful, the method must retain tonal in-

formation and still be able to measure the essential musical

similarity without too much complexity. We evaluate our

approach with a set of 18 classical compositions and their

variations, and based on the results, discuss the remarks we

discovered in our evaluations, suggesting several issues that

need to be addressed when using NCD for similarity mea-

suring with polyphonic music, and present ideas for future

research work.

The rest of this paper is organized as follows. In Sec-

tion 2 we review methods of similarity measuring between

symbolic, polyphonic pieces of music. In Section 3 we

present the methods used for extracting tonal information

from MIDI files and representing the information in a for-

mat suitable for compressor-based similarity measurement.

Experiments on the method are presented in Section 4 and

conclusions in Section 5.
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2. RELATED WORK

In the early days of similarity measuring of symbolically

encoded music, linear string representation together with

string matching methods was most often used. The approach,

however, does not work with polyphonic music in general,

except for some very specific cases (see e.g. [3,7]). Recently

several authors have applied geometric modeling of music

for the task (see e.g. [9, 13, 16]). Many of these algorithms

are based on computing translation vectors, which makes

them transposition-invariant and also allows for extra inter-

vening notes that appear in one of the pieces of music under

consideration but not in the other. Recent geometric meth-

ods have also challenged timing problems; the pieces of mu-

sic under consideration may be either time-scaled [5, 13] or

time-warped [6] copies of each other.

Interesting alternative approaches can be found in [10,

17]. In his PhD thesis [17], Rizo introduces a tree repre-

sentation for polyphonic music and shows how to apply dif-

ferent tree matching algorithms for various similarity cases

including variation recognition. He also shows how to use

his generic representation for implementing and illustrating

schenkerian reduction. In [10], Marsden concentrates on

schenkerian reduction in recognizing polyphonic variations

of the classical era. To this end, he divides polyphony in

three ‘voices’: melody, middle and bass. Melody and bass

contain the highest and lowest notes, respectively, while mid-

dle voice contains all the notes belonging to neither of the

previous two. Using such a reduction of polyphony he stud-

ies whether a method based on schenkerian reduction would

outperform another method based just on surface analysis,

but found no evidence to support that hypothesis.

In the literature, one can also find several compression-

based approaches for similarity measuring in symbolic mu-

sic. In [2], NCD is used as the similarity measure for composer-

and genre-based clustering experiments. The method ex-

tracts key-invariant melodic contours from the MIDI files,

and constructs a distance matrix for the clustering algorithm

using NCD as the similarity metric. In [8], Kolmogorov

complexity is estimated as the size of the dictionary pro-

duced by the LZ78 compression algorithm. Based on this

estimation, k-NN classification is applied for melodies rep-

resented as both absolute and relative values. In [11], NCD

is applied as similarity measure for string representations of

music, obtained by converting symbolic music with a graph

structure representation. In a recent study, NCD is used as

one of the possible similarity metrics for measuring simi-

larity between bass lines [15]. The bass line melodic in-

terval histogram similarities are used as a feature for genre

classification. In [1], NCD is used for measuring similar-

ity between MIDI pieces. The polyphonic MIDI melodies

are converted into monophonic versions by taking only the

highest pitch value present in a time slice (also known as the

skyline representation).

Another method based on measuring the amount of sim-

ilar information between pieces of polyphonic music is pre-

sented in [12]. Their work is based on using Kullback-

Leibler divergence to measure similarity between chroma-

gram sequences. Based on the chromagrams, a 24-chord

lexicon (all the major and minor triad chords in the western

tonal scale) is used to create a probability distribution, and

then Kullback-Leibler divergence is applied to measure the

similarity between the distributions of the query and target

models. The method is evaluated with classical variation

recognition.

3. METHODOLOGY

Let us next introduce the methods that we will use for ex-

tracting tonal information from the MIDI files and how to

represent the information in an appropriate format for the

compression-based similarity measurement. Figure 1 de-

picts a blueprint of the system components and the data pro-

cessing.

3.1 Binary Chroma Representation

Chroma vector is a 12-dimension representation of notes,

stripped from octave information, that are present in a given

time frame. We encode MIDI files as binary chroma vector

sequences by first chopping the piece of music into slices

of 1
4 the length of the duration of a quarter note, then con-

catenating these slices to form the sequences and, finally,

mapping each sequence with notes playing in that particular

time frame.

3.2 Tonal Centroid Representation

To reduce the variation of 212 = 4096 possible chromagram

vectors, the method explained in [4] is used to transform

chroma vectors into tonal centroid vectors. As the tonal cen-

troid vector has values ranging in −1 ≤ k ≤ 1, k ∈ R, for

all six dimensions, we quantize each value to 0 or 1 using

the median of all the possible values of chroma vectors in

the particular dimension of tonal centroid representation as a

threshold, thus effectively lessening the alphabet to 26 = 64.

The tonal centroid vector for time frame t is given by

formula:

ζt(d) =
1

||ct||

11∑
p=0

Φ(d, p)ct(p) (1)

where 0 ≤ d ≤ 5 and 0 ≤ p ≤ 11. ||ct|| denotes the L1-

norm of chroma vector ct, p is the pitch class index in ct, d
represents which of the dimensions of tonal centroid is being

calculated and Φ = [φ0, φ1, . . . , φ11] is the transformation

matrix where
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Figure 1. Blueprint of the components.
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, 0 ≤ p ≤ 11. (2)

3.3 Normalized Compression Distance

To measure the similarity of two different pieces of music

we use NCD to see how close the quantized 6-dimensional

tonal centroid vectors are to each other. The NCD is shown

to be a quasi-universal similarity metric in [2] as it approxi-

mates normalized information distance (NID) up to an error

depending on the quality of the compressor that is used in

the calculation.

Normalized information distance is based on Kolmogorov

complexity of the given object and is a universal metric in

the sense that it uncovers all the similarities of the objects at

the same time. Kolmogorov complexity of an object is the

length of the shortest binary program that outputs the object

on a universal computer. IfK(x) denotes Kolmogorov com-

plexity of x, then K(x|y) denotes conditional Kolmogorov

complexity of x given y as an input. NID for x and y is

given by the formula

NID(x, y) =
max{K(x|y),K(y|x)}

max{K(x),K(y)} . (3)

As Kolmogorov complexity of an object is non-computable,

we cannot calculate NID. However, we can approximate it

with standard compression algorithms.

Let C be a lossless data-compression algorithm which

satisfies the requirements of reference compressor mentioned

in [2]. C can be used to approximate K. C(x) is used to

denote the length of x compressed with C and C(xy) to de-
note the length of concatenated x and y compressed with C.

C(x|y) can also be defined as C(x|y) = C(xy) − C(y),
which tells us the amount of bits of information in x re-

lated to y. Now the normalized compression distance can

be given by the formula

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)} , (4)

which is shown in [2] to approximate the NID formula men-

tioned in Equation 3.

4. EXPERIMENTS

4.1 Test Data

We use the polyphonic classical music variation dataset de-

scribed in [17] for our experiments. It is a fairly extensive

collection of classical themes and their variations, ranging

over different values in terms of instrumentation, lengths,

eras and numbers of voices. In addition, we also included

two more compositions: the Haydn variations by Brahms,

Op. 56 (nine variations of a theme), and the Piano Sonata

number 11 by Mozart, KV 331 (six variations of a theme).

The total size of our dataset is 18 themes and 84 variations,

totalling 102 pieces of music, with the highest number of

variations for a theme being 30 and lowest being 1.

4.2 Evaluations and results

For evaluations, we used the original themes as the training

data and the variations as queries. We ran the classification

tests with several different parameters. For each different

evaluation, the overall accuracy and average precision, av-

erage recall, and average f-measure are reported.

First, we had to select the data-compression algorithm.

We ran the classification test with bzip2 and prediction by
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Compressor bzip2 PPMZ

Accuracy 0.393 0.536

Precision 0.526 0.632

Recall 0.391 0.474

F-measure 0.448 0.542

Table 1. Comparison between used compression algo-

rithms.

partial matching (PPMZ) compression algorithms. The re-

sults for the two algorithms are presented in Table 1. Since

using the PPMZ algorithm produced slightly better results,

we conducted the rest of the evaluations using it as the se-

lected compression algorithm.

In addition to the assumption that variations are performed

in the same key as the original, we wanted to be able to mea-

sure similarity between pieces of music in different keys. In

order to transpose two chroma sequences into the same key,

we used Optimal Transposition Index (OTI) [14], where the

most likely transposition between two chromagrams is cal-

culated by measuring the dot product between all 12 pos-

sible transpositions of the chromagrams summed over time

and normalized. Having calculated OTI, we rotated the query

binary chromagram according to the OTI value before mak-

ing the tonal centroid transformation and writing the trans-

formed sequence to a file.

The sequences produced by our method have occasional

short sections of outliers, caused by transitional anomalies

produced by our time-slicing MIDI-extraction method and

resulting in overall noisy sequences. Such noise can be

harmful for compression-based similarity measuring, since

noise in data reduces the compressibility, thus resulting pos-

sibly in a lower performance in classification. However, the

anomalies could also be significant distinguishing features

in the sequences. An illustration of changes in the sequence

indices is depicted in Figure 2, with several noisy spikes

clearly visible. To get rid of the transitions and make the

sequences smoother, we experimented with median filter-

ing, and ran median filter of order 5 to the sequences before

writing them into files. An example of a median-filtered se-

quence is depicted in Figure 3.

The results for the evaluations with OTI and median-

filtered sequences are presented in Table 2.

4.2.1 Clustering experiment

In addition to the supervised classification, we carried out

an experiment with unsupervised machine learning, and for

this, we ran a k-medians clustering for the whole dataset,

using the NCD values as the distances between the objects

when forming the clusters.

We ran the NCD-based k-medians clustering by setting

K = 18 (there are 18 different original themes and their
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Figure 2. Sequence illustration of theme of Variations on a

rococo theme, Op. 33 by Tchaikovsky.

variations). As the k-medians algorithm selects the initial

cluster centroids randomly, we ran the evaluation 5 times.

The results reported here are averaged over the evaluation

runs.

We did not expect the 18 different themes and their varia-

tions to group into clean clusters, but to evaluate the perfor-

mance, we measured the number of different clusters (i.e.

clusters that have centroids that are not original versions

or variations of the centroids of the other clusters) and the

number of correct clusterings (i.e. cases where the piece of

music is clustered into a cluster with a centroid that is the

original version or a variation of the piece). The number of

different clusters was 11.8, and the number of correctly clus-

tered compositions was 68. Thus, although not every theme

and variations family of the dataset results in a single, sepa-

rate cluster, a significant number of the compositions is still

clustered correctly.

4.3 Discussion

Based on the results of the previous subsection, the proposed

method does seem to have potential for measuring similarity

between polyphonic, symbolic pieces of music. For compar-

ison, the results reported for three different methods in [17]

all have precision and recall values ranging from 0.4 to 0.5,

with even a slightly smaller test data set (16 themes and 70

variations). The highest performance of our method is on a

par with these results.

When using NCD, the most crucial choice is the data rep-

resentation. Having fixed the representation, the next im-

portant choice to be made is to select an appropriate data-

compression algorithm. Considering the idea that using a

more efficient compressor algorithm yields a better approx-

imation of Kolmogorov complexity, it would seem trivial to
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Figure 3. Sequence illustration of theme of Variations on

a rococo theme, Op. 33 by Tchaikovsky, with a median

filtering of order 5.

Processing none OTI MF OTI & MF

Accuracy 0.536 0.250 0.291 0.190

Precision 0.632 0.231 0.409 0.165

Recall 0.474 0.152 0.393 0.193

F-measure 0.542 0.184 0.401 0.178

Table 2. Classification results with no additional processing

applied, with OTI applied, with median filtering (MF) ap-

plied, and with both OTI and median filtering applied. All

evaluations are conducted using PPMZ as compression al-

gorithm.

use the most efficient compressor. However, there is no way

of knowing how well the compression algorithm actually

approximates Kolmogorov complexity, and thus, selecting

only an efficient compressor does not necessarily guarantee

that the NCD used (Equation 4) is actually a valid approx-

imation of NID (Equation 3). As stated in [2], it is theo-

retically possible that when the compression gets more effi-

cient, the NCD value disentangles from the NID value.

In our experiments, the more efficient PPMZ algorithm

did eventually yield better results. We suppose that this hap-

pens due to the statistical nature of PPMZ, where the dif-

ferences in file lengths is a lesser problem than with other

compression approaches, and the effect of normalization in

NCD is more likely to happen. Keeping in mind that the se-

quences we operate with are relatively short, the differences

between longest and shortest files can potentially cause bias,

as the longer x becomes, the betterC(x) approximatesK(x).

The key of the performances is an important factor when

measuring similarity between pieces of music. In our eval-

uations the results are better when OTI is not calculated,

as most of the variations are in the same key as the orig-

inal theme. This is clearly a problem when considering

to apply the method for other similarity measuring tasks.

It is possible that the OTI algorithm, although very use-

ful with audio-extracted chromagrams, might not be a suit-

able method when approximating the tonal similarity be-

tween two binary chromagrams extracted from MIDI data,

and some other key-estimation algorithm could perform bet-

ter for the task. It is also noteworthy that even though sev-

eral variations are in different keys they are still classified

correctly, possibly because our quantization method of the

tonal centroid vectors maps several combinations of notes

into the same characters, assuming they are in nearby keys.

The noise in the sequences, caused by transients of the

time-slice chopping in the MIDI extraction method, may

seem like an identification-distracting feature. Based on

the results, however, it seems that the median filtering, al-

though making the sequences smoother, does not provide

better classification accuracy. This suggests that noise itself

is not a hindrance as long as a suitable compression algo-

rithm is used, and over-reducing the sequences loses impor-

tant information that could be rather useful for distinguish-

ing.

It should be noted that the variation database is somewhat

unevenly distributed, with several themes having only a sin-

gle variation included. The average precision of our system

is slightly biased due to the high success rate of correctly

classifying such variations, but the accuracy still supports

that the method can be used for the selected task. Also, an

interesting notion is that in some cases, there is confusion

between different pieces of music by the same composer:

The Goldberg Variations and English Suites by Johann Se-

bastian Bach are occasionally confused. This suggests that

the NCD-based similarity measuring could be used for com-

poser identification, as some stylistic information of the com-

poser seems to be captured with the method.

5. CONCLUSIONS

We have presented a method for measuring similarity be-

tween symbolic, polyphonic pieces of music. Our method

takes the MIDI data, extracts a binary chromagram out of it,

maps the binary chromagram to tonal centroid representa-

tion and finally quantizes it, casting the original MIDI data

into a sequence of characters comprising an alphabet of size

64. Then, the similarity between character sequences is

measured using a compression-based similarity metric.

We experimented with both supervised and unsupervised

machine learning with a dataset consisting of classical themes

and their variations. The classification yielded results that

are comparable with the state-of-the-art results with the same

dataset. The clustering method used was a compression-

based variant of k-medians, and using this novel method
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produced rather clean, well-structured clusters.

We intend to develop our approach to a more general sim-

ilarity measuring technique suitable for different classifica-

tion, clustering and identification tasks. In order to be more

successful, several issues need to be reconsidered. One of

the challenges is caused by the possible differences in keys

between the pieces of music. Here, we solved the transpo-

sition problem by using OTI, which has been successfully

used with audio data. However, applying OTI caused infe-

rior results, and we need to either examine what could be

done by using OTI with symbolic data, or select another

method or representation to allow key-invariant similarity

measuring.
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ABSTRACT

In this work we consider distance-based approaches to
music recommendation, relying on an explicit set of mu-
sic tracks provided by the user as evidence of his/her music
preferences. Firstly, we propose a purely content-based ap-
proach, working on low-level (timbral, temporal, and tonal)
and inferred high-level semantic descriptions of music. Sec-
ondly, we consider its simple refinement by adding a mini-
mum amount of genre metadata. We compare the proposed
approaches with one content-based and three metadata-based
baselines. As such, we consider content-based approach
working on inferred semantic descriptors, a tag-based rec-
ommender exploiting artist tags, a commercial black-box
recommender partially employing collaborative filtering in-
formation, and a simple genre-based random recommender.
We conduct a listening experiment with 19 participants. The
obtained results reveal that although the low-level/semantic
content-based approach does not achieve the performance
of the baseline working exclusively on the inferred seman-
tic descriptors, the proposed refinement provides significant
improvement in the listeners’ satisfaction comparable with
metadata-based approaches, and surpasses these approaches
by the number of novel relevant recommendations. We con-
clude that the proposed content-based approach refined by
simple genre metadata is suited for music discovery not only
in the long-tail but also within popular music items.

1. INTRODUCTION

Music recommendation is a challenging topic in the Music
Information Research community. A rapid growth of digital
music industry has led to vast amounts of music available
for easy and fast access. Nevertheless, finding relevant and
novel music is a difficult task for listeners, especially in the
situation when new music appears every day. To fulfill their
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needs, researchers and practitioners strive for better recom-
mendation systems, which are able to facilitate music search
and retrieval based on aggregated user profiles, or simple
queries-by-example specified by users. To this end, im-
provements of suitable underlying user models and/or music
similarity measures are necessary. Currently, the state-of-
the-art approaches to music recommendation exploit both
metadata information about music items (metadata-based
approaches) and the information extracted from the audio
signal itself (content-based approaches). Moreover, there
exist hybrid approaches utilizing both types of information.

Possible metadata includes editorial information, social
tags, and user listening/consumption behavior in form of
listening statistics, such as playcounts and artist charts, sell
histories, and user ratings. This information is found to be
effective to provide satisfactory recommendations for users
when dealing with popular music and operating on large
collaborative filtering datasets. Nevertheless, the disadvan-
tages of using metadata lie in the long-tail and cold-start
problems [6]. A system may not have sufficient and correct
metadata, including social tags, user ratings, or even edito-
rial information, for unpopular items. This can significantly
limit the quality of recommendations or even make them im-
possible. Moreover, gathering such metadata requires time
and a large user base, which complicates the workability of
the system on initial stages even for popular items.

In contrast, content-based information, extracted from
the audio itself, can be valuable to overcome these prob-
lems as it can be used independently of the popularity of
music items or availability of a user base. A number of re-
search works exist on both content-based music similarity
measures, or distances, 1 suitable for music recommenda-
tion, and approaches to user modeling. Objective content-
based distances generally employ sets of low-level timbral,
temporal, and tonal descriptors and/or high-level descriptors
inferred from the low-level ones [2, 4, 5, 16, 17, 20]. Dif-
ferent works evidence usefulness of high-level semantic de-
scriptions employed in place of, or in addition to, low-level
music descriptions in the task of assessing music similar-
ity [2, 4, 5]. There are also evidences that content-based

1 We will refer to any music similarity measure with a term “distance”.
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approaches can be close, or even comparable, to success-
ful metadata-based approaches in terms of the relevance of
recommendations [1, 3, 15], especially in the long tail. In
addition to objective distances, their personalization accord-
ing to a concrete user is considered in some works. Al-
ternatively, there exist research on user models for music
recommendation which employ classification into interest
categories using content-based information [8,10] or hybrid
sources [19], apply distances starting from a set of preferred
items in a content-based vector space [3, 13], or propose
more complex hybrid probabilistic approaches [12, 21].

One of the problems of existing research on music rec-
ommendation lies in a difficulty to conduct comprehensive
subjective evaluations with real listeners. Up to our knowl-
edge, few existing research works involve evaluations with
real participants, and they are significantly limited by the
number of participants [3,10] or by the number of evaluated
tracks per approach [1, 14], being in a trade-off situation.

In the present work, we consider music recommendation
approaches which are based on sets of music tracks explic-
itly given by users as an evidence of their musical prefer-
ences (the henceforth called “preference sets”). We focus
on content-based and hybrid approaches, striving for both
relevance and novelty of recommendations. It is important
to highlight the novelty aspect, as the existing metadata-
based approaches working on collaborative filtering princi-
ples are known to have a drawback to produce recommen-
dations already familiar to listeners [6]. We follow the re-
search presented in [3,9] in another peculiarity of this work,
namely, using explicitly given preference examples. Such
an explicit strategy was shown to capture the essence of
users’ musical preferences being suitable for preference vi-
sualization and distance-based music recommendation. Al-
though requiring additional user effort to provide a list of
preferred tracks, this strategy does not require any “adapta-
tion” period, which is common to the cold-start prone sys-
tems gathering implicit user information. Starting from this
strategy, we strive to improve distance-based approaches to
music recommendation, working on content, evaluate them
in comparison to metadata-based approaches on real listen-
ers, and understand to what extent metadata is necessary to
make a satisfactory music recommender.

We propose two distance-based approaches to music rec-
ommendation working on content-based and hybrid infor-
mation (Section 2.1). Firstly, we consider a complex dis-
tance combining a set of low-level (timbral, temporal, and
tonal) and inferred high-level semantic descriptors. This
distance has been successfully evaluated in the task of ob-
jective music similarity [4], but it requires additional atten-
tion in the context of music recommendation. Secondly,
we consider how a minimum amount of metadata can im-
prove purely content-based recommendations, and propose
a filtering approach relying on single, but sufficiently de-

scriptive, genre tags to refine recommendations. We eval-
uate these approaches against four baselines (Section 2.2).
As such, we consider a content-based distance working on
semantic descriptors, being a component of the proposed
complex distance, and three approaches working purely on
metadata. We employ a semantic tag-based approach, which
operates on artist tags obtained from the Last.fm 2 service,
and a state-of-the-art commercial recommender on the ex-
ample of iTunes Genius, 3 which relies on a collaborative
“wisdom of crowds”. We also consider genre-based recom-
mendations as the simplest metadata-based baseline. Char-
acterization of subjects is presented in Section 3.1, while
Section 3.2 explains the listening experiment instructions,
stimuli and procedure. Section 3.3 presents and discusses
the evaluation results, and we conclude with general obser-
vations and lessons learned from this study in Section 4.

2. STUDIED APPROACHES

To provide recommendations from our music collection (the
henceforth called music collection), the approaches we con-
sider here apply distance measures from a set of tracks, given
by the user as evidence of his/her musical preferences (a
preference set) to the tracks in the collection. In order to
create such a preference set, the user is asked to gather a
minimal set of music tracks, which he/she believes to be
sufficient to grasp or convey his/her musical preferences,
and submit them in audio format (e.g. mp3) or by edito-
rial metadata sufficient to reliably identify and retrieve each
track. The amount of required tracks is not specified being
left to a decision of the user. We retrieve or clean the edito-
rial metadata for all provided tracks by means of audio fin-
gerprinting 4 to be able to use metadata-based approaches.
As the source for recommendations, we employed a large
in-house music collection, covering a wide range of gen-
res, styles, and arrangements. This collection contains 68K
music excerpts (30 sec.) by 16K artists with a maximum
of 5 tracks per artist. For consistency, in our experiments
we assume each of the recommendation approaches to out-
put 15 tracks by different artists (1 track per artist) not be-
ing present among the artists in the user’s preferences set.
Therefore, each approach applies an artist filter.

2.1 Proposed Approaches

2.1.1 Semantic/Low-level Content-based Distance
(C-SEMLL)

As our first proposed approach, we follow the ideas pre-
sented in [4] and employ a complex content-based distance,

2 http://last.fm, all tags were obtained on March, 2011.
3 http://www.apple.com/itunes/features/, all experi-

ments were conducted using iTunes 10.1.1.4 on March, 2011.
4 We used MusicBrainz service: http://musicbrainz.org/

doc/MusicBrainz_Picard.
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which is a weighted combination of three components:

• A Euclidean distance on a set of timbral, temporal, and
tonal descriptors with a preliminary principle compo-
nent analysis.

• A timbral distance based on the Kullback-Leibler diver-
gence between single Gaussian models of MFCCs.

• A simple tempo distance, based on matches of BPM and
onset rate values.

• A semantic distance, working on a set of high-level se-
mantic descriptors (genres, musical culture, moods, in-
strumentation, rhythm, and tempo) inferred by support
vector machines (SVMs) from low-level timbral, tem-
poral, and tonal features.

The latter semantic distance has been previously evaluated
in the similar context of music recommendation based on
preference sets [3], and was shown to surpass common low-
level timbral approaches. The interested reader is referred to
the aforecited literature for further details about the descrip-
tors used, the component distances, and their weighting.

We retrieve recommendations using this distance by the
following procedure. For each track X in the user’s pref-
erence set (a recommendation source), we apply the dis-
tance to retrieve the closest track CX (a recommendation
outcome candidate) from the music collection and form a
triplet (X,CX , distance(X,CX)). We sort the triplets by
the obtained distances, delete the duplicates of the recom-
mendation sources (i.e. each track from the preference set
produces only one recommendation outcome), and apply an
artist filter. We return the recommendation outcome candi-
dates from the top 15 triplets as recommendations. If it is
impossible to produce 15 recommendations due to the small
size of the preference set (less than 15 tracks) or the applied
artist filter, we increase the amount of possible recommen-
dation outcome candidates per recommendation source.

2.1.2 Semantic/Low-level Content-based Distance Refined
By Genre Metadata (C-SEMLL+M-GENRE)

We consider the inclusion of metadata in purpose to refine
the recommendations provided by content-based methods
on the example of C-SEMLL. We strive to include the mini-
mum amount of metadata, preferably being low-cost to gather
and maintain, but however sufficiently descriptive for effec-
tive filtering. The experiments conducted in [3] point us
to the fact, that simple genre/style tags can be a reasonable
source of information to provide recommendations superior
to the common low-level timbral music similarity based on
MFCCs. Therefore, we propose a simple filtering to expand
the C-SEMLL approach. We apply the same sorting proce-
dure, but we solely consider the tracks of the same genre
labels as possible recommendation outcomes. Moreover,
we suppose that increasing the specificity of genre tags to
certain amount (e.g. from “rock” to “prog rock”) would in-

crease the quality of filtering.
To this end, we annotate the music collection and the

user’s preference set with genre tags. Such information can
be obtained for the music collections by manual expert an-
notations, from social tagging services, or can be already
available in the ID3 tags for audio files or in other meta-
data description formats generated on the music production
stage. As a proof-of-concept, we opt for obtaining artist tags
with the Last.fm API to simulate manual single-genre anno-
tations of each track. Last.fm provides tag information for
both artists and tracks. We opt for artist tags due to the fact
that track tags tend to be more sparse, generally more diffi-
cult to obtain, and can be insufficient for the music retrieval
in the long tail, and assign to the tracks the same tags that
were assigned to the artists.

We analyze a set of possible tags suitable for the music
collection. For each track, we select the Last.fm artist tags
with the maximum weight (100.0) and add them to the pool
of possible tags for genre annotation (“top-tags”). We then
filter the pool deleting the tags with less than 100 occur-
rences (this threshold was selected in accordance with the
top-tag histogram and the collection size) and blacklisting
the tags which do not correspond to genres (“60s”, “80s”,
“under 2000 listeners”, “japanese”, “spanish”, etc.) We then
revise the music collection to annotate each track with a
single top-tag. For each track, we consider the candidates
among its artist tags, selecting the tags with the maximum
possible weight, which are also present in the top-tag pool.
If there are several candidates (e.g. both “rock” and “prog
rock” have weight 100.0 and are present in the top-tag pool),
we select the top-tag, which is the least frequent in the pool.
Thereafter, we annotate the tracks from the user’s preference
set in the same manner using the created pool. The idea be-
hind this procedure is to select the most salient tags (top-
tags) for the music collection, skip possible tag outliers, and
annotate each track with the most specific of these top-tags
keeping the maximum possible confidence level.

2.2 Baseline Approaches

2.2.1 Semantic Content-based Distance (C-SEM)

As our first baseline, we employ a content-based distance,
working on a set of inferred high-level semantic descriptors,
which was used as a component of the complex distance in
the C-SEMLL approach (see Section 2.1.1). Using this dis-
tance, we retrieve recommendations with the same sorting
procedure as followed for the C-SEMLL approach.

2.2.2 Artist Similarity based on Last.fm Tags (M-TAGS)

Alternatively, we consider a metadata-based distance work-
ing on the artist level. We gather social tags provided by
the Last.fm API for the artists from the preference set and
the music collection. For each artist, the API provides a
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weight-normalized tag list with weights in the [0, 100.0] in-
terval. We select a minimum weight threshold of 10.0 to
filter possibly inaccurate tags. We assign the resulting tags
to each track in the preference set and the music collection.
We then apply the latent semantic analysis [11,18] to reduce
the dimensionality to 300 latent dimensions. We apply the
Pearson correlation distance [6] on the resulting topic space,
and retrieve recommendations with the same procedure as
followed for the C-SEMLL.

2.2.3 Black-box Similarity by iTunes Genius (M-GENIUS)

We consider commercial black-box recommendations ob-
tained from the iTunes Genius playlist generation algorithm.
Given a music collection and a query, this algorithm is capa-
ble to generate a playlist by means of the underlying music
similarity measure, which works on metadata and partially
employs collaborative filtering of large amounts of user data
(music sales, listening history, and track ratings) [1]. From
the preference set we randomly select 15 tracks annotated
by artist, album, and track title information, sufficient to be
recognized by Genius. For each of the selected tracks (a
recommendation source), we generate a playlist, apply the
artist filter, and select the top track as the recommendation
outcome. We increase the amount of possible outcomes per
source when it is impossible to produce 15 recommenda-
tions.

2.2.4 Random Tracks From the same Genre (M-GENRE)

Finally, as the simplest and low-cost metadata-based base-
line, we consider random recommendations relying on genre
categories of the user’s preference set. We annotate the mu-
sic collection and the user’s preference set with genre labels
by the same procedure as in the C-SEMLL+M-GENRE ap-
proach (see Section 2.1.2). We randomly preselect 15 tracks
from the preference set and for each of the tracks we re-
turn a random track of the same genre label from the music
collection. Again, we increase the amount of possible rec-
ommendation outcomes per recommendation source when
it is impossible to produce 15 recommendations.

3. EVALUATION

3.1 Subjects

A total of 19 voluntary subjects (selected from the authors’
colleagues, their acquaintances and families) were asked to
provide their respective preference sets and additional in-
formation, including personal data (gender, age, interest for
music, musical background), and a description of the strat-
egy and criteria followed to select the music pieces. The
participants were not informed about any further usage of
the gathered data, such as giving music recommendations.
The participants’ age varied between 26 and 46 (µ = 33.72,
σ = 4.65). All participants showed a very high interest in

music (rating with µ = 9.24 and σ = 1.01, where 0 means
no interest and 10 means passionate). In addition, 17 par-
ticipants play at least one musical instrument. The number
of tracks selected by the participants to convey their mu-
sical preferences was very varied, ranging from 10 to 178
music pieces (µ = 67.26, σ = 42.53) with the median
being 61 tracks. The time spent for this task also differed
a lot, ranging from half an hour to 60 hours (µ = 6.22,
σ = 15.06) with the median being 2 hours. The strategy
followed by the participants to gather preference sets var-
ied as well. Driving criteria for the selection of tracks in-
cluded musical genre, mood, uses of music (listening, danc-
ing, singing, playing), expressivity, musical qualities, and
chronological order. Taking into account this information,
we expect our population to represent music enthusiasts.

3.2 Evaluation Methodology

We performed subjective listening tests on the 19 partici-
pants using our in-house music collection (see Section 2).
One recommendation playlist per each of the 6 considered
approaches was generated for each participant. Each playlist
consisted of 15 tracks returned by the respected approach
specifics. Due to the applied artist filter, the playlists nei-
ther contained more than one track of the same artist nor
contained artists present in the preference set. We merged,
randomized, and anonymized all playlists. This allowed
to avoid any response bias due to presentation order, rec-
ommendation approach, or contextual recognition of tracks
(e.g. by artist names) by participants. Moreover, the par-
ticipants were not aware of the amount of recommendation
approaches, their names and their rationales.

A questionnaire was given for the subjects to express dif-
ferent subjective impressions related to the recommended
music. A “familiarity” rating ranged from the identification
of artist and title (4) to absolute unfamiliarity (0), with inter-
mediate steps for knowing the title (3), the artist (2), or just
feeling familiar with the music (1). A “liking” rating mea-
sured the enjoyment of the presented music with 0 and 1
covering negative liking, 2 being a kind of neutral position,
and 3 and 4 representing increasing liking for the musical
excerpt. A rating of “listening intentions” measured pref-
erence, but in a more direct and behavioral way than the
“liking” scale, as an intention is closer to action than just
the abstraction of liking. Again this scale contained 2 posi-
tive and 2 negative steps plus a neutral one. Finally, an even
more direct rating was included with the name “give-me-
more” allowing just 1 or 0 to respectively indicate a request
for, or a reject of, more music like the one presented. The
users were also asked to provide title and artist for those
tracks rated high in the familiarity scale. The textual mean-
ing of the ratings was presented to the participants together
with the rating values.
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3.3 Evaluation Results

First, we manually corrected the familiarity rating when the
artist/title, provided by the user, was wrong (hence a famil-
iarity rating of “3” or, more frequently, “4”, was sometimes
lowered to 1). These corrections represented less than 3%
of the total familiarity judgments.

Considering the subjective ratings used and our focus on
music discovery, i.e. relevant and novel recommendations,
we expect a good recommender system to provide high lik-
ing, listening intentions, and “give-me-more” ratings for a
majority of the retrieved tracks and, most importantly, for
low-familiarity tracks. We recoded user ratings for each
evaluated track into 3 main categories - hits, fails, and trusts
- referring to the type of the recommendation. In the case of
liking, hits were the tracks which received low-familiarity
rating (< 2) and a high (> 2) liking rating. Fails were the
tracks having a low (< 3) liking rating. Trusts were the
tracks which got a high familiarity (> 1) and a high (> 2)
liking rating. We similarly recoded the intentions and “give-
me-more” ratings, and obtained three different recommen-
dation outcome categories per recommended track. We then
combined the into a final category requiring the coincidence
of all three outcome categories in order to consider it to be
a hit, a fail, or a trust. Otherwise, the recommendation was
considered as “unclear” (e.g. when a track is a hit using the
liking, but it is a fail by other two indexes), which, in total,
amounted to 20.4% of all recommendations. We excluded
these recommendations from further analysis.

Table 1 reports the percent of each outcome category
per recommendation approach. As we can see, the pro-
posed C-SEMLL+M-GENRE approach yielded the largest
amount of hits (32.0%), followed by M-TAGS (29.7%) and
M-GENIUS (28.2%). The C-SEMLL+M-GENRE was the
only (partially) content-based approach that provided con-
siderably large amount of successful recommendations. We
can evidence that inclusion of genre metadata improved the
amount of hits by 11% for the C-SEMLL, making its re-
fined version comparable to the metadata-based baselines.
On the other side, the M-GENIUS and M-TAGS approaches
provided the largest amount of trusts (18.3% and 10.6% re-
spectively), while the rest of approaches yielded only scarce
trusts (5.3% for C-SEMLL+M-GENRE, the rest below 3%).
Trusts, provided their overall amount is low, can be use-
ful for a user to feel that the recommender is understanding
his/her preferences [1,7]. Nevertheless, their amount should
not be excessive, especially in the use-case of music discov-
ery. Finally, we can see that all recommendation approaches
provided more than 33% of fails, which means that at least
each third recommendation was possibly annoying for the
user. In order to test if the approach and the outcome are
associated (i.e. if certain approaches provide hit, fails or
trust percents that are statistically different than those pro-
vided by other methods) we performed a chi-square test that

Approach fail hit trust unclear
C-SEMLL+M-GENRE 41.9 32.0 5.3 20.8
M-TAGS 38.9 29.7 10.6 20.8
M-GENIUS 33.1 28.2 18.3 20.4
M-GENRE 51.2 26.0 2.8 20.0
C-SEM 53.3 23.9 2.8 20.0
C-SEMLL 58.1 21.1 0.4 20.4

Table 1. Percent of fail, trust, hit, and unclear categories per
recommendation approach.

Figure 1. Means of liking and listening intentions ratings
per recommendation approach.

provided support for that (χ2(15) = 131.5, p < 0.001).
In addition, we conducted three separate between-subjects

ANOVAs in order to test the effects of the recommendation
approaches on the liking, intentions, and “give-me-more”
subjective ratings. The effect was confirmed in all of them
(F (5, 1705) = 15.237, p < 0.001 for the liking rating,
F (5, 1705) = 14.578, p < 0.001 for the intentions rat-
ing, and F (5, 1705) = 11.420, p < 0.001 for the “give-
me-more” rating). Pairwise comparisons using Tukey’s test
revealed the same pattern of differences between the ap-
proaches, irrespective of the 3 tested indexes. It highlights
the following groups with no statistically significant differ-
ence inside each group: 1) M-GENIUS, M-TAGS, and C-
SEMLL+M-GENRE having the highest ratings, 2) C-SEM
and C-SEMLL+M-GENRE, and 3) C-SEM, M-GENRE, and
C-SEMLL having the lowest. Note, that these groups are
partially intersected with the C-SEMLL+M-GENRE and C-
SEM both belonging to two different groups. The mean lik-
ing and listening intentions ratings are presented in Figure 1.

4. CONCLUSIONS

We have considered different distance-based approaches to
music recommendation, working on content information and
metadata to generate recommendations from a set of music
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tracks explicitly provided by a user as an evidence of her/his
musical preferences. We proposed a complex content-based
low-level/semantic approach and its simple refinement us-
ing genre labels as a minimum amount of metadata. We
hypothesized that such single-genre information is consid-
erably low-cost to gather and maintain meanwhile it is suf-
ficiently descriptive for effective filtering.

The proposed approaches were evaluated against the four
baselines on a population of 19 music enthusiasts. Con-
sidering purely content-based approaches, we did not find
any improvements over the baseline semantic recommender
using a complex low-level/semantic distance instead. This
suggests that such a complex distance, previously found to
overcome the semantic distance in the task of music simi-
larity, is not well suited for the music recommendation use-
case. Further study to reveal its nature will be necessary.
Nevertheless, the refining of the proposed complex distance
by simple genre labels showed a significant improvement.
Furthermore, such a refined approach surpasses the consid-
ered metadata-based recommenders in terms of successful
novel recommendations (hits) and provides satisfying rec-
ommendations, comparable to these baselines with no sta-
tistically significant difference.

The conducted evaluation corroborates a similar study
presented in [3], in which similar patterns of no statisti-
cally significant difference between a content-based seman-
tic distance and a simple genre-based baseline were found.
The gap between both of them and commercial metadata-
based recommendations, partially exploiting collaborative
filtering data, was also shown there. We extend this results
now with the proposed refining approach making possible to
overcome such a gap. We may conclude that the proposed
approach, operating on complex content-based distance, re-
fined by simple genre metadata is well suited for the use-
case of music discovery not only for the long-tail but also
for popular items.
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rera. The musical avatar - a visualization of musical preferences by
means of audio content description. In Audio Mostly (AM ’10), 2010.

[10] K. Hoashi, K. Matsumoto, and N. Inoue. Personalization of user pro-
files for content-based music retrieval based on relevance feedback. In
ACM Int. Conf. on Multimedia (MULTIMEDIA’03), pages 110–119,
2003.

[11] M. Levy and M. Sandler. Learning latent semantic models for mu-
sic from social tags. Journal of New Music Research, 37(2):137–150,
2008.

[12] Q. Li, S. H. Myaeng, and B. M. Kim. A probabilistic music recom-
mender considering user opinions and audio features. Information Pro-
cessing & Management, 43(2):473–487, 2007.

[13] B. Logan. Music recommendation from song sets. In Int. Conf. on Mu-
sic Information Retrieval (ISMIR’04), pages 425–428, 2004.

[14] C. Lu and V. S. Tseng. A novel method for personalized music rec-
ommendation. Expert Systems with Applications, 36(6):10035–10044,
2009.

[15] T. Magno and C. Sable. A comparison of signal-based music recom-
mendation to genre labels, collaborative filtering, musicological anal-
ysis, human recommendation, and random baseline. In Int. Conf. on
Music Information Retrieval (ISMIR’08), pages 161–166, 2008.

[16] E. Pampalk. Computational models of music similarity and their appli-
cation in music information retrieval. PhD thesis, Vienna University of
Technology, 2006.

[17] T. Pohle, D. Schnitzer, M. Schedl, P. Knees, and G. Widmer. On rhythm
and general music similarity. In Int. Society for Music Information Re-
trieval Conf. (ISMIR’09), pages 525–530, 2009.

[18] M. Sordo, O. Celma, M. Blech, and E. Guaus. The quest for musical
genres: Do the experts and the wisdom of crowds agree? In Int. Conf.
of Music Information Retrieval (ISMIR’08), pages 255–260, 2008.

[19] J. H. Su, H. H. Yeh, and V. S. Tseng. A novel music recommender by
discovering preferable perceptual-patterns from music pieces. In ACM
Symp. on Applied Computing (SAC’10), pages 1924–1928, 2010.

[20] K. West and P. Lamere. A model-based approach to constructing music
similarity functions. EURASIP Journal on Advances in Signal Process-
ing, 2007:149–149, 2007.

[21] K. Yoshii, M. Goto, K. Komatani, T. Ogata, and H. G. Okuno. Hybrid
collaborative and content-based music recommendation using proba-
bilistic model with latent user preferences. In Int. Conf. on Music In-
formation Retrieval (ISMIR’06), 2006.

102



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

NEXTONE PLAYER: A MUSIC RECOMMENDATION SYSTEM BASED ON
USER BEHAVIOR

Yajie Hu
Department of Computer Science

University of Miami
yajie.hu@umail.miami.edu

Mitsunori Ogihara
Department of Computer Science

University of Miami
ogihara@cs.miami.edu

ABSTRACT

We present a new approach to recommend suitable tracks
from a collection of songs to the user. The goal of the system
is to recommend songs that are favored by the user, are fresh
to the user’s ear, and fit the user’s listening pattern. We use
“Forgetting Curve” to assess freshness of a song and evalu-
ate “favoredness” using user log. We analyze user’s listen-
ing pattern to estimate the level of interest of the user in the
next song. Also, we treat user behavior on the song being
played as feedback to adjust the recommendation strategy
for the next one. We develop an application to evaluate our
approach in the real world. The user logs of trial volunteers
show good performance of the proposed method.

1. INTRODUCTION

As users accumulate digital music in their digital devices,
the problem arises for them to manage the large number of
tracks in them. If a device contains thousands of tracks, it
is difficult, painful, and even impractical for a user to pick
suitable tracks to listen to without using pre-determined or-
ganization such as albums, playlists or computationally gen-
erated recommendation, which is the topic of this paper.

A good recommendation system should be able to min-
imize user’s effort required to provide feedback and simul-
taneously to maximize the user’s satisfaction by playing ap-
propriate song at the right time. Reducing the amount of
feedback is an important point in designing recommenda-
tion systems, since users are in general lazy. We thus evalu-
ate user’s attitude towards a song from partitioning of play-
ing time. In particular, if a song is played from beginning
to end, we infer that the user likes the song and it is a sat-
isfying recommendation. On the other hand, if the song is
skipped while just lasting a few seconds, we assume that the
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user dislikes the song at that time and the recommendation
is less effective.

Using this idea we propose a method to automatically
recommend music in a user’s device as the next song to be
played. In order to keep short the computation time for rec-
ommendation, the method is based on metadata and user be-
havior rather than on content analysis. Which song should
be played next can be determined based on various factors.
In this paper, we use five perspectives: genre, year, favor,
freshness and time pattern.

The rest of this paper is organized as follows. In Section 2,
we introduce recent related work. In Section 3 we describe
our method for calculating recommendation. We will eval-
uate this method in Section 4. We conclude by discussing
possible future work in Section 5.

2. RELATED WORK

Various song recommendation approaches have been devel-
oped so far. We can categorize these approaches in different
views.

Automatical playlist generation focuses on recommend-
ing songs that are similar to chosen seeds to generate a new
playlist. Ragno [1] provided an approach to recommend
music that is similar to chosen seeds as a playlist. Sim-
ilarly, Flexer [2] provided a sequence of songs to form a
smooth transition from a start song till the end song. These
approaches ignore user’s feedback when the user listens to
the songs in the playlist. They have an underlying problem
that all seed-based approaches produce excessively uniform
lists of songs if the dataset contains lots of music cliques.
In iTunes, Genius employs similar methods to generate a
playlist from a seed.

Dynamic music recommendation improves automatic play-
list generation by considering the user’s feedback. In the
method proposed by Pampalk [3], playlist generation starts
with an arbitrary song and adjusts the recommendation re-
sult based on user feedback. This type of method is similar
to Pandora.

Collaborative-filter methods recommend pieces of music
to a user based on rating of those pieces by other users with
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similar taste [4]. However, collaborative methods require
many users and many ratings and are unable to recommend
songs that have no ratings. Hence, users have to be well rep-
resented in terms of their taste if they need effective recom-
mendation. This principle has been used by various social
websites, including Last.fm, myStrands.

Content-based methods computes similarity between songs,
recommends songs similar to the favorite songs, and re-
moves songs that are similar to the skipped songs. In an
approach proposed by Cano [5], acoustic features of songs
are extracted, such as timbre, tempo, meter and rhythm pat-
terns. Furthermore, some work expresses similarity accord-
ing to songs emotion. Cai [6] recommends music based only
on emotion.

Hybrid approaches, which combine music content and
other information, are receiving more attention lately. Don-
aldson [7] leverages both spectral graph properties of an
item-base collaborative filtering as well as acoustic features
of the music signal. Shao et al. [8] use both content features
and user access pattern to recommend music.

Context-based methods take context into consideration.
Liu et al. [9] take the change in the interests of users over
time into consideration and add time scheduling to the mu-
sic playlist. Su et al. [10] improve collaborative filtering us-
ing user grouping by context information, such as location,
motion, calendar, environment conditions and health condi-
tions, while using content analysis assists system to select
appropriate songs.

3. METHOD

We determine whether a song is to be recommended as the
next one in the playlist from five perspectives: genre, year,
favor, freshness and time pattern.

We use time series analysis of genre and year to predict
these attributes of the next song rather than to select the song
with similar genre and year to the current song. The reason
is that some users like listening similar songs according to
genre and year while others perhaps love mixing songs and
the variance on genre and year. Hence, we cannot assume
that a similar song to the current one can be reasonably seen
as a good choice for recommendation. Prediction using time
series analysis caters better to a user’s taste.

Obviously, the system should recommend users’ favorite
songs to them. How many times a song has been actively
played and how many times the song has been completely
played can be used to infer the strength of favor to the song.
We collected user’s behavior to analyze the favor of songs.

In common sense, a few users dislike listening to a song
many times in a short period of times, even though the song
could be the user’s favorite. On the other hand, some songs
that the user favored many months ago may be now old and
a little bit insipid. However, if the system recommend them

Figure 1. Genre taxonomy screenshot in AllMusic.com

at right time, the user may feel it is fresh and enjoy the expe-
rience. Consequently, we take freshness of songs into con-
sideration.

Due to activities and biological clock, users have differ-
ent tastes in choosing music. In a different period of a day
or a week, users tend to select different styles of songs. For
example, in the afternoon, a user may like a soothing kind
of music for relaxation and may switch to energetic songs
in the evening. This paper uses a Gaussian Mixture Model
to represent the time pattern of listening and compute the
probability of playing a song at that time.

3.1 Genre

The sequence of recent playing of a user represents the user’s
habit of listening so we analyze the playing sequence us-
ing a time series analysis method to predict the genre of the
next song. The system records recent 16 songs that were
played for at least a half of their length. Although most
of the songs record their genres and years are available in
ID3v1 or ID3v2 tags, a part of tags are notoriously noisy.
Hence, we developed a web wrapper to collect genre in-
formation from AllMusic.com, a popular music information
website, and use that information to retrieve songs’ genres.
The ID3v1 or ID3v2 tags will be used unless AllMusic.com
has no information about the song.

Furthermore, AllMusic.com not only has a hierarchical
taxonomy on genre but also provides subgenres with re-
lated genres. The hierarchical taxonomy and related gen-
res are shown in Figure 1. For example, Industrial
Metal, whose parent is Alternative Metal, is re-
lated to Alternative Pop/Rock.

We use the taxonomy to build an undirected distance graph,
in which each node describes a genre and each edge’s value
is the distance between two genres. The values of the graph
are initialized by a maximum value. The parent and related
relationship are valued at a different distance, which varies
by the depth in the taxonomy, that is, high level corresponds
to larger distance while low level corresponds to smaller dis-
tance. Then, we assume the distance is transitive and update
the distance graph as follows until there is no cell update.
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Eij = min
k

(Eij , Eik + Ekj) , (1)

where Eij is the value of edge (i, j). Therefore, we obtain
the similarity between any two kinds of genre and the max-
imum value in the matrix is 6.

Now, the system converts the series of genres of recent
songs into a series of similarity between neighbor genres
using the similarity matrix. The series of similarity will be
seen as the input for time series analysis method and we can
estimate the next similarity. Then, the current genre and the
estimated similarity will give us genre candidates.

Autoregressive Integrated Moving Average (ARIMA) [11]
model is a general class of models in time series analysis.
An ARIMA(p, d, q) model can be expressed by following
polynomial factorization.

Φ (B) (1−B)
d
yt = δ + Θ (B) εt (2)

Φ (B) = 1−
p∑
i=1

φiB
i (3)

Θ (B) = 1 +

q∑
i=1

θiB
i (4)

,where yt is the tth value in the time series of data Y and B
is the lag operator; φ and θ are the parameters of the model,
which are calculated in analysis; p and q are orders of au-
toregressive process and moving average process, respec-
tively; And d is a unitary root of multiplicity.

The first step of building ARIMA model is model identi-
fication, namely, estimating p, d and q by analyzing obser-
vations in time series. Model identification is beneficial to
fit the different pattern of time series. The second step is
to estimate parameters of the model. Then, the model can
be applied to forecast the value at t+ τ , for τ > 0. As an
illustration consider forecasting the ARIMA(1, 1, 1) process

(1− φB) (1−B) yt+τ = (1− θB) εt+τ (5)

ε̂t = yt −

[
δ +

p+d∑
i=1

φiyt−i −
q∑
i=1

θiε̂t−i

]
(6)

Our system uses ARIMA to fit the series of similarity
and to predict the next similarity. The process is shown in
Figure 2.

We use Gaussian distributions to evaluate each possible
genre for the next track. We select the one with the biggest
probability.

3.2 Recording year

The recording year is similar to genre so we use ARIMA to
predict the next possible year and compute the probability
of a recording year.

Figure 2. Predict the next genre

3.3 Freshness

As a new feature of this paper, we take into consideration
freshness of a song to a user. Many recommendation sys-
tems [12] based on metadata of music and user behavior
cannot avoid to recommend same music under same situa-
tions. As a result, a small set of songs will be recommended
again and again. What’s worse is that these songs will still
be at the top of recommendation result since they have been
recommended and played many times and then are seen as
favorite songs. The iteration makes users fall into a “favorite
trap” and feel bored. Therefore, an intelligent recommenda-
tion system should avoid to recommend same set of songs
many times in a short period. On the other hand, the system
is supposed to recommend some songs that have not been
played for a long time because these songs are fresh to users
even though they once listened to them multiple times.

Freshness can be considered as the strength of strangeness
or the amount of experience forgotten. We apply Forgetting
Curve [13] to evaluate the freshness of a song to a user. For-
getting Curve is shown as follows.

R = e−
t
S , (7)

where R is memory retention, S is the relative strength of
memory and t is time.

The lesser the amount of memory retention of a song in a
user’s mind, the fresher the song to the user. In our work, S
is defined as the number of times the song has been played
and t is the distance of present time to the last time the song
was played. The reciprocal of memory retention is normal-
ized to represent the freshness.

This metric contributes towards selecting fresh songs as
recommendation results rather than recommending a small
set of songs repetitively.

3.4 Favor

The strength of favor for a song plays an important role in
recommendation. In playing songs, the system should give
priority to user’s favorite songs. User behavior can be im-
plied to estimate how favored the user feels about the song
based on a simple assumption: A user listens to a favorite
song more often many an unfavorite song and on average
listens to a larger fraction of the favorite song than the other.

We consider the favor of a song from four counts: ac-
tive play times, passive play times, skip times and delete
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times. Passive play time means the song is played as a rec-
ommendation result or as the next one in playlist. The favor
is assessed by the weighted average of the four factors.

3.5 Time pattern

Since users have different habits or tastes in different peri-
ods of a day or a week, our recommendation system takes
time pattern into consideration based on user log. The sys-
tem records the time of the day and week that songs are
played. It then employs Gaussian Mixture Model to esti-
mate the probability of playing at a specific time. The play-
ing times of a song in different periods trains the model us-
ing Expectation Maximization algorithm. When the system
recommends songs, the model is used to estimate the prob-
ability of the song being played at that time.

3.6 Integrate into final score

A song is assessed whether it is a fit for recommendation
as the next song from the five perspectives described in the
above. In order to rank results and make a selection, the
scores should be integrated into a final score. At first, the
scores are normalized into the same scale. Since different
users have different tastes, these five factors are assigned
different weights at integration. Hence, we refer to Gradi-
ent Descent in order to match users’ need. However, it is not
user friendly to offer too many possible recommendation re-
sults and determine how to descent based on user’s interac-
tion. We use the recent recommendation results to adjust the
weights, which is initialized by (1.0, 1.0, 1.0, 1.0, 1.0). The
algorithm is shown in Algorithm 1.

3.7 Cold start

Cold start is a difficult problem to tackle for recommenda-
tion system. When a recommendation system begins with
no idea as to what kinds of songs users like or dislike, it
hardly gives any valuable recommendation. As a result, in
the cold start, the system randomly picks a song as the next
song and records the user’s interaction, which is similar to
Pampalk’s work [3]. After 16 songs has been played, the
system uses the metadata of these songs and user behavior
to recommend a song as the next one.

4. EXPERIMENT

The goal of the recommendation system is to cater to users’
taste and recommend the next song at the right time and in
the right order. Therefore, here, we focus on the user expe-
rience and compare users’ satisfaction between our method
and a baseline method, which randomly picks a song as the
next one. We notice that most of the songs in a user’s de-
vice are their favorite, but it doesn’t mean that every song

ALGORITHM 1: Adjust weights based on recent rec-
ommendation results

Input: Recent k recommendation results
<t (Rt−k+1, Rt−k+2, . . . , Rt−1, Rt) at time t.
Ri contains user interaction of this recommendation
χi, which is like or dislike, and the score of each
factor of the recommendation i is Λi.
Descent step δ, which is positive.
Current factor weights, W.
Output: New factor weights, W′.
Process:
if χt = dislike then

Initialize an array F to record the contribution of
each factor.
for i = Rt−k+2 to Rt do

∆Λi = Λi −Λi−1

max = arg max
j

(∆λj) , 1 ≤ j ≤ 5

min = arg min
j

(∆λj)

if χi = Like then
Fmax = Fmax + 1

end
else

Fmax = Fmax − 2
Fmin = Fmin + 1

end
end
inIndex = arg max

j
(F)

w′j =

{
wj + δ, j = inIndex
wj − δ/4, otherwise

, j = 1, 2, 3, 4, 5

deIndex = arg min
i

(F)

w′j =

{
wj − δ, j = deIndex
wj + δ/4, otherwise

, j = 1, 2, 3, 4, 5

end
else

W′ = W
end
return W′

is fit to be played at anytime. The feedback to random se-
lections represents the quality of songs in users’ devices and
the comparison result between our method and random se-
lection shows the value of our method.

4.1 Data collection

An application system, named NextOne Player 1 , is imple-
mented to collect run-time data and user behavior for this
experiment. It is developed in .NET Framework 4.0 using
Windows Media Player Component 1.0. In addition to the
functions of Windows Media Player, NextOne Player offers

1 Available at http://sourceforge.net/projects/nextoneplayer/
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Figure 3. The appearance of NextOne Player

recommendation function using the approach described in
Section 3 and also collects data for performance evaluation.
The recommendation will work when the current song in the
playlist ends or NextOne button is clicked. The appearance
of the application is shown as Figure 3. The Like it and
Dislike it buttons are used to collect user feedback.
The proportion of a song played is recorded and viewed as
the measure of satisfaction of a user for the song.

In order to compare our method with random selection,
the player selects one of the two methods when it is loaded.
The probability of running each method is set to 0.5. Every-
thing is exactly the same except the recommendation me-
thod. In a contrasting experiment, users cannot realize which
method is selected.

We have collected data from 11 volunteers. They con-
sist of 9 graduate students and 2 professors and include 3
female students. They use the application in their devices
which recommend songs from their own collections so the
experiment is run on open datasets.

4.2 Results

First, we show the running time of recommendation func-
tion as it is known to have a major influence on the user
experience. The running time results appear to be in an ac-
ceptable range. We run the recommendation system for dif-
ferent magnitudes of the song library and at each size the
system recommends 32 times 2 . Figure 4 shows the varia-
tion in running time with the corresponding variations to the
size of song library. We observe that the running time in-
creases linearly with the increase in size of the song library.
In order to provide a user-friendly experience, the recom-
mendation results are processed near the end of the current
song that is playing, and the result is generated when the
next song begins.

2 CPU: Intel i7, RAM: 4GB, OS: Windows 7

Figure 4. Running time of recommendation function

Figure 5. Representing the user logs to express favordness
over a month

In order to evaluate the approach, the system records the
playing behavior of the user. We collected the user logs from
volunteers and calculated the average proportion of playing
song length, which means how much partition of a song is
played before it is skipped. Under the assumption that the
partition implies the “favoredness” of the song for a user, we
evaluate the recommendation approach by the partition as
shown in Figure 5, where the histograms represent the num-
ber of songs that were played on a day. The curves in the
graph represent the variation of the “playing proportion”.

Moreover, continuous skips have a significant influence
on the user experience, hence they can play an important
role in evaluating the approach. A skip is defined as chang-
ing to the next track by the user before playing 5% of the
length of the current track. The number of continuous skips
can be used as a measure of user dissatisfaction. Figure 6
shows the distribution of continuous skips using our method
and random selection.

From Figure 5 and 6, we can conclude that the recom-
mendation approach surpasses the baseline and our recom-
mendation is effective. Our approach is able to fit to a user’s
taste, and adjust the recommendation strategy quickly when-
ever user skips a song.
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Figure 6. The distribution of continuous skips

5. CONCLUSION AND DISCUSSION

This paper presented a novel approach in recommending
songs one by one based on user behavior. The approach
considered genre, recording year, freshness, favor and time
pattern as factors to recommend songs. The evaluation re-
sults demonstrate that the approach is effective.

In further research, we can apply this technique to a mu-
sic database in a server. Also other users’ behavior can be
applied to recommend songs for a user. We can mix recom-
mendation of music in a local device and an online server
data to overcome the issue of cold start and hence obtain
new favorite songs.
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ABSTRACT 

The Audio Music Similarity and Retrieval (AMS) task in 

the annual Music Information Retrieval eXchange relies on 

human-evaluation. One limitation of the current design of 

AMS is that evaluators are provided with scarce contextual 

information as to why they are evaluating the similarity of 

the songs and how this information will be used. This study 

explores the potential use of AMS results for generating 

playlists based on similarity. We asked participants to listen 

to a subset of results from the 2010 AMS task and evaluate 

the set of candidates generated by the algorithms as a 

playlist generated from a seed song (the query). We found 

that while similarity does affect how people feel about the 

candidate set as a playlist, other factors such as variety, 

metadata, personal preference, familiarity, mix of familiar 

and new music, etc. also strongly affect users' perceptions 

of playlist quality as well. We discuss six user behaviors in 

detail and the implications for the AMS evaluation task. 

1. INTRODUCTION 

Audio Music Similarity and Retrieval (AMS) is one of the 

evaluation tasks conducted in Music Information Retrieval 

Evaluation eXchange (MIREX). AMS task relies on human 

evaluation for ground truth. Evaluators are asked to listen to 

a set of query-candidate pairs and indicate how similar they 

think the songs are on a broad scale (i.e., very similar, 

somewhat similar, not similar) as well as a fine scale (i.e., a 

score between 0-100). In 2010, the number of test queries 

was 120 and each participating algorithm returned 5 results 

per query [7]. Based on the human evaluation, average pre-

cision scores are calculated for each algorithm and the 

ranking of algorithms is determined.     

One limitation with the design of the AMS task is that 

evaluators are rating only the similarity between each of the 

query-candidate pairs, not the candidate set as a whole. 

Moreover, the evaluators are not given any background in-

formation on a use scenario; why they are evaluating the 

similarity of the songs and how those data will be used.   

The objective of this study is to explore one of the poten-

tial uses of the AMS evaluation task. One way of using mu-

sic similarity data is to generate playlists or recommenda-

tions for users. How would users respond to the AMS re-

sults if they were presented as playlists generated for users 

to listen to? From the previous studies on playlists, we al-

ready know that users value both variety and coherence in 

their playlists [4, 11], in other words, they want playlists 

with songs that are similar to each other, but not too similar. 

How does this Goldilocks-style similarity translate to AMS 

similarity metrics? When you compare the fine score given 

for AMS results and the users’ evaluation of the results as 

playlists, how similar or different are they? Also can we 

learn anything new about what users expect from playlists 

in addition to what we already know? This paper presents 

the findings from eight interviews conducted in order to an-

swer these questions. 

2. DESIGN OF THE STUDY 

2.1 Test Collection 

We conducted in-depth interviews asking participants to 

listen to a subset of the results of the MIREX 2010 AMS 

task and evaluate the candidate set as playlists. 7 queries, 

each from different genres (i.e., blues, classical, country, 

electronica, hip-hop, jazz, rock) were selected as test que-

ries. Of these 7 queries, each participant was asked to 

choose at least 3 queries to evaluate. This was to ensure that 

participants have some freedom to choose the genre that 

they are familiar with and most likely to listen to in real life. 

Table 1 shows the list of queries tested in our study. 

A total of 8 algorithms participated in 2010 AMS task, 

however, in order to reduce user fatigue we tested candidate 

sets of only 3 algorithms for each query. The candidate sets 

for blues, rock, and hip-hop were selected based on their 

average fine scores such that they would have similar 

scores within genre and represent a spectrum of scores be-

tween genres. The classical, electronica, jazz, and country 

candidate sets were chosen to represent a variety of average 

fine scores for the same query [See Table 2]. 
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Genre Query Title Query Artist 

Blues Somebody's Been Talkin'   Blind Boy Fuller 

Classical 
Concerto No. 1 in C major 

Part 2 
Monica Huggett 

Country Sylvia's Mother  Bobby Bare 

Electronica Q-Works   Q-Factor 

Hip-Hop Paper Chase  The Mountain Brothers 

Jazz Time's Lie  Gary Meek 

Rock Spank Thru Nirvana 

Table 1. List of test queries 

Genre 

No.  

of  

users 

Algorithm 
Fine 

Score 

Average 

User  

Rating 

Standard 

Devia-

tion 

Blues 3 

BWL1 100 3.67 0.47 

PSS1 100 4.50 0.40 

SSPK2 100 4.17 0.85 

Rock 6 

SSPK2 85.8 3.50 0.96 

PS1 83 3.83 0.62 

TLN1 81.6 2.75 1.31 

Hip-Hop 3 

PSS1 69.2 2.67 1.03 

SSPK2 66.6 3.77 0.56 

TLN1 66.6 3.67 0.24 

Classical 3 

SSPK2 84 3.33 0.47 

PS1 78 3.50 1.78 

BWL1 66 3.00 0.41 

Electroni-

ca 
3 

PSS1 81.8 3.50 0.71 

PS1 63.6 3.67 1.25 

TLN1 41 2.33 1.70 

Jazz 4 

TLN1 73 3.50 0.79 

SSPK2 57 2.70 1.63 

PSS1 41 2.38 1.29 

Country 3 

SSPK2 77.2 3.83 0.24 

PS1 64.8 3.67 1.25 

BWL1 50 3.67 0.47 

Table 2. List of algorithms, the number of participants, 

similarity scores, and average ratings from participants  

2.2 Task Design 

Each candidate set was presented to participants as a 

playlist consisting of 5 songs. The participants listened to 

the 30 second clips of these songs, multiple times if desired. 

We used the 30 second clips rather than the whole songs to 

be consistent with the AMS task and evaluation. The par-

ticipants were asked to imagine that these playlists were 

generated by 3 different systems that used the query as the 

seed song. After listening to the 3 candidate sets per query, 

they were asked to rate each playlist on a 5 point scale and 

also rank them. We asked the participants the reasons for 

liking or disliking the playlists, and also to imagine an ide-

al playlist and what kinds of characteristics that playlist 

would have or not have. The interview data were analyzed 

using a grounded theory approach which allows us to gen-

erate a theory from empirical data [6].  

2.3 Participants 

Participants were recruited by using a snowball method 

starting with the colleagues of the lead researcher who are 

interested in music. They were selected so that they reflect 

some variance in their preferred music genre and style. 3 of 

the participants were in 20s, 2 were in 30s, and 3 were in 

40s. 6 participants were male and 2 were female. Most par-

ticipants listen to music at least occasionally, although the 

degree of their interests did vary. In the discussion below, 

responses from different participants are identified by their 

assigned number (i.e., P1–P8). 

3. DATA AND DISCUSSION 

3.1 Overview 

Table 2 shows the list of algorithms that were tested for 

each query. The 4th column shows the average fine scores 

assigned to the candidate lists by the human evaluators in 

AMS task [7]. The 5th column shows the average rating 

from our participants.  

3.2 User Behaviors 

In the following, we provide a list of patterns that emerged 

from the user behaviors we observed. 
 

 
Figure 1. Fine scores and average user ratings  

3.2.1 Similarity does matter, but variety is also important 

When we compared the fine scores with the average ratings 

from our participants for the 21 algorithms, we did observe 

some correlation (Pearson’s r = 0.66). Figure 1 shows the 

scatterplot of the fine scores and the average user ratings. 

There seems to be a stronger correlation between the fine 

scores and the user ratings for the playlists with either very 

high similarity score or very low similarity score. The 
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playlists with medium similarity scores (around 60-80), on 

the other hand, do show greater variation in user rating. 

This suggests that similarity does have some effect on how 

people feel about the playlists, but other factors are having 

an impact as well.   

One common theme that emerged from all the responses 

was the importance of variety as all eight participants said 

that they want some variety in the playlist. In fact, a num-

ber of participants (P1, P2, P4, P5, P6) reacted positively to 

the playlists that had coherent set of songs, but also said 

some lists were too similar and needed more variation (P1, 

P3, P4, P6, P7, P8).  
 

P8: It’s kind of monotonous. The songs all had pretty 

much the same tempo…it was all on 10 all the time, and 

there’s no variety. And again all the tempos were the same,   

they all had big drums, and consistently all big sound.   
 

From this quote, we can see that for P8, the same tempo, 

instrumentation, and style were the reasons why he felt that 

the songs on the playlist were too similar. This participant 

also said it was okay to have multiple songs from the same 

artist, although other participants had different opinions.  
 

 P8: (Songs from the same artists are) usually okay, be-

cause if I like the band I want to hear more of it, and if I 

don’t like them I already changed the channel.  

P1: There’s no lyrics in these so they kind of fit, but 

three songs by the same artist on the same playlist is kind 

of, out of five, is a little bit, I think, extreme.  
 

As you can see, variety and coherence meant different 

things for different participants. To name a few examples, 

P7 preferred variation across genres, P1 wanted various art-

ists, and P4 liked diverse musical style. Participants also 

focused on different aspects when they said the playlist was 

coherent. For example, P5 focused on lyrical content, 

whereas P2 focused on tempo, P1 and P3 focused on mood, 

etc. When users perceive the variety or coherence of a 

playlist, they will react differently to different features, thus 

the transparency of the system seems important as dis-

cussed in [2, 13]. P4 expressed frustration that many of the 

current systems provide playlists or recommendations 

without telling the user how exactly the songs were selected. 
 

P4: There should be why did you get this song maybe 

because I don’t understand most of the times, like I would 

put in the seed song and get these and I’m like, what is 

going on here?  
 

In fact, in Åman and Liikkanen’s survey of music rec-

ommendation systems [1], most of the systems received 

very low scores for transparency. Some music recommend-

er systems do provide at least limited information about the 

songs to users. For instance, Pandora provides information 

about the features of the selected songs that are taken into 

account when they generate their playlists (e.g., it features 

pop/rock qualities, a subtle use of paired vocal harmony, 

mixed acoustic and electric instrumentation). The users, 

however, are not able to specify which of these features 

they want the system to focus on in generating playlists. 

For instance, some user may use Everlong by Foo Fighters 

as his seed song because he wants songs with similar in-

strumentation whereas another user may use the same seed 

song wanting songs with romantic lyrics.  

3.2.2 Metadata affects how users feel about the music 

In addition to relying on the musical features, various types 

of metadata can be used to further improve the selection of 

songs in a playlist. In previous works, use of song/album 

title, artist, genre, user rating, etc. have been discussed [10, 

11, 12, 14]. In addition to these, we believe metadata such 

as lyrics can play a significant role. P6, for instance, gave 

the highest rating for one of the blues list because of the 

similar lyrical content. P2, P4 and P5 said they also create 

their own lists based on lyrics. Moreover, P5 and P7 said 

they want to be able to filter songs that have graphic lyrics.  

Other potentially useful metadata mentioned by our par-

ticipants was the theme. P4, P5, and P8 said that they create 

their own lists based on a theme/story (e.g., trains, 4
th

 of 

July). The theme of the song may be automatically extract-

ed, inferred from the title or lyrics, or assigned by users 

though social tagging. Time period was also important for 

our participants. P1, P2, and P3 mentioned that the songs in 

the given playlist were from different era and that negative-

ly affected how they felt about it (e.g., mix of different 

classical music periods, rock music from 80s and 90s). P2 

said that the song from different time periods “disrupted the 

flow” of the playlist. P1 also mentioned the difference in 

the quality of sound recordings from different eras.  
 

 P3: The slightly jarring thing is…that first seed sounded 

to me more like sort of baroque music so like in the 16
th

 or 

17
th

 century and then from what I remember of the ones in 

the playlist, they were sort of like 18
th

 century and some 

19
th

 century stuff at the end…not the same time period.  

P1: A lot of this older country music that was recorded 

before modern recording equipment, has this kind of echoy, 

tin canny sound to it, right? And I don’t like that. That re-

ally muffled poor recording…I just can’t get over that.  

3.2.3 Having a song users love or hate can significantly af-

fect how they feel about the whole playlist 

Personal preference of music highly affected how people 

felt about the playlist as a whole. Participants seemed de-

lighted when they heard the song or artist they liked. Some 
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specifically stated that they were rating the playlist higher 

because they really liked one of the songs.  
 

P8: Actually the other one probably should have been 2 

(which he rated 3), but I really love that Foo Fighter song 

so… How can you dislike that melody line? La la la la la…  

P1: Learn to Fly was very poppy so it didn’t quite fit but 

you know, I like that song so that doesn’t really bother me 

too much. And I like Soundgarden so that’s good.  
 

The overall preference of the genre or musical style also 

mattered. For instance, P3 said “I just prefer more upbeat 

songs in general”, or some participants preferred a particu-

lar sub-genre (e.g., P1 likes country rock, P4 likes swing 

jazz, P6 likes alt rock) and seeing songs that fit those crite-

ria on the playlist made them respond more positively. 

Sometimes user’s preference overrode the similarity.   
 

P4: I really like this playlist cause I like the music on it 

because I’m more, I’m way more into the swing side of 

jazz but I don’t really think any of these songs go with the 

seed song very much.  
 

While explaining the characteristics of their ideal playlist, 

a number of participants (P1, P4, P8) specifically said that 

they want to see more songs by the seed artist. Currently in 

AMS task, the seed artist is filtered from the results. 
 

P4: I never seem to get in your playlist the same artist 

as your seed song, what is up with that? Obviously I like 

this artist, why do you not intersperse more of that artist?  
 

Participants also had strong reactions to the music that 

they hated as discussed in [3]. Having even a single song 

that they dislike significantly affected how they rated the 

playlist as a whole. For instance, P3 and P4 who listened to 

the jazz set commented that one of the songs sounded like 

elevator music which made them absolutely hate the list.  
 

P3: Oh, god, elevator music. I loathe elevator music. 

P4: This is like elevator music. It’s too early in the 

morning for this...and I’m offended that like elevator mu-

sic is associated with Jazz. There is kind of a bit of an of-

fensive thing going on there. You put in Jazz and you get 

like, is that what people think? This gets a zero. 
 

This suggests that perhaps providing a way to perma-

nently ban a song, like in systems like Musicovery, is im-

portant to users. 4 participants (P3, P4, P7, P8) specifically 

said that they want to be able to remove songs that they 

hate so that it will never appear in any of their playlists. P3 

said “I’m not sure what I like, but I know for sure what I 

DON’T like.” P8 said “all the songs have to be able to 

stand by itself” without “the second rate songs.”  
 

P8: (answering the question “Anything that this ideal 

playlist should not have?”) Van Halen. It shouldn’t have 

music that sucks.  

3.2.4 Users like learning new things, but they still want 

them contextualized in familiar territory 

Several participants stated that they like learning something 

new and being exposed to new songs by listening to these 

playlists.  
 

     P3: I kind of want the system that educates me. You 

know, that picks things that I don’t really know about. 

P7: The Van Halen cover of the Who. I had no idea that 

song existed so that’s (good), I love learning things, that’s 

why I go to things like Pandora.  
 

Finding new songs by a known artist was also a positive 

thing, like P8 who was happy to learn one of the Foo Fight-

ers songs. P7 said re-discovering songs that were once fa-

miliar but forgotten was also a positive experience. Another 

notable pattern was that all participants wanted a mix of 

familiar and new songs, although there were disagreements 

on the ideal proportion of familiar and new songs. Fields [5] 

also advocates a playlist (familiar songs) with recommen-

dation (new songs), although playlists are typically distin-

guished from recommendations [4]. Having familiar and 

new songs together on the list can perhaps help users by 

enabling them to establish the context, understand the con-

nections between the songs better and remember the new 

songs better. 
 

P6: A mix of things is good, cause I would like to discov-

er new artists, it’s always a good way to (be) introduced 

through somewhat similar artists you already like…I’ll 

feel more comfortable getting into the genre if there’s a 

few (songs) I kind of knew, and then I could kinda deter-

mine my likes from there.  

3.2.5 Users tend to be more generous for unfamiliar music  

Participants also reacted differently to the genre based on 

their familiarity. Better familiarity with the genre seemed to 

lead to stronger criticisms and disappointment, higher ex-

pectation, and more intense reaction. It also led to lower 

ratings overall, compared to the playlists in a genre that 

participants were less familiar with. For instance, when 

evaluating the same electronic playlist, P8 thought they all 

sounded okay and similar enough to the seed whereas P1 

pointed out the mix of different sub-genres and gave lower 

scores. The participants, in fact, were aware of this behav-

ior themselves. 
 

P8: I feel like I can learn about the genres that I don’t 

know much about…so I’m way more likely to just sort of 
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go along, go with the flow and see what I learn whereas 

usually if I’m listening to something I’m familiar with…I 

want the songs to have like consistent values, production 

values, song writing values, um, I’m just way pickier.    

P2: Because I know this genre so well, I feel like I be-

come pickier, yeah, my expectations are higher. 

3.2.6 Users know and will tell you about their boundaries  

Overall, participants tended to be very aware and assertive 

about their boundaries: what they like and dislike, how 

much variation they can tolerate, and other little quirks. For 

instance, both P5 and P8 said they did not like songs that 

were anti-social. P4 said the mix of vocal and instrumental 

music was intolerable.  
 

P4:  That third choral thing has to go. That was wrong. I 

liked the rest of the playlist but that one just…I couldn’t 

see why it came up, I really didn’t like it…To me they 

would be different channels, different categories.  
 

Participants also had different reactions to the random-

ness of the playlists. P5 said “I didn’t like the song in for-

eign, Northern European? Language because I couldn’t 

figure out what it was about” although P3 liked the ran-

domness of the German jazz song.   
 

P3: That was the most bizarre combination… it would 

be kind of fun to be sort of given this and just be playing it 

in the car thinking oh I wonder what’s gonna happen 

next... this is like a weird mystery gift, you know, like the 

Christmas present from your mad auntie.  

4. IMPLICATIONS ON SIMILARITY EVALUATION 

Based on our interview data, we have four recommenda-

tions for possibly improving the AMS task in MIREX. The 

former two recommendations aim to facilitate obtaining 

more objective results, and the latter two are for making the 

AMS task more user-centric.    

4.1 Specification of Features  

Our participants considered a variety of features when they 

evaluated the playlists. Examples of commented features 

include mood, genre, lyrical content, tempo, instrumenta-

tion, delivery, time period, style, and so on. They assumed 

that the songs on the playlists were selected because of 

some combination of these different features, although un-

certain as to which exact features were used. This multi-

faceted notion of music similarity makes it difficult to eval-

uate similarity since there are so many different ways two 

music clips can be similar (c.f., [8]). In MIREX, we cur-

rently collect evaluators’ opinions on how similar the que-

ry-candidate pairs are, but not on which aspects they 

thought were similar. One possible way to remedy this limi-

tation would be to inform the evaluators which aspects they 

should focus on during the evaluation in order to obtain 

more objective results. Another measure would be to ask 

the evaluators to tell us which aspects made them think the 

results were similar or not. Although this proposed solution 

may slightly increase users’ burden, we will be able to ob-

tain more objective judgments as well as richer information 

on the relative importance of features for users.  

4.2 Identification of Evaluator’s Genre Preference and 

Familiarity  

Collecting information about evaluator’s preference and 

familiarity may enable us to gauge how much we can trust 

the response from each evaluator. As discussed in sections 

3.2.2 and 3.2.6, participants did react differently to playlists 

of different genres based on their preference and familiarity. 

The background knowledge of the familiar and liked genre 

allowed the participants to evaluate the playlist based on a 

lot of contextual information (e.g., P1: “Van Halen was 

kind of like hair metal” P6: “if you are going to input Nir-

vana, maybe you want some other smaller, pacific North-

west, grungy, 90s”). On the other hand, they found it diffi-

cult to evaluate the lists if they did not know the genre very 

well. For instance, all 3 participants (P5, P7, P8) said that 

they listen to hip-hop but have limited knowledge of the 

genre which made it difficult to evaluate the playlists.   

4.3 Providing Metadata with the Music Clips 

In MIREX, human evaluators are not provided with 

metadata such as artist or title of the music clips they eval-

uate. Although this will help ensure that the similarity 

judgment is strictly based on the music itself not metadata, 

it does not reflect the real-life music experience of users. In 

any commercial system, the ultimate objective is to deliver 

music to users who will want to know what exactly they are 

purchasing. Even for non-commercial systems, metadata 

will be crucial for educating the users about music. Note 

that evaluation of music playlist is also affected by the 

availability of metadata.  
 

P1: (reacting to three songs from the same artist) I don’t 

know. If you didn’t show me the metadata, I might not 

know, or I might not have that kind of reaction.  
 

Also 4 of our participants (P1, P6, P7, P8) discussed the 

connection of Nirvana to Foo Fighters when they evaluated 

the rock playlists. P7 said “Foo Fighters is pretty obvious” 

and P1 said “it sounds different from the seed but it makes 

sense,” demonstrating the importance of artist information. 

P7 also said contextual information like “the influences be-

tween bands” was important in making a good playlist. 

Providing even the basic metadata such as artist, song title 

and genre with the music clips can help users better under-
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stand the context of music. This is also much closer to how 

users will respond to music playlists in real life.    

4.4 Tasks Reflecting Real-life Use Scenarios 

The current music similarity task relies on human evalua-

tors for generating ground truth; however it is unclear how 

this information is going to be used in real life. Music simi-

larity can be used for many user tasks other than just creat-

ing playlists; for instance, Lee [9] discusses the use of mu-

sic similarity for known-item searches (e.g., trying to find a 

specific song by providing other song titles that sound very 

similar) on Google Answers. In this case, we suspect that 

candidates with higher similarity scores may be more useful 

for the user task.  

We believe it is crucial that the MIR community as a 

whole think about how the current tasks can be evolved into 

tasks that are more user-centric, in other words, closer to 

the user tasks that actually happen in their everyday life. 

One possibility for evolving the current AMS task is to cre-

ate different sub-tasks that use music similarity; for in-

stance, playlist generation task, known-item search task, 

personal music collection management task, and so on. 

5. CONCLUSION AND FUTURE WORK 

The findings of our study suggest that similarity is only one 

of the many factors that affect how people feel about 

playlists. Although similarity does seem to affect the user 

rating of playlist, stronger similarity does not always make 

better playlists for users. Overall, participants had fairly 

clear ideas about what they expect from a good playlist and 

were able to articulate them. Their evaluation of playlists 

tended to be quite subjective as they were highly affected 

by personal preference and familiarity with the music on 

the list, although some common themes emerged, such as 

wanting a mix of familiar and new songs, more songs from 

the seed artist, etc. Many of the user behaviors observed 

during the interviews confirm and support various points 

that were raised in previous literature on music similarity, 

recommendation, playlists, and evaluation. This is promis-

ing as there do seem to be a set of features that we can im-

plement in current systems to make them more user-centric.  

We hope that findings from this study will provide use-

ful information for redesigning the current AMS task and 

encourage the MIR community to think about how to 

evolve the current evaluation tasks. In our future studies, 

we plan to test more playlists generated by different algo-

rithms submitted to MIREX based on different set of seed 

songs. Instead of researchers selecting random songs for 

users to test, we plan to have the users select the seed songs 

that they actually like and are more likely to use for elicit-

ing playlists in real life.  

6. REFERENCES 

[1] P. Åman and L. A. Liikkanen: “A survey of music 

recommendation aids,” Proceedings of the Workshop 

on Music Recommendation and Discovery, 2010. 

[2] L. Barrington, R. Oda, and G. Lanckriet: “Smarter 

than genius? human evaluation of music recommender 

systems,” Proceedings of ISMIR, pp. 357-362, 2009. 

[3] S. J. Cunningham, D. Bainbridge, and A. Falconer: 

“More of an art than a science: supporting the creation 

of playlists and mixes,” Proceedings of the ISMIR, pp. 

240-245, 2006. 

[4] B. Fields and P. Lamere: “Finding a path through the 

juke box,” tutorial presented at the ISMIR, 2010. 

[5] B. Fields, C. Rhodes, and M. d’Inverno: “Using song 

social tags and topic models to describe and compare 

playlists,” Proceedings of WOMRAD, 2010.  

[6] B. Glaser and A. Strauss: The discovery of grounded 

theory: strategies for qualitative research, Chicago, 

1967. 

[7] IMIRSEL: “2010 AMS results,” http://www. music-

ir.org/mirex/wiki/2010:Audio_Music_Similarity_and_

Retrieval_Results, 2010. 

[8] M. C. Jones, J. S. Downie, A. F. Ehmann: “Human 

similarity judgments: implications for the design of 

formal evaluations, Proceedings of the ISMIR, pp. 

539-542, 2007. 

[9] J. H. Lee: “Analysis of user needs and information 

features in natural language queries seeking music 

information,” JASIS&T, 61( 5), pp. 1025-1045, 2010.  

[10] B. Logan: “Content-based playlist generation: 

exploratory experiments. Proceedings of the ISMIR, 

pp. 295-296, 2002. 

[11] S. Pauws and B. Eggen: “Pats: realization and user 

evaluation of an automatic playlist generator,” 

Proceedings of the ISMIR, pp. 222-230, 2002. 

[12] R. Ragno, C. J. C. Burges, and C. Herley: “Inferring 

similarity between music objects with application to 

playlist generation,” Proceedings of the 7th ACM 

SIGMM MIR, pp. 73-80, 2005 

[13] R. Sinha and K. Swearingen: “The role of 

transparency in recommender systems,” Proceedings 

of the ACM CHI, pp. 830-831, 2002.  

[14] M. Slaney: “Web-scale multimedia analysis: does 

content matter?” IEEE Multimedia, Vol. 18, No. 2. pp. 

12-15, 2011. 

114



12th International Society for Music Information Retrieval Conference (ISMIR 2011)
  

 

A REAL-TIME SIGNAL PROCESSING FRAMEWORK OF 
MUSICAL EXPRESSIVE FEATURE EXTRACTION USING 

MATLAB  

Ren Gang1, Gregory Bocko1, Justin Lundberg2, Stephen Roessner1, Dave Headlam1,2, Mark F. Bocko1,2 
1Dept. of Electrical and Computer Engineering, Edmund A. Hajim School of Engineering and Applied Sciences, 

University of Rochester; 2Dept. of Music Theory, Eastman School of Music, University of Rochester  
g.ren@rochester.edu,gregory.bocko@rochester.edu,justin.lundberg@rochester.edu, 

stephen.roessner@rochester.edu,dheadlam@esm.rochester.edu, mark.bocko@rochester.edu 

 
ABSTRACT 

In this paper we propose a real-time signal processing 
framework for musical audio that 1) aligns the audio with 
an existing music score or creates a musical score by auto-
mated music transcription algorithms; and 2) obtains the 
expressive feature descriptors of music performance by 
comparing the score with the audio. Real-time audio seg-
mentation algorithms are implemented to identify the onset 
points of music notes in the incoming audio stream. The 
score related features and musical expressive features are 
extracted based on these segmentation results. In a real-
time setting, these audio segmentation and feature extrac-
tion operations have to be accomplished at (or shortly after) 
the note onset points, when an incomplete length of audio 
signal is captured. To satisfy real-time processing require-
ments while maintaining feature accuracy, our proposed 
framework combines the processing stages of prediction, 
estimation, and updating in both audio segmentation and 
feature extraction algorithms in an integrated refinement 
process. The proposed framework is implemented in a 
MATLAB real-time signal processing framework.  

1. INTRODUCTION 

Music performance adds interpretative information to the 
shorthand representation in a music score [1]. These per-
formance dimensions can be extracted from performance 
audio as musical expressive features using signal 
processing algorithms as in [2]. These features quantitative-
ly model the performance dimensions that reflect both the 
interpretation of performance musicians and the artistic in-
tention of composers [1] and are important for various mu-
sic signal processing [2] and semantic musical data analysis 
[3,4] applications.  

      Existing automatic music transcription [5] and musical 
expressive feature extraction algorithms [2] are designed in 
post-processing frameworks. These existing algorithms are 
essentially multimedia file process systems, which assume 
that the entire duration of the audio performance is already 
recorded. However, various real-time signal processing ap-
plications, such as visualization, automatic music mixing, 
stage lighting control, interactive music media, and elec-
tronic games, require that musical expressive features be 
extracted and synchronized with the ongoing audio. In such 
a real-time signal processing framework, the musical ex-
pressive features have to be obtained from the audio signal 
that is still in progression to facilitate simultaneous interac-
tions with external applications. Thus, the complete music 
event is not observed at the “decision point” since the mu-
sic transcription and expressive features have to be obtained 
at (or shortly after) the onset of each music event. In this 
paper we extend the feature extraction and recognition 
functionalities of conventional music transcription and 
musical expressive feature extraction algorithms and estab-
lish a real-time processing framework which includes the 
processing stages of prediction, estimation and updating. 
First, signal features (signal features here include segmenta-
tion features, score-level features and musical expressive 
features) are predicted using generative probabilistic graph-
ical models [6,7] based on a “history” of these features (or 
other available information, e.g., features extracted from a 
synchronized rehearsal track). Then we estimate these sig-
nal features when a short audio segment in the beginning 
part of a music event is available. When additional audio 
frames are captured, we refine the estimations and make 
necessary updating.   

     “True” real-time methods can only be achieved in a fea-
ture prediction framework: the signal features are obtained 
before the actual music event. For example, in an automatic 
music mixing system, we are expected to adjust the fader 
settings according to the “past” signal features before a 
loud section begins.  That is, the expressive loudness fea-
ture and its related fader instruction must be generated at a 

 

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that cop-

ies bear this notice and the full citation on the first page.  

© 2011 International Society for Music Information Retrieval  

115



Poster Session 1  

 

time point when the music event of the “future” loud sec-
tion is not observed at all! In our proposed processing 
framework, a generative probabilistic graphical model [6] is 
employed to enable such predictions. A probabilistic graph-
ical model depicts the causality (or statistical) relations be-
tween signal features [7]. A prediction of “future” signal 
features is inferred from these statistical relations and a fi-
nite length of an observed “history”. Such predictions 
might fail, as any prediction that peeks into an unknown 
“future”. To improve the reliability of our proposed system, 
several levels of relaxation are applied. These pseudo-real-
time processing frameworks are essentially buffer and post-
processing frameworks that allow us to take glimpses at the 
music event and be more “confident”.  If the signal 
processing delays they introduce are kept within the percep-
tual limit (about 25ms [8]), the live performance, audio and 
the feature processing results would appear to be percep-
tually well synchronized for the audience.  

       A pseudo-real-time processing framework allows a 
short audio frame to be captured near the predicted music 
note onset. The signal features extracted from this short au-
dio frame confirms or rejects the predicted onset location 
and other signal feature dimensions. If the pseudo-real-time 
constrains, including the perceptual delay limit and/or the 
audio reinforcement delay limit, are satisfied, a short signal 
capturing and processing delay would be effectively con-
cealed from the audience. The perceptual delay limit is the 
limit of human perceptual capabilities of discerning the 
time sequence of two perceptual events [8,9]. For applica-
tion scenarios such as visualization, a short delay such as 
10ms in the visualization interface is not perceptible since 
human visual perception is a relatively slow responding 
process [9]. However, a processing delay that exceeds 20ms 
results in a sloppy “thunder first, lightning second” effect.  
An audio reinforcement delay can be utilized in application 
scenarios where sound reinforcement systems are employed 
to further enhance synchronizations. The reinforced sound 
is briefly delayed to compensate for the signal processing 
delays so the reinforced sound is still synchronized with the 
feature extraction and processing results1. Because the sig-
nal features extracted usually trigger the most dramatic vis-

                                                           
1 In a staged music setting, for instance, the music expressive features and 
the aural-visual events controlled by these features are delayed behind the 
onset of stage scenes because a short audio frame have to be captured and 
processed. Taking the stage light control application as an example, the 
light controlled by loudness feature turns on 10ms after an actor begin to 
sing a music phrase. In this “precious” 10ms, a short audio frame is cap-
tured and analyzed so the “light on” stage lighting instruction could be 
inferred. The reinforced audio is also delayed 10ms to compensate for the 
delay of the lighting effect. For the audience the reinforced audio onset is 
perfectly synchronized with the lighting effect since they are both delayed 
10ms behind the actor, while the 10ms delay between stage scene and au-
dio/lighting is still imperceptible.      

ual and aural events and the reinforced audio carries the 
most prominent aural event, this audio reinforcement delay 
effectuates the most critical synchronizations and is thus 
strongly recommended whenever applicable. The sound 
reinforcement delay must be kept low (less than 20ms, with 
a typical value of 10ms) to maintain the perceptual syn-
chronizations of other aural and visual events. On the aural 
aspect, the audio reinforcement delay limit ensures that the 
direct sound from actors can blend seamlessly with the 
reinforced sound for front-row audiences. On the visual 
side, the reinforced audio lags behind the stage scenes so 
this limit insures that the time lag is perceptually tolerable.     

     The proposed system architecture as detailed in Sec. 2 
utilizes both real-time music event prediction and pseudo-
real-time processing, with an emphasis on pseudo-real-time 
processing. Key processing components are introduced in 
Sec. 3. Sec. 4 discusses the MATLAB implementation is-
sues and Sec. 5 provides a brief summary. 

2. SYSTEM ARCHITECTURE 

The system architecture of our proposed system is illu-
strated in Figure 1. Figure 1(a) is the system architecture 
for application scenarios when a music score database is 
available and a matching music score is retrieved. In the 
initialization phase, a short audio segment (5-20 seconds) is 
first captured as the audio query for finding the matching 
music score using score-audio matching algorithms [10]. 
The feature estimation blocks include audio segmentation 
and features extraction algorithm. The real-time score-
audio alignment algorithm segments the audio by identify-
ing the onset points based on the music score and the seg-
mentation features extracted from the audio. If a music on-
set is detected, the following short audio frame is captured 
and passed on to the musical expressive feature extraction 
algorithm to obtain an initial estimation of musical expres-
sive features. These musical expressive features are then 
formatted as a control data stream for external applications. 
Figure 1(b) presents alternative system architecture for the 
application scenarios when a music score is not available. 
In this system we implement a real-time music transcription 
framework parallel with the real-time musical expressive 
feature extraction process. For both systems music event 
prediction and feature updating algorithms are implemented 
to further improve performance. The music event prediction 
algorithm predicts the “future” feature values based on a 
“history” and use the prediction values as priors for the 
“current” music event segmentation and feature estimation 
process. The alignment/feature updating algorithm refines 
signal features when additional audio frames are captured 
and submits essential corrections. The refined features also 
improve subsequent probabilistic predictions. 
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(b) 

Figure 1. System Architecture. (a) is the system architec-
ture when a music score database is available. (b) is the 
system architecture when the music score is not available.   

3. REAL-TIME PROCESSING ALGORITHMS 

Real-time processing algorithms for key functional blocks 
are introduced in this section. Algorithms both for applica-
tion scenarios with and without a music score are intro-
duced.   

3.1 Audio Segmentation 

If a music score is available, the note boundaries are identi-
fied using score-audio alignment or score following algo-
rithms based on real-time dynamic time warping as detailed 
in [10]. These algorithms optimally align a music score to 
the dynamic performance timeline of an audio file by 
searching-and-finding an optimal alignment path corres-
ponding to the alignment features extracted from the score 
and the audio.  

    If music score is not available, the conventional onset 
detection and music event segmentation algorithms [11] 

are extended to fit in our proposed real-time processing 
framework. These onset detection algorithms compare the 
audio features (for example, energy value or spectrograph-
ic content) and track their variations. The magnitude of the 
variations is encoded as an onset detection function  
and the time points correspond to significant variation are 
selected as onsets or segmentation points. In our proposed 
real-time framework only the ‘past’ part of the detection 
function ,  is available, where  is the current 
time. To ensure real-time processing performance, we can-
not delay the segmentation decision until a downward 
slope of  is observed. Instead of peak-picking [11], the 
segmentation decisions have to be generated using a thre-
shold detection method, which do not guarantee that a 

 peak is reached.  

     Our proposed real-time processing framework is im-
plemented by providing two types of threshold for onset 
detection. An initial detection threshold is set as . If 

 and no segmentation decisions have be gener-
ated in a time interval of  , an initial segmentation point 
is identified. A ‘regretting’ threshold is set as . If 

 and the time distance  to the previous seg-
mentation decision satisfies , a forward up-
dating of the segmentation point is performed to erase an 
existing segmentation point and substitute the current time 
point. Here  is the segmentation error tolerance. If the 
previous segmentation point is within this range, a correc-
tion is not necessary.  is the maximum correction range. 
If the time interval to the previous segmentation point is 
greater than , another segmentation point is generated 
using threshold . These thresholds are time varying with 
the current beat tracking result obtained using the algo-
rithms in [12]. The rhythmically significant locations are 
assigned a lower detection threshold as in Fig. 2 to push 
detected onsets towards these interpolated locations, as a 
combined process of prediction and real-time detection.   

 

Figure 2. A typical profile of segmentation detection 
thresholds. The lower detection threshold at predicted 
rhythmic locations pushes the segmentation point towards 
a predicted rhythmic grid. 
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3.2 Feature Extraction 

The musical expressive features we implemented include 
feature dimensions of the relatively small but continually 
changing adjustments in pitch, timing, auditory loudness, 
timbre, articulation and vibrato that performers use to 
create expression [1,2]. Definitions of these feature dimen-
sions are briefly summarized in Table 1 and more details 
can be found in [2]. In this section the real-time extraction 
process of symbolic pitch and expressive feature dimen-
sion of pitch deviation is detailed in an application scenario 
when a music score is not available. Pitch deviation meas-
ures the difference between performance pitch and the 
score specified pitch [2]. The expressive pitch processing 
is more sophisticated compared to other feature dimensions 
since the quantized score pitch, the expressive pitch devia-
tions, and the calibration of a temperament grid1 have to be 
updated simultaneously. The other feature dimensions are 
briefly summarized in Table 1 and their feature extraction 
algorithms are similar extensions based on [2].  

      For estimation of pitch deviation an accurate mapping 
between symbolic pitch and fundamental frequency (F0) 
has to be established since the expressive pitch deviation is 
just a small fraction of the fundamental frequency. The 
fundamental frequency is first obtained from the audio 
frames captured at the segmentation point using a pitch de-
tection algorithm as in [13]. Suppose that the fundamental 
frequency is detected from the first short audio frame of 
music note  and denoted as  and the initial tempera-

ment grid we implemented as  , ; , ,
1, … , . Here  and  is the decision boundary of the 
pitch quantization grid.  is the quantized frequency value 
that would be selected if   and  is its sym-
bolic value. For equal temperament scale, the quantized 
value s form a temperament grid which is derived from a 
reference frequency point  with symbolic pitch value  
as: 

                 tpa , ;  2 ·             (1) 

where  is the symbolic pitch value of quantization inter-
val , ,  here  and  is specified in MIDI value. 
Since human frequency discernment is most acute at mid-
frequency region, the frequency reference point :  
could be selected at this frequency region. In our imple-
mentation the reference point [69:440Hz] is selected. Us-
ing this initial temperament grid, we obtain the initial sym-
bolic pitch value as . When additional audio frames are 
captured from the audio stream, we might revise our esti-

                                                           
1 For expressive feature extraction this calibration is crucial because the 
calibration level is within the same range of pitch deviation value.   

mation of the  and  values within a music note 
based on the pitch detected in the extended musical note 
duration. To ensure a smooth updating process we only 
update the F0 estimation after a time interval. We also only 
update the estimated value of fundamental frequency and 
pitch deviation if the difference of two adjacent estimated 
F0 values will exceed the detection grid of one semitone.  

      When an adequate number of music notes are captured, 
the temperament grid is updated by fitting a temperament 
grid to the detected F0 values in a calibration process.    
Suppose the F0 sequence we obtained is represented as 

… , these frequency points find their quantized values 
…  as the nearest neighbors in an initial quantization 

grid with frequency reference point : . The residual 
values of this quantization process are denoted as … . 
Then we shift the frequency reference point within 1/6 of a 
semitone interval and find the best reference frequency 
point ∆  where the sum of the residual values 
∑ | | is minimized. After this calibration process the 
residual frequency value …  is calculated as pitch 
deviation values. The pitch deviation in the units of cents is 
calculated as 1200 · ⁄ . An example of pitch fea-
ture extraction and feature updating process is illustrated in 
Figure 3. 

 
                                                   (a) 

 
                                                  (b) 

 
                                                  (c) 

Figure 3. Estimation and Updating Process of Musical 
Pitch Related Features. (a) audio waveform; (b) quantized 
musical pitch; (c) expressive pitch deviation. 
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3.3 Music Event Prediction 

Certain aspects of music event prediction have been intro-
duced in the real-time audio segmentation algorithm as in 
Sec. 3.1, where we perform a beat detection algorithm and 
interpolate the beat detection results as predictors of “future” 
rhythmic structure. The statistical relations within a time 
series of audio features are codified using probabilistic 
graphical models [7] as a prediction framework to infer the 
“future” feature values based on available observations.  
Complete learning and inference algorithms of a music 
event prediction framework are detailed in [6]. Most real-
time applications require an early “decision point”, where 
the available audio segment is still insufficient for unambi-
guously estimating most feature dimensions. Thus in our 
proposed frameworks these probabilistic predictions are 
integrated into the audio segmentation and feature extrac-
tion process. The signal features are predicted before the 
onset of an actual music event as prior information for fea-
ture estimations. Additional reference feature tracks includ-
ing a music score or a matching expressive music transcrip-
tion obtained from a rehearsal track can be further incorpo-
rated in this prediction framework, as an extension to the 
alignment process that assigns reference features as the 
prediction values to real-time music events. The integration 
of prediction and estimation also allows the prediction point 
to be closer to the “decision point”, as the shortened predic-
tion distance enhances the prediction accuracy [6].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

3.4 Feature Updating 

The real-time segmentation decision process here is essen-
tially a hit-or-miss process: once a segmentation decision is 
made based on the audio signal features of the “current” 
audio  frame  (we  may also utilize the “past” audio frames 
deposited in the captured signal stream and some predic-
tion) any audio frames captured later will not count even if 
the ‘hit’ (the attack point) is at the wrong place. If we 
“miss” a segmentation point due to a stringent detection 
threshold, we may find that the subsequently captured au-
dio frames are inappropriate for allocating a segmentation 
point. The design of real-time feature extraction algorithms 
also have to balance these requirements of real-time per-
formance and feature accuracy. To reconcile these conflict-
ing real-time performance criteria we implement an updat-
ing mechanism which enables the system to “regret” pre-
vious prediction/estimation when subsequent events in the 
audio stream are captured and processed. These refine-
ments are buffered for improving future predictions and 
essential updates are submitted to the external applications. 
Although for some application scenarios a real-time deci-
sion is irreversible, certain minor corrections can still be 
effectively disguised using perceptual models [9]. Because 
frequent revisions give the system user an unstable impres-
sion, the number of segmentation point modifications must 
be restricted. An example of a feature updating process is 
illustrated in Figure 3. 

Feature  Definition Real-Time Musical Expressive Feature Extraction Algorithms Typical 
Value 

Pitch  
Deviation 

The difference be-
tween performance 
pitch and score pitch 

(1) The fundamental frequency of an audio segment is detected using a pitch analysis algo-
rithm as described in [13]. 
(2) A temperament grid is initialized and fit to the fundamental frequency sequence as the 
music note number increase. The deviation of the optimum temperament grid is utilized as 
the pitch calibration value. 
(3) The pitch deviation is calculated by comparing the audio pitch  and with score pitch . 

-15 cents  
to 
15 cents 

Auditory 
Loudness 

The perceptual intensi-
ty of sound   

Calculate the strength of auditory response [2] of an short audio segment of 20ms based on 
its energy distribution in the frequency domain, using a computational auditory model 

30 dB dy-
namic range 

Timing The time difference of 
music events between 
the score and the au-
dio.  

        
1

̂ 1 ̂
 

The time deviation of onset  is calculated the normalized onset time deviation as: 

where  is the audio onset timing and ̂  is the interpolated score timing. 1  
denotes the next onset location.  can be viewed as an indicator of timing extension 
( 1) or compression ( 1). 

From 0.6 
(compres-
sion) to 
1.5 (exten-
sion) 

Timbre The energy distribu-
tion pattern of the fre-
quency domain  

(1) The short time Fourier analysis result is ,  is calaulated, where  is the frequency 
bin index.   is the time frame index.  
(2) The timbre centroid is calculated as the “weight center” of the frequency spectrum of a 
analysis segment as: 
                                        ∑ , ∑ ,⁄                   
where  is the frequency bin index of fundamental sonic partial. 
(3) Timbre width is defined as the frequency width  required to include a pre-defined 
portion  (with a typical value of 90%) of the total energy.  

Timbre cen-
troid from 
1.2 to 4.  
Timbre 
width from  
1.5 to 3. 

Attack The transient characte-
ristics of music onset  

The attack feature [2] is calculated as the ratio of  the energy content of the first 1/3 of the 
note duration.  

from 0.5 to 
3.  

Vibrato The amplitude and 
frequency modulation 
inside a musical note 

(1) A band-pass filter is implemented to extract a single sonic partial from the complex 
harmonic sound for analysis.  
(2) A musical vibrato recognition algorithm is implemented as in [14]. The modulation 
components of a vibrato note is extracted using analytic signal methods [2].  

Amplitude 
modulation 
depth from 
0.1 to 0.4.  

 

Table 1. The definitions and real-time feature extraction algorithms of musical expressive features
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4. MATLAB IMPLEMENTATION 

In a MATLAB real-time signal processing framework a ti-
mer object [15] is implemented to handle the looping op-
eration and schedule the subsequent processing operations.  
In a timer object loop a block of main code is executed ite-
ratively in a prescribed short time slot until an error or user 
interruption is detected. In our implementation the audio 
capturing and processing functionalities are programmed 
within the main timer loop so for every timer slot an audio 
frame is captured, analyzed and the feature data is submit-
ted to the external application. If the timer slot is short 
enough (i.e., 10ms), the buffering and processing delay is 
negligible. If the capturing and processing time exceeds the 
allocated timer object slot, the error handling function of 
the timer object is implemented. The error handling code 
contains the same processing steps as in a regular 
processing timer slot and the code to resumes regular timer 
cycles after error processing. This mechanism allows extra 
processing time when necessary. The audio capturing func-
tionality is implemented by programming two audiorecord-
er objects in each processing cycle to make sure that there 
is no missing audio segment due to the processing delays. 
For the odd-numbered processing loops (including timer 
loops and error handling loops), we capture the recorded 
audio segment from audiorecorder1, read the time location, 
clear and restart the recorder, and then append the audio 
segment to the corresponding time location of the main au-
dio stream for subsequent processing. For the even-
numbered loops, we perform the same instructions on audi-
orecorder2. In MATLAB, multiple audiorecorder objects 
are run-time independent so their functionalities are per-
formed simultaneously without interference.   

5. SUMMARY 

Our proposed real-time signal processing framework of 
musical expressive feature extraction obtains musical fea-
tures from an incoming audio stream and provides impor-
tant music data for various multimedia applications such as 
visualization, electronic games, interactive media and au-
tomatic music production. By implementing a processing 
framework that combines prediction, estimation and updat-
ing, musical features are obtained at the music note onset. 
This capability effectively synchronizes the musical expres-
sive features with interactive content and avoids the delay 
effect of conventional post-processing frameworks. The 
proposed updating processing enables important feature 
modifications to be updated to the user interface when addi-
tional lengths of audio signal are captured. In a perfor-
mance evaluation the performance of our proposed real-
time processing framework and an automatic post-
processing framework [2] is compared with a benchmark 

dataset of manually annotated musical feature analysis. If 
any feature dimension of automatic processing is different 
from the benchmark dataset, the music note is considered 
an error. The error rate is then calculated as the proportion 
of notes with errors. The test dataset is composed of oboe 
performance recordings that contain 162 music notes. The 
error rate of real-time processing without music score, real-
time processing with music score, post-processing without 
music score, and post-processing with music score is 
19.75% (14.81% after update), 3.70% (1.23% after up-
dates), 13.58%, and 1.23% respectively. These perfor-
mances prove to be adequate for our proposed applications. 
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ABSTRACT

Audio fingerprint techniques should be robust to a variety
of distortions due to noisy transmission channels or specific
sound processing. Although most of nowadays techniques
are robust to the majority of them, the quasi-systematic use
of a spectral representation makes them possibly sensitive
to pitch-shifting. This distortion indeed induces a modifi-
cation of the spectral content of the signal. In this paper,
we propose a novel fingerprint technique, relying on a hash-
ing technique coupled with a CQT-based fingerprint, with
a strong robustness to pitch-shifting. Furthermore, we have
associated this method with an efficient post-processing for
the removal of false alarms. We also present the adaptation
of a database pruning technique to our specific context. We
have evaluated our approach on a real-life broadcast moni-
toring scenario. The analyzed data consisted of 120 hours
of real radio broadcast (thus containing all the distortions
that would be found in an industrial context). The reference
database consisted of 30.000 songs. Our method, thanks to
its increased robustness to pitch-shifting, shows an excellent
detection score.

1. INTRODUCTION

Audio identification consists of retrieving the meta data as-
sociated with an unknown audio excerpt. The typical use
case is the music identification service which is nowadays
available on numerous mobile phones. The user captures
an audio excerpt with his mobile phone microphone and
the service returns metadata such as the title of the song,
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the artist, the album... Other applications include jingle de-
tection, broadcast monitoring for statistical purposes or for
copyright control (see [1] for more details).

Audio fingerprint is the most common way of performing
audio identification when no meta data has been embedded
in the unknown audio excerpt. It consists of extracting from
each audio reference a compact representation (the finger-
print) which is then stored in a database. When identifying
an unknown excerpt, its fingerprint is calculated. Then the
best match with the unknown fingerprint is looked for in
the database. The difficulty is dual. First, the captured sig-
nal has undergone a series of distortions (equalization, con-
version, time-stretching, pitch-shifting, reverberation, ...).
Second, the algorithm has to manage a database containing
huge amounts of audio references.

Audio fingerprint has been dealt with in many previous
works. Two main trends can be observed: exact-hashing
and approximate-search. Exact hashing algorithms [2, 3]
state that there are features in the signal which are preserved
against the distortions. They extract these features and use
a hash table to do the matching. Approximate search al-
gorithms [4, 5] decode the unknown excerpt on a given al-
phabet and look for the closest transcription in the database.
A variant is proposed in [6] where the unknown excerpt is
decoded on different alphabets according to the references.
The best-suited (with respect to the unknown excerpt) al-
phabet gives the closest reference.

In this work, we propose a novel audio fingerprint method
based on hashing with a particular focus on robustness to
pitch-shifting. Indeed, this distortion appears to be quite
common in radio broadcasts and taking it into account al-
lows us to show excellent results on a radio-monitoring ori-
ented evaluation.

The paper is organized as follows. In the first section, we
describe the broadcast monitoring use case. It is a typical
application for fingerprinting that constitutes a demanding
evaluation framework for the algorithms. It includes a wide
variety of distortions that are actually performed by the ra-
dio stations. The whole methodology described in this paper
can however be easily transposed to any other use case. In
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the second section, we describe in detail our method for fin-
gerprinting. This includes the fingerprint model, the search
strategy and the post-processing designed to prevent false
alarms. We also describe an optional step of database prun-
ing allowing a lower computation time while keeping a high
ratio of identification. In the last section we show the results
of experiments performed on real broadcast data.

2. BROADCAST MONITORING

2.1 Use case description

The task consists of detecting the broadcasting of any audio
reference of a given database in an audio stream. Practically
the database will be a set of songs and the stream will be the
one of a radio station. We have to note that the broadcast
stream not only contains references but also non-referenced
items (such as advertisements, speech, unreferenced songs).
Also the broadcast references have undergone a series of
processes applied by the radio station, such as: compression,
equalization, enhancement, stereo widening, pitch-shifting,
... (see [4] for more details about the radio stations process-
ing). If we denote by m1, m2, ...,mN the references, by
m̃1, m̃2, ..., m̃N their broadcast (and distorted) versions and
by n the rest of the broadcast (considered as noise for the
algorithm), the task can be illustrated as in Figure 1.

n m̃k1 n m̃k2
m̃k3 n time

detection
mk1

detection
mk2

detection
mk3

Figure 1: Broadcast monitoring

2.2 Focus on pitch shifting

The large majority of the methods from the state of the art
rely on a spectral representation of the signal. Therefore
these methods are possibly sensitive to modifications of the
frequency content [7].

A very common distortion in the radio broadcasts is pitch-
shifting. When this distortion occurs, all the frequencies in
the spectrum are multiplied by a factor K. Pitch-shifting
could be generated on its own by some signal processing on
the frequency content. But in the context of the radio broad-
casts, it is strongly linked with time-stretching. Indeed, the
radio stations frequently shorten the music they play. To this
end, most radio sound engineers will simply accelerate the
reading of the music (by changing the sampling rate). This
will change the duration of the music, but will also cause
pitch-shifting as a side effect. This processing allows the

stations to precisely fit their time constraints and to give the
impression that the music is more lively in their broadcasts.

3. SYSTEM OVERVIEW

3.1 Architecture

As shown in Figure 2, the system is made of four units.
First, the audio stream is cut in analysis frames of length la
with an overlap oa. The fingerprint of each analysis frame
(called frame-based fingerprint) is calculated according to
the methodology described in section 3.2. The matching
unit then finds in the database the best match to the frame-
based fingerprint. Finally, the best match is post-processed
in order to discriminate out-of-base queries (when the audio
stream corresponds to none of the references).

Stream Framing Fingerprint

Matching
Post-

processing Identification

References
fingerprints

Figure 2: Architecture of the system

3.2 Fingerprint

Our fingerprint relies on a spectrogram calculated with ”con-
stant Q transforms (CQT)” [8] [9]. The constant Q trans-
form is well adapted to musical signals in the sense that
its frequency bins are geometrically spaced. As the notes
of the western scale are geometrically spaced as well, this
transform yields a constant number of bins per note. More-
over pitch-shifting becomes a translation in the CQT do-
main. That is, a frequency which is located in bin b will have
its pitch-shifted version located in bin b + K ′. In our imple-
mentation, we use a CQT with 3 bins per note performed on
frames of signal with a 10ms increment.

In order to compact the spectrogram, we use a 2 dimen-
sional peak-picking inspired by [2]. We tile the spectrogram
with rectangles of width ∆T seconds and height ∆B bins of
frequency (typical values for ∆T and ∆B are ∆T = 0.4s,
∆B = 12bins). In each rectangle, we set the maximum
point to 1 and all the other points to 0. The result is a binary
spectrogram containing sparse points at 1. They correspond
to the points with the highest energy in the original spectro-
gram.
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The methodology used ensures that there is one point set
to 1 per rectangle of size ∆T ×∆B (2-dimensional homo-
geneity). Thus, this representation is robust to compres-
sors (which change the dynamic of the audio with respect
to time) and equalizers (which change the dynamic of the
audio with respect to frequency). Furthermore, the fact that
we do only keep points with maximum energy makes the
representation robust to most additive noises.

3.3 Indexing the references

As we are dealing with an exact-hashing approach, the match-
ing step relies on the indexing of the references. As Wang
suggests, we use pairs of peaks (points set to 1 in the fin-
gerprint step) to index the fingerprints of the references. We
will first describe how to encode a pair of peaks. Then we
will describe the hash function.

t1 and t2 being the times of occurrence of the two peaks
involved in a pair, b1 and b2 being their frequency bins, the
encoding we suggest for a pair of peaks is the following:

[ b̂1 ; b2 − b1 ; t2 − t1 ]

with b̂1 = b b1
6 c, a sub-resolved version of b1. The first

component (b̂1) is a rough frequency location of the pair
of peaks. The second component (b2 − b1) is the spectral
extent of the pair in the CQT domain. The third compo-
nent (t2 − t1) is its time extent. This encoding has sev-
eral advantages. As it only takes into account relative time
information, it is robust to cropping. Also, it is robust to
pitch-shifting. Indeed the use of the constant Q transform
implies the pitch-shifting invariance for the second compo-
nent: a reference having peaks at frequency bins b1 and b2

will have them at frequencies b1 + K ′ and b2 + K ′ in its
pitch-shifted version. And we actually have:

(b2 + K ′)− (b1 + K ′) = b2 − b1 (1)

The first component (b̂1) is chosen on a sufficiently coarse
representation (bin resolution divided by 6) to make it in-
variant with the common pitch-shifting ratios (≤ 5%). It
is worth mentioning that pitch-shifting will still move some
pairs close to the border of one sub-resolved bin to the next.
However, similarly to Wang’s methodology, an exact match-
ing of all pairs is not required. Indeed, the histogram step
described thereafter only requires that the majority of the
pairs are preserved.

As for the hash function, we build an index over all the
pairs of peaks of all the references. More precisely, we build
a function h1 which, for any pair of peaks p returns all the
references containing this pair with the time of occurrence
of p in the references.

h1 : p 7−→ {(mi, tp,mi
)/ p occurs in mi at tp,mi

} (2)

Let us note that in order to prevent an explosion of the
number of pairs, we only consider pairs of peaks whose
spectral extent is smaller than a threshold ∆bmax and whose
temporal extent is smaller than a threshold ∆tmax (typical
setup for this limitation is ∆tmax = 1.2s and ∆bmax =
24bins).

3.4 Matching

When identifying the fingerprint of an analysis frame, we
extract all its pairs of peaks with their times of occurrence
{(p, tp,af )}. Thanks to the hash function h1 we can effi-
ciently compute the differences {tp,mi − tp,af} for all pairs
of the frame-based fingerprint and for each reference mi .
We store these differences in histograms (one histogram per
reference).

If the analysis frame is actually an excerpt of the refer-
ence m0 starting at time s, the m0 histogram will show a
maximum at value s. Moreover this maximum should be
higher than any other histogram maximum. Indeed if the
analysis frame corresponds to m0 its fingerprint will have
more pairs in common with m0’s fingerprint than with any
other reference fingerprint. Furthermore, the pairs should all
occur in the frame-based fingerprint s seconds earlier than in
the reference’s. Thus the histogram should show a majority
accumulation for this reference at this value.

So, in order to perform the identification we look for the
reference whose histogram has the highest maximum. This
reference is considered to match the analysis frame. The
argument of the maximum of the histogram gives the start
time of the analysis frame in the reference.

3.5 Post-processing

For any analysis frame, the matching unit returns its best
match among the references. This means that the case of an
out-of-base query is not managed.

A simple approach would consist of setting a threshold
on the common number of pairs between the frame-based
fingerprint and its best match. If the frame-based finger-
print has more than threshold pairs in common with the best
match, we deduce that the identification is correct. Other-
wise we deduce that this is an out-of-base query. Unfortu-
nately, on real data with classical distortions such a thresh-
old is virtually impossible to setup. It happens that, due to
the distortions applied to the stream, a best match has a low
number of pairs in common with the frame-based finger-
print even though it is a correct identification. Besides, such
a threshold would depend on the transmission channel and
would have to be tuned for each different use case.

This is why we propose a post-processing unit based on
a majority vote. The unit considers P successive analysis
frames {aj}j=1..P and their matching results (mj , sj). If
among these P identifications, more than Tvote of them are
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coherent the best match is considered to be a correct identifi-
cation. Otherwise, it is an out-of-base query. Two matching
results (mi, ∆ti) and (mj , ∆tj) of the ith and the jth anal-
ysis frames are coherent if:{

mi = mj

si − i.la.(1− oa) = sj − j.la.(1− oa)
(3)

Tvote can take any integer value between 0 and P . A small
value for Tvote will increase the risk of false alarms whereas
a high value for Tvote will increase the risk of missed detec-
tions. In practice, a reasonable value for Tvote is:

Tvote =

⌈
P

2

⌉
(4)

3.6 Database pruning

We propose an optional step meant to decrease the complex-
ity of the overall processing. First, we define a simplified
hashing function which, for each pair of spectral peaks, re-
turns only the references possessing that pair.

h2 : p 7−→ {mi/ p occurs in mi} (5)

N being the total number of references, we define the sig-
nificance of a spectral pair p by:

s(p) =
N − card(h2(p))

N
(6)

Basically a pair which appears in many references will not
bring a lot of information during the identification process
(and thus has a low significance). Furthermore, it will in-
tervene in many reference histograms and will thus involve
many calculations. On the other hand, a pair which points
to a small number of references allows to converge more
quickly towards the best match.

Pruning the database consists of, for a given threshold
Tprune, erasing from the database all the pairs verifying
s(p) < Tprune. When doing so, we suppose that for any
reference there will be a sufficient number of pairs kept in
order to ensure a correct identification. This, of course, de-
pends on the statistical distribution of the pairs and on the
selected threshold Tprune. We have experimentally verified
that the use of a reasonable threshold leads to a significant
complexity gain while keeping similar performances (see
section 4.3.4).

4. EVALUATION

4.1 Framework

The evaluation framework used in this work is similar to the
one developed in the European project OSEO-Quaero 1 . It

1 http://quaero.org

is defined as follows. The audio stream is the broadcast of
a radio station. As the corpus comes from real radio broad-
casts, it potentially contains all the radio sound processing
we described (see section 2). The references are 1 minute-
long excerpts of songs. The broadcast stream has been man-
ually annotated and can thus serve for direct evaluation. For
each broadcast reference, the annotation states the identifier
of the reference, its broadcast time and duration.

The task of the algorithm is to scan the broadcast and
output a detection message whenever a song among the ref-
erences occurs in the stream. The algorithm gives the iden-
tifier of the detected song as well as its occurrence time. If
the detection time is comprised between the annotated start
time and the annotated end time of one occurrence of the
same song, we make this occurrence a detected occurrence.
Let us note that multiple detection messages of the same oc-
currence will be counted only once. If the algorithm detects
a song during an empty slot, or during a slot containing an-
other song, we count one false alarm. We do not limit the
counting of false alarms.

4.2 Comparative experiment

4.2.1 Objectives

We have compared three different algorithms according to
the framework described above. The first one (“Wang”) is
our own implementation of Wang’s method [2]. The second
one (“I B&S”) is the algorithm called IRCAM Bark & Sone
in [10]. The last one (“SAF”, for Scalable Audio Fingerprint
method) is the method exposed in this article.

As far as our implementations are concerned (Wang and
SAF), they both rely on the same architecture, as described
in section 2. All the parameters which are not directly linked
to the fingerprint (framing parameters and post-processing
parameters) are the same for both algorithms. In other words,
the two systems have the same architecture with the same
parameters. Only the fingerprint model does differ.

4.2.2 Data

In this experiment, the stream is made of 7 days of the French
radio RTL. The one minute long references are extracted
from 7309 songs. The broadcast stream contains 459 occur-
rences of these references.

Let us note that it happens that a given version of a music
title is in the references, whereas another version of the same
title is broadcast. This typically happens when an artist is
invited on a radio show and performs some of his titles live.
In this case, even if the studio versions of the artist’s titles
are in the references, the algorithm is not required to match
the studio version with the live performance. Indeed, the
recognition of different interpretations of the same song is
considered to be out of the scope of this work.
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4.2.3 Parameters

We have used 5s long analysis frames with a 50% over-
lap. The post-processing parameters have been set to P =
12 and Tvote = 6. This means that the detection is per-
formed on 30s of signal, and requires that at least half of the
matching during these 30s has given a coherent identifica-
tion. Such parameters insure a very low rate of false alarms,
which is required in many use-cases for audio-fingerprint.

4.2.4 Results

Algorithm Detected occ. / Total nb False Alarms
Wang [2] 381 / 459 (=83.0%) 0

I B&S [10] 445 / 459 (=96.9%) 2
SAF (proposed) 447 / 459 (=97.4%) 0

Table 1: Results of the comparative experiment

We can see in Table 1 that the detection ratio is much
higher with our fingerprint than the original model of Wang.
As far as we can tell, this really comes from the fact that a
non-negligible number of broadcast songs are pitch-shifted.
These results therefore show that, in addition to being robust
to the same distortions as Wang’s model, our fingerprint has
an increased robustness to pitch-shifting. Besides, we can
see that the post-processing plays its role very efficiently. It
has prevented all the false alarms (in both algorithms Wang
and SAF) and still has allowed a very high detection rate.

4.2.5 Runtime

We will give here some figures about the processing times
of the algorithms. These figures are given on the basis of
our Matlab R© 64-bits implementations, running on an Intel R©

Core 2 Duo @ 3,16 GHz with 6MB of Cache and 8GB of
RAM. We are aware that these figures give no absolute truth,
since the processing times highly depend on the machines,
the programming language and the optimization of the code.
They nevertheless give an order of magnitude of the run-
times with such a configuration. Besides, they allow a com-
parison of the different algorithms since all running times
are given on the same basis.

The algorithm “Wang” has a processing time of 0.08s per
second of signal. The algorithm “SAF” has a processing
time of 0.43 seconds per second of signal. The difference
mainly comes from the extra time required for the calcula-
tion of the constant Q transform. If we apply the pruning
technique described in section 3.6 with Tprune = 0.5, we
obtain a speed-up factor of 35%. This reduces the process-
ing time of the second algorithm to 0.28 seconds per second
of signal with the exact same identification score.

4.3 Scaling experiment

4.3.1 Objectives

We have led a second experiment in order to validate the po-
tential scalability of the system we propose. The framework
is the same as in the previous experiment, but we now run
the algorithm with a much larger references database.

4.3.2 Data

In this experiment the stream is made of 5 days of radio
broadcast coming from 2 different French radio stations (RTL,
Virgin Radio). The references set is much larger as it con-
tains 30.000 songs.

4.3.3 Results

Algorithm Detected occ. / Total nb. False Alarms
SAF (proposed) 496 / 506 (=98.0%) 0

Table 2: Results of the scaling experiment
(30.000 songs)

The results clearly show that the algorithm is scalable.
It has achieved a detection performance which is compara-
ble to its performance in the first experiment. Though, the
references database is more than 4 times larger in this ex-
periment. It is particularly noticeable that in spite of the
enlargement of the database, the system has still not out-
put any false alarm. The multiplication of the songs in the
database had yet highly increased the risk of having close
fingerprints for different songs.

As far as the detection performance is concerned, the re-
sults of this experiment show that the algorithm we propose
has the ability to handle industrial sized databases.

4.3.4 Runtime

The basis for the following calculation time is the same as in
section 4.3.4. With the 30.000 songs database, the algorithm
(without pruning) runs at a speed of 1.44 seconds per sec-
ond of signal. If we compare this running time with the one
of the smaller scale experiment, we notice that the multipli-
cation of the database size by 4 has lead to a multiplication
of the processing time by 3,3. The increase of the running
time is thus sub-linear with the number of references. We
can also note that, even though the code has not been fully
optimized, the algorithm almost runs in real-time.

5. CONCLUSION

In this article, we have proposed a new fingerprint model.
We have included this fingerprint in a global architecture.
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The overall system is able to process audio streams in accor-
dance with a radio monitoring use-case. The fingerprint we
propose is inspired by Wang’s work [2] from which we have
reproduced the indexing scheme based on pairs of spectral
peaks. But our use of the constant Q transform and our
proposition of a different encoding for pairs of peaks allows
us to show a much increased robustness to pitch-shifting.
This, in turn, greatly improves our identification results on
real radio broadcasts, as it has been shown in the compar-
ative experiment presented. As far as scalability is con-
cerned, we presented a second experiment which is based
on a 30.000 songs database. This proved that our system
easily scales up, while keeping a high detection ratio and a
reasonable calculation time. In the future, we will focus on
the problem brought up in section 4.2.2. The annotations
we used indeed contain an average 7% of live versions of
titles stored in the references database in their studio ver-
sions. Matching the ones with the others is a problem that
lies somewhere between audio fingerprint and cover song
detection. It will be interesting to study an extend of the
fingerprint system which would be able to do this match-
ing. Such an extended system will probably need to inte-
grate more semantically based information.
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ABSTRACT

The Haitsma/Kalker audio fingerprinting system [4] has
been in use for years, but its search algorithm’s scalability
has not been researched very well. In this paper we show
that by simple re-ordering of the query fingerprint’s sub-
prints in the index-based retrieval step, the overall search
performance can be increased significantly. Furthermore,
we show that combining longer fingerprints with re-ordering
can lead to even higher performance gains, up to a factor of
9.8. The proposed re-ordering scheme is based on the ob-
servation that sub-prints, which are elements of n-runs of
identical consecutive sub-prints, have a higher survival rate
in distorted copies of a signal (e.g. after mp3 compression)
than other sub-prints.

1. INTRODUCTION

In 2002 Jaap Haitsma and Ton Kalker proposed their au-
dio fingerprinting system [4], which today is still in use at
Gracenote [3], competing with other commercial systems
like Shazam [7, 8]. In this system, identity of two songs is
established by comparing so called fingerprints. These fin-
gerprints correspond to ca. 3 seconds of audio and are com-
prised of 256 sub-prints, each representing 11.6 millisec-
onds of audio with 32-bits. For a general overview of audio
fingerprinting systems, we refer to [1].

To identify an unknown audio fragment (the query), fin-
gerprints are extracted from the query and compared with
fingerprints stored in a database. Typically, as the fragment
is exposed to distortions such as additive noise or compres-
sion artifacts, one cannot assume to find an identical finger-
print in the database. Therefore, the similarity of two fin-
gerprints is expressed in terms of the bit error rate (BER).
The lower the BER, the more likely two fingerprints belong

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

to the same song. If the BER is below a certain threshold
(τ = 0.35), both fingerprints are assumed to stem from the
same song.

Comparing all query fingerprints for a song with all
reference fingerprints is only feasible for databases con-
taining a very limited number of recordings. There-
fore, Haitsma/Kalker proposed an efficient two-step hashing
scheme. In the first step, indexing techniques are employed
to detect “anchor points” in the database. The idea is, that
even though there typically is not an exact match for a whole
query fingerprint in the database, at least one of the 256 sub-
prints occurs unaltered (without any bit error) in query and
reference fingerprints. Exploiting this idea, Haitsma/Kalker
propose to use one 32-bit long sub-print of the query finger-
print at a time and query the reference database for identical
sub-prints. The positions of exact matches of sub-prints in
the database then serve as said anchor points. In the second
step, the BER for entire fingerprints (consisting of 256 sub-
prints) around these anchor points is calculated. If it turns
out to be lower than the threshold, the search is terminated
and the identified song returned.

As the number of reference fingerprint lookups and BER
computations is considerably reduced by this strategy, this
way of searching is multiple orders of magnitude faster than
the naı̈ve approach of comparing fingerprints with all refer-
ence fingerprints in the database. The lookup of potentially
matching songs using unaltered sub-prints is a crucial step in
this approach. To find them, the system maintains a lookup
table with entries for each of the possible 32-bit sub-prints.
Each entry points to a linked list of songs the given sub-
print occurs in and the position of the sub-print within this
song (Figure 1). Obviously the system is faster, if it finds a
matching fingerprint in as few sub-print lookups as possible.

In this paper, we propose an extension to the original al-
gorithm. Our main idea is to re-order the lookup of unal-
tered sub-prints in such a way that those sub-prints more
likely to survive compression distortions are looked up first.
In our experiments, we show that this is the case for sub-
prints, which are elements of n-runs of identical consecu-
tive sub-prints (Figure 2). Exploiting this property in a sim-
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Figure 1. Lookup strategy for potentially matching songs
and their reference sub-prints as suggested in [4].
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Figure 2. Illustrative example showing one fingerprint con-
sisting of 256 sub-prints. The fingerprint exhibits runs of
identical sub-prints.

ple re-ordering scheme leads to significant speed-ups of the
search algorithm. In a second step, we apply the re-ordering
scheme to fingerprints longer than 256 sub-prints achieving
even higher improvements up to a factor of 9.8.

The remainder of this paper is organized as follows. In
Section 2 we motivate our re-ordering scheme by investi-
gating the distribution of sub-prints and their likelihood of
surviving compression distortions. Then, in Section 3, as
our main contribution, we introduce in detail the re-ordering
scheme. In Section 4 we give experimental evidence for the
speed-up of our approach in a real-world runtime analysis.
Finally, conclusions and outlook on future work are given in
Section 5.

2. SUB-PRINT PROPERTIES

In this section, we explain in detail the computation of the
fingerprints as proposed in [4] (Section 2.1). Then, in Sec-
tion 2.2, we show that these fingerprints are strongly cor-
related over time by analyzing audio recordings of three
datasets of different genres. Finally, in Section 2.3, we show
that the temporal correlation can be exploited for identifying
more robust sub-prints.

2.1 Computation

Following [4], we compute the sub-prints from a given au-
dio signal in three steps. In the first step, a spectrogram
is derived from the audio. To this end, discrete Fourier
transforms are computed over Hann-windowed frames cor-
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Figure 3. Percentages of sub-prints occurring as singles, or
in higher runs in mp3 and GSM files from genre-specific
RWC collections (first 3 min). The distributions for the
WAV encoded reference files are almost identical.

responding to 0.37 sec of the audio. These frames overlap
by a factor of 31/32 yielding one frame for every 11.6 ms.
In the second step, by suitably pooling spectral coefficients,
the frequency axis of the spectrogram is adapted to the hu-
man auditory system. More precisely, energy values are
computed for 33 non-overlapping spectral bands. These
bands are logarithmically spaced and cover the frequency
range from 300 Hz to 2000 Hz. Finally, in the third step,
fingerprints are derived. Given the energy in frame t ∈
[0 : T ] := {0, 1, 2, . . . , T} for some T ∈ N and spectral
band k ∈ [1 : 33] denoted by E(t, k), we first compute en-
ergy differences ∆(t, k) along the frequency axis ∆(t, k) =
E(t, k) − E(t, k + 1) for all t ∈ [0 : T ] and k ∈ [1 : 32].
Then, the energy values are quantized in order to obtain a
binary representation X ∈ {0, 1}T×32 by determining the
sign of energy differences along the time axis

X(t, k) =

{
1 if ∆(t, k) > ∆(t− 1, k)
0 otherwise ,

for t ∈ [1 : T ]. Let X[t] ∈ {0, 1}32 denote the tth col-
umn of X . Following [4], such a binary vector is also re-
ferred to as sub-print. Furthermore, fixing a length param-
eter K (in the following we use K = 256), a binary block
F ∈ {0, 1}K×32 is referred to as fingerprint consisting of
the sub-prints F [k], k ∈ [1 : K]. Each of the sub-prints
represents 11.6 ms of the audio with 32-bit, see Figure 2 for
a schematic illustration of a fingerprint.

2.2 Temporal Correlation

As pointed out in [4], because of the high amount of overlap
between adjacent frames, the sub-prints are temporally cor-
related. In fact, they are correlated so strongly that often one
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Figure 4. Probability of an iTunes mp3 encoded sub-print
at a given position m in an n-run having an identical coun-
terpart in a reference fingerprint depending on the length of
the n-run it belongs to.

sub-print is followed by one or more identical sub-prints.
We call such a sequence of identical consecutive sub-prints
an n-run (see Figure 2). For the remainder of this paper, n-
runs with n = 1 will also be called singles and n-runs with
n > 1 are referred to as higher runs.

To better understand the temporal correlation of sub-
prints, we analyzed a large collection of audio recordings
of various genres with respect to the occurrence of n-
runs. Specifically, we used the sub-collections RWC-Jazz,
RWC-Pop, and RWC-Classical provided by the RWC Music
Database [2]. Overall, there are 211 recordings with a total
duration of 16 hours. We consider each of these recordings
in three different versions of different quality. Firstly, we re-
fer to the CD quality versions denoted as reference versions.
Furthermore, we consider two encoded (distorted) versions
derived from the reference employing lossy audio codecs.
As a mildly compressed version, we use an mp3 version
encoded with 128 kbps using iTunes. This version can be
regarded to be of “standard” quality. Finally, as a heavily
compressed version of poor audio quality, we encode the
reference versions using the (full rate) 13kbps GSM Voice
codec. Originally intended for the compression of speech
signals, this codec introduces severe audible distortions to
music signals. This version is included in our analysis as an
extreme case.

Figure 3 shows the percentage of sub-prints that occur in
an n-run of identical sub-prints for versions encoded with
iTunes mp3 128kbps or GSM. As our results show, the sub-
prints are temporally correlated. For all three datasets and
both encodings about 30% of all sub-prints occur in higher
runs. For example, in the case of RWC-Jazz (mp3), 23% are

Figure 5. Probability of a GSM encoded sub-print at a given
position in an n-run having an identical counterpart in a ref-
erence fingerprint depending on the length of the n-run it
belongs to.

a member of a 2-run, 9% of a 3-run, 4% of a 4-run, and 3%
of a 5-run or even longer run.

2.3 Robustness

We hypothesize that such sub-prints occurring in n-runs are
more likely to have unaltered counterparts in distorted ver-
sions of the same song than sub-prints occurring on their
own, i.e. as singles. In other words, as the survival rate of
sub-prints in higher runs is higher, they are more robust.

To test this hypothesis we measure the probability of a
sub-print extracted from a distorted version being identical
to its reference counterpart. This is done by computing sub-
prints of the first 3 min for both reference and distorted ver-
sions. Because some distortions introduce a minor, linear
frame-shift (±1), we then align both sub-print lists so that
as many as possible sub-prints are directly opposite an iden-
tical counterpart. This we call optimal alignment. Subse-
quently, we categorize the distorted sub-prints as members
of n-runs along with their position m ∈ [1 : n] in the run
and record how many sub-prints of each category have un-
altered, aligned counterparts in the reference sub-print list.

Figures 4 and 5 show the probabilities of sub-prints that
are members of an n-run (column group) at positionm (col-
umn) having an unaltered counterpart in the reference fin-
gerprint, i.e. their survival probabilities. Our results for
iTunes encoded mp3 audio (Figure 4) clearly show that sub-
prints belonging to higher runs are more likely to have an
unaltered counterpart in the reference fingerprint than sub-
prints occurring as singles. Taking the RWC-Pop values
as example, a single sub-print has a relatively low survival
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probability of 23%, while a member of a 6-run has a sur-
vival probability between 45% and 65%. Note that, because
of the low value for singles, the relative survival rate gain
from singles to higher runs is larger for the pop songs than
for jazz or classical music. For example, the maximal pos-
sible gain factor from single to 6-run for RWC-Pop is ×2.8,
while the gain factor for the RWC-Classical from the single
with 52% to the maximal 6-run with 95% is only ×1.8.

For GSM encoded files the effect becomes even more sig-
nificant (Figure 5). Here, the survival probabilities are much
lower, e.g., 0.7% for singles in the case of RWC-Classical.
For 5-runs this probability increases to values between 5.1%
and 8.0%, a gain factor of ×11.4.

As a second important result, we observe, that in most
cases those members of n-runs, that take a central position
in their run, are even more likely to have an identical ref-
erence counterpart than n-run elements at edge positions.
For example, in the case of RWC-Pop (mp3), see Figure 4,
sub-prints at edge positions of a 6-run have a survival prob-
ability of 45%. For sub-prints at center position, however,
this probability is significantly higher at 65%. In the case of
RWC-Classical (GSM), see Figure 5, sub-prints at edge po-
sitions of a 5-runs survive with 5.7% probability, sub-prints
at the center position, however, with 8.0%. We define this
central position in an n-run as mcentral = bn/2c + 1. In
Figures 4 and 5 it is shown in black.

3. IMPROVING THE SEARCH ALGORITHM

In this section, we first explain the original Haitsma/Kalker
lookup algorithm. Then we describe our proposed improve-
ments, which are based on the increased robustness of sub-
prints contained in higher runs. Finally, we present an ex-
periment that measures actually achieved overall speedups
validating our chosen approach.

3.1 Original Algorithm

Suppose we are given a database containing a large number
of audio documents, which are converted into binary repre-
sentations as described in Section 2.1. Then, given a query
fingerprint FQ ∈ {0, 1}K×32, the identification task con-
sists of finding a document with binary representation X
as well as a position t such that the fingerprint defined by
FD := (X[t], . . . , X[t + K − 1]) is similar to FQ. More
precisely, as in [4], we require that the bit error rate (BER)
between FQ and FD is below a threshold τ = 0.35. We then
also say that FD is a match for FQ.

To avoid an exhaustive fingerprint search in the database,
an index-based pre-processing step is used to cut down
the search space. Here, the binary representations of all
database documents are indexed by means of the 32-bit sub-
prints using an index structure that consists of a suitable
lookup table as illustrated by Figure 1. Then, based on the

assumption that at least one sub-print FQ[k], k ∈ [1 : K],
of the query appears unaltered in the document to be iden-
tified, a lookup is performed to first retrieve all sub-prints
that coincide with FQ[k]. Each of these retrieved candidate
sub-print consists of a document identifier and a position
parameter t. Let X be the binary representation of the cor-
responding document, then the BER is computed between
FQ and FD := (X[t − k + 1], . . . , X[t − k + K]). If the
BER falls below the threshold τ = 0.35, the algorithm ter-
minates and returns the associated document identifier. If
no such FD can be found, the algorithm terminates without
identifying the query.

Since a position k, that corresponds to an unaltered sub-
print in the database, is not known a-priori, in [4] an outer
loop is executed querying the index structure for sub-prints
F [k] in the order in which they appear in FQ, i.e. with in-
dices k = 1, 2, 3, . . . ,K. This loop is aborted as soon as
a matching fingerprint is found. Therefore, the overall run-
ning time of the algorithm crucially depends on the position
of the index at which an unaltered sup-print of a matching
fingerprint occurs for the first time.

3.2 Sub-Print Re-Ordering

To take advantage of the observed sub-print properties, we
change the order in which sub-prints are looked up in the
database. Instead of simply iterating through the sub-prints
of the query fingerprint from beginning to end, we prioritize
those sub-prints that are more likely to lead to matching fin-
gerprints. This means that we need to look up the central
sub-prints of higher runs first, ordered by the length of the
run they belong to in descending order. Then we look up the
singles and then all remaining sub-prints, again ordered by
the length of the run they belong to.

Figure 6 shows an example for this re-ordering scheme.
Because the longest run is the 3-run, we rank its central el-
ement (3) first. The second longest run is the 2-run, thus its
central element (8) lands on rank 2. Since there are no other
higher runs, we then proceed to add all singles in the order
in which they appear. And eventually, we add the remaining
sub-prints from the two higher runs (2, 4 and 9).

The idea behind this is, that if a central sub-print does not
lead to a match, it is more likely that another central sub-
print leads to a match (even if it is a member of a shorter
n-run) than a non-central sub-print of an n-run we already
know of that its central sub-print does not match.

More formally, for a fingerprint FQ of length K = 256
we calculate the rank(k,m, n) with k,m, n ∈ [1 : K] of
each sub-print FQ[k] that is themth element of an n-run, and
order all sub-prints according to their rank in descending
order. The rank function is defined as

rank(k,m, n) = k +Km+K2n+K3nδm−1,bn/2c (1)
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Figure 6. Optimization of the sub-print order.

Query iTunes 128kbps Lame 32kbps GSM
Orig. 4.15 36.59 100.84
256 1.41 (×2.9) 12.82 (×2.9) 67.62 (×1.5)
512 1.31 (×3.2) 8.90 (×4.1) 60.58 (×1.7)
1024 1.25 (×3.3) 6.48 (×5.6) 43.79 (×2.3)
2048 1.22 (×3.4) 5.06 (×7.2) 27.04 (×3.7)
4096 1.20 (×3.5) 4.17 (×8.8) 18.08 (×5.6)
8192 1.24 (×3.3) 3.73 (×9.8) 14.30 (×7.0)

Table 1. Average number of sub-print lookups until a
sub-print match is found, depending on query distortion
and fingerprint length (based on 100,000 randomly selected
queries). Denoted in parentheses are the factors between the
optimized and the original approach.

and consists of four terms, each containing a weight factor
based on K. The last term is only 6= 0 if and only if the sub-
print is central. In that case, the term dominates the outcome
of the function. If it is not central, the length n of the run
becomes the deciding factor, as K2n will be greater than
the two remaining terms k and Km. Amongst sub-prints
belonging to the same run length n, position m within the
run and k in the fingerprint become tie-breakers.

Additionally to re-ordering, in a second optimization
step, we also use a longer query fingerprint. This did not
make sense before optimizing the lookup order, as we were
not able to recognize more robust sub-prints. But with
the suggested re-ordering scheme, enlarging the fingerprint
increases our chances of finding more and longer n-runs,
therefore significantly increasing our chances of finding a
surviving sub-print counterpart in the reference data.

A side effect of this strategy is the necessity of computing
a larger query fingerprint, which puts some additional com-
putational burden on the client and requires a longer audio
fragment. For the BER computation we still only use 256
sub-prints as there is nothing to be gained by using more
sub-prints.

3.3 Experimental Verification

To test both approaches, sub-print re-ordering and finger-
print enlargement, we measured the average number of
sub-print lookups needed to find a matching fingerprint in
a database of 200 songs for 100,000 randomly selected
queries.

Note, that in this experiment we focus on sub-print com-
parisons, not full fingerprint comparisons. Therefore, the
number of songs in the database is irrelevant. Nevertheless,
sub-print matches lead to fingerprint comparisons. In order
to measure the total search time, those also need to be taken
into account, if the number of song pointers per sub-print
is not distributed uniformly. For the purpose of this exper-
iment we assume a uniform distribution, in particular one
that is independent from the used rank function.

The results in Table 1 show that with our optimization
scheme between 1.5 and 9.8 times fewer lookups are neces-
sary. Even without enlarging the query fingerprint, we were
still able to achieve 2.9 times fewer iterations for mp3 files
encoded at 128kbps. This equates to only 1.41 sub-print
lookups on average.

It also deserves to be mentioned that for audio data with
stronger distortions (e.g. GSM, mp3 32kbps) our techniques
tend to yield larger benefits. One reason for this is that for
strongly distorted audio material many more lookups are
necessary when no re-ordering is used (100.84 for GSM as
opposed to 4.15 for mp3 128kbps).

4. RUNTIME ANALYSIS

Why do we care so much about the sub-print lookups? Re-
alistically, a large scale audio fingerprinting system will
have to be able to manage not just 10,000 songs [4], but
rather 100 million songs—perhaps even more. 1 Assum-
ing ±25, 000 sub-prints per song, this results in a total of
25, 000 · 108 = 25 · 1011 sub-prints. This means that the
lookup table proposed by Haitsma/Kalker is not sparsely
populated as they claim, but on average each entry con-
tains a list of pointers to 582 (= 25 · 1011/232) songs.
Assuming that each of these pointers has at least a size of
4 bytes to reference a song, plus an offset into the song’s
reference fingerprint of 2 bytes, we must manage roughly
232 · (4 + 2) · 582 bytes = 15 terabytes for the pointer lists
alone. Obviously, with current technology, we cannot sim-
ply load the data-structure into the main memory of a regular
PC.

Instead, just like the songs’ sub-prints, the data-structure
also has to live in secondary storage (e.g. flat files, a
relational database management system (RDBMS), a no-
SQL database, or a simple Berkeley DB). In the case of an

1 In May 2011 MusicBrainz [6] stated on its website to have more than
10 million tracks in its database. This number is probably going to increase
significantly as the years go by.
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Figure 7. Trivial table design for the reference song lookup
with an RDBMS.

RDBMS, a single table containing the columns (song-)id (at
least 4 bytes), sub-print (4 bytes) and (sub-print-)offset (at
least 2 bytes) is sufficient (Figure 7). One database index on
the sub-print column and another on id and offset ensure fast
access. 2 Assuming the aforementioned setup, the measur-
able runtime behavior of the algorithm is governed by three
main factors:

1. Number of songs in the database.

2. Speed of lookup from secondary storage.

3. Probability of a query sub-print having an identical
reference counterpart.

Note that only the number of fingerprint lookups and
BER computations depend directly and linearly on the num-
ber of songs in the database. This means that the overall
runtime is linear with respect to the size of the database.

As for the secondary storage, even though solid state
drives and the decreasing price of RAM slightly blur the
lines, accessing secondary storage still takes much more
time than performing relatively simple arithmetic operations
like computing a BER. Therefore we can safely assume that
each SQL-select operation to look up a fingerprint in the
database takes orders of magnitude longer than the associ-
ated BER computation. Besides the collection’s size, sec-
ondary storage access is therefore a determining factor for
the absolute runtime of the algorithm.

Finally, how many times we have to look up complete
fingerprints and access secondary storage depends highly on
the probability that a given query sub-print has an identi-
cal reference counterpart. As shown above, we can signif-
icantly increase the probability of finding an identical sub-
print quickly by re-ordering the sub-prints. This is a decid-
ing factor for the runtime of this algorithm and unlike the
other two mentioned factors it has nothing to do with avail-
able hardware or the size of the problem.

2 For 100 million songs, this database design leads to the impressive
storage requirement of 25 terabytes (= (4 + 4 + 2) · 25 · 1011 bytes),
plus additional space for the indices. Not surprisingly, Haitsma/Kalker at-
tempted to reduce this by sub-sampling reference fingerprints [5].

5. CONCLUSION

In this paper we presented an optimization scheme of the
Haitsma/Kalker audio fingerprinting search algorithm. The
suggested approach exploits strong temporal correlations
between sub-prints as an indicator for sub-print robustness.
This can lead to significant savings in the number of re-
quired lookups leading to a significant overall speed-up for
the identification task.

Future research may focus on applying the proposed
strategy on other existing algorithms or creating new ones,
in which only reliable sub-prints are taken into account to
begin with, which may lead to shorter, more robust finger-
prints and reduced overall storage requirements. Also the
combination of our re-ordering strategy with the reliability
considerations proposed by Haitsma/Kalker is subject for
future research.
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ABSTRACT 

In music information retrieval, a huge search space has to 

be explored because a query audio clip can start at any posi-

tion of any music in the database, and also a query is often 

corrupted by significant noise and distortion. Audio finger-

prints have recently attracted much attention in music in-

formation retrieval, for they provide a compact representa-

tion of the perceptually relevant parts of audio signals. In 

this paper, we propose an extremely fast method of explor-

ing a huge Hamming space for audio fingerprinting systems. 

The effectiveness of the proposed method has been eva-

luated by experiments using a database of 8,740 songs. 

1. INTRODUCTION 

Just as fingerprints are used for identifying human beings, 

audio fingerprints can be used to identify music. Audio fin-

gerprints, together with a music information database, can 

be used to derive information about an unknown audio clip 

automatically, such as the names of the song, artist and al-

bum. Gracenote [1] and Midomi [2] are two well-known 

commercial services. They retrieve a song by using a few 

seconds of music clip caught by such as a PC or mobile 

phone, display the title of the song and other information, 

and also enable the user to download the song from a web-

based music store. In recent years, audio fingerprints have 

also attracted attention as a technique for copyright protec-

tion of music, such as detecting the distribution of copy-

right-infringing songs on the Internet.  

    In general, an audio clip is given as a search query, and it 

does not necessarily start at the beginning of the song. 

Therefore, a retrieval method should consider any time as a 

starting position, but this requires a long computation time. 

In order to solve this problem, fast and effective retrieval 

methods are necessary. Some efficient retrieval methods 

based on audio fingerprints have been proposed, including 

a method using a hash table [3][4] and a tree-structured re-

presentation of fingerprints [5]. 

    A query is an excerpt of a song, but it may be “corrupted” 

by being mixed with environmental noise, or it may have 

been modified by a low-pass filter. As a result, retrieval 

methods should be able to handle queries which are similar 

to, but not exactly the same as a song in the database. Lo-

cality-Sensitive Hashing (LSH) is an emerging technique 

for solving large-scale similarity retrieval in high-

dimensional spaces, and has been applied in extensive re-

search fields [6-8]. 

   In this paper, we propose a fast method for exploring a 

huge Hamming space which is suitable for audio finger-

printing systems building on the ideas of LSH. There have 

been several previous proposals on Hamming space retriev-

al methods based on LSH, however, our method uses less 

memory. The effectiveness of the proposed method is dem-

onstrated by evaluation experiments using a database of 

8,740 songs. The paper is organized as follows: Section 2 

outlines music retrieval based on audio fingerprints. We 

propose a fast music retrieval method particularly suitable 

for audio fingerprinting systems in Section 3, and evaluate 

the method in Section 4. Finally, we conclude the paper in 

Section 5. 

2. OVERVIEW OF MUSIC RETRIEVAL BASED ON 

AUDIO FINGERPRINTS 

Audio fingerprinting is a kind of message digest (one-way 

hash function), and it converts an audio signal into a rela-

tively compact representation by using acoustical and per-

ceptional characteristics of the audio signals. For message 

digesting methods used for authentication and digital signa-

tures (e.g. MD5), slight difference in the original objects 

results in totally different hash values. This means that two 

hash values mapped from an original audio signal and a 

corrupted one are completely different, which drastically 

decreases the retrieval performance for “corrupted” queries. 

However, in audio fingerprinting, similar inputs are hashed 

to similar hash values. 
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    Music retrieval based on audio fingerprinting involves 

some key problems: (1) which type of audio fingerprints to 

use, (2) how to define the distance between two fingerprints, 

and (3) how to retrieve from a huge database. We review 

these problems next. 

2.1 Audio Fingerprint Extraction  

A variety of audio fingerprint extraction algorithms have 

been proposed based on different acoustic features, such as 

Fourier coefficients [9], Mel frequency cepstral coefficients 

[10], spectral flatness [11] and so on. In particular, the fin-

gerprint extraction algorithm by Haitsma and Kalker [3] 

uses a feature of the energy difference between frequency 

bands as follows.   

    First, an input audio signal is segmented into frames, and 

then 32-bit sub-fingerprints are extracted from each over-

lapping frame. Sub-fingerprints are actually calculated in 

the frequency domain. Each frame is first converted into a 

frequency domain by using FFT, and then segmented into 

33 non-overlapping frequency bands. Next, a sub-

fingerprint is calculated by checking the sign (plus or minus) 

of the energy difference between two successive frequency 

bands. Haitsma and Kalker [3] used a frame length of 0.37 

second with an overlap factor of 31/32, so a sub-fingerprint 

was extracted for every 11.6 milliseconds. 

    The sub-fingerprints are calculated as follows: let E(n, m) 

be the power of frequency band m of frame n, then the m-th 

bit of frame n, F(n, m), is determined as: 

               
                 

                 
       ，                            

                                                                                                                                          

where 

                                    

                                           (2)            

Haitsma and Kalker [3] demonstrated that the sign of 

power differences between successive frequency bands was 

effective for identifying music, and was also robust against 

various “corrupted” inputs such as compressed or delayed 

music. The Haitsma and Kalker algorithm can be imple-

mented by simple arithmetic, while maintaining compact 

representation for generated audio fingerprints. 

2.2 Distance between Audio Fingerprints 

The sub-fingerprint is a 32-bit feature extracted from a 

frame in an input audio, and one sub-fingerprint does not 

have enough information to identify the audio. To obtain 

sufficient information, a fingerprint block, which is a se-

quence of sub-fingerprints, is used for matching audio sub-

fingerprints. A fingerprint block consisting of 256 sub-

fingerprints was used in the experiments in [3]. 

     Bit error rate is used as the distance between two finger-

print blocks. Let FA(n, m), FB(n, m) be the sub-fingerprints 

extracted from audio clips A and B respectively. The bit er-

ror rate of fingerprint block BER(A, B) of length N is for-

mally defined as: 

          
                     

      
   

   
           

The operator ^ denotes bitwise operation XOR (exclusive 

or). The numerator of Equation (3) calculates the Hamming 

distance between two fingerprint blocks, which is divided 

by the bit length of fingerprint blocks (32N). BER(A,B) is 

the error rate per bit. 

2.3 Audio Fingerprint Search 

Most music retrieval methods based on audio fingerprinting 

have the following stages. First, fingerprint blocks are ex-

tracted from each song in the database. Because of the un-

known position of the query, all variations of starting point 

should be considered. Therefore, each song allows extract-

ing quite a number of fingerprint blocks by shifting all the 

frames to fingerprint blocks one by one. When a query is 

given, many fingerprint blocks are also extracted from the 

query. Thus, music retrieval involves finding the fingerprint 

block in the database that is most similar to the fingerprint 

block derived from the query. 

     The search space of audio fingerprinting is huge. For 

example, a fingerprint database containing 10,000 songs 

each with an average length of 5 minutes would result in 

approximately 250 million fingerprint blocks in total using 

the algorithm in [3]. The number of distance calculations 

would be several to several dozen times as large as 250 mil-

lion by brute-force search taking account of matching the 

fingerprint blocks. Many ways of reducing the number of 

calculations have been proposed, such as using a hash table 

(lookup table) for sub-fingerprints [3], a tree-structured re-

presentation of sub-fingerprints [5], and a hash table con-

sisting of peak values in the frequency domain and duration 

between the two peaks [4]. However, with these methods 

the size of the hash table grows rapidly with the bit error 

rates between the query and songs in the database increas-

ing. 

3. FAST HAMMING SPACE SEARCH FOR AUDIO 

FINGERPRINTS 

In this section, we propose a fast retrieval method for audio 

fingerprinting systems. Suppose that audio fingerprints are 

represented by binary bit vectors, and the Hamming dis-

tance is used for the distance between two audio finger-

prints. We first outline the search methods for Hamming 

space based on LSH in Section 3.1, and then propose a new 

retrieval method in Section 3.2. 
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3.1 Locality-Sensitive Hashing 

Locality-Sensitive Hashing (LSH) is a hashing scheme for 

probabilistic searches of large-scale high-dimensional data, 

rather than a specific algorithm. It includes the hashing me-

thod for Hamming distance using bit sampling [6], the me-

thod for Jaccard distance using min-wise independent per-

mutation [12], the method based on random projection for 

cosine distance [13], and the method using p-stable distri-

bution for Lp distance [14]. The concept of LSH is to map 

the high-dimensional vector data into hash values so that 

similar data are mapped to the same hash values with high 

probability. Generally, we cannot find a hash function 

which gives the same hash values for similar high-

dimensional data. LSH can maintain certain retrieval accu-

racy by using multiple hash functions. 

    There are a few Locality-Sensitive Hashing schemes 

proposed to reduce the problem in the Hamming space. In-

dyk and Motwani proposed an LSH algorithm for Ham-

ming space based on the Point Location in Equal Balls 

(PLEB) problem [15], and Charikar [13] and Ravichandran 

[16] improved the algorithm by using random permutations 

of binary vectors. 

    The concept of random permutations is as follows: given 

a set of n vectors D = {d1, d2, …, dn}, where each vector 

consists of k binary bits, permutation   is defined as a bijec-

tion on {1, 2, …, k}, and then we can define that the bit 

vector                     is a permutation of           . 

The number of permutations for k bits is k!, hence a random 

permutation is a random selection from these k! permuta-

tions. 

   We can now create the data set    by permuting all bits 

by using   for all elements in the data set D, and also calcu-

late the new query vector    from the query vector q in the 

same way. The most similar vector to    can be found in 

the data set    by doing the following steps: Sort    in lex-

icographic order, and then perform the binary search. The 

binary search is carried out from the first bit to the last bit, 

so if a different bit is located in the upper side (near the first 

bit), then the search makes a mistake. On the other hand, if 

a different bit is located in the lower side, the search can 

find the nearest vector. We expect to find the most similar 

vector by making a number of random permutations   

and corresponding data set   , and searching for all data 

sets. This is an overview of the LSH for Hamming space 

proposed by Charikar [13] and Ravichandran [16]; the de-

tails of the theories and experimental analysis of this me-

thod are discussed in [13] and [17]. 

3.2 Fast Hamming Space Search Method for Audio 

Fingerprints 

The principle of the Hamming space search based on ran-

dom permutations is simple. The binary search can certain-

ly find the exact vector if there exists one vector the same 

as the query. A similar vector which has a few different bits 

in the lower side can be found, too, but the problem is that 

sometimes it cannot find a similar vector which has a few 

different bits in the upper side. To address this problem, 

random permutations are used. In general, LSH-based me-

thods use multiple hash functions. In the Hamming space 

search based on the random permutation method, multiple 

random permutations can be regarded as multiple hash 

functions.  
   The greatest disadvantage of the retrieval method based 

on random permutations is the requirement for a huge 

amount of memory in order to perform many random per-

mutations on the original database in advance. This in-

creases the size of database required to at least several to 

several dozen times larger than the size of the original data-

base. 

If we could only multiplex the query vectors without 

multiplexing the database vectors, then Hamming space 

searching would require little memory. Based on this as-

sumption, we propose a new search method by modifying 

the query vector into many similar vectors. 

     The scheme of the search method based on random per-

mutations is shown in Figure 1, and that of the proposed 

method is shown in Figure 2. In the random permutation 

method, multiple random permutations (  ,           in 

Figure 1) are applied to both the original database and 

query vector in order to solve the problem of search omis-

sions. On the other hand, in the proposed method, only the 

query is multiplexed through the functions (  ,           

in Figure 2). The definition of functions    is necessarily 

application-dependent. 

    The proposed method is based on the sub-fingerprint 

matching scheme, and functions    create the multiplexed 

search queries of sub-fingerprint sequences from the query 

audio clip. Many sub-fingerprints are extracted by shifting 

the query into frames. Moreover, there exists a great simi-

larity between the overlapping sub-fingerprints in the se-

quence of sub-fingerprint, so that multiplexed sub-

fingerprints with slight differences can be obtained as start-

ing time of frame moving down. These sub-fingerprints are 

used for queries multiplexing, which make it possible to 

search for a song without modifying the original database 

by using random permutations. 

   The flow of the proposed method is as follows: first, es-

timate several candidates of starting position in the database 

those using sub-fingerprints obtained from the query. Then, 

calculate the Hamming distance (bit error rate) for the fin-

gerprint blocks of query music data and estimated candi-

dates. Usually one sub-fingerprint does not contain suffi-

cient information for music identification, so a sequence of  
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Figure 1. Schematic diagram of search based on random 

permutations 

 

 

 

 

Figure 2. Schematic diagram of search based on query 

multiplexing 

 

sub-fingerprints (SSF) is used. In this paper, the length of 

the SSF is set to 3 (3 sub-fingerprints, containing 96 bits in 

total). 

A schematic diagram of the SSF search is shown in 

Figure 3. The sub-fingerprints obtained from all the songs 

of the database are denoted by FP = (FP1, FP2, …, FPn). 

As stated above, we can get many SSFs in certain length by 

changing the starting position of fingerprint. Let m be the 

length of each SSF, and the SSFs are constructed from 

   in such a way that SSF1 = (FP1, FP2,…, FPm), SSF2 = 

(FP2, FP3,…, FPm+1) and the i-th sub-fingerprint sequence 

SSFi = (FPi, FPi+1,…, FPi+m-1).  All the SSFs are sorted by 

value and the sorted positions of SSFs are stored in a one-

dimensional array S = S1, S2, …, Sn-m+1. Array S, similar to 

the suffix array [18],  contains the indexes to    and satis-  

       
Figure 3. Schematic diagram of SSF search 

 

fies the following: 

Sj = i    iff    SSFi = (FPi, FPi+1,…, FPi+m-1)  is the     

   j-th SSF in sorted order.                      (4) 

 

In the search step, a binary search is performed on array 

S for all the SSFs extracted from the query audio clip. Most 

similar SSF can be found by checking the neighborhood 

positions of the searched block in array S. 

Array S is used as an index for music retrieval. The size 

of the index is proportional to the length of the sub-

fingerprint sequence in the database, so it requires much 

less memory/storage compared with the method based on 

random permutations. 

The proposed method can be summarized as follows: 

(1) Extract the sub-fingerprint sequence FP from query 

music. 

(2) For all SSFs, find candidate positions by performing a 

binary search on array S. 

(3) Set the start position of the FP to the candidate posi-

tion, and calculate the Hamming distance (bit error 

rate) between FP and the fingerprint block corres-

ponding to the SSF. 

(4) Output the top n songs as the final results. 

 

4. EVALUATION EXPERIMENTS 

To evaluate the effectiveness of the proposed method, real 

music data were used for evaluation experiments. In these 

experiments, the algorithm proposed by Haitsma and Kalk-

er [3] was used for extracting audio fingerprints in different 

acoustical analysis settings. 

4.1 Music Data 

The database had 8,740 songs in mp3 format from CDs or 

the Internet. The compression ratio was different for each 
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song. There were many genres in the database such as pop, 

classical, and folk music. 

       
Category Notes Audio Accuracy 

 

Original 

music 
 

Non-

noise 

PV music faithful to the 

original music with little 

noise if any. 

 

104 

 

96.2% 

With 

noise 

Declared to be original 

but with obvious noise. 

 

22 

 

100% 

 

Live data 

Live audio, most of which 

contain voices, cheer-
ing and applause, and 

other noise. 

 

142 

 

83.1% 

 

Table 1. Results on evaluation data 

 

Music clips uploaded to YouTube were used for the 

queries. Audio data were extracted from various types of 

videos, such as promotional video and live video. Many of 

the music data were of poor quality, including music fol-

lowing and followed by long silences, and music with vari-

ous types of noise such as hand-clapping, cries of excite-

ment, and other environmental noise. 268 songs were used 

for evaluation data, which are roughly classified by hand. 

Details of the evaluation data are shown in Table 1. 

4.2 Acoustical Analysis Settings 

After down-sampling to 4,000 Hz, the music data were 

segmented into frames by using a Hamming window. The 

frame length was set to 1.024 seconds and the frame shift to 

32 milliseconds. All frames were converted into the fre-

quency domain by FFT. The frequency domain was divided 

into 33 frequency bands, and 32-bit sub-fingerprint features 

were extracted. The length of the fingerprint block was set 

to 128. 

Although these settings seem rough compared with those 

given by Haitsma and Kalker [3], these parameters were 

determined by many preliminary experiments and the re-

sulting proposed algorithm gave a high accuracy. The total 

number of sub-fingerprints was about 70 million. 

 

4.3 Experimental Results 

Experiments were carried out on a PC (DELL Precision 

M6500) with an Intel Core i7 CPU (1.73 GHz) (8 cores) 

and 4 GB of memory. Retrieval times varied as the query 

music, and each song was retrieved in approximately 0.4 to 

0.6 seconds. 

   The length of the sub-fingerprint sequence for one query 

music was approximately from 6,000 to 8,000 fingerprints. 

The proposed algorithm searches candidate positions by a 

binary search for all SSFs (length was 3) extracted from the 

query music before calculating the bit error rate of finger-

print blocks. Therefore, we believe that the algorithm is 

competent and fast since the retrieval time per SSF did not 

exceed 0.1 milliseconds. 

    The top-1 retrieval accuracy is shown in the right column 

of Table 1. The retrieval rate for “original music” was 

98.6%, and accuracy for “live music” was 83.1%. The dif-

ference was due to the different melody of the live clip 

from that of the original music. The evaluation data of 

“original music” can be divided into two classes with re-

gard to noise, but the results did not show any influence of 

noise.  

5. CONCLUTIONS 

In this paper, we have proposed a fast Hamming space 

search method for audio fingerprinting systems. Our me-

thod is inspired by Locality-Sensitive Hashing (LSH), a 

probabilistic algorithm for solving the nearest neighbor 

search in high-dimensional spaces. LSH uses multiple hash 

functions to maintain high retrieval accuracy and therefore 

requires a large amount of memory/storage for saving hash 

tables. For the Hamming space search, LSH must maintain 

multiple database sets created by random permutations. On 

the other hand, the proposed method created multiplexed 

search queries of sub-fingerprint sequence with different 

starting time, and does not require expansion of the data-

base. As a result, a large amount of memory/storage is not 

needed. Experimental results showed that the proposed me-

thod delivers accurate, fast retrieval. 
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ABSTRACT 

Managing music audio databases for practicing musicians 
presents new and interesting challenges. We describe a sys-
tematic investigation to provide useful capabilities to musi-
cians both in rehearsal and when practicing alone. Our goal 
is to allow musicians to automatically record, organize, and 
retrieve rehearsal (and other) audio to facilitate review and 
practice (for example, playing along with difficult pas-
sages). We introduce a novel music classification system 
based on Eigenmusic and Adaboost to separate rehearsal 
recordings into segments, an unsupervised clustering and 
alignment process to organize segments, and a digital music 
display interface that provides both graphical input and out-
put in terms of conventional music notation. 

1. INTRODUCTION 

Music Information Retrieval promises new capabilities and 
new applications in the domain of music. Consider a per-
sonal music database composed of rehearsal recordings. 
Music is captured by continuously recording a series of re-
hearsals, where the music is often played in fragments and 
may be played by different subsets of the full ensemble. 
These recordings can become a valuable resource for musi-
cians, but accessing and organizing recordings by hand is 
time consuming. 

To make rehearsal recordings more useful, there are 
three main processing tasks that can be automated. (See 
Figure 1.) The first is to separate the sound into music and 
non-music segments. The music segments will consist of 
many repetitions of the same material. Many if not most of 
the segments will be fragments of an entire composition. 
We want to organize the segments, clustering them by 
composition, and aligning them to one another (and possi-
bly to other recordings of the music). Finally, we want to 
coordinate the clustered and aligned music with an interface 
to allow convenient access. 

We see these capabilities as the foundation for an inte-

grated system in which musicians can practice and compare 
their intonation, tempo, and phrasing to existing recordings 
or to rehearsal data from others. By performing alignment 
in real time, the display could also turn pages automati-
cally. 

The next section presents a novel method for mu-
sic/non-music classification and segmentation. Section 3 
describes how to organize the segments. Section 4 de-
scribes a two-way interface to the audio. 

 

Figure 1. System diagram for a musician's personal audio 
database. Rehearsal recordings are automatically processed 
for simple search, analysis, and playback using a music no-
tation-based user interface. 

2. CLASSIFICATION AND SEGMENTATION 

2.1 Related Work 

Much work has been done in the area of classification and 
segmentation on speech and music. For different tasks, 
people extract different features. Some focus on back-
ground music detection [6], while others detect speech or 
music sections in TV programs or broadcast radio. Many 
features have been tested in the realm of speech/music clas-
sification [8, 17]. Two frequently used ones are Spectral-
Centroid and Zero-Crossing Rate. Also, different statistical 
models have been used. Two of them, long window sam-
pling [7] and the HMM segmentation framework [1, 14], 
are especially relevant to our work. Other approaches in-
clude using decision trees [16] and Bayesian networks [5]. 

However, the particular problem of variations in the 
sound source seems to be largely ignored. In reality, sound 
is not standardized in volume or bandwidth and may even 
contain different kinds of noise. In these cases, more robust 
features and methods are needed. This section will concen-
trate on new feature extraction and model design methods 
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to achieve music/non-music classification and segmentation 
on realistic rehearsal audio.  

2.2 Eigenmusic Feature Extraction  

The concept of Eigenmusic is derived from the well-known 
representation of images in terms of Eigenfaces [12]. The 
process of generating Eigenmusic can be performed in both 
the time and frequency domains, and in either case, simply 
refers to the result of the application of Principal 
Component Analysis (PCA) to the audio data [3]. Therefore, 
Eigenmusic refers to the eigenvectors of an empirical 
covariance matrix associated with an array of music data. 
The array of music data is structured as a spectrogram and 
hence contains the spectral information of the audio in 
those time intervals. When expressing non-music data in 
terms of Eigenmusic, the coefficients are generally 
expected to be outlying based on the fundamentally 
different characteristics of music and non-music.  

In practice, we use about 2.5 hours of pure music in the 
training data collection to extract the Eigenmusic in the fre-
quency domain. First, let X = [x1, x2, … , xT] be a spectro-
gram, a matrix consisting of, in its columns, magnitude 
spectra corresponding to 1.25 second non-overlapping win-
dows of the incoming music data. Second, the correspond-
ing empirical covariance matrix, Cx, and its Eigenvectors 
are computed. Ultimately, we retain the first 10 eigenvec-
tors corresponding to the largest eigenvalues. If P is the 
matrix of column-wise eigenvectors of Cx, given a new 
magnitude spectrum column vector x, we can represent its 
Eigenmusic coefficients by PTx, which will be a 10-
dimensional vector. 

2.3 Adaboost Classifier  

Adaboost [18] is a very interesting classification algorithm, 
which follows a simple idea: to develop a sequence of hy-
potheses for classification and combine the classification 
results to make the final decision. Each simple hypothesis is 
individually considered a weak classifier, h(PTx), and the 
combined complex hypothesis is considered to be the 
strong classifier. In the training step, each weak classifier 
focuses on instances where the previous classifier failed. 
Then it will obtain a weight, αt, and update the weight of 
individual training data based on its performance. In the 
decoding step, the strong classifier is taken to be the sign of 
the weighted sum of weak classifiers: 

H (x) = sign( α tht (P
Tx))

t∑                             (1) 

By training a sequence of linear classifiers ht, each one of 
which merely compares an individual Eigenmusic coeffi-
cient against a threshold that minimizes the weighted error, 
Adaboost is able to implement a non-linear classification 
surface in the 10-dimensional Eigenmusic space. 

2.3.1 Data Collection and Representation 

The Adaboost training data is a collection of about 5 hours 
of rehearsal and performance recordings of western music; 
while the testing data is a collection of 2.5 hours of Chinese 
music. For the music parts, each data collection contains 
different combinations of wind instruments, string instru-
ments, and singing. For the non-music parts, each data col-
lection contains speech, silence, applause, noise, etc. Both 
data collections are labeled as music or non-music at the 
frame level (1.25 seconds). From Section 2.2, we know that 
each frame is a point in the 10-dimensional Eigenmusic 
space. Therefore, we have about 5 (hours) × 3600 (s/hour) / 
1.25 (s/frame) = 14,400 frames for training and 7,200 
frames for testing. 

2.3.2 Implementation and Evaluation  

We train 100 weak classifiers to construct the final strong 
classifier. The testing accuracy is shown in Figure 2. The 
results were obtained in terms of the percentage of error at 
the frame level. Two different statistics have been calcu-
lated: the percentage of true music identified as non-music, 
shown as the solid line, and the percentage of true non-
music identified as music, shown as the dotted line. 
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Figure 2. The testing error of music and non-music. 

From Figure 2, it can be seen that the proposed Adaboost 
classifier in the Eigenmusic space is capable of achieving a 
low error rate (about 5.5%) on both music and non-music 
data, even when the testing data comes from a completely 
different sound source from the training data. 

2.3.3 Probabilistic Interpretation  

We can improve the frame level classification by consider-
ing that state changes between music and non-music do not 
occur rapidly. We can model rehearsals as a two-state hid-
den Markov model (HMM) [13]. Formally, given a vector x, 
let y ∈ {-1,1} represent its true label. Here, -1 stands for 
non-music and 1 stands for music. And let w(x) represent 
the weighted sum of weak classifiers: 
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w(x) = α tht (P
Tx)

t∑                              (2) 

In Equation (1), we took the sign of w(x) as the decision, 
but we can modify this approach to compute the a posteri-
ori probability of y = 1, given the weighted sum, which we 
denote as the function F: 

F(w(x)) = P(y = 1 |w(x))                         (3) 

According to the discussion in [15], F(w(x)) is a logistic 
function, as shown in Equation 4: 

F(w(x)) = 1
1+ exp(−2 ⋅w(x))

                     (4) 

In Figure 3, the small circles show P(y = 1 | w(x)) estimated 
from training data sorted into bins according to w(x). The 
logistic function is shown as the solid curve. It can be seen 
that our empirical data matches the theoretical probability 
quite well. 
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Figure 3. The logistic function estimation on training data. 

We note that the idea of linking Adaboost with HMMs is 
not new, but very little work has been done to implement it 
[4, 19]. As far as we know, this is the first attempt of a 
probabilistic interpretation of Adaboost when linked with 
HMMs.  

2.4 HMM Smoothing for Segmentation  

The significance of smoothing is that even a very low error 
rate at the frame level cannot guarantee a satisfying seg-
mentation result overall (i.e. at the piece level). For exam-
ple, suppose a relatively low 5% error rate is obtained at the 
frame level. If the segmentation rule is to separate the target 
audio at every non-music frame, a 10 minute long pure mu-
sic piece would be cut into about 25 pieces in this case. Ul-
timately, this is an undesirable result.  

Based on typical characteristics of rehearsal audio data, 
we assume that: (1) music and non-music frames cannot 
alternate frequently, and (2) short duration music and non-
music intervals are less likely than longer ones. By utilizing 
these assumptions in conjunction with the HMM, low (but 

possibly deleterious) frame-level error rates can be further 
reduced. We use a fully-connected HMM with only two 
states, representing music and non-music. The HMM ob-
servation corresponding to every frame x is a real number 
w(x), as in Equation (2), given by the Adaboost classifier. 

2.4.1 HMM Training 

The training data collection mentioned in Section 2.3.1 is 
used to estimate the HMM parameters. Formally, let S = 
[S1, S2,…,ST] be the state sequence and let O = [O1, 
O2,…,OT] be the observation sequence. Since it is a super-
vised learning problem, we do Maximum Likelihood Esti-
mation (MLE) by counting or just manually setting the pa-
rameters for initial state probabilities and transition prob-
abilities. For emission probabilities, we use Bayes’ rule: 

P(Ot | St = 1) =
P(St = 1 |Ot ) ⋅P(Ot )

P(St = 1)
          (5) 

Remember that in our model Ot = w(xt) and P(Ot) is a con-
stant. Therefore, if we plug in function F according to 
Equation (3), we obtain the estimate of the emission prob-
ability of music where C denotes a constant scalar multi-
plier: 

P(Ot | St = 1) = C ⋅
F(w(xt ))
P(St = 1)

                 (6) 

Using the same method, we obtain the estimate of the emis-
sion probability of non-music: 

P(Ot | St = −1) = C ⋅
1− F(w(xt ))
P(St = −1)

              (7) 

Here, we set the a priori probability of both music and non-
music to 0.5 and then apply the Viterbi algorithm [13] to 
efficiently find the best possible state sequence for a given 
observation sequence. 

2.4.2 Implementation and Evaluation 

At the frame level, HMM smoothing reduced the error rate 
from about 5.5% to 1.8% on music and to 2.2% on non-
music. This is the same as the best claimed result [17] in 
the references [6, 7, 8, 17], where classifiers were tested on 
cleaner data sets not related to our application. Since the 
piece level evaluation has been largely ignored in previous 
works on music/non-music segmentation, we adopt an 
evaluation method from speech segmentation [20] called 
Fuzzy Recall and Precision. This method pays more atten-
tion to insertion and deletion than boundary precision. We 
get a Fuzzy Precision of 89.5% and Fuzzy Recall of 97%. 
The high Fuzzy Recall reflects that all true boundaries are 
well detected with only some imprecision around the 
boundaries. The lower Fuzzy Precision reflects that about 
10% of the detected boundaries are not true ones.  
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3. CLUSTERING OF MUSIC SEGMENTS 

Assuming perfect classification results from the previous 
step, the clustering task is a distinct problem. Our goal is to 
cluster the musical segments belonging to the same piece. 

3.1 Feature Extraction 

Chroma vectors [2] have been widely used as a robust har-
monic feature in all kinds of MIR tasks. The chroma vector 
represents the spectral energy distribution in each of the 12 
pitch classes (C, C#, D,… A#, B). Such features strongly 
correlate to the harmonic progression of the audio.  

Considering the objective that our system should be ro-
bust to external factors (e.g. audience cheering and ap-
plause), the feature cannot be too sensitive to minor varia-
tions. Therefore, as suggested by Müller, we first calculate 
12-dimensional chroma vectors using 200ms windows with 
50% overlap, then compute a longer-term summary by 
windowing over 41 consecutive short-term vectors and 
normalizing, with a 10-vector (1s) hop-size. These long-
term feature vectors are described as CENS features 
(Chroma Energy distribution Normalized Statistics) [10, 
11]. The length of the long-term window and hop size can 
be changed to take global tempo differences into account. 

3.2 Audio Matching and Clustering  

Given the CENS features, audio matching can be achieved 
by simply correlating the query clip Q = (q1, q2, … qM) with 
the subsequences of musical segments P = (p1, p2, … pN) in 
the database (assume N > M). Here, all lower case letters 
(e.g. qi, pi) represent 12-dimensional CENS vectors. Thus, 
Q and P are both sequences of CENS vectors over time. As 
in [11], the distance between the query clip Q and the sub-
sequence P(i) = (pi, pi+1,… pi+M-1) is: 

dist(Q, P(i) ) = 1- 1
M

qk , pi+ k−1
k=1

M

∑               (8) 

Here <qk, pi+k-1> denotes the dot product between these two 
CENS vectors. All of the distances for i = 1, 2, ... N−M+1 
together can be considered a distance function ∆ between 
query clip Q and each of the musical segments P in the da-
tabase. If the minimum distance is less than a preset thresh-
old γ, then Q can be clustered with P.  

One problem with this decision scheme is that, unlike a 
traditional song retrieval system which has a large reference 
database in advance, our system has no prior information 
about the rehearsal audio stream. We are only given a 
stream of potentially unordered and unlabeled audio that 
needs to be clustered. To solve this problem, we construct 
the database from the input audio dynamically. The inputs 
are all the music segments obtained from Section 2, and the 
algorithm is: 

1. Sort all the music segments according to their length. 
2. Take out the longest segment S. 

i) If database D is empty, put S into D as a cluster.  
ii) Otherwise match S with every segment in D by 

calculating distance function ∆. Let Dm be the 
segment in D with the best match. 
(1) If the distance function ∆ of Dm with S has a 

minimum less than γ, cluster S with Dm. 
(2) Otherwise make S a new cluster in D. 

iii) Repeat step 2 until all segments are clustered. 

Here we made a critical assumption: the longest segment 
is most likely to be a whole piece or at least the longest 
segment for this distinct piece, so it is reasonable to let it 
represent a new cluster. At every step of the iteration, we 
take out a new segment S which is guaranteed to be shorter 
than any of the segments in database D. This implies it can 
either be part of an existing piece in the database (in which 
case we will cluster it with a matching segment) or it is a 
segment for a new piece which does not yet exist in the da-
tabase (in which case we will make it a new cluster). 

We also need to consider the possibility that tempo dif-
ferences cause misalignment between sequences. We can 
obtain different versions of CENS features (for example, 
from 10% slower to 10% faster) for the same segment to 
represent the possible tempos. This is achieved by adjusting 
the length of the long-term window and the hop size as 
mentioned in Section 3.1. During matching, the version of 
the segment with the lowest distance function minimum 
will be chosen.  

3.2.1 Segment Length vs. Threshold Value 

While time scaling compensates for global tempo differ-
ences, it does not account for local variation within seg-
ments. It is interesting to consider the length of the query 
clip that is used to correlate with the segments in the data-
base. Intuitively, longer clips will be more selective, reduc-
ing spurious matches. However, if the length is too large, 
e.g. two segments both longer than 5 minutes, sequence 
misalignments due to tempo variation will decrease the cor-
relation and increase the distance. If longer segments lead 
to greater distance, one might compensate with larger 
threshold values (γ). However, larger γ values may not 
prove strict enough to filter out noise, leading to clustering 
errors. We will compare two pairs of configurations: longer 
segments with larger γ and shorter segments with smaller γ. 

3.2.2 Experiments and Evaluation 

We have two parameters to control: γ, which determines if 
the two segments are close enough to be clustered together, 
and t, the length of the segments. We use hours of rehearsal 
recordings as test data, with styles that include classical, 
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rock, and jazz. We also use live performance recordings, 
which are typically even longer. To evaluate the clustering 
results, we use the F-measure as discussed in [9]:  

P =
TP

TP + FP
,  R =

TP
TP + FN

                          (9) 

  Fβ =
(β 2 +1)PR
β 2P + R

                                   (10) 

Here, P (precision) and R (recall) are determined by 4 dif-
ferent variables: TP (true positive) which corresponds to 
assigning two similar segments to the same cluster, TN 
(true negative) corresponding to assigning two dissimilar 
segments to the different clusters, FP (false positive) corre-
sponding to assigning two dissimilar segments to the same 
cluster, and FN (false negative) which corresponds to as-
signing two similar segments to different clusters. β is the 
tuning parameter used to adjust the emphasis on precision 
or recall. In our case, it is more important to avoid cluster-
ing segments from different pieces into one cluster than it is 
to avoid “oversegmenting” by creating too many clusters. 
The latter case is more easily rectified manually. Thus, we 
would like to penalize more on false positives, which leads 
to choosing β < 1. Here, we use β = 0.9. Considering the 
possible noise near the beginning and the end of the record-
ings, we choose the middle t seconds if the segment is 
shorter than the original recording.  

As seen in Figure 4, for segments longer than 3 minutes, 
the relatively larger γ = 0.25 outperforms others, while for 
shorter segments around 20s to 60s, the smaller γ = 0.15 has 
the best performance. It is also shown that if γ is set too 
large (0.35), the performance drops drastically. Overall, 
shorter segments and smaller γ give us better results than 
longer segments and larger γ. Finally, since calculating cor-
relation has O(n2) complexity, shorter segment lengths can 
also save significant computation. Thus, our current system 
uses a segment length t = 40s and γ = 0.15. K-means clus-
tering was also tested but did not work as well as our algo-
rithm because of the non-uniform segment length and un-
known number of clusters (details omitted for reasons of 
space). 

4. USER INTERFACE 

Ultimately, we plan to integrate our rehearsal audio into a 
digital music display and practice support system (see Fig-
ure 5.). While listening to a performance, the user can tap 
on music locations to establish a correspondence between 
music audio and music notation. Once the music has been 
annotated in this manner, audio-to-audio alignment (a by-
product of clustering) can be used to align other audio 
automatically. The user can then point to a music passage 
in order to call up a menu of matching audio sorted by date, 

length, tempo, or other attributes. The user can then prac-
tice with the recording in order to work on tempo, phrasing, 
or intonation, or the user might simply review a recent re-
hearsal, checking on known trouble spots. One of the excit-
ing elements of this interface is that we can make useful 
audio available quickly through a natural, intuitive interface 
(music notation). It is easy to import scanned images of no-
tation into the system and create these interfaces. 
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Figure 4. Experimental results with different segments of 
length t and matching threshold γ. 

 
Figure 5. Audio database is accessed through a common 
music notation interface. The user has selected the begin-
ning of system 3 as a starting point for audio playback, and 
the current audio playback location is shown by the thick 
vertical bar at the beginning of system 4. 
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5. CONCLUSIONS 

We have presented a system for automated management of 
a personal audio database for practicing musicians. The 
system segments recordings and organizes them through 
unsupervised clustering and alignment. An interface based 
on common music notation allows the user to quickly re-
trieve music audio for practice or review. Our work intro-
duces Eigenmusic as a music detection feature, a probabil-
istic connection between Adaboost and HMMs, an unsu-
pervised clustering algorithm for music audio organization, 
and a notation-based interface that takes advantage of 
audio-to-audio alignment. In the future, we will fully inte-
grate these components and test them with actual users. 
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Institut Telecom, Telecom ParisTech,

Paris, France
{slim.essid,gael.richard}@telecom-paristech.fr

ABSTRACT

This paper, presents an interactive approach for the analysis
of electro-acoustic music. An original classification scheme
is devised using relevance feedback and active-learning seg-
ment selection in an interactive loop. Validation and correc-
tion information given by the user is injected in the learning
process at each iteration to achieve more accurate classifi-
cation. An experimental study is conducted to evaluate and
compare the different classification and relevance feedback
approaches that are envisaged, using a database of poly-
phonic pieces (with a varying degree of polyphony). The
results show that the different approaches are adapted to dif-
ferent applications and they achieve satisfying performance
in a reasonable number of iterations.

1. INTRODUCTION

Being composed directly with the “sound material” using
recording techniques [18], electro-acoustic music differs from
other more conventional musical forms. Composers of the
genre do not use score sheets to write music and there is
no common agreement on a standard notation system to be
used to create symbolic representations for such composi-
tions. Electro-acoustic music is traditionally organized in
sound objects. Here, we define “sound object” as any sound
event perceived as a whole [18]. Most of the time a musi-
cal piece does not expose separate sound objects as simul-
taneous sounds are masking each others due to polyphony.
Consequently, the analysis of this music is quite complex
and totally user-centered as it is essentially concerned with
the subjective identification of sound objects of interest to
the user. The reader can refer to [1] for examples of electro-
acoustic compositions.

This work presents an interactive classification system
for electro-acoustic music analysis using relevance feedback.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

In previous works, relevance feedback has been widely used
in content-based image retrieval tasks (see [4] for an overview).
By contrast, in the field of music information retrieval, rele-
vance feedback and active learning have only been exploited
in a few music information retrieval studies, for pop mu-
sic retrieval based on user preferences [11] or mood/style
classification [15]. More closely related works in this field
have focused on “standard” instruments and percussion tim-
bre classification [7, 8, 14] by building supervised systems
based on large databases. In the electro-acoustic case, com-
posers exploit various sound sources and one does not have
a-priori knowledge about these sources which are most of
the time polyphonic and heterogeneous.

In this paper, following our previous works [9, 10], we
propose a complete system for electro-acoustic music anal-
ysis, and evaluate and compare different relevance feedback
approaches to our problem. The initialisation of the sys-
tem is achieved through an interactive segmentation phase
(mostly similar to [9]) to obtain initial texture segments (see
Figure 1 and 2). Then, these segments are processed by an
interactive classification module using relevance feedback
and active learning segment selection. From a user’s point
of view, the search for a target sound object begins with the
selection of a characteristic segment for each sound class.
Then, the system enters in an interaction loop and suggests,
at each iteration, segments to be annotated by the user so as
to make learning progress. On each new proposed segment,
the user can correct the system’s label prediction. The inter-
action loop ends when the user is satisfied with the labels.
We compare different classification and relevance feedback
approaches for different degrees of polyphonic complexity.
This study shows that different methods are more adapted to
different applications.

The paper is organized as follows: Section 2 presents
the musical motivations and the results of musicologists’ in-
terviews that were carried out to acquire prior knowledge
on their approach to the analysis of electro-acoustic mu-
sic. Section 3 describes the interactive system including the
user interaction scenario and active learning segment selec-
tion strategy. Section 4 is dedicated to the evaluation of the
method and the last section suggests some conclusions.
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2. MUSICAL MOTIVATIONS

Our work attempts to address musicologists’s need for new
tools for the analysis of non written music. Thus, for a
better understanding of their expectations, interviews were
held with three musicologists with a special expertise in
electro-acoustic music analysis. The questions were about
their personal methodology for analysis and the utility of
computer-based sound analysis tools to their work. By ana-
lyzing their answers, some common habits can be identified
in their methodologies. Of note is the fact that they always
listen to the whole piece from 4 to 10 times to locate promi-
nent sound objects and build a viewpoint to begin the anal-
ysis. Another common habit is to listen to the same piece
several times and focus on one sound category at each time.
In all the interviews, the musicologists approach the analy-
sis as a sound object transcription task . For some of them,
the transcription helps forming a viewpoint of the piece be-
ing analysed, whereas the others already have one when they
begin the transcription. All the subjects mentioned that they
do not transcribe all sound objects of the piece but only those
which are useful for their personal analysis viewpoint.

For the question about the utility of computer-based tools,
they expressed some wishes which are all related to the sound
object transcription. The first was to locate the main sound
objects of the piece and help them verify their transcription.
Another important wish was to find all the instances of one
sound object by giving a segment of the target sound to the
tool. This function could also help them to discover sound
instances that they did not notice.

This work takes those musical motivations into account
and proposes an interactive system for helping musicolo-
gists in the transcription task.

3. INTERACTIVE CLASSIFICATION SYSTEM

In this section, we describe all the aspects of the system in-
cluding the expression of the user point of view.

3.1 Architecture

Figure 2 (A) is a representation of a polyphonic piece which
involves potential sound masking: the distinct sound lay-
ers are arranged in parallel timelines (one for each sound
class). The goal of the transcription is to mark the pres-
ence of all target sounds in the whole piece. The classifica-
tion operates on texture segments, i.e. temporal fragments
of homogeneous timbre (as shown with vertical red lines in
Figure 2). The system architecture is divided in two dis-
tinct parts: the initialisation and the interaction loop which
performs the classification of the texture segments and asks
feedback from the user. We compare two different inter-
action loop approaches in this work. The first approach is
multi-pass: the interaction loop focuses on one sound class
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Figure 1. Overview of the interactive system

at each pass, following the habits of the musicologists who
are used to listen to the same piece several times and fo-
cus on one sound category for one listening (see Section 2).
The other approach is referred to as one-pass: the interac-
tion loop considers all the sound objects simultaneously at
each time and consequently the user feedback applies to all
the classes of interest.

The interactions of the user with the system can be sum-
marized as follows:

1. Initialisation

(a) The system starts with an interactive segmenta-
tion phase. If the user is transcribing N classes,
for each class Ci a characteristic segment Si is
associated with i ∈ {1...N} (see Figure 2). In
order to obtain the initial characteristic segments
of all the sound classes corresponding to the user’s
point of view, in this first interaction phase, the
user moves a slider which controls the global
segmentation level until the most adapted seg-
mentation is reached. Texture segments are cre-
ated from this segmentation.

(b) The user selects a characteristic texture segment
Si for each target sound class

2. Interaction loop

(a) The system learns from the validated segments
and enters in the classification process to auto-
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matically predict labels for the remaining parts
of the signal.

(b) In order to improve the previous classification,
the system selects a segment, based on the active
learning strategies described in Section 3.3.5, and
asks feedback from the user. In the multi-pass
approach, the system predicts the presence/absence
of the current target class and the user validates
or corrects the selected segments prediction. In
the one-pass approach, the user corrects the pres-
ence/absence prediction of all the target classes
for the selected segment.

(c) In the multi-pass approach, one vs all classifi-
cation and feedback ((a) and (b)) iterations pro-
ceed until the user is satisfied with the result for
the current class, before entering a new pass,
that is a new interaction loop, for the next classes,
until all classes have been covered. In the one-
pass approach all classes are considered jointly
from the very beginning of the interaction loop
and the system iterates multi-class classification
and feedback until the user is satisfied with the
overall prediction.

Figure 2. Time-line representation of a polyphonic piece
with 3 sound classes and the characteristic segments of the
target classes. Though the distinct sound layers are here dis-
played in parallel time lines (A), in real situations the user
can actually only see the final mix made by the composer
that appears as a single track (B). The initial user selection
and subsequent validations are done by listening.

A total of 217 feature coefficients are extracted from 25
classic audio descriptors on 20 ms windows with 50% over-
lap, to be used both for the initial segmentation and the sub-
sequent classification. The reader can refer to [6, 17] for a
complete description of the features. All the feature vec-
tors used and the corresponding dimensions are listed in the
website of the paper 1 . Feature extraction was performed

1 http://www.tsi.enst.fr/˜gulluni/ismir2k11/

using the YAAFE software [16].

3.2 Interactive Clustering

The goal of the clustering is to obtain a segmentation adapted
to the users’ point of view as described in the initialisation
paragraph of section 3.1. The reader can refer to [9] for a
detailed explanation of the initial clustering. First, onset de-
tection is performed and the resulting detection function is
used to obtain inter-onset segments. Subsequently, a clus-
tering is performed on the inter-onsets vectors Xj with an
agglomerative hierarchical approach to obtain texture seg-
ments. The number of target clusters of the algorithm is
controlled by the user in the interface with a slider to obtain
an adapted segmentation.

3.3 Classification

In this system, the classification task consists in detecting
the presence of given sound classes in every texture seg-
ment of the musical piece. Support Vector Machine (SVM)
classifiers [2] with probabilistic outputs 2 are used in a “one
vs all” fashion. Three different methods are compared to
obtain the final prediction: a multi-pass approach and two
variants of a one-pass approach.

3.3.1 Feature Selection

After the initialisation phase, a feature selection based on
the Fisher discriminant [5] is performed. The algorithm iter-
atively selects the attributes which maximize the Fisher dis-
criminant and the d best features are kept to define the fea-
ture space for the target class. The parameter d was exper-
imentally determined using a separate database and a value
of d = 10 has been found to be an appropriate trade-of be-
tween performance and complexity. The goal of the selec-
tion is to create a relevant descriptor for each sound class.
As this selection is part of the interaction loop, the sound
descriptors may evolve accordingly with the user feedback.
This method is adapted to our problem since we do not have
prior knowledge on the sound sources.

3.3.2 Multi-pass (MP)

In this approach, the N sound classes are treated sequen-
tially: the user tries to spot all occurrences of the current
class Ci before beginning the next class. This enables the
user to focus on one sound category at each time following
the habits described in Section 2. Therefore, the correspond-
ing feedback is quite simple: the user validates/corrects the
presence or absence of the current class for the segment
selected by active learning (see 3.3.5). For the learning
phase, positive samples are those which contain the target
sound class and negative samples are those which do not.
This implies that the positive segments may be complex

2 we use the libSVM implementation [3].
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sound mixtures which contain other sounds. Using proba-
bilistic SVMs, posterior probabilities p(Ci|Xk) are obtained
for each frame observation Xk.

3.3.3 One-pass

In the one-pass approach, the classification is carried out
as in a ”standard” multiclass problem, where all classes are
jointly taken into account. Consequently, the user tries to
transcribe all the sound classes at the same time and the cor-
responding feedback requested to the user is to validate/correct
the presence or absence of all the sound classes for the se-
lected segment (see 3.3.5). Two classification methods are
compared in this approach.

The first one (one-pass 1) uses the same classification
method as the MP approach: for N sound classes, N clas-
sifiers are trained with positive samples being those which
contain the target sound class and negative samples being
those which do not.

The second method (one-pass 2) differs in that it can in-
troduce new classes through the iterations by considering
texture classes deduced from the user’s feedback, i.e. for a
given feedback iteration, if the user formulates that the cor-
responding selected segment contains more than one sound
class, say classes A and B, a new texture class is created, that
is composed of the union of those classes (i.e. A ∪ B), and
the corresponding classifier trained. HenceM classifiers are
here used in the polyphonic case, with N ≤M ≤ 2N .

3.3.4 Segment-level predictions

Given the posterior probability p(Ci|Xk) of classCi on each
frame feature vector Xk, P (Ci|Xkτ , ..., Xkτ+Lτ−1) (a seg-
ment-level probability) is computed for each texture seg-
ment obtained in the clustering phase. For this, the sum of
all frame-level log probabilities is used. The probability on
the τ th texture segment of length Lτ is given by:
P (Ci|Xkτ , ..., Xkτ+Lτ−1) =

∑kτ+Lτ−1
k=kτ

log p(Ci|Xk).
Then, the label of a texture segment is given by the maxi-
mum probability criterion.

3.3.5 Active learning for segment selection

Relevance feedback has been widely used in multimedia In-
formation Retrieval. The reader can refer to [12] for an
overview. In the context of this work, our approach con-
sists in gradually adding new segments validated by the user
in the learning process. As a consequence, the labels pre-
dicted for the other segments may evolve at each iteration
of the algorithm. The process begins with a limited num-
ber of segments for training the classifier and the training
segment dataset grows step by step as user-validated seg-
ments are injected. The goal of this approach is to obtain the
correct labeling of samples in a reasonable number of iter-
ations. Active learning theory proposes sampling strategies
which are used to select the segments to be user-validated

first. The two interaction loop approaches use different sam-
pling strategies. The Multi-pass approach uses the most
ambiguous strategy: in the SVM classifier, most ambigu-
ous samples are the closest to the hyperplane in the feature
space. This strategy is adapted to binary classification prob-
lems and was shown to give the best results in a previous
study [10]. The one-pass approach uses the best versus sec-
ond best strategy which has been successfully used in image
classification [13]. This strategy uses the difference between
the probabilities of the two classes having the highest esti-
mated probability value which provides an estimation of the
confusion about class membership.

For each frame-level probability, we compute a score s(k)
in accordance with the sampling strategy used. Given this
score, for each frame of audio, we obtain a score for each
texture segment by temporal integration, where the segment
score is the mean of the underlying frame scores: Sτ =
1/Lτ

∑kτ+Lτ−1
k=kτ

s(k) for the τ th texture segment. The tem-
poral integration allows us to obtain a unique sampling strat-
egy score for each segment and to rank them. Therefore, the
segment which maximizes the score is selected by the sys-
tem and a feedback request is sent to the user.

4. EVALUATION

User-based experiments are very time consuming and re-
quire the creation of ground-truth annotation of numerous
music pieces, which often turns out to be even more tricky,
especially as far as electro-acoustic music is concerned. In-
deed, there exists only a few annotations in this case which
mix the description of sound objects with the annotators’
subjective interpretation of the pieces. As a result, to val-
idate our method with a descent number of files and eas-
ily compare the different parameters settings, we opted for
a user simulation with synthetic music pieces generation.
Nevertheless, much care has been taken in order to make this
procedure completely realistic as will be further explained
hereafter.

4.1 Synthetic pieces generation

The synthetic pieces generation process is similar to our pre-
vious work. The reader can refer to [10] for a complete de-
scription. 24 homogeneous sounds (hence 24 classes) of dif-
ferent lengths (from a second to a minute) were selected by
composers of the Groupe de Recherches Musicales 3 (INA-
GRM) for the generation process. 100 pieces of 2 minutes
containing 5 different sound classes for each were gener-
ated. 5 versions of each piece were obtained by varying
the polyphonic degree from 1 to 5 (i.e. 500 synthetic sound
files). Consequently, the nth variation of a given piece will
have a maximum number of n sounds playing simultane-

3 http://www.inagrm.com/
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ously. In the generation process, 5 distinct sounds are se-
lected randomly for a given piece and different instances of
each sounds are concatenated/juxtaposed accordingly with
the polyphonic degree of the piece.

4.2 User simulation

In this work, we exploit a user feedback simulator to facili-
tate the evaluation. It is used both in the initialisation phase
and in the interaction loop. For the initialisation, the slider
position controls the overall segmentation level of the piece
and the user has to choose the position which best matches
his/her viewpoint assuming that the user will tend to try to
maximise the segmentation F-measure score. Hence, the lat-
ter is computed for all the slider positions, i.e. all possible
levels of the hierarchical clustering used for segmentation.
The F-measure is computed with a temporal precision win-
dow of 0.5 s over the segmentation’s boundaries. The slider
position which maximizes the F-measure is used as the ini-
tial segmentation level before entering the interaction loop.
For the selection of class initialisation segments Si, the seg-
ments in which the target sound class Ci is the loudest were
selected. For each texture segment τ we compute an en-
ergy ratio: RCi,τ = ECi,τ/

∑
l 6=iECl,τ where ECi,τ is the

root mean square energy of the τ th texture segment for the

class Ci. ECi,τ =
√

1/Lτ
∑kτ+Lτ−1
k=kτ

x2
i (k) with xi the

signal of the class Ci. For a given sound class Ci, the tex-
ture segment which maximizes the ratio RCi is selected as
the initialisation segment for Ci. In the interaction loop, the
successive interaction steps of the user with the system, ex-
posed in Section 3.1 were simulated for the 500 sound files
of the whole corpus. In this work, for active learning seg-
ment selection, we filter segments shorter than 0.5 s since
they could be misjudged by the user when asked for valida-
tion, due to human perception limitations. A basic version
of the function undo is also simulated: if an acceptable level
of satisfaction (F-measure ≥ 0.85) is reached for a given
class Cl, the results must not decrease in the next iterations.
Therefore, if the results decrease, we suppose that the user
will use the undo function and lock the class Cl to retain
the previous classifier predictions and re-use them (without
further updating) for the next iterations.

4.3 Results

We monitored the behaviour of the F-measure scores for 500
pieces over the iterations of the algorithm with the differ-
ent interactive approaches. In the different methods, we fix
a maximum number of iterations of 30 since good results
should be obtained in a reasonable number of interactions.

As it was observed in our previous work [10], the re-
sults decrease accordingly with the polyphonic complexity
of the pieces. Figure 3 shows the F-measure results across
the iterations for a particular class with the MP approach
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Figure 3. F-measure versus number of iterations for the MP
approach (polyphony = 4). The central mark is the median,
the edges of the box are the 25th and 75th percentiles and the
whiskers extend to the minimum and maximum data points.
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Figure 4. F-measure versus number of iterations for the
OP1 and OP2 approaches (polyphony = 2).
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Figure 5. F-measure versus number of iterations for the
OP1 and OP2 approaches (polyphony = 4).

(polyphony=4). It is observed that good results can be ob-
tained after 10 iterations with this reasonable polyphonic de-
gree. Given the nature of this approach, which permits the
user to focus on one class for the whole process, the obtained
number of iterations must be multiplied by the number of
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classes to adress in the music piece.
Figure 4 compares the one-pass approaches (OP1 and

OP2) for a polyphonic degree of 2. The Figure 5 compares
the same approaches for a polyphonic degree of 4. The re-
sults show that the method OP2 which introduces new mix-
ture classes with user feedback gives better results. These
approaches are both considering all the classes of interest
at the same time and we observe that they can reduce the
total number of iterations comparing to the MP approach
in which the user must repeat the process to address all the
classes. A satisfying median F-measure of 0.85 can be ob-
tained in 20 iterations with OP2 for a whole piece.

5. CONCLUSION

In this paper, we have proposed two different interactive ap-
proaches for helping the analysis of electro-acoustic music.
In the multi-pass approach, the user focuses on one sound
class at each time. In the one-pass approaches, the user
gives a more informative feedback to treat all the classes
of the file simultaneously. The results show that the MP ap-
proach is more adapted to a small number of classes: if the
number of classes to transcribe is important, satisfying re-
sults can be obtained in a smaller number of iterations with
OP2 (the most effective one-pass approach).

Future works will focus on integrating the labeling infor-
mations of the initial clustering. To validate the system with
real pieces, we will extend the evaluation to real users and
work on the design of an appropriate user interface.
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ABSTRACT 

Our information technologies do not respond to the world's 
multicultural reality; in fact, we are imposing the paradigms 
of our market-driven western culture also on IT, thus facili-
tating the access of a small part of the world’s information 
to a small part of the world's population. The current IT re-
search efforts may even make it worse, and future IT will 
accentuate this information bias. Most IT research is being 
carried out with a western centered approach and as a re-
sult, most of our data models, cognition models, user mod-
els, interaction models, ontologies, etc., are culturally bi-
ased. This fact is quite evident in music information re-
search, since, despite the world's richness in terms of musi-
cal culture, most research is centered on CDs and metadata 
of western commercial music. This is the motivation behind 
a large and ambitious project funded by the European Re-
search Council entitled "CompMusic: Computational Mod-
els for the discovery of the world's music." In this paper we 
present the ideas supporting this project, the challenges that 
we want to work on, and the proposed approaches to tackle 
these challenges. 

1. INTRODUCTION 

In the last decade there has been great progress in the field 
of Music Information Retrieval, but the rate of improve-
ment in most retrieval tasks, like the ones evaluated within 
the MIREX1 initiative, is clearly slowing down. We are 
starting to see the limits of the current signal processing and 
machine learning approaches and efforts are being made to 
find new ways to advance in terms of the currently identi-
fied problems. However, maybe more importantly, there are 
many relevant problems that have not yet been looked at for 
which current methodologies may not work at all. For these 
new problems, it is even more important to concentrate on 
new research approximations for the computational proc-
                                                
1 http://www.music-ir.org/mirex 
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essing of music information. But, which approximations 
should we use and what new problems should we look into? 
    The most general and common approaches used in music 
information processing are based on data modeling; they 
start from large data repositories and use signal processing 
and machine learning techniques to construct models. We 
should combine these approaches with other research 
methodologies, like the ones coming from Musicology, 
Cognition or Human Computer Interaction. The approaches 
coming from Musicology develop models originating from 
music theory in which a thorough formalization contributes 
to an understanding of the theory itself, its predictions, and 
its scope. On the other hand, the approaches coming from 
Cognition aim at constructing theories of music cognition, 
formalizing the mental processes involved in listening to 
and performing music. The approaches than have been de-
veloped by the Human-Computer Interaction research 
community focus on the users and bring in methodologies 
coming from behavioral sciences. There is a need to expand 
the information modeling methodologies but we should do 
it with a cross-fertilization approach. 
    Making sense of music is much more than decoding and 
parsing an incoming stream of sound waves into higher-
level objects such as onsets, notes, melodies and harmonies. 
Music is embedded in a rich web of cultural, historical, 
commercial, technological and social contexts that influ-
ence how it is produced, disseminated and perceived. For 
example, many qualities or categorizations attributed to a 
piece of music by listeners cannot solely be explained by 
the content of the audio signal itself. It is thus clear that 
high-quality automatic music understanding and description 
can only be achieved by taking into account information 
sources that are external to the actual music signals.  
    Despite recent efforts by the MIR research community to 
open up towards non-western music [1] the major focus has 
been on the study of a few aspects of the western commer-
cial music of the past few decades. This music repertoire 
has conditioned the problems that we are working on and 
thus the solutions obtained. If we study other aspects, and 
especially other types of music, we will find new interest-
ing problems to be solved that will require new methodolo-
gies and new solutions.  
    For the development of music information models, it is 
of great advantage to work with musical repertoires, thus 
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musical cultures, that have a classical tradition and for 
which there is a relevant body of academic studies avail-
able. Despite the trend towards a musical monoculture [2] 
there are robust music cultures with a classical tradition in 
places like China, India, Turkey, Indonesia, or in the Arab 
world, traditions that form a counterpoint to the western 
music context. A few of these musics have excellent musi-
cological and cultural studies available; they maintain per-
formance practice traditions and they exist within real so-
cial contexts. Thus, some of these traditions can be an ex-
cellent ground on which to build new information models 
and the means to challenge the dominant western-centered 
information paradigms. If we are able to describe and for-
malize the music of these cultures we might open up the 
current information models in a way to better capture the 
richness of our world's music [3]. 
    CompMusic, a research project funded by the European 
Research Council, was born from these concerns and from 
the realization that unless we do something, we might lose 
our world's cultural richness. What the European coloniza-
tion of many parts of the world did not completely achieve, 
that is, to westernize their cultures, will now happen by the 
global use of our western-centric information technologies. 
These information technologies, and even more, the future 
technologies emerging from current research, will have a 
great impact on the way we maintain, access, and use the 
world's information resources, and thus they will condition 
the survival of that information and of the cultures that pro-
duce it. Unless the information technologies support the di-
versity of cultural perspectives that exists in the world, we 
will slowly lose our wonderful world cultures. 
    It could be argued that there is no need to look outside 
western music to find new problems with which to improve 
our MIR techniques. It is completely true: there are many 
aspects of our classical, folk and other western music tradi-
tions for which current MIR methodologies do not work. 
But it is also true that when we try to analyze some of the 
non-western classical traditions, our research limitations 
become even more obvious, and it might be easier to look 
at the problems with a fresh perspective, without being con-
taminated by our traditional view on western music. At the 
same time, the opportunity to help bring new musical tradi-
tions into the world of Music Computing is a very reward-
ing task. 

2. PROJECT OBJECTIVES AND APPROACHES 

The main objective of the CompMusic project is to pro-
mote and develop multicultural perspectives in Music 
Computing research. We want to identify music problems 
coming from culture-specific contexts and work on solu-
tions that might result in new computational methodologies 
of interest for a wide variety of music information process-
ing problems. 
    In music computing research there is a need to advance 
in the description and formalization of music with the aim 

to make it more accessible to computational approaches. In 
this project we will work on finding ways to reduce the 
known gap between audio signal descriptions and semanti-
cally meaningful music concepts. But we believe that we 
will only make progress if we approach this issue by com-
bining academic disciplines, such as Information Process-
ing, Computational Musicology, Music Cognition and 
Human-Computer Interaction, thus using both qualita-
tive/quantitative methodologies and scientific/engineering 
approaches. We also need to work with a variety of infor-
mation sources, such as audio features, symbolic scores, 
text commentaries, or user evaluations. Therefore, we need 
to open up the research methodologies being used. 
    CompMusic will take a cultural approach, meaning that 
information modeling techniques will be developed for 
specific music repertories with emphasis on their cultural 
contexts. To model a musical repertoire we need to under-
stand and model the music together with the user commu-
nity that creates, enjoys and supports that particular music. 
    An important consideration in a cultural-specific re-
search approach is the issue of who should be involved. 
We need to involve different cultural perspectives. We be-
lieve that is not possible to carry out such a project solely 
with a research group immersed in a cultural context dif-
ferent to the one to be studied. CompMusic will involve 
experts, research teams and users immersed in the musical 
cultures being studied.  
    Given the availability of musicological/cultural studies 
and our existing collaborations with researchers and ex-
perts within diverse musical cultures, in CompMusic we 
will study art music traditions in India (Hindustani and 
Carnatic), Turkey (Ottoman), North Africa (Andalusian), 
and China (Han). All these traditions offer large and useful 
information sources from which to develop our project. 
However, knowing that we will not be able to cover it all 
with the same depth, we have decided to first focus on the 
Hindustani, Carnatic and Ottoman traditions, and progres-
sively incorporate specific aspects of the other cultures. 
    The Hindustani and Carnatic music traditions of the In-
dian subcontinent offer the possibility to study relevant 
problems in all aspects of interest to this project. Their in-
struments, such as the Tambura, the Veena or the Sitar, 
have been built to emphasize sonic characteristics that are 
quite different to those of the typical western musical in-
struments. The concepts of Raga and Tala are completely 
different to the western concepts used to describe melody 
and rhythm, thus their understanding and computational 
description requires new approaches. Their particular im-
provisatory nature based on the Ragas makes these reper-
toires very alive and constantly evolving. The musical 
scores used in both Hindustani and Carnatic traditions 
serve a different purpose to those of western music and 
thus have to be studied differently. The tight musical and 
sonic relationship between the singing voice, the other me-
lodic instruments, and the percussion accompaniment 
within a piece, requires going beyond the analytical and 

152



12th International Society for Music Information Retrieval Conference (ISMIR 2011)  
 

modular approaches commonly used in MIR. The special 
and participatory communication established between per-
formers and audience in concerts, offers great opportunities 
to study issues of social cognition. The specific differences 
between Hindustani and Carnatic traditions in all the as-
pects mentioned permit the study of musical and cultural 
differentiation issues. Even though we will only be able to 
tackle some of these problems in this project, we hope to 
encourage other researchers to study many of the others. 
    Ottoman art music is very much in the intersection of 
many music traditions. The Turkish culture is at the junc-
tion of European and Asian cultures, and its musics reflect 
this geo-strategic position. The makam and its performance 
practice, the basis for the melodic organization of Ottoman 
music, offer a very rich source of microtonal studies, and 
there is already extensive theoretical work on its character-
istic non-equal-tempered pitch organization. Its complex 
rhythmic patterns also challenge the audio analysis ap-
proaches currently used in MIR. This music culture offers 
a great context in which to study the open debate in many 
music traditions on the relevance of theory versus practice 
in the understanding of a given music repertoire. The adap-
tation of the western music notation to fit the microtonal 
aspects of their music, together with other European music 
influences, also offer a challenging set of musical style 
characterization problems. It is remarkable that despite all 
the cultural influences and political pressures, Ottoman art 
music has maintained a strong personality and an active 
social context. In fact, it is a music that has influenced 
many music traditions of both Europe and the Middle East, 
an aspect that also deserves a thorough study. 
    Andalusi music can be traced back to the time when the 
Arabs had a flourishing culture in Al-Andalus (now part of 
Spain) for many centuries. This music tradition had to 
move its main center to North Africa when the Arabs were 
forced to leave Al-Andalus at the end of the 15th century. 
These historical and geographical developments give us 
very interesting cultural context problems to be studied. 
Andalusi music shares many fundamental characteristics 
with Ottoman tradition, for example the maqams used are 
very much related to the Ottoman makams. Thus, the com-
parative study of these two traditions should be very fruit-
ful. Also the fretless Oud, a preeminent instrument upon 
which most of the theoretical studies of this music tradition 
have been based, can give us relevant insights into the 
characteristics of the music. The approach to this classical 
tradition is more difficult for us than the others given the 
lack of research activity in the Arab countries of North Af-
rica related to computational musicology. It will be diffi-
cult to find collaborators for this project in these countries. 
    The other music culture that we want to study, the Han 
music of China, is also an amazing source of information 
processing problems. The relationship between language 
and music in a culture that has a tonal language offers in-
teresting research problems. The importance of the tradi-
tional philosophies and nature in all Chinese classical art 

forms gives a completely different context to the Han mu-
sic. For example, the concept of emotion in this music has 
a different meaning to the one used in the west, and the so-
cial function of the music is also very different. From all 
the cultures that we want to study, the Han culture is the 
one that has had the least contact with the western aca-
demic world and most musicological studies have been 
published only in Mandarin and available only in China. 
Thus, collaboration with researchers and experts immersed 
in that culture is even more important. 
    Apart from the issues that can be studied on each music 
repertoire, it is very relevant to work on the problems that 
arise from comparative studies. Typically, the available 
comparative studies focus on the comparison between any 
music cultures and western classical music. But it is impor-
tant to also make comparative studies between the different 
non-western musical cultures. For example, it is interesting 
to compare the Indian concept of raga with the Ottoman 
concept of makam, or the improvisatory strategies used in 
Indian music with the ones used also in Ottoman music. In 
fact, all the musical cultures selected in this project were 
part of what is known as the Silk Road. This was a network 
of trade routes across the Asian continent that connected 
East, South, and Western Asia with the Mediterranean 
world, as well as North, East, and Northeast Africa and 
Europe, for almost 3,000 years. This trade connection had 
a great impact on the development of all these musical cul-
tures and it is thus fascinating to understand these mutual 
influences. In this project, we will promote a tight collabo-
ration between the researchers working in the different 
countries and on the different culture-specific problems in 
order to understand these cross-cultural issues. 

3. PROJECT TASKS 

The culture-specific problems on which we will start work-
ing are not yet defined; in fact, this is now the main work in 
progress, together with putting together the initial research 
team. So far we have defined the main general and trans-
versal tasks and research approaches that we will use to 
tackle our ambitious aims. These tasks are: (1) to gather 
and organize audio recordings, metadata, descriptions, 
scores, plus all the needed contextual information of the 
selected music repertories; (2) to identify and study the re-
quired musicological references in order to understand the 
chosen repertories within their cultural context; (3) to de-
sign the ontologies needed to annotate and analyze the 
gathered music collections; (4) to work on audio content 
analysis approaches to help describe the music collections 
chosen; (5) to work on a social-computing approach to 
characterize users and communities, modeling their musical 
preferences and behaviors; and (6) to develop systems that, 
by integrating the results of this project, can show the rele-
vance of this research approach for the discovery of our 
world's music. 
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Figure1. General project tasks. 

3.1 Data gathering 

A major issue in the gathering and organization of the rele-
vant information for this project is the data formats used. 
Most databases and protocols that we have used in previous 
information processing projects were designed for housing 
western pop music. As a result, important information 
would be lost if we just used the same schemas to organize 
the types of music that this project works on. We will con-
vert our current framework into a more freely structured 
database, based on RDF1 (Resource Description Frame-
work) and graph database technologies. This will enhance 
the storage system’s support for heterogeneous data and 
allow for the flexible addition of new data as it becomes 
available. We also want to contribute and take advantage of 
the existing online data repositories that use open licenses, 
like Wikipedia (general encyclopedia), MusicBrainz (CDs 
metadata), Mendeley (bibliographical references), or Free-
sound (audio clips)2. The goal is to be active in the Open 
Data Movement3 promoting it within our research commu-
nity. 
    We will also have to make some recordings and carry out 
fieldwork in order to gather specific data with which to 
tackle some of the identified research problems. All this 
data will be made available through the existing open re-
positories, or, if not appropriate, it will be placed on this 
project's website, also using open licenses. The CompMusic 
website4 is used both as this project's dissemination portal 
and as a collaborative framework in which anyone inter-
ested in the objectives of this project can get involved and 
contribute information. 

                                                
1 http://www.w3.org/RDF 
2 http://wikipedia.org, http://musicbrainz.org, http://mendeley.com, 
http://freesound.org 
3 http://en.wikipedia.org/wiki/Open_Data 
4 http://compmusic.upf.edu 

3.2 Musicological studies 

There is no lack of musicological research on the chosen 
musical cultures, e.g. [4], and we need to study it to under-
stand the musical specificities of each repertoire, the simi-
larities and differences between the selected music cultures, 
and what can distinguish them from classical western cul-
ture. Each classical music tradition has developed its own 
instruments, compositional styles, performance practices, 
social uses, and contexts. However, we find very different 
points of view, sometimes opposing ones, in existing litera-
ture, and we will be collaborating with musicologist from 
the different music cultures in order to understand those 
points of view and to be able to develop appropriate musi-
cological perspectives for our identified problems.  
    An important part of the traditional musicological re-
search of western music is based on the study of symbolic 
representations, scores, and given that our chosen reper-
toires are mainly based on oral traditions, their existing 
symbolic representations have been studied much less. 
There is some work on the extension and use of digital rep-
resentations like the Humdrum toolkit5 or MusicXML6 to 
analyze non-western music notations that we want to con-
tinue. This type of analysis is very complementary to that 
which is audio-based and can be used to study some com-
positional and semantic aspects of music.  
    The development of a musicological framework is fun-
damental to properly contextualizing most of our research 
work. In particular, to identify the relevant problems to be 
studied, to agree on the terminology to use for the different 
culture-specific musical concepts, to balance the theoretical 
with the practical perspectives that will be involved in the 
different problems, and also to interpret the computational 
results obtained. 

3.3 Ontologies design 

To process and share information in open environments we 
need a common understanding of the meaning of the data, 
thus we need to specify how concepts and terms of a given 
domain are understood, specifications that are known as 
ontologies. For example, Music Ontology7 [5] is being de-
veloped by an open community of experts as a formal 
framework for dealing with music-related information on 
the Semantic Web, including editorial, cultural and acoustic 
information. It was started with the goal of capturing the 
musical production process, but we propose to extend it to 
express the variety of concepts that will be indentified in 
the study of the selected musical cultures. We will also ex-
plore the approaches coming from what is known as emer-
gent semantics [6] in order to develop ontologies from our 
gathered data repositories and from mining music-specific 

                                                
5 http://musicog.ohio-state.edu/Humdrum 
6 http://www.recordare.com/musicxml 
7 http://musicontology.com 
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websites (e.g., music magazines, deep musical discussion 
forums, or reputed blogs about music). 
    As soon as we take a culture-specific approach in the 
study of music, the issues of terminology and language be-
come very important. We will have to develop multi-
language ontologies from which to capture the musical 
concepts used by the different cultures, a task that will be 
done by musical experts. But we will have to deal with the 
diversity of meanings that a single term may have within a 
single tradition or the fact that different terms can signify 
the same or very similar meanings within that same culture.  

3.4 Audio description 

The extraction of musically and culturally meaningful fea-
tures from audio recordings of different music repertoires 
requires introducing new approaches, and for sure, extend-
ing the existing signal analysis techniques and machine 
learning methods. The fact that the music traditions chosen 
in this project have fundamental differences from western 
music traditions, such as different musical instruments, tun-
ing systems, performance styles, or musical forms, imply 
that at the level of feature analysis, most of the descriptors 
and extraction methodologies being used to analyze com-
mercial western music are not appropriate, or at least they 
have to be developed much further. Even at the level of 
acoustics there are very interesting and important differ-
ences between western musical instruments commonly used 
and the instruments used in other classical traditions. This 
basic consideration has profound implications at all musical 
levels.  
    Both the fact that most musical audio features are interre-
lated and that their musical meaning is very much context 
dependent will have to be emphasized in our project. The 
recent approaches in audio analysis based on joint estima-
tion of audio features [7] are especially relevant to finding 
more perceptually meaningful music characterizations. 
Also the current trend towards knowledge-based and top-
down signal processing [8] is very relevant in our case 
since many of the music features of a given music reper-
toire cannot even be analyzed without using information 
from the cultural tradition they are part of. 
    Within most cultural traditions, music performance is 
learned by imitation and music appreciation is developed 
implicitly from listening. One of the consequences of this is 
that most people, even the experts, have a very difficult 
time verbalizing their musical opinions, but they are able to 
express those opinions through examples. Based on this, 
our audio description work will use informed audio refer-
ences supplied by experts as our main data sources, then we 
will focus on extracting musically meaningful features from 
them and on developing similarity measures between them.  

3.5 Community profiling 

The understanding and characterization of the musical pref-
erences and behaviors of groups of people sharing a given 

musical culture is a new and complex problem with very 
little prior work. Theoretically, this profiling could be de-
veloped explicitly by asking music lovers and experts of a 
given community, but in this project we want to focus on 
the implicit characterization of online communities, that is, 
characterizing groups of people that leave a trace on the 
Web. We would like to capture the musical behavior of a 
given online user group by exploiting information sources 
such as web search statistics, musical preferences extracted 
from social networks, or data inferred from demographical, 
geographical, and psychographical data (personality, val-
ues, attitudes, and interests). The actual musical profile of a 
group should be expressed through the audio descriptors of 
the music they interact with, ontologies generated by them, 
and from the automatically extracted information about 
their cultural context and behaviors. Provided that we have 
access to the appropriate data, with this type of information 
we should be able to characterize any music community 
active online.  
   A good starting point for this work is the current research 
within the field of social computing [9], concerned with the 
intersection of social behavior and computational systems. 
Especially relevant is the research on the analysis, model-
ing and knowledge extraction from communities of users. 
The work following the ideas of emergent semantics pro-
poses the analysis of online communities for the extraction 
of ontologies that structure the concepts and terms of a par-
ticular domain [6]. Peter Mika [10] proposes a unified 
model of social networks and semantics where social tag-
ging systems can be modeled as a tripartite graph with Ac-
tors, Concepts and Instances (Actor-Concept-Instance 
model). By analyzing the relations between concepts both 
on the basis of co-occurrence in instances and common us-
age by actors (users), lightweight ontologies can emerge 
from online communities. A completely different approach 
to community knowledge extraction for the design of on-
tologies is proposed in [11], where a Web portal with col-
laborative ontology management capabilities is imple-
mented. However, the field is very young and there is still a 
conceptual gap between this vision and its possible imple-
mentation; only very simple ontologies can emerge. 
    A computational approach to community profiling re-
quires having access to data from relevant online communi-
ties. In our project we are starting with Freesound, an open 
collaborative sound database developed by our research 
group where people with different interests share audio 
clips. Given its characteristics and our involvement in its 
development, it offers a good platform to carry out studies 
on social networking, specifically on community profiling, 
and to explore technological solutions to promote specific 
musical activities, which is also an important aspect of our 
project. There is a lot to be done in understanding the gen-
eral issues of profiling of online communities. Only after 
we get a handle on the basic issues will we be able to face 
the specific profiling problems of the music communities of 
relevance to the CompMusic project. At this time we have 
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not yet identified online communities that would be appro-
priate for our research objectives, but given the fast growth 
of online communities we should be able to find relevant 
music sites to study our culture-specific issues. 

3.6 System integration 

Quite a number of musical applications could take advan-
tage of the expected research results of this project. We can 
focus on application areas such as music education, music 
creation, music appreciation, music recommendation, etc., 
or any particular application that might benefit from an in-
formation processing engine able to process our world's 
music, respecting its culture specificity and that of the us-
ers. In this project we want to exemplify the benefits of our 
multicultural approach to music computing by either devel-
oping new music systems or by extending the functionality 
of existing ones—functionalities related to automatic music 
analysis, categorization, learning or discovery.  
    The development of a culture-driven system should be 
much more than the addition of a set of components; our 
system should be interactive and evolve with the users, with 
the context, and with the availability of new information. 
Even the concept of interface design becomes a critical is-
sue when approached from a multicultural perspective. Can 
we have a single interface for a system to be used by differ-
ent cultures? We think not. The interface has to adapt to the 
users’ cognitive/cultural structures and has to engage them 
using the values and attributes of their own culture. All 
these aspects require specific research before even consid-
ering any system development. 
    Within CompMusic there is no particular aim of develop-
ing complete systems, but we want to put together proto-
types with which to demonstrate our research results. How-
ever since this task will be worked on during the last part of 
this project, at this stage it does not make much sense to 
continue to describe the details or even the type of system 
that will be developed. 

4. CONCLUSIONS 

CompMusic is a big and ambitious project that aims at hav-
ing an impact not just within the Music Computing field but 
also, more generally, on the overall field of information 
technology. With funding from the European Research 
Council we will be able to support the research work of 
quite a number of PhDs and post-doctorates from different 
parts of the world covering all areas described in this arti-
cle. In addition, we also aim to bring in a disruptive point of 
view in IT by promoting, and showing the validity of, a 
new research approach rooted in a multicultural perspec-
tive.  
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ABSTRACT

The issue of tuning in Indian classical music has been, his-
torically, a matter of theoretical debate. In this paper, we
study its contemporary practice in sung performances of Car-
natic and Hindustani music following an empiric and quanti-
tative approach. To do so, we select stable fundamental fre-
quencies, estimated via a standard algorithm, and construct
interval histograms from a pool of recordings. We then com-
pare such histograms against the ones obtained for differ-
ent music sources and against the theoretical values derived
from 12-note just intonation and equal temperament. Our
results evidence that the tunings in Carnatic and Hindustani
music differ, the former tending to a just intonation system
and the latter having much equal-tempered influences. Car-
natic music also presents signs of a more continuous dis-
tribution of pitches. Further subdivisions of the octave are
partially investigated, finding no strong evidence of them.

1. INTRODUCTION

Pitch relationships are at the heart of composition and im-
provisation in the large majority of musical cultures [1]. The
tuning system plays an important role in these relationships,
deeply influencing many musical qualities such as mood,
consonance or timbre [11, 17]. Traditionally, tuning has
been a relevant subject of study from musicological, his-
torical and theoretical perspectives (see [11] and references
therein). Current technologies allow for a more empiric and
quantitative analysis of the different tunings that enrich our
musical experience, specially those used by non-Western
cultures or the ones which substantially differ from equal
temperament [6, 13, 17, 19].

In Indian classical music, both in Carnatic (South) and
Hindustani (North) musical traditions, musicologists have
comprehensively covered the issue of tuning (e.g. [15, 18]).

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

Typically, one finds seven notes, called swaras, which are
denoted by Sa, Ri, Ga, Ma, Pa, Da and Ni 1 . Except for
the tonic and the fifth, all the other swaras have two varia-
tions each, which account for 12 notes in an octave, called
swarasthanas. It is a well accepted notion that a swarasthana
is a region rather than a point [18]. Therefore, in Indian mu-
sicology, a fixed tuning for each note is not as important as
it is, say, in Western classical music. Ornamentations are
essential, and part of the style.

Still, instruments are tuned using some method. For ex-
ample, Shankar [18] first presents a set of 12 notes tuned
in 5-limit just intonation [11] and later discusses the the-
ory of the 22 shrutis 2 , which fixes 22 unequal subdivisions
of the octave. Sambamoorthy [15] directly advocates for
this theory and states that “the number 22 represents the
barest minimum of shrutis that has been actually used in
Indian music from ancient times”, mentioning theories of
24, 27, 32, 48, 53 and 96 shrutis (see also [4] for a brief
overview). Such further subdivisions of the octave are very
debatable [8, 9, 14], even from a purely psychoacoustical
perspective [1]. Therefore, today, the theory of 22 shrutis
is under controversy, with some musicologists claiming that
they are no more used, replaced by the basic set of 12 notes
[14]. The tuning of these 12 notes is also debated, with au-
thors claiming it to be either just intonation, equal-tempered
or a mixture of both [9, 16].

Signal processing techniques and computational resources
can shed light to the above discussion, providing empiric
and quantitative evidence. Initial experiments along this line
reported a high variability in the intonation of notes, both
in Carnatic and Hindustani music (see [7–9] and references
therein). In [7, 8], Krishnaswamy employed different pitch
tracking methods (based on the Fourier transform, the auto-
correlation function and source separation) to analyze sev-
eral Carnatic music pieces with different instruments each
and found only 12 distinctive intervals. Still, he did not
provide any clear statement whether these intervals corre-
sponded to equal temperament or just intonation. Mahendra
et al. [12] used an autocorrelation-based method for pitch es-

1 They are analogous to European solfège’s Do, Re, Mi, Fa, Sol, La, Si.
2 Literally, “that which is heard”. A shruti “is the smallest audible dif-

ference of pitch. It is a fraction of a semitone”, with no constant value [15].
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timation and found clear signs of equal temperament. How-
ever, their analysis was done with very few recordings and
without providing much detail of them. Larger collections
were analyzed by Datta et al. [2–4], who employed a phase-
space analysis and a series of post-processing methods to
study the shrutis in Hindustani music. Among other results,
they report a slightly better fit for 12 interval scales com-
pared to 22 shruti scales in [2]. However, no substantial
differences were found between the considered scales (in-
cluding the 12-interval equal-tempered one). In subsequent
papers [3, 4], the same authors provided evidence for the
existence of 22 shrutis, although they reported some contra-
dictions.

In this paper we study the tuning of several Indian music
recordings. In order to do so, it makes sense to focus on
the singing voice, since it is not constrained in its pitch con-
trol, it is the reference to be followed by all the other instru-
ments and it has many solo sections, easy to analyze, in all
performances [15]. Using standard techniques, we estimate
the fundamental frequencies of sung recordings and, based
on a pool of these, build an interval histogram. Interval his-
tograms for different data sources are then used to assess the
plausibility of just intonation and equal temperament tun-
ings, both in Carnatic and Hindustani music. We compare
the interval histograms obtained from these sources against
the ones obtained from both synthetic and real signals, the
latter coming from commercial Western music recordings.
The possibility of 22 shrutis and the issue of tuning variabil-
ity in Indian classical music are also discussed.

The rest of the paper is organized as follows. First, we
present our methodology, both for estimating fundamental
frequencies and for computing interval histograms (Sec. 2).
Next, we present and discuss our results for different sets of
recordings (Sec. 3). Finally, we draw our main conclusions
and highlight future research lines (Sec. 4).

2. METHODOLOGY

2.1 Fundamental frequency estimation

Strictly speaking, most Indian classical music should be con-
sidered heterophonic. However, for the current analysis,
we carefully selected passages where the singer’s voice was
very predominant and substantially louder than the rest of
the usual accompaniment (Sec. 3.2). Therefore, the ana-
lyzed recordings can be roughly considered as monophonic.
Under this situation, we choose to estimate their fundamen-
tal frequency with an implementation of De Cheveigné &
Kawahara’s YIN algorithm [5].

First, we resample the audio to 44100 Hz, downmix it
to mono and apply a low-pass filter with a cutoff frequency
of 1200 Hz. Next, we estimate the fundamental frequency
in a moving window of 4096 samples with a hop size of
133 (93 and 3 ms, respectively). To do so, the time lag

τmin that yields a minimum of the modified autocorrelation
function d′n(τ) for each window n is selected [5]. Such
minimum d′n(τmin) corresponds to a value between 0 and
1, and provides a confidence value cn = 1−d′n(τmin) for
the fundamental frequency. We set the threshold for the
search of such minimum to d′Th =0.15 and discard lags be-
low 40 or above 882 samples (above 1100 and below 50
Hz, respectively). For a further refinement of the funda-
mental frequency, a three-point parabola interpolation and a
“best local estimate” within 20 ms is employed [5]. Finally,
each fundamental frequency for each window is converted
to cents, yielding what we call a pitch contour. Confidence
values cn are also kept.

Since we focus on tuning, and in order to mitigate poten-
tial errors of YIN, we consider only ‘stable’ regions of our
pitch contour. Indeed, we do not need a complete transcrip-
tion of the sung content, but only those parts of the contour
where the tuning can be assumed to be more or less constant.
Therefore, and following the ideas of Tidhar et al. [19], we
can apply some principle of “conservative transcription”. In
our case, we only do a kind of “steady state detection” [2]
and keep the cent and confidence values of the windows cen-
tered at a stable region of 400 ms (we consider a region to be
stable if the standard deviation of the pitch contour elements
of such region is lower than 20 cents).

2.2 Interval histogram computation

For each recording, a weighted histogram with a resolu-
tion of one cent is built by rounding the stable cent values
above. Confidence values cn are used as weights. The value
of the lowest/highest bin of the histogram corresponds to
the minimum/maximum value found in the stable regions
(minus/plus an arbitrary constant � 1). This weighted his-
togram is mean-smoothed by taking into account the 12 near-
est magnitudes of each bin (the 6 immediately lower and up-
per ones) and linearly normalized between 0 and 1. Notice
that, in contrast to Moelants et al. [13], we have not applied
any octave equivalence at preliminary stages. Therefore, we
are able to discriminate intervals larger than 600 cents.

In Indian classical music, the reference tuning frequency
substantially varies within performers [2, 15]. An intuitive,
natural and straightforward way to avoid the (usually not
trivial, see e.g. [2]) estimation of this reference frequency is
to employ intervals, a basic perceptual concept [1]. There-
fore, we opt to build and study an interval histogram, which
we denote as h. To calculate h, we select prominent peaks
of the mean-smoothed weighted histogram and compute all
the possible positive subtractions between peak bins (i.e. the
intervals). A peak bin is defined such that it has a magnitude
higher than the mean of all the histogram’s magnitudes and
higher than the ones of the nearest 50 bins (the 25 lower and
upper ones). Since in preliminary analysis we found clear
octave equivalences for all intervals, we mapped them to
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values between 0 and 1199 cents. For a better visualization,
the interval histogram is mean-smoothed by taking into ac-
count the 6 nearest values of each bin (the 3 lower and upper
bin magnitudes) and linearly normalized between 0 and 1.

3. RESULTS AND DISCUSSION

3.1 Synthetic data

To confirm the usefulness of our approach to detect tunings,
we first test it with synthetic data. To generate this data
we synthesize MIDI scores using a physically-modeled pi-
ano sound on Pianoteq 3 . We use the first 5 preludes and
fugues of Bach’s Well-Tempered Clavier and record them
using equal temperament and 5-limit just intonation (treat-
ing each MIDI channel as a different piece).

The interval histograms obtained for the synthetic sig-
nals show clear peaks at the theoretical interval positions of
equal temperament (hE) and just intonation (hJ) tuning sys-
tems (Figs. 1 and 2, respectively). These and subsequent
figures show the positions of the theoretical interval values
that would be obtained with equal temperament, just intona-
tion and the 22 shrutis (vertical lines; see Fig. 1’s caption).
The theoretical intervals obtained with just intonation over-
lap with the ones obtained with the 22 shrutis (c.f. [16,18]).
However, there are a few idiosyncratic locations where the
shruti intervals do not overlap with the just intonation ones:
at 21, 133, 337, 365, 835, 1067 and 1178 cents.

3.2 Carnatic and Hindustani intervals

We now analyze and comment the interval histograms ob-
tained with Indian classical music. We employ two mu-
sic collections composed of Carnatic (233) and Hindustani
(133) recordings of 30 sec to 4 min duration. The record-
ings are of both male and female singers of various schools
and singing styles (rachanas: geetams, varnas, keertanas and
kruti). They comprise artists with an active period from
1930 to present such as Balamurali Krishna, Sudha Raghu-
nathan, Maharajampuram Santhanam, John Higgins, Voleti
Venkateswarlu, Pandit Ajoy Chakrabarty, Amir Khan, Bhim-
sen Joshi, Vidyadhar Vyas or Girija Devi. All recordings
were selected such that the voice was very loud compared
to the rest (primarily alap parts from khyal compositions).
Voice was normally accompanied by the drone of a tambura
and/or a sarangi, the percussion of a mridangam or the tabla
and a violin 4 . In the case of Hindustani music we discarded
recordings that contained a harmonium since this could be
tuned to equal-temperament.

The interval histogram hC obtained for Carnatic music
suggests that statements about the use of a just intonation

3 http://www.pianoteq.com
4 A comprehensive summary of Indian instruments can be found

at http://chandrakantha.com/articles/indian_music/
instruments.html

Location Nearest JI Diff. JI Nearest ET Diff. ET
187 182 5 200 -13
201 204 -3 200 1
206 204 2 200 6
281 275 6 300 -19
302 294 8 300 2
314 316 -2 300 14
374 386 -8 400 -26
397 406 -9 400 -3
427 427 0 400 27
496 498 -2 500 -4
703 702 1 700 3
766 773 -7 800 -34
799 792 7 800 -1
813 814 -1 800 13
891 884 7 900 -9
906 906 0 900 6
923 925 -2 900 23
985 977 8 1000 -15
996 996 0 1000 -4

1009 1018 -9 1000 9

Table 1. Exact location of prominent peaks of hC, the near-
est locations of theoretical just intonation (JI) and equal-
tempered (ET) profiles and their respective differences (in
cents).

system could be true (Fig. 3). In general, prominent peaks
are closer to the theoretical interval positions of a just into-
nation tuning (Table 1). In particular, clear peaks were iden-
tified at 314, 427, 496, 703, 813, 906, 923 and 996 cents.
The correlation between the Carnatic (hC) and the just into-
nation (hJ) histograms yielded a value of r(hC,hJ)=0.552,
whereas the correlation between hC and the equal-tempered
interval histogram hE yielded r(hC,hE) = 0.448. The dif-
ference between correlations r(hC,hJ) and r(hC,hE) was
found to be statistically significant at p < 10−4, according
to Lawley’s equicorrelation test [10].

The interval histogram hH obtained for Hindustani mu-
sic, however, shows a clear tendency towards equal tem-
perament (Fig. 4). Except for few values distributed near
theoretical just intonation intervals (e.g. 92, 223, 792 and
884), the major part of the prominent peaks lie near theoret-
ical equal-tempered intervals (e.g. 300, 400, 800 and 900).
Prominent peaks for hH were found at 96, 202, 222, 299,
279, 395, 499, 597, 702, 794, 803, 897, 906, 1000, 1104 and
1108. All of them have an equal-tempered location as the
nearest one except 222, 279, 702, 906 and 1108, which have
a just intonation location as the nearest one. The correlation
between hH and hE yielded a value of r(hH,hE) = 0.723,
whereas the correlation against hJ was r(hH,hJ) = 0.641.
The difference between r(hH,hE) and r(hH,hJ) was found
to be statistically significant at p<10−4.
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Figure 1. Interval histogram for synthetic equal-tempered data (hE; bold line). Vertical black lines correspond to the theoretical
interval values of equal temperament (solid lines), just intonation (dash-dotted lines) and the 22 shrutis (dotted lines). The last
two overlap at many places (see text).
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Figure 2. Interval histogram for synthetic just intonation data (hJ; bold line).
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Figure 3. Interval histogram for Carnatic music (hC; bold line).
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Figure 4. Interval histogram for Hindustani music (hH; bold line).

This tendency towards equal temperament may be ex-
plained by the introduction of new instruments in Hindus-
tani music in the last centuries. Hindustani music, unlike
Carnatic, was more open to new influences, as the devo-
tional aspect lost its importance. Most instruments used
in Indian music have flexible tuning capabilities [15]. One
major exception is the hand-pumped harmonium, a mostly
equal-tempered instrument introduced in Hindustani music
in the late 19th century which is used extensively to accom-

pany the singer soloist. Therefore, it is logical to think that
such introduction has influenced the way the singers adjust
their pitch. Such influence has yielded, according to some
musicians, a “hybrid tuning system” [9], where most singers
try to maintain the flat third, but only the purist ones try to
also maintain the flat second and the flat sixth.

Going back to the interval histogram of Carnatic music
(hC; Fig. 3), we see that distributions around the theoreti-
cal interval locations are less peaky than the ones obtained
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Figure 5. Interval histogram for the fretted electric bass tracks (hB; bold line).

0 100 200 300 400 500 600 700 800 900 1000 1100 1200
0

0.2

0.4

0.6

0.8

1

Interval [cents]

R
el

at
iv

e 
fr

eq
u
en

cy

Figure 6. Interval histogram for the vocal Motown tracks (hM; bold line).

with other sources (see below). They are flatter, showing
less preference for specific locations, and extending up to
the bounds of the just intonation ones. This partially sup-
ports the idea of swarasthana regions (Sec. 1). On the other
hand, in the analyzed Hindustani music, we see consider-
ably peaky distributions in hH (Fig. 4), which contrasts with
the flatter distributions of hC. This suggests that in our Hin-
dustani recordings the distribution of pitches is much less
continuous than in the Carnatic ones.

As mentioned in Sec. 1, the actual use of the 22 shruti
scale is controversial. In the light of the results presented
here, we must conclude that there is no strong evidence for
the existence of this scale in our recordings. For the Hin-
dustani recordings, no peaks are observed at the idiosyn-
cratic locations we mentioned in Sec. 3.1. Thus we cannot
differentiate the intervals generated by the 22 shrutis from
the ones generated by 12 note just intonation. As for the
Carnatic recordings, we note that there is not much support
for these idiosyncratic locations. If we look at, for exam-
ple, 133, 835 or 1067 cents, we do not see any contribution
to hC. However, small contributions seem to be made at
337, 365 and 1178 cents. Overall, claims that the 22 shrutis
are perceivable but not actually played (e.g. [7–9]) acquire
strength. However, this phenomenon needs to be further
studied, also with behavioral and perceptual studies.

3.3 Comparison with Western practice

To conclude, we apply our methodology to a number of
selected Western recordings. In particular, we select 121
tracks of electric (fretted) bass extracted from a collection of
multitrack recordings of popular music pieces and 142 vocal

tracks extracted from a collection of multitrack Motown re-
cordings. These recordings comprise different commercial
artists whose active period was between 1960 and 2000. All
tracks were monophonic and without any sound effect that
could change their tuning.

The interval histogram of the electric bass recordings hB

shows no surprises (Fig. 5). All prominent peaks are very
close to (if not exactly at) the theoretical locations of equal
temperament intervals. We can appreciate the peakiness of
the distributions around, for example, 100, 200, 300, 400
or 500 cents. We find correlations r(hB,hE) = 0.831 and
r(hB,hJ)=0.478, which have a statistically significant dif-
ference at p<10−4.

The interval histogram of the vocal Motown recordings
hM presents some subtleties worth commenting (Fig. 6). In-
tuitively, since singers perform on top of an existing equal-
tempered background mix, one would expect hM to have
prominent peaks at the theoretical locations of equal tem-
perament intervals, in the same vein as hB. Although this is
true for many peaks (e.g. at 200, 300, 700 or 1000 cents), we
can also see some other peaks closer to just intonation po-
sitions (e.g. at 92, 112, 406, 792 or 874 cents). Indeed, the
correlations r(hM,hE) and r(hM,hJ) are very similar (0.463
and 0.477, respectively), with a difference that is only just
statistically significant (p ≈ 0.01). The issue of whether
there exist some traces of just intonation intervals in these
recordings is left for further investigation.

The fact that even Western Motown recordings better ap-
proach the just intonation locations than Hindustani mu-
sic reinforces our hypothesis that the latter has dramatically
suffered from equal-tempered influences. In addition, we
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should notice that the peakiness of hH seems to be slightly
larger than the one of hM, which indicates that the notion of
swarasthana regions may have been lost too.

4. CONCLUSIONS AND FUTURE WORK

The results in Sec. 3 shed light on some of the existing con-
troversies in the tuning of sung Indian classical music. First,
we demonstrate how a simplistic approach using standard
techniques allows us to assess, in an empiric and quanti-
tative manner, the usage of different tuning systems. Sec-
ond, we provide evidence that Carnatic music does not make
use of an equal-tempered tuning, showing that it presents a
strong correlation with 5-limit just intonation. Furthermore,
our findings support the notion that Carnatic music may be
less confined to strict intervals than the other recordings we
have analyzed (swarasthana regions). Hindustani music, on
the other hand, seems to be explained by a mixture of equal-
tempered tuning and 5-limit just intonation. In addition, we
find prominent peaks in its interval histogram, showing a
preference for stricter, more precise intervals. In the view of
our analysis, the theory of the 22 shrutis lacks strong quan-
titative evidence. However, we cannot rule out this theory,
since many of the intervals overlap with the just intonation
ones.

As future work, to resolve this ambiguity, we could em-
ploy a method for the estimation of reference tunings [2, 6].
In addition, more recordings should be gathered and differ-
ent categorizations than Carnatic and Hindustani should be
studied (e.g. different epochs [13], different ragas [3] and
different schools [2]). Furthermore, the fundamental fre-
quency estimation procedure could be refined [7,19], as well
as the histograms’ construction [6]. Unsupervised clustering
techniques could be also introduced [3, 4]. Finally, a relax-
ation and the effect of our ‘stability conditions’ should be
evaluated in depth.
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ABSTRACT

The cantillation signs of the Jewish Torah trope are of
particular interest to chant scholars interested in the gradual
transformation of oral music performance into notation.
Each sign, placed above or below the text, acts as a “melodic
idea” which either connects or divides words in order
to clarify the syntax, punctuation and, in some cases,
meaning of the text. Unlike standard music notation, the
interpretations of each sign are flexible and influenced by
regional traditions, practices of given Jewish communities,
larger musical influences beyond Jewish communities, and
improvisatory elements incorporated by a given reader. In
this paper we describe our collaborative work in developing
and using computational tools to assess the stability of
melodic formulas of cantillation signs based on two differ-
ent performance traditions. We also show that a musically
motivated alignment algorithm obtains better results than
the more commonly used dynamic time warping method
for calculating similarity between pitch contours. Using
a participatory design process our team, which includes
a domain expert, has developed an interactive web-based
interface that enables researches to explore aurally and
visually chant recordings and explore the relations between
signs, gestures and musical representations.

1. INTRODUCTION

In the last ten years there has been a growing interest in
music information retrieval (MIR). A variety of techniques
for automatically analyzing music based on both symbolic
and audio representations have been developed. In most
cases the target user of MIR systems has been the average
music listener rather than the specialist. There is an even
longer tradition of computational musicology dating back
to the 1950s of using mathematics, statistics and eventually
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c© 2011 International Society for Music Information Retrieval.

computers to study music. Most of this work in compu-
tational musicology has focused on the symbolic domain
and western music notation. More recently the idea of
Computational Ethnomusicology in which MIR techniques
are used to support research in musics from around the
world has been proposed [9]. Audio analysis techniques can
be used for empirical research on field recordings for which
no transcription is available or feasible.

The study of religious chant is of particular interest to
musicologists as it can help understand the transition from
oral transmission to codified notation. Jewish Torah trope
is “read” using the thirty cantillation signs of the te’amei
hamikra, developed by the Masoretic School between the
sixth to the tenth centuries. The Masoretes concurrently
inscribed the te’amim along with the vowels of the Hebrew
letters in order to ensure accuracy in future Torah reading,
thereby altering the previous mode of oral transmission. The
melodic formulae of Torah trope govern syntax, pronun-
ciation and meaning and their clearly identifiable melodic
design, determined by their larger musical environment,
is produced in a cultural realm that combines melodic
improvisation with fixed melodic reproduction within a
static system of notation.

The te’amim consist of thirty graphic signs. Each sign,
placed above or below the text, acts as a “melodic idea,”
which either melodically connects or divides words in
order to make the text understandable by clarifying syntax,
pronounciation and, in some cases, musical meaning. The
signs serve to indicate the melodic contour of a given
melody. Although the thirty signs of the te’amim are
employed in a consistent manner throughout the Hebrew
Bible, their interpretation is flexible: each sign’s modal
structure and melodic gesture is determined by the text
portion, the liturgy, by regional traditions as well as by
improvisatory elements incorporated by a given “reader”.

In the liturgical performance, the ba’al koreh (‘the owner
of reading’) embellishes the text with a melodic code,
providing the framework to decode the textual syntax of
the read Torah text by the reading religious community,
for whom text, and not melody, is primary. Since their
inscription, the primary functionality of the te’amim, to
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structure pronunciation and syntax, remained intact. But
as the Jewish people were dispersed throughout the world,
secondary levels of musical code were incorporated into the
te’amim. Borrowed melodies and modal structures, taken
from surrounding musical cultures allowed not only for
new melodic interpretations but also for external semiotic
musical meaning to permeate the musical interpretation of
the text. As an example, the left part of Figure 1 shows the
sign for the etnachta and the right part shows the melodic
contour of the performance of an etnachta.

בוֹ֑ט
Figure 1. The notational sign of the etnachta (indicated by
the arrow), and the melodic contour of an etnachta.

Chant scholars have investigated historical and phe-
nomenological aspects of melodic formulas within Jewish
Torah trope in order to discover how improvised melodies
might have developed to become stable melodic entities in
given Jewish communities. In this paper we investigate how
computational approaches can be used to support research
in this area. More specific, audio analysis is combined
with content-based similarity retrieval to explore the ways
in which melodic contour defines melodic identities. In
particular the question of melodic stability is investigated.
Observing certain key te’amim such as etnachta and tipha
we investigate aspects of self-similarity within Torah trope
within and across various Jewish communities (based on
recordings of Hungarian and Moroccan Torah trope). This
might give us a better sense of the role of melodic gesture
in melodic formulae in Jewish Torah trope practice and
possibly a new understanding of the relationship between
improvisation and notation-based chant in and amongst
these divergent traditions.

It is also possible that some of the te’amim have pre-
cursors to music (for instance basic syntactical divisions,
exclamations and sentence cadence structures). The ac-
tual performance of the te’amim also points to musical
aspects that, as scholars have pointed out, were coming
from musical cultures outside of Judaism (see e.g., [2]).
That which has been historically studied, the relationship
between Ashkenazi Torah trope and Christian plainchant,
can now be tested in terms of musical data analysis. By
measuring the flexibility and variability of the te’amim we
can show how fixed musical structures and improvisation
within these traditions co-exist.

2. RELATED WORK

Although most of existing work in music information re-
trieval has focused on either classical music or modern pop-
ular music, in recent years there has been a growing interest
in applying MIR techniques to other music traditions. The
term Computational Ethnomusicology [9] has been used
to describe such work. There are both challenges and
opportunities in applying MIR techniques to ethnic music
[5]. Some representative examples include: classification of
raag using pitch class distributions [4], comparative analysis
of western and non-western traditions using automatic tonal
feature extraction [8], rhtyhmic similarity applied to greek
and african traditional music [10], and singer identification
in rembetiko music [1].

The goal of this project is develop tools to study Torah
cantillation [14]. Of particular intest is the influence of
outside music cultures such as christian plainchant to the
performance of Jewish Torah trope [2]. The primary method
that has been used in the past to study chant recodings
has been listening and manual annotation. We believe
that the combination of automatic analysis with web-based
interactive visualizations can open new possibilities in em-
pirical musicological analysis of chant recordings. In the
development of both our techniques and web-based in-
terface we have followed an iterative participatory design
process where the domain expert (one of the authors) has
been regularly providing feedback and suggestions. Our
approach is based on ideas from the field of query-by-
humming (QBH) [6, 7] adapted to the particular charac-
teristics and constraints of our domain. In previous work
[12] we compared various representations and methods of
quantizing pitch contours in various chant traditions using
a similarity retrieval paradigm. In this paper we focus
on Jewish Torah trope, propose an alternative alignment
method and show how the developed techniques can be
used to inform musicological inquiries. To the best of our
knoweldge a data-rich approach to the study of Torah trope
as presented in this paper has not been attempted before.

3. DATA ANALYSIS

For this small-scale study, we use the recordings of two
readings of the same Torah passage, one from the Hungarian
(Ashkenazi) tradition 1 and the one from the Moroccan
(Sephardic) tradition. The two recordings used in this study
can be consulted at: http://cantillion.sness.
net/ismir2011. Both recordings have manually been
segmented into the individual te’amim by the author who is
a domain expert. Even though we considered the possibility

1 Recordings used with permission of the Feher Music Center in Tel
Aviv, Israel. Although this version was catalogued as being an example
of Hungarian cantillation, the trope melody and pronunciation correspond
more to Italian practices of Torah trope.
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of creating an automatic segmentation tool, it was decided
that the task was too subjective and critical to automate.
Each segment is annotated with a word/symbol that is re-
lated to the corresponding cantillation sign. Each recording
contains approximately 130 realizations of each ta’am with
a total of 12 unique te’amim.

3.1 Pitch Contour Representation

Each recording has been converted to a sequence of fre-
quency values using the SWIPEP fundamental frequency
estimator [3] by estimating the fundamental frequency in
non-overlapping time-windows of 10ms. The frequency
sequences have been converted to sequences of real-valued
MIDI pitches with a precision of 1 cent (which is 1/100 of
an equally tempered semitone, corresponding to a frequency
difference of about 0.06%). By allowing real-valued pitches
we have a one-to-one correspondence to the frequencies,
and a linear scale in the pitch domain. For each of the
recordings, we derive a melodic scale by detecting the peaks
in a non-parametric density estimation of the distribution of
pitches, using a Gaussian kernel. This can be viewed as
a smoothed frequency histogram. Prominent peaks in the
histogram correspond to salient pitches and can be used to
form a discrete pitch scale that is specific to the recording
rather than any particular tuning system.

In a previous study [12], mean average precision values
were computed for each of the scales containing 1 to 13
pitches, taking all realizations of the same ta’am as the
query segment as relevant items, and using a distance
measure based on dynamic time warping. The finding was
that quantizing the melodic contours according to the scale
containing two pitches resulted in the highest mean average
precision. Apparently, the two most prevalent pitches have
structural meaning.

In the current study we use a different approach. Instead
of quantizing the melodic contours, we scale them linearly
according to the two most prevalent pitches in the entire
recording. We denote the higher and lower of the two
prevalent pitches as phigh and plow, respectively. Each pitch
is scaled relative to plow in units of the difference between
phigh and plow. Thus, scaled pitches with value < 0 are
below the lowest of the two prevalent pitches and pitches
with value > 1 are above the highest of the two and pitches
between 0 and 1 are between the two prevalent pitches.
As a result, different trope performances, sung at different
absolute pitch heights, are comparable.

3.2 A distance measure for melodic segments

On the acquired scaled pitch contours we apply an align-
ment algorithm as described in [13], interpreting the align-
ment score as similarity measure. This approach is closely
related to the use of dynamic time warping in [12], but

the current approach uses a more advanced, musicologically
informed, scoring function for the individual elements of the
pitch sequences.

We use the Needleman-Wunsch global alignment algo-
rithm [11]. This algorithm finds an optimal alignment of
two sequences of symbols, which, in our case, are sequences
of pitches. The quality of an alignment is measured by the
alignment score, which is the sum of the alignment scores
of the individual symbols. If we consider two sequences of
symbols x : x1, . . . , xi, . . . , xn, and y : y1, . . . , yj , . . . , ym,
then symbol xi can either be aligned with a symbol from
sequence y or with a gap. Both operations have a score,
respectively the substitution score and the gap score. The
gap score is mostly expressed as penalty, i.e. a negative
score. The optimal alignment and its score are found by
filling a matrix D recursively according to:

D(i, j) = max


D(i− 1, j − 1) + S(xi, yj)
D(i− 1, j)− γ
D(i, j − 1)− γ

, (1)

in which S(xi, yj) is a similarity measure for symbols,
γ is the gap penalty, D(0, 0) = 0, D(i, 0) = −iγ,
and D(0, j) = −jγ. D(i, j) contains the score of the
optimal alignment up to xi and yj and therefore, D(m,n)
contains the score of the optimal alignment of the complete
sequences. We can obtain the alignment itself by tracing
back from D(m,n) to D(0, 0); the standard dynamic pro-
gramming algorithm has both time and space complexity
O(nm).

The similarity measure for symbols, which returns values
in the interval [−1, 1], is in our case defined as:

S(x, y) =

{
1− 4 |spx − spy| if |spx − spy| ≤ 0.5
−1 otherwise

,

in which scaled pitch of symbol x is

spx =
px − plow,x

pheigh,x − plow,x
,

in which px is the pitch of symbol x, represented in
continuous midi encoding, and plow,x and phigh,x are the
lowest and highest pitch in the entire recording to which
symbol x belongs. spy is computed in the same way. We
use a linear gap penalty function with γ = 0.6.

Since the score of an alignment depends on the length of
the sequences, normalization is needed to compare different
alignment scores. The alignment of two long sequences
results in a much higher score than the alignment of two
short sequences. Therefore, we divide the alignment score
by the length of the shortest sequence. Thus, an exact
match results in score 1, which is the maximal score. The
scores are converted into distances by taking one minus the
normalized score, resulting in distances greater than or equal
to zero.
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Figure 2. Web-based visualization interface which allows users to listen to audio, see pitch contour visualization of different
signs, and to enable interactive similarity-based querying.

4. USER INTERFACE

We have developed a browsing interface that allows re-
searchers to organize and analyze chant segments in a
variety of ways. Each recording is manually segmented
into te’amim. The pitch contours of these segments can
be viewed at different levels of detail. They can also
be rearranged in a variety of ways both manually and
automatically.

The interface shown in Figure 2 has four main sections: a
sound player, a main window to display the audio segments,
a control window, and a histogram window. The sound
player window displays a spectrogram representation of
the sound file with shuttle controls to let the user choose
the current playback position in the sound file. The main
window shows all the segments of the recording as icons
that can be repositioned automatically based on a variety of
sorting criteria, or alternatively can be manually positioned
by the user. The name of each segment (from the initial
segmentation step) appears above its F0 contour. The shuttle
control of the main sound player is linked to the shuttle
controls in each of these icons, allowing the user to set the
current playback state either way.

When an icon in the main F0 display window is clicked,
the histogram window shows a histogram of the distribution
of quantized pitches in the selected segment. Below this
histogram is a slider to choose how many of the largest
histogram bins will be used to generate a simplified contour
representation of the F0 curve. In the limiting case of
selecting all histogram bins, the reduced curve is exactly the
quantized F0 curve. At lower values, only the histogram

bins with the most items are used to draw the reduced
curve, which has the effect of reducing the impact of outliers
and providing a smoother “abstract” contour. Shift-clicking
selects multiple segments; in this case the histogram win-
dow includes the data from all the selected segments. We
often select all segments with the same word or ta’am; this
causes the simplified contour representation to be calculated
using the sum of all the pitches found in that particular
ta’am, enhancing the quality of the simplified contour
representation. Figure 2 shows a screenshot of the browsing
interface. We have implemented a mode that allows the
researcher to sort the segments based on the alignment score
from one segment to the other. The interface allows the user
to select an arbitrary segment from the interface, and then
perform a sorting of all other segments to it. In the example
shown in Figure 2, the user has chosen a revia, and has
sorted all the other segments based on their alignment-based
distance from this first revia. One can see that the segment
closest to this revia is another revia from a different section
of the audio file.

5. RESULTS AND INTERPRETATION

To investigate the stability in performance of the various
te’amim, we use two approaches. Firstly, we compute the
mean average precision for each of the te’amim based on the
alignment-distance. Each segment is taken as query and all
renditions of the same ta’am are taken as relevant items. The
higher the mean average precision, the higher the relevant
items are on the ranked lists that are obtained by sorting all
segments according to the distance to the query segment.

166



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

Ta’am Average Ta’am Average
(Morocco) Precision (Hungary) Precision

(Morocco) (Hungary)
sofpasuq 0.550 sofpasuq 0.994
katon 0.399 revia 0.967
tipha 0.306 etnachta 0.945
mapah 0.299 pashta 0.683
pashta 0.269 tipha 0.673
revia 0.245 katon 0.562
etnachta 0.234 mapah 0.550
zakef 0.206 merha 0.530
merha 0.158 zakef 0.231
munach 0.147 munach 0.179
kadma 0.036 kadma 0.040

Table 1. Mean average precision for different te’amim
based on the alignment distances.

The values are shown in Table 1.
Secondly, we show the distribution of distances between

renditions of the same ta’am by plotting histograms of those
distances. Figure 3 shows the distribution of alignment-
based distances between unrelated segments. This his-
togram can be used as reference for comparing distances
between related segments. The interface, as described in the
previous section, is used to examine the relations between
individual audio segments.
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Figure 3. Distribution of distances between unrelated
segments.

The obtained overall mean average precisions are 0.644
for the Hungarian rendition and 0.309 for the Moroccan one,
which are improvements concerning the results that were
previously achieved in [12] (0.505 and 0.229 respectively).
Using the current alignment-approach, the segments are
better recognized, but the overall trend appears the same,
namely a better retrieval result for the Hungarian rendition
as compared to the Moroccan. Since we do not know a-
priori whether every ta’am has a high level of distinction, we
cannot draw conclusions about the quality of our distance
measure from the MAP-values. A low MAP-value does not
necessarily mean that the distance measure fails, but could
also indicate that the performance of the specific ta’am is
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Figure 4. Distribution of distances between renditions
of the tipha in the Moroccan interpretation (left) and the
Hungarian interpretation (right).
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Figure 5. Distribution of distances between renditions of
the sof pasuq in the Moroccan interpretation (left) and the
Hungarian interpretation (right).

variable or not distinct from performance of other te’amim.
Therefore, in remainder of our analysis, we focus on var-

ious key te’amim, using differences between distances and
mean-average-precisions, along with musicological domain
knowledge, to draw conclusions. Observing the renditions
of sof pasuq and tipha in the Hungarian tradition, one
can derive that they inhibit a definite melodic stability.
For the sof pasuq we obtain a mean average precision as
high as 0.994 and for the tipha 0.673 (for comparison, the
figures for the Moroccan performance are 0.550 and 0.306
respectively). This indicates that the 17 sof pasuqs are both
similar to each other and distinct from all other te’amim.
The same applies to a somewhat lesser extent to the 24
tiphas. These findings are confirmed by the distributions
of distances as shown in Figures 4 and 5.
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Figure 6. Distribution of distances between renditions of
the etnachta in the Moroccan interpretation (left) and the
Hungarian interpretation (right).

Analyzing the distribution of distances between Moroc-
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can renditions of the etnachta, as shown in the left histogram
in Figure 6, one finds increased melodic variation while
the Hungarian interpretation shows greater melodic stability.
This is significant, as etnachta is an example of a disjunctive
ta’am, that has a clear functionality as a syntactical divider
within a given sentence. Such a melodic stability might
have been due to the influence of Christian Chant on
Jewish communities in Europe, as is the thesis of Avenary
[2]. Simultaneously, our approach using two structurally
important pitches also corresponds to the possible influence
of recitation and final tone as being primary tonal indicators
within Askenazi chant practice (which the Hungarian Torah
Trope is part of), thereby allowing for a greater melodic
stability per trope sign than in Sephardic chant.

The findings are interesting when observed in connection
with musicological and music historical studies of Torah
trope. It has long been known that the variety of melodic
formulae in Ashkenazi trope exceeded that of Sephardic
trope renditions. The te’amim actually entail more symbols
than necessary for syntactical divisions. That being said, in
certain te’amim, like in the version of etnachta, a greater
amount of melodic variability is presented. This is not
mirrored in the example of tipha, which serves to combine
words to make a clear syntactical unit. In both Hungarian
and Moroccan variants this ta’am shows a greater degree
of stability. This shows that certain conjunctive te’amim,
which show greater melodic stability, might also act as more
stable syntactical anchors in both traditions. One might
investigate if this is also true in other traditions (Iranian,
Yemenite and Lithuanian).

6. FUTURE WORK

In the current study, we took the two most prevalent pitches
for scaling. There are reasons to assume that for various
performance traditions different numbers of pitches are of
structural importance. We will investigate this in future
research. The presented method proves useful for the two
recordings under investigation. In a next stage, we will
collect much more data, with the aim to study stability
and variation between and within performance traditions
of Torah trope on a large scale, integrating the results into
ongoing musicological and historical research on this topic.
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ABSTRACT

This paper presents Tarsos 1 , a modular software platform
to extract and analyze pitch and scale organization in mu-
sic, especially geared towards the analysis of non-Western
music. Tarsos aims to be a user-friendly, graphical tool to
explore tone scales and pitch organization in music of the
world. With Tarsos pitch annotations are extracted from an
audio signal that are then processed to form musicologically
meaningful representations. These representations cover more
than the typical Western 12 pitch classes, since a fine-grained
resolution of 1200 cents is used. Both scales with and with-
out octave equivalence can be displayed graphically. The
Tarsos API 2 creates opportunities to analyse large sets of -
ethnic - music automatically. The graphical user interface
can be used for detailed, manually adjusted analysis of spe-
cific songs. Several output modalities make Tarsos an inter-
esting tool for musicological analysis, educational purposes
and even for artistic productions.

1. INTRODUCTION

A 2007 f(MIR) article by Cornelis et al. [3] argued that
access to ethnic music could become one of the next big
challenges for the MIR community. It gives an overview
of the difficulties of working with ethnic music: i) There is
an enormous variety of styles, timbres, moods, instruments
falling under ’ethnic music’ umbrella. ii) The absence of a
theoretical framework and a different attitude towards mu-
sic imply that western music-theory concepts do not always
apply. iii) A third factor that complicates access to ethnic

1 Tarsos is open source and available on http://tarsos.0110.be.
It runs on any recent Java Runtime and can be started using Java Web Start.

2 With the Application Programmers Interface tasks can be automated
by programming scripts. For an application see chapter 5.
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c© 2011 International Society for Music Information Retrieval.

Figure 1. A visualization of the music archive of the Royal
Museum for Central Africa. The dots mark places where
recordings have been made.

music is its distribution. Archives of ethnic music are often
not or not yet digitized, badly documented, and when meta-
data is available terminology and spelling may vary. These
three elements cause a lack of ground truth, which makes
(large scale) research challenging.

There are difficulties working with ethnic music but there
is also a lot of potential. While some archives with ethnic
music are being digitized, the need for specialized MIR ap-
plications becomes more apparent. Ethnic music offers a
unique environment of characteristic timbres, rhythms and
textures which could use adapted or completely new, inno-
vative tools. The potential of computational research within
the context of ethnic music has been stressed by the intro-
duction of the term Computational Ethnomusicology [13].
Hopefully this new interdisciplinary (sub)field can give an
impulse to the study and dissemination of a rich heritage of
music that is now hidden in archives and aid or even stimu-
late new musicological field work.

This research focuses on one of those unique collections
of ethnic music: the audio archive of the Royal Museum for
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Central Africa (RMCA) in Belgium. It is one of the largest
collections worldwide of music from mainly Central Africa.
Figure 1 displays the geographical distribution of the audio
collection 3 that consists of about 50,000 sound recordings
(with a total of 3,000 hours of music), dating from the early
20th century up to now. A selection of this data set with
African music has already been used for a study on pitch
organization and tone scales [9].

This paper is structured as follows: After this introduc-
tion sketching the background for this research the follow-
ing chapter identifies the need for precise pitch analysis and
the rationale behind the development of Tarsos. Chapter
three will provide a view on the method we use, and give
a brief overview of related work. Chapter four documents
the structure and method of the Tarsos platform. Example
applications of Tarsos can be found in chapter five. The final
chapter gives a conclusion and ponders on future work.

2. SCALE ORGANISATION

For Western music pitch organization in music relies on a
well-defined, historically grown music theory. Nowadays
almost all western music relies on a division of the octave in
12 equal parts. Only few composers have explored different
divisions of the octave (e.g. Darreg, Partch).

In non-Western classical music, tone scale organization
leans on an, often very different, theoretical system than the
Western equal temperament. The most outspoken difference
is that not all pitch intervals have an equal size. This can
result in an explicitly sought musical tension. An example
is the unequal octave division of the Indonesian gamelan
Pelog scale.

Oral music traditions however, rely almost exclusively
on musical practice. Without a written musical theory the
master-student relationship becomes very important, together
with the societal context in which people hear music. An
oral culture does not support the development towards a pol-
ished music theory but grows more organically. These fac-
tors define the specific characteristics of the music itself:
less harmonic impact, instruments with varying tuning, no
harmonic modulation and a large number of different tone
scales. Until now, far too little attention has been paid to
this tone scale diversity. There is a need for a system that can
extract pitch organisation - scales - from music in a culture-
independent manner.

Currently there is software available for pitch analysis
but it mainly focuses on Western music and is used for e.g.
key-detection in pop music. To fill the need for automated
pitch analysis of ethnic music Tarsos has been developed.
Tarsos creates opportunities to analyse pitch organization in

3 There is a website featuring complete descriptions and audio frag-
ments, it can be found at http://music.africamuseum.be
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Figure 2. A pitch class histogram that shows how much
pitch classes are present in a piece of music. The graph
shows absolute pitch annotations collapsed to one octave.
The circles mark the most used pitch classes. For reference,
the dashed lines represent the Western equal temperament.
The pitch class A is marked with a dotted line.

large music archives, document tone scales and find patterns
in pitch usage.

3. PITCH ANALYSIS

The basic idea behind the method we use is simple: count
how many times each fundamental frequency is repeated
throughout an audio signal and represent this data in a use-
ful way. This method has a long tradition and historically
this was done by hand, or, more anatomically correct, by
ear. Each tone in a musical piece was compared with a large
set of tuned bells and every match was tallied. This method
is very labour-intensive and does not scale to large music
archives.

Already in the late sixties researchers automated this pro-
cess to study the tone scale of a Swedish folk instrument
[11]. Since then various terms have been introduced to de-
scribe this, or closely related ideas: Frequency Histogram
[11], Chromavector [9], Constant-Q Profile [10], Harmonic
Pitch Class Profile [5] and Pitch-frequency Histogram [6].

Working with ethnic music, and especially African mu-
sic, it is important that the pitch organization diversity can
be captured. In [9] this is done as follows. At first the au-
dio is analysed in blocks of 10ms and for each block a fun-
damental frequency estimation is made. Secondly, the fre-
quencies are converted to the cents scale with C0 set to zero
cents while maintaining a list with the number of times each
frequency occurs. And finally the listed values are reduced
to one octave. This results in a quasi-continuous pitch class
histogram of 1200 values as seen in Figure 2. With Tarsos
this method is automated in a flexible way.

Pitch class histograms can be used for various applica-
tions. The most straightforward application is tone scale
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detection. To extract a scale from a pitch class histogram
peak extraction is used: i.e. finding the circles in Figure 2.
With the pitch classes identified a pitch interval matrix can
be constructed and subsequently used for comparison and
analysis.

4. TARSOS PLATFORM

The main contribution of this paper is Tarsos: a platform for
pitch analysis. It makes the methods described in [6, 9] eas-
ier to use and therefore accessible to a larger audience. Es-
sentially Tarsos tries to make one-off studies of pitch usage
easily repeatable, verifiable and scalable to large data sets.
The functions of Tarsos will be explained using the block
diagram in Figure 3. This should make the information flow
clear and provide a feel on how Tarsos can be used.

4.1 Input

As input Tarsos accepts audio in almost any format. All au-
dio is transcoded to a standardized format. The conversion
is done using FFMPEG 4 , the default format is PCM WAV
with all channels are downmixed to mono.

Another input modality are Scala files. Scala files are
standardized text files which contain tone scale information.
The file format is defined by the Scala program. Quoting
the Scala website: http://www.huygens-fokker.
org/scala/

“Scala is a powerful software tool for exper-
imentation with musical tunings, such as just
intonation scales and non-Western scales. It
supports scale creation, editing, comparison, anal-
ysis, storage, . . . Scala is ideal for the explo-
ration of tunings and becoming familiar with
the concepts involved.”

The Scala program comes with a dataset of over 3900 scales
ranging from historical harpsichord temperaments over eth-
nic scales to scales used in contemporary music. Tarsos can
parse and export scala files. Their use should become appar-
ent in section 4.5.

4.2 Analysis

During analysis each block of audio is examined and zero,
one or more fundamental frequencies are assigned. The
block size and the number of extracted frequencies depend
on the underlying fundamental frequency detection algo-
rithm. Several detection algorithm implementations are dis-
tributed together with Tarsos and thanks to its modular de-
sign new ones can be added. For practical purposes platform-
independent - pure Java - implementations of YIN [4] and

4 FFmpeg is a complete, cross-platform solution to record, convert audio
and video. It has decoding support for a plethora of audio formats.

INPUT

ANALYSIS

REPRESENTATION

OPTIMIZATION

OUTPUT

Annotation
selection

Peak
selection

Auditory
feedback

Scala

Figure 3. The main flow of information within Tarsos.

MPM [8] are available without any configuration. Currently
there is also support for the MAMI-detector [2] and for any
VAMP-plugin [1] that generates frequency annotations. These
external detectors are platform dependant and need some
configuration but once correctly configured their use is com-
pletely transparent: the generated annotations are transformed
to a unified format, cached and then used for representation.

4.3 Representation

The most straightforward representation of pitch annotations
is plotting them over time. This results in a piano-roll like
view. In monophonic music this visualizes the melody. In
polyphonic music it shows information about harmonic struc-
tures and the melodic contour. The piano-roll aids transcrip-
tion and makes repeating melodic patterns visible. Figure 4
shows a screenshot of Tarsos, the piano roll representation is
marked with 3. With the interactive user interface the piano
roll representation can be used to select an area of annota-
tions you are interested in. This can be used to ignore anno-
tations below a certain pitch threshold (e.g. pitched percus-
sion) or to compare the first part of a song with the second
part. The selection - represented by the upwards arrow be-
tween analysis and representation in Figure 3 - influences
the next representation.
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Figure 4. A screenshot of Tarsos: 1) a pitch class histogram, 2) a pitch class interval table, 3) a piano roll like view on
annotations, 4) a MIDI keyboard and 5) a waveform. Tarsos is available on http://tarsos.0110.be.

Within Tarsos the pitch histogram is constructed by as-
signing each annotation to a bin between 0 and 12×1200 =
14400 cents, spanning 12 octaves. The height of each peak
represents the total duration of a particular detected absolute
pitch within a piece. As mentioned in section 3 to transform
the pitch histogram to a pitch class histogram all values are
folded to one octave. In the pitch class histogram a peak
represents the total duration of a detected pitch class within
a piece. An example of a pitch class histogram can be seen
in Figure 2 or the area marked with 1 in Figure 4.

A more high level, musicologically more meaningful rep-
resentation is the pitch interval matrix. It is constructed by
applying automatic or manually adjusted peak detection on
the pitch class histogram and extracting the positions of the
pitch classes. It contains the tone scale of a song and the
intervals between the pitch classes.An example of a pitch
interval matrix extracted from the pitch class histogram in
Figure 2 can be seen in Table 1. In the screenshot, Figure 4
it is marked as 2.

4.4 Optimisation

Automatic peak extraction may yield unwanted results. There-
fore there is a possibility to adjust this process manually.
Adding, removing or shifting peak locations is possible with
the pitch class histogram user interface. Changing the posi-
tion of a peak has an immediate effect on all other represen-

tations: the pitch interval matrix is reconstructed, the refer-
ence lines in the pitch histogram and piano roll are adjusted
accordingly.

4.5 Output

Tarsos contains export capabilities for each representation,
from the pitch annotations to the pitch class interval ma-
trix there are built-in functions to export the data, either as
comma separated text files or as image files. Since Tarsos
has a scriptable, documented API which can be accessed by
any Java Virtual Machine (JVM) compatible programming
language - Groovy, Scala 5 , Clojure, Java - there is also a
possibility to add new output formats based on the internal
object model. Scripting is also the way to go when process-
ing a large number of files.

As previously mentioned, for pitch class data there is a
special standardized text file format defined by the Scala
program: the scala file with the .scl extension. Scala files
can be used to compare different tone scales within Tarsos
or with the Scala program. When used as input for Tar-
sos, these files provide a reference for the pitch class his-
togram extracted from audio. A scala file e.g. extracted
from Figure 2 with pitch classes (107, 363, 585, 833, 1083)

5 Do not confuse the Scala programming language with the Scala soft-
ware tool for scale analysis. Information about the programming language
can be found at http://scala-lang.org

172



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

249 411 639 813 1200237 477 669 861 1200

100

200

300

400

500

600

Pitch (cent)

N
u
m

be
r

of
a
n
n
ot

a
ti

on
s

Figure 5. MR.1973.9.41-4, the second minute of the song is represented by the blue, dashed line, the seventh by the red, dotted
line. Comparing the second with the seventh minute shows that during the performance the fiddle player changed hand position.
The lowest, most stable pitch class is the result of the open string which lost tension during the piece and started to sound lower,
in stark contrast with the other pitch classes.

Pitch Class (cent) Interval (cent)
107

255
363 478

222 725
585 470 976

248 720
833 498

251
1083

Table 1. A pitch interval matrix with pitch classes and pitch
class intervals, both in cents. The peaks detected in Figure 2
are used.

can be used to compare pitch use of a song recorded in the
same geographical area: do they both use the same absolute
pitch or the same pitch intervals?

The pitch annotations can also be synthesized. This re-
sults in an audio file which can be used to check if the anno-
tations make sense. Overlapping the original sound with the
synthesized annotations makes clear when no, or incorrect
annotations were made and, conversely when annotations
are correct. This auditory feedback can be used to decide if
the annotations are trustworthy (the upwards arrow starting
from output in Figure 3).

A completely different output modality is MIDI. The
MIDI Tuning Standard defines MIDI messages to specify the
tuning of MIDI synthesizers. Tarsos can construct Bulk
Tuning Dump-messages based on extracted pitch class data
to tune a synthesizer enabling the user to play along with a
song in tune. Tarsos contains the Gervill synthesizer, one of
the few (software) synthesizers that offer support for tuning
messages.

5. APPLICATIONS

This section illustrates how Tarsos enables or facilitates re-
search on pitch use. The examples given could inspire third
party users - musicologists - to try Tarsos and use it to solve
their own research questions.

A first example is an analysis on a single African fiddle
piece. In African music pentatonic scales are common but
this piece uses a tetratonic scale as seen in Figure 5. The
scale is a result of a playing style with three - more or less
equally spaced - fingers and an open string. The graphical
interface of Tarsos was used to compare the second minute
of the song with the seventh, this can be accomplished by se-
lecting the annotations in the piano roll window. This shows
that the open string lost tension during the performance - it
started to sound lower - in stark contrast with the other pitch
classes. The results were exported using the LATEX-export
function and are shown in Figure 5.

A second example illustrates what can be done with a
script that processes a lot of audio files in batch and the Tar-
sos API. In an article by Bozkurt [6] pitch histograms are
used for - amongst other tasks - makam 6 recognition. The
task is to identify which of nine makams is used in a specific
song. A simplified, generalized implementation of this task
was scripted. With this script it is possible to correctly iden-
tify 39% of the makams using a dataset of 800 files. Some
makams look very much alike: if the first three guesses are
evaluated the correct makam is present in 75% of the cases.
The example is fully documented in the Tarsos manual avail-
able on the website http://tarsos.0110.be, also the
source code is available there. This method is very general
and directly applicable to e.g. harpsicord tuning estimation
as done, using another approach, by Tidhar et al [12].

6 A maqam defines rules for a composition or performance of classical
Turkish music. It specifies melodic shapes and pitch intervals.
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6. CONCLUSION, DISCUSSION AND FUTURE
WORK

In this paper Tarsos was presented, a modular software plat-
form to extract and analyze pitch organization in music. Af-
ter an introduction explaining the background and the needs
for precise pitch analysis, chapter two provided some con-
text about the method used and points to related work. Chap-
ter three gave a high level overview of the different compo-
nents of Tarsos.

Currently Tarsos offers a decent foundation for research
on pitch but it also creates opportunities for future work.
One research idea is to reintroduce time domain informa-
tion. By creating pitch class histograms for a sliding time-
window and comparing those with each other it should be
possible to detect sudden changes in pitch usage: modula-
tions. Using this technique it should also be possible to de-
tect and document pitch drift in choral or other music on a
large scale. Automatic separation of speech and music could
be another application.

Another research area is to extract features on a large data
set and use the pitch class histogram or interval data as a ba-
sis for pattern recognition and cluster analysis. Using Tar-
sos’ scripting abilities with a timestamped and geotagged
musical archive it could be possible to detect geographical
or chronological clusters of similar tone scale use.

On the longer term we plan to add comparable represen-
tations of other musical parameters to Tarsos as well. In
order to compare rhythmic and instrumental information,
temporal and timbral features will be included. Our ulti-
mate goal is to develop an objective, albeit partial, view on
music by combining those three parameters.

During this type of research one should keep this quote
in mind:

“Audio alone might not be sufficient to un-
derstand ethnic music. What does it mean to
describe music from a culture where the word
“music” exists only in connection to body move-
ment, smell, taste, colour. The idea of separat-
ing sound from the rest of its physical environ-
ment (movement, smell, taste, colour) may well
be a weird “invention” of the West. We can-
not understand ethnic music correctly without
its social function and context [7].”

However, we do can gain interesting insights and alleviate
accessibility problems, which is what we are aiming for.
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ABSTRACT

Recently unsupervised feature learning methods have shown
great promise as a way of extracting features from high di-
mensional data, such as image or audio. In this paper, we
apply deep belief networks to musical data and evaluate the
learned feature representations on classification-based poly-
phonic piano transcription. We also suggest a way of train-
ing classifiers jointly for multiple notes to improve training
speed and classification performance. Our method is evalu-
ated on three public piano datasets. The results show that the
learned features outperform the baseline features, and also
our method gives significantly better frame-level accuracy
than other state-of-the-art music transcription methods.

1. INTRODUCTION
Music transcription is the task of transcribing audio into a
score. It is a challenging problem because multiple notes
are often played at once (polyphony), and thus individual
notes interfere by virtue of their harmonic relations.

A number of methods have been proposed since Moorer
first attempted to use computers for automatic music tran-
scription [10]. State-of-the-art methods can be categorized
into three approaches: iterative F0 searches, joint source es-
timation and classification-based approaches. Iterative F0-
searching methods first find the predominant F0 and subtract
its relevant sources (e.g. harmonic partials) from the input
signal and then repeat the procedure on what remains until
no additional F0s are found [6]. Joint source estimation ex-
amines possible combinations of sound sources by hypoth-
esizing that the input signal is approximated by a weighted
sum of the sound sources with different F0s [3].

While these two methods are based on utilizing the struc-
ture of musical tones, classification-based approaches ad-
dress polyphonic transcription as a pattern-recognition prob-
lem. The idea is to use multiple binary classifiers, each of
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which corresponds to a note class. They are trained with
short-time acoustic features and labels for the corresponding
note class (i.e., note on/off) and then used to predict the note
labels for new input data. Although classification-based ap-
proaches make minimum use of knowledge of acoustics,
they show comparable results to iterative F0 searches and
joint source estimation, particularly for piano music [9, 12].
However, when the training set is limited or the piano in the
test set has different timbre, tuning or recording environ-
ments, classification-based approaches can overfit the train-
ing data, a problem common to many supervised learning
tasks [13]. As a means to obtain features robust to acoustic
variations, researchers have designed networks of adaptive
oscillators on auditory filter banks or normalized spectro-
gram on the frequency axis [9, 12].

The majority of machine learning tasks rely on these kinds
of hand-engineered approaches to extract features. Recently,
on the other hand, unsupervised feature learning methods
that automatically capture the statistical relationship in data
and learn feature representations have shown great promise.
In particular, deep belief networks have been successfully
applied to many computer-vision and speech-recognition ta-
sks as an alternative to typical feature-extraction methods,
but also a few music-related tasks [4, 8].

In this paper, we apply deep belief networks to poly-
phonic piano transcription. Specifically, we extend a previ-
ous classification-based approach in two ways: (1) by using
learned feature representations for note classifiers and (2) by
jointly training the classifiers for multiple notes. In particu-
lar, the latter associates deep belief networks with multi-task
learning. The results show that our approach outperforms
compared music transcription methods for several test sets.

2. FEATURE LEARNING

Deep belief networks (DBNs) are constructed by stacking
restricted Boltzmann machines (RBMs) and training them
in a greedy layer-wise manner. In this section, we briefly
review RBMs and how to build a deep structure.

2.1 Sparse Restricted Boltzmann Machines
The RBM is a two layer undirected graphical model that has
hidden nodes h and visible nodes v [11]. The visible nodes
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represent the data while the hidden nodes represent the fea-
tures discovered by training the RBM. For each possible as-
signment to the hidden and visible nodes, the RBM speci-
fies the probability of the assignment (Eq. 1). The RBM has
symmetric connections between the two layers denoted by a
weight matrix W , but no connections within hidden nodes
or visible nodes. This particular configuration makes it easy
to compute the conditional probability distributions, when v
or h is fixed (Eq. 2). In practice, one uses this conditional
probability of the hidden nodes as the “learned” features:

− log P (v, h) ∝ E(v, h) =
1

2σ2
vT v − 1

σ2

(
cT v + bT h + hT Wv

)
(1)

p(hj |v) = sigmoid(
1
σ2

(bj + wT
j v)) (2)

where σ2 is a scaling parameter, b and c are learned bi-
ases, and W is a learned weight matrix. This formulation
models the visible nodes as real-valued Gaussian units and
the hidden nodes as binary units. We further regularize the
model with sparsity by encouraging each hidden unit to have
a pre-determined expected activation using a regularization
penalty [7].

2.2 Deep Belief Network
A deep network is composed of multiple non-linear hidden
layers (as opposed to a shallow network with a single hid-
den layer). Each layer in a deep network builds upon rep-
resentations discovered by the previous layer to represent
more complex features of the data. A DBN is trained by
“greedy layer-wise stacking” of RBMs. First, a single layer
RBM is trained to model the data. This RBM learns a set of
weights W and biases b, c that we fix as the parameters of
the first layer of the DBN. To learn the next layer of weights
and biases, we compute the features discovered by the first
layer RBM (Eq. 2) and apply them to a binary-binary RBM
(which has binary input units instead of Gaussian) to learn
another layer of representation; this forms the parameters
for our next layer of features. Deeper layers are learned in
a similar fashion. Hinton et al. showed that the preceding
learning algorithm for a DBN always improves a variational
lower bound on the log-likelihood of the data when training
more layers [5].

After training, the features learned from a DBN are ex-
tracted using a feed-forward approximation for the proba-
bilities of the hidden nodes at the deepest layer (i.e. cas-
cades of sigmoids) given the visible nodes. These features
can be used for tasks such as classification. In practice,
one often further refines the features learned by the DBN
by treating the feature extraction process and classifier as
a deep feed-forward neural network. The initialization of
the deep neural network using RBMs is often known as

Figure 1: Randomly selected feature bases learned from
spectrograms of piano music. Most feature bases capture
harmonic distributions which correspond to various pitches
while a few contain non-harmonic patterns.

unsupervised “pre-training,” while supervised training with
backpropagation is often known as supervised “finetuning.”
The pre-training/finetuning approach for learning deep net-
works has been shown to be essential for training deep net-
works. Specifically, training a deep network with only su-
pervised backpropagation from random initialization does
not work as well as pre-training.

2.3 Application To Audio Spectrogram
In this paper, we apply DBNs to audio spectrograms. The
DBNs are built in two stages. The first stage performs un-
supervised learning with sparse RBMs up to two hidden
layers in order to find sparse hidden units that represent
spectrogram frames. The second (optional) stage uses back-
propagation to finetune the representation so that note clas-
sifiers have better discrimination power to correctly iden-
tify note on and off events. Figure 1 displays features bases
(column vectors of matrix W ) learned from spectrograms of
classical piano music by a sparse RBM.

3. CLASSIFICATION-BASED TRANSCRIPTION
We build our polyphonic piano-transcription model based
on Poliner and Ellis’ frame-level note classification system
[12,13]. Furthermore, we extend their system by using DBN-
based feature representations and by jointly training classi-
fiers for multiple notes.

3.1 Single-note Training
Poliner and Ellis’ piano transcription system consists of 87
independent support vector machine (SVM) classifiers, each
of which predicts the presence of a corresponding piano
note when given an audio feature vector (a single column
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Figure 2: Network configurations for single-note and
multiple-note training. Features are obtained from feed-
forward transformation as indicated by the bottom-up ar-
rows. They can be finetuned by back-propagation as indi-
cated by the top-down arrows.

of a normalized spectrogram). Their transcription system
requires individual supervised training for each note. Thus,
we refer to this as single-note training.

We constrained the SVM in our experiments to a lin-
ear kernel because Poliner and Ellis reported that high-order
kernels (e.g. RBF kernel) provided only modest performance
gains with significantly more computation [13] and also a
linear SVM is more suitable to large-scale data. We formed
the training data by selecting spectrogram frames that in-
clude the note (positive examples) and those that do not in-
clude it (negative examples). Poliner and Ellis randomly
sampled 50 positive (when available) and negative exam-
ples from each piano song per note. We used their sampling
paradigm for single-note training.

While their system used a normalized spectrogram, we
replaced it with DBN-based feature representations on spec-
trogram frames. As shown in the left column of Figure 2, the
previous approach directly feeds spectrogram frames into
SVM, whereas our approach transforms the spectrogram fra-
mes into mid-level features via one or two layers of learned
networks and then feeds them into the classifier. We also
finetuned the networks with the error from the SVM.

3.2 Multiple-note Training
When we experimented with single-note training described
above, we observed that the classifiers are somewhat “ag-
gressive”, that is, they produced even more “false alarm” er-
rors (detect inactive notes as active ones) than “miss” errors
(fail to detect active notes). In particular, this significantly
degraded onset accuracy. Also, it was substantially slow to
finetune the DBN networks separately for each note. Thus,
we suggest a way of training multiple binary classifiers at

the same time. We refer to this as multiple-note training.
The idea is to sum 88 SVM objectives and train them

with shared audio features and 88 binary labels (at a given
time, a single audio feature has 88 corresponding binary la-
bels), as if we train a single classifier. 1 This allows cross-
validation to be jointly performed for 88 SVMs, thereby sav-
ing a significant amount of training time. On the other hand,
this requires a different way of sampling examples. Since
we combined all 88 notes in our experiments, all spectro-
gram frames except silent ones are a positive example to at
least one SVM. Thus we sampled training data by selecting
spectrogram frames at every K frame time. K was set to
16 as a trade-off between data reduction and performance.
Note that this makes the ratio of positive and negative exam-
ples for each SVM determined by occurrences of the note
in the whole training set, thereby having significantly more
negative examples than positive ones for most SVMs. It
turned out that this “unbalanced” data ratio makes the clas-
sifiers “less aggressive,” as a result, increasing overall per-
formance.

We illustrate multiple-note training in the right column
of Figure 2. In fact, without finetuning the DBNs, multiple-
note training is equivalent to single-note training with the
unbalanced data ratio. The only difference is that the single-
note training does separate cross-validation for each SVM.
We compared multiple-note training to the single-note train-
ing with the unbalanced data ratio, but found no noticeable
difference in performance. On the other hand, when we
finetune the DBNs, these two training approaches become
completely different. While single-note training produces
separate DBN parameters for each note, multiple-note train-
ing allows the networks to shares the parameters among all
notes by updating them with the errors from the combined
SVMs. For example, when the multiple-note training looks
at the presence of a C3 note given input features, it simulta-
neously checks out if other notes (e.g. C4 or C5) are played.
This can be seen as an example of multi-task learning.

3.3 HMM Post-processing
The frame-level classification described above treats train-
ing examples independently without considering dependency
between frames. Poliner and Ellis used HMM-based post-
processing to temporally smooth the SVM prediction. They
modeled each note independently with a two-state HMM.
We also adopted this approach. In our implementation, how-
ever, we converted the SVM output (distance to the bound-
ary) to a posterior probability using

p(yi = 1|xi) = sigmoid(α(θT xi)), (3)

1 The classifier we used is a linear SVM with a L2-regularized L2-
loss [2]. We implemented the SVM in MATLAB using minFunc, which
is a Matlab library found in http://www.cs.ubc.ca/∼schmidtm/
Software/minFunc.html. Thus, summing 88 SVM objectives was
done by simply treating 88 binary labels as a vector.
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Figure 3: Signal transformation through the DBNs and classification stages

where xi is a SVM input vector, θ are SVM parameters, yi

is a label and α is a scaling constant. α was chosen from a
pre-determined list of values as part of the cross-validation
stage. The smoothing process was performed for each note
class by running a Viterbi search based on a 2x2 transition
matrix and a note on/off prior obtained from the training
data, and the posterior probability.

Figure 3 shows signal transformation through the DBN
networks along with HMM post-processing. The SVM out-
put was computed as the distance to the decision boundary
in a linear SVM. Note that the hidden layer activation is
more similar to the final output than the spectrogram.

4. EVALUATION
4.1 Datasets
We used three datasets to evaluate our method.

Poliner and Ellis set consists of 124 MIDI files of clas-
sical piano music. They were rendered into 124 synthetic
piano sound and 29 real piano recordings [12]. The first
60-second excerpt of each song was used.

MAPS is a large piano dataset that includes various pat-
terns of playing and pieces of music [1]. We used 9 sets of
piano pieces, each with 30 songs. They were created by var-
ious high-quality software synthesizers (7 sets) and Yamaha
Disklavier (2 sets). We used the first 30-second excerpt of
each song in the validation and test sets but the same length
at a random position for the training set.

Marolt set consists of 3 synthetic piano and 3 real piano
recordings [9]. This set was used only for test.

4.2 Pre-processing
We first computed spectrogram from the datasets with a 128-
ms window and 10ms overlaps. To remove note dynamics,
we normalized each column by dividing entries with their
sum, and then compressed it using cube root, commonly
used as an approximation to the loudness sensitivity of hu-
man ears. Furthermore, we applied PCA whitening to the
normalized spectrogram, retaining 99% of the training data
variance and adding 0.01 to the variance before the whiten-
ing. This yielded roughly 50-60% dimensionality reduction
and lowpass filtering in the PCA domain. The ground truth
was created from the MIDI files. We extended note offset
times by 100ms in all training data to make up for room ef-
fect in the piano recordings. The extended note length was

experimentally determined.

4.3 Unsupervised Feature Learning
We trained the first and second-layer DBN representations
using the pre-processed spectrogram. The hidden layer size
was chosen to 256 and the expected activation of hidden
units(sparsity) was cross-validated over 0.05, 0.1, 0.2 and
0.3, while other parameters were kept fixed.

4.4 Evaluation Metrics
We primarily used the following metric of accuracy:

Accuracy =
TP

FP+FN+TP
, (4)

where TP (true positive) is the number of correctly predicted
examples, FP (false positives) is the number of note-off ex-
amples transcribed as note-on, FN (false negative) is the
number of note-on examples transcribed as note-off. This
metric is used for both frame-level and onset accuracy. Frame-
level accuracy is measured by counting the correctness of
frames every 10ms, and onset accuracy is by searching a
note onset of the correct pitch within 100 ms of the ground-
truth onset. In addition, we used the F-measure for frame-
level accuracy to compare our results to those published us-
ing the metric.

4.5 Training Scenarios
Our method is evaluated in two different scenarios. In the
first scenario, we mainly used the Poliner and Ellis set, split-
ting it into training, validation and test data following [12].
In order to avoid overfitting to the specific piano set, we se-
lected 26 songs from two synthesizer pianos sets in MAPS
and used them as an additional validation set. For conve-
nience, we refer to this subset as MAPS2. In the second
scenario, we used five remaining synthesizer piano sets in
MAPS for training to examine if our method generalizes
well when trained on diverse types of timbre and record-
ing conditions. For validation, we randomly took out 26
songs from the five piano sets, calling them MAPS5 to dis-
tinguish it from the actual training data. We additionally
used MAPS2 for validation in the second scenario as well. 2

2 The lists of MAPS songs for training, validation and test are specified
in http://ccrma.stanford.edu/∼juhan/ismir2011.html
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Figure 4: Frame-level accuracy on validation sets in two scenarios. The first and second-layer DBN features are referred to as
L1 and L2.
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Figure 5: Onset accuracy on validation sets (scenario 2)

4.6 Validation Results
We compare the baseline feature (normalized spectrogram
by cube root) to the first- and second-layer DBN features
and their finetuned versions on validation sets in the two
scenarios. The results are shown in Figure 4 and Figure 5.

In scenario 1, DBN features generally outperform the
baseline. In single-note training, finetuned L1-features give
the highest accuracy on both validation sets. In multiple-
note training, unsupervised L1- or L2-features achieve slight-
ly better results. In comparison of the two training methods,
either one appears to be not superior to the other, showing
subtle differences: Multiple-note training gives slightly bet-
ter results when the same piano set are used for validation
(Poliner and Ellis), whereas single-note training does a little
better job when different pianos set (MAPS2) are used.

In scenario 2, the results show that DBN L1-features al-
ways achieve better results than the baseline but DBN L2-
features generally give worse accuracy. Finetuning always
improves results on both validation sets, although the incre-
ment is very limited on MAPS2 in multiple-note training.
In comparison of the two training methods, multiple-note
training outperforms single-note training for both validation
sets, particularly giving the best accuracy on MAPS2. The
superiority of multiple-note training is even more apparent
in onset accuracy as shown in Figure 5.

Figure 6 shows the influence of sparsity (hidden layer ac-
tivation in RBMs) on frame-level accuracy. The accuracy
is the average value on two validation sets (MAPS5 and
MAPS2) when L1 features are used in multiple-note train-
ing and scenario 2. The results indicate that relatively less
sparse features perform better before finetuning; however,
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Figure 6: Frame-level accuracy VS sparsity (hidden layer
activation in RBMs)

with finetuning, sparse features achieve the highest accuracy
as well as the best improvement.

4.7 Test Results: Comparison With Other Methods
The validation results show that a single layer of DBN is the
best-performing feature representation and multiple-note tra-
ining is better than single-note training. Thus, we chose
DBN L1-features and multiple-training to run our system
on test sets. Also, we evaluated both unsupervised and fine-
tuned features.

Table 1 shows results on the Poliner and Ellis test set, and
Marolt set. We divided the table into two groups to make a
fair comparison. The upper group uses the same dataset for
both training and testing (the Poliner and Ellis set) whereas
the lower group assumes that the piano tones in the test sets
were “unheard” in training or uses different transcription al-
gorithms. In the upper group, Poliner and Ellis’ transcrip-
tion system adopted a normalized spectrogram and a non-
linear SVM. Our method outperformed their approach for
both test sets. In the lower group, our method trained with
MAPS (scenario 2) also produced better accuracy than the
two published results on both sets. Note that, in both groups,
unsupervised features give better results than finetuned fea-
tures when different piano sets are used for training and test-
ing. As for onset accurary, we achieved 62% in training sce-
nario 1 on the Poliner and Ellis test set, which is very close
to the Poliner and Ellis’ result (62.3%).

Table 2 compares our method with other algorithms eval-
uated on the MAPS test set, composed of 50 songs selected
from the two Disklavier piano sets by [15]. The finetuned
DBN-features in our method give the highest frame-level
accuracy among compared methods.
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Algorithms P. and E. Marolt
Poliner and Ellis [12] † 67.7% 44.6%
Proposed (S1-L1) 71.5% 47.2%
Proposed (S1-L1-finetuned) 72.5% 46.45%
Marolt [9] † 39.6% 46.4%
Ryyananen and Klapuri [14] † 46.3% 50.4%
Proposed (S2-L1) 63.8% 52.0%
Proposed (S2-L1-finetuned) 62.5% 51.4%

Table 1: Frame-level accuracy on the Poliner and Ellis, and
Marolt test set. The upper group was trained with the Po-
liner and Ellis train set while the lower group was with other
piano recordings or uses different methods. S1 and S2 refer
to training scenarios. †These results are from Poliner [12].

Algorithms Precision Recall F-measure
Marolt [9] † 74.5% 57.6% 63.6%
Vincent et al. [15] † 71.6% 65.5% 67.0%
Proposed (S2-L1) 80.6% 67.8% 73.6%
Proposed (S2-L1-ft.) 79.6% 69.9% 74.4%

Table 2: Frame-level accuracy on the MAPS test set in F-
measure. “ft” stands for finetuned. †These results are from
Vincent [15].

5. DISCUSSION AND CONCLUSIONS
We have applied DBNs to classification-based polyphonic
piano transcription. The results show that a learned feature
representation by a DBN, particularly L1 features, provide
better transcription performance than the baseline features
and our classification approach outperforms compared pi-
ano transcription methods.

Our evaluation shows that finetuning generally improves
accuracy, particularly when sparse features are used. How-
ever, unsupervised features often work better when the sys-
tem is tested on different piano sets. This indicates that un-
supervised features are more robust to acoustic variations.

We also suggested multiple-note training. Compared to
single-note training, this method improved not only tran-
scription accuracy but also training speed. In our comput-
ing environment, multiple-note training was more than five
times faster than single-note training when the DBNs are
finetuned.

Our method is based on frame-level feature learning and
binary classification under simple two-state note event mod-
eling. We think that more refinements will be possible by
modeling richer states to represent dynamic properties of
musical notes.
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ABSTRACT

NMF (Non-negative Matrix Factorization) has been one of
the most widely-used techniques for musical signal analysis
in recent years. In particular, the supervised type of NMF is
garnering much attention in source separation with respect
to the analysis accuracy and speed. In this approach, a large
number of spectral samples is used for analyzing a signal. If
the system has a minimal number of samples, the accuracy
deteriorates. Because such methods require all the possible
samples for the analysis, it is hard to build a practical anal-
ysis system. To analyze signals properly even when short
of samples, we propose a novel method that combines a su-
pervised NMF and probabilistic search algorithms. In this
approach, it is assumed that each instrumental category has
a model-invariant feature called a probabilistic spectrum en-
velope (PSE). The algorithm starts with learning the PSEs
of each category using a technique based on Gaussian Pro-
cess Regression. Using the PSEs for spectrum generation,
an observed spectrum is analyzed under the framework of a
supervised NMF. The optimum spectrum can be searched by
Genetic Algorithm using sparseness and density constraints.

1. INTRODUCTION

Mixed music analysis (estimating the pitch and instrument
labels of each musical note from a single-channel polyphonic
music signal with multiple instruments) has been recognized
as one of the most challenging tasks in musical signal pro-
cessing. To achieve this, many approaches have been pro-
posed so far: ICA-based methods [1, 3], HTTC (Harmonic-
Temporal-Timbral Clustering) [6], Instrogram [5], etc. Of
all these techniques, the methods based on NMF (Non-negative
Matrix Factorization) have attracted considerable attention
lately as a way to analyze signals more effectively and more
easily. In many of these techniques, an observed spectro-
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gram matrix can be represented as a linear combination of
two matrices: a basis matrix whose columns roughly indi-
cate spectrums of each musical source with various pitches
and instruments, and an activity matrix which shows tempo-
ral information of each basis vector.

NMF-based analysis methods are broadly divided into
two categories: an unsupervised approach [4] and a super-
vised approach [2]. Since the former approach decomposes
the spectrogram without the assumption of the spectral struc-
tures of audio sources, the unintended basis matrix and ac-
tivity matrix will be obtained. Therefore, it is hard to an-
alyze mixed-source audio correctly using an unsupervised
approach.

On the other hand, a supervised approach decomposes a
mixed musical signal using the spectral templates of each
musical source, which are learned beforehand. Compared
to an unsupervised approach, this technique tends to pro-
duce preferable results in terms of analysis speed and ac-
curacy. However, if unlearned sounds are contained in the
test signal, the accuracy may deteriorate because there are
many different types (models) of instrument that belong to
the same instrumental category. For example, the “Piano”
category includes different models: “Piano1”,“Piano2”, and
so on. To improve the decomposition accuracy, many kinds
of spectral templates (not only different categories but dif-
ferent models in the categories) should be trained. However,
this is extremely difficult to build into a real system.

To solve this problem, we propose a novel method of
mixed music analysis, which uses a model-invariant fea-
ture (probabilistic spectrum envelope; PSE) of each cate-
gory. This feature is derived from the following idea. An
instrument’s spectrum can differ slightly due to various fac-
tors associated not only with the type of instrument (model)
but also the manufacturer, the materials used, the tempera-
ture, humidity, and playing-style, etc. However, the way the
spectrum fluctuates is not completely random, as it depends
on the instrument’s category. Therefore, we introduce the
PSE feature that does not depend on the pitch, the model,
the material, and other various factors. This is similar to a
spectrum envelope feature, which does not depend on the
pitch. The feature is defined as a set of the mean spec-
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trum envelope and variance spectrum envelope in the time-
frequency domain as shown in Figure 1 (a). Once the PSE
is estimated, any spectrum belonging to the category can be
obtained by multiplying various comb filters and randomly-
generated spectrum envelopes from the PSE.

Figure 1 shows a system flowchart of mixed music anal-
ysis under the PSE framework. In our approach, unsuper-
vised NMF and extended Gaussian Process (SPGP+HS [7])
are employed to estimate the PSE features of each category
on the training stage. At the analysis stage, we use super-
vised NMF for the analysis, in which an optimum basis vec-
tor can be searched using a Genetic Algorithm with sparse-
ness and density constraints.
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Figure 1. Flowchart of mixed music analysis using propa-
bilistic spectrum envelope (PSE). The red and blue color in-
dicate the large and small values of probability, respectively.
The black and white lines are the mean envelope, and mean
plus/minus variance envelope.

2. PSE ESTIMATION

2.1 Spectral peaks extraction

The probabilistic spectrum envelope (PSE) of each category
is estimated by SPGP+HS regression [7] in this paper. In
this section, we will discuss the way spectral peaks (input
samples used for the regression) are obtained.

First, we prepare some acoustic signals, each of which
contains only the needed musical sources of the instrumen-
tal category. The various sources do not sound at the same
time. In this paper, 12 half-tone sources sound in sequence
every octave. Employing NMF to the amplitude spectro-
gram V (∈ RF×T ) of the signal, V is approximately de-
composed into the product of a basis matrix W (∈ RF×R)
and an activity matrix H (∈ RR×T ) as follows:

V ≈WH (1)

∀i, j, k,Wij ≥ 0, Hjk ≥ 0 (2)

where F, T and R are the numbers of bins of frequency, time
and bases, respectively (here, R = 12).

W and H can be obtained by iteratively calculating up-
date rules based on Euclidean divergence. The update rules

for each matrix element are:

Wij ← Wij
(VHT )ij

(WHHT )ij
(3)

Hjk ← Hjk
(WT V)jk

(WT WH)jk
. (4)

From the updated matrix W, a set of N spectral peaks
P = (f , y) = {(fn, yn)}n are exploited, where fn and yn

are frequency and amplitude of the n-th peak, respectively.
These peaks are found by searching for the harmonic peaks
of each basis vector.

2.2 PSE estimation using SPGP+HS

In this paper, the PSE of each category can be estimated
by extended Gaussian Process (SPGP+HS [7]), which can
approximate the shape of any function with varying variance
more accurately than the standard Gaussian Process.

By giving a set of peaks, P, to one-dimensional SPGP+HS,
we obtain PSE mean envelope µf and PSE variance enve-
lope σf , as follows:

µf = KffmQKfmfnΛ−1y (5)

σf = Kff −Kffm(K−1
fmfm

−Q)KT
ffm (6)

where, Q =
(
Kfmfm + KfmfnΛ−1KT

fmfn

)−1

and Λ =

diag(Kfnfn −KT
fmfn

K−1
fmfm

Kfmfn). Kab is a gram ma-
trix between a and b with a parameter θ. Pseudo-inputs
f̄ = {f̄m}Mm=1 indicate the representatives of any inputs
f , satisfied M � N . hm ∈ h denotes an uncertainty pa-
rameter to the pseudo-input f̄m. We can find the optimum
parameters h, θ, f̄ based on a gradient-based method (for
more details, see [7]).

3. ANALYSIS METHOD

3.1 Spectrums generation based on PSE

The spectrum envelope ec(f) based on the PSE of category
c is randomly generated as follows:

ec(f) ∼ N (µc
f , σc

f ). (7)

N (µ, σ) shows the normal distribution of mean µ and vari-
ance σ.

Spectrum p(f), with a fundamental frequency f0 along
the envelope, ec(f) can be specifically calculated in Eq. (8).

p(f) = max
(
ec(f), 0

)
·Ψ(f ; f0) (8)

The reason for the maximum expression in Eq. (8) is that a
spectrum cannot have negative values. Ψ(f ; f0) is a comb
filter with a fundamental frequency f0, calculated as:

Ψ(f ; f0) =
∑

l

exp
{
− (f − f0 · l)2

2ν2

}
(9)
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where l is the index of Gaussian components, and ν is a
hyper-parameter to determine the kurtosis of each compo-
nent.

Using the above procedure, we can obtain an intended
basis matrix W̃ whose columns (spectrums) are randomly
generated for various categories and fundamental frequen-
cies.

3.2 Basis matrix optimization using Genetic Algorithm

What we want to do in the analysis stage is to find the op-
timum NMF matrices Ŵ and Ĥ for a given test signal. To
do this, we introduce an optimization method based on ge-
netic algorithm (GA), which is a method for finding the op-
timum by repeating natural-evolution-inspired techniques:
selection, crossover, mutation and inheritance.

Given an amplitude spectrogram X of a test signal and
a randomly-generated basis matrix W̃, the activity matrix
H can be calculated by applying supervised NMF with W̃.
That is, each element of H is repeatedly updated by Eq. (4)
while keeping W̃ fixed. Since W̃ determines H in this cal-
culation, H can be considered as a function of W̃. If W̃ has
better (more suited) spectral columns for the test signal, the
distance between X and W̃H must become smaller. There-
fore, the minimization of Euclidean distance DEUC(X,W̃H)
can be used as a criterion for finding the candidate W̃. In
addition to the distance criterion, we give two constraints
sp(H) and den(H). The former sp(H) leads the matrix H
to be sparse, which is

sp(H) =
# {(j, k)|Hjk ≤ ε}

R× T
(10)

where, ε(≥ 0) is a small value (in our experiments, ε = 0.1).
The other constraint den(H) represents the “density” of

the elements in H. This idea is inspired by the fact that
musical notes of each instrument tend to group together in
regard to time and tone. We define the constraint den(H)
as:

den(H) =

∑
k,l,l′ exp

{
− (sk,l−sk+1,l′ )

2

2ρ2

}
∑

k Nk
(11)

{sk,l}Nk

l=1 = { j |Hjk ≥ ε} (12)

where ρ is a constant factor for determing the allowance for
distant tones (in our test, ρ = 3).

Finally, we set the criteria for the optimum search of the
candidate W̃ as follows:

Θ(W̃) = DEUC(X,W̃H)−α ·sp(H)−β ·den(H) (13)

where, α (≥ 0) and β (≥ 0) are weight parameters that
reflect the effects of sparseness and density constraints, re-
spectively.

In our analysis method, the optimum basis matrix Ŵ
is obtained using GA to minimize the objective function
(13). The first step of GA is to generate U (= 12, in our
tests) basis matrices {W̃u}Uu=1 from pre-trained PSEs (See
3.1.), and evaluate the objective function for each matrix by
Eq. (13). Note that fundamental frequency of each column
in the u-th basis matrix W̃u is different from the others, but
the fundamental frequency of the l-th column for all basis
matrices has the same fundamental frequency. To update
the whole set, the following process is repeated G (= 100,
in this paper) times:

1. Copy the best (smallest-objective) basis matrix of the
previous generation to the current generation.

2. With a probability pcross, exchange two selected basis
matrices according to the uniform crossover.

3. With a probability pmut, mutate a selected basis ma-
trix based on PSE.

4. Repeat step 2 and 3 until the number of basis matrices
of the current generation reaches L.

Concerning the expression “select” above, the probability
of u-th candidate selection is defined as Θ(W̃u,H̃u)

PU
u=1 Θ(W̃u,H̃u)

.

This shows that the better W̃u tends to be selected more.
pcross and pmut in steps 2 and 3 are respectively the prob-
abilities of crossover and mutation, which satisfy pcross +
pmut = 1 (in this paper, pcross = 0.9, pmut = 0.1). Fur-
thermore, our GA has the constraints that each basis matrix
mutates without altering the fundamental frequencies. In
other words, the mutated new vector is calculated by multi-
plying the randomly-generated spectrum envelope from PSE
by the comb filter that has the same fundamental frequency
as the original one. Therefore, basis matrices of each gener-
ation can be generated without changing the information on
the fundamental frequency and category we set at first.

The final analysis result is the optimum NMF matrices
Ŵ and Ĥ, which are the best matrices in G-th generation
(Ĥ is obtained by supervised NMF with the optimum basis
matrix Ŵ). Because Ŵ contains a category index c, a test
signal can be decomposed into each instrument.

4. EXPERIMENTS

To evaluate our proposed method, “wav-to-mid” tests were
conducted. In these experiments, an acoustic data synthe-
sized with MIDI sounds is automatically converted into MIDI
format. A part of “RWC-MDB-C-2001 No. 43: Sicilienne
op.78” from RWC Music Database1 was used for the test
(Figure 3 (a)). The monaural test signal was recorded at a
16 kHz sampling rate using multiple MIDI instruments: Pi-
ano and Flute (exactly, “Piano1” and “Flute1” instrumental

1 http://staff.aist.go.jp/m.goto/RWC-MDB/
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models of MIDI, respectively). Before the test, PSEs for the
two categories were trained using the different sounds from
the test signal (“Piano2” for “Piano” PSE and “Flute2” for
“Flute” PSE). Using the PSEs, GA found the optimum ma-
trices Ŵ and Ĥ. By binarizing Ĥ with an adequate thresh-
old, we obtained the final results of MIDI format. The re-
sults were compared for the cases in which the objective
function of GA has sparseness and density constraints and
when it does not (“sp+den”, “sp”,“den”,“w/o”). Since the
results depend on the initial values of {W̃u}Uu=1, we re-
peated each method by 100 times and computed the mean,
maximum, and minimum values of accuracy. We also com-
pared the results with the conventional method, supervised
NMF (“s-NMF” given the basis matrix of “Piano2”, “ideal”
given that of “Piano1”).

Figure 2 illustrates MIDI-conversion accuracies for each
method. The accuracy is calculated as Nall−(Nins+Ndel)

Nall
×

100, where Nall, Nins and Ndel mean the total number of
notes, insertion errors, and deletion errors, respectively. Be-
cause onset time and the duration of each sound source are
not necessarily correct in the above binarizing process, we
permitted the duration to differ and the onset time to shift
τ seconds (in this paper, τ = 0.3). The bar values of our
methods in the figure are average accuracies for 100 tries,
and the error bars indicate maximum and minimum values
of the tries. Concerning the results of conventional meth-
ods, if the system knows exactly the same sounds as the test
signal, it yields high performance (ideal). However, if the
system does not know, the accuracy deteriorates dramati-
cally (s-NMF). Meanwhile, each of our approaches main-
tains high accuracy even when the system does not learn
the sounds of the test data. The preferable results are due
to the fact that each PSE can be estimated by only various
pitches, and it can cover spectrum envelopes of unknown
models. Comparing within our approaches, the system with
sparseness or density constraints achives better accuracy,
and when both constraints were added (“sp+den”), for the
tests with the best results, there were cases when the accu-
racy even exceeded the ideal value.

An analysis example of “sp+den” tries is shown in Fig-
ure 3 (b). Almost all the notes were estimated correctly,
but parts of them were mistaken as octave-different notes.
Therefore, we will improve the accuracy by adding other
constraints to avoid octave differences in the future.
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Figure 2. Accuracy rates of each method.

Time [sec.]

Flute

Piano

Flute

Piano

C2
G#2
E3
C4

G#4
E5
C4

G#4
E5

0 2 4 6 8 10 12

C2

G#2

E3

C4

G#4

E5

Figure 3. (above) Piano-roll representation of test MIDI
data. The red and purple parts indicate piano and violin
tones, respectively. (below) An example of analysis results
with sparseness and density constraints.

5. CONCLUSIONS

In this paper, we proposed an algorithm for monaural sound
source decomposition and multiple-pitch estimation. The
method categorizes several spectrum envelopes for each mu-
sical category, inspired by invariance of spectral fluctuation
in a category. This categorized envelope, called the prob-
abilistic spectrum envelope (PSE), has a characteristic of
being able to absorb differences between models, pitches,
manufactures, playing-style, and so on. PSE consists of a
mean envelope and variance envelope which can be simul-
taneously estimated by SPGP+HS regression as described
in this paper. In the analysis stage, Genetic Algorithm (GA)
with supervised-NMF-based objective and sparseness/density
constraints was employed for an optimum search in all the
spectrum envelopes that can be generated from the PSE.

The simulation experiments using MIDI sources show
that the proposed method is robust to instrumental model
changes. Since the results depend on the initial values, how-
ever, future research will include designing a directly opti-
mum search method, such as ML (Maximum likelihood) or
MAP (Maximum a posteriori) estimations.
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ABSTRACT 

Pulse and meter are remarkable in part because these 
perceived periodicities can arise from rhythmic stimuli that 
are not periodic. This phenomenon is most striking in 
syncopated rhythms, found in many genres of music, 
including music of non-Western cultures. In general, 
syncopated rhythms may have energy at frequencies that do 
not correspond to perceived pulse or meter, and perceived  
metrical frequencies that are weak or absent in the objective 
rhythmic stimulus. In this paper, we consider syncopated 
rhythms that contain little or no energy at the pulse 
frequency. We used 16 rhythms (3 simple, 13 syncopated) 
to test a model of pulse/meter perception based on 
nonlinear resonance, comparing the nonlinear resonance 
model with a linear analysis. Both models displayed the 
ability to differentiate between duple and triple meters, 
however, only the nonlinear model exhibited resonance at 
the pulse frequency for the most challenging syncopated 
rhythms. This result suggests that nonlinear resonance may 
provide a viable approach to pulse detection in syncopated 
rhythms. 

1. INTRODUCTION 

Pulse is a periodicity perceived in a musical rhythm, 
operationally defined as the frequency at which one would 
most likely tap along to a rhythm [11].  People also 
perceive meter, a structural pattern of accents among beats 
of the pulse [10]. Pulse and meter can be diagrammed  
using the notation of Lerdahl and Jackendoff [10], in which 
the metrical grid is composed of beats at multiple related 
frequencies, with strong beats occurring when beats at 
multiple frequencies overlap in time.  Thus meter organizes 
beats of the pulse into strong beats and weak beats. 

In simple rhythms (Figure 1a), note-events occur on 
strong beats.  Rhythms such as the 3-2 Rumba Clave 
(Figure 1b), although they share the same nominal metrical 
structure, are more complex.  In such rhythms, note-events 
occur on metrically weak beats, and strong metrical beats 

often correspond to silences. These two attributes define 
syncopation [3, 12]. Thus, in syncopated rhythms note 
events are spaced irregularly in time, yet the perceived 
pulse is regularly timed, and the meter, regularly structured 
[3, 14]. A goal of theories of pulse perception is to explain 
how pulse and meter are perceived for musical rhythms in 
general, and for syncopated rhythms in particular.   

 

Figure 1. Example rhythms and metrical grid. 

Our approach is based on the idea that the pulse 
percieved in a musical rhythm is a neural resonance that 
arises in sensory [6, 8, 17] and motor cortices [2, 4]. The 
experience of meter is posited to arise from interaction of 
neural resonances at differenct frequencies. In this paper we 
put forth a neurodynamic model of pulse and meter and ask 
whether it can explain the perception of pulse and meter in 
highly syncopated rhythms.  

1.1 Neural Oscillation 

Neural oscillation can arise from the interaction between 
excitatory and inhibitory neural populations. The canonical 
model used here was derived, using normal form theory, 
from the Wilson-Cowan model of the interaction between 
excitatory and inhibitory neural populations [7, 18]. This 
model is generic, however, so the responses of the model to 
musical rhythm are likely to be observed in many other 
nonlinear oscillator models of rhythm perception. 
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1.2 Model 

Our conceptual model is a network of neural oscillators, 
spanning a range of natural frequencies, stimulated with an 
auditory rhythm. The basic concept is similar to signal 
processing by a bank of linear filters [15], but with the 
important difference that the processing units are nonlinear, 
rather than linear resonators. 

We can describe the behavior of a linear filter using a 
differential equation (Eq 1), where the overdot denotes 
differentiation with respect to time.  z is a complex-valued 
state variable; ω is radian frequency. α < 0 is a linear 
damping parameter. x(t) denotes linear forcing by a time-
varying external signal. 

  (1) 

Because z is a complex variable, it has both amplitude and 
phase.  Resonance in a linear system means that the system 
oscillates at the frequency of stimulation, with amplitude 
and phase determined by system parameters. As stimulus 
frequency, ω0, approaches the oscillator frequency, ω, 
oscillator amplitude, r = |z|, increases, providing band-pass 
filtering behavior. In the linear case, oscillator amplitude 
depends linearly on stimulus amplitude. 

A common model of nonlinear oscillation is based on 
the normal form for the Hopf bifurcation (Eq 2).   

  (2) 

Note the surface similarities between this form and the 
linear resonator of Equation 1.  Equation 2 can be seen as a 
generalization of Equation 1, and the two behave the same 
when β= 0. Again ω is radian frequency, and α is still a 
linear damping parameter.  β < 0 is a nonlinear damping 
parameter, which maintains stability when α > 0. x(t) 
denotes linear forcing by an external signal. The term h.o.t. 
denotes higher-order terms of the nonlinear expansion that 
are truncated (i.e., ignored) in normal form models. When 
α = 0 and β < 0, the system is said to be in the critical 
parameter regime, poised between damped and spontaneous 
oscillation. The amplitude of the response depends 
nonlinearly on the input amplitude. Like linear resonators, 
nonlinear oscillators have a filtering behavior, responding 
maximally to stimuli near their own frequency. Differences 
in behavior include extreme sensitivity to weak signals and 
high frequency selectivity. Critical oscillators have been 

used to model critical oscillations of outer hair cells in the 
cochlea [5]. When α > 0 (and β < 0), the system exhibits a 
limit cycle in absence of input; thus, it can oscillate 
spontaneously.  

Our canonical model [7] (Eq 3) is an expansion of the 
Hopf normal form (Eq 2), which includes higher order 
terms.   

(3) 

There are again surface similarities with the previous 
models. The parameters, ω, α and β1 correspond to the 
parameters of the truncated model. β2 is an additional 
amplitude compression parameter, and c represents strength 
of coupling to the external stimulus. δ 1 and δ 2 are 
frequency detuning parameters. The parameter ε controls 
the amount of nonlinearity in the system. Most importantly, 
coupling to a stimulus is nonlinear and has a passive part, 
P(ε, x(t)) and an active part, A(ε, z), as defined in [7], 
which produce different higher order resonances, as 
described in the next section. 

1.3 Properties of Nonlinear Resonance 
Equation 3 displays all the behavioral regimes  

described above –  linear, critical and limit cycle –
depending on the parameter values chosen. Additionally, 
Equation 3 can also exhibit a double-limit cycle bifurcation, 
when α < 0, β1> 0, β2 < 0 (and ε > 0). Stable states emerge 
at rest and at a stable limit cycle; an unstable limit cycle 
separates the two, functioning as a kind of threshold.  If the 
stimulus is strong enough, the threshold will be crossed, the 
system reaches the stable limit cycle, and oscillation can be 
maintained even after the stimulus has ceased.  Thus an 
oscillator operating in a double-limit cycle regime can 
maintain a memory of an oscillating stimulus.  

Higher-order resonance means that a nonlinear 
oscillator with frequency f responds to harmonics (2f, 3f, ...), 
subharmonics (f/2, f/3, ...) and integer ratios (2f/3, 3f/4, ...) 
of f. If a stimulus contains multiple frequencies, a nonlinear 
oscillator will respond at combination frequencies (f2 - f1, 
2f1 - f2, ...) as well. Higher order resonances follow orderly 
relationships and can be predicted given stimulus 
amplitudes, frequencies and phases. This has important 
implications for understanding the behavior of such 
systems. The nonlinear oscillator network does not merely 
transduce signals; it adds frequency information, which can 
be used to model pattern recognition and pattern 
completion, among other things. Neural pattern completion 
based on nonlinear resonance may explain the perception of 
pulse and meter in syncopated rhythmic patterns [9, 13].  

ż = z(α + iω) + x(t)

ż = z(α + iω + β|z|2) + x(t) + h.o.t.
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Our hypothesis is that in rhythms with no energy at the 
pulse frequency, pulse arises due to nonlinear resonance in 
the brain. Significant contributions may also come from 
instrinsic dynamics and learned connectivity. As a first test 
of this hypothesis, we ask whether such resonances arise in 
a canonical nonlinear model. 

2. EXPERIMENT 1 

The first experiment compared the objective frequency 
content of 16 rhythms with the frequency responses of a 
nonlinear oscillator network. Using Fourier analysis we 
measured the frequency content of the rhythmic patterns, 
showing that in syncopated rhythms the pulse frequency is 
weak or absent. Next, we assessed whether nonlinear 
resonance could explain the perception of pulse and meter 
at the frequencies that are predicted by music theoretic 
analysis of these rhythms.  

2.1 Model  

Our model consisted of a single network of 289 oscillators 
described by Equation 3, with natural frequencies 
logarithmically spaced from 0.25 Hz to 16 Hz.  The model 
operated in a critical parameter regime (α = 0, β1 = -1,  
β2 = -0.25, and ε = 1), poised between damped and 
spontaneous oscillation.   

2.2 Stimuli 

We used 16 rhythms: one isochronous pulse train, two 
canonical metrical rhythms (3/4 and 4/4), three clave 
rhythms, and ten “missing pulse” rhythms that were created 
in our lab in the context of a previous experiment [1]. The 
clave rhythms were a 3-2 Son Clave, a Rumba Clave, and a 
clave-like rhythm we dubbed ‘Hard Clave’. The ten 
missing pulse rhythms were structured so as to balance 
strong and weak beats, with four events on strong beats and 
four events on weak beats. In a previous experiment we 
observed that most people reliably tap at the nominal pulse 
frequency for these rhythms. We rendered each rhythmic 
event as a continuous time onset ‘bump’ with amplitude 
corresponding to the intensity of the event. All events were 
of equal intensity, except for the metrical rhythms, where 
intensity differences marked canonical metrical accents.  
All rhythms were rendered at a tempo of 120 bpm, making 
the pulse frequency 2 Hz. Examples of the rhythmic stimuli 
are shown in Figure 2. 

 

Figure 2. Examples of stimuli types: Isochronous, Ca-
nonical 3/4, a Rumba Clave, and one of the ten missing 
pulse patterns.   

2.3 Method 
Computations were performed using Matlab 7.4, on a 
Macintosh Mac Pro, running Mac OS X 10.5.8. In the 
simulations, the continuous-time pulse trains were used to 
drive the network model and the resulting oscillatory output 
behavior was examined. Network behavior was evaluated 
by assessing steady state amplitude of the resonating 
oscillators. The natural frequencies of the resonating 
oscillators indicate which frequencies resonate to the input 
stimulus. 

2.4 Results 

Figure 3 compares a Fourier analysis (FFT) of four 
rhythmic input signals with the amplitude profile of the 
network of nonlinear oscillators. Oscillator natural 
frequency (Hz) runs along the x-axis, and amplitude is 
shown on the y-axis.  Musical notation above each panel 
indicates the pulse and metrical frequencies for each 
rhythm. For the isochronous rhythm, energy is present at 
the pulse frequency (2 Hz), and its harmonics. For the 
canonical rhythms, signal energy was observed at the pulse 
frequency, while the accents present in the signal 
contributed frequencies at metrical levels (subharmonics of 
the pulse). The clave rhythms all had some energy at 2 Hz;  
however, this was strongly attenuated compared to the 
energy at other nearby frequencies. Fourier analysis of the 
other ten syncopated rhythms revealed no energy at the 2 
Hz pulse frequency, while considerable energy was 
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observed at non-metrical frequencies. Note that energy was 
present at the eighth note level of 4 Hz for all rhythms. 

As illustrated in Figure 3, resonant responses were 
observed in the oscillator network at frequencies that were 
not objectively present in the stimulus rhythms. Most 
importantly, resonances were observed at the pulse 
frequency for every rhythm. Resonances were also 
observed at subharmonics of the isochronous rhythm, and 
for canonical rhythms subharmonic resonances enhanced 
the response at the metrical frequencies. For the clave 
rhythms, the response at the pulse frequency (2 Hz) was 
also enhanced relative to the Fourier amplitude. For the 
missing pulse rhythms, although there was no energy at the 
2 Hz pulse frequency, the nonlinear network responded at 
the 2 Hz pulse frequency as well as at some additional 
metrical frequencies.  

In summary, both simple and complex rhythms contain 
multiple frequencies, only some of which appear to be 
related to the meter. Simple rhythms contain frequencies 
corresponding to the pulse; however, complex syncopated 
rhythms contain little or no energy at the pulse frequency. 
This feature of complex rhythms may be problematic for 
linear filter based methods of pulse detection.  Nonlinear 
oscillators can resonate at frequencies corresponding to 
pulse and meter even when these are not objectively present 
in the input. However, the simple oscillator array 
investigated in Experiment 1 is, by itself, likely not 
sufficient to induce the pulse and meter of complex 
rhythms. While oscillators resonate at the pulse frequency, 
a number of stronger resonances are observed at 
frequencies that do not correspond to pulse or meter. In the 
next experiment, we ask whether multiple networks 
together might provide greater frequency selectivity. 

3. EXPERIMENT 2 

3.1 Stimuli & Method 

The stimuli methods used in Experiment 2 were the same as 
in Experiment 1. 

3.2 Model 

The model was based on the same oscillator equations as 
used in Experiment 1.  The key difference was that in 
Experiment 2, the model consisted of two networks 
interacting with each other.  Network 1 had the same 
parameters as used in Experiment 1. The oscillators in 
Network 2 were tuned to exhibit double limit cycle 
bifurcation behavior (α = 0.3, β1 = 1, β2 = -1, and ε = 
1), and thus exhibited both threshold and memory 
properties. 
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 Figure 3. Experiment 1 results. A subset of the rhythms 
presented with both an FFT of the stimulus (black) and the  
amplitudes of responding nonlinear oscillators (gray). 

The two networks were connected as shown in Figure 4.  
Tonotopic connections between the networks allow 
Network 1 to drive Network 2. Next, in each network, 
internal connectivity coupled patches of oscillators to other 
patches exhibiting small integer ratio frequency 
relationships, 1:3, 1:2, 1:1, 2:1, 3:1.  These connections are 
assumed to be learned by exposure to Western rhythms, in 
which duple and triple meters are common. Connectivity 
from Network 2 to Network 1 was inhibitory. 

3.3 Results 

Across the rhythms presented, Network 1 behaved similarly 
to the previous experiment, responding to frequencies 
present in the simulus rhythms, and also adding nonlinear 
resonances. Example of Network 2 responses are shown in 
Figure 5. Due to its thresholding properties, Network 2 
responded to a subset of frequencies present in the Network 
1. Importantly, Network 2 almost always responded at the 
pulse frequency. Moreover,  the amplitude at 2 Hz was 
unexpectedly strong given the relatively weak responses 
observed in Experiment 1.   
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Figure 4. Network architecture for models used in both 
experiments. 

Figure 5. Results for Experiment 2. Amplitude response 
profiles for Network 1 (gray) and Network 2 (black). 
Frequencies were considered ‘active’ in Network 2 if they 
exceeded the threshold implicit in the double limit cycle 
oscillatory dynamics. Active frequencies were compared to 
metrical frequencies for each rhythm. For syncopated 
rhythms expected frequencies were the quarter note level 
(i.e., the pulse, 2 Hz), the eighth note level (4 Hz), as well 
as the half note (1 Hz) and whole note levels (0.5 Hz) for  

Table 1. Summary of results for Experiment 2.  Shaded 
cells identify frequencies which would be expected to have 
a resonance for the rhythm based on meter.  Populated cells 
(x) show which resonant frequencies were active in Net-
work 2.  

most of the rhythms (the one exception was the canonical 
3/4 rhythm, whose slower metrical frequency was 0.67 Hz). 
The results of the two-network model can be seen in Table 
1. Highlighted cells show the frequencies at which response 
peaks would be expected based on the meter. Populated 
cells show whether or not response peaks were observed at 
given frequencies. For all but one rhythm, a response was 
seen at the pulse frequency of 2 Hz. For the canonical 
rhythms, response peaks were always found at the expected 
frequencies and at no others. This set of hierarchically 
related frequencies may correspond to a perception of meter. 
For the missing pulse rhythms, response peaks were found 
most consistently at the pulse frequency and its first 
harmonic at 4 Hz. At lower frequencies, the results differed 
from standard metrical predictions. This may explain why 
people sometimes have difficulty entraining periodic taps 
with highly syncopated stimuli. In previous experiments, 
level of syncopation was found to be a good predictor of 
pulse-finding difficulty; syncopation causes off-beat taps 
and some switches between on-beat and off-beat tapping 
[14, 16].  

4. DISCUSSION 

Syncopated rhythms present challenges for pulse 
detection algorithms. Looked at in the frequency domain, 
some syncopated rhythms do not contain any energy at the 
frequency of the pulse. Yet pulse is readily perceived in 
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Stimuli Network 2 Active Frequencies (Hz) 
Rhythm 1/2 2/3 1 2 4 Other 

Isochronous x  x x x  
4/4 x  x x   
3/4  x  x   
Son Clave x  x x  0.62 
Rumba Clave x  x x  0.62, 0.88 
Hard Clave   x x  0.62, 1.24 
Missing Pulse 1 x   x x 0.62 
Missing Pulse 2    x x 0.63, 0.75 
Missing Pulse 3    x x 0.62 
Missing Pulse 4    x x 0.62, 0.88, 1.12 
Missing Pulse 5 x  x x x 0.62, 0.75, 1.24 
Missing Pulse 6    x x 0.62, 0.75 
Missing Pulse 7 x   x  0.62, 0.75 
Missing Pulse 8 x   x x 0.75 
Missing Pulse 9    x x 0.75 
Missing Pulse 10   x  x 0.63, 0.75, 1.26 
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syncopated rhythms [1, 14]. From the point of view of 
music perception, this observation implies that the brain 
adds frequency components that are not objectively present 
in rhythms themselves. A lack of energy at the pulse 
frequency may explain why pulse detection methods based 
on linear resonance experience problems with syncopated 
rhythms. For syncopated rhythms, our nonlinear model, 
based on fundamental principles of neurodynamics, 
resonates at the pulse frequency. This qualitatively matches 
human performance [1], and the detailed responses of this 
model provide novel predictions which could be tested in 
future experiments. Our observations support the 
hypothesis that pulse corresponds to a neural resonance. In 
simple networks, nonlinear resonance by itself is capable of 
restoring a missing pulse frequency. When multiple 
networks of nonlinear oscillators are coupled together 
(including internal rhythmic connectivity within networks), 
they can resonate at a pulse frequency and related metrical 
frequencies, a form of temporal pattern matching or pattern 
completion. 

In future work, we plan to construct and test other 
models based on nonlinear resonance. For example, the 
results presented here do not enable us to say whether 
internal network connectivity or the thresholding properties 
of Network 2 were primarily responsible for the observed 
responses. Perhaps both are necessary. Future work in this 
area will focus on how the connectivity patterns between 
networks are learned  and address developmental aspects of 
pulse and meter as well as differences across cultures.  
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ABSTRACT 
 
Automatic beat tracking and tempo estimation are 
challenging tasks, especially for audio music with time-
varying tempo. This paper proposes a two-fold dynamic 
programming (DP) approach to deal with beat tracking with 
time-varying tempo. In particular, the first DP computes the 
tempo curve from the tempogram. The second DP identifies 
the optimum beat positions from the novelty and tempo 
curves. Experimental results demonstrate satisfactory 
performance for music with significant tempo variations. 
The proposed approach was submitted to the task of audio 
beat tracking in MIREX 2010 and was ranked no. 1 for 6 
performance indices out of 10, for the dataset with variable 
tempo. 
 

Index Terms – Beat tracking, Tempogram, Time-varying 
tempo, Dynamic programming, Viterbi search 
 

1. INTRODUCTION 
 
Tempo and beat are two essential elements in music. Such 
information is useful in several applications such as query 
by tempo (querying a large database based on tempo), beat 
slicing (segmentation into basic music units separated by 
beats), and beat synchronous mixing. However, automatic 
beat tracking and tempo estimation are still challenging 
tasks when the music has time-varying tempos.  

Conventional beat tracking schemes [1] rely on certain 
assumptions about music contents such as stable tempo over 
time, periodical percussions/onsets, and four beats per 
measure. Under these assumptions, most approaches of beat 
tracking are accomplished by two phases. In the first phase, 
the onset strength of music along time, called novelty curve, 
is estimated to indicate the possible positions of note onsets. 
In the second phase, the quasi-periodic patterns in novelty 
curve are analyzed to discover the possible tempo value and 

the corresponding beat positions. Here, tempo is assumed to 
be stable throughout the whole piece of music.  

However, the above-mentioned assumptions do not hold 
true universally, especially for music of classical and jazz. 
Music of these genres often has significant tempo variations, 
making it difficult to detect the periodical patterns. In order 
to detect the variations in tempo, Frequency Mapped Auto-
Correlation Function (FM-ACF) and Short-Time Fourier 
Ttransform (STFT) [2] are frequently used to derive a time-
frequency representation of the novelty curve, called 
tempogram [3]. The tempo information is embedded in 
tempogram. We can then apply dynamic programming (DP) 
to the tempogram to derive the so-called tempo curve, which 
represents the most likely tempo at each time frame. 

A number of beat tracking algorithms have been 
proposed in the literature under different methodologies, 
including beat-template training [2], neural networks [4], an 
agent-based method [5], and so on. Among them, DP is still 
considered an efficient and effective way for determining 
beat positions. The use of DP for beat tracking has been 
proposed in [1] with good performance, but it is based on a 
pre-estimated stable tempo which is estimated by time-
domain autocorrelation with window weighting. 

There are several important previous studies that 
attempted to deal with time-varying tempos. Klapuri et al. 
[18] used the bandwise time-frequency method to obtain 
accentuation information, then used comb filter resonators 
and probabilistic models to estimate pulse width and phase 
of different music meters, including tatum, tactus, and 
mesurement. Davies and Plumbley [19] proposed the use of 
complex spectral difference onset function [15] to obtain 
middle level representation. Their algorithm employs two-
state switching model, including general state and context-
dependent state, to obtain final beat positions. Groshe and 
Muller[17] used the novelty curve to generate predominant 
local periodicity(PLP) for estimating time-varying tempos. 

In this study, we follow the three-phase framework [2, 6] 
of beat tracking and attempt to remove the stable-tempo 
restriction by developing a two-fold DP approach for robust 
beat tracking with time-varying tempos. To this end, the 
first DP estimates the time-varying tempo curve from the 
tempogram (which is obtained from the novelty curve). 
Then the second DP uses the time-varying tempo curve to 
identify the optimum beat positions on the novelty curve.  

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page.  
© 2011 International Society for Music Information Retrieval  
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(In fact, we have proposed similar concepts for speech 
analysis, including DP-based robust pitch determination [13] 
for Mandarin tone recognition, and DP-based pitch marking 
[14] for TD-PSOLA synthesis.) In addition, we also propose 
partial-FFT-based tempo curve estimation and peak picking 
in tempogram for DP, which enhance the overall efficiency 
with almost no accuracy loss. The proposed approach was 
ranked no. 1 for 6 performance indices out of 10, for the 
dataset of time-varying temp in the audio beat tracking task 
of MIREX 2010.  

The remainder of this paper is organized as follows. 
Section 2 describes the details of the proposed framework. 
Performance evaluation is given in section 3. Section 4 
concludes this work with potential future work. 
 

2. SYSTEM DESCRIPTION 
 

The proposed beat tracking system is shown in Figure 1.  
 

 
Figure 1. Flowchart of the proposed beat tracking system 

 
The first block computes the novelty curve based on [1] and 
[6]. The second block generates the tempogram and 
estimates the tempo curve from the novelty curve. In the 
third block, beat positions are estimated by using the 
information from previous two blocks. Details of each block 
will be explained in the following subsections. 
 

2.1  Novelty Curve Estimation 
 

Figure 2 shows typical outputs of various steps in 
novelty curve estimation. A power spectrogram is first 
obtained by applying STFT to the source audio with a frame 
size 31.6 milliseconds and 87.5% overlap. The frequency 
components of spectrogram are then mapped into Mel-scale 
in Figure 2(a) for conforming to the characteristics of 
human perception [1]. Then we apply spectral flux (SPF) 
[12] to obtain the raw novelty curve, as shown in Figure 2 (b) 

To be more specific, we have 40 bands in the Mel-scale 
spectrogram, where each band has a equal width in the Mel-
scale frequency. In other words, each frame is transformed 
into a vector of 40 elements of mean energy with the bands. 
Moreover, the Mel-scale spectral flux can be defined as 
follows:  

 
 

 𝑀𝑒𝑙𝐹𝑙𝑢𝑥(𝑡𝑖) = 1
𝑁
∑ 𝐻𝑅𝐹 �𝑀𝑒𝑙𝑆𝑝𝑒𝑐𝑡𝑟𝑜�𝑡𝑖+1, 𝑏𝑗� −𝑁
𝑗=1

                                                          𝑀𝑒𝑙𝑆𝑝𝑒𝑐𝑡𝑟𝑜�𝑡𝑖 , 𝑏𝑗��       (1) 
 

 

where 𝑡𝑖  is the time for frame i , 𝑏𝑗  is Mel-band j,  
𝑀𝑒𝑙𝑆𝑝𝑒𝑐𝑡𝑟𝑜�𝑡𝑖 , 𝑏𝑗� is the Mel spectrogram at frame i and 
Mel-band  j, and  𝐻𝑅𝐹�．� is the half-wave rectifier. 

 
 
In general, we neglect the locally periodical information 

above 500 BPM (beats per minute) due to the limitation of 
human perception [7]. Thus we use Gaussian smoothing 
(which acts as a low-pass filter) to filter out the redundant 
high-frequency parts in raw novelty curve, as shown in 
Figure 2 (c). The Gaussian filter has a cutoff frequency 
equal to the sampling frequency divided by 5. At last, we 
subtract the local mean (dotted curve in Figure 2 (c)) to 
obtain the final novelty curve, as shown in Figure 2 (d). The 
local mean is derived from Gaussian smoothed raw novelty 
curve filtered by another Gaussian filter with a cutoff 
frequency equal to the sampling frequency divided by 125.  
 
2.2  Tempo Curve Estimation 
 
In this block, we estimate the tempo curve by analyzing 
locally periodical patterns in novelty curve. Generally 
speaking, local periodicity estimation is usually 
accomplished by STFT, FM-ACF or a combined method [2]. 
However, the autocorrelation-based method generates non-
uniform tempo grids in tempogram, since the tempo is the 
inverse of the beat time difference. More specially, the 
lower the tempo is, the finer resolution (via interpolation, 
for instance) is requied to achieve a high precision. To avoid 
such extra work for maintaining the precision, here we use 
STFT to obtain the tempo curve in our study. 

Tempo Curve Estimation 

DP Initialization: 
 Anchor Candidate Searching 
 Probability weighting window 
 Number of beat candidate 

Mel-scale spectrogram 

Calculate difference between 
adjacent frames 

Half-wave rectification 

Sum over all frequency bands 

Gaussian smoothing 

Local-mean subtraction 

Novelty Curve Generation 

Short-Time Fourier Transform 

Monaural audio 

Partial FFT 

Tempogram construction 

Dynamic Programming 

DP Initialization: 
 Tempo change penalty 
 Peak picking in tempogram 

Beat tracking 

Forward/Backward   
Dynamic Programming 

  

Beat positions 

SPF Calc. 

Novelty Curve 

Tempo Curve 
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Figure 2. (a) Power spectrogram. (b) Raw novelty curve. (c) 
Smoothed novelty curve with local mean curve (the dash 
curve). (d) Novelty curve after local mean subtraction 
 

As mentioned above, we do not have to analyze all 
frequency components in the novelty curve. Therefore, a 
partial FFT method is employed to eliminate high-frequency 
computation in STFT. Furthermore, the selection of 
analyzing window length significantly influences the 
capability for tracking tempo variation. In our 
implementation, the frame size is set to be 4 seconds with 
99.6% overlap. The resulting tempogram is shown in Figure 
3(a). 

In order to strike a balance between tempo continuity 
and novelty curve strength, a DP-based approach is used to 
obtain the tempo curve. Given the magnitude 𝑀𝑖,𝑗 of a point 
in the tempogram with time index 𝑖 (1 ≤ 𝑖 ≤ 𝑛), we want to 
find a tempo path  𝐏 =  �𝒑𝟏, ⋯, 𝒑𝒊 ⋯, 𝒑𝒏�, with 𝑝𝑖   is tempo 
value, such that the over-all objective utility function is 
maximized: 
 

 

J(𝐏,𝜃)  = ∑ 𝑀𝑖,𝑝𝑖
𝑛
𝑖=1 −  θ × ∑ |𝑝𝑖 − 𝑝𝑖+1|𝑛−1

𝑖=1  , (2) 
 
where 𝜃  is the transition penalty factor incurred by the 
difference of the tempo path within two consecutive frames. 
The first term in the utility function is the magnitude values 

along the path over the tempogram, while the second term 
controls the smoothness of the path (thus the computed 
tempo curve). If θ is larger, then the tempo curve will be 
smoother. In particular, if 𝜃 = 0 in the extreme case, then 
maximizing the utility function is equivalent to maximum-
picking of each column (or equivalently, each frame) of the 
tempogram. 
     For efficiency, we shall employ DP to find the maximum 
of the utility function, where the optimum-valued function 
𝐷(𝑖, 𝑗)  is defined as the maximum utility starting from 
frame 1 to 𝑖 , with the frequency/tempo index ending at 𝑗 
(1 ≤ 𝑗 ≤ 𝑚). Then the recurrent equation for DP can be 
formulated as follows: 
 
𝐷(𝑖, 𝑗) = 𝑀𝑖,𝑗 + 𝑚𝑎𝑥𝑘,𝑗∈[1,𝑚]{𝐷(𝑖 − 1, 𝑘) − 𝜃 × 𝑡𝑑(𝑘, 𝑗)}          (3) 

where 𝑖 ∈ [2,𝑛], 𝑘 𝑎𝑛𝑑 𝑗 are tempo index 
     td(．) is tempo difference function 
      

The initial conditions are  
 

𝐷(1, 𝑗) = 𝑀1,𝑗 , 𝑗 ∈ [1,𝑚]                                       (4) 
 
And the maximum utility is equal to 𝑀𝐴𝑋𝑗∈[1,𝑚]𝐷(𝑛, 𝑗). A 
similar DP-based pitch tracking method has been proposed 
for tone recognition in our previous work [13].  

In practice, we can replace 𝑡𝑑(𝑘, 𝑗)  in the recurrent 
equation with 𝑡𝑑(𝑘, 𝑗) = |𝑝𝑘 − 𝑝𝑗| , which represents the 
tempo difference between tempo indices 𝑘  and  𝑗 . This is 
adopted in our implementation. Figure 4 demonstrates 
typical results of DP over a tempogram, with (a) and (b) 
being the tempogram 𝑀 and the DP table 𝐷 , respectively, 
together with the optimum path obtained via DP. Figure 4 (c) 
and (d) shows the same plots using a 3D surface for easy 
visualization. 

As a common practice in DP, after the maximum utility is 
found, we can backtrack to find the optimum path together 
with the most likely tempo curve, as shown in Figure 3(b). 

The transition penalty factor 𝜃 controls tempo variations, 
that is, it determines the smoothness of tempo curve, as 
shown in Figure 3(c), where a larger value of  𝜃 leads to a 
smoother tempo curve. In our experiment, the transition 
penalty factor 𝜃 is set to 0.01 empirically in order to track 
the correct tempos. 
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Figure 3. (a) The tempogram obtained from the novelty 
curve (b) Local maxima of each column of the tempogram 
and the final optimum tempo path (solid line) with 𝜃 = 0.01 
(c) Tempo curves obtained with 𝜃 = 0.01 and 0.03, 
respectively. 

 
Figure 4. (a) Tempogram (as a contour map) and the 
optimum path. (b) DP table (as a contour map) and the 
optimum path. (c) Tempogram (as a 3D surface) and the 
optimum path. (d) DP table (as a 3D surface) and the 
optimum path.  
 
When 𝑛   is big, the computational complexity is still too 
high to compute the recurrent equation over all states. To 
reduce the computation, we can simply pick the 𝐿 largest 
local maxima within each column of the tempogram as the 
candidate states for DP, as shown in Figure 3 (b). In our 
experiment, this simplified algorithm with L equal to 10 can 
achieve almost the same performance as the original DP. 
 
2.3  Beat Tracking 
               

This block utilizes both the tempo curve and the novelty 
curve to find a sequence of beat positions that fits the tempo 
curve and the novelty strengths as much as possible. To 
achieve this task, we apply another DP-based method in a 
probabilistic framework (just like Viterbi search in speech 
recognition) to perform forward and backward beat tracking, 
starting from the anchor beat position (the position of the 
most prominent peak) of the novelty curve. We have 

proposed such a probability-based DP framework for pitch 
mark identification [14]. Another DP-based approach has 
been proposed for stable-tempo beat tracking [1], though not 
in a probabilistic framework. 

Here we use Figure 5 to explain the probability-based 
DP method for beat position identification. First of all, we 
find the maximum of the novelty curve as the first beat 
position, which is referred to as the anchor candidate. 
Starting from the anchor candidate, we search on both sides, 
one side at a time, to obtain all beat positions. The search 
region is generally defined as a range from 0.5 to 2 times 𝑇, 
the beat period at the anchor candidate. We use a log-time 
Gaussian function over the search region as a weighting 
window for approximating the transition probability. Note 
that the maximum of the log-time Gaussian window is 
located at 𝑇 from the anchor candidate. 

In practice, only the largest 𝑁 peaks of the novelty curve 
within the next search region are selected as the candidates 
for the next beat positions. As a result, we need to perform 
normalization to guarantee that the transition probabilities 
sum to 1 within the search region. Similarly, the state 
probabilities of these 𝑁  candidates are obtained based on 
their heights within the novelty curve. 
 

 
 

Figure 5.  Backward beat search with 𝑁 =2  
 
Once the state and transition probabilities are defined, we 
can apply DP just like Viterbi search for the optimum beat 
positions. The search is performed twice for both forward 
and backward directions from the anchor candidate, and the 
results of them are merged to obtain the complete beat 
positions. In our experiment, we set N to 2. Figure 6 shows a 
typical result with 𝜃 = 0.01 and 𝑁=2. 

   
Figure 6. (a) Typical beat tracking results with 𝜃 = 0.01 and 
𝑁=2 (beat positions indicated by circles).  (b) The tempo 
curve used to obtain the beat positions in (a). 
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3. PERFORMANCE EVALUATION 
 
In this section, we present the performance of the proposed 
algorithm by using the results of the Audio Beat Tracking 
contest in Music Information Retrieval Evaluation 
eXchange (MIREX) 2010  [8]. 
 
3.1  Performance Indices 
 
There are a number of performance indices proposed for the 
audio beat tracking task in MIREX 2010 [8]. For simplicity, 
here we explain two performance indices which are 
generally adpoted in beat tracking evaluation among all. The 
first one is F-measure [9] which considers the estimated beat 
as correct if it is within a tolerance window (±70ms in 
MIREX 2010) around the ground truth. The second one is 
P-score [10] which measures beat tracking accuracy by the 
summation of the cross-correlation between impulse trains 
of the estimated beats and the ground truth. 
 
3.2  Datasets 
 
Two music data sets are used to evaluate the performance of 
the proposed system with stable and time-varying tempo, 
respectively. 
 

- MCK dataset:  
 Collected by Martin F. McKinney and Dirk Moelants. 
 Contains 160 30-second excerpts. 
 Ground truth is annotated as stable tempo. 
 A large variety of instrumentation and musical styles. 

 

- MAZ dataset: 
 Collected by Craig Sapp. 
 A subset of 367 Chopin Mazurka pieces [10]. 
 Ground truth is annotated as time-varying tempo.  

 
3.3  Performance and discussion 
 
Tables 1 and 2 show the performance of participating teams 
in MIREX 2010 audio beat tracking task on stable and time-
varying tempo respectively. Only the best method from each 
team are listed here. Algorithm TL2 uses the proposed 
method in this paper. LGG2 and MRVCC1 accomplish this 
task based on BeatRoot system proposed by Simon Dixon 
[5]. NW1 is based on Predominant Local Pulse curves (PLP) 
[6]. GP3 estimates beat and downbeat positions [11] 
simultaneously via an inverse Viterbi formulation and LDA-
trained beat-template [3]. ZTC1 tracks beat with a global 
stable tempo value. BES4 is based on bidirectional Long 
Short-Term Memory (BLSTM) recurrent neural networks.  
 
Algorithm 

ID TL2 LGG2 MRVCC1 NW1 GP3 ZTC1 BES4 

F-
Measure 42.0 50.0 25.7 35.6 50.3 1.2 54.5 

P-Score 50.6 55.0 38.4 45.7 56.5 0.9 59.2 

Table 1. Performance on MCK dataset (stable tempos) 

 
As shown in Table 1, the proposed algorithm (TL2) only 
performs moderately well on MCK dataset which has stable 
tempos. The performance in this dataset indicates we might 
have put too much emphasis on tracking tempo variations 
instead of identifying stable tempos. In other words, we 
might want to increase the value of the transition penalty 
factor 𝜃  such that the tempo variations can be kept small for 
this dataset. 
 
Algorithm 

ID TL2 LGG2 MRVCC1 NW1 GP3 ZTC1 BES4 

F-
Measure 68.5 41.5 49.2 27.6 47.1 24.6 58.7 

P-Score 72.2 43.5 51.0 31.4 48.7 26.1 57.9 

Table 2. Performance on MAZ dataset(time-varying tempos) 
 

 
Figure 7. The performance on MAZ dataset, including all 

submitted algorithms and 7 performance measures. 
 

On the other hand, in Table 2, the proposed algorithm 
(TL2) outperforms all the other teams based on the 
performance indices of F-measure and P-score. More 
specifically, if we consider all the submitted algorithms and 
all the performance measures, the proposed algorithm 
outperforms other 12 submitted algorithms on 6 
performance indices out of 9, as shown in Figure. 7. (Note 
that in the Figure, we only show 7 performance indices for 
clarity. Moreover, the performance measure by Goto is not 
counted since it is close to zero for all submitted algorithms.) 
This clearly demonstrates the feasibility of the proposed 
two-fold DP strategy for dealing with music of time-varying 
tempos. 
 

4. CONCLUSIONS 
 
In this paper, we have proposed a two-fold DP approach to 
beat tracking, especially for time-varying tempo music. The 
first DP is applied to estimate the tempo curve from the 
tempogram, and the second DP is used to find the optimum 
beat positions with maximum likelihood. The proposed 
method is very similar to our previous work on speech 
analysis, where the first DP is used for robust pitch 
determination [13] and the second DP for robust pitch 
marking [14]. Based on the results of the audio beat tracking 
contest of MIREX 2010, the proposed method performs ex-
tremely well for music with time-varying tempos, but only 
moderately well for music with stable tempos. To improve 
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the proposed algorithm, our immediate work is to use a 
training based method to select the transition penalty factor 
𝜃 such that it can deal with music with both stable and time-
varying tempos. Moreover, we would like to develop a more 
systematic way of defining the state and transition 
probabilities used for the second-fold DP for finding the 
optimum beat positions. We will also investigate the 
possibility of incorporating more acoustic features, either 
time- or frequency-domain, to define the more robust 
novelty curve that can deal with music with no percussions.  
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ABSTRACT

Many applications demand the automatic induction of the
tempo of a musical excerpt. The tempo estimation systems
follow a general scheme that consists of two main steps: the
creation of a feature list and the detection of periodicities
on this list. In this study, we propose a new method for the
implementation of the first step, along with the addition of a
final step that will enhance the tempo estimation procedure.
The proposed method for the extraction of the feature list is
based on Gammatone subspace analysis and Linear Predic-
tion Error Filters (LPEFs). As a final step on the system, the
application of a model that approximates the tempo percep-
tion by human listeners is proposed. The results of the eval-
uation indicate the proposed method compares favourably
with other, state-of-the-art tempo estimation methods, using
only one frame of the musical experts when most of the lit-
erature methods demand the processing of the whole piece.

1. INTRODUCTION

The tempo is a dominant element connected to the hierarchi-
cal structure of a music signal that can define various aspects
of it. Moreover, it is an intuitive music property that hu-
man listeners, even without any musical education are able
to perceive and understand only by listening to the first few
seconds of an excerpt. The tempo is defined as the rate of
the tactus pulse, a prominent level in the hierarchical struc-
ture of music, which is also referred to as the foot-tapping
rate.

The process of automatically inferring the tempo of a

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

musical piece plays an important role among the applica-
tions in the field of Music Information Retrieval (MIR). Many
of them, for example, beat tracking and music classifica-
tion, need a preprocessing stage where tempo estimation
takes place. Beyond these, tempo induction is essential in
music similarity and recommendation, automatic transcrip-
tion and even audio editing. More complicated tasks such
as meter extraction and rhythm description also demand a
tempo estimation module. Finally, in applications with beat
synchronous visual and audio effects the estimation of the
tempo is a necessary part.

In such applications it is desired that correct tempo esti-
mation would be available to the system at about the same
time that the tempo is detected by a human listener. This
is technically very difficult because the human listeners are
able to use higher-level context cues to conduct tempo de-
tection. In fact, many algorithms proposed for tempo es-
timation in the past [7, 11] require a long signal segment
for producing reliable results. This is clearly a problem in
contents such as radio programs, where the rhythmic music
content may alternate with, for example, speech segments

Tempo induction algorithms follow a general scheme [4,
5], that consists of two main stages. In the first stage, the
audio signal is parsed and a set of features is created. These
features convey an initial rhythmic structure of the input mu-
sical piece. Literature reveals two main methods to obtain
features: either from a list of the inter onset intervals (IOIs)
of the musical signal or from the temporal evolution of the
musical signal.

Representative algorithms that fall in the first category,
and use IOIs for the creation of the feature list, are presented
in [1–3]. Algorithms in the second category rely on features
extracted directly from the audio signal. These features may
emphasize onset locations but they do not result from on-
set lists. In [11] an amplitude envelope of the signal in six
octave-spaced subbands is created at the first stage of the
system. This approach is expanded in [7], where a more
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generic and therefore robust accent signal is created across
four subbands.

During the second stage of the tempo estimation scheme,
periodic recurrences of the features are found and the tempo
is calculated. There are several methods to achieve this. For
example, the autocorrelation function (ACF) [12], comb-
filter resonators [7, 11] and phase-locking resonators [8].

The method proposed in this paper uses Gammatone anal-
ysis and linear prediction for extracting the feature list. Af-
ter that, the estimation of the existing periodicities takes
place. As a last step to the algorithm, a perceptual weighting
method is proposed for enhancing the system’s accuracy.

The results of the system are encouraging and indicate
that the addition of a perceptually inspired stage at the end
is advantageous for an algorithm that follows the tempo es-
timation general architecture. In addition to that, the use of
a single, 4 seconds long, frame to obtain the final results, fa-
cilitates the proposed algorithm to quickly adapt to possible
tempo changes in a given music excerpt.

The Gammatone filterbank models the input signal using
a frequency resolution which is similar to that of the hu-
man auditory system. Moreover, the use of LPEFs in the
first step, enables the accentuation of points where abrupt
changes take place in any frequency band of the input sig-
nal. These points in time are considered significant for the
task of tempo estimation.

The perceptual processing, that starts with the applica-
tion of the Gammatone filterbank on the input signal, pro-
ceeds with the weighting method that is added as a last step
on the system. This weighting method is based on a reso-
nance model that has been found to follow the perceptual
responses to a variety of musical excerpts [10, 13]. The use
of this model in order to enhance a tempo estimation system
is novel and leads to promising results.

The rest of the paper is organised as follows. In Section
2 the architecture of the system is described. Section 3 pro-
vides results and evaluates the developed system. Finally,
conclusions and future work are discussed in Section 4.

2. METHOD DESCRIPTION

The developed system follows the general scheme of tempo
estimation algorithms, with the addition of a last step where
the perceptual processing of the results takes place. The
block diagram of the system is shown in Figure 1. Each one
of the three major units depicted there, is described in details
in the following sections.

2.1 Feature List Extraction

When a listener listens to music, the musical events are re-
lated to a regular pattern of beats, called metrical structure.
These patterns are organised in a metrical hierarchy that ex-
ists in every musical sound and consists of two or more lev-

Figure 1. The block diagram of the proposed system.

Beats 1 2 3 4 1 2 3 4 1

tatum
tactus
measure

Figure 2. The hierarchical structure of a piece with a 4/4
meter

els. When a beat is felt stronger that the other beats of the
same metrical level then it is also a beat at the higher musical
level. This hierarchy is depicted in Figure 2, where also the
first three levels of it are presented. The tempo is described
as the rate of the tactus beat, or based on the above explana-
tion the rate at which strong beats appear at the tatum level.

During this stage of the analysis the goal is to detect
events that are connected to the strong beat of the tatum
level. To achieve this, it is assumed that any event per-
ceived as a strong beat will appear as an abrupt increase in
the temporal evolution of the musical signal, baring signifi-
cantly more transient content than the rest of the beat-related
events.

Let us consider the input music signal x[n]. The first step
of the processing is the application of a bank of K Gamma-
tone filters on it:

xk[n] = hk[n] ? x[n] k ∈ [0, 1, . . . ,K − 1] , (1)

where hk[n] the impulse response of the k-th Gammatone
filter. During the implementation the value K was chosen
to be 16.

After the filtering of the input signal, each subband signal
is decimated K times as follows

xk[n] = xk[Kn]. (2)

The xk[n] signals are then given as an input to a bank of
adaptive LPEFs. The use of the LPEFs enables the detection
of abrupt changes in the temporal evolution of the signal. By
adapting the linear prediction coefficients that these filters
use, it is possible to emphasize the events that the adaptive
algorithm fails to model. The strong beats that appear at the
tatum level are connected to these events.

The output of the adaptive LPEFs is the prediction er-
ror of the adaptive linear predictive algorithm given in Al-
gorithm 1. This algorithm is based on estimating the LPC
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coefficients of the initial M values of the N long frame, and
adapting these coefficients using the Least Mean Squares
(LMS) algorithm for the remaining N −M samples. The
selected values for M and N are 23 ms and 1 second re-
spectively (converted in samples). More details on linear
prediction and the LMS algorithm can be found in [6].

The output signal, dfk[n], is the detection function, a
residual signal that presents high values when beat related
events take place in the temporal evolution of the signal.

Algorithm 1 The implemented adaptive LPEF algorithm.
mu← 10−3

wk[0]← LPC(xk[0])
for n = 1 to N −M do
x̃k[n]← wTk [n] ? xk[n]
dfk[n]← xk[n]− x̃k[n]

µ← min
(
mu, 1

xTk [n]xk[n]

)
wk[n+ 1]← wk[n] + µdfk[n]xk[n]
n← n+ 1

end for

A peak picking procedure, applied on the analysis frames
(of lengthN ) of the smoothed and normalized signals dfk[n],
produces a time series

tsk[n] =

{
1 if dfk[n] demonstrates a peak here
0 otherwise

(3)

During peak picking, an adaptive threshold, calculated by
the sum of a predefined, static threshold and a moving me-
dian filter is used.

The time series tsk[n] are then convolved with a Hanning
window in order to produce the mask functions mk[n]. In
that way, a strongly smoothed version of the corresponding
detection function is created that however accentuates the
detected abrupt events. The above described processing for
the creation of the feature list combines the advantages of
the use of an onset list with those methods where the feature
lists are obtained in a continuous manner.

2.2 Tempo Induction

In the second part of the system, the periodicity analysis
is carried out, in order to infer the tempo from the list of
features (i.e. mask functions). The periodicity analysis is
done using a bank of comb filters.

Each one of the mask functions, mk[n] is given as an
input to a bank of comb filters. Therefore, for the analysis
band k the following takes place:

yk,τ [n] = aτyk,τ [n− τ ] + (1− aτ )mk[n], (4)

for every τ ∈ T . The interval T ranges from 42 to 242 beats
per minute (BMP). In this interval the filter’s delay τ takes

integer values. The term aτ corresponds to the filter’s feed-
back gain and it is calculated as a = 0.5

τ
T0 . The time during

which the signal should reach its half energy is T0. In this
system T0 is equal to 4 seconds. The selection of this time
frame is motivated by the smallest tempi normally found in
a piece of music. With a minimum tempo of 42 BPM, this
frame is big enough to cover at least two repetitions of the
beat but also small enough for the system to quickly adapt
to any tempo changes, when more than one frames are used
as an input.

The energy of each filter, in each frequency band k is
then calculated by

ek,τ [n] =
1

τ

n∑
i=n−τ+1

yk,τ [i]
2. (5)

A sum across all the frequency bands k will result to a wide
band energy signal for each tempo τ

eτ [n] =

K∑
k=1

ek,τ [n] (6)

So far, for every time index n of the input signal we ob-
tain a vector

e = [e42[n] e43[n] . . . e242[n]]
T (7)

consisting of the instant energies in every periodicity τ ∈ T .
The NT maximum components of the vector e are then

selected in order to form a vector w. The corresponding
tempi form the vector T. The vector T contains the winning
tempi, and vector w their relative weights.

2.3 Perceptual Model

The ambiguity in the perception of tempo has been modelled
and tested in experiments [10, 13] where the distribution of
responses from several listeners to the same pieces of music
were studied. This analysis resulted in the following reso-
nance model:

Ae(t) =
1√

(t2o − t2)
2

+ βt2
− 1√

t4o + t4
, (8)

where Ae is the effective resonance amplitude, to is the res-
onance tempo, β the damping constant and t is the tempo
variable. During experimenting, these parameters were fit-
ted to the distribution of the tapped tempi. It has been found
that, on average, music experts produce a resonant tempo of
138 BPM with a damping constant, β equal to 5.0. In Fig-
ure 3 the produced model, with the use of these parameters
is depicted.

In this paper the model of equation (8) is used to weight
the results from the periodicity analysis so that

w′i = Ae(Ti)wi i ∈ [1, 2, . . . , NT ], (9)
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Figure 3. The resonance model that was described in [10]
and fits the distributions of responses to several pieces of
music.

where Ti the i-th value of vector T andwi the corresponding
weight. After this step, elementsw′i form w′ which contains
the perceptually modified weights of the winning tempi in
T. The tempo estimation is therefore enhanced with per-
ceptual information.

Systems that estimate periodicity patterns in a signal stron-
gly respond to the multiples and aliquots of any fundamen-
tal periodicity that appears in it. Likewise, when it comes
to human listeners, the more ambiguities in determining the
tempo appear due to the selection of multiples and divisors
of the same tempo. In the vector of winning tempi, T, also
appear not only possible perceived tempi, but also multiples
and aliquots of them.

In order to discard some “false” estimations from T and
decide which is the perceived tempo in a group of tempi
that have a common divisor, an extra weighting step is intro-
duced. During experimenting, it was found that increasing
the weights of each tempo that appears in T with a factor of
the weight of its multiples and divisors that also appear in
T, has the following two desired effects:

a. Significant decrease in the (normalized) weights of
tempi whose multiples and aliquots are not present.

b. Highly accurate decision on which is the true per-
ceived tempo within a set of tempi that have the same
common divisor (as presented in Section 3).

This factor was chosen experimentally 0.3 for multiple pe-
riods and 0.6 for aliquots.

3. EVALUATION AND RESULTS

3.1 Datasets and Evaluation Measures

The developed system is evaluated using the measures pro-
posed in [5]. The two measures defined are Accuracy 1 and
Accuracy 2, corresponding to the percentage of tempo esti-
mates within 4% of the ground truth data. For the calcula-
tion of Accuracy 2 also integer multiplications and divisions
of the ground-truth tempo are considered to be correct esti-
mates.

Winning
Tempi T1 T2 T3 T4 T5

Accuracy 1
(%)

38.40 28.22 6.02 1.72 2.44

Accuracy 1
CDF (%)

38.40 66.62 72.64 74.36 76.80

Table 1. The Accuracy 1 of the algorithm for the estimation
of the winning tempi

The results are based in two different datasets, both used
in [5] for a comparative evaluation of tempo induction algo-
rithms. That way our results can be compared to previous
work. The first dataset, Ballroom, consists of 698, (30 sec-
onds long each) audio excerpts. The second dataset, songs,
contains 465 audio excerpts, this time each one being around
20 seconds long. The two datasets cover a wide range of
genres (namely Rock, Classic, Electronica, Flamenco, Jazz,
AfroBeat, Samba, Balkan, Greek, Cha Cha, Rumba, Samba,
Jive, Quickstep, Tango and Waltz). Both datasets have been
made publicly available 1 . It is mentioned here that due to
some missing or bad formatted files, the following results
have been calculated over a subset of the above datasets,
that covers the 97.25% of the whole data.

3.2 Results

The first phase of the evaluation procedure was to check
the accuracy of the algorithm in defining the vector of the
winning tempi, T, i.e. before applying the perceptual mod-
elling. The winning tempi in the vector are placed in de-
scending order, based on their weight. In Table 1, the results
on the Ballroom dataset are illustrated. In the first row, the
Accuracy 1 of the algorithm in each index of the winning
tempi is shown. The next row, presents the cumulative re-
sults up to each index of the vector T. As depicted in this
table, the algorithm has a success rate of 76.8% in estimat-
ing the correct tempo in the first 5 estimations.

The perceptual model at the end was inspired by this am-
biguity in the results. Although the algorithm is quite accu-
rate in detecting the right periodicity from a music excerpt,
it has a relatively low percentage (38.4%) to do so in the
first guess (i.e. the tempo with the higher energy). Until this
point, only low-level music features have been used. The
encoding of higher level knowledge on tempo perception in
the model could be useful in choosing the right index of the
winning tempi vector as the final estimation.

Indeed, the last step of the system achieves this task. The
perceptual method is applied to the output, improving sig-
nificantly the results of the algorithm. The results on both
datasets, for the two evaluation metrics can be seen in Table

1 http://mtg.upf.edu/ismir2004/contest/tempoContest/

200



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

Ballroom Songs
Method A1 A2 A1 A2
Simple 38.40 69.05 34.68 55.18

Perceptual 57.31 80.80 51.80 69.14

Table 2. Resulting percentages of the algorithm

Alonso Dixon Klapuri Uhle Schreirer0

10

20

30

40

50

60

70
Proposed algorithm
Literature algorithms

Figure 4. Accuracy 1 on the Ballroom dataset. The liter-
ature algorithms mentioned are the following: Alonso [1],
Dixon [3], Klapuri [7], Uhle [12], and Scheirer [11].

2. In the first row the results of the two datasets are pre-
sented, for both measures Accuracy 1 (A1) and Accuracy
2 (A2), without the application of the perceptual modelling
described in Section 2.3. In the second row, the correspond-
ing accuracy values are shown after the application of the
perceptual weighting.

Comparing Table 1 and Table 2, it becomes clear that
there is a significant improvement of 49% in the Accuracy 1
measure when the perceptual weighting is used as a last step.
Moreover, the fact that this improvement is not followed in
Accuracy 2 measure implies that the improvement in esti-
mation takes places due to less multiplication and division
errors.

As mentioned above, the use of the Ballroom and Songs
datasets, along with the use of the Accuracy 1 and Accuracy
2 measures, enables the comparison of the results to the cur-
rent state-of-the-art algorithms. In Figure 4 such a compar-
ison is depicted and the proposed system seems to perform
well. Further improvements to the proposed method are en-
visioned and these are discussed in the following section.

4. CONCLUSIONS AND FUTURE WORK

A new method to estimate the tempo of musical signals was
presented in this paper. The evaluation of this method was

conducted using popular datasets for the tempo estimation
task along with previously defined evaluation measures. Al-
though at an early stage, the algorithm seems to operate very
well in comparison to the state-of-the-art, using only a sin-
gle frame (4 seconds long) for calculating the result.

As mentioned, the above described results are obtained
from a single frame of the input signal. An application of the
algorithm on the whole signal, and then the computation of
a median or average tempo estimate did not seem to yield a
significant improvement. However, the implementation of a
voting mechanism could improve the overall tempo estimate
of a piece. In such an extension an extra assumption has to
be made, i.e. that the tempo of the piece does not present
any variations throughout the song.

The use of adaptive LPEFs introduced by this work, seems
to work well in the task of extracting tempo estimation fea-
tures. However, it was observed during experimenting, that
the final results and success rates are sensitive to the the set
of parameters used by the feature list extraction part (LPC
order, peak picking static threshold). A detailed examina-
tion of the results that are obtained from different parameter
sets and the determination of an optimum set may further
improve the accuracy of the whole system.

Furthermore, the use of a different set of temporal fea-
tures that indicate the tempo can be considered in a later ver-
sion of the algorithm as the literature reveals some promis-
ing alternatives. For example, linear prediction coefficients
instead of the the prediction error have been successfully
used as features for music genre classification in [9].

Until now, the existing knowledge on the perceptual event
that leads to the well known action of foot-tapping, has not
been extensively used for a systematic way of estimating
perceived tempo. This study indicates that taking advan-
tage of auditory modelling tools can significantly improve
the performance of a tempo estimation algorithm.
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ABSTRACT

We propose an iterative algorithm to detect transient seg-
ments in audio signals. Short time Fourier transform (STFT)
is used to detect rapid local changes in the audio signal.
The algorithm has two steps that iteratively - (a) calculate
a function of the STFT and (b) build a transient signal. A
dynamic thresholding scheme is used to locate the poten-
tial positions of transients in the signal. The iterative pro-
cedure ensures that genuine transients are built up while the
localised spectral noise are suppressed by using an energy
criterion. The extracted transient signal is later compared
to a ground truth dataset. The algorithm performed well
on two databases. On the EBU-SQAM database of mono-
phonic sounds, the algorithm achieved an F-measure of 90%
while on our database of polyphonic audio an F-measure of
91% was achieved. This technique is being used as a pre-
processing step for a tempo analysis algorithm and a TSR
(Transients + Sines + Residue) decomposition scheme.

1. INTRODUCTION

Transients are portions of audio signals that evolve fast and
unpredictably over a short time period [1]. Transients can
be classified as attack transients (sound onsets), rapid de-
cay transients (sound offsets), fast transitions (portamen-
tos) and noise/chaotic regimes (sounds like handclaps, rain
etc) [2]. Percussive sounds, guitar slaps, stop consonants
(uttered during singing) are very good examples of tran-
sient signals. Transients generally last for 50ms and display
fast changes in amplitude and phase at various frequencies.
Transients can be classified as weak or strong based on the
strength of the envelope while they can also be charaterized
as fast or slow depending on the rate of change of envelope

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2011 International Society for Music Information Retrieval.

amplitude. Fast transients have sharp amplitude envelopes
while slow transients have broad (platykurtic) envelopes.
Transient detection is an important problem in many areas
of music research like - audio coding (parametric audio cod-
ing [3], pre-echo reduction [4] etc), onset detection [5, 6],
time-scaling of audio signals [2,7,8], note transcription[2],
rhythm analysis and percussion transcription [9,10].

One of the first attempts to detect and model transients was
the TMS (Transient Modeling Synthesis) model proposed
in [11] as an extension to the popular sinusoidal modeling
of McAulay et al. [12] and sine + noise model [13]. The
basic idea of the TMS model is the time-frequency dual-
ity. The TMS model is also dual to the sinusoidal model-
ing [12]. That is, by choosing a proper linear transform,
a pure sinusoid in time domain appears impulsive in the
frequency domain and an impulsive like signal in time do-
main looks sinusoidal in the frequency domain. Discrete
Cosine Transform (DCT) was thus chosen to provide the
mapping from the time domain to the frequency domain so
that transients in the time domain become sinusoidal in the
frequency domain. Energy of the original signal and its
residue from signal modeling using DCT is used for tran-
sient detection. Masri et al. [5] used the high frequency
content feature to detect attack transients for the purposes of
audio analysis/synthesis. Abrupt phase changes in a bank of
octave spaced filters has been employed to detect transients
in [7]. Recently, group delay function has been used to de-
tect transients in monophonic and pitched percussive instru-
ments [14]. In [15,16] linear prediction followed by thresh-
olding on the residual signal envelope have been used for
transient detection and modeling. Roebel used the center of
gravity (COG) of a signal to locate transients and use it for
onset detection with good results [6]. Torresani et al. [17]
have used a concept of “transientness“ to detect transient
signals. Two sets of basis functions that have sparse (dense)
representations for pure sinusoids and dense (sparse) repre-
sentations for transients simultaneously are chosen to define
the transientness of audio signals. For a more exhaustive
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survey on transient detection we refer the reader to [18].

Most of the above discussed works use monophonic audio
for their results. Daudet et al. [18] conducted a survey of
various techniques and their efficiency of transient detec-
tion on the popular “glockenspiel” and “trumpet” audio sig-
nals. Gnann et al. [14] have used the EBU-SQAM database
(monophonic signals) to test their algorithm and we use the
same too.

In this paper, we propose to build on Ono et al. [19, 20]
by using a much simpler iterative procedure. This algorithm
can be used for audio coding, rhythm analysis and percus-
sion transcription amongst the many possible tasks.
This paper is organised as follows. We describe our ap-
proach and choice of parameters in section 2. Section 3
presents our experimental setup, databases used and the re-
sults along with some advantages of our approach. We con-
clude in section 4.

2. THE TRANSIENT DETECTION ALGORITHM

We consider percussive sounds (drums, tom-toms etc), gui-
tar slaps and sung consonants as transients. They show up as
vertical lines in spectrograms [19] . Our algorithm detects
such vertical lines in the spectrogram that have sufficient
strength and bandwidth. We intend to detect reasonably fast
percussive transients like piano hits, guitar slaps and thevar-
ious drums while neglecting the slow transient signals like
gongs.

Let x[n] be a polyphonic audio signal. The signal is re-
sampled at 16kHz to account for varied sampling rates and
recording conditions (The algorithm works at any sampling
rate but we choose 16kHz to standardize steps for our TSR
algorithm). The signal is normalised such that its maximum
value is 1 as follows,

xnorm[n] =
x[n]

max(|x[n]|) . (1)

The normalization step is not necessary for audio coding
applications. This signal is now split into frames of 40 ms
with an overlap of 30ms. Each frame of the signal is multi-
plied with a Blackman-Harris window of length,N = 640
samples to reduce sidelobes. A STFT of the signal analyses
the frequency content of the signal in regular periods. Let
X(i, k) denote the STFT of the signal for theith frame and
kth frequency bin. Then,

X(i, k) =

N−1∑
n=0

x[n].w[n− iR].e−j.2π.n.k/N , (2)

wherew[n] is the windowing function,N is the number

of samples in a window andR is the time shift in samples
[21].

We now define functionsT− andT+ that are derived from
the magnitude spectrum of the signal as follows:

T−(i, k) = |X(i, k)| − |X(i− 1, k)|, (3)

T+(i, k) = |X(i, k)| − |X(i + 1, k)|. (4)

The functionsT− andT+ act as intermediate functions which
detect vertical edges in the spectrogram. These derivatives
indicate onsets and offsets respectively. Since transients
have fast onsets followed by fast offsets, theT− and T+

functions should have high values at frames corresponding
to transients. We now form a smoothened version of the
above functions as follows;

F (i, j) = 0.5{
j+ν∑

k=j−ν

{1 + sgn(T−(i, k))}.T−(i, k)

+{1 + sgn(T+(i, k))}.T+(i, k)}, (5)

where

sgn(θ) =

{
1 if θ ≥ 0 ,
−1 if θ < 0.

(6)

F (i, j) computes temporal changes in the magnitude spec-
trum at the framei. F (i, j) considers half wave rectified
positive values ofT+ andT− functions and adds it across
frequency binsj− ν to j + ν. The half wave rectification in
equation (5) ensures that we detect only onsets fromT− and
offsets fromT+ respectively. The parameterν takes into ac-
count the spectral spread of the transient, neglecting noisy
inflections in the spectrogram.

As can be seen in Figure 1, the function in red (dashes) is
with smoothing along the vertical direction (vertical neigh-
boursν = 3) and the function in blue (dashes and dots) is
without smoothing (ν = 0). The smoothing operation en-
sures that only genuine vertical edges in the spectrogram are
accentuated and spurious changes (due to inflections in vo-
cals/instrumentation) are suppressed.

2.1 Proposed iteration steps

For the extraction of transients, we now useX and F in
an iterative framework as described below. The main algo-
rithm consists of 3 iterative steps. In the first step, dynamic
thresholds are computed.In the second step the transient sig-
nal updates are obtained. In the third step functions depen-
dent onX(i, k) are updated. We now use theF to detect the
presence of transients in the audio signal.
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Figure 1. FunctionF at bin number 2kHz for Claves-s sig-
nal from EBU-SQAM database. The transient regions get
accentuated more with vertical neighbours,ν = 3 compared
to ν = 0, while the local ringing noise is suppressed.

2.1.1 Step I: Computing dynamic thresholds

An adaptive threshold for the detection functionF (i, j) is
derived. Letλ(i, j) represent the desired threshold. Then,

λ(i, j) = β ×
∑i+τ

l=i−τ F (l, j)

2τ + 1
, (7)

whereβ is a parameter to control the strength of tran-
sients that are to be extracted. Equation (7) calculates a time
varying threshold for every time-frequency bin (ith frame
andjth frequency bin). A flag is set if the value ofF at the
bin j is greater than the thresholdλ(i, j). That is,

Γ(i, j) =

{
1 if F (i, j) > λ(i, j) ,
0 if F (i, j) ≤ λ(i, j).

(8)

Summing the flag functionΓ along the frequency bins
(represented byΣΓ) indicates the number of frequency bins
in a single frame that have more significant energy than their
neighbours and may reveal the presence or absence of a tran-
sient. That is,

ΣΓ(i) =

N−1∑
j=0

Γ(i, j). (9)

2.1.2 Step II: Extraction of the transient portion and
update of X

If theΣΓ is greater than a thresholdλThr, the corresponding
frame is declared transient frame and a small fractionδ of
the magnitude spectrum is subtracted from that frame and
added to the functionP to build transients as follows,

P (i, j) =

{
P (i, j) if ΣΓ < λThr ,
P (i, j) + δ.X(i, j) if ΣΓ ≥ λThr ,

(10)

Figure 2. The function F - initial value and value after 20
iterations at 400Hz for Claves-s signal from EBU-SQAM
database.

wherej varies from0 to N − 1.
In case of detected transients, the magnitude spectrum is

modified as follows,

X(i, j) =

{
X(i, j) if ΣΓ < λThr ,
(1− δ).X(i, j) if ΣΓ ≥ λThr,

(11)

wherej varies from0 to N − 1.

2.1.3 Step III: Update of functions dependent on X

The functionsF , λ, Γ andΣΓ are updated using theX ob-
tained from 2.1.2.

We iterate over steps I, II and III forM times. Figure 2
shows the changes inF at a particular frequency bin after
various iterations. As can be seen from Figure 2,F de-
creases at places of transients and increases in the adjacent
frames. This is due to the definition ofF , since it consid-
ers a contribution fromT− andT+ only if they are positive.
If after a particular iteration, sayT−(i, j) becomes positive
because|X(i − 1, j)| reduced from the previous iteration
(see update equations in Algorithm.1), thenF (i, j) can be
greater than its value in the previous iteration.

The functionP at the end ofM iterations represents the
spectrogram of the transient signal. The same steps are pre-
sented as follows. From now on all variables and functions
used for the algorithm are superscribed with(n) (only if
their values depend on the iteration) to represent thenth it-
eration.

We begin by initialisingP to 0. The values for the func-
tionsX , F , Γ, λ andΣΓ, calculated from the original signal,
are used for the initial values of the algorithm.

We thus have two parameters that control both the strength
of the extracted transient (controlled byβ) and its spread in
frequency (controlled byλThr). We have usedτ = 3 and
δ = 0.1 in our implementation.

205



Poster Session 2

Input: InitialiseP (1) to 0, X(1) to X , F (1) to F , λ(1)

to λ, Γ(1) to Γ, Σ
(1)
Γ to ΣΓ

Output: Transient signal P extracted from X

foreach n = 1 to M do

(I, II) if Σ
(n)
Γ (i) ≥ λThr then

(i)|X(n+1)(i, 0 : N − 1)| =
(1− δ)× |X(n)(i, 0 : N − 1)|
(ii)P (n+1)(i, 0 : N − 1) =
P (n)(i, 0 : N − 1) + δ × |X(n)(i, 0 : N − 1)|
else
(i)|X(n+1)(i, 0 : N−1)| = |X(n)(i, 0 : N−1)|
(ii)P (n+1)(i, 0 : N − 1) = P (n)(i, 0 : N − 1)

end
(III) Calculate F (n+1), λ(n+1), Γ(n+1), and
Σ

(n+1)
Γ using X(n+1)

end

Algorithm 1: Flow for updating equations of the algo-
rithm

The iterative procedure is used instead of a single step
transient detection since this algorithm is a part of a TSR
decomposition algorithm we are currently developing. The
iterative procedure helps to uncover slightly masked and
weak transients at later steps as has been revealed in our pre-
liminary experiments. The TSR decomposition algorithm
works by alternatively identifying and extracting transients
and sinusoids until we are left with a residue signal. Even
without the sinusoidal extraction steps here, the algorithm
does detect partially masked and low energy transients. As
can be seen from Figure 3, the transient signal builds slowly
over iterations.

After theM steps, the transient signal that has been gen-
erated is converted back into time domain by an inverse Dis-
crete Fourier transform (IDFT). The phase of the original
signal is used for the IDFT procedure. Frames of the tran-
sient signal that have less than5% of the maximum energy
are discarded to retain only significant transients. The loca-
tions of the transients are compared with the ground truth
data for evaluation.

Figure 4 shows the glockenspiel signal from EBU-SQAM
database and its extracted transient. As can be seen, the tran-
sient signal is well extracted.

3. EXPERIMENTS AND EVALUATIONS

A database of33 clips averaging10 seconds each was pre-
pared by selecting audio from various possible genres (pop,
rock, R&B etc). Each clip was converted to ’.wav’ format
from CDs, and resampled at 16kHz. Each clip was manually

Figure 3. The original signal and the extracted transient
signal after 1, 5 and 20 iterations. The strength and time
duration of the transient signal increases with iterations

annotated for percussive transients after multiple listening,
using the gating procedure [22]. Two people annotated the
database independently. The common transient segments
from both the annotators were chosen for our final ground
truth set. The database has a total of 1308 transient seg-
ments. The database was split into2 non-overlapping sets
consisting of10 clips for the training dataset having406
transient segments and 23 clips for the test dataset with902
transients respectively1 .

The parametersβ and λThr were optimised using the
training set consisting of 10 clips.β was varied in steps
of 0.1 from 1.25 to 2.5 while λThr was varied as a frac-
tion of frame lengthN (i.e N/10,N/9,N/8...). A transient
was declared to have been found if the extracted transient
overlapped with the ground truth segment. We got optimal
performance forβ = 2 andλThr = N/6. λThr parameter
selects only significantly long vertical lines in the spectro-
gram whileβ parameter evaluates the strength of the tran-
sients. We usedM = 20 iterations for the algorithm. This
way if a transient exists, approximately 90% of the magni-
tude can be extracted in the iterative steps if theΣΓ satisfies
the threshold conditions for all the20 iterations.

These parameters were used to test the remaining 23 songs
for their performance. The algorithm was able to correctly
detect (CD)808 (90%) transients with65 (7%) false posi-

1 This is denoted as the LSML database. We intend to make this a freely
available database for research soon
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Figure 4. Glockenspiel signal from EBU-SQAM database
and the extracted transient signal

Database Name Total CD FP FN DD
LSML 902 808 65 94 2
EBU-SQAM 276 237 11 39 0

Table 1. Performance of the transient extraction algorithm

tives (FP). This is equivalent to a Precision (P) of0.92 and
Recall (R) of0.89. The F measure is thus0.91.

We have also tested our algorithm on the EBU-SQAM
percussive monophonic database [14]. The testing proce-
dure followed in [14] was used for testing our algorithm on
this database. The EBU-SQAM database has276 percus-
sive transients in24 files. Our algorithm correctly detected
237 transients correctly while11 transients were detected
as FP. This gives our algorithm an F-measure of0.90. This
compares very well with the results from [14], where an F-
measure of0.92 is achieved on the same dataset of EBU-
SQAM database. While the parameters in [14] are opti-
mized for the EBU-SQAM database, we use the same pa-
rameters that are optimized for our LSML polyphonic music
database.

For the EBU-SQAM database we observed that we got
false positives during the slow transient portions of the sig-
nal or for signals with heavy ringing in the decay tail. Also,
a shortcoming that we observed with our algorithm was the
sensitivity to signal continuity. The EBU-SQAM database
has signal discontinuity in 2 files and those portions were
detected as transients.

The performance of our algorithm is tabulated in Table
1. Since the algorithm acts as a pre-processing stage for a
tempo analysis algorithm and a TSR decomposition algo-
rithm, the false positives do not harm much except when

Figure 5. The locations of the extracted transients are
shown w.r.t the ground truth.The blue lines indicate the ex-
tracted transient locations and the red lines the ground truth

Parameter Numeric value
Frame size 640
ν 3
δ 0.1
τ 3
β 2
M 20
Fthr 106

Table 2. Used parameters and their values

they have sufficient energies. Figure 5 shows the audio sig-
nal and extracted transient locations in comparison with the
groundtruth locations for a polyphonic piece from LSML
database.

The values of the parameters used by us in our imple-
mentation is given in Table 2.

4. CONCLUSIONS AND FUTURE WORK

We have discussed a simple iterative procedure for detecting
transients from polyphonic audio signals. The method is
used in a TSR decomposition algorithm. This algorithm is
also currently acting as a pre-processing step for a tempo
analysis algorithm. We are also looking at using generalised
TEF (Teager energy functions) type of functions to improve
our transient detection accuracy.
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ABSTRACT

In this publication, we present a method to characterize two-
track audio recordings (bass and drum instruments) based
on musical attributes. These attributes are modelled using
different regression algorithms. All regression models are
trained based on score-based audio features computed from
given scores and human annotations of the attributes. We
compare five regression model configurations that predict
values of different attributes. The regression models are
trained based on manual annotations from 11 participants
for a data-set of 70 double-track recordings. The average
estimation errors within a cross-validation scenario are com-
puted as evaluation measure. Models based on Partial Least
Squares Regression (PLSR) with preceding Principal Com-
ponent Analysis (PCA) and on Support Vector Regression
(SVR) performed best.

1. INTRODUCTION

A lot of music pieces show stylistic influences from multiple
music genres. These influences usually can be linked to the
individual instrument tracks of a song. Instead of modelling
music pieces as a whole, we believe that it is more meaning-
ful to characterize them on a track-level. In this publication,
we investigate double-track recordings including bass and
drum instruments. Both instruments are essential parts of
the so-called “rhythm section” that establishes the rhythmic
and harmonic foundation of a band that performs a piece
of music. The bass track and drum track usually follow a
repeating, pattern-based structure.

The contribution of this paper is two-fold. First, we
present new features for the rhythmic and tonal analysis of
instrument tracks. Second, we investigate the applicability
of regression models to model semantic attributes of instru-
ment tracks based on human ratings. Since these attributes

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

have a continuous scale, we use regression algorithms rather
than classification algorithms to automatically predict their
values for a given recording. The attributes introduced in
this work (see Sect. 5) allow to describe a piece of music on
a more abstract level than features derived from music the-
ory allow. This semantic level opens up a more general per-
spective to characterize, to compare, and to retrieve music
pieces. It is furthermore accessible to a broader selection of
users since it does not require detailed musical knowledge.

2. GOALS & CHALLENGES

We aim to develop a regression-based prediction system that
automatically characterizes double-track bass and
drum recordings in terms of five different tonal and rhythmic
attributes. Since the recordings we investigate cover various
music styles from different regional backgrounds, we need
to identify features that allow a robust semantic description
independent of stylistic idiosyncrasies.

3. PREVIOUS WORK

In the last decade, score-based audio features (high-level
features) were mainly applied for classification tasks such
as genre classification [2, 3, 7]. In contrast to low-level and
mid-level audio features such as the spectral flux or the Mel-
Frequency Cepstral Coefficients (MFCC), high-level
features relate to expressions of music theory to character-
ize instrument tracks in terms of rhythmic and tonal prop-
erties. These features are derived based a score representa-
tion of a music piece, which can be generated either by an
automatic transcription of real audio files or directly from
symbolic formats such as MIDI. In the past, most methods
to extract high-level features comprise a statistical analysis
of note onsets, pitches, and intervals [3, 8]. In [4], differ-
ent regression algorithms were compared to predict differ-
ent emotion ratings based on extracted audio features. Mu-
sic recordings with guitar, bass guitar, and drums were ana-
lyzed as presented in [1] based on rhythmic high-level fea-
tures. In this publication, three different configurations of
regression models were compared to model 8 different mu-
sical attributes related to different instruments.
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Figure 1. Processing steps including the manual annotation
step, feature extraction, and regression analysis.

4. DATASET

In this study, we use a collection of 70 two-track record-
ings including a drum track and a bass track taken from
instructional bass literature [10] as dataset. These tracks
cover different Western music styles such as blues, funk,
boogie, and modern jazz, Non-western styles from Latin and
South America such as Cuban mambo, reggae, and samba as
well as some African styles. All audio recordings were per-
formed by professional musicians in a recording studio. The
processing steps pursued in this study are depicted in Fig. 1.
We used the audio recordings for the manual annotation of
the given attributes as explained in Sect. 5. In addition, we
extracted a score representation of the bass track based on
the related score sheets and manually transcribed the drum
track. Both track transcriptions were stored as MIDI files for
further analysis. The question of automatic bass and drum
transcription is not within the scope of this paper.

5. ANNOTATION PROCESS

For the annotations, we recruited 11 participants of differ-
ent levels of musical education (most of them being semi-
professional musicians). The participants were asked to an-
notate each audio track according to the attributes harmonic
clarity (HClar), harmonic predictability (HPred), rhythmic
clarity (RClar), rhythmic coherence (RCoh), and danca-
bility (Dan) using a 7-point numeric scale between 1 (very
low) and 7 (very high) with 4 being the neutral value. All
attributes were introduced to the participants based on ex-
planatory questions as shown in Tab. 1. The Annotation
Tool previously presented in [11] was used for the subjects
to manually assign attribute values for all recordings within
the dataset. The participants were allowed to skip single an-
notations if they were unsure of their annotations for those
particular tracks.

6. FEATURE EXTRACTION

We used the MIDI toolbox [5] to extract the basic score pa-
rameters absolute pitch θP,A of all notes of the bass track
as well as onset ϕO (in fractions of bar lengths) and du-
ration ϕD (in fractions of bar lengths) of all notes of both
tracks from the MIDI files. Based on these note parame-
ters, we compute high-level features related to rhythmic and
tonal properties of both tracks as explained in the following
sections. Both ϕO and ϕD provide a tempo-independent
rhythmic representation of the bass line. In addition to the
bass track (BA), we split the drum track (DR) into the three
instrument sub-tracks bass-drum (BD), snare drum & rim-
shot (SD), and hi-hat & cymbals (HH). In this section, we
first explain pre-processing steps and then illustrate the ex-
tracted rhythmic and tonal features. For each feature, the
corresponding instrument tracks are given in brackets.

6.1 Rhythmic features

6.1.1 Pre-processing

Metric level
In order to emphasize notes that occur on strong metric po-
sitions, we compute the metric level li of each note within
the metric hierarchy of the corresponding bar. All examples
within the dataset are in a 4

4 time signature, thus we define
the quarter notes as the beat-level. If the note onset corre-
sponds to a beat position within the beat-level, we obtain
li = 1, if it is not on the beat level but still on the first sub-
beat level (eight-notes), we obtain li = 2, and so forth. For
simplification, we assign both triplets as well as duplets to
the same rhythmic level.

Similarity matrix (based on Levenshtein distance)
For each instrument track and each bar, we extract sequences
made of the corresponding notes. Each note is represented
by its modified note onset ϕ̂O = ϕO mod 1. This repre-
sentation neglects the associated bar number of a note and
only takes its relative position within its bar into account.
We compute a rhythmic similarity measure sm,n between
bar m and bar n based on the Levenshtein distance measure
dm,n as sm,n = 1 − dm,n/dmax. For each pair of bars, the
scaling factor dmax corresponds to the length of the longer
note sequence. See [1] for further details.

6.1.2 Features

Average metric level (BA, DR)
In order to characterize the rhythmic complexity of an in-
strument track, we compute the average metric level li over
all notes of this track as feature.

Tempo (All )
We use the tempo in BPM derived from the function get-
tempo from the MIDI toolbox.
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Attribute Related instru-
ment track(s)

Explanatory questions

HClar BA How clear could you imagine the harmonic content / harmonic progression of the music by
just listening to the bass line?

HPred BA When listening to the excerpt for the first time, did you find the harmonic progression im-
plied by the bass line predictable, or was it on the contrary surprising and unexpected?

RClar BA& DR How clear could you perceive the rhythmic structure (beat positions) by listening to the bass
and the drums?

RCoh BA& DR Did the two instruments contribute to a coherent rhythmic structure, or did they contradict?
Dan BA& DR While listening to the music, could you imagine that it is easy to dance to it or not?

Table 1. Attributes used for manual annotations.

Note density (BA, DR)
We compute the number of notes Nm per bar. Then we take
the mean and standard deviation of all values of Nm as fea-
tures.

Rhythmic similarity within instrument tracks (BA, DR)
We compute mean and standard deviation over all similarity
values sm,n with m 6= n to measure the average similarity
between all bars of an instrument track as well as its vari-
ance.

Rhythmic similarity between instrument tracks (BA-BD, BA-
SD, BA-HH, BD-SD, BD-HH, and HH-SD)
Similar to the previously explained feature, we compute the
bar-wise similarity between the bass and drum track pairs
BA- BD, BA- SD, BA-HH, and the drum track pairs BD-SD, BD-HH,
and HH-SD. For instance, this allows to detect whether the
bass and the bass-drum track play rhythmically in unison or
not. The participants agreed that this particular configura-
tion contributes to the perception of a high rhythmic coher-
ence between the bass and the drum instrument.

Divergence from a (Western) prototype rhythm (DR)
In accordance to the statements of various participants, we
identified a prototypic drum rhythm 1 as illustrated in Fig.
2 that was said to serve as a rhythmic orientation for locat-
ing the beat positions in an unknown bass and drum groove.
Therefore, we assume that the similarity between a given
drum track and this prototype rhythm can be interpreted as a
measure that is proportional to the perceived rhythmic clar-
ity. For each of the drum instrument tracks BD, SD, and HH,
we compute the similarity based on the Levenshtein distance
as explained above between the real drum track and the cor-
responding track in the prototype rhythm. Finally, we av-

1 This rhythm can be found in different Western music genres. Consid-
ering that most of the participants said to have only minor listening experi-
ence with Latin American and African rhythms, we only take this rhythm
as a basis of comparison even though a couple of Latin American bass and
drum grooves are present in the database.

Page 1/1
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^ ^ B̂ ^ B
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Figure 2. (Western) prototype drum-rhythm. The three
drum classes introduced in Sec. 6 are represented by the
lowest note (bass drum - BD), the middle note (snare drum -
SD), and the cross-note (hi-hat - HH).

erage the similarity over all three instruments to derive an
overall similarity measure for the complete drum track. This
measure is averaged over all bars and taken as feature.

6.2 Tonal features

6.2.1 Pre-processing

Chromatic pitch representation
The chromatic pitch class θP,C represents all absolute pitch
values mapped to one octave as θP,C = θP,A mod 12 with
θP,C ∈ [0, 11]. The note name C corresponds to θP,C = 0.

Diatonic interval representation
θI denotes the intervals between adjacent notes in semi-
tones. After all intervals are mapped to a maximum abso-
lute value of 12, we derive a diatonic interval representation
θI,D that corresponds to the musical interval labels unison
(θI,D = 1), second (θI,D = 2), and so forth up to seventh
(θI,D = 7). The octave (θI = 12 or θI = −12) is consid-
ered as a unison (θI = 0) here according to the modulo-12
operation. For reasons of simplifications, we convert all de-
scending intervals θI,D < 0 into their complementary inter-
vals, i.e., a descending second (θI,D = −2) to an ascending
seventh (θI,D = 7) etc.

Bass note detection
We aim to detect the dominant bass note in each bar. Since
no other instrument track is available for harmonic analysis,
we use this bass note as harmonic reference for the compu-
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tation of different tonal features. First, we retrieve all chro-
matic pitch classes θ̂P,C apparent in a bar of the bass line.
Then, we compute a chromatic presence value α, which ac-
cumulates the duration values ϕD,i of all notes associated to
the same chromatic pitch class θ̂P,C,k within this bar:

α(θ̂P,C,k) =
∑

∀i↔ θP,C,i=θ̂P,C,k

1

li
ϕD,i (1)

Each note is weighted according to its metrical level by the
weighting factor 1/li (see Sect. 6.1.1). This is because notes
on strong metric positions are assumed to be more likely
perceived as bass notes than notes on weak metric positions.
Finally, we obtain the chromatic pitch class of the bass note
θP,C,B in this bar by maximizing α over all apparent chro-
matic pitch classes as

θP,C,B = θ̂P,C,k∗ ↔ k∗ = arg max
k

α(θ̂P,C,k). (2)

6.2.2 Features

Percentage of bass note changes (BA)
Since we assume that the bass note acts as an indicator for
the predominant harmony in a bar, we compute the number
of bass note changes in a bass line divided by its length in
bars as feature.

Diatonic intervals related to the bass note (BA)
In each bar, we compute the interval between the chromatic
pitch class of all bass notes and the chromatic pitch class
of the estimated bass-note θP,C,B . Then, we derive the di-
atonic representation θI,D of this interval in the same way
as previously explained in Sect. 6.2.1. If the bass note re-
lates to the root note of the current chord and the bass line
plays mainly thirds and fifths (θI,D = 3, θI,D = 5), we
expect the harmonic predictability to be high since the bass
uses main chord tones. Therefore, we compute n(θI,D =
3) + n(θI,D = 5))/

∑
n(θI,D) as feature with n(θI,D) in-

dicating the number of notes with the given diatonic interval
value. If only a small number of different diatonic intervals
are present, we assume the harmonic complexity of a bass
line to be low. Therefore, we compute the zero-order en-
tropy over the probability values
p(θI,D) = n(θI,D)/

∑
n(θI,D) as second feature:

H0 = −
∑

p(θI,D)log2 [p(θI,D)] (3)

Tonal similarity between subsequences (BA)
To measure the tonal complexity of a bass line, we inves-
tigate, whether it is repeated after a certain number of bars.
Therefore, we subdivide the bass line into adjacent
sub-sequences of a length of L = 1, L = 2, and L = 4
bars. Each sub-sequence is represented by the absolute pitch

values of the included notes. Again, we compute a similar-
ity measure based on the Levenshtein distance as described
in the previous section. Bass lines are often repeated after
a few bars but played in a transposed form, i.e., translated
in pitch by a constant term. To cope with that, we sub-
tract the lowest pitch value from all absolute pitch values
in each sub-sequence that is to be compared. Finally, we
average the similarity values between all adjacent pairs of
sub-sequences (e.g. for L = 1, we compare bar 1 with bar
2, bar 2 with bar 3, and so on) and derive one feature value
for each sub-sequence length.

7. EVALUATION

7.1 Regression analysis

We compare 5 different configurations of regression mod-
els based on Robust Regression (RR), Partial Least-Squares
Regression (PLSR), and Support Vector Regression (SVR).
The RR uses an iteratively algorithm to assign a weight to
each data point within the training data. This way, outliers
have a smaller influence on the regression model. A differ-
ent approach is followed by PLSR. A smaller number of less
correlated predictor variables is derived from a linear com-
bination of the initial feature dimensions. For the PLSR, we
investigate the influence of a preceding feature selection via
Principal Component Analysis (PCA). Therefore, we select
all feature dimensions with eigenvalues λ > 1 during the
PCA. We then determine the optimal model order for the
PLSR models by minimizing the Akaike information crite-
rion (AIC). For the SVR, we compare ν-SVR and ε-SVR as
provided by the LibSVM toolbox [6]. We used the RBF
kernel with parameter γ and cost factor C for both con-
figurations. Based on a three-stage grid search, we deter-
mine the optimal parameters {C, γ, ν} for the ν-SVR and
{C, γ, ε} for the ε-SVR 2 by minimizing the mean squared
error (MSE) value. For more details on the regression meth-
ods, see for instance [6] and [9].

For each attribute, we select the features that are used
for the model training as illustrated in the third column of
Tab. 3. Leave-one-out cross-validation is used to evaluate
each configuration-attribute pair and to avoid model over-
fitting, i.e., a different sample is used within each fold for
testing and the remaining 69 samples are used for training
of the regression models. Within each fold, all vectors of the
training set are normalized to zero mean and unit variance.
Then, the feature vector of the test set is normalized using
the mean and standard deviation vectors derived from the
training set. The MSE is computed between the predicted
values and the ground-truth values of the test set and av-
eraged over 70 folds. For each configuration-attribute pair,

2 Search area for ν is 0.01 : .05 : .5 and for ε is (0.1 : 0.1 : 1) · 10−3.
The parameters C and γ are selected via grid-search as proposed in [6].
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we store the test set ground truth values as well as the cor-
responding model predictions over all folds in two vectors.
Then, we compute the sample correlation between both vec-
tors. The correlation is considered as significant if p < .05
holds true for the corresponding p-value.

HClar HPred RClar RCoh Dan
HClar / 0.82∗ 0.48∗ 0.5∗ 0.24

HPred 0.82∗ / 0.5∗ 0.58∗ -
RClar 0.48∗ 0.5∗ / 0.77∗ 0.38

RCoh 0.5∗ 0.58∗ 0.77∗ / 0.31

Dan 0.24 - 0.38 0.31 /

Table 2. Correlation coefficients r between human anno-
tations of different attributes. Only significant correlations
(p < .05 or p < .001∗) are shown.

7.2 Results

Correlation between attributes
As illustrated in Tab. 2, the annotations show that many of
the attributes are significantly correlated, especially the two
tonal attributes HClar and HPred (r = .82) and the two
rhythmic attributes RClar and RCoh (r = .77). The danca-
bility of a bass and drum groove seems to be mainly influ-
enced by its rhythmic attributes (rDan,RClar = .38,
rDan,RCoh = .31).

Regression experiment
The results of the regression experiments outlined in Sect.
7.1 are illustrated in Tab. 3. As depicted in the upper part
of the table, the SVR models lead to the smallest MSE val-
ues for all 5 attributes where the PLSR models performed
only slightly worse. The models for HClar and RClar show
the smallest prediction errors, while harmonic predictability
show the highest errors. The RR performed worse for all
attributes.

The sample correlation coefficients and the correspond-
ing p-values are given in the lower part of the table. In
contrast to the MSE values, highest (significant) correlation
coefficients can be observed for the attributes HPred with
r = .59 and Dan with r = .46. All significant correlations
can be observed for models based on PLSR with preceding
PCA or based on ε-SVR. No model show significant corre-
lation for the attribute HClar.

Comments of participants
We identified a couple of problems during additional inter-
views with the participants after the annotation step. Two
participants generally had difficulties to distinguish between
clarity and predictability. The attributes HClar and HPred
were said be the most complicated ones to annotate since
the majority of the participants were not used to listen just to

the bass and the drum instrument without any accompanying
harmony instrument. Since the attribute HPred achieved the
highest estimation errors as shown above, we assume that
further score-based features need to be extracted from the
harmony track of a given music recording in order to model
this attribute.

8. CONCLUSION

In this paper, we compared five different regression algo-
rithms for the estimation of values related to five differ-
ent tonal and rhythmic attributes to characterize two-track
recordings of bass and drums. Score-based features were
extracted and used as predictor variables and manual user
annotations of 70 audio excerpts were used as response vari-
ables to train and evaluate the regression models. For all five
attributes, the PLSR+PCA model and the SVR models per-
formed best (and comparably well) in terms of estimations
errors. Significant correlations between annotated and es-
timated attribute values were only observed for four of the
attributes and in particular for PLSR+PCA models and the
ε-SVR models. Since the highest (significant) correlation
coefficient is r = .59, we assume that further important as-
pects of the musical performance are not well captured by
the applied features so far.

In general, we believe that the presented approach can
be generalized to multi-track recordings including other in-
struments. However, we think that human attribute ratings
should be based on listening to the isolated tracks instead of
listening to the mixture signal. One issue of future work is
to investigate how strong the perception of these attributes
differs when human annotators listen to mixture of multiple
instruments instead.
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ABSTRACT

Chroma-based audio features, which closely correlate to the
aspect of harmony, are a well-established tool in processing
and analyzing music data. There are many ways of comput-
ing and enhancing chroma features, which results in a large
number of chroma variants with different properties. In this
paper, we present a chroma toolbox [13], which contains
MATLAB implementations for extracting various types of
recently proposed pitch-based and chroma-based audio fea-
tures. Providing the MATLAB implementations on a well-
documented website under a GNU-GPL license, our aim is
to foster research in music information retrieval. As an-
other goal, we want to raise awareness that there is no sin-
gle chroma variant that works best in all applications. To
this end, we discuss two example applications showing that
the final music analysis result may crucially depend on the
initial feature design step.

1. INTRODUCTION

It is a well-known phenomenon that human perception of
pitch is periodic in the sense that two pitches are perceived
as similar in “color” if they differ by an octave. Based on
this observation, a pitch can be separated into two com-
ponents, which are referred to astone height andchroma,
see [19]. Assuming the equal-tempered scale, the chromas
correspond to the set{C, C♯, D, . . . , B} that consists of the
twelve pitch spelling attributes1 as used in Western music
notation. Thus, a chroma feature is represented by a12-
dimensional vectorx = (x(1), x(2), . . . , x(12))T , where
x(1) corresponds to chromaC, x(2) to chromaC♯, and so

1 Note that in the equal-tempered scale different pitch spellings suchC♯

andD♭ refer to the same chroma.
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Figure 1. Overview of the feature extraction pipeline.

on. In the feature extraction step, a given audio signal is
converted into a sequence of chroma features each express-
ing how the short-time energy of the signal is spread over
the twelve chroma bands.

Identifying pitches that differ by an octave, chroma fea-
tures show a high degree of robustness to variations in
timbre and closely correlate to the musical aspect of har-
mony. This is the reason why chroma-based audio fea-
tures, sometimes also referred to as pitch class profiles, are
a well-established tool for processing and analyzing music
data [1, 5, 12]. For example, basically every chord recog-
nition procedure relies on some kind of chroma represen-
tation [2, 4, 11]. Also, chroma features have become the
de facto standard for tasks such as music synchronization
and alignment [7, 8, 12], as well as audio structure analy-
sis [16]. Finally, chroma features have turned out to be a
powerful mid-level feature representation in content-based
audio retrieval such as cover song identification [3, 18] or
audio matching [10, 15].

There are many ways for computing chroma-based audio
features. For example, the conversion of an audio record-
ing into a chroma representation (or chromagram) may be
performed either by using short-time Fourier transforms in
combination with binning strategies [1] or by employing
suitable multirate filter banks [12]. Furthermore, the prop-
erties of chroma features can be significantly changed by
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introducing suitable pre- and post-processing steps modify-
ing spectral, temporal, and dynamical aspects. This leads to
a large number of chroma variants, which may show a quite
different behavior in the context of a specific music analysis
scenario.

In this paper, we introduce a chroma toolbox, which has
recently been released under a GNU-GPL license, see [13].
This well-documented toolbox contains MATLAB imple-
mentations for extracting various types of recently intro-
duced pitch-based and chroma-based audio features (re-
ferred to asPitch, CP, CLP, CENS, andCRP), see also Fig-
ure 1 for an overview. In Section 2, we give a short sum-
mary on how the various feature types are computed while
discussing the role of the most important parameters that
can be used to modify the features’ characteristics. Then, in
Section 3, we describe the functions of the toolbox for fea-
ture extraction, visualization, and post-processing. Onepar-
ticular goal of this paper is to emphasize the importance of
the feature design step by showing that the results of a spe-
cific music analysis task may crucially depend on the used
chroma type. To this end, we discuss in Section 4 two illus-
trative example applications, namely chord recognition and
audio matching.

2. FEATURE EXTRACTION

In this section, we give an overview on how the various fea-
ture types contained in the chroma toolbox are computed.
As illustration, Figure 3 shows the resulting feature repre-
sentations for an audio recording of the first six measures of
Op. 100, No. 2 by Friedrich Burgmüller.

2.1 Pitch Representation

As basis for the chroma feature extraction, we first decom-
pose a given audio signal into88 frequency bands with
center frequencies corresponding to the pitchesA0 to C8
(MIDI pitches p = 21 to p = 108). To obtain a suffi-
cient spectral resolution for the lower frequencies, one ei-
ther needs a low sampling rate or a large temporal win-
dow. In our toolbox, we employ a constantQ multirate filter
bank using a sampling rate of22050 Hz for high pitches,
4410 Hz for medium pitches, and882 Hz for low pitches,
see [12] for details. The employed pitch filters possess a
relatively wide passband, while still properly separatingad-
jacent notes thanks to sharp cutoffs in the transition bands,
see Figure 2. Actually, the pitch filters are robust to devia-
tions of up to±25 cents2 from the respective note’s center
frequency. To avoid large phase distortions, we use forward-
backward filtering such that the resulting output signal has
precisely zero phase distortion and a magnitude modified by
the square of the filter’s magnitude response, see [17].

2 Thecent is a logarithmic unit to measure musical intervals. The semi-
tone interval of the equally-tempered scale equals 100 cents.

0 0.1 0.2 0.3 0.4 0.5
−60

−40

−20

0
dB
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69 93

Figure 2. Magnitude responses in dB for some of the filters of the
multirate pitch filter bank. The shown filters correspond to MIDI
pitchesp ∈ [69 : 93] (with respect to the sampling rate4410 Hz).

In the next step, for each of the88 pitch subbands, we
compute the short-time mean-square power (i. e., the sam-
ples of each subband output are squared) using a window of
a fixed length and an overlap of50 %. For example, using
a window length of 200 milliseconds leads to a feature rate
of 10 Hz (10 features per second). The resulting features,
which we denote asPitch, measure the short-time energy
content of the audio signal within each pitch subband. We
refer to Figure 3c for an illustration and to [12] for details.

2.2 Tuning

To account for the global tuning of a recording, one needs
to suitably shift the center frequencies of the subband-filters
of the multirate filter bank. To this end, we compute an
average spectrogram vector and derive an estimate for the
tuning deviation by simulating the filterbank shifts using
weighted binning techniques similar to [5]. In our toolbox,
we have pre-computed six different multirate filter banks
corresponding to a shift ofσ ∈

{
0, 1

4 , 1
3 , 1

2 , 2
3 , 3

4

}
semi-

tones, respectively. From these filter banks, the most suit-
able one is chosen according to the estimated tuning devia-
tion.

2.3 CP Feature

From the pitch representation, one obtains a chroma repre-
sentation simply by adding up the corresponding values that
belong to the same chroma. For example, to compute the
entry corresponding to chroma C, one adds up values cor-
responding to the musical pitches C1, C2,. . ., C8 (MIDI
pitchesp = 24, 36, . . . , 108). For each window, this yields
a 12-dimensional vectorx = (x(1), x(2), . . . , x(12))T ,
wherex(1) corresponds to chromaC, x(2) to chromaC♯,
and so on. The resulting features are referred to asChroma-
Pitch and denoted byCP, see Figure 3d.

2.4 Normalization

To achieve invariance in dynamics, one can normalize
the features with respect to some suitable norm. In
the following, we only consider theℓp-norm defined by

||x||p :=
( ∑12

i=1 |x(i)|p
)1/p

for a given chroma vectorx =
(x(1), x(2), . . . , x(12))T and some natural numberp ∈ N.
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To avoid random energy distributions occurring during pas-
sages of very low energy (e. g., passages of silence before
the actual start of the recording or during long pauses), we
replace a chroma vectorx by the uniform vector of norm
one in case||x||p falls below a certain threshold. Note that
the casep = 2 yields the Euclidean norm and the casep = 1
the Manhattan norm. If not specified otherwise, all chroma
vectors to be considered are normalized with respect to the
Euclidean norm, see also Figure 3e.

2.5 CLP Features

To account for the logarithmic sensation of sound inten-
sity [20], one often applies a logarithmic amplitude com-
pression when computing audio features. To this end, each
energy valuese of the pitch representation is replaced by the
valuelog(η · e + 1), whereη is a suitable positive constant.
Then, the chroma values are computed as explained in Sec-
tion 2.3. The resulting features, which depend on the com-
pression parameterη, are referred to asChroma-Log-Pitch
and denoted byCLP[η], see Figure 3f. Note that a similar
flattening effect can be achieved by spectral whitening tech-
niques, where the pitch subbands are normalized according
to short-time variances in the subbands [5, 9].

2.6 CENS Features

Adding a further degree of abstraction by considering short-
time statistics over energy distributions within the chroma
bands, one obtainsCENS (Chroma Energy Normalized
Statistics) features, which constitute a family of scalable
and robust audio features. These features have turned out
to be very useful in audio matching and retrieval applica-
tions [10, 15]. In computingCENS features, each chroma
vector is first normalized with respect to theℓ1-norm thus
expressing relative energy distribution. Then, a quantization
is applied based on suitably chosen thresholds. Here, choos-
ing thresholds in a logarithmic fashion introduces some kind
of logarithmic compression as above, see [15] for details. In
a subsequent step, the features are further smoothed over a
window of lengthw ∈ N and downsampled by a factor of
d, see Section 2.8. The resulting features are normalized
with respect to theℓ2-norm and denoted byCENSw

d , see also
Figure 3g and Figure 3h for illustrations.

2.7 CRP Features

To boost the degree of timbre invariance, a novel family of
chroma-based audio features has been introduced in [14].
The general idea is to discard timbre-related information
as is captured by the lower mel-frequency cepstral coef-
ficients (MFCCs). Starting with thePitch features, one
first applies a logarithmic compression and transforms the
logarithmized pitch representation using a DCT. Then, one
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Figure 3. Score and various feature representations for an audio
recording of the first four measures of Op. 100, No. 2 by Friedrich
Burgmüller.
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Filename Main parameters Description
wav_to_audio.m – Import of WAV files and conversion to expected audio format.
estimateTuning.m pitchRange Estimation of the filterbank shift parameterσ.
audio_to_pitch_via_FB.m winLenSTMSP Extraction of pitch features from audio data.
pitch_to_chroma.m applyLogCompr, factorLogCompr̂= η Derivation ofCP andCLP features fromPitch features.
pitch_to_CENS.m winLenSmootĥ= w, downsampSmootĥ= d Derivation ofCENS features fromPitch features.
pitch_to_CRP.m coeffsToKeep̂= n, factorLogCompr̂= η Derivation ofCRP features fromPitch features.
smoothDownsampleFeature.m winLenSmootĥ= w, downsampSmootĥ= d Post-processing of features: smoothing and downsampling.
normalizeFeature.m p Post-processing of features:ℓp-normalization (default:p = 2).
visualizePitch.m featureRate Visualization of pitch features.
visualizeChroma.m featureRate Visualization of chroma features.
visualizeCRP.m featureRate Specialized version of visualizeChroma forCRP features.
generateMultiratePitchFilterbank.m – Generation of filterbanks (used inaudio_to_pitch_via_FB.m).

Table 1. Overview of the MATLAB functions contained in the chroma toolbox [13].

only keeps the upper coefficients of the resulting pitch-
frequency cepstral coefficients (PFCCs), applies an inverse
DCT, and finally projects the resulting pitch vectors onto
12-dimensional chroma vectors, which are then normalized
with respect to theℓ2-norm. These vectors are referred to
as CRP (Chroma DCT-Reduced log Pitch) features. The
upper coefficients to be kept are specified by a parameter
n ∈ [1 : 120]. As reported in [14], the parametern = 55
yields good results and constitutes our default stetting. The
resulting features are denoted byCRP[n], see Figure 3i. Note
that opposed to the previously introduced chroma variants,
CRP features may have negative entries.

2.8 Smoothing

As already mentioned in Section 2.6, one can further pro-
cess the various chroma variants by applying smoothing and
downsampling operations. For example, subsequent vec-
tors of a feature sequences can be averaged using a slid-
ing window of sizew (given in frames) and then downsam-
pled by a factord. Starting withCENS, CP, CLP[η], and
CRP[n], the resulting features are denoted byCENS

w
d , CPw

d ,
CLP[η]wd , andCRP[n]wd , respectively. Even though being a
simple strategy, smoothing can have a significant impact on
the features’ behavior within a music analysis tasks. For ex-
ample, as reported in [15], the temporal blurring of CENS
features makes audio matching more robust to local tempo
variations. Furthermore, using the parametersw andd, one
obtains a computationally inexpensive procedure to simu-
late tempo changes on the feature level. We illustrate this
by means of a concrete example. Suppose, we start with a
chroma representation having a feature rate of10 Hz. Then
usingw = 41 andd = 10, one obtains one chroma vector
per second, each covering roughly4100 ms of the original
audio signal. Now, usingw = 53 (instead ofw = 41) and
d = 13 (instead ofd = 10) results in a temporally scaled
version of the features sequence simulating a tempo change
of 10/13 ≈ 0.77. Such tempo change strategies have been
applied successfully in the context of audio indexing [10].

3. TOOLBOX

The feature extraction components as described in Section 2
form the core of our chroma toolbox, which is freely avail-
able at the well-documented website [13] under a GNU-
GPL license. Table 1 gives an overview of the main MAT-
LAB functions along with the most important parameters.
Note that there are many more parameters not discussed in
this paper. However, for all parameters there are default set-
tings so that none of the parameters need to be specified by
the user.

To demonstrate how our toolbox can be applied, we now
discuss the code example3 shown in Table 2. Our example
starts with a call to the functionwav_to_audio, which is a
simple wrapper around MATLAB’swavread.m and converts
the input WAV file into a mono version at a sampling rate
of 22050 Hz. Furthermore, the structsideinfo is returned
containing meta information about the WAV file. In line
3, the audio data is processed byestimateTuning, which
computes an appropriate filter bank shiftσ for the record-
ing. Next, in lines5–9, Pitch features are computed. Here,
the structparamPitch is used to pass optional parameters
to the feature extraction function. If some parameters or
the whole struct are not set manually, then meaningful de-
fault settings are used. This is a general principle through-
out the toolbox. For the pitch computation,winLenSTMSP

specifies the window length in samples. Here,4410 to-
gether with a sampling frequency of22050 Hz results in
a window length corresponding to200ms of audio. Using
half-overlapped windows leads to a feature rate of10 Hz.
The filterbank shift is specified in line6 using the output
of estimateTuning. Furthermore, an internal visualization
is activated using the parametervisualize. Then, a call
to audio_to_pitch_via_FB results in a120 × N -matrix
f_pitch that constitutes thePitch features, whereN is the
number of time frames and the first dimension corresponds
to MIDI pitches. Actually, only the bands corresponding

3 This example is also contained in the toolbox as function
demoChromaToolbox.m.
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1 filename=’Systematic_Chord-C-Major_Eight-Instruments.wav’;
2 [f_audio,sideinfo]=wav_to_audio(’’,’data_WAV/’,filename);
3 shiftFB=estimateTuning(f_audio);
4
5 paramPitch.winLenSTMSP=4410;
6 paramPitch.shiftFB=shiftFB;
7 paramPitch.visualize=1;
8 [f_pitch,sideinfo]=...
9 audio_to_pitch_via_FB(f_audio,paramPitch,sideinfo);

10
11 paramCP.applyLogCompr=0;
12 paramCP.visualize=1;
13 paramCP.inputFeatureRate=sideinfo.pitch.featureRate;
14 [f_CP,sideinfo]=pitch_to_chroma(f_pitch,paramCP,sideinfo);
15
16 paramCLP.applyLogCompr=1;
17 paramCLP.factorLogCompr=100;
18 paramCLP.visualize=1;
19 paramCLP.inputFeatureRate=sideinfo.pitch.featureRate;
20 [f_CLP,sideinfo]=pitch_to_chroma(f_pitch,paramCLP,sideinfo);
21
22 paramCENS.winLenSmooth=21;
23 paramCENS.downsampSmooth=5;
24 paramCENS.visualize=1;
25 paramCENS.inputFeatureRate=sideinfo.pitch.featureRate;
26 [f_CENS,sideinfo]=pitch_to_CENS(f_pitch,paramCENS,sideinfo);
27
28 paramCRP.coeffsToKeep=[55:120];
29 paramCRP.visualize=1;
30 paramCRP.inputFeatureRate=sideinfo.pitch.featureRate;
31 [f_CRP,sideinfo]=pitch_to_CRP(f_pitch,paramCRP,sideinfo);
32
33 paramSmooth.winLenSmooth=21;
34 paramSmooth.downsampSmooth=5;
35 paramSmooth.inputFeatureRate=sideinfo.CRP.featureRate;
36 [f_CRPSmoothed,featureRateSmoothed]=...
37 smoothDownsampleFeature(f_CRP,paramSmooth);
38 parameterVis.featureRate=featureRateSmoothed;
39 visualizeCRP(f_CRPSmoothed,parameterVis);

Table 2. Code example.

to MIDI pitches21 to 108 are computed and the values of
the other bands are set to zero. Furthermore, details on the
feature configuration are appended to thesideinfo struct.
Using sideinfo to store all relevant meta information re-
lated to the feature processing pipeline constitutes a second
general principle in our toolbox.

In lines 11–31, various chroma representations are de-
rived from the pitch features. First, in lines11–14, CP

features are computed. Then, activating the logarithmic
compression usingapplyLogCompr, CLP[100] features are
computed in lines16–20. The compression level is spec-
ified in line 17 by the parameterfactorLogCompr, which
corresponds to the parameterη introduced in Section 2.5.
Next, in lines22–26, CENS21

5 features are computed. Here,
the parameterswinLenSmooth and downsampSmooth corre-
spond to the parametersw andd explained in Section 2.8,
respectively. Finally, in lines28–31, CRP[55] features
are computed, where the parametern of Section 2.7 cor-
responds to the lower bound of the range specified by
coeffsToKeep, see line28. Finally, the use of the function
smoothDownsampleFeature is demonstrated, where in lines
33–34 the parametersw andd are specified as for theCENS
computation. At the end of our example, we visualize the
smoothedCRP features using the functionvisualizeCRP.

4. ILLUSTRATING APPLICATIONS

To demonstrate the importance of the feature design step, we
now discuss the various chroma variants within two differ-
ent music analysis scenarios. Here, rather than commending
a specific feature type, our goal is to show how different fea-
ture variants and parameter settings may crucially influence
the final analysis results.

4.1 Chord Recognition

The computer-based harmonic analysis of music recordings
with the goal to automatically extract chord labels directly
from the given audio material constitutes a major task in
music information retrieval [2, 4, 11]. In most automated
chord recognition procedures, the given music recording is
first converted into a sequence of chroma-based audio fea-
tures and then pattern matching techniques are applied to
map the chroma features to chord labels.

We now demonstrate by a small experiment, how the fi-
nal recognition rates substantially depend on the underlying
chroma representation and parameters that control temporal
and spectral aspects. To this end, we revert to three differ-
ent pattern matching techniques. The first two approaches
are simple template-based approaches, referred to asT

b and
T
a, where the first approach uses data-independent binary

templates and the second one data-dependent average tem-
plates. As third approach, we employ hidden Markov mod-
els denoted byHMM. Using the annotated Beatles dataset
as described in [6], which consists of180 Beatles songs,
we computed recognition rates based on conventional F-
measures using 3-fold cross validation. Figure 4 shows the
recognition rates for the three pattern matching techniques
in combination with different chroma variants.

As these experimental results indicate, the used chroma
representation can have a significant influence on the chord
recognition accuracy. In particular, a logarithmic com-
pression step in the chroma extraction turns out to be cru-
cial. Furthermore, the results reveal that temporal feature
smoothing plays an important role in chord recognition–
in particular for recognizers that work in a purely frame-
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Figure 4. Dependency of the recognition rates (F-measures) of
different chord recognition procedures on the used chroma variant
(using a Beatles dataset and3-fold cross validation).
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wise fashion. Here, note that the Viterbi decoding in
the HMM-based recognizer already introduces a different
kind of smoothing in the classification stage so that feature
smoothing has a less significant impact in this case.

4.2 Audio Matching

As second application scenario, we consider the task ofau-
dio matching with the goal to automatically retrieve all frag-
ments from all recordings within a large audio collection
that musically correspond to a given query audio clip [15].
In this task, one challenge is to cope with variations in tim-
bre and instrumentation as they appear in different interpre-
tations, cover songs, and arrangements of a piece of music.
In a typical procedure for audio matching, the queryQ as
well as each database recordingD are first converted into
chroma feature sequencesX(Q) and X(D), respectively.
Then, a local variant of dynamic time warping is used to lo-
cally compare the query sequenceX(Q) with the database
sequenceX(D) yielding a distance function∆. Each local
minimum of∆ close to zero indicates a fragment within the
database recording that is close to the given query, see [14]
for details.

In view of this matching application, the following two
properties of∆ are of crucial importance. On the one hand,
the semantically correct matches should correspond to local
minima of∆ close to zero thus avoiding false negatives. On
the other hand,∆ should be well above zero outside a neigh-
borhood of the desired local minima thus avoiding false
positives. In view of these requirements, the used chroma
variant plays a major role. As an illustrative example, we
consider a recording by Yablonsky of Shostakovich’s Waltz
No. 2 from theSuite for Variety Orchestra No. 1, which
is used as the database recording. The theme of this piece
occurs four times played in four different instrumentations
(clarinet, strings, trombone, tutti). Denoting the four occur-
rences byE1, E2, E3, andE4 and usingE3 as the query,
Figure 5 shows several distance functions based on differ-
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Figure 5. Several distance functions shown for the Yablonsky
recording of the Shostakovich’s Waltz No. 2 from theSuite for Va-
riety Orchestra No. 1 using the excerptE3 as query. The following
feature types were used:CP (green),CLP[100] (red),CENS41

10 (blue)
andCRP[55] (black). For the query, there are4 annotated excerpts
(true matches).

ent chroma variants. Note that one expects four local min-
ima. Using conventional chroma features such asCP, the
expected local minima are not significant or not even exist-
ing. However, using the chroma variantCRP[55], one obtains
for all four true matches concise local minima, see the black
curve of Figure 5. For a detailed discussion, we refer to [14].
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ABSTRACT 

The process of generating chords for harmonizing a melody 
with the goal of mimicking an artist’s style is investigated 
in this paper. We compared and tested three different ap-
proaches, including a rule-based model, a statistical model, 
and a hybrid system of the two, for such tasks. Experiments 
were conducted using songs from seven stylistically identi-
fiable pop/rock bands, and the chords generated by the sys-
tems were compared to the ones in the artists’ original 
work. Evaluations were performed on multiple aspects, in-
cluding calculating the average percentage of chords that 
were the same and those that were related, studying the 
manner in which the size of the training set affects the out-
put harmonization, and examining a system’s behaviors in 
terms of the ability of generating unseen chords and the 
number of unique chords produced per song. We observed 
that the rule-based system performs comparably well while 
the result of the system with learning capability varies as 
the training set grows. 

1. INTRODUCTION 

Automatic generation of harmony is a natural extension and 
application of harmonic analysis, an essential component in 
music information retrieval. Previous research in automatic 
harmonization focuses on Western classical music, apply-
ing various techniques ranging from rule-based models [4] 
to genetic algorithms [10] in order to automate the process 
of harmonization in styles. An example would be the four-
part harmonization in the Baroque period.  Recently, sys-
tems have been developed for automatic harmonization in 
popular music [3, 7, 9], i.e., creating a sequence of chords 
for a given melody representing the vocal part in a song. 
However, the concept of style is loosely defined or even 
missing in most of these systems. As the Beatles represents 

a firmly defining role in pop/rock music, the style of the 
individual artist must be considered. 
 In this paper we compare three different approaches for 
style-specific harmonization in popular music. The three 
approaches demonstrate a wide spectrum of techniques: a 
knowledge-driven model, a data-driven model, and a hybrid 
system combining the two. We conducted experiments by 
taking the melody of songs from seven identifiable 
pop/rock bands as the input for the three systems, and com-
pared the system-generated chords with the ones in the 
original artists’ work. For systems with learning capabili-
ties, we analyzed the relationship between the size of the 
training set and the quality of the output harmonization. We 
also examined the characteristics of each system in terms of 
the number of unique chords it generates for each song, and 
its ability to produce chords that are not included in training 
sets. 

2. PROBLEM DEFINITION 

Suppose a melody consists of m monophonic notes, {a1, 
…, am}, harmonized by a sequence of n chords {C1, …, 
Cn}, 1≤n≤m. The melody can also be represented as a set 
of n melody segments, {M1, …, Mn}, and each of the seg-
ments contains notes harmonized by a particular chord. For 
example, the melody segment Mi, harmonized by the chord 
Ci, can be represented as: 

Mi = {
1)||(

1

1
+∑

−

=

i

j
Mj

a ,…, 
||)||(

1

1
MiMj

i

j

a
+∑

−

=

},                           (1) 

where |Mj| is the number of notes in the melody segment 
Mj. The location of a chord often aligns with the bar line 
between two measures, but not necessarily, as more than 
one chord may appear in a bar. Chords for two adjacent 
melody segments may be identical or different.  

In order to generate chords for a given melody, the har-
monization task requires two steps: segmenting the melody 
into melody segments and selecting a chord for each melo-
dy segment. In this paper we focus on the second step, 
chord selection, and assume the information about segmen-
tation is given. Each chord Ci is selected among 24 candi-
dates, 12 major triads and 12 minor ones. The choice of the 
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24 triads is partially due to the fact, as indicated in [8], that 
96% of the chords in the collected work by the Beatles are 
major and minor triads. And the choice of triads is also be-
cause of our intention to focus on the fundamental chords. 

3. SYSTEMS 

3.1 The Rule-Based Harmonic Analyzer 

The Harmonic Analyzer [11] (HA) proposed by Temperley 
and Sleator applies preference rules to rhythm analysis and 
harmonization in the Western classical music tradition. To 
harmonize a melody, the system first divides it into seg-
ments, and then assigns the root of the chord for each seg-
ment, without indicating the mode (major or minor). For 
the purpose of this paper, we focus on the process of root 
finding. The system operates on the application of the four 
Harmonic Preference Rules (HPR): 

HPR 1 (Compatibility Rule): prefer certain TPC (tonal 
pitch-class)-root relations over others, in the following or-
der: ,1̂ ,5̂ ,3̂ ,3̂b ,7̂b ,5̂b ,9̂b ornamental; 

HPR 2 (Strong Beat Rule): prefer chord-spans that start 
on strong beats of the meter; 

HPR 3 (Harmonic Variance Rule): prefer roots that are 
close to the roots of nearby segments on the line of fifths; 

HPR 4 (Ornamental Dissonance Rule): prefer ornamental 
dissonances that are (a) closely followed by an event a step 
or half-step away in pitch height, and (b) metrically weak. 

Given a melody segment, a score is calculated for each 
of the possible 12 roots as a weighted sum using the four 
preference rules. The compatibility rule (HPR 1) assigns a 
score to each note in the melody segment depending on the 
relationship of the note to the root. If the note is the tonic 

( 1̂ ) of the root, it receives the highest score. Notes that are 
not listed in the compatibility rule are given penalties, de-
pending on the inter-onset interval between the note to the 
next note a step or half-step apart in pitch and the note’s 
metrical strength (HPR 4). Whenever a new root is selected 
for a segment, i.e., a chosen root is different from the one in 
the previous segment, it receives a penalty based on the 
strength of the beat where the new root starts. If the new 
root starts at a strong beat, it will receive a lower penalty 
(HPR 2). To apply the harmonic variance rule (HPR 3), a 
center of gravity is calculated as the average position of 
roots in all previous segments on the line of fifths, weighted 
by the length and how recent the segments are. The current 
root is then assigned a penalty based on its distance to the 
center of gravity. The scores calculated on HPR1 and HPR 
3 are further weighted by the length of the segment. Finally, 

a dynamic programming algorithm is applied to retrieve the 
path of roots that report the highest overall score. 

We used the implementation of the system provided by 
Temperley and Sleator [12] for comparison in this paper. 
We converted melodies in the MIDI format to text files 
containing a sequence of note events with beat structures as 
the required input for the HA system. In order to make the 
output of the HA system comparable to the ones from other 
systems, we expanded the output root into a major or a mi-
nor triad. We interpreted the chords as being the common 
ones as described in the textbook for Music Theory [6]. The 
common chords, written in Roman Numerals, include I, ii, 
iii, IV, V, vi, and vii. For example, when a root G is report-
ed by the HA system in a song in the key of C major, we 
assign a G major (V) instead of a G minor (v) chord. For a 
root not listed as either major or minor in the set of com-
mon chords, we randomly assign a mode to the root. 

3.2 Hidden Markov Models 

Statistical approaches, particularly Markov Models, have 
been commonly utilized for harmonic analysis and genera-
tion in Western classical music [1, 5]. More recently, My-
Song [9] uses HMMs to automatically choose chords to ac-
company a vocal melody. Five categories of triads are con-
sidered in the MySong system, including major, minor, 
augmented, diminished and suspended triads. Chords are 
represented as their functional roles in relation to the key, 
which is given along with each song. The system models 
two types of relations: the co-occurrence of a chord and the 
distribution of pitches in the melody segment, and the co-
occurrence of two chords observed adjacently. Two proba-
bility matrices are constructed to record the statistical in-
formation about the two relations. The first matrix, melody 
observation matrix, records duration-weighted melodic 
pitch class histogram observed in training examples for all 
the chords in consideration. The second matrix, chord tran-
sition matrix, shows the logarithmic likelihood of the tran-
sition from one chord to another observed in the training 
examples. To generate chords for an input melody, a pitch 
class histogram is first produced for each melody segment 
as the observed state, and the likelihood of a chord chosen 
for that melody segment is calculated using melody obser-
vation matrix. Combining the resulting logarithmic likeli-
hood with chord transition probabilities, the Viterbi algo-
rithm is then applied to retrieve the most likely possible 
chord sequence for the entire melody. 

  The main design goal of MySong is different from the 
topic concerned in this paper. The system was trained on 
hundreds of songs by various artists across many genres at 
once, without concentrating on any particular style. The fi-
nal chord sequence was controlled by users through the ad-
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justment of two options: “happy factor” generates more ma-
jor triads, while “jazz factor” assigns more weights on the 
melody observation matrix than on the chord transition ma-
trix. Regardless of the different design goal, the underlying 
HMMs in MySong can be easily adapted to the generation 
of style-specific harmonization with proper modifications. 
Inspired by MySong, we implemented a HMM-based mod-
el for style-specific harmonization. We maintained the two 
matrices and the way they were calculated, and also applied 
the Viterbi algorithm to retrieve the final chord sequence. 
However, we discarded the two user options with the result 
that the generated chord sequence completely depends on 
the statistical information observed in the training exam-
ples. We also limited chord selection to among major and 
minor triads only, resulting in a 24-by-12 melody observa-
tion matrix and a 12-by-12 chord transition matrix. Infor-
mation such as melody segment and key is given. During 
the process of training, only songs written by one artist or 
band are supplied.   

 It is important to discuss the differences between the 
rule-based HA system and the HMM approach. In addition 
to the basic musical terms such as pitch, pitch class, chord 
and key that exist in both systems, the HA system has em-
bedded more knowledge of abstract musical structures, in-
cluding scale, rhythmic hierarchy, ornamental and circle-of-
fifths. The functional role of each melody note and that of 
each chord in relation to the hierarchical and abstract struc-
ture of the song are well defined in the HA system as pref-
erence rules. To generate harmonization for a given melo-
dy, chords are selected by a series of calculations using pre-
defined scores and penalties. In contrast, none of these ab-
stract structures are considered in the HMM approach. Only 
two relations are modeled in the HMM system: pitch class 
distribution in melody for each segment (the observed state) 
and transitions between adjacent chords (transitions be-
tween states). The preference of such relations in HMM is 
completely determined by the training examples without 
using any pre-set scores or penalties. 

3.3 Automatic Style-Specific Accompaniment System 

In [3], Chuan and Chew proposed an Automatic Style-
Specific Accompaniment (ASSA) system that generates 
accompaniments in a particular style to a melody given on-
ly a few training examples. The system takes a hybrid ap-
proach, applying statistical learning on top of a music theo-
retic framework. In ASSA, the relation between melodic 
notes and chordal harmonies is modelled as a binary classi-
fication task called chord tone determination: if the note is 
part of the chord structure, then the note is classified as a 
chord tone; otherwise it is labelled a non-chord tone. Each 
melody note is represented using 73 attributes, including 

pitch, duration, metrical strength, its relation to the neigh-
bouring tones, phrase location, etc. These attributes de-
scribe the functional role of each melody note in the various 
abstract musical structures of the song. However, unlike the 
HA system, the preference or suitability of a certain type of 
note or chord is not pre-programmed into the system; it is 
learned from the training examples. Therefore, the resulting 
classifier, a trained decision tree in ASSA, is completely 
determined by the style shared in common by the training 
songs.  

 Instead of representing chord transitions as pairs (source 
chord and destination chord) as in the HMM approach, the 
ASSA system applies neo-Riemannian transforms [2] to 
focus on the musical relationship between the two chords 
involved in the transition and the movements of pitches 
from one chord to another. For example, a transition from a 
C major triad to an E minor triad is described using the 
leading tone exchange (L) operation1 because the two triads 
share the pitches e and g, but the pitch c in C major is re-
placed by the E minor’s pitch b, which is the leading tone 
in C major. The transition from F major triad to A minor 
triad is also described using the same L operation, while 
such transition is recognized as a different chord pair (C 
major, E minor) in the HMM approach. Chord transitions in 
the ASSA system are represented in a manner that reflects 
their relation on the circle-of-fifths and voice leading be-
tween the chord tones. But unlike the HA system, which 
always prefers the movement in the shortest distance on the 
circle-of-fifths, the applicability of the transition type is de-
termined by the training examples.  

 Another difference between ASSA and the previous two 
systems can be observed in the generation of the final chord 
sequence for harmonization. ASSA generates harmoniza-
tion in a divide-and-conquer fashion. The system first di-
vides the input melody into sub-phrases delineated by bars 
in which melody notes strongly imply triads; then it gener-
ates a sequence of chords for each sub-phrase independent-
ly. For each sub-phrase, a Markov model is used to calcu-
late probabilities of all possible chord series. Given a series 
of n chords, {C1, …, Cn}, where each chord is indexed by 
its segment number, the probability that this chord series 
occurs can be expressed as: 

),...|,...( 11 nn SSCCP  

),,|()...,,|()|( 11211211 nnnn SSCCPSSCCPSCP −−=  

),,|,()...,|()|( 11212,111 nnnn SSNROPSSNROPSCP −−=   (2) 

                                                             
1  The four fundamental operations in neo-Riemannian 
transforms are I (Identify), L (Leading-tone exchange), P 
(Parallel) and R (Relative). 
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where NROi-1, i is the neo-Riemannian operation between 
chord Ci-1 and Ci, and Si is the phrase position of segment i, 
which falls into one of four possible categories: start, mid-
dle, ending and final. These sub-phrases of chords are at 
last combined, with refinements, to produce the chord pro-
gression for the entire melody.  

4. EXPERIMENTS AND RESULTS 

4.1 Experiments 

The objective of the paper is to examine the effectiveness 
of the three approaches – a rule-based system, a statistical 
model and a hybrid system – for the automatic generation 
of style-specific harmonization. We used 140 songs by sev-
en stylistically distinct pop/rock bands, including the Beat-
les (B), Bon Jovi (BJ), Green Day (GD), Guns N’ Roses 
(GR), Indigo Girls (I), Keane (K) and Radiohead (R). 
Songs by the same band are considered to have similar 
styles. We obtained information about each song such as 
melody, chord and key from the commercial lead sheet. 
Melodies were encoded in the MIDI format while chords 
and keys were written in text files with melody segments 
specified.  

 For systems with learning abilities, we conducted the 
Leave-One-Out test. We selected one song as the test song 
and formed a training set using the remaining songs by the 
same artist. We then compared the generated chords with 
the ones given in the commercial lead sheet (the ground 
truth) of the test song. To examine the manner in which the 
number of training examples affects the performance of the 
systems, we constructed training sets with various sizes by 
gradually adding one song into the set. Suppose we have m 
songs by an artist and n represents the number of songs in 
the training set, 1≤ n ≤ m-1. For each test song, we can con-
struct 1−m

nC different training sets. Therefore, for each n, we 

will have results from m x 1−m
nC different test instances. The 

number of test instances grows quickly and becomes infea-
sible as m and n increase. For example, if we have 20 songs 
by an artist and we form test sets of 10 songs, the resulting 
number of test instances is 20 x 19

10C  = 1847560. We lim-
ited the number of training sets by randomly choosing 120 
training sets for each test song if the total number of possi-
ble training sets exceeds 120. Therefore, for each n, the 
number of test instances is bounded by 120 x m. On the 
other hand, for the rule-based HA system that does not re-
quire training examples, the total number of test instances 
for an artist is equivalent to m.      

4.2 Results 

4.2.1 Same Chord Percentage 

Figure 1 shows the average percentage of generated chords 
that are identical to the ones in the ground truth with 95% 
confidence interval. Notice that the ASSA system reports a 
higher same chord percentage when the number of training 
songs increases. But the same chord percentage of HMM 
decreases as the increment of training songs increases in all 
cases except the one shown in Figure 1 (b). In general, 
ASSA reports higher or at least equivalent same chord per-
centage as HMM. However, comparing with ASSA and 
HMM, it is difficult to make general comments on the re-
sult of rule-based HA (the one with zero training songs) be-
cause of its wide confidence interval.  

 

Figure 1. Same chord percentage with different sizes of 
training sets. 

4.2.2 Related Chord Percentage 

Figure 2 shows the average percentage of generated chords 
that are closely related to the ground truth. Two chords are 
considered closely related if they show one of the following 
relations: identical, dominant, subdominant, relative, paral-
lel, dominant/relative, dominant/parallel, subdomi-
nant/relative and subdominant/parallel. For example, if the 
ground truth is C major, the closely related chords in the 
order are C major, G major, F major, A minor, C minor, E 
minor, G minor, D minor and F minor. When related chord 
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percentage is considered, the rule-based HA performs the 
best in general. HMM and ASSA perform similarly, but as 
the number of training songs increases, the results for 
ASSA improves while those for HMM decline. 

 

Figure 2. Related chord percentage with different sizes of 
training sets. 

4.2.3 Average Number of Unique Chords 

We also examine the number of unique chords generated 
for each song by the three systems, and compare that with 
the number of unique chords in each band’s original songs. 
Each unique chord chosen by a composer is analogous to a 
color used by a painter, and the number of colors that ap-
pear in a painting is usually considered a contributing factor 
of a painting style. The number of unique chords equals the 
total number of chords in the sequence subtract the number 
of duplicate chords. Figure 3 shows the average number of 
unique chords generated by the three systems and in the 
original songs. Notice that the average number of unique 
chords generated by the rule-based HA system is the closest 
to but slightly lower than the ground truth (GT). The num-
ber of unique chords generated by HMM grows as the 
number of training examples increases, which provides 
more chords as cases for HMM to learn from. In contrast, 
the number of unique chords generated by ASSA drops and 
becomes closer to the ground truth when the number of 
training examples increases. This may result from the use 
of the neo-Riemannian transform, which only represents the 

relative relation in the transition between chords, allowing 
more freedom to choose chord pairs that are not included in 
the training set as long as they share the same transition. 

 
Figure 3. Average number of unique chords per song using 
HMM, ASSA, HA and in the ground truth (GT). 

4.2.4 Average Number of New Chords 

For systems that require training examples, it is important 
to study how these examples affect the output. Particularly, 
we are interested in the system’s ability to generate chords 
that are not given in the training examples. For comparison, 
we also investigate the original songs to observe the num-
ber of chords in a song that do not appear in a given set of 
other songs by the same artist. We label these unseen 
chords as new chords. 

 Figure 4 presents the average number of new chords 
generated by HMM and ASSA, and in the original accom-
paniment, the GT. In the original accompaniments, when 
the training set is small, there are always one or two new 
chords in each song. As the training set grows, the training 
examples gradually cover all the chords in each song. In 
ASSA, because of the neo-Riemannian framework, it 
demonstrates the ability to create new chords but tends to 
generate too many when the training examples are too few. 
More training examples help ASSA become stable. On the 
other hand, the output chords of HMM are fully limited by 
the chords given in the training examples.  
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Figure 4. Average number of new chords per song using 
HMM, ASSA, HA and in the ground truth (GT). 

5. CONCLUSIONS AND FUTURE WORK 

In this paper we compared three different approaches, a 
rule-based model, a statistical model, and a hybrid system 
combining the two, for automatic style-specific harmoniza-
tion in popular music. We conducted experiments by using 
songs from several stylistically identifiable pop/rock bands, 
having the systems generate chords to harmonize given 
melodies, and compared the generated chords with the orig-
inal. We observed that the rule-based system generates the 
most chords within a close range of the original. As the 
number of training examples increases, the hybrid system 
reports more chords identical to the original than the other 
systems. Although the hybrid system has the ability to gen-
erate chords that were not present in the training set, it 
tends to produce too many types of chords for a given song. 
The HMM-based system, however, produces fewer and 
fewer chords that are similar to the original as the size of 
the training set grows. In the future we plan to study differ-
ent approaches for dividing melodies into melody segments 
for the harmonization task. We also plan to explore other 
methods for evaluating system-generated harmonization in 
a particular style. Besides comparing the generated chords 
with the original, we will investigate means for measuring 
the tension and relaxation created in the harmonization.  
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ABSTRACT

This paper considers a melody extraction algorithm that es-
timates the melody in polyphonic audio using the harmonic
coded structure (HCS) to model melody in the minimum
mean-square-error (MMSE) sense. The HCS is harmoni-
cally modulated sinusoids with the amplitudes defined by a
set of codewords. The considered algorithm performs melody
extraction in two steps: i) pitch-candidate estimation and ii)
pitch-sequence identification. In the estimation step, pitch
candidates are estimated such that the HCS best represents
the polyphonic audio in the MMSE sense. In the identifica-
tion step, a melody line is selected from many possible pitch
sequences based on the properties of melody line. Posterior
to the melody line selection, a smoothing process is applied
to refine spurious pitches and octave errors. The perfor-
mance of the algorithm is evaluated and compared using the
ADC04 and the MIREX05 dataset. The results show that
the performance of the proposed algorithm is better than or
comparable to other algorithms submitted to MIREX2009.

1. INTRODUCTION

Most people recognize music as a sequence of notes re-
ferred to as melody. Melody extraction from polyphonic
audio is developed for various applications such as content-
based music information retrieval (CB-MIR), audio plagia-
rism search, automatic melody transcription, music analy-
sis, and query by humming (QBH) [1, 2, 6]. Despite its im-
portance in various applications, melody is not clearly de-
fined [3,4,6]. However, many people consider melody as the
most dominant single pitch sequence of a polyphonic audio
and the considered algorithm extracts melody following this
consideration.

Diverse melody extraction or transcription techniques have
been proposed in recent years. Goto introduced a predomi-
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nant F0 estimation (PreFEst) algorithm [3]. It estimates the
weights of prior tone-models over all possible fundamental
frequencies(F0s) based on the maximum a posteriori (MAP)
criterion and determines the F0’s temporal continuity by us-
ing a multiple-agent architecture. Paiva estimated possible
F0s in the short-time Fourier transform (STFT) magnitude
domain and decides a single pitch sequence (melody line)
based on various properties of melody pitches between near
frames [5]. Poliner and Ellis approached the melody line es-
timation problem as a classification problem and use a sup-
port vector machine (SVM) classifier in the estimation [7].
Ryynänen defined an acoustic model based on the hidden-
Markov model (HMM) to estimate melody, bass line and
chords [1]. Durrieu extracted melody of singing voice by
separating singer’s voice and background music [2].

There are two main obstacles in extracting accurate melody
line [9]. The obstacles are listed below:

1) Accompaniment interference: Accompaniment sound
such as harmonics of subdominant melodies and per-
cussive sound acts as noise in the melody pitch esti-
mation.

2) Octave mismatch: Inaccurate melody pitch values which
are one octave higher or lower than the ground-truth
are often inaccurately estimated: the true melody pitch
harmonics appear at either all estimated pitch harmonic
locations or every other pitch harmonic locations.

In this paper, an effective melody extraction algorithm
that considers the above obstacles is proposed. The algo-
rithm defines a harmonic structure as a model for melody.
Related models have been studied for other related applica-
tions. Heittola modeled the signal as a sum of spectral bases
for sound separation [10]. Duan used pre-coded spectral
peak/non-peak position of each possible pitches for pitch
tracking [11]. Bay used pre-coded harmonic structure shape
for source separation [12]. Goto modeled a pitch harmonics
as a Gaussian mixture model [3].

The proposed algorithm minimizes the mean-square er-
ror between the given polyphonic audio and the harmonic
coded structure (HCS) that is constructed from a codebook
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Figure 1. System Overview

of harmonic amplitude set. The codebook was defined by k-
means clustering the harmonic amplitudes of training melody
data. The algorithm finds N -best pitch candidates for each
frame and subsequently determines the best melody line from
the pitch candidates by a rule-based identification proce-
dure.

The remainder of this paper is organized as follows. Sec-
tion 2 describes the proposed melody extraction algorithm.
Section 3 shows experimental results of the proposed algo-
rithm and compares the performance to other previous algo-
rithms. Finally, Section 4 concludes this paper.

2. MELODY EXTRACTION ALGORITHM

The overall structure of the proposed algorithm is shown
in Figure 1. The proposed algorithm extracts melody pitch
sequence (melody line) in two steps: i) pitch-candidate esti-
mation and ii) pitch-sequence identification. In the estima-
tion step, N melody pitch candidates are extracted by find-
ing N most dominant HCS by minimizing minimum-mean-
squared error between the magnitude of STFT of framed
polyphonic audio using the window function w[n] and a
weighted HCS. In the identification step, the melody pitch
sequence is estimated based on a certain set of rules of melody
line, after which a simple smoothing process is applied. Melody
line is decided by first selecting L-best melody line from a
sequence of N pitch candidates and then determining the
most appropriate melody line from the selection. The smooth-
ing process is performed to remove spurious pitch sequences
and octave errors.

2.1 Melody Pitch Candidate Estimation

2.1.1 Construction of HCS

In this paper, a harmonic coded structure (HCS) is proposed
to find the dominant melody pitch harmonics in the STFT
domain. The windowed harmonic structure can be expressed
as follows:

hη[n]=w[n]
H∑

m=1

bm cos(m · 2πη · n + ϕm), H =⌊ fs

2η
⌋, (1)

where fs, η, w[n], bm, and ϕm are sampling frequency, the
fundamental frequency (F0) of the HCS, analysis window,
amplitude of the mth harmonic, and the phase of the mth
harmonic, respectively. The discrete-time Fourier transform
(DTFT) of hη[n], Hη(ω), can be expressed as follows:

Hη(ω)=
H∑

m=1

BmW (ω −mη), Bm =bme−jϕm , (2)

where W (ω) is the DTFT of w[n].
The number of harmonics within a certain bandwidth de-

pends on the pitch and the sampling frequency as defined in
(1), but we observe that the harmonic amplitudes tend to de-
crease with increasing harmonic index (|Bm| < |Bm−1| for
m = 2, · · · ,H). For this reason, we use only 11 harmonics.

The overall envelop of the harmonic amplitudes varies
with instrument and pitch [13]. Therefore, it is difficult to
construct one fixed melody harmonic structure that fits all
the different harmonic amplitude patterns.

To construct a HCS to represent all the different har-
monic amplitudes of melody, a codebook is constructed from
real audio sample data. Harmonic amplitudes from 26,930
frames of piano sound, 74,631 frames of saxophone sound
[14], and 449,430 frames of singing voice [15] are used
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(a) (b)

(c)

Figure 2. Three estimated harmonic structures when k = 3
and the F0 = 400Hz: (a) The first harmonic structure (i =
1), (b) the second harmonic structure (i = 2), and (c) the
third harmonic structure (i = 3).

to build the codebook: these three sounds are present as
melody in all music considered.

The harmonic amplitude samples are clustered using the
extended k−means clustering algorithm [16] and the cen-
troids of each cluster are used as codewords. Finally, the
HCSs for every possible F0 are constructed using (1) and
(2) based on the codebook. Figure 2 illustrates HCSs when
k = 3 and the F0 = 400Hz.

2.1.2 N -Best Melody Pitch Candidates Estimation

The proposed algorithm extracts N melody pitch candidates
from each frame of a given polyphonic audio to reduce pitch
estimation errors due to accompaniment interference and
octave mismatch.

The pitch candidates are estimated based on the consen-
sus that melody is considered as the single dominant pitch
sequence in a polyphonic audio. To find the dominant pitch
candidates of each frame, a cost function based on the ith
HCS, Ji(η, l), is defined as follows:

Ji(η, l) =
∫ π

−π

(
|S(ω, l)|

−Ci(η, l)
H∑

m=−H,
m̸=0

Ai,m|W (ω −mη)|
)2

dω, (3)

where S(ω, l) and Ci(η, l) are the STFT coefficient of the
lth frame at frequency ω and the weight of the ith HCS
which is constructed with the ith codeword in the lth frame

(a) i = 1 (b) i = 2

(c) i = 3

Figure 3. The cost of the lth frame given by (3). The circles
(◦) indicate J ′i(l) of each HCS.

with F0 = η, respectively. Here, Ai,m is the harmonic am-
plitude of the mth harmonic of the ith codeword. The STFT
magnitude of each frame and the HCS with F0 = η satisfy
the following constraints:∫ π

−π

|S(ω, l)|dω = 1, (4)

and ∫ π

−π

H∑
m=−H,

m ̸=0

Ai,m|W (ω −mη)|dω = 1. (5)

The HCS represents only the form of the harmonics, not
the exact magnitude of harmonics so scaling is required where
the weight Ci(η, l) is chosen to minimize the cost given in
(3), thus

Ĉi(η, l) = argmin
Ci(η,l)

Ji(η, l). (6)

To find Ĉi(η, l), Ji(η, l) is differentiated with respect to
Ci(η, l) and set equal to zero. It yields

Ĉi(η, l)=

∫ π

−π

|S(ω, l)|
( H∑

m=−H,
m ̸=0

Ai,m|W (ω −mη)|
)
dω

∫ π

−π

( H∑
m=−H,

m ̸=0

Ai,m|W (ω −mη)|
)2

dω

. (7)

Prior to extracting melody pitch candidates, the mini-
mum cost of the lth frame using the ith HCS J

(min)
i (l) de-

fined below is estimated.

J
(min)
i (l) = min

η
Ĵi(η, l), (8)
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where

Ĵi(η, l) =
∫ π

−π

(
|S(ω, l)|

−Ĉi(η, l)
H∑

m=−H,
m̸=0

Ai,m|W (ω −mη)|
)2

dω. (9)

Figure 3 shows the cost of each HCS of the lth frame when
k = 3, and the costs of the circled peaks indicate J

(min)
i (l).

Now, the index of the HCS of the lth frame I(l) is esti-
mated by

I(l) = argmin
i

J
(min)
i (l). (10)

Generally, harmonic amplitudes of consecutive frames are
highly correlated [9]. Thus, the index of HCS that appears
frequently within a neighborhood of few frames (including
the target frame) should be determined as a more consistent
index of the current frame. The updated index of the lth
frame is expressed as follows:

Î(l) = mode[I(l −M), I(l −M + 1),
· · · , I(l + M − 1), I(l + M)]. (11)

where M is the number of neighbor frames considered on
either side of the lth frame.

The costs of possible F0s can be finally calculated using
(3) with the weight obtained from (7) and the index deter-
mined by (11). To obtain a set of N possible melody pitch
candidates of the lth frame, the following procedure is per-
formed in obtaining the set Nl for the lth frame.

Algorithm 1 N -best Pitch Candidates Determination
Nl = {}
for n = 1, ..., N do

η̄ = argminη ̸∈Nl
JÎ(l)(η, l)

Nl ← Nl ∪ η̄
end for

Figure 4 (a) and (b) illustrate the STFT magnitude of a
frame and its cost, respectively for N = 5. The circles in
(b) indicate the estimated melody pitch candidates of the
frame.

2.2 Melody Pitch Sequence Identification

Once the N -best pitch candidates of each frame are obtained
as described in the previous section, a single pitch sequence
(melody line) that best represents the melody line is iden-
tified. An estimate of the melody line can be obtained by
selecting the pitch candidate leading to the minimum cost
for each frame. This, however, often leads to inaccurate
estimation due to accompaniment interference and octave

(a) (b)

Figure 4. The STFT magnitude and the cost of the lth
frame: (a) |S(ω, l)|, (b) the cost of the lth frame obtained
by an appropriate HCS.

mismatch. Inaccuracy can be reduced by considering the
forward and backward relationship among pitch candidates.
The proposed identification algorithm estimates the melody
line based on a rule-based method described below.

A more robust melody pitch sequence is obtained by the
following two steps: i) L-best melody pitch sequences are
determined and ii) melody is determined as the melody pitch
sequence with the minimum sum cost. (see Figure 1).

2.2.1 L-Best Melody Pitch Sequence Determination

The proposed melody line identification algorithm estimates
L-best melody lines from N-best pitch candidates of each
frame based on the following properties of melody line.

P1 The vibrato exhibits an extent of ± 60∼200 cent for
singing voice and only ± 20∼30 cent for music in-
struments such as saxophone, violin, and guitar [17].

P2 The note transitions within a musical structure are
typically limited to an octave [8].

P3 In general, a rest during singing is longer than 50 ms.

Based on the above properties, the following rules are
defined to estimate the melody line.

R1 Any two pitch candidates of successive frames are
considered to be included in same melody line seg-
ment when the difference between the pitch values is
less than the threshold described in P1.

R2 When two non-consecutive frames with a time gap
less than 50ms have pitch candidates satisfying P1,
then interpolate between the two pitch values (by P3).

R3 When any two pitch candidates of successive frames
satisfy only P2 and not P1 and P3, a transition is as-
sumed to have occurred in the melody line.

In the proposed algorithm, the threshold discussed in R1
is set to 100 cent which was determined experimentally from
the validation data. When one of the L-melody lines does
not satisfy the given rules, all melody lines are disconnected
and a new set of L-melody lines are started.
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(a) (b)

Figure 5. Melody pitch sequence estimation: (a) three-best
melody pitch sequence estimation, (b) best melody pitch se-
quence decision.

2.2.2 Melody Pitch Sequence Decision

A single melody pitch sequence must be selected from the
L-best lines. The best melody pitch sequence is estimated
based on the melody definition: melody is a dominant pitch
sequence in a polyphonic audio. Hence, after adding up
the costs in each melody line segment, the pitch sequence
that has the minimum summed-cost is selected as the best
melody line segment. Figure 5 (a) and (b) show the result of
L-best melody pitch sequence estimation and melody pitch
sequence decision, respectively. The vertical dotted lines in
(a) represent the disconnecting positions, and the pitch se-
quences between two vertical dotted lines are considered as
melody line candidates.

2.2.3 Smoothing Process

Although the procedures described in Section 2.2.1 and 2.2.2
effectively reduce accompaniment interference and octave
mismatch, it is difficult to estimate the true melody pitch
sequence if the interference occurs throughout the melody
line. Thus, a smoothing process is applied to find a more
robust melody line.

After the single melody pitch sequence is estimated, spu-
rious sequences are removed and replaced with interpolated
pitch values between non-spurious pitches. The spurious
sequence is determined by following conditions. i) A pitch
sequence which switches to another note and returns to the
original note within short time is considered as the spurious
sequence. ii) A pitch sequence which has a transition over
one octave is also regarded as an inaccurate estimate.

3. EVALUATION

Two CD-quality (16-bit quantization, 44.1 kHz sample rate)
test datasets are used for evaluation. One dataset used for
the evaluation is the Audio Description Contest (ADC) 2004
dataset, and the other is the Music Information Retrieval
Evaluation eXchange (MIREX) 2005 dataset. Table 1 shows
the configurations of the evaluation datasets.

In the experiment, the possible fundamental frequency
range is set from 80Hz (3950 cent) to 1280Hz (8750 cent)

Dataset Melody Number of files
ADC04 Vocal melody 8

Nonvocal melody 12
MIREX05 Vocal melody 9

Nonvocal melody 4

Table 1. Evaluation dataset.

Dataset Algorithms RPA (%) RCA (%)
ADC04 Cao et al. 85.1 86.3

Durrieu et al. 81.4 83.4
Hsu et al. 63.9 73.6
Dressler 87.1 87.6
Wendelboe 82.3 86.4
Cancela 82.9 83.4
Rao et al. 76.9 85.1
Tachibana et al. 61.0 71.8
Proposed 81.8 86.0

MIREX05 Ryynänen et al. [1] 67.3 69.1
Durrieu et al. [19] 74.5 79.6
Tachibana et al. [20] 74.0 76.7
Proposed 76.1 80.7

Table 2. Result Comparison.

and 3 clusters are used for building codebook (k = 3). In
the melody pitch candidate estimation step, 3-best pitch can-
didates are chosen for each frame (N = 3) and the number
of neighbor frames for deciding harmonic structure is set to
7 (M = 7). In the melody pitch sequence identificaion step,
3-best melody lines are estimated (L = 3). These values are
determined experimentally.

The estimated melody pitch is considered correct when
the absolute value of the difference between the ground-
truth and the estimated pitch frequency is less than quarter
tone (50 cent). This is shown as

|Fg(l)− Fe(l)| ≤
1
4
tone (50cent), (12)

where Fg(l) and Fe(l) denote ground-truth and estimated
pitch frequency of the lth frame, respectively.

The performance of the proposed algorithm is evaluated
with row pitch accuracy (RPA) and row chroma accuracy
(RCA) [8].

Table 2 shows the evaluation results for all algorithms
considered. The results on the ADC04 dataset are from the
MIREX 2009 homepage [18]. When obtaining the results
on the MIREX05 dataset, we referred the results in [20] or
used the codes publicly released by the authors [1, 21]. The
best result on each dataset is underlined, and the result of the
proposed algorithm is highlighted in bold. The proposed

231



Poster Session 2

algorithm achieved the best performance both in RPA and
RCA on the MIREX05 dataset. It also performed compara-
bly to the other algorithms on the ADC04 dataset.

4. CONCLUSION

In this paper, an algorithm extracting melody from a poly-
phonic audio using the HCS which is constructed from the
codebook of harmonic amplitude set obtained by k-means
clustering is considered. The algorithm focuses on reducing
accompaniment interference and octave mismatch. The al-
gorithm consists of two steps: N -best pitch candidates esti-
mation step and rule-based melody identification step. First,
multiple pitch candidates of each frame are estimated us-
ing the cost function which determines the most dominant
HCS of the frame in the MMSE sense. Second, a single
pitch sequence (melody line) is identified based on certain
rules of melody line. To handle the spurious pitch sequence
problem, the smoothing process is applied. The considered
algorithm is tested on two datasets: the ADC04 dataset and
the MIREX05 dataset. Experimental results show that the
proposed algorithm is better than or comparable to the other
melody extraction algorithms.
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ABSTRACT

We propose the task of detecting instrumental solos in poly-
phonic music recordings, and the usage of a set of four audio
features for vocal and instrumental activity detection. Three
of the features are based on the prior extraction of the pre-
dominant melody line, and have not been used in the context
of vocal/instrumental activity detection. Using a support
vector machine hidden Markov model we conduct 14 exper-
iments to validate several combinations of our proposed fea-
tures. Our results clearly demonstrate the benefit of combin-
ing the features: the best performance was always achieved
by combining all four features. The top accuracy for vocal
activity detection is 87.2%. The more difficult task of de-
tecting instrumental solos equally benefits from the combi-
nation of all features and achieves an accuracy of 89.8% and
a satisfactory precision of 61.1%. With this paper we also
release to the public the 102 annotations we used for train-
ing and testing. The annotations offer not only vocal/non-
vocal labels, but also distinguish between female and male
singers, and different solo instruments.

Keywords: vocal activity detection, pitch fluctuation, F0
segregation, instrumental solo detection, ground truth, SVM

1. INTRODUCTION

The presence and quality of vocals and other melody instru-
ments in a musical recording are understood by most listen-
ers, and often these are also the parts of the music listeners
are interested in. Music enthusiasts, radio disk-jockeys and
other music professionals can use the locations of vocal and
instrumental activity to efficiently navigate to the song po-
sition they’re interested in, e.g. the first vocal activity, or the
guitar solo. In large music collections, the locations of vo-
cal and instrumental activity can be used to offer meaningful

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

audio thumbnails (song previews) and better browsing and
search functionality.

Due to its apparent relevance to music listeners and in
commercial applications the automatic detection of vocals
in particular has received considerable attention in the recent
Music Information Retrieval literature, which we review be-
low. Far less attention has been dedicated to the detection of
instrumental solos in polyphonic music recordings.

In the present publication we present a state-of-the-art
method for vocal activity detection. We show that the use
of several different timbre-related features extracted based
on a preliminary extraction of the predominant melody line
progressively improve the performance of locating singing
segments. We also introduce the new task of instrumental
solo detection and show that, here too, the combination of
our proposed features leads to substantial performance in-
creases.

Several previous approaches to singing detection in poly-
phonic music have relied on multiple features. Berenzweig
[2] uses several low-level audio features capturing the spec-
tral shape, and learned model likelihoods of these. Fujihara
uses both [3] a spectral feature and a feature that captures
pitch fluctuation based on a prior estimation of the predom-
inant melody. Thus more aspects of the complex human
voice can be captured and modelled. In fact, Regnier and
Peeters [14] note that “the singing voice is characterized
by harmonicity, formants, vibrato and tremolo”. However,
most papers are restricted to a small number of (usually
spectral) features [8, 9, 14]. Nwe and Li [12] have proposed
the most diverse set of features for vocal recognition that we
are aware of, including spectral timbre, vibrato and a mea-
sure of pitch height.

Our method is similar to that of Nwe and Li in that we
use a wide range of audio features. However, our novel mea-
surement of pitch fluctuation (similar to vibrato) is tuning-
independent and based on a prior extraction of the predom-
inant melody. Furthermore, we propose two new features
that are also based on the preliminary melody extraction
step: the timbre (via Mel-frequency cepstral coefficients) of
the isolated predominant melody, and the relative amplitude
of the harmonics of the predominant melody.
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The remainder of the paper is organised as follows: in
Section 2 we describe the features used in our study. Sec-
tion 3 describes a new set of highly detailed ground truth
annotations for more than 100 songs published with this pa-
per. The experimental setup and the machine learning tools
involved in training and testing our methods are explained
Section 4. The results are discussed in Section 5. Limi-
tations of the present method and future directions are dis-
cussed in Section 6.

2. AUDIO FEATURES

This section introduces the four audio features considered in
this paper: the standard MFCCs, and three features based on
the extracted melody line: pitch fluctuation, MFCCs of the
re-synthesized predominant voice, and the relative harmonic
amplitudes of the predominant voice.

We first extract all features from each track at a rate of
100 frames per second from audio sampled at 16 kHz, then
low-pass filter and downsample them to obtain features at 10
frames per second, which we use as the input to the training
and testing procedures (Section 4).

2.1 Mel-frequency cepstral coefficients

Mel-frequency cepstral coefficients [11] are a vector-shaped
feature which has the desirable property of describing the
spectral timbre of a piece of audio while being largely ro-
bust to changes in pitch. This property has made them the
de facto standard input feature for most speech recognition
systems. The calculation of MFCCs consists of a discrete
Fourier transform of the audio samples to the frequency do-
main, applying an equally-spaced filter bank in the mel fre-
quency scale (approximately linear in log frequency), and
finally applying the discrete cosine transform to the loga-
rithm of the filter bank output. Details are extensively cov-
ered elsewhere, see e.g. [13]. In our implementation, the
hop size is 160 samples (10 ms), the frame size is 400 sam-
ples (a 512-point FFT was used with zero-padding) and the
audio window used is a Hamming window.

2.2 Pitch Fluctuation

The calculation of pitch fluctuation involves three steps:

fundamental F0: estimate the fundamental frequency (F0)
of the predominant voice at every 10ms frame using
PreFEst [4], and take the logarithm to map them to
pitch space,

tuning shift: infer a song-wide tuning from these estimates,
shift the estimates so that they conform to a standard
tuning and wrap them to a semitone interval,

intra-semitone fluctuation: calculate the standard devia-
tion of the frame-wise frequency difference.

We use the program PreFEst [4] to obtain an estimate of
the fundamental frequency (F0) of the predominant voice at
every 10ms frame. For a frame at position t ∈ {1, . . . , N}
in which PreFEst detects any fundamental frequency f [t] we
consider its pitch representation f∗log[t] = log2 f [t], i.e. the
difference between two adjacent semitones is 1

12 .
The tuning shift in the second step is motivated as fol-

lows: our final pitch fluctuation measure employs pitch esti-
mates wrapped into the range of one semitone. The wrapped
representation has the benefit of discarding sudden octave
jumps and similar transcription artifacts, but if the semitone
boundary is very close to the tuning pitch of the piece, then
even small fluctuations will cross this boundary (they ‘wrap
around’) and lead to many artificial jumps of one semitone.
This can be avoided if we shift the frequency estimates such
that the new tuning pitch is at the centre of the wrapped
semitone interval. In order to calculate the tuning of the
piece we use a histogram approach (like [6]): all estimated
values f∗log[t], t ∈ {1, . . . , N} are wrapped into the range of
one semitone,

f∗log[t]

(
mod

1

12

)
, t ∈ {1, . . . , N}, (1)

and sorted into a histogram (h1, . . . , h100) with 100 his-
togram bins, equally-spaced at 1

1200 , or one cent. The rela-
tive tuning frequency is obtained from the histogram as

f ref
log =

(arg maxi hi)− 1

1200
− 0.5 (2)

∈ {−0.5,−0.49, . . . , 0.49},

and the semitone-wrapped frequency estimates we use in the
third step are

flog[t] =
(
f∗log[t]− f ref

log

)(
mod

1

12

)
, t ∈ {1, . . . , N}.

The third step calculates a measure of fluctuation on win-
dows of the frame-wise values flog[t]. We use Fujihara’s for-
mulation [3] of the frequency difference (up to a constant)

∆flog[t] =

2∑
k=−2

k · flog[t+ k] (3)

and define pitch fluctuation as the Hamming-weighted stan-
dard deviation of values ∆flog[.] in a neighbourhood of t,

F[t] = 12 ·

√√√√ 50∑
k=1

wk (∆flog[t+ k − 25]− µ[t])
2
, (4)

where µ[t] =
∑50

k=1 wk∆flog[t+ k − 25] is the Hamming-
weighted mean, and wk, k = 1, . . . , 50 is a Hamming win-
dow scaled such that

∑
k wk = 1.

In short, F[t] summarises the spread of frequency changes
of the predominant fundamental frequency in a window around
the tth frame.
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2.3 MFCCs of Re-Synthesised Predominant Voice

We hypothesize that audio features that describe the pre-
dominant voice in a polyphonic recording in isolation will
improve the characterisation of the singing voice and solo
instruments. To obtain such a feature we re-synthesize the
estimated predominant voice and perform the MFCC fea-
ture extraction on the resulting monophonic waveform. For
the re-synthesis itself we use an existing method [3] which
employs sinusoidal modelling based on the PreFEst esti-
mates of predominant fundamental frequency and the esti-
mated amplitudes of the harmonic partials pertaining to that
frequency. MFCC features of the re-synthesized audio are
calculated as explained in Section 2.1. They describe the
spectral timbre of isolated the most dominant note.

2.4 Normalised Amplitudes of Harmonic Partials

The MFCC features described in Sections 2.1 and 2.3 cap-
ture the spectral timbre of a sound, but they do not con-
tain information on another dimension of timbre: the nor-
malised amplitudes of the harmonic partials of the predom-
inant voice. Unlike the MFCC feature of the re-synthesised
predominant voice, this feature uses the amplitude values
themselves, i.e. at every frame the feature is derived from
the estimated harmonic amplitudes A = (A1, . . . , A12) by
normalising them according to the Euclidean norm,

Hi =
Ai√∑

iA
2
i

(5)

3. REFERENCE ANNOTATIONS

We introduce a new set of manually generated reference an-
notations to 112 full-length pop songs: 100 songs from the
popular music collection of the RWC Music Database [5],
and 12 further pop songs. The annotations describe ac-
tivity in contiguous segments of audio using seven main
classes: f – female lead vocal, m – male lead vocal, g –
group singing (choir), s – expressive instrumental solo, p –
exclusively percussive sounds, b – background music that
fits none of the above, n – no sound (silence or near si-
lence). There’s also an additional e label denoting the end
of the piece. In practice, music does not always conform to
these labels, especially when several expressive sources are
active. In such situations we chose to annotate the predomi-
nant voice (with precedence for vocals) and added informa-
tion about the conflict, separated by a colon, e.g.

m:withf.

Similarly, the label for expressive instrumental solo, s, is
always further specified by the instrument used, e.g.

s:electricguitar.

background 22.0 %female 30.6 %

male 32.8 %
group 2.0 %

inst. solo 12.6 %

Figure 1: Ground truth label distribution: the pie chart la-
bels provide information on the distribution in the extended
model with five classes. The simple model joins all vocal
classes (dark grey, 65.4%) and all non-vocal classes (light
grey, 34.6%).

The reference annotations are freely available for download 1 .

4. EXPERIMENTS

We used 102 of the ground truth songs and mapped the rich
ground truth annotation data down to fewer classes accord-
ing to two different schemes:
simple contains two classes: vocal (comprising ground truth

labels f,m and g) and non-vocal (comprising all other
ground truth labels)

extended contains five classes: female, male, group for the
annotations f,m and g, respectively; solo (ground truth
label s); and remainder (all remaining labels)

The frequency of the different classes is visualised in Fig-
ure 1. Short background segments (ground truth label b)
of less than 0.5 s duration were merged with the preceding
region.

We examine seven different feature configurations, the
four single features pitch fluctuation (F), MFCCs (M), MFCCs
of the re-synthesised melody line (R) and normalised apli-
tudes of the harmonics (H), and the following progressive
combinations of the four: FM, FMR and FMRH.

The relevant features in each feature configuration are
cast into a single vector per frame. We use the support vec-
tor machine version of a hidden Markov model [1] SVM-
HMM [7] via an open source implementation 2 . We trained
a model with the default order of 1, i.e. with the probability
of transition to a state depending only on the respective pre-
vious state. The slack parameter was set to c = 50, and
the parameter for required accuracy was set to e = 0.6.
The 102 songs are divided into five sets for cross-validation.
The estimated sequence is of the same format as the mapped
ground truth, i.e. either two classes (simple schema) or five
classes (extended schema).

1 http://staff.aist.go.jp/m.goto/RWC-MDB/
AIST-Annotation/

2 http://www.cs.cornell.edu/people/tj/svm_light/
svm_hmm.html
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(b) specificity
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0.0 0.2 0.4 0.6 0.8

simple
ext.54.4%

39.3%
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60.3%

61.6%
54.9%

53.6%
63.1%

66.7%
67.6%

67.5%
69.9%

68.8%
72.4%

(c) segmentation accuracy

Figure 2: Vocal activity detection (see Section 5.1).

5. RESULTS

In order to give a comprehensive view of the results we
use four frame-wise evaluation metrics for binary classifi-
cation: accuracy, precision, recall/sensitivity and specificity.
These metrics can be represented in terms of the number of
true positives (TP; method says its positive and ground truth
agrees), true negatives (TN; method says it’s negative and
ground truth agrees), false positives (FP; method says it’s
positive, ground truth disagrees) and false negatives (FN;
method says it’s negative, ground truth disagrees).

accuracy =
TP + TN

# all frames
, precision =

TP
TP + FP

recall =
TP

TP + FN
, specificity =

TN
TN + FP

.

We also provide a measure of segmentation accuracy as one
minus the minimum of the directional Hamming divergences,
as proposed by Christopher Harte in the context of measur-
ing chord transcription accuracy. For details see [10, p. 52].

5.1 Vocal Activity Detection

Table 1 provides all frame-wise results of vocal activity
detection in terms of the four metrics shown above. The
highest overall accuracy of 87.2% is achieved by the simple
FMRH method. The difference to the second-best algorithm
in terms of accuracy (simple FMRH) is statistically signifi-
cant according to the Friedman test (p value: < 10−7).

Accuracy of single features. Figure 2a shows the dis-
tinct accuracy differences between the individual single au-
dio features. The H feature by itself has a very low accu-
racy of 68.2% (62.5% in the extended model). The accuracy
obtained by either the MFCC-based features, M and R are
already considerably higher—up to 73.8%—and the pitch
fluctuation measure F is the measure with the highest accu-
racy of 79.2% (73.4% in the extended model) among models

with a single feature. This suggests that pitch fluctuation is
the most salient feature of the vocals in our data.

Progressively combining features. It is also very clear
that the methods using more than one feature have an ad-
vantage: every additional feature increases the accuracy of
vocal detection. In particular, the R feature—MFCCs of
the re-synthesised melody line—significantly increases ac-
curacy when added to the feature set that already contains
the basic MFCC features M. This suggests that R and M
have characteristics that complement each other. More sur-
prising, perhaps, is the fact that the addition of the H feature,
which is a bad vocal classifier on its own, leads to a signifi-
cant improvement in accuracy.

Precision and Specificity. If we consider the accuracy
values alone it seems to be clear that the simple model is
better: it outperforms the extended model in every feature
setting. This is, however, not the conclusive answer. Accu-
racy tells only part of the story, and other measures such as
precision and specificity are helpful to examine different as-
pects of the methods’ performance. The recall measure does
not provide very useful information in this case, because—
unlike in usual information retrieval tasks—the vocal class
occupies more than half the database, see Figure 1. Hence,
it is very easy to make a trivial high-recall classifier by ran-
domly assigning a high proportion x of frames to the pos-
itive class. To illustrate this, we have added theoretical re-
sults for the trivial classifiers ‘rand-x’ to Table 1. A more
difficult problem, then, is to make a model that retains high
recall but also has high precision and specificity. Specificity
is the recall of the negative class, i.e. the ratio of non-vocal
frames that have been identified as such, and precision is
the ratio of truly vocal frames in what the automatic method
claims it is. The extended methods outperform each cor-
responding simple method in terms of precision and speci-
ficity. Figure 2b also shows that better results are achieved
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accuracy precision recall specificity

rand-0.500 0.500 0.654 0.500 0.500
rand-0.654 0.547 0.654 0.654 0.346
rand-1.000 0.654 0.654 1.000 0.000

simple H 0.682 0.678 0.979 0.120
simple R 0.736 0.736 0.930 0.371
simple M 0.738 0.739 0.926 0.383
simple F 0.792 0.811 0.891 0.607
simple FM 0.827 0.841 0.907 0.676
simple FMR 0.852 0.868 0.913 0.737
simple FMRH 0.872 0.887 0.921 0.778

ext. H 0.625 0.729 0.680 0.522
ext. R 0.708 0.799 0.740 0.649
ext. M 0.704 0.775 0.770 0.581
ext. F 0.744 0.822 0.777 0.682
ext. FM 0.798 0.856 0.830 0.736
ext. FMR 0.828 0.889 0.842 0.802
ext. FMRH 0.849 0.903 0.863 0.824

Table 1: Recognition measures for vocal activity.

by adding our novel audio features.
Segmentation accuracy. As we would expect from the

above results, the segmentation accuracy, too, improves with
increasing model complexity. The top segmentation accu-
racy of the top score of 0.724 is is approaching that of state-
of-the-art chord segmentation techniques (e.g. [10, p. 88],
0.782). For the four best feature combinations the simple
methods slightly outperform the extended ones, by 2 to 4
percentage points.

The best extended method, extended FMRH, has the high-
est precision (90.3%) and specificity (82.4%) values of all
tested algorithms, while retaining high accuracy and recall
(84.9% and 86.3%, respectively). In most situations this
would be the method of choice, though the respective sim-
ple method has a slight advantage in terms of segmentation
accuracy.

5.2 Instrumental Solo Activity

More difficult than detecting vocals is detecting the instru-
mental solos in polyphonic pop songs because they occupy
a smaller fraction of the total number of frames (12.6%, see
Figure 1). Hence, this situation is more similar to a tradi-
tional retrieval task (the desired positive class is rare), and
precision and recall are the relevant measures for this task.
Table 1 shows all results, and—for comparison—the theo-
rtical performance of the three classifiers ‘rand-x’ that ran-
domly assign a ratio of x frames to the solo class.

The method that includes all our novel audio features,
FMRH, achieves the highest accuracy of all methods. How-
ever, all methods show high accuracy and specificity; preci-
sion and recall show the great differences between the meth-
ods. Figure 3 illustrates the differences in precision of solo

H

R

M

F

FM

FMR

FMRH

precision

0.0 0.1 0.2 0.3 0.4 0.5 0.6

29.8%

46.5%

52.5%

22.4%

53.8%

57.7%

61.1%

Figure 3: Detection of instrumental solos: precision of the
extended methods.

accuracy precision recall specificity

rand-0.126 0.780 0.126 0.126 0.874
rand-0.500 0.500 0.126 0.500 0.500
rand-1.000 0.126 0.126 1.000 0.000

ext. H 0.829 0.298 0.262 0.911
ext. R 0.866 0.465 0.406 0.933
ext. M 0.877 0.525 0.290 0.962
ext. F 0.860 0.224 0.045 0.977
ext. FM 0.876 0.538 0.152 0.981
ext. FMR 0.889 0.577 0.445 0.953
ext. FMRH 0.898 0.611 0.519 0.952

Table 2: Recognition metrics for instrumental solo activity.

detection between the extended methods. The methods that
combine our novel features have a distinct advantage, with
the FMRH feature setting achieving the highest precision.
Note, however, that the precision ranking of the individual
features is different from the vocal case, where the F fea-
ture was best and the M and R features showed very similar
performance: the method using the R feature alone is now
substantially better than that of the simple MFCC feature M,
suggesting that using the isolated timbre of the solo melody
is a decisive advantage. The F feature alone shows low pre-
cision, which is expected because pitch fluctuation is high
for vocals as well as instrumental solos.

Considering that the precision of a random classifier in
this task is 12.6% the best performance of 61.1%—though
not ideal—makes it interesting for practical applications.
For example, in a situation where a TV editor requires an
expressive instrumental as a musical backdrop to the video
footage, a system implementing our method could substan-
tially reduce the amount of time needed to find suitable ex-
cerpts.

6. DISCUSSION AND FUTURE WORK

A capability of the extended methods we have not discussed
in this paper is to detect whether the singer in a song is
male or female. A simple classification method is to take
the more frequent of the two cases in a track as the track-
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wise estimate, resulting in a 70.1% track-wise accuracy. In
this context, we are currently investigating hierarchical time
series models that allow us to represent a global song model,
e.g. ‘female song’, ‘female-male duet’ or ‘instrumental’. In-
formal experiments have shown that this strategy can in-
crease overall accuracy, and as a side-effect it delivers a
song-level classification which can be used to distinguish
not only whether a track’s lead vocal is male or female, but
also whether the song has vocals at all.

7. CONCLUSIONS

We have proposed the usage of a set of four audio features
and the new task of detecting instrumental solos in poly-
phonic audio recordings of popular music. Among the four
proposed audio features three are based on a prior transcrip-
tion of the predominant melody line, and have not been used
in the context of vocal/instrumental activity detection. We
conducted 14 different experiments with 7 feature combina-
tions and two different SVM-HMM models. Training and
testing was done using 5-fold cross-validation on a set of
102 popular music tracks. Our results demonstrate the ben-
efit of combining the four proposed features. The best per-
formance for vocal detection is achieved by using all four
features, leading to a top accuracy of 87.2% and a satisfac-
tory segmentation performance of 72.4%. The detection of
instrumental solos equally benefits from the combination of
all features. Accuracy is also high (89.8%), but we argue
that the main improvement through the features can be seen
in the increase in precision to 61.1%. With this paper we
also release to the public the annotations we used for train-
ing and testing. The annotations offer not only vocal/non-
vocal labels, but also distinguish between female and male
singers, and different solo instruments.

This work was supported in part by CrestMuse, CREST,
JST. Further thanks to Queen Mary University of London
and Last.fm for their support.
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ABSTRACT

In this work we study the problem of automatic musical in-

strument recognition from entire pieces of music. In partic-

ular, we present and evaluate 4 different methods to select,

from an unknown piece of music, relevant excerpts in terms

of instrumentation, on top of which instrument recognition

techniques are applied to infer the labels. Since the desired

information is assumed to be redundant (we may extract just

a few labels from a thousands of audio frames) we examine

the recognition performance, the amount of data used for

processing, and their possible correlation. Experimental re-

sults on a collection of Western music pieces reveal state-of-

the-art performance in instrument recognition together with

a great reduction of the required input data. However, we

also observe a performance ceiling with the currently ap-

plied instrument recognition method.

1. INTRODUCTION

Content-based Music Information Retrieval (MIR) aims at

automatically extracting higher-level concepts from music

data in order to enhance methods for an intelligent and user-

friendly management of music collections. Here, informa-

tion about the instrumentation plays a fundamental role in

the semantic description of a music piece. Given the sizes

of nowadays music archives, typical MIR applications such

as indexing or retrieval demand for algorithms with low or

moderate computational load. However, related literature in

the field of automatic musical instrument recognition from

polyphonies mostly concentrated on developing discrimi-

nation strategies, while disregarding aspects related to the

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2011 International Society for Music Information Retrieval.

computational complexity of the algorithms. Therefore,

many approaches towards musical instrument recognition

are costly and were designed for simplified test scenarios

(e.g. [7, 8]). Furthermore, global properties of the music re-

lated to the instrumentation, which can help to reduce the

amount of data to analyse and improve recognition robust-

ness, were either only partially used or completely neglected

(e.g. [1,9,10]). Moreover, most of the works incorporate re-

strictions such as reduced number of instruments, aseptic or

limited data, and/or other a priori assumptions (e.g. [3, 6]).

In general, the auditory scene produced by a musical com-

position can be regarded as a multiple source environment,

where the different sound sources – the musical instruments

– are temporarily active, while often recurring along the

piece. We therefore expect that the instrumentation’s tem-

poral evolution of a given music piece shows a repetitive

character, so that the information related to the individual

sources becomes redundant (we may extract a few labels

from a thousands of audio frames). This suggests that, for

automatic recognition systems, analysing only a fraction of

the data is enough to extract the available information.

Thereby the overall computational load of such algorithms

is reduced which enables the implementation of fast recog-

nition systems, indispensable for analysing big music col-

lections. Moreover, this so-obtained data reduction can fur-

ther be exploited by any other MIR related algorithm, e.g.

music visualisation or summarisation.

In the present work we study the effect of data reduc-

tion on instrument recognition performance from entire mu-

sic pieces for real world applications, e.g. music collection

indexing. We thereby address two of the above-identified

aspects lacking in the related literature, namely the devel-

opment of both robust and efficient methods for automatic

instrument recognition. In particular, we introduce and com-

pare several track-level approaches, i.e. aimed to roughly

assign labels to a whole track, which pre-process a given

music piece to output a set of segments. Labels are then in-

ferred from these segments using our previously presented
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Figure 1. Graphical illustration of the label inference.

recognition method [5]. We further show that by applying

this methodology we can significantly reduce the amount of

data needed for analysis, while maintaining high recogni-

tion performance. In doing so we explore the redundancy of

the information along a music track, and study the influence

of locally obtained data on recognition, i.e. how much data

needs to be extracted from which part of the track to obtain

a sufficient description of its instrumentation.

Since our focus lies on developing approaches for real

world applications, e.g. music collection indexing, we do

not impose any restrictions on the input data, hence evaluat-

ing our approaches only on music pieces taken from real

recordings. Furthermore, all information used in the la-

belling process is directly taken from the mixture signal with-

out applying a priori information.

Below, we first present the basic methodology to extract

instrumental labels from an unknown musical excerpt

of arbitrary length (Sec. 2). We then give details about the

different approaches to process entire pieces of music

(Sec. 3), which is followed by a description of the data used

in the experiments (Sec. 4). In Sec. 5 we define the evalua-

tion metrics and present the obtained results. After a discus-

sion, Sec. 6 concludes this article.

2. LABEL INFERENCE

Here we describe the basic process of extracting instrumen-

tal labels given an unknown audio excerpt of arbitrary length.

First, the method sequentially applies previously trained pre-

dominant instrument classifiers to the audio. The resulting

frame series is then analysed to extract the labels (Fig. 1).

2.1 Classification

To extract information about musical instruments from a

short section of the audio signal we applied parts of the

work previously presented in [4]. That is, our method uses

statistical models of predominant musical instruments to es-

timate the presence of both pitched and percussive instru-

ments for a 3-seconds excerpt of a polyphonic mixture sig-

nal. In particular, we applied the support vector machine

(SVM) model 1 for 11 pitched instruments (Cello, Clarinet,

1 We used the libSVM implementation, available at http://www.
csie.ntu.edu.tw/˜cjlin/libsvm/.

Flute, acoustic and electric Guitar, Hammond Organ, Pi-

ano, Saxophone, Trumpet, Violin, and singing Voice) as de-

veloped in [4] (“multiclass SVM” in Fig. 1), and a sepa-

rate model for estimating the presence of the drumkit (“bi-

nary SVM” in Fig. 1). Both SVMs output probabilistic es-

timates, i.e. a real value between 0 and 1, for each of the

target classes. The models were trained with automatically

pre-selected low-level audio features, describing the spectral

and pitch related properties of the signal 2 , extracted from

proper training data. In particular, the features were com-

puted frame-wise in the applied 3 second window, using a

frame size of 46 ms with 50% overlap, and integrated over

time via mean and variance statistics of the instantaneous

and first difference values.

The training data itself consisted of 3 second excerpts

containing predominant pitched target instruments, taken

from more than 2,000 – presumably polytimbral – music

recordings [4]. Besides for training the pitched instruments

model, this collection was also annotated according to the

presence of the drumkit, i.e. labels drums and no-drums, and

used for constructing the percussive classifier.

2.2 Labelling

To extract labels of an audio signal of arbitrary length, the

method first sequentially applies the above-described clas-

sifiers, using a hop size of 0.5 sec. The temporal behaviour

of the obtained probabilistic time series is then exploited

for label inference. Since the output of the pitched and the

percussive model is merged (Fig. 1), we developed separate

approaches corresponding to each of the two models for ex-

tracting the desired labels.

2.2.1 Percussive Instruments

First, a decision boundary of 0.5 is applied to binarize each

prediction of the classifier. Then, a majority vote among all

so-obtained binary decisions of the analysed signal is per-

formed to indicate the target label. The corresponding con-

fidence value is set to the relative amount of positive binary

decisions.

2.2.2 Pitched Instruments

The method first uses the mean values of each instrument’s

probabilistic curve along the analysed audio to determine

those instruments for label analysis. Thereby a threshold θ1
is applied to these mean values; if all of them fall below

the threshold, the whole audio under analysis is skipped and

not labelled at all, indicating a potential confusion due to

unknown or heavily overlapped instruments. If approved,

a second threshold θ2 is applied to the mean values; if an

2 A complete list of all applied audio features can be accessed
under http://mtg.upf.edu/system/files/publications/

ismir11_ffuhrmann_sup.pdf.
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instrument falls below this threshold, it is regarded as inac-

tive and not used in the further analysis. The probabilistic

curves of the remaining instruments are then searched for

sections, where a single instrument predominates the mix-

ture, i.e. it holds the highest probability value among all in-

struments for a certain minimal amount of time. If such a

section is found, the corresponding instrument is added to

the list of labels for the analysed audio, along with a confi-

dence value as defined by the section’s length relative to the

overall length of the audio 3 . This process is repeated for all

determined active instrument. Finally, a label threshold θ3
is applied to discard unreliable tags. Fig. 2 exemplifies the

labelling process for a 30 second excerpt.
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Figure 2. An example of the labelling method for pitched

instruments. The main figure shows the probabilistic es-

timates for sources A-E, the right panel the mean values

together with the thresholds used for instrument filtering.

Since E is discarded as its mean value falls below θ2, the

curves A-D are scanned for sections, where a single instru-

ments predominates. Depending on the parameter for the

minimal length of these sections, up to three different in-

struments can be detected here (a,c,d → A,C,B), whereas

sections containing instrument confusions are not used for

labelling (b).

3. TRACK-LEVEL APPROACHES

In this section we present 4 different approaches to process

and label an entire piece of music. Since the instrumenta-

tion and its temporal evolution of a piece of music usually

follows a clear structural scheme, we expect, inside a given

music track, a certain degree of repetitiveness of its different

instrumentations. This property of music and the resulting

redundancy is exploited by the described approaches to re-

3 For multiple occurrences of the same instrument the respective confi-
dence values are summed.

C3C2C1

ALL

30SEC

NSEG

CLU

Figure 3. Illustration of the presented track-level ap-

proaches; the green filled frames denote the respective data

used for labelling. Segmentation (red) and clustering (blue)

are indicated for the CLU method, while NSEG applies a

value of n = 5. See text for details.

duce the amount of data to process. We then apply the label

inference method described in Sec. 2 on their respective out-

put and evaluate the algorithms in terms of labelling perfor-

mance and the amount of used data. In short, the presented

approaches are accounting – some of them more than others

– for the time-varying character of instrumentation inside a

music piece. Their output consist of a set of segments which

are then used to infer the instrumental labels for the given

music track. Fig. 3 depicts the underlying ideas.

3.1 All-frame processing (ALL)

Probably the most straightforward approach given the above-

described labelling methodology. By processing all frames

we automatically account for the time-varying character of

musical instruments via a global analysis of the track. How-

ever, no data reduction is performed. Since this approach

uses all data available, it acts as a kind of upper baseline both

in terms of recognition performance and amount of data pro-

cessed, which all other methods using less data compete

with.

3.2 30 seconds (30SEC)

This widely used approach in MIR assumes that by reduc-

ing the data to 30 sec of audio most of the semantic infor-

mation is maintained. Many genre, mood, or artist classifi-

cation systems use an excerpt of this length to represent an

entire music track (e.g. [11]). The process can be regarded

as an extrapolation of the locally obtained information to

the global scope, i.e. the entire piece of music. Since the

aforementioned concepts are rather stable across one sin-

gle piece, the data reduction does not affect the significance

of the obtained results. However, instrumentations usually

change with time, so that the targeted information is inade-

quately represented by this data amount. In our experiments

we extracted the data from 0 to 30 sec of the track.
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3.3 Segment sampling (NSEG)

Here, we obtain excerpts by uniformly sampling the track

to incorporate the time-varying characteristics of instrumen-

tation. This enables a local extraction of the information

which is combined to a global estimate of the instrumental

labels. In particular we extract n equal-distant excerpts of

10 seconds length from the track (for n equals 1 or 2 a sin-

gle segment from the beginning, or one segment from the

beginning and the end of the music track is taken, respec-

tively). The labels inferred from each of the segments are

then merged, where small values of n lead to a great data

reduction while still considering the instrumentation’s time-

varying character. The parameter n is kept variable for the

experiments conducted in Sec. 5.

3.4 Cluster representation (CLU)

Certainly the most elaborated approach from the perceptual

point-of-view; a given piece of music is represented with a

cluster structure where each cluster corresponds to a differ-

ent instrumentation. This approach explicitly uses an esti-

mate of the global distribution of the musical instruments

to locally infer the labels from a reduced set of the data by

exploiting redundancies of the instrumentations inside the

piece of music. In particular, it applies unsupervised seg-

mentation and clustering algorithms to locate the different

instrumentations and their repetitions. At the end, only one

segment per cluster is taken for further analysis. Hence this

approach is directly exploiting repetitions in the instrumen-

tation to reduce the amount of data to process, while the

local continuity of the individual instruments is preserved to

guarantee a maximum in recognition performance.

3.4.1 Segmentation

Since instrumentation is closely related to timbre, a timbral

representation of the track is processed to find local changes

therein, applying an unsupervised segmentation algorithm

based on the Bayesian Information Criterion (BIC) [2]. To

represent timbre the approach uses 13 frame-wise extracted

Mel Frequency Cepstral Coefficients (MFCCs).

3.4.2 Clustering

Here, an agglomerative clustering step builds a hierarchical

tree (i.e. a so-called dendrogram) on the pair-wise similar-

ities of all generated segments. The segments are merged

iteratively to form the tree, where a linkage method fur-

ther measures proximities between groups of segments at

higher levels [12]. The final clusters are then found by cut-

ting the tree according to an inconsistency coefficient, which

measures the compactness of each link in the tree. Fur-

thermore, to estimate the pair-wise segment similarities, we

model each segment as a single Gaussian distribution of the

raw MFCC frames with diagonal covariance matrix and cal-

culate the symmetric Kullback-Leibler divergence (KL) be-

tween pairs of segments.

Finally, the longest segment of each resulting cluster is

passed to the label inference algorithm. The predictions

from all segments are then merged to form the set of labels

for the track under analysis.

4. DATA

For our experiments we used a data corpus consisting of 220

music pieces taken from various genres of Western music.

In these tracks, all perceptually audible instruments were an-

notated manually along with their start and end times. Since

no limitations in the vocabulary size were imposed to the

human annotators, this evaluation data includes, additional

to the 12 modelled classes, instruments which are not mod-

elled by the classifier. Moreover, if the annotator could not

recognize a certain instrument’s sound, the label unknown

was used 4 .

An analysis of the set of labels used in the annotations

revealed 28 different instrumental categories, at which the

label unknown was the third-most frequently used, directly

after the labels bass and drums. It should be noted that none

of the tracks used for training the instrumental models was

used in this evaluation collection.

5. GENERAL RESULTS

5.1 Metrics

To estimate the labelling performance we regarded the prob-

lem as multi-class, multi-label classification. That is, each

instance to evaluate can hold an arbitrary number of unique

labels of a given dictionary. Given a collection of music

tracks X = {xi}, i = 1 . . . N , with N items, we define,

respectively, Ŷ = {ŷi}, i = 1 . . . N , and Ỹ = {ỹi}, i =
1 . . . N , the set of ground truth and predicted labels for each

xi. Together with the label dictionary L = {li}, i = 1 . . . M ,

we define the weighted precision and recall metrics,

P =
1∑

l,i ỹl,i

∑
l,i

ỹl,i · ŷl,i, R =
1∑

l,i ŷl,i

∑
l,i

ỹl,i · ŷl,i,

(1)

where ŷl,i (ỹl,i) represents a boolean variable indicating

the presence or absence of the label l in the annotation (gen-

erated instrumental tags) of track i. Additionally, we define

an F-measure to estimate the overall labelling performance,

4 A complete list of all tracks contained in the evaluation dataset,
along with the annotated instruments and genre labels, can be accessed
via http://mtg.upf.edu/system/files/publications/

ismir11_ffuhrmann_sup.pdf.
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F =
2
∑

l,i ỹl,i · ŷl,i∑
l,i ỹl,i +

∑
l,i ŷl,i

. (2)

5.2 Results

In order to provide a robust estimate of the methods’ per-

formance with respect to the parameters to evaluate, we per-

formed a 3-fold Cross Validation (CV). For each turn we

used the data of 2 folds for estimating the optimal parame-

ter settings and subsequently tested on the remaining fold.

We then obtained mean values and corresponding standard

deviations by averaging the evaluation results of the respec-

tive predictions of all three runs 5 .

The upper panel of Table 1 contains the results (mean

values) of the CV obtained for the studied algorithms. The

parameter n of the NSEG method was set to 3 and 6, gen-

erating systems processing 30 sec (3SEG – an equivalent

in terms of data size to the 30SEC method) and 1 min of

audio data (6SEG). Additionally, figures regarding the rela-

tive amount of data used for label inference are shown in the

lower panel (relative with respect to the all-frame processing

algorithm ALL). A lower bound was generated by drawing

each label from its respective prior binomial distribution, in-

ferred from all tracks of the collection, averaging the result-

ing performance over 100 independent runs (PRIOR).

Table 1. Precision, recall, and F measures of the studied

approaches together with the relative amount of data used

for label inference (data). The asterisk indicates average

values over 100 independent runs.

PRIOR* 30SEC 3SEG 6SEG CLU ALL

P 0.4 0.62 0.64 0.60 0.64 0.66

R 0.4 0.5 0.6 0.71 0.74 0.73

F 0.4 0.55 0.62 0.65 0.69 0.69

data – 0.11 0.11 0.25 0.66 1

The figures presented in Table 1 show that all considered

approaches are outperforming the prior baseline PRIOR, op-

erating well above a knowledge-informed chance level.

Moreover, two clear dependencies of the resulting perfor-

mance can be observed; first, a correlation with the absolute

amount of data processed (e.g. 3SEG → 6SEG → ALL), and

second, a dependency on the location where the information

is extracted (30SEC → 3SEG).

Comparing the sampling methods with the timbre analy-

sis of CLU we can see that the knowledge introduced by the

latter positively affects the recognition performance. Be-

sides the greater values of R and F, the precision P is re-

5 Parameter estimation itself was performed via a grid search procedure
over the relevant parameter space. For each of the studied approaches de-
scribed in Sec. 3 the parameters were evaluated separately to guarantee
maximal comparativeness of the respective results.

markable here, which holds the same value as for the 3SEG

method, although CLU processes 55 percent points more

data. The segmentation and clustering preserves the tem-

poral continuity of the instrumentation, therefore exhibiting

less data variability, ensuring the high value of the P metric.

The same local continuity of musical instruments otherwise

enforces the lower recall value in the 30SEC approach, in

comparison to the 3SEG method. However, with more anal-

ysed segments from different parts of the track, the variation

in the data increases. This affects the recall value R, result-

ing in a trade-off between the two aforementioned metrics.

Furthermore, the similar performance figures of the CLU

and ALL approaches suggest that there exists a minimal

amount of data from which all the extractable information

can be derived 6 . Hence more data will then not result in an

improvement of the labelling performance. The next section

will examine this phenomenon in more detail, in particular

by determining the minimum of audio data required to max-

imize labelling performance.

5.3 Scaling and computational aspects

The observations in the previous section suggest that there

seems to be a strong amount of repetitiveness present inside

a music piece. Additionally, many excerpts – even though

differing in instrumentation – produce the same label output

when processed with the used label inference method. To

quantify those effects we used the CLU and NSEG meth-

ods to process the entire piece under analysis, as both offer

a straightforward way to vary the amount of data used by

the label inference algorithm. In particular, we studied the

effect of an increasing amount of segments to process on

the labelling performance. In case of the NSEG method we

constantly increased the amount of segments used by the la-

bel inference, thus augmenting the method’s parameter n.

For the CLU method we sorted the clusters downwards by

the accumulated length of their respective segments, started

processing just the first one, and iteratively added the next

longest cluster. For both methods we then tracked the per-

formance figures as well as the amount of data used for in-

ference. Fig. 4 depicts both performance and amount of data

for the first 20 steps on the evaluation data (mean value of

CV outputs).

As can be seen from Fig. 4 the performance of both CLU

and NSEG systems stagnates at a certain amount of seg-

ments processed. Due to the different amount of data pro-

cessed, those values represent, respectively, 3 and 5 seg-

ments. Hence, incorporating global timbral structure, as im-

plemented by CLU, benefits labelling performance at the ex-

6 The small differences in P and R result from individual parameter set-
tings, estimated by the CV by determining the best performing configura-
tion in respect to the F metric, and can be compensated by manually choos-
ing proper values. However, the F metric would not be affected, since there
will always be a trade-off between P and R.
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Figure 4. Scaling properties of the studied algorithms.

Solid lines refer to the respective labelling performance in

terms of F, dashed ones show the respective data amount

used for label inference, relative to the maximum as pro-

duced by ALL. Mean values across CV-Folds are shown.

pense of algorithmic pre-processing. By preserving the con-

tinuity of musical instruments the method shows a slightly

superior performance compared to NSEG, which segment

extraction is unaware of any contextual properties. In terms

of the used data amount, NSEG is superior whilst process-

ing less than around 40% of the data (i.e. n ≤ 10), whereas

when processing more, CLU returns the better overall la-

belling performance. However, the results suggest that, on

average, a timbre-informed clustering does not result in a

significant increase in performance, thus it might be of ad-

vantage in specialized applications (e.g. working on a single

genre which exhibits clear recurrent structural sections).

Finally, the stagnation of labelling performance indicates

a kind-of “glass ceiling” that has been reached. It seems that

with the presented classification and labelling methodology

we are not able to extract more information about the instru-

mentation. Nevertheless, we can observe that predominant

instrumental information is highly redundant inside a given

Western piece of music from which 70% of the labels can be

obtained. Furthermore, this fact allows for a reduction of the

effective amount of data used for label inference of around

55%. Remarkably, the same factor of about 1/2 can also be

observed when comparing the number of different instru-

mentations to the overall number of segments in the ground

truth annotations of all files in the used music collection.

6. CONCLUSIONS

In this article we studied the problem of extracting labels

corresponding to the instrumentation from entire pieces of

music. We designed our approach to be applied in a real

world context, hence the presented methods work on any

piece of music, without imposing restrictions to the input

data. In particular we analysed different methods to pre-

process the entire tracks, studying the effect of data reduc-

tion on recognition performance. Evaluation on a dataset of

220 musical pieces showed that by using the best perform-

ing approach we are able to score a global F-measure of

0.69 while examining 12 musical instruments. On the other

hand, a proper preprocessing of the data allows for a reduc-

tion of the amount of data used for label inference of more

than 50% while the recognition performance is preserved.
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ABSTRACT

The decomposition of a monaural audio recording into mu-
sically meaningful sound sources or voices constitutes a fun-
damental problem in music information retrieval. In this
paper, we consider the task of separating a monaural piano
recording into two sound sources (or voices) that correspond
to the left hand and the right hand. Since in this scenario
the two sources share many physical properties, sound sep-
aration approaches identifying sources based on their spec-
tral envelope are hardly applicable. Instead, we propose a
score-informed approach, where explicit note events speci-
fied by the score are used to parameterize the spectrogram
of a given piano recording. This parameterization then al-
lows for constructing two spectrograms considering only the
notes of the left hand and the right hand, respectively. Fi-
nally, inversion of the two spectrograms yields the separa-
tion result. First experiments show that our approach, which
involves high-resolution music synchronization and para-
metric modeling techniques, yields good results for real-
world non-synthetic piano recordings.

1. INTRODUCTION

In recent years, techniques for the separation of musically
meaningful sound sources from monaural music recordings
have been applied to support many tasks in music infor-
mation retrieval. For example, by extracting the singing
voice, the bassline, or drum and instrument tracks, signif-
icant improvements have been reported for tasks such as in-
strument recognition [7], melody estimation [1], harmonic
analysis [10], or instrument equalization [9]. For the sepa-
ration, most approaches exploit specific spectral or tempo-
ral characteristics of the respective sound sources, for ex-
ample the broadband energy distribution of percussive ele-
ments [10] or the spectral properties unique to the human
vocal tract [1].
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Figure 1. Decomposition of a piano recording into two sound
sources corresponding to the left and right hand as specified by a
musical score. Shown are the first four measures of Chopin Op. 28
No. 15.

In this paper, we present an automated approach for the
decomposition of a monaural piano recording into sound
sources corresponding to the left and the right hand as speci-
fied by a score, see Figure 1. Played on the same instrument
and often being interleaved, the two sources share many
spectral properties. As a consequence, techniques that rely
on statistical differences between the sound sources are not
directly applicable. To make the separation process feasi-
ble, we exploit the fact that a musical score is available for
many pieces. We then use the explicitly given note events
of the score to approximate the spectrogram of the given
piano recording using a parametric model. Characterizing
which part of the spectrogram belongs to a given note event,
the model is then employed to decompose the spectrogram
into parts related to the left hand and to the right hand. As
an application, our goal is to extend the idea of an instru-
ment equalizer as presented in [9] to a voice equalizer that
can not only emphasize or attenuate whole instrument tracks
but also individual voices or even single notes played by the
same instrument. While we restrict the task in this paper
to the left/right hand scenario, our approach is sufficiently
general to isolate any kind of voice (or group of notes) that
is specified by a given score.

So far, score-informed sound separation has received
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only little attention in the literature. In [11], the authors
replace the pitch estimation step of a sound separation sys-
tem for stereo recordings with pitch information provided
by an aligned MIDI file. In [6], a score-informed sys-
tem for the elimination of the solo instrument from poly-
phonic audio recordings is presented. For the description
of the spectral envelope of an instrument, the approach re-
lies on pretrained information from a monophonic instru-
ment database. In [4], score information is used as prior
information in a separation system based on probabilistic
latent component analysis (PLCA). This approach is in [8]
compared to a score-informed approach based on paramet-
ric atoms. In [9], a score-informed system for the extraction
of individual instrument tracks is proposed. To counterbal-
ance their harmonic and inharmonic submodels, the authors
have to incorporate complex regulation terms into their ap-
proach. Furthermore, the authors presuppose that, for each
audio recording, a perfectly aligned MIDI file is available,
which is not a realistic assumption.

In this paper, our main contribution is to extend the idea
of an instrument equalizer to a voice equalizer that does
not rely on statistical properties of the sound sources. As
a further contribution, we do no presuppose the existence of
prealigned MIDI files. Instead, we revert to high-resolution
music synchronization techniques [3] to automatically align
an audio recording to a corresponding musical score. Using
the aligned score as an initialization, we follow the paramet-
ric model paradigm [2, 6, 7, 9] to obtain a note-wise param-
eterization of the spectrogram. As another contribution we
show how separation masks that allow for a construction of
voice-specific spectrograms can be derived from our model.
Finally, applying a Griffin-Lim based inversion [5] to the
separated spectrograms yields the final separation result.

The remainder of this paper is organized as follows. In
Section 2, we introduce our parametric spectrogram model.
Then, in Section 3, we describe how our model is employed
to decompose a piano recording into two voices that cor-
respond to the left hand and the right hand. In Section 4,
we report on our systematic experiments using real-world
as well as synthetic piano recordings. Conclusions and
prospects on future work are given in Section 5. Further
related work is discussed in the respective sections.

2. PARAMETRIC MODEL

To describe an audio recording of a piece of music using
a parametric model, one has to consider many musical and
acoustical aspects [7, 9]. For example, parameters are re-
quired to encode the pitch as well as the onset position and
duration of note events. Further parameters might encode
tuning aspects, the timbre of specific instruments, or ampli-
tude progressions. In this section, we describe our model
and show how its parameters can be estimated by an itera-
tive method.
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Figure 2. Illustration of the first iteration of our parameter estima-
tion procedure continuing the example shown in Figure 1 (shown
section corresponds to the first measure).(a): Audio spectrogram
Y to be approximated.(b)-(e) Model spectrogramYλ after cer-
tain parameters are estimated.(b): ParameterS is initialized with
MIDI note events.(c): Note events inS are synchronized with the
audio recording.(d): Activity α and tuning parameterτ are esti-
mated.(e): Partials’ energy distribution parameterγ is estimated.

2.1 Parametric Spectrogram Model

Let X ∈ C
K×N denote the spectrogram andY = |X| the

magnitude spectrogram of a given music recording. Fur-
thermore, letS := {µs | s ∈ [1 : S]} denote a set of
note events as specified by a MIDI file representing a mu-
sical score. Here, each note event is modelled as a triple
µs = (ps, ts, ds), with ps encoding the MIDI pitch,ts the
onset position andds the duration of the note event. Our
strategy is to approximateY by means of a model spectro-
gramY S

λ , whereλ denotes a set of free parameters repre-
senting acoustical properties of the note events. Based on
the note event setS, the model spectrogramY S

λ will be con-
structed as a superposition of note-event spectrogramsY s

λ ,
s ∈ [1 : S]. More precisely, we defineY S

λ at frequency bin
k ∈ [1 : K] and time framen ∈ [1 : N ] as

Y S
λ (k, n) :=

∑
µs∈S

Y s
λ (k, n), (1)
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where eachY s
λ denotes the part ofY S

λ that is attributed to
µs. EachY s

λ consists of a component describing the ampli-
tude or activity over time and a component describing the
spectral envelope of a note event. More precisely, we define

Y s
λ (k, n) := αs(n) · ϕτ,γ(ωk, ps), (2)

whereωk denotes the frequency in Hertz associated with the
k-th frequency bin. Furthermore,αs ∈ R

N
≥0 encodes the ac-

tivity of the s-th note event. Here, we setαs(n) := 0, if the
time position associated with framen lies inR\ [ts, ts +ds].
The spectral envelope associated with a note event is de-
scribed using a functionϕτ,γ : R × [1 : P ] → R≥0, where
[1 : P ] with P =127 denotes the set of MIDI pitches. More
precisely, to describe the frequency and energy distribution
of the first L partials of a specific note event with MIDI
pitch p ∈ [1 : P ], the functionϕτ,γ depends on a parame-
ter τ ∈ [−0.5, 0.5]P related to the tuning and a parameter
γ ∈ [0, 1]L×P related to the energy distribution over theL
partials. We define for a frequencyω given in Hertz the en-
velope function

ϕτ,γ(ω, p) :=
∑

ℓ∈[1:L]

γℓ,p · κ(ω − ℓ · f(p + τp)), (3)

where the functionκ : R → R≥0 is a suitably chosen Gaus-
sian centered at zero, which is used to describe the shape of
a partial in frequency direction, see Figure 3. Furthermore,
f : R → R≥0 defined byf(p) := 2(p−69)/12 · 440 maps the
pitch to the frequency scale. To account for non-standard
tunings, we use the parameterτp to shift the fundamental
frequency upwards or downwards by up to half a semitone.
Finally, λ := (α, τ, γ) denotes the set of free parameters
with α := {αs | s ∈ [1 : S]}. The number of free param-
eters is kept low since the parametersτ andγ only depend
on the pitch but not on the individual note events given by
S. Here, a low number allows for an efficient parameter es-
timation process as described below. Furthermore, sharing
the parameters across the note events prevents model over-
fitting.

Now, finding a meaningful parameterization ofY can be
formulated as the following optimization task:

λ∗ = argmin
λ

‖Y − Y S
λ ‖F , (4)

where‖·‖F denotes the Frobenius norm. In the following,
we illustrate the individual steps in our parameter estima-
tion procedure in Figure 2, where a given audio spectrogram
(Figure 2a) is approximated by our model (Figure 2b-2e).

2.2 Initialization and Adaption of Note Timing
Parameters

To initialize our model, we exploit the available MIDI in-
formation represented byS. For thes-th note eventµs =
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Figure 3. Illustration of the spectral envelope functionϕτ,γ(ω, p)
for p = 60 (middle C),τ = 0 and some example values for pa-
rametersγ.

(ps, ts, ds), we setαs(n) := 1 if the time position associ-
ated with framen lies in [ts, ts + ds] andαs(n) := 0 other-
wise. Furthermore, we setτp := 0, γ1,p := 1 andγℓ,p := 0
for p ∈ [1 : P ], ℓ ∈ [2 : L]. An example model spectrogram
Y S

λ after the initialization is given in Figure 2b.
Next, we need to adapt and refine the model parameters

to approximate the given audio spectrogram as accurately
as possible. This parameter adaption is simplified when the
MIDI file is assumed to be perfectly aligned to the audio
recording as in [9]. However, in most practical scenarios
such a MIDI file is not available. Therefore, in our ap-
proach, we employ a high resolution music synchronization
approach as described in [3] to adapt the onset positions
of the note events setS. Based on Dynamic Time Warp-
ing (DTW) and chroma features, the approach also incor-
porates onset-based features to yield a high alignment accu-
racy. Using the resulting alignment, we determine for each
note event the corresponding position in the audio record-
ing and update the onset positions and durations inS ac-
cordingly. After the synchronization, the note event setS
remains unchanged during all further parameter estimation
steps. Figure 2c shows an example model spectrogram after
the synchronization step.

2.3 Estimation of Model Parameters

To estimate the parameters inλ, we look for (α, τ, γ) that
minimize the functiond(α, τ, γ) := ‖Y − Y S

(α,τ,γ)‖F , thus
minimizing the distance between the audio and the model
spectrogram. Additionally, we need to consider range con-
straints for the parameters. For example,τ is required to be
an element of[−0.5, 0.5]P . To approximatively solve this
constraint optimization problem, we employ a slightly mod-
ified version of approach exerted in [2]. In summary, this
method works iteratively by fixing two parameters and by
minimizingd with regard to the third one using a trust region
based interior-points approach. For example, to get a better
estimate forα, we fix τ andγ and minimized(·, τ, γ). This
process is repeated until convergence similar to the well-
known expectation-maximization algorithm. Figures 2d and
2e illustrate the first iteration of our parameter estimation.
Here, Figure 2d shows the model spectrogramY S

λ after the
estimation of the tuning parameterτ and the activity param-
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Figure 4. Illustration of our voice separation process continuing the example shownin Figure 1. (a) Model spectrogramY S

λ after the
parameter estimation.(b) Derived model spectrogramsY L

λ andY R

λ corresponding to the notes of the left and the right hand.(c) Separation
masksML andMR. (d) Estimated magnitude spectrogramsŶ L andŶ R. (e)Reconstructed audio signalsx̂L andx̂R.

eterα. Figure 2e showsY S
λ after the estimation of the par-

tials’ energy distribution parameterγ.

3. VOICE SEPARATION

After the parameter estimation,Y S
λ yields a note-wise para-

metric approximation ofY . In a next step, we employ infor-
mation derived from the model to decompose the original
audio spectrogram into separate channels or voices. To this
end, we exploit thatY S

λ is a compound of note-event spec-
trogramsY s

λ . With T ⊂ S, we defineY T
λ as

Y T
λ (k, n) :=

∑
µs∈T

Y s
λ (k, n). (5)

ThenY T
λ approximates the part ofY that can be attributed

to the note events inT . One way to yield an audible separa-
tion result could be to apply a spectrogram inversion directly
to Y T

λ . However, to yield an overall robust approximation
result our model does not attempt to capture every possi-
ble spectral nuance inY . Therefore, an audio recording
deduced directly fromY T

λ would miss these nuances and
would consequently sound rather unnatural. Instead, we re-
vert to the original spectrogram again and useY T

λ only to
extract suitable parts ofY . To this end, we derive asepa-
ration mask MT ∈ [0, 1]K×N from the model which en-
codes how strongly each entry inY should be attributed to
T . More precisely, we define

MT :=
Y T

λ

Y S
λ + ε

, (6)

where the division is understood entrywise. The small con-
stantε > 0 is used to avoid a potential division by zero.
Furthermore,ε prevents that relatively small values inY T

λ

lead to large masking values, which would not be justified
by the model. For our experiments, we setε = 10−2.

For the separation, we applyMT to a magnitude spec-
trogram via

Ŷ T := MT ◦ Y, (7)

where◦ denotes entrywise multiplication (Hadamard prod-
uct). The resultinĝY T is referred to asestimated magnitude
spectrogram. Here, using a mask for the separation allows
for preserving most spectral nuances of the original audio.
In a final step, we apply a spectrogram inversion to yield an
audible separation result. Here, a commonly used approach
is to combineŶ T with the phase information of the origi-
nal spectrogramX in a first step. Then, an inverse FFT in
combination with an overlap-add technique is applied to the
resulting spectrogram [7]. However, this usually leads to
clicking and ringing artifacts in the resulting audio record-
ing. Therefore, we apply a spectrogram inversion approach
originally proposed by Griffin and Lim in [5]. The method
attenuates the inversion artifacts by iteratively modifying the
original phase information. The resultingx̂T constitutes our
final separation result referred to asreconstructed audio sig-
nal (relative to T ).

Next, we transfer these techniques to our left/right hand
scenario. Each step of the full separation process is illus-
trated by Figure 4. Firstly, we assume that the score is
partitioned intoS = L ∪̇R, whereL corresponds to the
note events of the left hand andR to the note events of the
right hand. Starting with the model spectrogramY S

λ (Fig-
ure 4a) we derive the model spectrogramsY L

λ andY R
λ using

Eqn. (5) (Figure 4b) and then the two masksML andMR

using Eqn. (6) (Figure 4c). Applying the two masks to the
original audio spectrogramY , we obtain the estimated mag-
nitude spectrogramŝY L and Ŷ R (Figure 4d). Finally, ap-
plying the Griffin-Lim based spectrogram inversion yields
the reconstructed audio signalsx̂L andx̂R (Figure 4e).

4. EXPERIMENTS

In this section, we report on systematically conducted ex-
periments to illustrate the potential of our method. To this
end, we created a database consisting of seven representa-
tive pieces from the Western classical music repertoire, see
Table 1. Using only freely available audio and score data al-
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Composer Piece MIDI Audio 1 Audio 2 Identifier
Bach BWV875-01 MUT Synthetic SMD ‘Bach875’
Beethoven Op031No2-01 MUT Synthetic SMD ‘Beet31No2’
Beethoven Op111-01 MUT Synthetic EA ‘BeetOp111’
Chopin Op028-01 MUT Synthetic SMD ‘Chop28-01’
Chopin Op028-04 MUT Synthetic SMD ‘Chop28-04’
Chopin Op028-15 MUT Synthetic SMD ‘Chop28-15’
Chopin Op064No1 MUT Synthetic EA ‘Chop64No1’
Chopin Op066 MUT Synthetic SMD ‘Chop66’

Table 1. Pieces and audio recordings (with identifier) used in our
experiments.

lows for a straightforward replication of our experiments.
Here, we used uninterpreted score-like MIDI files from
the Mutopia Project1 (MUT), high-quality audio recordings
from the Saarland Music Database2 (SMD) as well as dig-
itized versions of historical gramophone and vinyl record-
ings from the European Archive3 (EA).

In a first step, we indicate the quality of our approach
quantitatively using synthetic audio data. To this end, we
used the Mutopia MIDI files to create two additional MIDI
files for each piece using only the notes of the left and the
right hand, respectively. Using a wave table synthesizer,
we then generated audio recordings from these MIDI files
which are used as ground truth separation results in the fol-
lowing experiment. We denote the corresponding magni-
tude spectrograms byY L and Y R, respectively. For our
evaluation we use a quality measure based on the signal-to-
noise ratio (SNR)4 . More precisely, to compare a reference
magnitude spectrogramYR ∈ R

K×N
≥0 to an approximation

YA ∈ R
K×N
≥0 we define

SNR(YR, YA) := 10 · log10

∑
k,n YR(k, n)2∑

k,n (YR(k, n)− YA(k, n))2
.

The second and third column of Table 2 show SNR val-
ues for all pieces, where the ground truth is compared to
the estimated spectrogram for the left and the right hand.
For example, the left hand SNR for ‘Chop28-15’ is17.79
whereas the right hand SNR is13.35. The reason the SNR
being higher for the left hand than for the right hand is that
the left hand is already dominating the mixture in terms of
overall loudness. Therefore, the left hand segregation is per
se easier compared the the right hand segregation. To indi-
cate which hand is dominating in a recording, we addition-
ally give SNR values comparing the ground truth magnitude
spectrogramsY L andY R to the mixture magnitude spectro-
gramY , see column six and seven of Table 2. For example
for ‘Chop28-15’,SNR(Y L, Y ) =3.48 is much higher com-
pared toSNR(Y R, Y ) =−2.47 thus revealing the left hand
dominance.

1 http://www.mutopiaproject.org
2 http://www.mpi-inf.mpg.de/resources/SMD/
3 http://www.europarchive.org
4 Even though SNR values are often not perceptually meaningful, they

at least give some tendencies on the quality of separation results.

Identifier SNR SNR SNR SNR SNR SNR
(Y L,Ŷ L) (Y R,Ŷ R) (Y L,Ŷ L) (Y R,Ŷ R) (Y L,Y ) (Y R,Y )

prealigned distorted
Bach875 11.24 12.97 11.17 12.89 -1.99 3.03
Beet31No2 12.65 10.38 12.47 10.23 1.24 -0.09
BeetOp111 13.21 12.26 12.92 11.99 0.16 0.97
Chop28-01 10.52 13.96 10.43 13.84 -3.38 4.48
Chop28-04 17.63 10.48 17.58 10.45 8.65 -7.55
Chop28-15 17.79 13.35 17.56 13.18 3.48 -2.47
Chop64No1 12.93 11.86 12.60 11.55 -0.06 1.31
Chop66 11.61 11.17 11.46 11.03 -0.41 2.01
Average 13.45 12.05 13.27 11.90 0.96 0.21

Table 2. Experimental results using ground truth data consisting
of synthesized versions of the pieces in our database.

Using synthetic data, the audio recordings are already
perfectly aligned to the MIDI files. To further evaluate the
influence of the music synchronization step, we randomly
distorted the MIDI files by splitting them into20 segments
of equal length and by stretching or compressing each seg-
ment by a random factor within an allowed distortion range
(in our experiments we used a range of±50%). The results
for these distorted MIDI files are given in column four and
five of Table 2. Here, the left hand SNR for ‘Chop28-15’
decreases only moderately from17.79 (prealigned MIDI)
to 17.56 (distorted MIDI), and from13.35 to 13.18 for the
right hand. Similarly, the average SNR also decreases mod-
erately from13.45 to 13.27 for the left hand and from12.05
to11.90 for the right hand, which indicates that our synchro-
nization works robustly in these cases. The situation in real
world scenarios becomes more difficult, since here the note
events of the given MIDI may not correspond one-to-one to
the played note events of a specific recording. An example
will be discussed in the next paragraph, see also Figure 5.

As mentioned before, signal-to-noise ratios and similar
measures cannot capture the perceptual separation quality.
Therefore, to give a realistic and perceptually meaningful
impression of the separation quality, we additionally pro-
vide a website5 with audible separation results as well as
visualizations illustrating the intermediate steps in ourpro-
cedure. Here, we only used real, non-synthetic audio record-
ings from the SMD and EA databases to illustrate the per-
formance of our approach in real world scenarios. Lis-
tening to these examples does not only allow to quickly
get an intuition of the method’s properties but also to effi-
ciently locate and analyze local artifacts and separation er-
rors. For example, Figure 5 illustrates the separation pro-
cess for ‘BeetOp111’ using an interpretation by Egon Petri
(European Archive). As a historical recording, the spectro-
gram of this recording (Figure 5c) is rather noisy and reveals
some artifacts typical for vinyl recordings such as rumbling
and cranking glitches. Despite these artifacts, our model
approximates the audio spectrogram well (w.r.t. to the eu-
clidean norm) in most areas (Figure 5d). Also the resulting

5 http://www.mpi-inf.mpg.de/resources/MIR/
2011-ISMIR-VoiceSeparation/
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Figure 5. Illustration of the separation process for ‘BeetOp111’.
(a): Score corresponding to the first two measures.(b): MIDI
representation (Mutopia Project).(c): Spectrogram of an interpre-
tation by Petri (European Archive).(d): Model spectrogram after
parameter estimation.(e): Separation maskML. (f): Estimated
magnitude spectrogram̂Y L. The area corresponding to the funda-
mental frequency of the trills in measure one is indicated using a
green rectangle.

separation results are plausible, with one local exception.
Listening to the separation results reveals that the trillsto-
wards the end of the first measure were assigned to the left
instead of the right hand. Investigating the underlying rea-
sons shows that the trills are not correctly reflected by the
given MIDI file (Figure 5b). As a consequence, our score-
informed approach cannot model this spectrogram area cor-
rectly as can be observed in the marked areas in Figures 5c
and 5d. Applying the resulting separation mask (Figure 5e)
to the original spectrogram leads to the trills being misas-
signed to the left hand in the estimated magnitude spectro-
gram as shown in Figure 5f.

5. CONCLUSIONS

In this paper, we presented a novel method for the decompo-
sition of a monaural audio recording into musically mean-

ingful voices. Here, our goal was to extend the idea of an
instrument equalizer to a voice equalizer which does not
rely on statistical properties of the sound sources and which
is able to emphasize or attenuate even single notes played
by the same instrument. Instead of relying on prealigned
MIDI files, our score-informed approach directly addresses
alignment issues using high-resolution music synchroniza-
tion techniques thus allowing for an adoption in real world
scenarios. Initial experiments showed good results using
synthetic as well as real audio recordings. In the future,
we plan to extend our approach with an onset model while
avoiding the drawbacks discussed in [9].
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ABSTRACT

In this paper we propose a postprocessing technique for a
spectrogram diffusion based harmonic/percussion decom-
position algorithm. The proposed technique removes har-
monic instrument leakages in the percussion enhanced out-
puts of the baseline algorithm. The technique uses median
filtering and an adaptive detection of percussive segments in
subbands followed by piecewise signal reconstruction using
envelope properties to ensure that percussion is enhanced
while harmonic leakages are suppressed. A new binary mask
is created for the percussion signal which upon applying
on the original signal improves harmonic versus percussion
separation. We compare our algorithm with two recent tech-
niques and show that on a database of polyphonic Indian
music, the postprocessing algorithm improves the harmonic
versus percussion decomposition significantly.

1. INTRODUCTION

Music source separation has been a very important topic of
research with applications in transcription [1], audio cod-
ing [2], enhancement [3] and personalization [4]. Source
separation involves separating a polyphonic mono or stereo
music into its component instrument streams. As a prelim-
inary step towards source separation, decomposition of the
music signal into separate harmonic and percussive instru-
ment streams has been a popular approach in recent years.
The percussive instrument stream can be used for drums
transcription [5], rhythm analysis [6], audio remixing [3]
among the many applications. It has been shown that the
percussion stream results in better drum transcription [5,7]
than the original music itself. Likewise, the harmonic in-
struments stream can be used for multipitch estimation [1],
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pitch modification [4], note transcription and lead vocals ex-
traction [8] with greater ease.

McAulay et al. [9] first used sinusoidal modeling to de-
compose a signal into harmonic and noise components pop-
ularly known as the “sine+noise“ model. Verma et al. [10]
introduced the idea of modeling transients in a signal lead-
ing to the development of ”sine+transients+noise” model.
Various improvements to these models have been proposed
in [11, 12]. Gillet et al. [7] used noise subspace projections
to split polyphonic music into harmonic and noise compo-
nents with the noise components predominantly having the
percussive instruments. he noise signal was used for drum
transcription and was found to be more effective than the
original for the same task. Yoshii et al. [5] used a template
based approach for harmonic instrument suppression to ex-
tract drums sounds from polyphonic music for transcription.
Recently Ono et al. [3, 13] presented an iterative algorithm
using spectrogram diffusion to split music signals into the
component harmonic and percussion streams. The percus-
sion streams were used for remixing and equalisation pur-
poses. Fitzgerald [14] proposed a much simpler alternative
to Ono’s algorithm using median filtering.

But most of the above discussed algorithms are aimed at
Western music and specifically pop music which has strong
percussion accompaniments. These algorithms do not per-
form well for Indian music which has somewhat muted per-
cussion (often used just to give a basic beat to the lead in-
strument/vocalist) and an increased amount of vibratos in
the instrumental sections. This leads to a lot of leakages of
percussion into the harmonic stream and vice versa.

In this paper we develop a postprocessing technique that
can applied to the output of Ono’s algorithm (called the
baseline from here onwards) [3, 13] mentioned above. In
Section 2 we briefly describe the baseline algorithm to es-
tablish the framework for our algorithm. Section 3 describes
our post processing technique. The necessary framework to
test the algorithm, the experiments and comparative results
are described in Section 4. We conclude the paper in Section
5.
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Figure 1. Spectrogram of song No.151 from LSML
database. The strong vertical stripes are locations of percus-
sion and the horizontal stripes are the harmonics of pitched
instruments. The wavy horizontal lines between 8 secs and
10 secs are the vibratos in the lead male singing.

2. ONO’S ALGORITHM AND SHORTCOMINGS

The spectrogram diffusion based harmonic/percussion sepa-
ration algorithm proposed by Ono et al. [3,13] assumes that
steady harmonic instruments show up as horizontal lines
while percussive instruments show up as vertical lines in the
signal spectrogram. This is because of the steady nature
of harmonic instruments that play enduring discrete notes
while percussive instruments have a short time burst of en-
ergy leading to a wideband spectral structure as shown in
Figure 1. The diffusion algorithm uses a minimization of
the spectrogram’s vertical and horizontal derivatives using
an auxiliary function approach.

Let x[n] be a monaural polyphonic music signal sam-
pled at 16kHz. LetX(i, j) denote its STFT (Short Time
Fourier Transform) at theith frequency bin andjth frame.
Let W (i, j) be the range compressed version of the power
spectrogram given by,

W (i, j) = |X(i, j)|2γ , (1)

whereγ = 0.3.
Similarly letH(i, j) andP (i, j) represent the power spec-

trograms of the component harmonic and percussion sig-
nals.

A cost functionJ(H, P ) defined as below is used to min-
imize the gradients of the spectrograms.

J(H, P ) =
1

σ2
H

∑
i,j

(H(i, j)−H(i, j − 1))2

+
1

σ2
P

∑
i,j

(P (i, j)− P (i− 1, j))2. (2)

Then, we wish to findH andP that minimize the equa-
tion (2) under the constraint,

W = P + H. (3)

An iterative update method using auxiliary function ap-
proach is used for the minimization of equation (2). This
leads to the decomposition of the signalx[n] into its com-
ponent percussion and harmonic spectrogramsP andH re-
spectively for various values of the diffusion coefficientα
(0 < α < 1). P andH are “binarized“ toPbin andHbin as
in equations (4, 5) to attentuate the interference of harmonic
instruments in the percussive stream and vice versa.

Pbin(i, j) =

{
X(i, j) if P (i, j) > H(i, j) ,
0 if P (i, j) ≤ H(i, j).

(4)

Hbin(i, j) = X(i, j)− Pbin(i, j). (5)

Depending on the value ofα, either the percussive stream
will be emphasized or the harmonic stream will be empha-
sized. The percussive and harmonic streamsp[n] andh[n]
are reconstructed by inverting the STFTsPbin andHbin re-
spectively using the phase of the original signalx[n] (at each
frame during inversion) .

One of the shortcomings of this algorithm has been the
leakage of harmonic instrument components into thePbin

component and the leakage of low strength percussion into
theHbin portion. As noted earlier there is a high presence of
vibratos and muted percussion (tabla, mridangam1 ) in In-
dian music. This leads to a very bad decomposition scheme
using baseline algorithm. A much faster algorithm using
median filtering has been proposed in [14], but even that al-
gorithm suffers from the same shortcomings.

3. THE PROPOSED ALGORITHM

We use only the percussion streamp[n] from the baseline
algorithm and the original signalx[n] for the postprocess-
ing technique we propose. Since percussion appears as a
wideband signal in the spectrum and different harmonic in-
struments have different frequency characteristics, not all re-
gions of the spectrum are equally affected by the harmonic
leakage. Therefore we intend to remove the leakages using
subband processing. The signalp[n] is passed through an
even stacked cosine modulated perfect reconstruction filter-
bank of 16 filters. The filterbank was designed using the
LT-TOOLBOX 2 set of Matlab routines. The following op-
erations are performed on each subband signal. Letpi[n] be
the output of theith subband. The signal is split into frames
of 40ms (Frame lengthNl = 640 samples) with an overlap
of 20ms (Frame shiftNo = 320 samples). Each frame is
multiplied with a triangular window of lengthNl samples

1 A south Indian classical instrument
2 http://www.students.tut.fi/ jalhava/lt/intro.html
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Figure 2. A plot ofHµ (blue dash-dot) andM (red dotted)
for subband 2 for No.151 from LSML database.

to facilitate the overlap and add at the reconstruction stage.
Thejth frame is represented asPi(j, :).

As noted by Scheirer [15], the amplitude envelope is more
important than the frequency content for the perception of
percussion. Therefore we intend to manipulate the envelope
of the subband signals. The Hilbert envelope of a signal
has been exploited for detection of transients in polyphonic
music with great success [16]. We intend to use the same
framework with a view of including temporal noise shaping
(TNS) [2] for each frame in our future work.

Let the Hilbert transform for thejth frame beP̂i(j, :).
We find the Hilbert envelope of the signal [16] as:

Hi(j, :) =

√
Pi(j, :)2 + P̂i(j, :)2. (6)

We now use the sample mean ofHi(j, :) as a represen-
tative for thejth frame (We also tried with the energy of
each frame as a representative and the method works just as
fine, but since we intend to use TNS in our future work, we
choose to retain the Hilbert envelope within each frame).

Hµ(i, j) =
1

N

N∑
k=1

Hi(j, k). (7)

Hµ is used to detect the frames having percussion and
harmonic instruments. In order to do this,Hµ is median
filtered with al point median filter.

M(i, j) = median{Hµ(i, j−k : j+k), k = l−1/2}, (8)

where we usedl = 7. We used a value ofl = 7 since
a median filter whose length is greater than the duration of
the transient noise can suppress it [17] and most percussive
transients are around 60-100ms long (3 to 5 frame shifts and
hence we used the next odd numbered window length).

As shown in Figure 2, inHi andM the presence of har-
monic instruments creates a change of shape in the usual

gamma function envelopes of percussion signals [18]. There-
fore, the novelty functionρ, defined as the ratio betweenHµ

andM,

ρ(i, j) = Hµ(i, j)/M(i, j), (9)

is low at places of leakage while it retains a high value if
percussion is present [17].

We now use two possible methods of finding a good thresh-
old for detecting percussion inρ. In the first method, we find
the mean (µ) and variance (σ) of ρ for each subband. The
threshold for theith subband,T (i) is computed as,

T (i) = min(1.75, µ(i) + 0.5 ∗ σ(i)). (10)

This threshold was decided empirically after testing on a
small dataset of audio clips and is similar to the one used
in [19].

In the second method, we assume that we have poly-
phonic audio with utmost10% of the values ofρ are due
to percussion. This is akin to the assumption that we have
2 percussion hits of50ms duration per second of the signal.
We find a threshold from the histogram ofρ such that10%
of the values ofρ lie to the right and the remaining90% lie
to the left of the threshold in the histogram.

We use the threshold obtained from the first method since
optimization process for the second approach is still under
development at the time of writing this paper. We now use
the threshold to determine the set of local maxima within
each subband that belong to the percussion as:

F(i, j) =

{
1 if Hµ(i, j) > T (i).M(i, j) ,
0 otherwise.

(11)

We locate local maxima inHµ for each subband and re-
tain only frames corresponding to them inF while the rest
of the frames are made0. Since a percussive signal has a
gamma function envelope, it has a minima to both sides of
the local envelope maxima on the time axis. Upon finding
the local maxima in the signal, we need to find the local
minima on both its sides on the time axis in order to fully
reconstruct the percussive signal as shown in Figure 3.

We rebuild the exact percussion signal by using the first
local minima to the temporal left and right of each detected
maxima as shown in Figure 4. This ensures that the entire
percussion signal is preserved in the envelope. The set of
non-zero frames in each subband are considered as the per-
cussive frames.

The percussive frames from each subband are finally added
using the overlap and add method to generate the subband
signal that is percussion enhanced. The subband signals are
then passed through the synthesis filterbank to generate the
new percussion signalpenh[n].
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Figure 3. Top:A percussion envelope (solid line) and its lo-
cal maximum and the minima (star).Bottom:Reconstructed
percussion envelope using the piecewise reconstruction
method described in this paper.

We use the newly generated percussion signal to enhance
theHbin signal given by the baseline algorithm. A STFT of
the signalpenh[n] is computed asPenh(i, j). Now the STFT
is averaged along the frequency axis as follows:

Pavg(i, j) =
1

m

i+(m−1)/2∑
k=i−(m−1)/2

Penh(k, j), (12)

wherem = 2. Pavg changes fromPenh by a small
amount if the frame is a percussive frame (since a percus-
sion frame will have a wideband spectrum) while its value
changes significantly if the frame has predominantly har-
monic components.Pavg is compared with the spectrum of
the original signal. If any component ofPavg is greater than
a thresholdν timesX , that component is assigned to per-
cussion otherwise it is assigned to the harmonic stream of
the signal.

Pfin(i, j) =

{
X(i, j) if Pavg(i, j) > ν.X(i, j) ,
0 otherwise.

(13)

Hfin(i, j) = X(i, j)− Pfin(i, j). (14)

We used a value ofν = 0.45 in order to enhance even
weak percussive segments.

ThePfin andHfin are inverted to obtain the improved
percussionpfin[n] and harmonichfin[n] stream of the sig-
nalx[n]. As can be seen in Figure 5, the postprocessing re-
duces the harmonic leakages very well. In the next section
we compare our output with both the baseline algorithm and
Fitzgerald’s algorithm.

Figure 4. Top:Ground truth locations of percussion in
No.151 from LSML database.Middle:Plot of Hµ for sub-
band 2.Bottom:Percussion located by signal rebuilding after
local maxima detection.

Figure 5. Top:Ground truth locations of percussion in the
clip “Remember The Name-Fort Minor“ from MTG-MASS
database.Middle:Percussion stream from baseline Ono’s al-
gorithm.Bottom:Percussion stream after postprocessing.
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4. EXPERIMENTS AND RESULTS

Since we did not have the individual instrument streams for
Indian music as with the case in [13] for testing the efficacy
of harmonic/percussion separation, we developed our own
procedure as elaborated below.

To compare the working of our postprocessing technique,
we prepared a database of 26 clips from various Indian film
songs and also Western music songs. All songs have been
sampled at 16kHz and are an average 10 seconds long. Each
song was manually annotated using the gating technique
[20] for percussive transients by two people independently.
We annotated drums, mridangam, tabla, shakers and bass
guitar slaps as percussive instruments. The percussive por-
tions common to both the annotations were retained as the
ground truth. We will call this the LSML database.

In order to compare the output of our postprocessing tech-
nique with the baseline Ono’s algorithm, we derive the fol-
lowing measure.

Letp[n] andh[n] be the outputs of the baseline algorithm
andpfin[n] andhfin[n] be the outputs of our postprocessing
technique on the baseline algorithm. We now split each of
these signals into frames of40ms with an overlap of20ms.
The energy in each frame ofp andh are calculated as:

Ep(l) =

(l−1).No+Nl∑
k=(l−1).No

p2[k], (15)

Eh(l) =

(l−1).No+Nl∑
k=(l−1).No

h2[k]. (16)

(17)

Similarly the energy forpfin andhfin are computed and
stored inEpfin andEhfin respectively.

We now compare the energies betweenEp andEpfin.
Since bothp andpfin are percussive components, we use
the ground truth to find the total energy in the non-percussive
frames of both these signals. LetFP represent the set of
frames marked as percussive andFH represent the non-
percussive frames. Then we find the energy in the percussive
and non-percussive frames ofp[n] as:

EP
p =

∑
l∈FP

Ep(l), (18)

EH
p =

∑
l∈FH

Ep(l). (19)

Similarly we compute the same for thepfin asEP
pfin and

EH
pfin.
We now compare the energiesEH

p andEH
pfin after nor-

malizing the energiesEP
p andEP

pfin. We computeβP , where,

βP =
EP

p

EP
pfin

. (20)

Now ,

ΓP =
EH

p

βP .EH
pfin

, (21)

computes the ratio between energies in the non-percussive
frames ofp andpfin when the energies in the percussive
frames are equal. A value ofΓP > 1 indicates that the
signalpfin has lesser energy thanp in the non-percussive
segments.

Likewise, we compute the ratioΓH by normalizing the
energies ofh andhfin in the non-percussive sections and
finding the ratio of the energies in the percussive sections
as,

ΓH =
EP

h

βH .EP
hfin

, (22)

whereβH is ,

βH =
EH

h

EH
hfin

. (23)

We formΓTot as,

ΓTot = ΓP + ΓH , (24)

to give us an overall measure of how wellpfin andhfin

compare withp andh respectively.ΓTot attains a value of2
when the baseline algorithm is compared with itself.

We show the performance of our postprocessing algo-
rithm (PP1) and Fitzgerald’s method against the baseline
Ono’s technique in Figure 6. Both the postprocessing tech-
nique and Fitzgerald’s technique are compared against the
baseline algorithm. As can be seen, our method performs
better than both Fitzgerald’s technique and the baseline al-
gorithm for any value of diffusion coefficientα. Also, the
postprocessing technique performs better for a lower diffu-
sion coefficientα. With increasingα, energy in the percus-
sion streampbin decreases and hence the leakage too de-
creases. Therefore our postprocessing algorithm performs
better for lowerα.

5. FUTURE WORK AND CONCLUSIONS

In this paper we have proposed a simple postprocessing tech-
nique for Ono’s harmonic/percussion decomposition algo-
rithm using no prior information about the sources except
their production mechanism and the envelope structure. We
also are currently working on a technique that uses the har-
monic stream along with the percussive stream for improved
separation.
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Figure 6. Performance of the postprocessing technique (
PP1 ) against the Fitzgerald’s method and Ono’s baseline
algorithms for varyingα.
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ABSTRACT

Factorization of polyphonic musical signals remains a dif-
ficult problem due to the presence of overlapping harmon-
ics. Existing dictionary learning methods cannot guarantee
that the learned dictionary atoms are semantically meaning-
ful. In this paper, we explore the factorization of harmonic
musical signals when a fixed dictionary of harmonic sounds
is already present. We propose a method called approxi-
mate matching pursuit (AMP) that can efficiently decom-
pose harmonic sounds by using a known predetermined dic-
tionary. We illustrate the effectiveness of AMP by decom-
posing polyphonic musical spectra with respect to a large
dictionary of instrumental sounds. AMP executes faster than
orthogonal matching pursuit yet performs comparably based
upon recall and precision.

1. INTRODUCTION

Dictionary learning, sparse coding, and constrained factor-
ization algorithms have recently revolutionized the way we
perform music transcription and source separation. Many
researchers have reported success when decomposing sim-
ple musical signals using nonnegative matrix factorization
(NMF) [23] or methods based upon sparse coding such as
K-SVD [1,2]. Unfortunately, problems remain for intricate,
polyphonic musical signals. When musical notes overlap
in time and frequency, the separation and transcription per-
formance of these basic dictionary learning methods dimin-
ishes rapidly. In such a case, the algorithm will usually learn
a dictionary where each individual atom contains informa-
tion from multiple musical sources, thus hindering our at-
tempts at decomposition.

Researchers have slowly improved upon the original dic-
tionary learning methods by adding constraints to the learn-
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ing process. By restricting the dictionary atoms to reside
within a predetermined feasible set, we can ensure that the
learned atoms will be useful at the conclusion of the learn-
ing process. For example, existing solutions include adding
constraints to the dictionary learning process such as har-
monicity [3, 25] or smoothness [3, 26].

Another solution is to add structure to the dictionary. For
example, one can construct and use a large, predefined, over-
complete dictionary where each atom is already labeled and
assumed to contain information from only one musical source.
Instead of learning an optimal dictionary for a given musi-
cal signal, it may suffice to match the signal to this large set
of precomputed, labeled dictionary atoms. Then, by decom-
posing a signal with respect to this fixed dictionary, classifi-
cation is easily achieved by simply reading the label of the
atom. As musical databases become more available, con-
struction of predefined dictionaries will become easier, thus
reducing the need for adaptive dictionary learning.

Of course, the performance of such an algorithm depends
upon the breadth of the dictionary. When atoms from more
musical sources are added to the dictionary, the dictionary’s
ability to decompose polyphonic music will improve. How-
ever, dictionary growth introduces concerns related to scal-
ability and computational complexity. While the aforemen-
tioned algorithms have significantly advanced the state of
the art, they remain slow and difficult to scale as the dictio-
nary size increases. Most of the original factorization meth-
ods such as matching pursuit (MP) [18] and NMF with mul-
tiplicative updates [17] have complexity that is linear in the
size of the dictionary. As a result, when dictionary sizes
grow, the transcription efficiency of these algorithms dimin-
ishes.

To summarize the problem: how can we make use of
a large, precomputed, overcomplete dictionary to factorize
overlapping harmonic sounds accurately and efficiently?

We address this problem by proposing a variant of MP
called approximate matching pursuit (AMP). Unlike MP and
NMF, AMP can decompose signals into a sparse combina-
tion of atoms with complexity that is sublinear in the dictio-
nary size while maintaining accuracy. To do this, AMP uses
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an approximate nearest neighbor (ANN) method to find ap-
proximate matches to the signal residual at each iteration.
The ANN method that we choose in this work is locality
sensitive hashing (LSH), a probabilistic hash algorithm that
places similar, yet not identical, observations into the same
bin. LSH can retrieve near neighbors with a complexity that
is sublinear in the dictionary size.

Our experiments demonstrate that AMP is as capable as
orthogonal matching pursuit (OMP) [20] for decomposing
polyphonic musical spectra into combinations of atoms from
a large dictionary of over 17,000 labeled musical spectra.
Meanwhile, AMP requires less computation and factorizes
more quickly than OMP.

2. RELATED WORK

Computation of sparse coefficients with respect to a large,
overcomplete dictionary is often accomplished by pursuit
algorithms such as MP [18]. This greedy algorithm directly
addresses the issue of sparsity by decomposing a signal, x,
into a linear expansion of waveforms that are selected from
a redundant dictionary of functions. When stopped after a
few iterations, this algorithm yields a signal approximation
using only a few atoms. After each iteration of the MP al-
gorithm, the residual, r, is orthogonal to the previously se-
lected vector, ak, but not necessarily orthogonal to the dic-
tionary vectors selected earlier.

Pati et al. proposed OMP, an improvement over MP which
ensures that the residual is orthogonal to all previously se-
lected dictionary vectors [20]. After dictionary atoms are
selected for inclusion into the decomposition, an extra or-
thogonalization step is performed by solving a least-squares
problem. Researchers have shown that OMP provides a dra-
matic improvement over MP [20]. In many cases, when an
input signal is known to be k-sparse, OMP converges in k
iterations, while MP will require many more iterations to
converge.

Pursuit algorithms have been applied to MIR in many
ways. The most popular applications are music transcription
and source separation. Harmonic matching pursuit (HMP)
has been used to decompose an audio signal into Gabor or
harmonic (i.e., sums of Gabor) atoms [15]. Dictionaries of
atoms can also be adapted and learned to fit the data [9]. To
resolve instances when harmonics from separate notes over-
lap, some algorithms impose smoothness constraints [4].
Similar sparse coding methods have been used for genre
recognition [19]. In the neurological signal processing lit-
erature, pursuit methods for generic acoustic signals have
been applied for coding purposes [24].

Cotton and Ellis [10] also use LSH together with MP,
however that work addresses a fundamentally different prob-
lem – content-based search of whole acoustic events, e.g.,
the sound made by a horse’s hoof. There, the sparse repre-

sentation produced by MP is stored using LSH. On the other
hand, our proposed method addresses the problems of tran-
scription and source separation. As shown later, we enhance
MP by embedding LSH within MP to make it faster and
more scalable. Also, we use a massive dictionary of real-
world musical spectra, not synthetic Gabor atoms as in [10].

3. PROBLEM FORMULATION

Given the magnitude spectrum of an input signal, x ∈ RM ,
and a dictionary, A = [a1 a2 ... aK ] ∈ RM×K , the problem
is to find a vector of coefficients s ∈ RK that minimizes
||x−As||2.

When M < K, the dictionary is called overcomplete,
and there are infinitely many solutions for s. However, by
imposing a sparsity constraint on s, the solution space di-
minishes greatly, possibly to a unique solution. In particu-
lar, if the input is truly a sparse linear combination of dic-
tionary atoms, i.e., x = As0, where s0 is a sparse vector,
then the problem becomes finding an optimal set of coeffi-
cients, ŝ = argmins ||x − As||2, that is equal to the input
coefficients, i.e., ŝ = s0.

An exhaustive search for the sparsest solution is NP-hard
[12]. However, suboptimal greedy algorithms such as OMP
often work well in practice. Unfortunately, OMP requires
at least K inner products to computed during each iteration,
thus creating a complexity that is at least linear in K. Be-
cause this complexity is too slow for large dictionaries, the
problem becomes solving for ŝ = s0 using an algorithm that
has complexity that is sublinear in the dictionary size, K.

Without loss of generality, we assume that the dictionary
is overcomplete, M < K; this assumption is not strictly
necessary for AMP to operate. We also assume that the true
sparsity of any input signal, ||s0||0, is less than the dimen-
sionality, M . For musical signals, this assumption usually
holds in practice. For example, even in highly polyphonic
music, the number of simultaneous sounds will likely be sig-
nificantly less than the dimensionality of our spectra, i.e., the
number of frequency bins. If not, then we increase the FFT
size to produce longer spectra.

4. PROPOSED ALGORITHM: APPROXIMATE
MATCHING PURSUIT

One drawback of existing pursuit methods such as MP and
OMP is their complexity. When the dictionary size, K, be-
comes very large (e.g., over one million), these methods
may require an unacceptably large amount of computation
to find an answer. For example, in each iteration of MP,
K inner products must be computed between the residual
r and every atom in the dictionary – a complexity of order
O(MK). Here, we introduce a simple variation of these
pursuit methods that uses an ANN algorithm in place of
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computing K inner products as done in MP. As a result, we
can reduce the complexity to be sublinear in K.

The approximate matching pursuit (AMP) algorithm is
described in Algorithm 1. This algorithm is similar to OMP
except that it addresses the main computational bottleneck
for large dictionaries – nearest neighbor search – by allow-
ing any adequately near neighbor to be selected as a compo-
nent.

Algorithm 1 Approximate Matching Pursuit [Tjoa and Liu]
Input: x ∈ RM ; A = [a1,a2, ...,aK ] ∈ RM×K s.t.
||ak||2 = 1 for all k.
Output: ŝ ∈ RK

Initialize: S ← ∅; s← 0; r← x; ε > 0.
while ||r|| > ε do

Find any k such that ak and r are near neighbors.
S ← S ∪ k
Solve for {sj |j ∈ S}: minsj |j∈S ||x−

∑
j∈S ajsj ||2

r← x−As

ŝ← s

AMP intentionally resembles MP and OMP. Like OMP,
AMP is capable of providing a sparse decomposition in far
fewer iterations than MP. If the ANN retrieval method were
instead changed to a nearest-neighbor (NN) method, then
AMP would yield identical results to OMP. Also, AMP is
flexible in the sense that any ANN method could be used as
long as it performs retrieval in sublinear time. Therefore,
AMP can also be considered as a modular framework of al-
gorithms.

Despite its simplicity, AMP embodies a fundamentally
different philosophy to signal factorization. AMP is a data-
driven algorithm, not a model- or knowledge-based algo-
rithm. With such an abundance of available musical data, we
use side information, not rigid mathematical models, to rep-
resent test data. Algorithmic advances such as AMP, cou-
pled with technological advances in computing, are mak-
ing data-driven algorithms more computationally feasible
for problems in MIR such as transcription and source sepa-
ration.

5. LOCALITY SENSITIVE HASHING

AMP allows the use of any ANN algorithm that can per-
form retrieval in sublinear time. For this work, we focus on
locality-sensitive hashing (LSH), a category of algorithms
that places nearby points in a high-dimensional space into
the same bin in a hash table. Because of its simplicity,
robustness, and low complexity, LSH has become popular
for solving many high-level problems beyond MIR such as
search and retrieval of text and images. The robustness of
LSH is desirable for problems in MIR where queries are of-
ten distorted due to environmental or musical variation, and

therefore, learned dictionary atoms will rarely match prede-
fined dictionary atoms exactly. Ryynänen and Klapuri used
LSH to perform query-by-humming (QBH) by constructing
a hash table from pitch contour vectors [21]. Yu et al. use
LSH and order statistics to store chroma features in a hash
table for audio content retrieval [28]. Cotton and Ellis use
LSH to store landmarks in audio that correspond to mean-
ingful acoustic events [10]. Casey and Slaney have used
LSH to store features called audio shingles for computing
various levels of musical similarity between songs [5–7].

However, LSH has rarely been used for signal-level prob-
lems like music transcription. To our knowledge, this work
is among the first in MIR to use LSH for low-level tasks
such as sparse coding and music transcription.

While other ANN algorithms can be used within AMP
instead of LSH, such as those that use space partitioning
like the kd-tree and hierarchical k-means, these algorithms
do not work well in high-dimensional spaces, i.e., dimen-
sionality over 100. In fact, all current indexing techniques
based on space partitioning degrade to linear search for suf-
ficiently high dimensions [11, 14, 27]. Therefore, we only
consider LSH in this work.

In this work, for i ∈ {1, 2, ..., k} and ` ∈ {1, 2, ..., L},
we define the function h`

i to be

h`
i(q) = sign〈p`

i ,q〉 (1)

where p`
i is a zero-mean, unit variance, Gaussian random

vector with independent elements. As illustrated later, the
parameters k and L adjust the tradeoff between recall and
precision of the dictionary atoms.

It has been shown that this choice of distribution on p`
i

will hash points together whose angle,

θ(q, r) = arccos
〈q, r〉
||q||||r||

, (2)

is small [8]. Specifically, it can be shown that, for any i and
`, the probability that h`

i(q) = h`
i(r) is equal to

P (h`
i(q) = h`

i(r)) = 1− θ(q, r)

π
. (3)

We claim that two hashes are equal, h(q) = h(r), if and
only if there exists an ` such that, for all i ∈ {1, 2, ..., k},
h`

i(q) = h`
i(r). In other words, the following events are

equivalent:

{h(q) = h(r)} = ∪L
`=1 ∩k

i=1 {h`
i(q) = h`

i(r)}. (4)

From (3) and (4), it can be shown that the probability that
h(q) = h(r) is equal to

P (h(q) = h(r)) = 1−

(
1−

(
1− θ(q, r)

π

)k
)L

. (5)
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Figure 1. LSH example with k = 2. Points on the unit
sphere are separated into 2k = 4 bins.

To construct the LSH table, we initialize L empty ta-
bles. For each atom a in the dictionary A, and for each
` ∈ {1, 2, ..., L}, its hash is computed as a k-tuple:

h`(a) = (h`
1(a), h`

2(a), ..., h`
k(a)), (6)

and a is placed into bin h`(a) of table `. Finally, to perform
a query for point r, for all `, we retrieve all of the points
in bin h`(r) of table `. Among these retrieved points that
share a bin with r, we perform exhaustive search to find
the nearest neighbor among them. As indicated by Eq. 5,
through the proper choice of k and L, one can achieve any
desired amount of similarity between any two input vectors.

An example of LSH is shown in Figure 1 when k = 2.
Points on the unit sphere are hashed, and those points that
reside in the same bin share the same marker. We notice that
points in the same bin are close together.

There are many theoretical results for LSH that are be-
yond the scope of this paper. For detailed discussion and
proofs, please see [11, 14, 22, 27].

6. EXPERIMENTS

To illustrate the performance of AMP, we factorize poly-
phonic spectra as sparse combinations of atoms from a dic-
tionary of real piano sounds. First, we discuss how to build a
dictionary. For this work, our data comes from the Univer-
sity of Iowa database of musical instrument samples [13].
Each file in the data set is labeled by pitch and loudness,
e.g., “Piano C4 mf”, and contains a signal of an isolated
note sampled at 44100 Hz. We only consider the subset of
piano sounds.

For each signal, we compute a short-time Fourier trans-
form with a frame size of 92.9 milliseconds (i.e., 4096/44100)
and a hop of 10 milliseconds. To discard silent segments, we

detect any spectrum whose power is below a threshold. The
remaining spectra are normalized to have unit Euclidean
norm and are saved along with their pitch labels. These nor-
malized spectra constitute the dictionary, A, and the pitch
labels are used later to evaluate matches among dictionary
atoms. In total, we use a dictionary of 17,753 spectra of pi-
ano sounds covering the entire piano keyboard (i.e., MIDI
values 21 through 108).

For the following experiments, the input to AMP is a
vector x ∈ RM , a magnitude spectrum containing overlap-
ping harmonic sounds, where x = As0. A is the dictionary
of size M -by-K described earlier, and s0 is a synthetically
generated sparse vector of length K containing λ ones in
uniformly random locations. In other words, λ determines
the number of overlapping sounds at any moment. We vary
λ in the following experiments.

The LSH structure accepts parameters L and k, where L
is the number of LSH tables and k is the length of each key.
The dictionary, A, is used to populate each of the L LSH
tables as described in Section 5. Finally, given the input
x and the LSH tables, AMP produces a sparse coefficient
vector, ŝ.

Given the output, ŝ, we count the number of hits, misses,
and false alarms. A hit occurs if an element in s0 matches
an element in ŝ. A miss occurs if an element in s0 does not
match any element in ŝ. A false alarm occurs if an element
in ŝ does not match any element in s0. A match occurs when
two coefficients share the same pitch label.

All source code is written in Python using the NumPy,
SciPy, and Matplotlib packages [16].

In Figure 2, we compare AMP against another pursuit
method, OMP. For each algorithm, using the number of hits,
misses, and false alarms, we plot the recall, precision, and
F-measure. Recall is defined as R = hits/(hits + misses),
precision is defined as P = hits/(hits + false alarms), and
F-measure is defined as F = 2PR/(P +R). We also mon-
itor the execution time and number of M -dimensional inner
products computed by each algorithm. All quantities are av-
eraged over twenty independent trials.

From Figure 2, we see that the recall, precision, and F-
measure are all relatively similar for both algorithms. The
recall for AMP is nearly as high as that of OMP. The gap
in precision between the algorithms is slightly larger. In
practice, the stopping criterion can affect the tradeoff be-
tween recall and precision. When convergence occurs early,
ŝ is more sparse; therefore, recall decreases and precision
increases. When convergence occurs late, ŝ is less sparse;
therefore, recall increases and precision decreases. For this
work, we simply fix the stopping criterion such that the ratio
of the residual norm to the input norm, ||r||/||x||, is equal to
0.25. A more sophisticated stopping criterion may be able
to improve this tradeoff.

Next, we plot the execution time. Results show that AMP
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executes approximately two to four times faster than OMP.
The parameters used in LSH, (L, k), affect execution time.
When the length of the key, k, is low, then there are fewer
keys and more elements per bin. Therefore, the candidate set
of spectra is larger. When k is high, there are more keys and
fewer elements per bin resulting in a smaller candidate set.
The number of tables, L, has the opposite effect of k. When
L is high, the size of the candidate set increases. When L is
low, the candidate set size decreases.

Finally, we plot the number ofM -dimensional inner prod-
ucts computed by both algorithms. This measure describes
the primary source of computational effort. We see that
OMP requires far more inner products than AMP. For OMP,
each iteration requires K inner products because the resid-
ual is matched against every dictionary atom. For AMP,
each iteration requires far fewer than K inner products be-
cause LSH only retrieves those dictionary atoms that are
likely close to the residual vector. However, we notice that
the gap in the number of inner products computed by OMP
and AMP is larger than the gap in execution time. This dis-
crepancy is largely caused by overhead required of LSH, for
example, key computation, data subset retrieval, etc. Opti-
mizing these operations at a lower level could further widen
the gap in execution time between AMP and OMP.

7. CONCLUSION

We have proposed AMP, a pursuit algorithm that can decom-
pose overlapping harmonic spectra as well as OMP while
executing in less time and requiring fewer computations.
We have shown that the recall, precision, and F-measure for
AMP is comparable with that of OMP. Unlike OMP which
has complexity that is linear in the size of the dictionary,
AMP has sublinear complexity and is therefore much faster.
The simple modification of using LSH in place of exhaustive
linear search makes previously infeasible techniques feasi-
ble once again. Previously, LSH has primarily been used to
solve high-level tasks such as song or document retrieval;
here, we use LSH for the signal-level tasks of factorization
and separation.

AMP, like many recently proposed machine learning al-
gorithms, uses real data rather than contrived models and
constraints to describe musical spectra. We hope that this
simple algorithm inspires a new class of methods that intel-
ligently exploit the abundant musical data that already exists
among public collections rather than chasing gains in fully
unsupervised algorithms where little progress is left to be
made.

The dictionary itself has a significant impact on the de-
composition. Therefore, future work will include proper
dictionary design, i.e., how to create dictionary atoms from
musical data sets for maximum accuracy and efficiency. Dic-
tionary design also affects the proper choice of LSH param-

eters, L and k. A careful analysis of pairwise distances
among dictionary atoms can reveal which set of LSH pa-
rameters minimizes the probability of error.
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ABSTRACT

The classical music traditions of the Indian subcontinent,
Hindustani and Carnatic, offer an excellent ground on which
to test the limitations of current music information research
approaches. At the same time, studies based on these music
traditions can shed light on how to solve new and complex
music modeling problems. Both traditions have very dis-
tinct characteristics, specially compared with western ones:
they have developed unique instruments, musical forms, per-
formance practices, social uses and context. In this article,
we focus on the Carnatic music tradition of south India, es-
pecially on its melodic characteristics. We overview the
theoretical aspects that are relevant for music information
research and discuss the scarce computational approaches
developed so far. We put emphasis on the limitations of the
current methodologies and we present open issues that have
not yet been addressed and that we believe are important to
be worked on.

1. INTRODUCTION

Though all music traditions share common characteristics,
each one can be recognized by particular features that need
to be identified and preserved. The information technolo-
gies used for music processing have typically targeted the
western music traditions, and current research is emphasiz-
ing this bias even more. However, to develop technologies
that can deal with the richness of our world’s music, we
need to study and exploit the unique aspects of other mu-
sical cultures. By looking at the problems emerging from
various musical cultures we will not only help those specific
cultures, but we will open up our computational methodolo-
gies, making them much more versatile. In turn, we will
help preserve the diversity of our world’s culture [26].

Permission to make digital or hard copies of all or part of this work for
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bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

The two classical music traditions of the Indian subconti-
nent, Hindustani 1 and Carnatic 2 , are among the oldest mu-
sic and most unique traditions still alive. There are excellent
musicological and cultural studies about them, they main-
tain performance practice traditions and they exist within
real social contexts. Thus, they are an excellent ground on
which to build new information models and a way to chal-
lenge the dominant western-centred paradigms. In this arti-
cle we focus on Carnatic music, the tradition of south-India.

Carnatic music shares with the Hindustani tradition some
basic foundations, such as the basic elements of shruti (the
relative musical pitch), swara (the musical sound of a sin-
gle note), raaga (the melodic mode), and taala (the rhythmic
pattern). Although improvisation plays an important role,
Carnatic music is mainly sung through compositions, dif-
ferently from Hindustani music where improvisation is fun-
damental. Carnatic music is usually performed by a small
ensemble of musicians, consisting of a principal performer
(usually a vocalist), a melodic accompaniment (usually a
violin), a rhythm accompaniment (usually a mridangam),
and a tambura, which acts as a drone throughout the per-
formance. Other typical instruments used in Carnatic per-
formances may include the ghatam, kanjira, morsing, veena
and flute.

The computational study of Carnatic music offers a num-
ber of problems that require new research approaches. Its
instruments emphasize sonic characteristics that are quite
particular and not well understood yet. The concepts of
raaga and taala are completely different to the western con-
cepts used to describe melody and rhythm. Carnatic mu-
sic scores serve a different purpose to those of western mu-
sic. The tight musical and sonic relationship between the
singing voice, the other melodic instruments and the percus-
sion accompaniment within a song, requires going beyond
the modular approaches commonly used in music informa-
tion research (MIR). The special and participatory commu-
nication established between performers and audience in con-
certs, offers great opportunities to study issues of social cog-

1 http://en.wikipedia.org/wiki/Hindustani classical music
2 http://en.wikipedia.org/wiki/Carnatic music
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nition. Its devotional aim is fundamental to understand the
music. The study of the song lyrics is also essential to under-
stand the rhythmic, melodic and timbre aspects of Carnatic
music. And many more interesting music aspects could be
identified of relevance to music information processing.

In the next section we focus on the melodic aspects of
Carnatic music, over-viewing the theoretical aspects that are
relevant for MIR and discussing the scarce computational
approaches that have been presented. In the last section we
present open issues that have not yet been addressed and that
we believe are important to be worked on.

2. COMPUTATIONAL APPROACHES TO MELODY

The most fundamental melodic concept in Indian classical
music is raaga. Matanga is the first known person to define
what a raaga is [28]: “In the opinion of the wise, that par-
ticularity of notes and melodic movements, or that distinc-
tion of melodic sound by which one is delighted, is raaga”.
Therefore, the raaga is neither a tune nor a scale [18]. It is
a set of rules which can together be called a melodic frame-
work. The notion that a raaga is not just a sequence of notes
is important in understanding it and for developing compu-
tational models. Also the concept of raga has been chang-
ing with time. Nowadays a given raaga can be described
by properties such as: a set of notes (swaras), their progres-
sions (arohana/avarohana), the way they are intonated using
various movements (gamakaas), and their relative position,
strength and duration (types of swaras). In order to identify
raagas computationally, swara intonation, scale, note pro-
gressions and characteristic phrases are used (Secs. 2.1 and
2.2). Unexploited properties of a raaga include gamakaas
and the various roles the swaras play (Sec. 2.3).

2.1 Swaras and shrutis

In Indian music, swaras are the seven notes in the scale, de-
noted by Sa, Ri, Ga, Ma, Pa, Da and Ni 3 [27]. Except for
the tonic and the fifth, all the other swaras have two varia-
tions each, which account for 12 notes in an octave, called
swarasthanas. There are three kinds of scales that one gener-
ally encounters in Carnatic and Hindustani music theory: a
12-note scale, a 16-note scale and the scale which claims 22
shrutis 4 . The 16-note scale is the same as the 12-note scale
except that 4 of the 12 notes have two names each, in order
to be backward compatible with an older nomenclature.

Few musicians and scholars claim that there are more
shrutis in practice than those explained above. Though many
of them argue the total number to be 22, that itself is de-
bated [9]. A more important question to be asked is whether
they are used in current practice at all. Some musicologists
say that they are no more used [21]. It is also said that

3 This notation is analogous to e.g. Do, Re, Mi, Fa, So, La and Ti.
4 Shruti is the least perceptible interval as defined in Natyasastra [22].

they are wrongly attributed to Bharata, who used shruti to
mean “the interval between two notes such that the differ-
ence between them is perceptible”. Krishnaswamy [13] ar-
gues that the microtonal intervals observed in Carnatic mu-
sic are the perceptual phenomena caused by the gamakaas,
i.e. that these microtonal intervals are what few scholars and
musicians claim as 22 shrutis. However, we believe that
these claims need to be verified with perceptual and be-
havioural studies. In our encounters with most musicians,
we can only conclude that they are unaware of the usage of
22 shrutis in practice. Few musicians who claim they are
used, are not ready to demonstrate them in a raaga. In gen-
eral, more empirical, quantitative and large-scale evidence
needs to be gathered. Our preliminary research on this line
shows no support for the usage of 22 shrutis [25].

The tuning itself, whether it is just-intonation or equi-
tempered, is an issue of debate 5 [12, 25]. Since Indian
classical music is an orally transmitted tradition, perception
plays a vital role. For instance, tuning seldom involves an
external tool. And even the tambura, which is used as a
drone, and thus as a reference for tuning, has a very unsta-
ble frequency. Hence the analysis of empirical data coupled
with perceptual studies are important. In [25] we have car-
ried out an empirical analysis of the stable tunings employed
by some Carnatic and Hindustani singers. The results sug-
gest a clear tendency towards just-intonation in the case of
Carnatic music while, at the same time, they point out to a
strong influence of equi-tempered tuning in the case of Hin-
dustani music.

Fixed tunings are not the whole story. In fact, it is a well
accepted notion that a note (swarasthana) is a region rather
than a point [7,27]. Thus, a fixed, stable tuning for each note
is not as important as it is in, say, western classical music.
In addition, Sa, the tonic, can be any frequency. It depends
on the comfort of the singer or the choice of the instrument
player. A given note can have several variations in intona-
tion depending on the raaga. This variability in intonation
arises from vocal articulations or the pulling of instrument
strings. Even if two raagas have the same scale, the intona-
tion of notes vary significantly. Belle et al [2] have used this
clue to differentiate raagas that share the same scale. They
evaluated their system on 10 audio excerpts accounting for
2 distinct scale groups (two raagas each). They showed that
the use of swara intonation features improved the accuracies
achieved with pitch-class distributions (c.f. [3]). This clearly
indicates that intonation differences are significant to under-
standing and modeling raagas computationally. Levy [16]
analyses the intonation in Hindustani raaga performances
and notes that it is highly variable, and that it does not seem
to agree with any standard tuning system. Subramanian [33]
reports much the same for Carnatic music. These studies
call for the need to understand the extent to which a given

5 http://cnx.org/content/m12459/1.11
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Raaga Singer Tested Correctly
identified

Sankarabharanam Nithyasree 5 4
Subbulakshmi 3 2
Balamurali 2 1

Kanakangi Nithyasree 8 6
Ilayaraja 2 1

Karaharapriya Nithyasree 10 6

Table 1. Results of Rajeswari & Geeta’s raaga identification
method.

note can be intonated. In particular, this could be of interest
to differentiate artists and styles.

All these works indicate that a complete characteriza-
tion of swarasthanas must go beyond static frequency mea-
surements and that their dynamics need to be considered.
The problem implies much more than trying to discriminate
whether swarasthanas are tuned to just-intonation, equi-tem-
pered or following 22 shrutis. Much empirical data like the
one reported in [33] and [16] needs to be gathered to investi-
gate the intervals, the range of intonations and the temporal
evolution of each swarasthana.

2.2 Arohana and avarohana

Typically, a raaga is represented using ascending (arohana)
and descending (avarohana) progressions of notes. There
are certain note transition rules that are necessary to be fol-
lowed when performing a raaga. The set of unique notes
in these progressions form a scale. For raaga identification,
Rajeswari et al [31] estimate the scale from the given tune
by comparing it with template scales. Their test data con-
sists of 30 tunes in 3 raagas sung by 4 artists. They use
the harmonic product spectrum algorithm [15] to extract the
pitch, giving the tonic manually. The other frequencies in
the scale are marked down based on the respective ratio with
the tonic. The results obtained are shown in Table 1, which
depicts a 67% accuracy. The authors claim that such a low
accuracy could be due to discrepancies in the manually fed
tonic. But considering that their system identifies only the
swaras that are used in a raaga and no other relevant data, the
result shows that the swaras alone can be very useful. How-
ever, there are raagas which have the same swaras (since the
scales of the raagas they considered are different, this is not
an issue in their study).

Shetty et al [29] use a similar approach when they try
to recognize raagas. The features extracted are the individ-
ual swaras and their relation in arohana-avarohana (swara
pairs). The features are represented as bit sequences which
are later converted to decimal values. These features are
used for training a neural network. They report an accuracy

of 95% over 90 tunes from 50 raagas, using 60 tunes as train-
ing data and the remaining 30 tunes as test data. However,
such a high accuracy is questionable due to the few data per
class used. Moreover, no cross-fold validation was done.

Sahasrabudde et al [23] model the raaga as finite automa-
ta. A finite automata has a set of states between which the
transitions take place. In the case of raaga, the swarasthanas
are the states and the note transitions are observed. This idea
is used to generate a number of audio samples for a raaga,
which they claim are technically correct and indistinguish-
able from human compositions. Inspired by this, Pandey et
al [17] use HMM models to recognize the raagas. The rules
to form a melodic sequence for a given raaga are well de-
fined in the musicology literature [24] and the number of
notes is finite. Therefore, intuitively, HMM models should
be good at capturing those rules in note transitions imposed
by arohana and avarohana patterns (at least the first-order,
simpler ones).

Each raaga has also a few characteristic phrases. They
are called swara sancharas in Carnatic and pakads in Hin-
dustani. These phrases are said to be very crucial for con-
veying the feeling of the raaga [9]. Typically, in a concert,
the artist starts by singing these phrases. They are the main
clues for the listeners to identify which raaga it is. Pandey et
al have complemented their approach with values obtained
from two modules that match characteristic phrases, taking
advantage of this information. In one such module, char-
acteristic phrases are identified with a substring matching
algorithm. In the other one, they are identified by counting
the occurrences of frequency n-grams in the phrase.

The other important contributions by Pandey et al in-
clude two heuristics to improve the transcription of Indian
classical music: the hill peak heuristic and the note dura-
tion heuristic. As mentioned, Indian music has a lot of mi-
cro tonal variations which makes even the monophonic note
transcription a challenging problem [17]. The two heuristics
proposed in their approach try to get through these micro
tonal fluctuations in attaining a better transcription. The hill
peak heuristic states that a significant change in the slope of
a pitch contour (or the sign reversal of such slope) is closely
associated with the presence of a note. The note duration
heuristic considers only the notes that are played for at least
a certain span of time. The approach was tested on two raa-
gas. Table 2 shows the results obtained by using HMMs
alone, and by complementing the models with characteristic
phrase matching. Not much can be said about the reliability
of the features they used since the number of classes con-
sidered were just two. But the advantage of characteristic
phrase matching is evident.

Sinith et al [30] also used HMMs of raagas to search for
musical patterns in a catalogue of monophonic Carnatic mu-
sic. They build models for 6 typical music patterns corre-
sponding to 6 raagas (they report a 100% accuracy in iden-
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Raaga Samples HMM HMM +
Phrase matching

Yaman Kalyan 15 80% 80%
Bhupali 16 75% 94%
Total 31 77% 87%

Table 2. Accuracy of raaga identification reported in [17].

tifying an unknown number of tunes into 6 raagas). HMMs
are also used by Das and Choudary [6] to automatically gen-
erate Hindustani classical music.

Chordia and Rae [3] use pitch class profiles and bi-grams
of pitches to classify raagas. The dataset used in their sys-
tem consists of 72 minutes of monophonic instrumental (sa-
rod) data in 17 raagas played by a single artist. Again, the
harmonic product spectrum algorithm [15] is used to extract
the pitch. Note onsets are detected by observing the sudden
changes in the phase and the amplitude of the signal. Then,
the pitch-class profiles and the bi-grams are calculated. It
is shown that bi-grams are useful in discriminating the raa-
gas with the same scale. They use several classifiers com-
bined with dimensionality reduction techniques. The feature
vector size is reduced from 144 (bi-grams) + 12 (pitch pro-
file) to 50 with principal-component analysis. Using just the
pitch class profiles, the system achieves an accuracy of 75%.
Using only bi-grams of pitches, the accuracy is 82%. Best
accuracy of 94% is achieved using a maximum a posteriori
rule with a multi-variate likelihood model. Comparison to
other classifiers is shown in [3].

2.3 Unexploited properties of raaga

2.3.1 Gamakaas

In Carnatic music the various forms of pitch movements
are together called gamakaas. A sliding movement from
one note to another or a vibrato are examples of gamakaas.
There are various ways to group these movements, but the
most accepted classification speaks of 15 types of gamakaas.
Gamakaas are not just decorative items or embellishments,
but very essential constituents of a raaga [9]. Each raaga
has some characteristic gamakaas. Thus, the detection of
gamakaas is a crucial step to model and identify raagas.

A gamakaa is often represented using discrete notes, but
it does not necessarily mean that one plays them using dis-
crete steps. The representation is only a handy expression
of a more continuous sounding pattern, which is difficult
to represent on the paper. A gamakaa is almost always a
smooth change in the dynamics of a pitch contour. Similar
concepts are used to describe the pitch inflections in Hin-
dustani music [19]. Owing to their tremendous influence on
how a tune sounds, the gamakaas and the related pitch in-
flections in Hindustani music are often considered the soul

of Indian classical music.
There are two major issues that make identifying a gama-

kaa a challenging problem. First, it requires a very precise
pitch transcription. Second, the variations found for differ-
ent artists in performing a gamakaa complicate it further.
Krishnaswamy [14] and Subramanian [33] report such vari-
ations across different artists performing the same gamakaa.
They also propose some theoretical guidelines to resolve the
second problem to some extent. These variations should
be exploited in performers’ computational modeling, a field
that lacks much research in the case of Indian classical mu-
sic.

2.3.2 Various roles played by the notes

In a given raaga, not all the notes play the same role. Though
two given raagas have the same set of constituent notes, their
functionality can be very different, leading to a different
feeling altogether [34]. For example, some swaras occur
frequently, some are prolonged, some occur either at the be-
ginning or the end of the phrases, etc. In addition, there are
alankaras, patterns of note sequences which are supposed to
beautify and instil feelings when listened to.

Though emotion is a subjective issue, it gets into almost
every discussion involving raagas. That is because each
raaga is said to evoke characteristic emotions. To test this
hypothesis, Chordia and Rae [4] have conducted a survey
to check whether Hindustani raagas elicit emotions consis-
tently across listeners. Positive results are reported, jointly
with the musical properties like relative weight of the notes,
which partially explain the phenomenon. Koduri et al [11]
have conducted a similar survey with Carnatic raagas. Though
not as significant as the pattern reported by Chordia et al, the
results indicate that Carnatic raagas elicit emotions which
are consistent across listeners. Wieczorkowska et al [35]
tests if raagas elicit emotions, and also arrive at a mapping
between melodic sequences of 3 or 4 notes and the elicited
emotions. Their work suggests that different compositions
in the same raaga might elicit different emotions, what is
consistent with the observations made by Koduri et al [11].
Wieczorkowska et al note that these melodic sequences are
related vaguely to the subjects’ emotional responses. Anoth-
er interesting observation is the significance in the similar-
ity between the responses of people from various cultures,
which is consistent with the observations made in a previous
study conducted by Balkwill et al [1].

3. OPEN ISSUES: GAMAKAAS, TAALAS,
INSTRUMENTS AND IMPROVISATION

Little research has been carried out on Carnatic music and
even less on the specific characteristics that makes it so spe-
cial. Few proposed computational approaches have focused
on raaga recognition and the results are quite preliminary
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given that the data used is not representative of the exist-
ing variety of raagas. The high accuracies reported might
be due to the limited number of raagas used and the small
sizes of the datasets. Moreover, important properties of the
raagas, like their specific use of gamakaas, have not been
exploited yet, and issues beyond recognition have neither
been approached. We hypothesize that, as more represen-
tative datasets are gathered, the features used will not be
sufficient to discriminate the raaga classes. Features such as
pitch-class profiles and pitch-class dyad distributions infer
partial information about the raagas. But the other roles of
notes are not evident, which need to be exploited. Symbolic
scores can also be used for building more complex models,
especially to model the characteristic melodic movements
of particular raagas.

While raaga is the fundamental concept related to melody,
taala is the fundamental concept related to rhythm [34]. A
taala is a rhythmic cycle, which is divided into specific un-
even sections, each of them subdivided into even measures.
The first beat of each taala section is accented, with notable
melodic and percussive events. The characteristics of a taala
are related to the main instrument used to emphasize the
rhythmic aspect in a song, the mridangam. Understanding
the acoustics of the mridangam and how it is played, is fun-
damental to model the taalas. Sambamoorty [24] lists all
taalas and provides the description for each. The recog-
nition of the different types of strokes to play the mridan-
gam, bols, is an open topic. Current MIR research on drum
transcription uses small numbers of drum stroke classes and
each class is associated with a specific (single) drum, usu-
ally based on the typical western drum set. With mridan-
gam, multiple bols are associated to each drum, and given
that is a tuned instrument, the recognition of the bols have to
take into account both timbre and pitch information. Some
work has been done on the recognition of bols in Hindus-
tani music, with the tabla [8] [5], but no research has been
carried out in Carnatic music, with the mridangam. There
is also no research focusing on the recognition or classifi-
cation of taalas. As the musician always tries to embellish
the taala, there is a strong variation from performance to
performance, and the rhythmic complexity obtained is enor-
mous. The main goal would be to gain insensitivity to these
variations in order to classify taalas or, otherwise, to model
these variations for understanding performance and impro-
visation. For this research we need to use top-down or other
contextual information to make sense of the audio data, for
example there is a well-defined structure to improvisation
which should be exploited [9].

We have reported on previous work that has verified whe-
ther raagas elicit emotions and tried to map the musical fea-
tures which are responsible for such phenomenon. Besides
the note sequences, another important aspect of Indian clas-
sical music which could play a crucial role in eliciting emo-

tions is gamakaa. However, there are no studies which re-
port their effect so far. The kind of instruments used and the
rhythmic aspects also need to be accounted when dealing
with emotional aspects.

At the level of musical instruments there is practically
nothing done. Physical modeling of their many non-linear
behaviours is quite complex and the lack of instrument stan-
dardization does not help. Some research has been done on
modeling north-Indian instruments like the tabla and sitar
[10] and there have been a few attempts in developing sound
synthesis systems [32]. The timbre of the tambura is at
the basis of the Indian sound. It has a special overtone-
rich sound, a sustained ”buzzing” resulting from the wide
and arched bridge on which the strings rests and of the cot-
ton thread placed between the strings and the bridge. This
type of string termination results in a quite complex acoustic
system first discussed by Nobel Prize winning physicists C
V Raman [20] and for which current F0-detection methods
perform very poorly.

The performance practice tradition has not been studied
at all. Music performance is mainly learned by imitation,
without much use of symbolic representations. The vari-
ability in performances of the same song is quite large, es-
pecially due to the importance of improvisation. The same
composition sung by two artists can be different in many
musical and expressive facets. These differences may chal-
lenge the version identification methods developed for west-
ern commercial music. In addition to the compositional
forms, there are many improvisatory forms that are perfor-
med with well-defined structural criteria [9].

Through the article we have mentioned a number of char-
acteristics of Carnatic music that deserve to be studied. Gi-
ven that this music tradition is so different from the ones
used to develop the current computational methodologies,
there is a need to deal with some more fundamental issues
related to music information processing. We need to study
how the musical concepts and terms in Indian music are un-
derstood, specifying proper ontologies with which to frame
our work. Also the cultural and community aspects of the
music are so important that, without studying them, we will
not be able to develop proper musical models. In summary,
to approach the computational modeling of Carnatic music,
making justice to its richness, it is fundamental to take a
cultural approach and, thus, take into account musicological
and contextual information.
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ABSTRACT

The paper describes a new database, which currently con-
sists of 64 songs encompassing approximately 6600 notes,
and a system, which uses Variable-Length Markov Mod-
els (VLMM) to predict the melodies in the uzun hava (long
tune) form, a melodic structure in Turkish folk music. The
work shows VLMMs are highly predictive. This suggests
that variable-length Markov models (VLMMs) may be ap-
plied to makam-based and non-metered musical forms, in
addition to Western musical traditions. To the best of our
knowledge, the work presents the first symbolic, machine
readable database of uzun havas and the first application of
predictive modeling in Turkish folk music.

1. INTRODUCTION AND MOTIVATIONS

To date, most computational research in music has focused
on Western music. In order to further advance the state-
of-the-art in MIR, non-Western musics, with their unique
challenges should be considered [16]. Such research would
expand our knowledge and tools immensely, allowing us
to adapt and improve the previous work, and would open
up new paths for musical creativity, expressivity and inter-
action. Computational modeling of distinct musical gen-
res will deepen our knowledge of universal versus genre-
specific aspects of music and it will allow us to truly evalu-
ate the generality of various modeling strategies.

Musical improvisation is a complex phenomenon, and
there have been many attempts to describe and model it
[24]. Moreover, there is a lack of understanding the “mu-
sic” in the current MIR research with respect to how humans
actually perceive the it [27]. Previous work on Western
melodies showed that variable-length n-gram models and
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human judgments of melodic continuation are highly cor-
related [20]. We hope our research will give clues about
how we actually anticipate music [10].

2. BACKGROUND

2.1 Related Work

Computational modeling of musical styles is not a new topic,
and is a common tool in algorithmic composition [2, 7]. n-
gram modeling have been extensively used in algorithmic
composition [19], structure analysis [12], and music cogni-
tion [21]. This work is an adaptation of our expressive tabla
modeling research [4], which is based on multiple viewpoint
modeling [6].

Although information retrieval in world musics has only
recently started to attract attention in academia, there has
been substantial amount of research in the field [3,8,13,26].
In traditional Turkish music, n-gram modeling have been
previously used by Alpkoçak and Gedik to classify makams
[1].

2.2 Turkish Folk Music

Turkish folk music is a profound music style that is the prod-
uct of the emotions, thoughts, humor and social life of Turk-
ish people, and has been shaped by the historical events, ge-
ographical locations and migrations of the Turkish people.
The songs in Turkish folk music are typically anonymous,
which have been carried from generation to generation as
an oral tradition.

2.2.1 Basic Concepts in Turkish Music Theory

In Western music, an octave is divided into 12 intervals.
However, there is no theory that is completely agreed upon
in Turkish music due to differences in theory and practice;
the suggested number of pitches in an octave ranges from
17 to 79 [28]. Currently, education in makam based mu-
sic is based on the-highly-criticized [25] Arel-Ezgi-Uzdilek
theory. According to the theory, a whole tone is divided
into intervals named komas, which are used to discretize an
octave into 24 consequent tones [18]. However, in Turkish
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Fret # Note Fret # Note Fret # Note
0 A 6 C] 12 F]3

1 B[ 7 D 13 F]
2 B[2 8 E[ 14 G
3 B 9 E[2 15 A[
4 C 10 E 16 A[2

5 C]3 11 F 17 A

Table 1: The notes and the fret numbers in the lowest string
group of bağlama in the bağlama tuning. [2 and ]3’s indicate
the quarter tones.

folk music, there are typically 17 pitches played in an octave
due to selection of the instruments (Section 2.2.2), and the
music is indeed explainable by makams [25].

Makams can be depicted as the modes of Turkish music.
Makams are progressions (seyir) used to generate melodies
(nağme). Makams obey certain rules such as emphasizing
the modal centers, the use of key signatures and maintaining
context-specific ascending or descending seyirs [25].

Usul is ”the structure of musical events which are coher-
ent with respect to time.” Usul can be roughly translated as
”meter.” An usul can be as short as two beats or as long
as 128 beats, but it should always have at least one strong
and one weak beat. Turkish music also makes a rich use of
usulsüz (non-metered) progressions [18].

2.2.2 Uzun Hava

Uzun hava (long tune) is a semi-improvisational melodic
structure in Turkish folk music. The music is usually sad;
the lyrics (if any) are generally about the daily struggles
and emotions of the Anatolian people. All uzun havas are
usulsüz (without any meter), but there can also be usullü
(with distinct meter) sections in between.

The most common instrument played in uzun havas is
bağlama, a traditional Turkish instrument from lute family.
It has 17 notes in an octave [25] (Table 1). The strings are
grouped into three having 3, 2 and 2 strings from the highest
to the lowest. The instrument is a transposing instrument,
and the tuning (düzen) of these strings may change for dif-
ferent songs. Moreover, the frets are tied to the fretboard
(sap), so that microtonal adjustments in the temperament
can be easily made.

3. UZUN HAVA HUMDRUM DATABASE

For the experiments, the authors, with the help of Prof. Erdal
Tuğcular, have built the Uzun Hava Humdrum Database 1 .
A Humdrum based syntax called **kern format was chosen
for its readability and broad search, comparison and editing

1 The Uzun Hava Humdrum database is available online at
http://sertansenturk.com/uploads/uzunHavaHumdrumDatabase

capabilities [9]. In order to obtain the symbolic data, all of
the uzun havas with scores (a total of 123 scores) from The
Turkish Radio and Television Corporation’s (TRT) Turkish
Folk Music Database were chosen 2 . The TRT database
consists of the extended Western staff notations saved in .tiff
image format.

In the analysis of world musics, there are some intrinsic
problems of using symbolic notation such as accepting no-
tation as an adequate means of representing improvisation
(especially in oral traditions) and human errors in the tran-
scriptions [17]. Therefore, it might be problematic to make
deductions based on symbolic notations, and audio analysis
might be more appropriate. Yet, audio analysis is gener-
ally not as easy and straightforward as processing symbolic
data. Thus, it is more suitable take the initial steps in com-
putational modeling with human annotations, even if they
are not perfect.

The scores in the TRT database were read into Finale
2010 by using the built-in SmartScore 5 Lite, exported into
MusicXML 2.0 format, and then converted to **kern nota-
tion by using xml2hum [23]. After cleaning-up, grace notes,
fermatas, quarter tone accidentals and meter changes were
added to the **kern files. In order to comply with the stan-
dard humdrum notation, instead of creating our own sym-
bols, we have chosen to indicate the quarter tones as devia-
tions in cents in a second spine. In the TRT database, there
are accidentals, which have different koma deviations from
the same tone (B[2, B[3, B[4 etc.) However, as the most
common instrument played in uzun havas is bağlama and it
has 17 notes per octave, we have chosen to map all koma
values lying between semitones into a single quarter tone
with 50 cent deviation from the original note and match the
17-tone scale.

Usulsüz (non-metered) sections in uzun havas are treated
as cadenzas such that the sections start with ”*MX/X”, in-
dicating the following notes will be played in a non-metered
fashion and each note is proceeded by the letter ”Q”, which
is used to indicate grupettos in **kern format [9]. Finally,
the name, region, makam, accidentals and usul are printed
to the start of the file as comments.

Currently 64 songs have been encoded, with a total of
6613 notes, in 8 makams from different regions of Anatolia
and Azerbaijan. However, we should note that the makams
of the songs are biased towards Hüseyni (82 songs) and Hi-
caz (17 songs). This is expected as uzun havas are usually
played in Hüseyni [11].

2 The TRT Turkish folk music database is available on-
line at ”Türk Müzik Kültürünün Hafızası” Score Archive
(http://www.sanatmuziginotalari.com/), which is freely accessible via
http://devletkorosu.com/
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4. COMPUTATIONAL MODELING

Parallel to Conklin and Pearce’s research [6,20], the compu-
tational framework in this work incorporates multiple view-
points modeling with both long-term and short-term mod-
els. Variable-length Markov modeling (VLMM) is used to
model the sequences, and the training data is stored as Pre-
diction Suffix Trees. The evaluation of the system is done
by entropy-based calculations. The modeling and evalua-
tion framework was implemented in C++ as an external ob-
ject in Max/MSP along with supporting patches [4]. To the
best knowledge, this research is the first attempt to model
melodic sequences in traditional Turkish music.

4.1 Markov Modeling

A nth order Markov model is a causal, discrete random pro-
cess where the probabilities of the next state depends only
on the probabilities of the current and the previous states.
If the sequences are directly observable, i.e. the states are
visible, most of the problems can be directly solved by deal-
ing with transition probabilities. A (n− 1)th Markov model
can be represented by n-grams, which are subsequences of
length n. n-grams are a commonly used to probabilistically
model sequences of elements such as phonemes in speech,
letters in a word, or musical notes in a phrase [15].

Increasing the order of the Markov model might reveal
more details about the data stream. However, specific pat-
terns will get extremely uncommon as the order of the model
gets higher, even with very big data sets. Moreover, while
observing specific patterns is very helpful, integrating lower
order models to the system might also be useful to give some
regularity. In order to capture the generality of lower or-
der models and specificity of the sequences in higher order
models, we can use an ensemble of Markov models with
different orders to form a variable length Markov model
(VLMM). The variable length of memory in contrast with
fixed Markov model yields a rich and flexible description
of sequential data. In this work, to combine the predictions
from different orders, we are using a smoothing method we
termed 1/N . In the 1/N smoothing method, weights for
the n-th order model are given by 1

(maxOrder−n+1) , giv-
ing greater relative weight to predictions of higher orders.
Moreover, the VLMMs are efficiently stored in Prediction
Suffix Trees [22] (PSTs) for performance reasons (Figure
1).

While increasing order would allow us to obtain more
specific patterns, it also brings the so-called zero frequency
problem [5]. As the order n increases, the maximum num-
ber of possible n-grams would increase to nk, where k is
the number of the possible symbols. However, even in large
databases, most of the sequences will not be present or seen
very few. This sparsity issue brings a limitation to the or-
der of an n-gram. In order to deal with the zero frequency

Viewpoint Explanation
Duration Duration of the note
Note Midi number corresponding to the

note
NoteWCents Viewpoint denoting the ”true” sym-

bol in Turkish folk music in note
and cent deviation, i.e. the floating
midi number

Note⊗Dur Cross type combining note and du-
ration

NoteWCents⊗Dur Cross type combining note with
cent deviation and duration

Table 2: Viewpoints used in the experiment.

problem, an escape probability for each level of the trie is
reserved. The escape probability of each level is calculated
as e(n) = T1(n)

N(n) , where T1 is the number of symbols that
have occurred exactly once and N is the total number of ob-
servations so far. When an event, which has never occurred
before, is observed, the escape probability is returned in-
stead of 0.

4.2 Multiple Viewpoints

A multiple viewpoints system [6,20] separates a musical se-
quence to independent parallel representations such as pitch,
rhythm, instrument, key changes. The next sequence is pre-
dicted based on the information incorporated from these view-
points. Denoting music in multiple representations can be
useful to predict the next symbol when one of the repre-
sentations might be suitable for that particular sequence,
whereas another representation is useful in other situations.
As an example, scale degree would be very useful if all the
musical context is in the same key, however melodic interval
might prove more suitable if the predictions are required in
a transposed key. There can also be cross-type viewpoints,
which are generated by mapping the symbols in two or more
of the parallel representations into unique tokens: for exam-
ple for Notes⊗Durations; a quarter C, a quarter D, a eighth
C will all be mapped to different symbols. We use 5 view-
points in our experiment: Durations, Notes, NoteWCents,
Note⊗Dur and NoteWCents⊗Dur (Table 2).

A common limitation of training the predictive models
over large amount of data is that it renders the model too
general to effectively predict patterns specic to the current
song: if the song has a peculiar phrasing repeated through-
out, due to the phrase having a small probability in the train-
ing database, the patterns generated might be irrelevant. In
order to obtain predictions which are trained over a partic-
ular style and also sounds like a specific song, we use a
long-term-model (LTM) built on the entire training set and
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Figure 1: The ending of U0368 with the repeat sign taken out and the Prediction Suffix Tree representing the Markov models
of Notes-with-Cents viewpoint with a maximum order of 2, trained on these two measures. Bubbles on the top right and bottom
right of each node denotes the count and the probability of the node respectively.

a short-term-model (STM), which is trained on the current
song that is being evaluated. Only symbols up to the current
time are used in the STM; looking ahead is not permitted
when making a prediction.

When a prediction is to be made at a given time-step,
the LTM and STM are combined and normalized to a single
predictive distribution for each of the viewpoints. Given the
symbols, S = {s1, s2, ..., sN} forming the probability dis-
tribution, the probability distribution is weighted inversely
proportional to the entropy [6]. The weight of the proba-
bility distribution of a model is given as ωm , log2(N)

Hm
,

and the entropy of the probability distribution of each model
is defined as Hm , −

∑N
k=1 Pm(sk) log2(Pm(sk)), where

Pm(sk) is the probability of the symbol, sk, at the time step,
t.

5. EVALUATION

Leave-one-out cross-validation was performed on each of
the 64 songs in the Uzun Hava Humdrum database. During
the experiment, each song is picked as the testing data, and
LTM is trained over the other songs. STM is built while
the testing data is fed to the system. At each time step t,
the true symbol is noted. Then the predictions carried in the
previous step t−1 are checked, and, pt the probability of the
true symbol at t is recorded. From the probabilities, cross-
entropy [14] is calculated at the song level and through all
experiments.

Cross-entropy is a common domain-independent approach
used for evaluating the quality of model predictions, and it is
preferable to symbol recognition rate in predictive systems
[6, 20]. It is defined as: Hc = −

∑n
t=1 pt log2(pt)

3 . If the
probability distribution p is unknown, under the assumption
of uniform probability distribution (pt = 1

n , where n is the
number of predictions throughout the experiment), cross-
entropy can be approximated by Hc ≈ − 1

n

∑n
t=1 log2(pt).

Later cross-entropy is converted to average perplexity, which
is a measure of the number of choices that the model has
picked the true symbol [14]. Perplexity is defined as P =
2H . We also report median perplexity in addition to average
perplexity. The prior probabilities of the symbols are used to
obtain a baseline for evaluating perplexity results. In other
words, perplexity of the 0th order model LTM is used as the
baseline.

6. RESULTS

During the experiments, average and median perplexities
over the whole dataset and in the song-level are recorded for
STM, LTM and combined models with different orders 4 .
Table 3 shows that for order 14, STM always gives the most

3 Notice that the definition of cross-entropy is very similar to the entropy
definiton in Section 4.2. However, entropy is calculated from the proba-
bilities of each possible symbol at a given time, whereas cross-entropy is
calculated from the chosen predictions at each time step.

4 The complete set of results and significance tests is available at
http://sertansenturk.com/uploads/publications/senturk2011UzunHava
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Figure 2: Average perplexity for duration prediction using
LTM, STM and combined models for orders 0-29

confident results, while combining STM with LTM does not
actually help predictions. STM has an average perplexity
of 2.96, 4.13, 4.16, 6.68 and 6.69 for Duration, Note and
NoteWCents, Note⊗Dur and NoteWCents⊗Dur respectively.
Comparing to the average baseline perplexities (6.12, 11.9,
12.71, 171.76, 148.39), there is a remarkable decrease. The
power of STM is even more obvious in the cross types Note⊗Dur
and NoteWCents⊗Dur, where the LTM gives perplexities of
30.17 and 31.84.

Another interesting remark is adding the cent informa-
tion during prediction results in a slight increase in per-
plexity. For the 14th order model, the average perplexi-
ties in the STM are 4.13, 4.16 for Note and NoteWCents,
and 6.68, 6.69 for Note⊗Dur and NoteWCents⊗Dur respec-
tively, meaning the system can effectively predict notes with
quarter tone accidentals.

Figure 2 shows that the perplexity decreases monoton-
ically with increasing order, as expected. STM gives the
lowest perplexities in every order. It is also seen that there
is only a slight change in perplexity after order 14, therefore
checking back more than 14 durations is unnecessary. This
optimum order is true for all of the viewpoints.

When the average perplexities are checked song by song,
it was observed that some songs had exceptionally higher
perplexities for LTM and Combined models. Upon inspect-
ing, it was observed that the system was not able to predict
the notes properly in the songs with makams which are only
represented with a few songs. Similarly the songs which
included a lot of triplets, double dotted, 64th notes were
harder to predict. On the other hand, the latter problem
also affected STM, because the Duration viewpoint in these
songs presented a vast symbol space and thus smaller prior
values, rendering the next symbol harder to predict.

7. DISCUSSION

The results suggest that uzun hava form can be effectively
modeled using VLMMs. Between the perplexities obtained
from the LTM, STM and Combined models with a maxi-
mum order of 14 and viewpoint, there is a significant 5 de-
crease in confusion, and STM outperforms both LTM and
the Combined model. The success of STM over LTM sug-
gests the songs have strong local patterns. Strong patterns
are easy to be captured and predicted by the STM; how-
ever being a more general model, LTM cannot capture and
prioritize song-related patterns as good as STM. This result
was expected, because in uzun havas note and the duration
repetitions commonly occur during the improvised part and
melodies are generally repeated during vocal sections.

One of the most important observations is that extend-
ing the possibilities in target pitches from Western music
to Turkish music only slightly increases perplexity values.
When the quarter tones are included, i.e. the symbol in-
dicating both the quarter tone and the neighboring tone is
decoupled to create two unique symbols, almost all of the
counts accumulate on the one note. Additionally, by in-
specting perplexities note-by-note, it is easily seen that the
quarter tones such as B[2 and F]3, are easily distinguished
from their neighbor tones, i.e. B[ and F]. This shows
that transcriptions strictly obey the key signature of their
makams, and multiple viewpoint system is able to model
the context-specific pitches in makams, and distinguish the
notes from the neighboring notes present in Western music
virtually without any penalty. Indeed, the selection of mul-
tiple viewpoints might be crucial for the success. For ex-
ample, the cent deviation information cannot be used with-
out crossing pitch related viewpoints such as absolute note
or scale degree. For a generative system, decoupling them
might still give good average perplexities, however when the
note and the cent deviation are predicted independently from
each other, the results might introduce notes with wrong ac-
cidentals, disrupting the melodic intervals and the makam
structure.

In future work, we would like to include more viewpoints
incorporating fermata, usul, scale degree, melodic interval,
contour and try crossing these viewpoints, to obtain better
perplexities in prediction. We would also like to generate
Medium Term Models (MTM), each one of which will be
trained on a single makam. Testing will be carried with the
MTM of the same makam. Using this approach, we hope to
find and predict makam based patterns with better perplex-
ity. Also, as mentioned in Section 3, extending the frame-
work to variable-length hidden Markov Models (VLHMMs)
for audio analysis is a necessary step for a more relevant as-
sessment of uzun havas.

5 The claim means, it is statistically significant at the 0.01 level as deter-
mined by a multiple comparison test using the Tukey-Cramer statistic.
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Duration Note NoteWCents Note⊗Dur NoteWCents⊗Dur
Average Median Average Median Average Median Average Median Average Median

Priors 6.12 3.76 11.9 7.97 12.71 7.98 171.76 171.32 148.39 148.16
LTM 3.88 2.23 5.56 4.13 5.87 4.21 30.17 20.06 31.84 21.21

Combined 3.55 1.93 4.64 3.17 4.70 3.21 15.67 10.40 16.23 10.68
STM 2.96 1.94 4.13 2.96 4.16 3.00 6.68 5.30 6.69 5.30

Table 3: Average and median perplexities for Duration, Note, NoteWCents, Note⊗Dur and NoteWCents⊗Dur for order 14
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poration, Türk Müzik Kültürünün Hafızası Score Archive and
the numerous musicians, transcribers and archivers for their
efforts in building the TRT Turkish folk music database which
made this research possible. We would also like to thank
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ABSTRACT 

In this study, a system for Iranian traditional music Dastgah 

classification is presented. Persian music is based upon a set 

of seven major Dastgahs. The Dastgah in Persian music is 

similar to western musical scales and also Maqams in 

Turkish and Arabic music. Fuzzy logic type 2 as the basic 

part of our system has been used for modeling the 

uncertainty of tuning the scale steps of each Dastgah. The 

method assumes each performed note as a Fuzzy Set (FS), so 

each musical piece is a set of FSs. The maximum similarity 

between this set and theoretical data indicates the desirable 

Dastgah. In this study, a collection of small-sized dataset for 

Persian music is also given. The results indicate that the 

system works accurately on the dataset. 

1. INTRODUCTION 

Music Information Retrieval (MIR) has grown in many fields 

but, there is still a significant gap between western and non-

western, especially middle-eastern, MIR. As mentioned by 

Downie et al. [15], it is one of the most important challenges 

for the second decade of International Society of Music 

Information Retrieval (ISMIR) to expand its musical 

horizons to non–western music. To reduce this gap, we 

develop a system for Iranian traditional musical Dastgah 

classification. 

The Dastgah concept in Persian music is similar to 

western musical scales and Maqams in Turkish and Arabic 

music. Middle-eastern music has not been considered in MIR 

studies largely, however, Gedik et al. [10] constructed a 

Turkish music Maqam recognition system based on the 

similarity between pitch histograms; and Heydarian et al. 

[16] described the Iranian musical Santur instrument and 

they also implemented an algorithm for the calculation of 

fundamental frequency. 

In this paper, we introduce a Dastgah recognition system 

based on the similarity between Interval Type 2 Fuzzy Sets 

(IT2FSs). Fuzzy logic is also used by Bosteels et al. [17] for 

defining dynamic playlist generation heuristics. Sanghoon et 

al. [18] also used fuzzy logic in a music emotion recognition 

system. Leon et al. [19] also modeled musical notes by fuzzy 

logic to integrate music tuning theory and practice. 

After feature extraction, the proposed system assumes 

each performed note as an IT2FS, so each musical piece is a 

set of IT2FSs.The maximum similarity between this set and 

theoretical Dastgah prototypes, which are also sets of 

IT2FSs, indicates the desirable Dastgah. Gedik et al. [10] 

used the songs of the dataset to construct the patterns, 

whereas in this study, the system makes no assumption about 

the data except that different Dastgahs have different pitch 

intervals. Figure 1 shows the schematic diagram of the 

system. We also show that the system can recognize the 

Dastgah of the songs of the proposed dataset with overall 

accuracy of 85%. 

 

Figure 1. Dastgah classification system. 

2. IRANIAN TRADITIONAL MUSIC 

Persian music is a very old eastern music and has had 

outstanding impacts on other eastern musical cultures like 

Central Asia, Northern Africa, Southern Europe and also the 

countries around the Persian Gulf. 

Iranian traditional music intervals consist of 24 equal 

Quartertones per each octave. This division first suggested by 

Vaziri [1]. He called half-sharp quartertone Sori and half-flat 

quartertone Koron. In practice, Sori and Koron are not 

exactly half-sharp or half-flat and can reside anywhere 

between two semitones. 

Persian music is based on a set of seven major Dastgahs: 

Shur, Segah, Chahargah, Homayun, Mahur, Nava and Rast-

panjgah. The Dastgah in Persian music is similar to the 

western musical scales (major and minor) and also Maqams 

in Turkish and Arabic music. Like western musical scales, 

Dastgah represents a specific pattern of the pitch ratios of 
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successive notes. Each Dastgah consists of some partial 

melodies, called Gushe, which are created according to 

Dastgah patterns; however, some of them are not compatible 

to those patterns; therefore, their tuning might be different 

since they are used for moving from one Dastgah to another 

one (modulation) or for making the performance more 

pleasant, like Salmak Gushe in Shur Dastgah. 

The arrangement of Gushes in each Dastgah during the 

performance is known as Radif which is presented by the 

masters of Persian music; such as Mahmud karimi’s Radif 

for vocal or Mirza-abdollah’s Radif for fret instruments. 

For representing each Dastgah, we prefer the cent scale to 

tempered western intervals (note, half note, etc.). As it is 

mentioned, Sori and Korons can be resided anywhere 

between two half notes. Better results will be obtained if the 

cent scale is used rather than dividing the octave into equal 

divisions (12, 24 etc.). The scale steps of each Dastgah 

according to Karimi’s Radif and Farhat [2] is shown in Table 

1. Dastgahs like Mahur and Rast-panjgah, and also Nava and 

Shur have the same tuning. 

Table 1. The scale steps for each Dastgah of Persian music. 

Dastgah Tuning Cents 

1.Chahargah (134,397,497,634,888,994,1200) 

2.Homayun (100,398,502,715,800,990,1200) 

3.Mahur&Rst. (208,397,497,702,891,994,1200) 

4.Segah (198,352,495,707,826,1013,1200) 

5.Shur&Nava (149,300,500,702,783,985,1200) 

3. PITCH DETECTION 

The proposed model for Iranian traditional music Dastgah 

recognition must be applicable on new and old songs. The 

majority of available old songs are converted to digital form 

from tape, so the white noise is an inseparable part of them, 

and we need a system to discriminate pitch form unpitched 

signals.  

In order to do this, SWIPE' algorithm [3] is used which 

can estimate the pitch and its strength at (discrete) time 𝑛 as 

the spectral similarity between the signal (in the proximity of 

𝑛) and a sawtooth waveform with missing non-prime 

harmonics and same (estimated)  pitch as the signal. The 

pitch vector is refined and classified to pitch/unpitched 

clusters using the method was presented by Camachao  [4]. It 

tracks the pitch strength trace of the signal and searches for 

clusters of pitch and unpitched sound according to the local 

maximization of the distance between the centroids. 

The result of using SWIPE' is shown in Figure 2. The 

pitches are retrieved from the vocal of Mahmud Karimi in 

Shur Dastgah. The system estimates the pitch of the signal at 

each 45 millisecond. The bold black circles are the pitch 

cluster centers which will be described in Section 4.1. 

Persian music is a center oriented music, as it shown in 

Figure 2 the vocalist starts with the Shahed (tonic) note, here 

about 180 Hz, and circulates around it during the 

performance and again backs to it. 

 
Figure 2. The pitches of vocal of Karimi in Shur mode. 

Circles are the pitches and the bold black circles are the pitch 

cluster centers. 

4. PREPROCESSING 

4.1 Note Segmentation 

First of all our system needs to recognize which musical 

notes are used during the performance; moreover, it is 

needed to eliminate the wrong estimated pitches. A special 

situation may occur when we use vocal as our raw data. As it 

is shown in Figure 2 at the beginning of each note, it takes 

some milliseconds that the vocalist achieves the desirable 

frequency of voice and also at the end of each note we have 

some irrelevant points. To omit the redundant points, we 

need to use a clustering method to discriminate the notes 

form irrelevant data. Subtractive Clustering [5] is used. 

This algorithm uses the data points, in time-frequency 

scale, as candidates for the centers of the clusters. Also, the 

number of clusters is not needed to be predefined. Since each 

point of data (𝑋𝑖) is a candidate of clusters centers, a function 

for measuring the density in  𝑋𝑖   is defined as 

𝐷𝑖 =  𝑒𝑥𝑝  −
 𝑋𝑖−𝑋𝑗 

2

𝑟𝑎
2 

2  𝑛
𝑗=1 ,                       (1) 

Where 𝑟𝑎  is a positive constant representing a neighborhood 

radius, thus a data point with many neighboring data points 

will have a high potential value. After computing the 

potential value of every data point, we select the data point 

with the highest potential value as the cluster center. Let 𝑋𝑐1
 

to be the location of the first cluster center, then the potential 

of each data point (𝑋𝑖) will be revised as 

𝐷𝑖 = 𝐷𝑖 − 𝐷𝑐1
𝑒𝑥𝑝  −

 𝑋𝑖−𝑋𝑐1 
2

𝑟𝑏
2 

2  ,                   (2) 

Where  𝐷𝑖  and 𝐷𝑐1
 is the potential value of  𝑋𝑖  and the first 

cluster center, respectively and 𝑟𝑏  is a positive constant 

which defines a neighborhood that has measurable reductions 

in density measure (typically  𝑟𝑏 = 1.5𝑟𝑎 ). Thus we subtract 

the amount of potential value of each data point as a function 

of its distance from the first cluster center. After revising the 

density function, the next cluster center is selected as the 

point having the greatest density value. This process 

continues until 𝐷𝑘 < 𝜀𝐷𝑐1 at the 𝑘th iteration, where ε is a 

small fraction. An algorithm is presented by Chiu [5] for 

finding the suitable amount of 𝜀. Figure 2 shows the 

extracted pitch cluster centers. Note that, each pitch cluster 
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center has two features (Time and Pitch). However, the pitch 

feature of each cluster center will be used in the next steps. 

4.2 Folding Notes 

It is convenient to fold all the extracted notes in one octave 

because the process of classification will be easier if we deal 

with one octave. The distance between A3 to A4 (220 Hz to 

440 Hz) is selected. We fold the note 𝑓𝑖  in the proposed 

octave by 

𝐹𝐿 𝑓𝑖 =

 
 
 

 
 

𝑓𝑖

2
𝑐𝑒𝑖𝑙  𝑙𝑜𝑔 2

𝑓𝑖
440 

,            𝑓𝑖 > 440  

𝑓𝑖 ∗ 2
𝑐𝑒𝑖𝑙  𝑙𝑜𝑔2

220

𝑓𝑖
 
,        𝑓𝑖 < 220

𝑓𝑖  ,                        𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

   .             (3) 

After that, all the notes will be translated into cents with 

respect to 220 Hz. In order of brevity, it is not included here. 

4.3 Post-Clustering 

After folding notes in one octave, Mahalanobis distance [6] 

is applied to recognize which point on the reference octave 

corresponds to each musical note. Little et al. [7] also used 

this method for note segmentation of a query by humming 

system. 

We find the distance between adjacent frames in the 

sequence using the Mahalanobis distance measure, Shown in 

Eq. (4). Given a frame 𝑝𝑖 , we assume a new note has begun 

wherever the distance between two adjacent frames 𝑝𝑖  and 

𝑝𝑖+1 exceeds a threshold, T 

 (𝑝𝑖 − 𝑝𝑖+1)𝑀−1(𝑝𝑖 − 𝑝𝑖+1),2
>T → new note      (4) 

Where the matrix 𝑀 is a covariance matrix, which calculated 

from the variance within a rectangular window around the 

frame 𝑝𝑖  as 

𝑀 𝑝, 𝑝 =
1

2𝜏
  𝑝𝑘 − 𝑝  𝑝𝑘 − 𝑝 𝑖+𝜏
𝑘=𝑖−𝜏 ,                (5) 

Where 𝜏 is the size of a window surrounding the current 

frame and the average for 𝑝, 𝑝 are calculated over this 

window. 

The amount of T is set according to the quarter notes of 

Persian music, about 0.22, and a small window size for 

calculating the matrix 𝑀(𝜏 = 4 frames) is used. The result of 

this process is shown in Figure 3 which the performed notes 

of Hoseyni Gusheh in Shur mode based on Karimi’s vocal 

are classified. The green thick lines and dashed red lines are 

the beginning and the end of each note, respectively. 

 
Figure 3. Clustering notes within one octave. 

5. FUZZY LOGIC TYPE 2 AS DASTGAH 

CLASSIFIER 

5.1 Interval Type 2 Fuzzy Sets 

Type-2 fuzzy logic is an extension of type-1 fuzzy logic that 

first was introduced by Zadeh [8]. It can describe the 

uncertainty associated with our data when it is vague or 

incomplete, effectively. A special kind of type-2 fuzzy set, 

IT2FS, is used as the basic element of the classifier. IT2FSs 

include a secondary membership function to model the 

uncertainty of exact (crisp) type-1 fuzzy sets.
1
 

An IT2FS in the universal set 𝑋, denoted as 𝐴 , can be 

expressed as     

𝐴 =  𝜇𝐴 𝑥∈𝑋
(𝑥)/𝑥 =    𝑓𝑥(𝑢)/𝑢

𝑥∈𝐽𝑥
 /

𝑥∈𝑋
𝑥𝐽𝑥 ⊆  0,1 , (6) 

Where 𝑓𝑥(𝑢) is the secondary membership function and 𝐽𝑥  is 

the primary membership of 𝑥 which is the domain of the 

secondary membership function [9]. Figure 4 shows this 

region. The shaded region bounded by an upper and lower 

membership function is called the footprint of uncertainty 

(FOU). The FOU of 𝐴  can be expressed by the union of all 

the primary memberships as 

𝐹𝑂𝑈 𝐴  =  𝐽𝑥∀𝑥∈𝑋 =   𝑥,𝑢 :𝑢 ∈ 𝐽𝑥 ⊆  0,1  ,       (7) 

The upper membership function (UMF) and lower 

membership function (LMF) of 𝐴  are two type-1 Fuzzy 

Membership functions that bound the FOU. The UMF 

denoted by 𝜇 𝐴  𝑥  is associated with the upper bound of 

FOU, and the LMF denoted by 𝜇𝐴  𝑥  is associated with the 

lower bound of FOU. They can be represented as 

𝜇 𝐴 (𝑥) ≡ 𝐹𝑂𝑈(𝐴 )           ∀𝑥 ∈ 𝑋,                         (8) 

𝜇𝐴 (𝑥) ≡ 𝐹𝑂𝑈(𝐴 )∀𝑥 ∈ 𝑋.                         (9) 

 

Figure 4. An Interval Type 2 Fuzzy set. 

5.2 Fuzzifiers 

5.2.1 Theoretical Data and the Data From Signal 

We must manage the uncertainty associated with both each 

performed note and each note of the theoretical data. First; 

we must define a boundary for each note. We find it 

                                                           

1The membership value for ordinary fuzzy sets is a crisp number in [0,1]. 
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convenient to use a region of about 67 cents for each note. 

Gedik et al. [10] also used this region for the widths of 

Gaussians of theoretical patterns for Turkish Maqams. 

The mean of each segment, which are received from the 

post-clustering phase, is considered as a reference. Then, the 

upper bound 𝜓𝑘  and the lower bound 𝜙𝑘  of 𝑘th frame in 67 

cent scale are computed as 

𝜓𝑘 = 𝑚𝑖𝑛((𝜎𝑘 + 33.96),1200),                   (10) 

𝜙𝑘 = 𝑚𝑎𝑥  𝜎𝑘 − 33.96 , 1 ,                      (11) 

𝜎𝑘 =
𝑈𝑘−𝐿𝑘

2
+ 𝐿𝑘 ,                               (12) 

Where 𝑈𝑘  and  𝐿𝑘  are the beginning and the end of the 𝑘th 

segment, respectively. 

5.2.2 Fuzzifing Upper and Lower Bounds 

The upper and lower bounds of each note must be fuzzified 

in a [0,1] scale with a membership function. Considering one 

octave, there is a non-linier relation between the cent degree 

and frequency of each note that can be expressed as 

 𝑓 𝑥 = 𝐵 ∗ 2
𝑥−1200

1200 ,                          (13) 

Where 𝑥 is the degree of cent of any note and 𝐵 is the 

frequency of the final note of the proposed octave (e.g. 440 

Hz). If we assign the membership value zero and one to the 

first and the last note, respectively Eq. (13) is rewritten as 

𝑓 𝑥 =
 𝐴∗2 ∗2

𝑥−1200
1200

𝐴
− 1,                     (14) 

Where 𝐴 is the frequency of the first note of the proposed 

octave (e.g. 220 Hz). After simplification, Eq. (14) can be 

rewritten as 

𝑓 𝜓 = 2
𝜓

1200 − 1,                           (15) 

𝑓 𝜙 = 2
𝜙

1200 − 1.                           (16) 

Where 𝜓 and 𝜙 are the upper and lower bounds of any note, 

respectively. Both Eq. (15) and Eq. (16) can be considered as 

suitable type-1 fuzzy membership functions for fuzzifing 

musical notes. We call them Musical Fuzzy Membership 

Functions (MFMF).   

5.2.3 Creating Footprint of Uncertainty 

Two Gaussians are used for creating FOUs. Kreinovich et al. 

[11] also prove that Gaussian membership functions are the 

best choice for representing uncertainty in measurement. The 

constructed Gaussians are also mapped on MFMF to obtain 

more similarity degree between overlapped IT2FSs. 

The UMF and LMF of the FOU for a note with a domain 

from 𝜙 to 𝜓 are constructed as 

𝜇 𝐴  𝑥,𝜓 =  𝑒
− 𝑥−𝑐 2

2𝜎1
2

𝑋
𝑑𝑥 ∗ 𝑓 𝜓 ,                        (17) 

𝜇𝐴 (𝑥,𝜙) =  𝑒
− 𝑥−𝑐 2

2𝜎2
2

𝑋
𝑑𝑥 ∗ 𝑓(𝜙).                        (18) 

Where 𝑋 = [𝜙,𝜓], 𝑐 is the center of the [𝜙,𝜓]  boundary 

and 𝜎1
2and 𝜎2

2 are the standard deviations and 𝑓(𝜓) and 

𝑓(𝜙) are the fuzzification functions for fuzzifing the upper 

and lower bounds of each note with MFMF, respectively. 

The pattern of Shur and Nava scale is shown in Figure 5. 

 

Figure 5. Shur Dastgah prototype that consists of seven 

IT2FSs which are mapped on MFMF (dashed line). 

5.3 Fuzzy Similarity Measure 

A suitable Fuzzy Similarity Measure (FSM) is used for 

computing the degree of similarity between prototypes and 

unknown patterns. 

Basically, a robust FSM must satisfies four properties 

such as reflexivity, symmetry, transitivity and overlapping 

[13]. There are only six methods for computing the similarity 

between IT2FSs. Wu et al. [13] evaluated the six methods. 

Wu et al. [13] defined a new FSM, called Jaccard similarity 

measure (JSM), which satisfies the mentioned properties. It 

is also the fastest algorithm among the other FSMs [9]. It is 

used for our classifier and it can be defined as 

𝑆 (𝐴 ,𝐵 ) =
 𝑚𝑖𝑛 (𝜇 𝐴  𝑥 ,𝜇 𝐵 (𝑥))𝑑𝑥𝑋 + 𝑚𝑖𝑛 (𝜇𝐴 (𝑥),𝜇𝐵 (𝑥))𝑑𝑥𝑋

 𝑚𝑎𝑥 (𝜇 𝐴  𝑥 ,𝜇 𝐵 (𝑥))𝑑𝑥𝑋 + 𝑚𝑎𝑥 (𝜇𝐴 (𝑥),𝜇𝐵 (𝑥))𝑑𝑥𝑋

,     (19) 

Where X is the domain of the data (here 1 to 1200). 

5.4 Fuzzy Distance Measure 

The distance between two IT2FSs are computed as 

𝐷 (𝐴 ,𝐵 ) = 1 − 𝑆 (𝐴 ,𝐵 ),                            (20) 

Where 𝑆 (𝐴 ,𝐵 ) can be any FSM for IT2FSs [14]. 

The average distance between 𝑖th note (IT2FS) of any   

Dastgah prototype and the other notes from different 

Dastgahs is assigned as a weight to the 𝑖th note. This 

assignment helps to establish more discrimination between 

Dastgahs. It also indicates the degree of the uniqueness of 

each specific note. A constant weight (0.10) is assigned to 

the seventh and common note of each Dastgah. The assigned 

weight to each note is shown in Table 2. 

5.5 Fuzzy Weighted Average 

Fuzzy Weighted Average (FWA) is computed by Eq. (21). 

Mendel et al. [9] discussed about five different situations of 

the variables of Eq. (21) which make its computation 

different.  

MFMF 
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𝑦 =
 𝑥𝑖𝑤𝑖
𝑛
𝑖=1

 𝑤𝑖
𝑛
𝑖=1

,                                    (21) 

Where 𝑥𝑖  and 𝑤𝑖  are two crisp numbers, so Eq. (21) can be 

computed as simple as ordinary weighted average. 

Table 2. The assigned weight to each step of Dastgah scales. 

5.6 Dastgah Classification 

Assume that 𝑛 ∈  1,2,… ,𝑁  IT2FSs are extracted from the 

input signal and also 𝑚 ∈  1,2,… , M  IT2FSs for each 

Dastgah prototype is proposed. We also have 𝑙 ∈  1,2,… , 𝐿  

Dastgahs. Assume that  𝑍𝑚×𝑛
𝑙 = 𝑆  𝑀 ,𝑁   is a similarity 

matrix between 𝑚 IT2FSs of 𝑙th Dastgah prototype and 𝑛  

extracted IT2FSs from input signal where 𝑆  𝑀 ,𝑁   can be 

any fuzzy similarity measure for 𝑀  and 𝑁 . Let  𝑍 𝑚
𝑙 =

𝑚𝑎𝑥𝑛(𝑍𝑚×𝑛
𝑙 ) to be the maximum amount of each row of 

matrix 𝑍𝑚×𝑛
𝑙 , then we may write the process of classifying or 

assigning, the unknown pattern to the Dastgah prototypes as  

𝐿∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑙(𝐹𝑊𝐴𝑚 (𝑍 𝑚
𝑙 ,𝑊𝑚

𝑙 )),                (22) 

Where 𝑊𝑚
𝑙  is the assigned weight to each note (IT2FS) of 

each the Dastgah prototype. 

6. RESULTS 

6.1 Dataset 

Lack of reliable dataset for Persian music was one of our 

main problems, so for evaluating the system a dataset for 

Iranian traditional music is collected. The dataset consists of 

210 tracks from different Dastgah types. The Dastgah types 

and the number of recordings from each Dastgah type are as 

follows: 89-Shur & Nava, 30-Segah, 41-Mahur & Rast-

panjgah, 26-Homayun and 24-Chahargah. 

The collection was mainly based on vocal, and some 

monophonic musical pieces from some popular traditional 

instruments such as Santur, Tar, Setar and Kamancheh. The 

vocals were from three prominent Iranian vocalists such as 

Mahmud Karimi, 69 tracks, Abdullah Davami, 57 tracks, 

Muhammad Reza Shajarian, 20 tracks and also some other 

well trained vocalist. For a better evaluation, we also used 21 

tracks from Arabian Maqams.
2
 

6.2 Pattern Similarity 

The Persian musical scales are so similar to each other and 

                                                           

2Segah Maqam (Dastgah) is a common mode in Iranian and Arabian music.  
Ajam Maqam in Arabian music is also so similar to Iranian Chahargah scale. 

it is a considerable obstacle for Dastgah detection. Table 3 

shows the degree of similarity between our Dastgah 

prototypes based on JSM for IT2FSs. The Chaharga, Mahur 

and Rast-panjgah modes have the maximum similarity 

degree, about 73%, while Chahargah and Segah modes have 

the minimum similarity degree, about 43%. 

Table 3. The similarity degree between Dastgah prototypes. 

Pattern Sim.% A B C D E 

A.Chahargah 100 59.22 73.30 43.07 49.28 

B.Homayun 59.22 100 63.36 50.73 59.16 

C.Mahur&Rst. 73.30 63.36 100 60.25 56.19 

D.Segah 43.07 50.73 60.25 100 50.38 

E.Shur&Nava 49.28 59.16 56.19 50.38 100 

6.3 Evaluation 

For system evaluation, both original and segmented songs of 

the dataset are used. We segment each song of our dataset to 

several portions with arbitrary lengths. By evaluating the 

system with the song segments, it is found that about one 

minute of any song is necessary and sufficient for Dastgah 

detection, so we can use only one minute of a given song to 

make the process of Dastgah detection faster. 

The Dastgah recognition system can recognize the modes 

with overall accuracy of 85%. It is evaluated by computing 

the parameters such as Recall, Precision, Accuracy, F-

measure and Matthews Correlation Coefficient (MCC). Table 

4 shows the performance of the classifier according to above 

measures. The MCC is computed as 

𝑀𝐶𝐶 =
 𝑇𝑃∗𝑇𝑁 −(𝐹𝑃∗𝐹𝑁)

  𝑇𝑃+𝐹𝑃  𝑇𝑃+𝐹𝑁  𝑇𝑁+𝐹𝑃  𝑇𝑁+𝐹𝑁 
 ,            (23)                                      

Where TP: True Positive, TN: True Negative, FP: False 

Positive and FN: False Negative. 

The MCC is used as a measure of the quality of binary 

(two-class) classifications. It balances true and false positives 

and negatives. It can be used even if the classes are of very 

different sizes, like our dataset which the number of songs 

varies for each Dastgah. The MCC is also the best way for 

describing the confusion matrix. The confusion matrix of the 

classifier is presented in Table 5. 

Table 4. The results of the evaluation of the classifier. 

Dastgah Recal Precision Acc. F.mes. MCC 

Mahur&Rst.  90.24 90.24 96.19 90.24 0.87 

Shur&Nava 85.39 98.70 93.33 91.56 0.86 

Segah 83.33 83.33 95.23 83.33 0.80 

Homayun 80.76 75.00 94.31 77.77 0.74 

Chahargah 87.50 61.76 92.38 72.41 0.69 

Moreover Receiver Operating Characteristic (ROC) space 

is shown in Figure 6. The ROC space is a graphical plot of 

the recall, or true positive rate (benefits), versus false positive 

rate (costs). The best possible prediction method would yield 

a point in the upper left corner or coordinate (0,100) and the 

Dastgah Weight Of Each Scale Step 

1.Chahargah (0.78,0.45,0.07,1.00,0.76,0.20,0.10) 

2.Homayun (0.90,0.45,0.15,0.47,0.74,0.23,0.10) 

3.Mahur&Rst. (0.80,0.45,0.07,0.36,0.77,0.20,0.10) 

4.Segah (0.21,0.16,0.89,0.62,0.17,0.51,0.10) 

5.Shur&Nava (0.77,0.96,0.10,0.36,0.80,0.30,0.10) 
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worst prediction method is a point in the lower right corner 

or coordinate (100,0) of the ROC space, respectively. 

Table 5. Confusion matrix. 

 According to ROC space, confusion matrix and the 

mentioned measures, Dastgah recognition system is 

successful for the Dastgah types Mahur, Rast-Panjgah, Shur, 

Nava and Segah but, it is not very successful for the Dastgah 

types Homayun and Chahargah. The system can work 

precisely on small-sized dataset however, the dataset is 

needed to be expanded for a better evaluation of the system. 

 

Figure 6.ROC space. 

7. CONCLUSION 

We presented a method for Iranian traditional music Dastgah 

classification. The method works by assuming each piece of 

music as a set of IT2FSs and recognize the Dastgah of the 

song by finding the maximum similarity between IT2FSs of   

the song and Dastgah prototypes. The system makes no 

assumption about the data except that the Dastgahs have 

different scale steps. The method was shown to work on 

small-sized dataset accurately. 

Using Gaussian shaped FOUs; the Dastgah recognition 

system only supports intrauncertainty, which is the 

uncertainty a musician has about the scale steps. It is a 

candidate of future work to collect data from several 

musicians about tuning the scale steps of Dastgahs. Then use 

the method of liu et al. [12] for constructing the FOUs. After 

that, the system can support interuncertainty, which is the 

uncertainty that a group of musicians have about the scale 

steps [9]. Moreover, in the future work, the system must be 

equipped with a Gushe (or melody) recognition system.   
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ABSTRACT

The tuning system of a keyboard instrument is chosen so
that frequently used musical intervals sound as consonant
as possible. Temperament refers to the compromise arising
from the fact that not all intervals can be maximally con-
sonant simultaneously. Recent work showed that it is pos-
sible to estimate temperament from audio recordings with
no prior knowledge of the musical score, using a conserva-
tive (high precision, low recall) automatic transcription al-
gorithm followed by frequency estimation using quadratic
interpolation and bias correction from the log magnitude
spectrum. In this paper we develop a harpsichord-specific
transcription system to analyse over 500 recordings of solo
harpsichord music for which the temperament is specified
on the CD sleeve notes. We compare the measured temper-
aments with the annotations and discuss the differences be-
tween temperament as a theoretical construct and as a prac-
tical issue for professional performers and tuners. The im-
plications are that ground truth is not always scientific truth,
and that content-based analysis has an important role in the
study of historical performance practice.

1. INTRODUCTION

Recent years have seen a renewed interest in keyboard tem-
perament both in scholarly work [14] and in more popu-
lar literature [9]. The modern tuning literature is abundant
with detailed specifications of hundreds of different key-
board temperaments; some are directly taken from historical
manuscripts and some are based on reconstruction or specu-
lation [3,7]. A prescriptive approach taken by some scholars
and performers regards adherence to specific temperaments
as a desirable aim, and moreover, promotes the notion that
for particular styles or even particular pieces there exists the

E. Benetos is funded by a Westfield Trust research studentship (Queen
Mary University of London).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
© 2011 International Society for Music Information Retrieval.

“right” temperament [14]. An alternative approach, not less
common amongst tuners and performers, is based on the
view that since temperament is by definition a compromise,
it is primarily a practical matter, and allows room for devia-
tions from the underlying theoretical constructs. Rather than
mistakes, such deviations are considered creative solutions
to constraints arising from different instrument characteris-
tics, inharmonicity, stylistic preferences, and the combina-
tions of keys (tonalities) played in a concert programme.

Not all harpsichord CD sleeve notes specify the temper-
ament, but when they do, there appears to be a tendency
toward the former, prescriptive, approach. It is therefore in-
triguing to analyse such recordings and explore their adher-
ence to the advertised temperaments. In this work, we anal-
yse a dataset of over 500 harpsichord recordings for which
temperament information is specified on the CD sleeve notes,
aiming to shed some light on the relation between tuning
theory and tuning practice, and more generally, on the na-
ture of human “ground truth” annotations. We extend recent
work demonstrating the feasibility of temperament estima-
tion from solo harpsichord recordings [8,18]. The proposed
system uses a conservative NMF-based automatic transcrip-
tion algorithm followed by frequency estimation using quad-
ratic interpolation and bias correction. Multiple pitch es-
timates for each pitch class are combined with a median
weighted by the pitch salience output of the transcription
system. Results show significant gaps between advertised
and actual temperaments, which can be interpreted as evi-
dence for the more pragmatic approach to tuning.

2. BACKGROUND

2.1 Temperament

For the last two centuries, the scales used in Western mu-
sic have been built predominantly upon equal temperament.
This situation has been changing since the second half of the
twentieth century, as part of the revival of interest in histor-
ical performance practice of early music on period instru-
ments, resulting in increased attention to historical, unequal
temperaments. We give a brief introduction to temperament,
referring the reader to thorough treatments elsewhere [3, 7].

Explanations of musical consonance are based on the fact
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Figure 1. Circle of fifths representations for 2 temperaments
used in this paper. The deviation of each fifth from a pure
fifth (the lighter cicle) is represented by the positions of the
darker segments. The fractions specify the distribution of
the comma between the fifths (if omitted the fifth is pure).

that listeners prefer sounds with harmonic spectra and with-
out beats [17]. For combinations of harmonic tones, the sen-
sation of consonance correlates to small integer frequency
ratios between fundamental frequencies, and particularly ra-
tios of the form n+1

n where n ≤ 5 (corresponding to the
following pure intervals for successive values of n: octave,
perfect fifth, perfect fourth, major third and minor third).

The two most consonant intervals, the octave (ratio 2
1 )

and perfect fifth (ratio 3
2 ) correspond to intervals of 12 and

7 semitones respectively in Western music. From a given
starting note, either a succession of 7 octave steps or a suc-
cession of 12 perfect fifth steps will lead to the same note.
However, ( 3

2 )12 6= 27, so it is not possible for all of these
intervals to be pure simultaneously. Temperament refers to
the various methods of adjusting some or all of the fifth in-
tervals (octaves are always kept pure) with the aim of re-
ducing the dissonance in the most commonly used intervals
in a piece or programme of music. One way of represent-
ing temperament is by the distribution of the “Pythagorean
comma” (the ratio ( 3

2 )12 : 27 ≈ 1.0136) around the cycle
of fifths (see Figure 1). For example, equal temperament
diminishes all fifths by 1

12 of a comma relative to the pure
ratio 3:2. The other common way to represent temperament
is by the frequency differences of each pitch class from their
equal tempered counterparts, which is the representation we
use in our results and analysis.

Theoretical models of temperament ignore the fact that
stringed instruments are slightly inharmonic. This means
that a pure fifth, maximally consonant when the 3rd partial
of the lower tone coincides with the 2nd partial of the upper
tone, will not correspond to a fundamental frequency ratio
of 3

2 , as the partials are not precisely at integer multiples of
the fundamental. We have shown [8] that this effect is of
the order of a fraction of a cent for the harpsichord, which is
negligible. The modelling of inharmonicity in the frequency
estimation step is however important, and this is addressed
in section 5.

2.2 Precise Frequency Estimation

Despite the vast literature on frequency and pitch detection
(reviewed in [5, 12]), there is no general purpose method
suitable for all signals and applications. Many systems as-
sume monophonicity, stationarity and/or harmonicity, none
of which hold for polyphonic harpsichord music, and only
few papers address high-precision frequency estimation to a
resolution of cents, which we require for the present work.
The highest precision is obtained using the FFT with quad-
ratic interpolation and correction of the bias due to the win-
dow function [1], which outperforms instantaneous frequency
estimation using phase information [18]. Given a local peak
ap in the log magnitude spectrum log |X(n, p)| at frame n,
that is, ap−1 < ap and ap > ap+1, then the three points
(−1, ap−1), (0, ap), and (1, ap+1) uniquely define a parabola
with maximum at:

δ =
ap−1 − ap+1

2(ap−1 − 2ap + ap+1)
(1)

where −0.5 ≤ δ ≤ 0.5 is the fractional offset from the inte-
ger bin location p. This estimate is further refined using the
following formula for bias correction, based on the window
shape and zero padding factor [1, equations 1 and 3]:

δ′ = δ + ξzδ(δ − 0.5)(δ + 0.5) (2)

where δ′ is the bias-corrected offset in bin location, z is the
zero-padding factor, ξz = c0z

−2 + c1z
−4 is the bias cor-

rection factor and the constants c0 = 0.124188 and c1 =
0.013752 were determined empirically for the Blackman-
Harris window [1, table 1].

3. DATA

The dataset used for this study consists of 526 tracks from
22 CDs and the 48 tracks from [18] 1 . Generally, the CDs
present a rather balanced sample of recorded harpsichord
music, including famous and less famous players, and a
range of composers including J. S. Bach, D. Scarlatti, F. Cou-
perin, M. Locke, and J. P. Sweelinck. The CDs provide de-
tails of the temperament used for the recordings. A few pro-
vide details of the reference frequency as well (e.g. A = 415
Hz), but this is mostly not specified. In some cases the
temperament information is precise and unambiguous, as
in “Werckmeister III” or “Sixth comma meantone with the
wolf betweenB andG[”. In other cases it is underspecified,
such as with “Neidhardt 1724”, for which different versions
exist both in the original manuscripts and in the secondary
literature, or with “Quarter comma meantone” where the
wolf interval (i.e. the widened fifth) is not specified. Some
underspecification can be resolved by convention: although
“meantone” can refer to several different temperaments –
e.g. quarter comma or fifth comma meantone – the normal
use of “meantone” without any qualification refers to quar-
ter comma meantone.

1 For details, see http://www.eecs.qmul.ac.uk/~simond/ismir11
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4. TRANSCRIPTION

Our pitch estimation algorithm in Section 5 assumes that
the existence and timing of each note is known. There-
fore a transcription system for solo harpsichord was devel-
oped, using pre-extracted harpsichord templates, NMF with
beta-divergence [13] for multiple-F0 estimation, and hidden
Markov models (HMMs) [16] for note tracking. NMF with
beta-divergence is a computationally inexpensive multiple-
F0 estimation method which has been used for piano tran-
scription [6]. It has been shown to produce reliable results
for instrument-specific transcription, being highly ranked in
the MIREX 2010 piano-only note tracking task.

4.1 Extracting Pitch Templates

Firstly, spectral templates were extracted from three differ-
ent harpsichords, from the RWC musical instrument sounds
database [11]. For extracting the note templates, the constant-
Q transform (CQT) was computed with spectral resolution
of 120 bins per octave. The standard NMF algorithm [15]
with one component was employed for template extraction:
V ≈ wh, where V ∈ Rf×n is the input CQT spectrum,
w ∈ Rf×1 is the extracted spectral template, and h ∈ R1×n

is the component gain (since only one component was set, it
corresponds to the frame energy).

For template extraction, the complete harpsichord note
range was used (F1 to F6). Thus, three spectral template
matrices were extracted, W(1),W(2),W(3) ∈ Rf×61, corre-
sponding to each harpsichord model.

4.2 Multiple-F0 estimation

For the multiple-F0 estimation step, we used the NMF al-
gorithm with beta-divergence [13]. The basic model is the
same as in the standard NMF algorithm: V ≈ WH, where
W ∈ Rf×r, H ∈ Rr×n, and r is the number of compo-
nents. The beta-divergences (or β-divergences) are a para-
metric family of distortion functions which can be used in
the NMF cost function to influence the NMF update rules
for W and H. Since in our case the spectral template matrix
is fixed, only the gains H are updated as:

h← h⊗ WT ((Wh)β−2 ⊗ v)

WT (Wh)β−1
(3)

where v ∈ Rf×1 is a single frame from the test signal and
β ∈ R the divergence parameter, set to 0.5 for this work,
as in [6]. Although the update rule (Equation 3) does not
ensure convergence, non-negativity is ensured [6].

For the harpsichord transcription case, the spectral tem-
plate matrix was created by concatenating the spectral tem-
plates from all instrument models:

W = [W(1) W(2) W(3)] (4)

thus, W ∈ Rf×183. After the NMF update rule was applied
to the input log-spectrum V, the pitch activation matrix was

created by summing the component vectors from H that cor-
respond to the same pitch p:

H′p,n = Hp,n + Hp+61,n + Hp+122,n (5)

4.3 Note tracking

Instead of simply thresholding the pitch activation H′ as was
done in [6], additional postprocessing is applied in order to
perform note smoothing and tracking. Here, the approach
used in [4] was employed, where each pitch p is modeled by
a two-state HMM, denoting pitch activity/inactivity.

The hidden state sequence for each pitch is given byQp =
{qp[t]}. MIDI files from the RWC database [11] from the
classic and jazz subgenres were employed in order to esti-
mate the state priors P (qp[1]) and the state transition matrix
P (qp[t]|qp[t− 1]) for each pitch p. For each pitch, the most
likely state sequence is given by:

Q̂p = arg max
qp[t]

∏
t

P (qp[t]|qp[t− 1])P (op[t]|qp[t]) (6)

which can be computed using the Viterbi algorithm [16].
For estimating the observation probability for each active
pitch P (op[t]|qp[t] = 1), we use a sigmoid curve which has
as input the pitch activation hp = H′p,n from the output of
the transcription model:

P (op[t]|qp[t] = 1) =
1

1 + e−(hp−λ)
(7)

where λ is a parameter that controls the smoothing (a high
value will discard pitch candidates with low energy). The
result of the HMM postprocessing step is a binary piano-
roll transcription which can be used for evaluation.

For setting the parameter λ for the harpsichord transcrip-
tion experiments, we employed a training dataset consisting
of the 7 harpsichord recordings present in the RWC classical
music database [11]. As a ground truth for the recordings,
the syncRWC MIDI files were used 2 . Since for the present
system a conservative transcription with high precision is fa-
vorable, λ was set to 0.25, which results in a false alarm rate
of 5.33% with a missed detection rate of 46.49% (see [4]
for metric definitions). An example harpsichord transcrip-
tion is shown in Figure 2, where the piano-roll transcription
of recording RWC MDB-C-2001 No. 24b is seen along with
its respective MIDI ground truth.

5. PRECISE F0 ESTIMATION

Based on the transcription results, we search for spectral
peaks corresponding to the partials of each identified note.
For identification of the correct peaks, the tuning reference
frequency and inharmonicity of the tone also need to be es-
timated. For Baroque music, the tuning reference frequency
(expressed as the fundamental frequency of the note A4) is

2 http://staff.aist.go.jp/m.goto/RWC-MDB/AIST-Annotation/SyncRWC
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Figure 2. (a) The piano-roll transcription of J.S. Bach’s
Menuet in G minor (RWC MDB-C-2001 No. 24b). (b) The
pitch ground truth of the same recording. Units on the ab-
scissa correspond to 10ms.

usually lower than the modern standard of 440 Hz. For our
data set, the CD sleeve notes mention reference frequencies
of 405, 415 and 440 Hz, with the majority of CDs not giving
any value. This introduces a problem: without knowing the
score (or at least the key) of a piece of music, it is not pos-
sible to determine the reference frequency unambiguously,
since, for example, a note with F0 around 415 Hz could be
A4 (reference 415 Hz) or G]4 (reference 440 Hz).

The tuning frequency is ascertained by the following iter-
ative process: 40 frames are selected (equally spaced through-
out the piece) and the fundamental frequency estimation stage
described below is computed, using an initial value of 440
Hz for the tuning frequency and taking the inharmonicity es-
timates from measurements of other harpsichords [8]. The
frequencies are divided by their nominal values (given the
reference frequency and assuming equal temperament), and
a weighted average of the deviations is computed. The ref-
erence frequency is updated by the result and the process is
repeated for 5 iterations, or until it converges (the update is
less than one cent) if sooner.

The inharmonicity of each note is estimated jointly with
its fundamental frequency. For a string with (ideal) funda-
mental frequency f0 and inharmonicity constant B, the fre-
quency fk of the kth partial is given by [10]:

fk = kf0
√

1 +Bk2 (8)

where the constants f0 and B depend on the physical prop-
erties of the string. Given any two partials of a note, it is
possible to solve for f0 and B, assuming the partial num-
bers are known. We compute these two parameters for each
pair of partials estimated below, and use a robust statistic,

the median over all frames and partial pairs, to estimate the
true values, using the inter-quartile range as an inverse mea-
sure of confidence in the estimates.

The fundamental frequency and inharmonicity of each
transcribed note are computed as follows:
1) Compute the STFT using the following parameters: fs =
44100 Hz, Blackman-Harris window with support size of
4096 samples (93 ms), zero padding factor z = 4 (N =
16384), and hop size of 1024 samples.
2) For each note w given by the transcription, compute an
initial estimate of the frequency fwk of partial k = 1...40
with equation 8, using the reference frequency computed
above, the inharmonicity estimate from [8], and assuming
equal temperament for the fundamental.
3) For each partial frequency, a local spectral peak in a win-
dow of ±30 cents around fwk is sought, and if found the
frequency estimate is refined as described in subsection 2.2.
4) Using the transcription, any overlapping partials are iden-
tified and deleted from the estimate, as they are likely to give
unreliable values. Partials are deemed to overlap if their fre-
quency separation is less than 3.03fsz/N [2].
5) For each pair of partials remaining, solve for F0 and B
using equation 8.
6) For each pitch class k, convert each frequency estimate
to cents deviation from equal temperament and return the
weighted median ĉk as the overall tuning value for the pitch
class, where the weights are given by the pitch activation
H′p,n (Equation 5). This gives a 12-dimensional temper-
ament vector, which can be compared with the profiles of
known theoretical temperaments. For simplicity we repre-
sent the pitch class k by an integer from 0 (C) to 11 (B),
corresponding to the MIDI pitch number modulo 12.

6. TEMPERAMENT ESTIMATION

Our temperament classifier recognises the following tem-
peraments: equal, fifth comma, Vallotti, quarter comma mean-
tone (QCMT), fifth comma meantone (FCMT), sixth comma
meantone (SCMT), Kellner, Werckmeister III, Lehman, Nei-
dhardt (1,2 and 3), Kirnberger (2 and 3) and just intonation.
We also recognise rotations of these temperaments, although
this is not a typical tuning practice for all temperaments, as
illustrated by the example of the Young II temperament, a
rotation of the Vallotti temperament, which is considered a
different temperament in its own right. Rotations are spec-
ified via the wolf interval where applicable (e.g. SCMT-FD
has wolf interval F]-D[, as in Figure 1), otherwise by the
number of semitones rotated (e.g. Vall+7).

Given the estimate ĉ = (ĉ0, . . . , ĉ11) and a temperament
profile ci = (ci0, . . . , c

i
11) for temperament i, we calculate

the divergence between estimate and profile, d(ĉ, ci):

d(ĉ, ci) =

11∑
k=0

uk(ĉk − cik − r)2∑11
j=0 uj

(9)

where uk =
∑
n

∑
p≡k mod 12 H′p,n is the weight for pitch
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class k, and r =
∑11
j=0 ui(ĉj−cij)/

∑11
j=0 uj is the offset in

cents which minimises the divergence and thus compensates
for deviations in the reference tuning frequency (pitch A4)
from the reference computed above in previous calculations.
A piece is classified as having the temperament iwhose pro-
file ci gives the least divergence d(ĉ, ci). We also consider
rotations of temperaments, ci,r, given by ci,rk = cim, where
m ≡ (k + r) mod 12, in order to deal with different posi-
tions of the wolf interval in meantone temperaments, as well
as the tuning ambiguity discussed in section 5.

7. SUMMARY OF RESULTS

The results are summarised in Table 1 3 . Column 1 is our
CD index, where letters are used to distinguish groups of
tracks with different temperament metadata. Column 2 shows
the annotated reference tuning, while the mean and stan-
dard deviation of the estimated reference tuning are given in
columns 3 and 4 respectively. Columns 5 to 8 give the an-
notated temperament, the average divergence d(ĉ, ci) from
this temperament, the most frequent highest ranked temper-
ament according to d(ĉ, ci), and the average difference in
divergence between the annotated temperament and the best
ranked temperament.

The results for tuning show agreement with the ground
truth values where they were available, with the exception
of CD 21, which had only 2 tracks at 440 Hz. The CDs gen-
erally show tuning consistency across all tracks, with high
standard deviations (> 2 Hz) being due to a bimodal dis-
tribution of tuning frequency (CD 18) and 5 outlier tracks
(CDs 2,7,19). Summarising by CD assumes fixed tuning for
all tracks, which is clearly not always the case.

The temperament results vary from close agreement to
the metadata (CDs 4,5,8,9,16,21,22) to moderate agreement
(e.g. CDs 15, 18) to disagreement (e.g. CDs 12,13, 17). An
example is shown in Figure 3. For a number of tracks it was
not possible to find a single “best fit”, as some temperaments
are only distinguished by a pitch class which does not appear
(or is not detected) within the piece. The large divergences
of CDs 2 and 19 are explained by the tuning frequency being
at the half-way point between two semitones relative to the
440 Hz reference assumed by the transcription algorithm,
making the transcriptions unreliable.

On CD 17 and some other tracks specifying QCMT, the
temperament was often closer to FCMT. This is an inter-
esting tendency, as two are fairly similar, with FCMT be-
ing milder (slightly larger major thirds and a smaller wolf
interval). It seems plausible that QCMT was intended but
then tempered to bring it (inadvertantly) closer to the less
extreme FCMT. However, the opposite tendency appears on
CD 3a. Werckmeister 3 is specified on five CDs, but only
fulfils the claim on two. The reason may be that Werck-
meister 3 is popular as a starting point for tuners while they
experiment and develop their own temperaments, or that it

3 It is not possible to fit all results into this paper. For more details,
please see: http://www.eecs.qmul.ac.uk/~simond/ismir11

Tuning Temperament
CD Not. Est. StD Notated Div. Estimated ∆Div.
1 417.6 0.2 Ordinaire Neid2
2 405 405.7 3.2 FCMT 21.8 Various 16.4
3a 416.8 0.2 SCMT-BG 3.3 FCMT-BG 2.5
3b 413.9 0.2 Kellner* 8.5 Various 1.2
3c 414.2 0.2 Kellner 3.3 Kellner 0.0
4b 416.9 0.3 FCMT-FD 1.1 FCMT-FD 0.0
5 415 417.1 0.9 QCMT 1.4 QCMT-GE 0.0
6 413.8 0.7 Late17 Vall+7
7 432.6 4.8 FCMT 7.6 Various 4.1

8b 416.8 0.4 QCMT 1.2 QCMT-GE 0.0
9 415 415.3 0.3 Neid 1.1 Neid1/2 0.0

10 415 416.5 0.4 Werck3 3.4 Various 1.7
11 415 416.6 0.6 Werck3 3.0 Various 0.9
12 415 415.3 0.2 Kirn3 11.1 Neid1 9.4
13 415 415.1 0.3 Kirn3 7.3 Neid1 5.9
14a (415) 412.7 0.3 QCMT 10.0 Various 7.0
14c (415) 435.2 0.2 QCMT 2.7 QCMT-GE 0.0
15 415.7 1.3 Werck3 3.4 Werck3 0.5
16 416.1 1.1 Werck3 0.0 Werck3 0.9
17 413.9 1.2 QCMT 6.0 FCMT 2.2
18 440.5 2.4 QCMT 5.0 QCMT-GE 2.7
19 440 447.6 5.6 QCMT 19.5 FCMT 15.2
20 412.9 0.6 Werck3 2.6 Various 0.8
21 414.5 1.6 FCMT 1.0 FCMT-GE 0.0
22 408.7 0.3 Lehman 1.1 Lehman 0.1
RH 415 415.5 0.8 Various 7.1 Various 0.3
PT 415 415.6 0.7 Various 0.1 All correct 0.0

Table 1. Summary of results, with columns for CD number,
notated reference tuning, estimated reference tuning, stan-
dard deviation across tracks of CD, notated temperament,
highest ranked temperament (Eqn 9), and average difference
in divergence d(ĉ, ci) between notated and highest ranked
temperaments. The last two rows refer to the data from [18].

is very close to other temperaments such as Kellner (note
the low value of ∆Div in each case).

Since we are claiming that CD sleeve notes are a ques-
tionable source of “ground truth”, we need an independent
means of ascertaining the reliability of our system. The bot-
tom row of Table 1 shows the results for 4 pieces recorded
with six different temperaments using the physical mod-
elling synthesiser Pianoteq [18]. Using the current approach,
these tracks were all classified correctly from the set of 180
possible temperaments (15 temperaments by 12 rotations).
Confidence in classification results can also be gained by
considering the divergence value and consistency of results
(i.e. if a number of related tracks are classified with the same
label and low divergence from the given temperament).

8. CONCLUSION

We have presented a method for analysing harpsichord tem-
perament directly from audio recordings, using an NMF-
based transcription system, followed by bias-corrected quad-
ratically interpolated short-time spectral analysis to estimate
partial frequencies, estimation of inharmonicity, deletion of
overlapping partials, and robust statistics weighted by the
pitch salience given by the transcription system. We anal-
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Figure 3. Estimated temperament profile (solid line, cir-
cles) compared with the temperament specified on the CD
(dot-dash) and that with least divergence from the estimate
(dotted line, crosses). In this case the data matches the Val-
lotti profile (d = 2.2) more closely than the specified Fifth
Comma Meantone (d = 17.1).

ysed a collection of CDs which provide metadata about the
tuning system, and found that while this information is mostly
correct, there were several cases in which another tempera-
ment matches the data more closely than the advertised one.
This is perhaps more surprising to a music theorist than to a
practising tuner or performer, reflecting the dichotomy be-
tween those who see temperament as a mathematical system
and those who have to retune their instrument during the in-
terval of a concert. This also raises an interesting issue about
the nature of human annotations and their use as “ground
truth”. The metadata provided with the CD is intended to
give an indication of the tuning system rather than scientifi-
cally accurate documentation, and we need to be discerning
in the use of metadata that has been collected for a purpose
other than scientific analysis or evaluation.
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ABSTRACT 

The approach called decomposition into autonomous and 
comparable blocks specifies a methodology for producing 
music structure annotation by human listeners based on a set 
of criteria relying on the listening experience of the human 
annotator [12]. The present article develops further a number 
of fundamental notions and practical issues, so as to facilitate 
the usability and the reproducibility of the approach. 

We formalize the general methodology as an iterative process 
which aims at estimating both a structural metric pattern and 
its realization, by searching empirically for an optimal com-
promise describing the organization of the content of the mu-
sic piece in the most economical way, around a typical time-
scale. 

Based on experimental observations, we detail some practical 
considerations and we illustrate the method by an extensive 
case study. We introduce a set of 500 songs for which we are 
releasing freely the structural annotations to the research com-
munity, for examination, discussion and utilization. 1 

1. INTRODUCTION 

Given its numerous applications, the automatic inference of 
musical structure is a key subject in MIR [1], which has been 
focusing significant research effort in the past years [2-10]. It 
has also triggered several studies [11,12] and projects [13,14] 
supporting this research with the investigation of methodo-
logical issues and the collection of annotated data. 

In this context, the structural description approach called de-
composition into autonomous and comparable blocks was 
recently introduced [12] in terms of general concepts, in-
spired from structuralism and generativism. It has been de-
signed to be applicable to a wide range of “conventional” 
music, including pop music. 

The present follow-up paper develops further this approach, 
with the purpose of facilitating the usability and the reproduci-
bility of the method. With hindsight resulting from our own 
annotation experience and from reactions of fellow scientists 
to our first paper, this new contribution provides more practi-
cal elements and a number of novel points in terms of prob-
lem statement (section 2), introduction of a structural metric 
                                                           
Permission to make digital or hard copies of all or part of this work for per-
sonal or classroom use is granted without fee provided that copies are not 
made or distributed for profit or commercial advantage and that copies bear 
this notice and the full citation on the first page.  
© 2011 International Society for Music Information Retrieval  
 

pattern as a central concept (section 3.4), reformulation of 
the former concept of musical consistency preservation (sec-
tion 4.1), clarification of the notion of affixes (section 4.3) 
and practical illustrations of the annotation process (sections 
5.2 and 6). This paper also announces the release of 500 an-
notated and partially commented music pieces in accordance 
with the proposed conventions. 

2. PROBLEM STATEMENT 

2.1 Levels of musical organization 

It is commonly agreed that the composition and the percep-
tion of music pieces rely on simultaneous processes which 
vary at different timescales. Similarly to [15], we consider 
the three following levels corresponding to three different 
ranges of timescales : 

• the low-level elements which correspond to fine-grain 
events such as notes, beats, silences, etc… We call this 
level the acoustic level and its time scale is typically be-
low or around 1 second. 

• the mid-level organization of the musical content, based 
on compositional units such as bars or hyper-bars or on 
perceptual units such as musical cells and phrases, rang-
ing typically between 1 and 16 seconds. We will refer to 
this level as the morpho-syntagmatic level. 

• the high-level structure of the musical piece, which de-
scribes the long term regularities and relationships be-
tween its successive parts, and which we will call the lev-
el of the semiotic structure, typically at a time scale 
around or above 16 seconds. 

The figure of section 6 provides an illustration of these three 
levels. Note that we use the term semiotic in a quite restricted 
scope, (compared for instance to that of Nattiez [16]) as de-
noting the high-level symbolic and metaphoric representation 
of musical content1. 

2.2 Semiotic structure 

What we consider as the semiotic structure of a music piece 
is something that may look like :  

A B C D E F B C D E G D E D E H 

                                                           
1 We thus avoid the term semantic, referring to some musical mean-
ing of objects (for instance, chorus, verse, etc…) : such a notion 
falls completely outside the scope of this paper. 
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thus reflecting : 

1) some sort of high-level decomposition/segmentation of 
the whole piece into a limited number of blocks (here 16 
blocks) of comparable size, and 

2) some form of similarity or equivalence relationship be-
tween blocks bearing identical labels (here, 8 distinct 
symbols) 

Providing a semiotic description for a music piece requires 
primarily the identification of the most adequate granularity 
(block size and number of blocks) which then conditions the 
inventory of labels. 

From the example below, choosing a finer granularity could 
lead to a sequence of labels such as: 

AA’BB’CC’DD’EE’FF’BB’CC’DD’EE’GG’DD’EE’DD’EE’HH’ 

where any symbol X is systematically followed by symbol X’, 
therefore yielding a rather redundant semiotic description. 

Conversely, a coarser granularity would require either the 
uneven grouping of the units into irregular segments (i.e. of 
more diverse sizes)  :  

A  BC  DE  F  BC  DE  G  DE  DE  H 

or a very misleading representation such as : 

AB  CD  EF  BC  DE  GD  ED  EH 

which completely hides the similarities existing between por-
tions of the piece which had identical labels at a lower scale. 

This example thus illustrates a simple case where there exist 
clearly a preferable granularity at which the semiotic level of 
the music piece can be described with some form of optimal 
compromise between : 

- The minimality of the set of labels 
- The informativeness of the sequence of labels 
- The regularity of the block size 

The goal of this work is to present a set of methodological 
principles for : 

1) identifying the most appropriate granularity for describ-
ing the semiotic structure, and  

2) locating as univocally as possible the corresponding 
block boundaries. 

In this article, the granularity referred to in item 1 is defined 
as the structural metric of the music piece and the actual bor-
ders of the segmental units (item 2) as the realization of the 
structural meter.  

The proposed process relies on the listening of a music piec-
es, but can be extended to music in written form (scores). 
However, note that scores may not be available and some-
times are even meaningless w.r.t. the type of musical content 
under consideration. 

3. BASIC CONCEPTS 

3.1 Definitions 

As exposed in the previous section, the hypothesis of this work 
is that the semiotic structure of “conventional” music pieces is 
built on structural blocks, characterized by the content of their 
musical layers. One of the aim of semiotic structure annotation 

is therefore to locate the block boundaries (with the convention 
that they are synchronized with the first beat of a bar). We call 
size the dimension of the blocks relative to a snap scale propor-
tional to that of the beat (see 3.3). 

We call structural metric pattern, the underlying high-level 
organization of the musical content which is the most ade-
quate for representing economically the semiotic level, and 
we assume that block boundaries rest on the (potentially ir-
regular) realization of that structural metric pattern. The an-
notation task thus consists in jointly inferring the structural 
metric pattern and its realization. 

3.2 Musical information layers 

Even though this is a simplified view of reality, we consider 
that a piece of music is characterized by 4 main reference 
properties, potentially evolving over time1 : 

• intensity (amplitude / sound level) 
• tonality/modality (reference key and scale) 
• tempo (speed / pace of the piece) 
• timbre (instrumentation / audio texture) 

We also consider that a piece of music shows 4 main levels of 
temporal organization : 

• rhythm (relative duration and accentuation of notes) 
• melody (pitch intervals between successive notes) 
• harmony (chord progression) 
• lyrics (linguistic content and, in particular, rhymes) 

These levels of description form 8 musical layers2.  

Because of their cyclic properties in conventional music, the 
levels of temporal organization are central to the determina-
tion of block boundaries, in our approach. Indeed, as ex-
plained in section 4.1, we assume that block boundaries coin-
cide with the convergence of cyclic behaviors taking place 
simultaneously in the 4 levels of temporal organization. 

On the opposite, blocks may globally differ in terms of inten-
sity, tonality, tempo or timbre but these properties may hap-
pen to change within a block without corresponding to a 
structural boundary.  

3.3 Block size 

A primary property of blocks is their size, which we describe 
in a custom unit that we call snap, and which is defined as the 
number of times a listener would snap his fingers to accom-
pany the music, at a rate which is as close as possible to 1 bps 
(beat per second). As opposed to the beat (which is a compo-
sitional notion), the snap is a perceptual unit. 

Although we may come to consider the blocks from a variety 
of perspectives during their identification, their ultimate de-
scription within the scope of this paper is their size in snaps. 
The definition of the snap requires further consolidation, 
since a tempo-invariant unit would be desirable. However, an 
evolution of the definition of the snap would not affect the 
structural segmentation per se, as the snap is only a measure 
of the block size. 

                                                           
1 In previous work, we identified 3 reference properties only, but we 
consider now that intensity should also be part of the list. 
2 These layers may not all be active simultaneously and some addi-
tional layers may be observed in some music pieces. 
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3.4 Structural metric pattern 

A fundamental assumption of the proposed method is based 
on the hypothesis that the semiotic structure can be described 
in reference to a structural metric pattern, i.e. a prototypical 
partition of the beat or the snap scale. As an example, a very 
common structural metric pattern is the repetition of blocks 
of 16 snaps (structural pulsation period Ψ = 16) 

The high-level structure of the music piece is governed by the 
structural meter but actual semiotic blocks result from the re-
alization of the structural meter and this realization may lead 
to blocks of irregular size. For example, even if the structural 
period of a piece is equal to 16, the size of some blocks may 
deviate from the prototypical value (for instance, 18). We de-
velop further the fact that, in a large number of cases, irregu-
lar blocks can be reduced to regular stems that conform to the 
structural metric pattern.  

The structural metric pattern is analogous to the bar, but op-
erates at a higher level : whereas the bar is the organizational 
entity of low-level elements such as beats and notes, the 
structural metric pattern governs the organization of mid-
level elements (bars, cells, phases, etc…). 

4. ANNOTATION CRITERIA AND NOTATION 

4.1 Detection of cycles (syntagmatic analysis) 

In conventional music, the various temporal organization lay-
ers tend to show (quasi-)cyclic behaviors, which we define as 
the recurrent return of the considered layer to some specific 
state or set of states1. For instance, rhythmic patterns general-
ly show a short-term recurrence which participates to the 
mid-level organization of the music piece, melodies tend to 
return to tonic or to exhibit particular intervals (depending on 
the piece), specific chords sequences conclude harmonic pro-
gressions (cadences), etc… 

We consider that, in conventional music pieces, there exist 
time instants for which the 4 levels of temporal organization 
exhibit some phase convergence towards their respective 
ends of cycles, which creates identifiable cues of the piece 
structure. In other words, block boundaries should corre-
spond to some form of recurrent convergence of all levels of 
temporal organization. 

These instants of convergence take very versatile forms, as 
they can be signaled in the music content by very diverse 
combination of structuring cues, such as a particular rhyth-
mic pattern combined with the return to a specific note or 
chord, the completion of a system of rhymes in the lyrics the 
conclusion of a carrure and a recurrent sound effect… 

Even though these cues and their combinations are partly con-
ventional (at least within a particular music genre), they gener-
ally vary from one piece to another and their identification is 
part of the empirical analysis conducted by the annotator. 

In our approach, cyclicity plays a central role for identifying 
structural blocks through the 2 ensuing properties : 

1) iterability : structural blocks can be looped to yield a 
consistent (larger) musical stream 

2) suppressibility : structural blocks can be skipped in the 

                                                           
1 Note that cyclic does not necessarily mean periodic, the latter be-
ing a stronger property. For example, the zero-crossing of a se-
quence of values form a set of cycles which may not be periodic. 

music piece without creating the perception of a discon-
tinuity in the remaining musical stream 

Indeed, if one thinks of a periodic signal, each period can be 
repeated indefinitely and can be removed from the signal 
without disrupting seriously the organization of the remain-
ing signal. This generalizes conceptually to quasi-cyclic pro-
cesses, as defined above. 

The property of cyclicity gives a founded ground for the syn-
tagmatic definition of structural blocks. It establishes more 
clearly the criterion formerly based on the preservation of 
“musical consistency” [12] and also brings additional sub-
stance to the concept of Constitutive Solid Loop [11]. 

The listener’s ability to identify iterable and suppressible 
segments in the music piece is a key point in the proposed 
analysis and it does not require the annotator to be able to ex-
press in musicological terms the actual properties of the 
structuring cues. 

When necessary, the analysis can be complemented by an 
explicit designation of the structuring cues, but attention must 
be paid that these cues should not be expected to be univocal-
ly associated to blocks boundaries : all structuring cues are 
not systematically observed at all segment borders and some 
cues can also be observed within block boundaries.  

4.2 Detection of similarities (paradigmatic analysis) 

The identification of actual block boundaries is further (or, in 
practice, simultaneously) carried out by performing paradig-
matic analysis on the musical content, for reinforcing and 
disambiguating the set of candidate borders hinted by the de-
tection of cyclic segments. 

It consists in searching for “repeating” patterns across the 
musical content, which are identical, similar or, more gener-
ally speaking, easy to explain economically relative to one 
another (for instance, transposition, change in the level of in-
strumental support, superimposition of a melodic motif, in-
sertion of a musical segment, …). 

As for the syntagmatic analysis of section 4.1, the locations 
of such paradigms do not coincide univocally with block 
boundaries : they only constitute additional cues of such 
boundaries. 

Note that the paradigmatic analysis performed at this stage 
calls for similar processes to those that are needed for label-
ing the segments. However, whereas the labeling stage re-
quires the determination of a global system of contrasts be-
tween segments, the extraction of paradigmatic structural 
cues simply requires pairwise comparisons of musical seg-
ments for the only purpose of identifying and locating candi-
date blocks. 

4.3 Regularity and reduction 

For many conventional music pieces, it can be assumed that a 
majority of blocks within the piece have a comparable size in 
snaps, hence corresponding to some structural pulsation peri-
od (Ψ). Blocks whose size is equal to the structural pulsation 
period are called regular blocks. 

Some blocks have a smaller size than Ψ, which can generally 
be interpreted as corresponding to a shortened realization of a 
regular block. This is especially true for half-size target seg-
ments, which can often be matched with the first or second 
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half of a regular block observed somewhere else in the piece. 
Alternatively such blocks may be considered as a half reali-
zation of the structural metric (this is often the case for pre-
chorus and bridges). 

In a significant number of cases, blocks are longer than the 
structural period. However, in these cases, they can often be 
reduced into a stem of size Ψ and an affix. An affix is a subset 
of snaps which can be viewed as having been inserted into a 
(regular) stem and affixes are therefore suppressible from the 
original block (but not necessarily iterable), i.e., the stem 
forms, on its own, an admissible block. If the insertion of the 
affix takes place at the beginning (resp. at the end) of the 
block, it is called a prefix (resp. suffix).  

Affixes are particularly easy to identify and locate within a 
block when there exist, somewhere else in the song, another 
block which corresponds to the realization of the stem alone.  
But sometimes, the stem has to be hypothesized based on 
more subtle considerations, because it is not attested alone in 
the piece (but, for instance, with a different affix). 

Frequent examples of suffixes are observed when for instance 
a block is extended by lengthening the last snap over 2 more 
snaps (resulting in some form of break), by doubling the dura-
tion values of the notes on the last 2 snaps of the block or by 
repeating the last 4 snaps twice (thus rendering an insistence 
effect). Affixes within blocks can be more tricky to detect, and 
may take versatile forms, for instance the repetition of a p-snap 
segment, a tonal excursion of a few snap or a segment with to-
tally different properties from the rest of the block. 

By convention, prefixes and suffixes should be of maximum 
size equal to half of that of the block (preferably strictly less) 
and they should not alter the harmonic valence of the block, 
i.e. the harmonic properties at the block boundaries 

4.4 Structural metric pattern notation 

To describe the structural metric pattern, we use the follow-
ing notation : 

n a constant stem size of n snaps throughout the piece 

{n1,n2}  2 stem sizes in the piece, n1 and n2, occurring in any 
order but in decreasing frequency (can be generalized 
to more than 2 values) 

(n1,n2)  a systematic alternance of stem sizes n1 and n2, starting 
with n1 (can be generalized to more than 2 values) 

These notations are superscripted with a star (n*, {n1,n2}
*, 

etc…), if the piece contains only within-blocks irregularities, 
or very few short blocks considered by the annotator as non-
representative of the dominant structure of the piece (in par-
ticular, in intros, outros, re-intros, etc…). If relevant, the an-
notator can combine further the notations, for instance 
{16,(12,8)}, but these needs are quite exceptional… 

In conventional pop music, the most common segmental struc-
ture is m x 16* (m being the number of blocks, which is itself 
usually close to 16), but pieces from the genre blues have usu-
ally block sizes based on 24 snaps. More complex patterns 
such as {16,12}, (16,8) or (16,16,8) happen to be observed. 

4.5 Block size notation 

Following are the corresponding notation conventions which 
we use to designate the size of (realized) blocks, in reference 
to a structural pulsation period of n snaps: 

 

[n+p] Insertion of a p-snap suffix after stem  
[p+n] Insertion of a p-snap prefix before stem  
[n&p] Insertion of a p-snap infix (somewhere) inside stem 
[p-n] Omission of p snaps at the end of stem 
[-p+n] Omission of p snaps at the beginning of stem 
[n\p] Omission of p snaps (somewhere) inside stem 
[n/2] Half-size block (undetermined place of missing half) 
[x] Undeterminable size (usually owing to a lack of snap) 

Sometimes, two structural blocks may overlap over p snaps, 
which we call block tiling. This is the case when the realiza-
tion of a new block starts while the previous blocks is still p 
snaps before its final boundary and continues in the mean-
time (for instance, in canons). It is also the case when some 
snaps function simultaneously as the end of a given block and 
the beginning of the next one. The notation convention for 
tiling situations is : [n-p [p] –p+n]. 

Note that the internal structure of blocks could be further 
specified by decomposing the block size into sub-blocks ac-
cording to paradigmatic properties within the block (for in-
stance 4x4 as the internal structure of a size 16 block), but 
this goes beyond the scope of the current paper. 

5. GENERAL METHODOLOGY 

5.1 Annotation process 

Based on the notions introduced in the previous section, the 
annotation of a music piece X can be understood as an (em-
pirical) joint estimation task, namely the determination of  : 

• The most likely structural metric pattern (M) for the piece  
• The most likely decomposition of the piece into a set of 

blocks (S), i.e. the realization of M. 

In practice, the annotator proceeds iteratively as follows : 

1. hypothetize a structural period Ψ, or (more generally) a 
structural metric pattern M from the listening of X 

2. (attempt to) decompose X into blocks following M, by 
introducing, if and only if necessary, irregularities (af-
fixes, irregular blocks) so as to satisfy cyclicity of 
blocks and to maximize similarities across blocks (resp. 
sections 4.1 and 4.2). 

3. consider possible alternatives to Ψ or M 

4. if such alternative(s) seem to be worth considering, re-
turn to step 2 and test the new hypothesis 

The understanding of step 2 is crucial to the proposed meth-
odology : at that stage, the annotator is actually trying to es-
timate the realization of M via the minimization of the neces-
sary distortion that M should undergo to make it match the 
properties of the actual musical content of X. 

Ultimately, among various hypotheses for M and the corre-
sponding decompositions, the annotator retains that which 
seems globally more economical for describing the semiotic 
level, i.e. the solution which results in a satisfactory com-
promise between : 

• the simplicity and typicality of the structural metric 
• the regularity of the decomposition 
• the non-redundancy of successive blocks 
• the closeness of the structural period(s) to a reference val-

ue (currently set to 15 seconds) 
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Figure 1 : illustration of the case study of section 6.     

5.2 Hypothesizing the structural metric pattern 

5.2.1 A priori properties and typical values 

Previous work [12] has put forward arguments based on the 
“Predictive Information Context” (PIC) suggesting that an a 
priori  economical description of the structure of a music 
piece is based on segments of typical length equal to the 
square root  � � √�   of 
the length of the piece. In 
the annex section, we pro-
pose complementary con-
siderations based on in-
formation theory concepts, 
which strengthen this 
point. 

We assume that structural 
blocks of approximate size 
√�   happen to be a rea-
sonable initial assumption 
when estimating the struc-
tural pulsation period. 
However, the actual analy-
sis of the musical content 
may lead to a final (a pos-
teriori) result which devi-
ates significantly from this 
initial guess. 

On the basis of an average song length of 240 seconds, √� 
falls in the range of 15.5 s. With a snap around 1 s, the size of 
a block will therefore typically be of 16 snaps. Here again, 
this property should only be considered an a priori hypothe-
sis (the one to start with). 

From these consideration, a canonical model which summa-
rizes all the a prioris can be laid down : it consists in 16 
blocks of 16 snaps of 1s each. For a given piece, the structur-
al metric pattern and its realization are thus searched as the 
minimal deviation from this canonical model, which enables 
a structural description compatible with the musical content. 

5.2.2 Estimating plausible snap and structural period(s) 

By definition, the snap is the multiple of the beat correspond-
ing to a duration as close as possible (in logarithmic scale) to 
1 s (in fact, it usually corresponds to the downbeat, but not 
always). Identifying the snap is, in general, rather straight-
forward from the listening of parts of the piece, preferably 
away from the beginning or the end, which may exhibit par-
ticular beat and tempo properties. Depending on the type of 
bar, admissible intervals for the snap are  : [0.71, 1.41] for 
binary bars and [0.58, 1.73] for ternary ones (for more com-
plex, odd bars, the snap can be unevenly alternating between 
different numbers of beats). 

Once the snap is determined, plausible values of the structur-
al pulsation period(s) are hypothesized by listening to the 
piece and considering in priority its most salient and steady 
parts : typically the chorus (if any), the developments of re-
curring motifs or phrases, the parts of the piece perceived as 
homogeneous, etc… From these segments, the annotator can 
generally infer rapidly one or two plausible values of pulsa-
tion period(s), from which he/she will start a more compre-
hensive analysis of the piece, looking for particular patterns 
and locating irregularities. 

Given the central role played by the canonical model, the 
value of 16 is usually investigated in priority, unless obvious 
evidence in the musical content direct the annotator towards 
another hypothesis (for instance, 24 in many pieces of blues). 

6. A CASE STUDY 

Figure 1 illustrates the analysis of song Genre 08 from the 
RWC database [17] (labeled as Rock). Structural blocks are 

depicted both as 
their span on the 
x-axis (time in 
snap) and their 
height on the y-
axis (in log 
scale). Each 
block is identi-
fied by a distinct 
roman number. 

The duration of 
the song is 3’26” 
(including initial 
and final silenc-
es) and the size 
of the song in 
snaps is 200 
(snap is almost 
equal to 1 s).  

Segments IV, VII, XII and XIII present a clear paradigmatic 
relationship (chorus of this piece). Three of them last 18 
snaps but XII lasts only 16 snaps and can be considered as 
the stem on which the three other blocks are built by length-
ening the harmonic content over the last 2 snaps. 

Segments II, V, X form a second paradigm, with the return to 
tonic as a clear (conventional) structuring cue. Being of size 
16, they are in line with the Ψ=16 hypothesis. An alternative 
hypothesis would be to consider them as the repetition of 2 al-
most identical (half-)blocks of 8 snaps, but i) this would need 
the introduction of a second structural period, ii) no occurrence 
of such a half-block alone is observed in the song and iii) it 
would split the rhyme pattern of block V.  

Segments III, VI and XI constitute a third paradigm. Their raw 
form amounts for 14 snaps, but they can be described as a 4x4 
snap carrure of the abab type, whose last quarter has been trun-
cated of the last 2 snaps, hence the notation 16-2, This comforts 
(or at least does not contradict) the hypothesis Ψ=16. 

Segments I and IX are very similar, I being an instrumental 
intro of 16 snaps and IX the second half of I, used as an in-
strumental bridge (hence the notation -8+16). Finally, VIII is 
a solo, which conveniently lasts exactly 16 snaps. 

The segmental structure of the piece is therefore considered to 
be 13 x 16*, i.e. a basic 16-snap pattern realized 13 times with 
a few within-block irregularities. Alternative options could 
have been 25 x 8*, but this would introduce much redundancy 
in the underlying semiotic description, since almost all seg-
ments would be observed in systematical pairs, without bring-
ing significantly down the number of irregular segments (only 
IX would thus become regular). A pattern such as (16,14,18)* 
could be envisaged given the recurrence of this particular size 
sequence in II-III-IV and V-VI-VII but the existence of XII as 
a 16-snap realization of the chorus just in between XI and XIII 
makes this complicated alternative a non-sustainable option. 
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7. CORPUS DESCRIPTION 

7.1 RWC Pop set 

A first set of annotations is composed of the 100 songs from the 
RWC Popular Music database [17], written and produced for 
research purposes. Their structural annotations have been re-
leased and used last year for the MIREX 2010 evaluation [18] in 
structural segmentation and since then, they have been marginal-
ly revised. 

RWC Pop  100 titles 

7.2 Quaero set 

The Quaero set is composed of 159 titles selected by IRCAM 
which are being used in the Quaero project [13] for the eval-
uation of music structure detection algorithms : 

Quaero 2009 Development set 20 titles 
Quaero 2009 Evaluation set 49 titles 
Quaero 2010 Evaluation set 45 titles 
Quaero 2011 Evaluation set 45 titles 

Total  159 titles 

The average length of songs is approximately 4 minutes. A 
subset of 97 titles contains several pieces from the same artists 
(see below). The remaining 62 titles correspond to 62 other 
distinct artists. This corpus covers a large range of music gen-
res but the vast majority of artists are American or English. 

The Beatles : 21 - Jedi Mind Tricks : 14 - Eric Clapton : 11 
Pink Floyd : 9 - Queen : 8 - The Cure : 8 - D Angelo : 4 
ACDC, Black Sabbath, Buenavista Social Club and Shack : 3 
Eminem, F. Zappa, Madonna, M. Jackson and Plastikman : 2 
  

7.3 Eurovision set 

The Eurovision set is currently composed of 124 titles, corre-
sponding to the songs which participated to the semi-finals 
and/or the final in years 2008, 2009 and 2010, in their studio 
version (as recorded on the “official” albums) : 

2008 (Belgrade) ref # 5 099921 699726 43 titles 
2009 (Moscow) ref # 5 099969 968020 42 titles 
2010 (Oslo) ref # 5 099964 171722 39 titles 

Total  124 titles 

Eurovision songs are limited, to a 3’00” maximum duration 
by the rules of the contest, and tend to show other properties 
(including their structure) influenced by the contest’s format 
and to its target public. These titles however cover a variety 
of languages and a diversity of sub-genres within Euro-pop. 

7.4 Ongoing effort 

At the time of finalizing this paper, we are completing the 
annotation of the RWC Music Genre database (100 titles) and 
we intend to annotate shortly an additional set of titles, so as 
to reach a total of 500 annotated titles before the end of 2011. 

7.5 Release 

All the aforementioned annotations are available at : 

http://musicdata.gforge.inria.fr 

and on an experimental web site where some of the data are 
accompanied with comments and which offers the possibility 
of consulting and debating the proposed annotations : 

http://metissannotation.irisa.fr 

 

8. CONCLUSIONS 

The work presented in this paper constitutes a contribution 
towards the general strategic goal of defining, building and 
disseminating consistent re-usable resources for research and 
development in MIR. It proposes operational concepts, con-
sistent procedures and freely available data for the descrip-
tion of music structure. 

Our current work direction is to consolidate connections be-
tween music structure description and information theory, so 
as to encompass a wider range of concepts and, in particular, 
to integrate several timescales in the structural description.  
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ANNEX 

Let’s consider a song represented as a sequence of discrete elements 
at a given time-scale  � � ���	
���� 	and let’s now consider a bi-
dimensional organization of X into blocks of size n, i.e. a 
�	(lines) × �	(columns) matrix representation of X : 

� � �����
��,�� ,!     with    � � �/�    and    # � ($ − 1) × � + ( 

Given this structure, the quantity of information needed to index all 
elements in the matrix requires : 

)! � � log2� + � log2 � �	
�
�
log2

�
�
+ � log2 �	 

Thus, the index of each line in matrix X can be coded with log2 m 
bits, and the total number of bits required to index all lines in X is m 
log2 m (the same applies for the columns, hence n log2 n). 

Seeking for the minimum of )!  (by zeroing the derivative of  )! 
w.r.t. n) yields � � √�. 

Hence, in the absence of any particular knowledge concerning the 
redundancies in X, the most economical way to index it bi-
dimensionally is to shape it as a “square” matrix structure.  
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ABSTRACT 

Recent changes in the Music Encoding Initiative (MEI) 
have transformed it into an extensible platform from which 
new notation encoding schemes can be produced. This 
paper introduces MEI as a document-encoding framework, 
and illustrates how it can be extended to encode new types 
of notation, eliminating the need for creating specialized 
and potentially incompatible notation encoding standards. 

1. INTRODUCTION 
The Music Encoding Initiative (MEI)1 is a community-
driven effort to define guidelines for encoding musical 
documents in a machine-readable structure. The MEI 
closely mirrors work done by text scholars in the Text 
Encoding Initiative (TEI)2  and while the two encoding 
initiatives are not formally related, they share many 
common characteristics and development practices. 

MEI, like TEI, is an umbrella term to simultaneously 
describe an organization, a research community, and a 
markup language [1]. It brings together specialists from 
various music research communities, including 
technologists, librarians, historians, and theorists in a 
common effort to discuss and define best practices for 
representing a broad range of musical documents and 
structures. The results of these discussions are then 
formalized into the MEI schema, a core set of rules for 
recording physical and intellectual characteristics of music 
notation documents. This schema is developed and 
maintained by the MEI Technical Group. 

The latest version of the MEI schema is scheduled for 
release in Fall 2011. The most ambitious feature of the 
2011 release is the transformation of the MEI schema from 
a single, static XML schema language to an extensible and 
customizable music document-encoding framework. This 
framework approach gives individuals a platform on which 
to build custom schemas for encoding new types of music 
documents by adding features that support the unique 
aspects of these documents, while leveraging existing rules 
and guidelines in the MEI schema. This eliminates the 

                                                
1 http://www.music-encoding.org 
2 http://www.tei-c.org 2 http://www.tei-c.org 

duplication of effort that comes with building entire 
encoding schemes from the ground up. 

In this paper we introduce the new tools and techniques 
available in MEI 2011. We start with a look at the current 
state of music document encoding techniques. Then, we 
discuss the theory and practice behind the customization 
techniques developed by the TEI community and how their 
application to MEI allows the development of new 
extensions that leverage the existing music document-
encoding platform developed by the MEI community. We 
also introduce a new initiative for sharing these 
customizations, the MEI Incubator. Following this, we 
present a sample customization to illustrate how MEI can 
be extended to more accurately capture new and unique 
music notation sources. We then introduce two new 
software libraries written to allow application developers to 
add support for MEI-encoded notation. Finally, we end 
with a discussion on how this will transform the landscape 
for music notation encoding. 

2. MUSIC NOTATION ENCODING 
There have been many attempts to create structural 
representations of music notation in machine-readable 
formats [2]. Some formats, like **kern or MuseData, use 
custom ASCII-based structures that are then parsed into 
machine-manipulable representations of music notation. 
Others, like NIFF or MIDI, use binary file formats. In 
recent years, XML has been the dominant platform for 
structural music encoding, employed by initiatives like 
MusicXML3 and IEEE15994.  

The wide variety of encoding formats and approaches to 
music representation may be attributed to the complexity of 
music notation itself. Music notation often conveys 
meaning in multiple dimensions. Variations in placement 
on the horizontal or vertical axes manifest different 
dimensions in meaning, along with size, shape, colour, and 
spacing. To these, however, are added cultural and 
temporal dimensions that result in different types of music 
notation expressing different meanings through visually 
similar notation, depending on where and when that 
notation system was in use. This complexity prohibits the 

                                                
3 http://www.recordare.com/musicxml 
4 http://www.mx.dico.unimi.it/index.php 
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construction of a single, unified set of rules and theories 
about how music notation operates without encountering 
contradictions and fundamental incompatibilities between 
notation systems. Consequently, formulating a single, 
unified notation encoding scheme for representing the full 
breadth of music notation in a digital format becomes very 
difficult. 

As a result, representing music notation in a computer-
manipulable format generally takes two approaches. The 
first approach is to identify the greatest amount of 
commonality among as many different types of music as 
possible, and target a general encoding scheme for all of 
them. The consequence is a widely accepted encoding 
scheme, which serves as a system that is “good enough” to 
represent common features among most musical 
documents, but extremely poor at representing the unique 
features that exist in every musical document. For example, 
the MIDI system of encoding pitch and timing as a stream 
of events functions very well if the only musical elements 
of interest are discrete volume, timing, and pitch values. It 
is, however, notoriously poor at representing features like 
phrase markings or distinctions between enharmonic pitch 
values. 

The second general approach is to build an encoding 
system that takes into account all the subtle variation and 
nuance that makes a particular form of music notation 
different from all others. With this approach, highly 
specialized methods for encoding the unique features of a 
given notation system may be designed and customized for 
a given set of users. The disadvantage, however, is that 
these systems are largely developed independent of each 
other, and may exhibit entirely incompatible ways of 
approaching notation encoding. This approach can be seen 
in many current encoding formats, where the choice to 
support the features of common music notation (CMN) in 
MusicXML, for example, creates a fundamental 
incompatibility with accurately capturing nuance in 
mensural notation. This is then addressed by developing 
entirely new encoding formats, such as the Computerized 
Mensural Music Editing (CMME) format 5 , specifically 
built to handle the unique features of mensural music but 
ultimately incompatible with other formats without the 
creation of lossy translators. This creates a highly 
fragmented music notation ecosystem, where software 
developers must choose which types of notation they can 
support in their applications and which ones are specifically 
out of scope. 

Earlier versions of the MEI schema focused on the 
second approach, initially built to represent CMN with all 
other systems declared out of scope. This led to a number 
of criticisms about its ability to accurately capture notation 
nuance; for example, Bradley and Vetch commented: 
“Although the scholarly orientation of the MEI markup 
scheme seemed extremely promising…considerable further 
                                                
5 http://www.cmme.org 

work would be needed to extend it so that it could 
appropriately express these very subtle notational 
differences” [3]. 

Later revisions of the MEI schema added support for 
different types of music notation, but still it was criticized 
for being unable to capture particular nuances in highly 
specialized repertoires. A pointed criticism of the 
representation of neumed notation in MEI was given in [4], 
which makes entirely valid points about the ability of a 
generalized notation encoding system to capture highly 
specific details about a particular notation type. 

There are inevitable commonalities between different 
systems of music notation, yet there are simply no universal 
commonalities across all systems of music notation. This 
suggests a possible third approach to the creation of music 
notation encoding schemes that has yet to be fully explored. 
This third approach exemplifies what we will call the 
“framework” approach, where parties interested in 
supporting new types of notation can leverage existing 
description methods for common aspects of music notation 
documents, yet are able to extend this to cover unique 
aspects of a given repertoire. This allows developers to 
focus specifically on the features that make that music 
notation system unique, while still leveraging a large body 
of existing research and development in common encoding 
tasks. 

We call this the framework approach because it mirrors 
the use of software development frameworks, like Apple’s 
Cocoa framework6. A framework provides a large number 
of “pre-packaged” methods designed to alleviate the burden 
of mundane and repetitive tasks, and allows application 
developers to focus on the features that make their 
application unique. It significantly reduces duplication of 
effort, and provides a platform that can easily be bug tested 
and re-used by many other people. 

The MEI 2011 Schema marks the first release where 
extension and customization can be very easily applied to 
the core set of elements to produce custom encoding 
systems that extend support for new types of musical 
documents. This has been accomplished by adopting the 
tools and development processes pioneered by the TEI 
community and will be discussed further in the next 
section. 

3. TEI AND MEI: TOOLS AND 
CUSTOMIZATION 

The TEI was established to develop and maintain a set of 
standard practices and guidelines for encoding texts for the 
humanities. The scope of this project is extensive, but even 
with a comprehensive set of guidelines in place, there is a 
recognition that the guidelines developed by the core 
community do not cover all possible current or future use 
cases or applications for the TEI.  

                                                
6 http://developer.apple.com/technologies/mac/cocoa.html 
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To address this, the TEI community has developed a 
process where custom TEI schemas may be generated 
through a formalized extension process. There is no single 
TEI schema or TEI standard [5]. The full set of TEI 
elements is arranged in 21 modules according to their 
utility in encoding certain features of a text (e.g., names and 
dates, drama, transcriptions of speech, and others). A 
customization definition file is then applied to the full set of 
elements specifying which features from these modules 
should be present in the output schema, and a custom 
schema for encoding a particular set of sources is generated 
by running the source and customization files through a 
processor.  

The most powerful feature of this customization process 
is that new elements, attributes, or content models may be 
included in the customization definition, allowing the 
addition of new elements into the TEI that can address the 
differences presented by new types of documents. What 
this customization approach represents is the transition 
from a single, monolithic encoding schema to an extensible  

Table 1: MEI core modules. 

document-encoding framework. Validation schemas for 
ensuring conformance with TEI guidelines can be 
dynamically generated from a central source and shared 
among other community members interested in encoding 
similar document types.  

3.1 MEI as an encoding framework 
The MEI core is divided into 23 modules, each used to 
encapsulate unique characteristics of musical source 
encoding (Table 1). There are a total of 259 elements 
defined in the 2011 version of the MEI core, up from 238 in 
the 2010 release. The MEI core, like the TEI core, is 
expressed in an XML meta-schema language, the “One 
Document Does-it-all” (ODD) format. The ODD meta-
schema language provides developers with the facility for 
easily capturing encoding rules, grouping similar 
functionality into re-useable classes, and providing a central 
place for documentation, following a literate programming 
style. We use the term “meta-schema,” since it does not 
actually provide XML validation on its own, but provides 
MEI developers with the ability to express definitions of 
the MEI elements, the rules of how these elements may or 
may not be used, and their accompanying documentation. 
The Roma processor7 can then be used to create validation 
schemas expressed in three popular schema languages: 
RelaxNG (RNG), W3C Schema (XSD), and Document 
Type Definition (DTD).  (Of these three, RelaxNG is the 
preferred schema validation language for MEI). To 
generate these custom validation schemas, two ODD-
encoded files are needed: the MEI core, containing all 
possible elements and maintained by the MEI Technical 
Group; and a customization file containing directives that 
specify the modules that should be activated in the resulting 
custom MEI schema. A complete set of HTML 
documentation may also be produced for a specific 
customization. This documentation includes usage 
guidelines for elements and their accompanying attributes, 
as well as automatically generated information about where 
a given element may or may not appear in a source tree. 
This process is illustrated in Figure 1. 

Figure 1: The MEI customization process. 

The most powerful feature of this system is that the ODD 
modification file allows for the definition of new elements 
and the re-definition or removal of core elements in the 
resulting schema. This functionality gives schema 
developers the ability to define extensions to MEI, 

                                                
7 http://www.tei-c.org/Guidelines/Customization/use_roma.xml 

Module Name Module content 
 MEI  MEI infrastructure 
 Shared  Shared components 
 Header  Common metadata 
 CMN  Common music notation 
 Mensural  Mensural music notation 
 Neumes  Neume notation 
 Analysis  Analysis and interpretation 
 CMNOrnaments  CMN ornamentation 
 Corpus  Metadata for music corpora 
 Critapp  Critical apparatus 
 Edittrans  Scholarly editions and interpretations 
 Facsimile  Facsimile documents 
 Figtable  Figures and tables 
 Harmony  Harmonic analysis 
 Linkalign  Temporal linking and alignment 
 Lyrics  Lyrics 
 MIDI  MIDI-like structures 
 Namesdates  Names and dates 
 Performance  Recorded performances 
 Ptrref  Pointers and references 
 Tablature  Basic tablature 
 Text  Narrative textual content 
 Usersymbols  Graphics, shapes and symbols  
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customizing the core set of elements to accurately capture 
nuance and unique features of a given repertoire or set of 
documents. These customizations may be targeted at 
specifically addressing the needs of these documents, 
building on and extending the base set of MEI elements. 

The customization functionality of MEI challenges the 
idea of building a common encoding system. The infinite 
and deep customization functionality available in the 
framework approach allows the development of 
incompatible “dialects” of MEI. Does this actually 
represent an advance in music document encoding over a 
more fragmented encoding landscape with separate 
encoding initiatives focused on specific areas? While the 
creation of incompatible document-encoding systems is a 
possibility, we believe that there are specific advantages to 
the MEI and TEI approach, based on three assumptions 
about the nature of document-encoding languages and their 
development. 

The first assumption is that the developers of custom 
schemas want to address a perceived need for encoding a 
given musical document type, and typically do not want to 
reinvent entire document structures. Without a formal 
customization and extension process, however, developers 
of music encoding schemas have needed to construct 
entirely new encoding platforms from the ground up. 

The second assumption is that there are fewer encoding 
system developers than there are potential users of a given 
encoding system. A single developer who needs to develop 
a method of accurately capturing a given document type—
German lute tablature, for example—will take the time to 
learn the customization process, while most encoding 
projects will be largely satisfied by the capabilities in the 
MEI core or pre-made and distributed customizations. Once 
a customization has been completed, that work can then be 
made available for others to use and extend, reducing 
further duplication of effort. 

Finally, the third assumption is that developing 
compatible encoding formats is a social and political 
process, as well as a technical one [6].  The TEI has 
addressed this by forming Special Interest Groups (SIGs) in 
which groups of individuals and organizations develop and 
propose extensions to the TEI core that deal with encoding 
specific types of documents, like correspondence and 
manuscripts. The fragmentation of an encoding language 
into incompatible dialects is not a technical problem, but 
one that can be addressed through discussion among 
stakeholders. The advantage that the customization 
approach brings to the process, however, is that it provides 
a common platform on which to base development and 
discussions. The customization tools allow a formalization 
of these discussions into a well-defined set of rules and 
guidelines. 

These assumptions have yet to be extensively scrutinized 
and only time and further discussion will tell if they 
accurately reflect reality. In the next section we will discuss 
a new MEI community initiative to allow developers to 

share their MEI extensions among other interested parties 
in an open development process. 

3.2 The MEI Incubator 
The MEI Incubator was created to provide community 
members with a common space for developing and sharing 
their MEI extension customizations. Incubator projects are 
proposed by a Special Interest Group (SIG) from the 
community to address specific needs that members of the 
SIG feel are not adequately addressed in the MEI core. The 
Incubator website8 hosts a common code repository and 
documentation wiki. 

As Incubator projects mature, the SIG may then propose 
that the work of the SIG be incorporated into the MEI core 
as a new module, or an update to an existing module. An 
editorial committee will review the proposed extension for 
its suitability and ensure that the proposal does not 
duplicate existing functionality or create incompatibilities 
with existing MEI core modules.  

The complexity of document encoding and the needs of 
communities to accurately describe sources may ultimately 
result in modifications that are fundamentally incompatible 
with the MEI core. While this means that it is unlikely that 
this extension will make it into the MEI core, the work 
done by the SIG can still be made available to others, 
making it possible to leverage a common platform to share 
existing work in specialized document encoding. 

Incubator projects are designed to be a means through 
which community members can participate in MEI 
development and propose new means and methods for 
musical document encoding. In the next section, we will 
demonstrate this process by examining a current Incubator 
project and illustrate how ODD modifications may be used 
to extend the MEI core. 

Figure 2: An example of the Solesmes neume notation 
showing a four-line staff, neumes, and divisions (vertical 
lines). 

3.3 Sample Extension: The Solesmes Module 
The monks at Solesmes, France, were responsible for 
creating a large number of liturgical service books for the 
Catholic Church in the late 19th and early 20th centuries. 
These books included missals, graduals and, perhaps most 
famously, the Liber Usualis [7], a book containing most of 
the chants for the daily offices and masses of the Catholic 
Church. These books were notated using a revival of 12th-
century Notre Dame notation, featuring square note groups 
(neumes) on a four-line staff (Figure 2). 
                                                
8 http://code.google.com/p/mei-incubator 
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There are a number of features of this particular type of 
notation that make it different from other types of earlier 
notation. Although MEI has included functionality for 
encoding neume notation since 2007, it was ultimately 
found to be insufficient for accurately capturing Solesmes-
style neume notation for a project dedicated to 
automatically transcribing the contents of these books. 
Certain features, like divisions (similar, but not equivalent 
to breath marks, graphically represented by a vertical line 
across the staff), episema (note stresses) and Solesmes-
specific neume names and forms were not present in the 
existing MEI core. 

A new Incubator project was proposed to address the 
need for an updated method of handling this type of neume 
notation. The ODD modification file created for this project 
defines four new elements for MEI, as well as their 
accompanying attributes. Due to space considerations we 
cannot reproduce the entire modification file, but we will 
illustrate the process by focusing on the method used to 
define the <division> element. We follow the convention 
of using angle brackets (<	  >) to identify XML elements, 
and the @ symbol to identify XML attributes. 

 
<elementSpec ident="division"  
    module="MEI.solesmes" mode="add"> 
  <desc>Encodes the presence of a division  
        on a staff.</desc> 
  <classes> 
    <memberOf key="att.common"/> 
    <memberOf key="att.facsimile"/> 
    <memberOf key="att.solesmes.division" /> 
  </classes> 
</elementSpec> 

Figure 3: Declaration of the <division> element in 
ODD. 

This <elementSpec> definition (Figure 3) creates a new 
element, <division>, with the name specified in the 
@ident attribute. The @module attribute specifies the MEI 
module to which this element belongs, and the @mode 
attribute specifies the mode the Roma processor should use 
for this element. The @mode attribute may be one of “add,” 
for adding a new element, “delete,” for removing an 
existing element from the resulting schema, or “replace,” 
for re-defining an existing element (the “delete” and 
“replace” attribute use are not shown in Figure 3). 

The <desc> tags provide the documentation string for 
this element. The Roma processor will use this information 
to create the HTML documentation for the resulting schema 
customization. The <classes> element specifies the classes 
this element belongs to. In this case, the <division> 
element will automatically inherit the XML attributes 
specified in the att.common, att.facsimile, and 
att.solesemes.division classes. Of these three classes, two 
are defined in the MEI core while the third is declared 
elsewhere in the Solesmes ODD file. 

The <classSpec> declaration (Figure 4) creates a new 
class of attributes, att.solesmes.division. This class is used 

to define a new group of attributes that may be used on any 
element that is a member of this class; in this case, only the 
<division> element is a member of this class, but more 
general classes of attributes may be defined that apply to 
multiple XML elements (like the att.common class). The 
new @form attribute is declared by the <attDef> element. 
Additional attributes may be declared by creating more 
<attDef> children of the <attList> element. The @usage 
attribute on <attDef> declares this attribute to be optional, 
meaning that it is acceptable if a <division> element does 
not possess a @form attribute. Required attributes may be 
specified by setting this to “req.” 

Figure 4: Declaration of the att.solesmes.division class to 
describe a common attribute group. 

The <valList> element defines the possible values that 
the @form attribute may have; in this case the only valid 
values for the @form attribute are given by the <valItem> 
elements. Since the value list here is a closed set, any 
values supplied in the @form attribute that is not one of 
those specified will not pass validation. 

Figure 5: Valid and invalid use of the <division> 
element defined in the Solesmes module. 

These definitions will result in a schema that allows a 
<division> element in an MEI file, something that is not 
considered valid in unmodified MEI. Figure 5 llustrates 
valid and non-valid examples of this in practice. 

The full Solesmes module contains definitions for four 
new elements, <division>, <episema>, <neume>, and <nc> 
(neume component) and eight new attributes to accompany 
these elements. When this customization is processed with 
the Roma processor against the 2011 MEI core, a schema is 
produced that can be used to validate MEI instances. 

<division form=”comma” /> 
Valid, @form can take comma as a value. 
<division /> 
Valid, @form is optional. 
<division form=”bell” /> 
Invalid, @form must be one of the specified 
values. 
<division name=”long” /> 
Invalid, @name is not allowed on this element.  

<classSpec ident="att.solesmes.division"  
   type="atts" mode="add"> 
  <desc>Divisions are breath and  
        phrasing indicators.</desc> 
  <attList> 
    <attDef ident="form" usage="opt"> 
      <desc>Types of divisions.</desc> 
      <valList type="closed"> 
        <valItem ident="comma" /> 
        <valItem ident="major" /> 
        <valItem ident="minor" /> 
        <valItem ident="small" /> 
        <valItem ident="final" /> 
      </valList> 
    </attDef> 
  </attList> 
</classSpec> 

297



Oral Session 3: Symbolic Music, OMR  

 

4. MEI SOFTWARE LIBRARIES 
For software developers looking to integrate MEI into their 
applications, we have developed two new software libraries 
to support reading and writing MEI files. Libmei is written 
in C++, and PyMEI is written in Python. Using object-
oriented programming principles, these software libraries 
were designed to reflect the same modular structure as 
MEI, and are extensible by others to add support for new 
customizations. PyMEI 1.0 was developed as a rapid 
prototype for testing and designing a common API, which 
was then written in C++ as libmei. PyMEI 2.0, scheduled 
for release in Fall 2011, will adopt libmei as the base 
platform, unifying the two projects and serving as a 
reference implementation for the creation of MEI software 
libraries in other languages. 

Architecturally, every element in the MEI core is 
mirrored in the software libraries by a corresponding 
class—the <note> element has a Note class, and so on. 
Every element class inherits from a base MeiElement class. 
This base class contains methods and attributes common to 
all MEI elements, like getting and setting names, values, 
child objects, and element attributes. Subclasses that inherit 
from this base class gain all of these functions. In the 
subclasses, however, are musical methods and attributes 
that are specific to the semantic function of that particular 
MEI element. For example, a Note class has get and set 
methods for pitch-related attributes, while a Measure class 
has methods for working with measure numbers. 

To extend this software, developers can easily add new 
classes to reflect new elements that they have added to an 
MEI customization. For example, a developer who wishes 
to support the <division> element specified in the 
Solesmes module would only need to create a Division 
class that inherits from the base MeiElement class, and then 
implement any methods that he or she wants to support for 
this class. For example, a developer may wish to add 
explicit getForm and setForm methods to set the @form 
attribute on the <division> element. The libmei and 
PyMEI projects are available as open source projects on 
GitHub9,10, licensed under the MIT license. 

5. CONCLUSION 
With the 2011 release of the MEI Schema and the adoption 
of tools developed by the TEI project, MEI has moved 
beyond a static music document schema to an extensible 
document-encoding framework, providing developers with 
a formalized method of customizing and extending MEI to 
meet specific needs. An extensive set of elements and 
guidelines for creating valid MEI documents forms the core 
of MEI, but the complexity of music makes it impossible to 
anticipate every context in which users may want to use it. 

                                                
9 http://github.com/ahankinson/pymei 
10 http://github.com/ddmal/libmei 

To help support and direct these efforts, we have created 
a new MEI community initiative, the MEI Incubator. This 
initiative will provide community members with a common 
space to “grow” their customizations and share them with 
other members of the community, reducing duplication of 
effort. As Incubator projects mature, they may be proposed 
as extensions to the MEI core, subject to editorial review, 
and finally adopted into the specification itself.  

To support MEI in software applications, we are also 
releasing software libraries that assist developers with 
providing MEI import and export functionality. Currently 
we are targeting two common programming languages, 
C++ and Python, but we are also investigating support in 
other languages as well. 

MEI goes beyond simple notation encoding. It is a 
powerful platform for creating, sharing, storing, and 
analysing music documents. We are investigating methods 
of integrating MEI into optical music recognition platforms, 
as well as searching, analysing, and displaying MEI-
encoded document facsimiles in a digital environment. 
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ABSTRACT 

We describe a computational method derived from self or-
ganizing mapping and multidimensional scaling algorithms 
for automatic classification and visual clustering of large 
vector databases. Testing the method on a large corpus of 
folksongs we have found that the performance of the classi-
fication and topological clustering was significantly im-
proved compared to current techniques. Applying the 
method to an analysis of the connections of 31 Eurasian and 
North-American folk music cultures, a clearly interpretable 
system of musical connections was revealed. The results 
show the relevance of the musical language groups in the 
oral tradition of the humanity.  

1. INTRODUCTION 

The comparative study of different folk music cultures goes 
back to the early 20th century [1-2]. Although ethnomusi-
cologists seemed to gradually forget the conception of the 
classical structural analysis and classification, the develop-
ment of the computation tools led to a renaissance of the 
idea in recent years [3-4].  At the same time, the number of 
representative national/regional digital folksong databases 
is also increasing rapidly. Therefore, a computer aided 
comparison of different musical cultures in order to reveal 
hidden contacts of different musical cultures became very 
topical. 
Current interdisciplinary research, based on the cooperation 
of musicology, artificial intelligence research and data min-
ing, focuses on automatic similarity measurement, segmen-
tation, contour analysis and classification using different 
statistical characteristics, e.g. pitch-interval or rhythm dis-
tribution. A very widely used kind of artificial neural net-
works, the self organising map (SOM) proved to be a very 
versatile tool of computing musicology [5]. SOM-based 
systems have been elaborated for simultaneous analysis of 
the contour as well as the pitch, interval and duration distri-
butions, based on the symbolic representation of the music 
[6]. A cross-cultural study of different musical cultures was 
also based on SOM technique [7].  
The operation of a SOM can be summarised for our case as 
follows: Our input data to be classified are contour vectors, 

containing subsequent pitch values of melodies of a folk-
song database. The main goal of self organising mapping is 
to characterise the multidimensional point system con-
structed by the set of these melody contour vectors by a sig-
nificantly smaller set of “contour type vectors” describing 
the average contours in the local condensations of the input 
contour vectors. Although the details of the calculations are 
different, this goal essentially corresponds to that of the so-
called K-means algorithm [8].  However, the SOM pro-
duces something more: it assigns the resulting contour type 
vectors to the lattice points of a grid topographically.  The 
topographic structure of the resulting map is provided by a 
cooperative learning, modifying the contour type vectors 
located in neighbouring lattice points in parallel. As a result 
of this local cooperation, similar contour type vectors are 
located in neighbouring lattice points after learning.  
Due to the topographic lattice, the SOM allows us to de-
scribe the inherent relations of a melody collection in two 
levels. Similar melodies are classified as variants of a com-
mon contour type in the first level, while the relations of the 
classes represented by the contour types themselves are 
mapped into the topographic lattice in the second one.   
The overall relations in a data set can be excellently repre-
sented on a SOM, providing that these relations can be well 
approximated by a two-dimensional structure. However, 
stretching a more complicated structure into a plain lattice 
results in a significant loss of the accuracy of the classifica-
tion on one hand, and a non-perspicuous map on the other 
hand. In principle, it is possible to extend the map dimen-
sion, but the resulting exponential increase in the number of 
lattice points dramatically increases the computing time and 
the memory demand.  Therefore, we need some other tech-
nique to increase the degree of freedom of the points in the 
map.  
Therefore, we elaborated a system combining the SOM 
technique with a special version of the multidimensional 
scaling (MDS) algorithm [9]. In MDS technique, the input 
data to be visualised are presented in a quadratic matrix 
containing some distance-like or similarity-like values be-
tween some objects. (For instance, the matrix can contain 
geographical distances between towns, or dissimilarity rat-
ings of melodies, etc.) The aim of the algorithm is to repre-
sent the objects (towns or melodies) in a low dimensional 
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space (often in a plane) with the requirement that the dis-
tances of the low dimensional points must optimally corre-
spond to the input values.  
In the present work, firstly we describe a method con-
structed by two independent stages corresponding to the 
above-mentioned two-level characterisation of melody cor-
pora. The first stage is a simplified, non-cooperative – and 
therefore non-topographic - version of SOM learning. In the 
second stage, the topographic low-dimensional mapping of 
the resulting contour type vectors is accomplished by a 
variant of the MDS algorithm. This allows us to project the 
spatial regularities of the multidimensional input vector sys-
tem to a continuous low-dimensional space without the re-
strictions of the planar grid structure of the SOM. In order 
to express the contact to the original SOM principle and to 
emphasize the increased degree of freedom of the low di-
mensional mapping, we call this technique “self organising 
cloud” (SOC).  
As a generalisation of the original SOM principle, we also 
present the cooperative version of the above learning sys-
tem, where the topographic arrangement is improved by a 
feedback between the multidimensional learning and the 
low dimensional mapping functions.  
We describe the results of a cross-cultural study of 31 rep-
resentative Eurasian and North-American folksong collec-
tions, based on the modelling by “self organising cloud” 
technique. The studied cultures are as follows: Chinese, 
Mongolian, Kyrgyz, Mari-Chuvash-Tatar-Votiac (Volga 
Region), Sicilian, Bulgarian, Azeri, Anatolian, Karachay, 
Hungarian, Slovak, Moravian, Romanian, Cassubian 
(North-Poland), Warmian (East-Poland), Great-Polish 
(Southern-Central Poland), Finnish, Norwegian, German, 
Luxembourgish, French, Dutch, Irish-Scottish-English 
(mainly Appalachian), Spanish, Dakota, Komi, Chanty, 
Serbian-Croatian (Balkan), Kurd, Russian (Pskov). Our da-
tabase contains digital notations of nearly 32000 folk songs 
arising from different written sources. All of these sources 
apply the Western notation, thus, the microtonal phenomena 
of the different cultures were eliminated by the authors 
themselves. The time duration and musical structure of the 
melodies is very variable, therefore we normalized the 
length of the melody contours as follows.    
 

2. THE MELODY CONTOUR VECTORS 
 
The generation of vectors from melodies is summarised in 
Figure 1, showing the first section of a Hungarian folksong 
as an example. The continuous pitch-time function derived 
from the score is represented by the thick line in Figure 1.  
 
There, the pitch is characterised by integer numbers, in-
creasing 1 step by one semitone, with the zero level of the 
pitch corresponding to the C tone. (In order to assure uni-
form conditions, each melody was transposed to the final 
tone G.) 

 
 

Figure 1. The generation of the melody contour vectors x . 
 
One can see in the figure that the duration of the temporal 
intervals of the pitch-time function is determined by the 
rhythmic value of the corresponding note. Thus, the main 
rhythmic information is also encoded. For sampling, the to-
tal length of the pitch-time function was divided into D  
portions. Then, the “melody vector”    

[ ]TkDkkk xxxx ,,2,1 , K= was constructed from the se-

quence of the pitch-time samples of the k th melody (See 
Figure 1.).  
Since D  was uniform for the whole set, melodies could be 
compared to each other using a distance function defined in 
the D -dimensional melody space, independently of their 
individual length. Due to this normalisation, melody con-
tours can be compared independently of their measure, 
tempo and syllabic structure. We studied the melody vec-
tors of the entire songs in the analysis, and we have found 
that a choice of 64=D  resulted in an appropriate accu-
racy for each melody.  

 
3. DETERMINATION OF THE CONTOUR TYPE 

VECTORS 
 
In the first phase of the process, we determined N D=64 

dimensional “contour type” vectors ic , characterising the 
most important melody forms in a database containing M 
melodies. In a training step, the distances between a ran-

domly selected melody contour kx  and the contour type 
vectors are determined, and the contour type of minimal 

distance ic  is considered as the “winner”. The winner con-
tour type is moved closer to the melody contour. 
 

In the initial state, the vectors ic  were filled by randomly 
selected melodies of the database. The size of the contour 
type sets varied between 400 and 576. The algorithm con-
sists of the following steps. 
 
1. A melody of the database was selected randomly and its 

melody vector kx  was compared to the contour type vec-

tors ic  using the Euclidean distance metric. 
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2. The contour type vector of the minimal distance ic  was 
determined as the “winner” and it was modified using  
 

                    )('
ikii cxcc −+= λ  ,                  (1) 

 

where λ is a scalar factor controlling the rate of conver-
gence and the accuracy.  
The above technique can be considered as a K-means algo-
rithm [8], or equivalently, as a SOM with a learning radius 
of zero. This fact results in a remarkable simplification of 
the SOM algorithm and a significant improvement of the 
classification as we will illustrate it below. However, these 
advantages imply the disadvantage that the topographic ar-
rangement of the contour types – being a natural conse-
quence of the original SOM process - requires further com-
putation. The algorithm producing a more comprehensive 
and adequate spatial arrangement of the contour type vec-
tors is a version of the multidimensional scaling technique, 
and is described below.     
 

4. LOW DIMENSIONAL MAPPING OF THE 
CONTOUR TYPE VECTORS 

The basic idea of the multidimensional scaling algorithm 
can be formulated for our problem as follows: We have a 
set of N pieces of D=64 dimensional contour type vectors 

ic , and we can calculate the N*N dimensional quadratic, 

symmetric matrix Q  containing the squared Euclidean dis-

tances jiq , of them. (The advantage of squaring will be ex-

plained below.) We want to represent the N contour types 

by N vectors iv  of a low dimensional point system, so that 

the distances jid , between these points converge to the best 

low-dimensional approximations of the  
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where S  is the stress function to be minimised, and 

ijji ww ,, =  are weights expressing the importance of the 

distance of the corresponding points in the stress function. 
(For instance, the exact distance of very dissimilar vectors 

may not be important in certain cases. Thus, the weight val-

ues can be defined as functions of the input distances jiq , . ) 

The minimum of the stress function is searched by a gradi-
ent algorithm. For sake of simplicity, we consider the case 
when the low dimensional space is a plane, but the results 
can be easily generalised to higher dimensions. At the be-
ginning, the N points are randomly located in the plane with 

the coordinates ( )2,1, , mm vv , where m denotes the serial 

number of the points. The gradient components of the stress 
function in the 2N dimensional space of the point co-
ordinates are the partial derivatives  
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Let the “distance” of the ith and jth points in the plane be 
defined as 
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This definition yields a very simple expression for 
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and the gradient components of the stress function in Equa-
tion (4) become finally: 
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According to the gradient search principle, the new esti-
mates of the optimal point co-ordinates are determined as 
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where the small scalar valueµ  determines the rate and the 

accuracy of the convergence. 
In the subsequent steps of the algorithm, the gradient com-
ponents of the stress function are re-calculated in the new 
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point locations using Equations (5) and (6), and the points 
are replaced using Equation (7) again. The algorithm can be 
easily generalised to 3 or more dimensional point systems.   
Comparing the above algorithm to the self organising map 
(SOM), an important difference lies in the fact that the low 

dimensional vectors iv  are not fixed to lattice points, so 
they are allowed to roam in the low dimensional space, in 
search of their own optimal position. In order to express this 
free roaming of the point system during learning, and to dis-
tinguish between the original SOM and the above described 
algorithm, we call it “self organising cloud” (SOC). 
This non-cooperative form of the SOC algorithm accom-
plishes a two-level systematisation of melody collections. In 

the first step, the contour type vectors ic  are determined, 
representing the centres of local clusters of the melody con-
tour vectors in the D=64 dimensional melody space. Thus, 
the first level of the systematisation is assigning the melo-
dies to the most similar contour type vectors. Having ac-
complished this classification process, the connections of 
the melodies can be described, the higher-level connections 
of the resulting melody classes, however, remain unre-
vealed. These latter relations are described by mapping the 
D=64 dimensional contour type vectors to a low dimen-
sional space. Thus, the second level of the systematisation 
is the low dimensional representation and visualisation of 
the relations between the melody classes having been de-
termined in the first level.  
 

5.  COOPERATIVE LEARNING 
 
Up to this point, we have emphasized the advantages of the 
independence of the non-topographic learning- and the to-
pographic visualising parts of the SOC technique. However, 
the system can easily be modified to learn the contour types 
in a cooperative way. In this case, all of the contour type 
vectors located in the surroundings of the winner are modi-
fied by the current training vector, and their new low di-
mensional coordinates are re-calculated simultaneously with 
the contour type learning steps, using Equations (5), (6) and 

(7). Since the vectors iv  can freely move in the low dimen-
sional space during the process, this cooperative learning 
approaches similar vectors to each other, resulting in a more 
articulated system of the low dimensional clusters. How-
ever, an uncontrolled cooperative process can lead to an ac-
celerated approach of neighbouring vectors, resulting in a 
total collapse of the whole system into one point. This prin-
cipal problem can be solved by the prohibition of the coop-
erative training within a critical radius around the winner. 
Although this version produces a suboptimal contour type 
estimation - similarly to the SOM algorithm -, it may sig-
nificantly improve the visual representation of the clusters.  
 
 
 

6. CROSS-CULTURAL ANALYSIS OF 31 MUSICAL 
CULTURES USING THE SOC ALGORITHM 

 
As an application of the SOC algorithm, we summarise the 
procedure and the results of a cross-cultural study of 31 folk 
music cultures in this chapter. The cultures were repre-
sented by 31 databases containing 1000 – 2500 melodies by 
culture. The first step of the analysis was the determination 
of the contour type collections of the 31 cultures, using non-
cooperative SOC mapping of the databases one by one. In 
the second phase, we unified the resulting 31 contour type 
collections into one training set, and trained a two-
dimensional “common” SOC having 1000 contour type vec-
tors. After training by the nearly 12000 contour type vectors 
arising from the 31 collections (400-500 vectors by cul-
ture), the resulting 1000 common vectors represent the most 
characteristic melody contours appearing in the 31 cultures. 
Figure 2 shows the resulting common musical maps gener-
ated by non-cooperative, as well as cooperative training of 
the SOC. The figure verifies that the cooperative learning 
yields a much more arranged “musical map”. The musical 
meaning of the main areas of this map is demonstrated by 
the contour type examples in Figure 3. 
 

 

Figure 2. Self organising clouds of the common contour 
type collection using non-cooperative (a), and cooperative 
(b) learning. 
 
At this point, we have to define the concept of “activation” 
of the common contour type vectors as follows: a contour 
type vector of the common SOC is “activated” by a training 
vector when the distance between them is less than a 
threshold value (see Equation 2). For example, the black 
points in Figure 2 correspond to the contour types activated 
by the Hungarian melody of Figure 4. The distribution of 
the points illustrates that the cooperative learning moves 
similar contour types into a more compact cluster. Extend-
ing this concept to national/areal sets of training vectors, we 
can say that the 31 contour type collections activate differ-
ent subsets of the 1000 common vectors.  
 
Figure 3 shows the common SOC with 6 different national 
activations and some contour type examples being very 
characteristic in the given cultures. Since the arrangement 
of the SOC reflects purely musical conditions, it is not a 
trivial result that the different cultures are located in more 
or less continuous areas. This fact refers to different musical 
styles dominating in different cultures. Some of these very 
characteristic melody forms are also indicated in Figure 3.  
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Figure 3. Activated area of the common contour type cloud 
by contour type collections of 6 different cultures. 
 
For instance, contour example 1 shows that descending 
melodies with a high range are simultaneously dominating 
in the Chinese, Hungarian and Turkish activation area. An 
example for such melodies with Hungarian, Chinese, Anato-
lian and Dakota parallels is shown in Figure 4.  

 

       Figure 4. Melody examples of type 1 in Figure 3. 
 

Contour example 2 and 5, representing melodies with low 
range demonstrate the musical background of the definite 
overlap between Anatolian and Bulgarian cultures.  
The Hungarian area shows a significant overlap with the 
Chinese and Anatolian ones, but contour example 3 also 
demonstrates a significant common musical style of domed 
melody forms with the Irish-Scottish-English culture.  

At the same time, the Irish-Scottish-English corpus has also 
a significant overlap with the German one in the area of as-
cending forms moving beyond the final tone (see contour 
example 4).  

The sizes of the overlaps benchmarked against the total 
sizes of the activated area refer to the intensity of the rela-
tions of musical cultures [7]. We considered these relative 
overlap sizes as similarity ratings of musical cultures, and 
represented the resulting system of musical language groups 
using the MDS algorithm described above. The two-
dimensional MDS plot of the connections is shown in Fig-
ure 5. The edges indicate pairs of cultures with the largest 
overlaps. We also indicated some sub-graphs where the 
nodes mutually are in close musical contacts with each 
other. The graph shows a very clear structure with seven 
musically well interpretable clusters. The right branch of the 
system contains the mutually very closely related {Chinese 
– Volga – Mongolian}, {Hungarian – Slovak} and {Turkish 
– Karachay – Sicilian – Dakota} groups. The left branch is 
constructed by the {Finnish – Norwegian – ISE} and 
{German – Luxembourgian – French – Holland} clusters, 
whereas the {Bulgarian – Balkan - Kurdish – Azeri} and 
{Russian – Komi - Warmian (East-Poland)} groups con-
struct clearly separate clusters.  
The close contacts of the above discussed seven “musical 
language groups” can be traced back to certain musical 
styles being simultaneously present in more cultures. Com-
paring Figure 5 to Figure 3, one can recognise that the six 
activator cultures of the common musical map can be con-
sidered as representatives of the above mentioned “musical 
language groups”. Therefore, contour examples 1-5 in Fig-
ure 3 represent right the most characteristic common musi-
cal forms contacting the musical language groups as well.  

 
 

Figure 5. MDS plot of the connections of 31 folk music 
cultures. Connecting lines indicate the mutually largest rela-
tive overlaps. 
 
 

7. CONCLUSIONS 
 
We have described a technique which learns the group av-
erages of the local condensations of multidimensional point 
systems on the one hand and represents the similarity condi-
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tions of the learned average vectors in a low dimensional 
point system on the other hand. Basically, the algorithm can 
operate in two modes: In the non-cooperative mode only 
one average vector is modified in one training step and the 
state of the other vectors is independent of this modifica-
tion. In the cooperative mode the training is extended to a 
group of average vectors, and a feedback comes into exis-
tence between the learning of the multidimensional aver-
ages and the low dimensional arrangement. 
The non-cooperative learning of the contour type vectors 
permits the convergence to the exact centres of the local 
condensations of the training vectors, therefore the SOC 
corresponds to the K-means algorithm in this case. The co-
operative learning realises a compromise between the accu-
racy of the multidimensional learning and the low dimen-
sional representation, therefore the system converges into a 
sub-optimal state in this case. However, the cooperativeness 
can be tuned by the learning radius parameters, and the 
benefit of a well accomplished cooperative training may be 
a more transparent low dimensional representation of the 
multidimensional clusters, whereas the accuracy of the 
learning also remains acceptable.  
The low dimensional topographic representation of the con-
tour type vectors is accomplished by a weighted MDS algo-
rithm. This increases the degree of freedom of the mapping, 
because the locations of the low dimensional points are not 
bounded to a lattice, and their dimensionality can be opti-
mised without a significant increase in the computing time.  
  We applied the method to an analysis of the connections 
of 31 Eurasian and North-American folk music cultures. We 
have found that the changeover to the continuous low di-
mensional space of the SOC from the plain lattice structure 
of the SOM yields a more articulated low dimensional data 
representation and a musically well interpretable systemati-
sation of the melody contours. 
Using the SOC technique, we have determined a conjugate 
musical map of the most important melody forms in the 
studied cultures, and have found that the different cultures 
occupy well defined continuous areas of this map. The 
technique allowed us to trace back this “musical geogra-
phy” to the dominance of certain well distinguishable musi-
cal styles in different cultures. Exactly the close correlation 
of different cultures with certain areas of the musical map 
calls the attention to the overlaps, referring to significant 
interactions of the studied cultures. The analysis of these 
overlaps revealed a perspicuous system of cross-cultural 
connections, which was represented by an MDS plot of the 
probabilities of deterministic interactions. The common 
musical forms standing in the background of the most im-
portant cultural connections were also identified from the 
overlap areas. We hope that these results demonstrate the 
timeliness of an extensive study of musical language groups 
and call the attention to the importance of the oral musical 
tradition of the humanity.   

This work was supported by the Hungarian National 
Research Found (grant no. K81954). 
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ABSTRACT

We present the beginnings of a new system for optical mu-
sic recognition (OMR), aimed toward the score images of
the International Music Score Library Project (IMSLP). Our
system focuses on measures as the basic unit of recogni-
tion. We identify candidate composite symbols (chords and
beamed groups) using grammatically-formulated top-down
model-based methods, while employing template matching
to find isolated rigid symbols. We reconcile these overlap-
ping symbols by seeking non-overlapping variants of the
composite symbols that best account for the pixel data. We
present results on a representative score from the IMSLP.

1. INTRODUCTION

For many years our community has lamented the lack of
symbolically-represented music. In contrast to audio, such
score-like representations allow music to be searched, com-
pared, transformed, and analyzed in many ways, as with
text data. The need for these libraries is particularly acute
for “classical” music, where the symbolic score has been
regarded, at least historically, as the definitive source ofa
composition. We believe the most promising pathway to
large-scale symbolic music libraries is through optical mu-
sic recognition (OMR). The potential for OMR has increased
dramatically with the rapid rise of the International Music
Score Library Project (IMSLP), an open library of primar-
ily scanned, public domain, machine-printed mostly classi-
cal music scores. The IMSLP represents a potentialgold
mineof symbolic music data, virtually imploring our com-
munity to develop OMR technology capable of harvesting
these data. Answering the OMR challenge posed by the IM-
SLP is the ultimate goal of the new research effort described
here.

The existence of large-scale symbolic libraries would trans-
form the musician’s world, allowing global distribution, flex-
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c© 2011 International Society for Music Information Retrieval.

ible formatting, and content-based music information re-
trieval. Many envision future “digital music stands” based
on tablet computers. Fueled by symbolic music represen-
tations, such devices could support a wide range of appli-
cations in addition to the basic presentation of music, in-
cluding pedagogical systems offering performance analysis,
registration of scores with music audio and video, musical
accompaniment systems, automatic fingering systems, nota-
tion, automatic arranging and transcription programs. Sym-
bolic music forms the basis of many ISMIR foci, such as
music information retrieval as well as harmonic, motivic,
structural, and Schenkerian music analyses. And, of course,
large-scale symbolic music collections will be transforma-
tive for music libraries, allowing universal access to public
domain music.

OMR has seen various research efforts over the last sev-
eral decades, such as [2] [3], [4], [5], [6], [7], [9], [8] to
name only a few. Fujinaga [1] gives a rather complete bibli-
ography of more than 500 different papers, theses, and tech-
nical reports. Given the importance of this problem, we be-
lieve it has been underrepresented in the ISMIR community,
perhaps due to the many difficulties ofdefining the prob-
lem, such as stating goals, scope, and evaluation metrics
that are relevant toin vivo recognition situations. Our work
differs from most the we know in OMR, through its ori-
entation toward model-based top-down recognition. These
ideas have some precursors in OMR, such as [9], which in-
troduces Markov Source Models to OMR and performs a
proof of concept in a simplified domain, and [8], which also
argues for model-driven recognition, even of the experimen-
tal aspect remains undeveloped. Model-based approaches
are, of course, commonplace in the larger document recog-
nition community, as well as in computer vision, though the
connections here are beyond the scope of our present effort.

The state of OMR remains somewhat undeveloped, es-
pecially when compared to its optical character recognition
(OCR) cousin, simply because OMR is much harder. The
most powerful ideas from the OCR literature are the one-
dimensional modeling and processing techniques, such as
hidden Markov models (HMM) and dynamic programming
(DP), in recognizing lines of text. These techniques allow
for flexible top-downmodeling, training, and computation
to be integrated into the same framework. DP- and HMM-

305



Oral Session 3: Symbolic Music, OMR

based approaches allowsimultaneoussegmentation and recog-
nition, in which symbols are segmentednot through local
topology, but by finding divisions that allow the pieces to
be identified as meaningful “stand-alone” quantities. It is
difficult to apply these ideas to OMR due to the fundamen-
tally two-dimensional layout of printed music. Instead, past
approaches have primarily workedbottom-up, usually per-
forming crucial image segmentationbeforerecognition, and
often in peril of constructing meaningless recognition hy-
potheses, (e.g. finding “orphan” accidentals that do not be-
long to note heads).

Our approach compromises between our idealistic zeal
for top-down recognition and the computational and practi-
cal demands of the challenging problem at hand. We be-
gin by identifying page structure as described in Section
2.2. Our main focus is the recognition of the individual
measures identified through the page structure decomposi-
tion. We employmodel-basedrecognition for the important
“composite symbol” sub-problems: isolated chords (Section
2.3.1) and beamed groups (Section 2.3.2). This guarantees
that the examples we recognize make syntactic sense and are
“optimal” in some limited sense. We aggregate these over-
lapping and conflicting candidates into measure hypotheses
in Section 2.3.3, through an optimization problem that seeks
meaningful non-overlapping “versions” of the recognized
measure components through constrained optimization.

2. SCIENTIFIC APPROACH

2.1 The Data Model

At a conceptual level nearly all music notation isbinary,
with each image location,x, either “black” (containing ink)
or “white” (no ink). Of course this binary nature is only
approximatelycaptured by the actual pixel intensity values,
g(x). In practice, the distribution of intensity values is nearly
always bimodal, but often containing values that could be-
long to either category. We model these intensities proba-
bilistically, with pB andpW the black and white pixel dis-
tributions.

A recognition hypothesis, such as the identification of a
single symbol, partitions the image domain into three sub-
sets: the locations assumed to black,B; a small “buffer” of
presumably white pixels surrounding the black pixels,W ,
accounting for the separation of symbols; and the remaining
locations which have not yet been considered,U . Suppose
we letpU denote the distribution for these latter intensities
of unknown origin. Assuming the gray levels are condition-
ally independent given the setsB,W,U , we can write the
data likelihood as

P (g) =
∏
x∈B

pB(g(x))
∏
x∈W

pW (g(x))
∏
x∈U

pU (g(x)).

For example, if our image contains single rigid isolated sym-

bol, thenB would be the black region of that symbol,W
would be a buffer around this domain accounting for its iso-
lation, andU would be the remainder of the image domain.

When optimizing this likelihood over various hypothe-
ses it seems pointless to require each model to account for
the entire image. Instead, we optimize the above likeli-
hood function with each factor divided by our “background”
modelpU (g(x)) — clearly not changing the ranking of hy-
potheses. The resulting objective function, after taking logs,
is expressed only in terms of the pixel locations where the
state is known,B andW :

H(B,W ) =
∑
x∈B

log
pB(g(x))

pU (g(x))
+

∑
x∈W

log
pW (g(x))

pU (g(x))
(1)

For instance, we look for a single specific rigid symbol by
maximizing this objective function over the location of the
hypothesized symbol — essentially, this is template match-
ing. If the optimal score is less than 0, the background
model gives the higher probability than any symbol-location
pair we can identify, so we believe the symbol does not oc-
cur in the region. Recognition in more complicated situa-
tions will proceed analogously, by optimizing this same ob-
jective function over multiple symbols, subject to various
compositional and non-overlapping constraints.

2.2 Finding the Page Structure

We represent the structure of a page of music hierarchi-
cally, partitioning the page into systems, each system into
system measures, and each system measure into individual
staff measures. We find this representation by first identify-
ing staves and then grouping the staves into systems using
the common bar line positions exhibited in a system. The
systems and measures are identified by first finding the best
configuration of shared bar lines for each potential system,
and then identifying the best partition of staves into systems,
both using DP. This approach is phrased as an optimization
of Eqn. , essentially seeking the configuration of bar lines
and systems that explains the maximal amount of black in
the image. We omit the details of our approach because this
is likely the least challenging aspect of OMR, while our ap-
proach has similarities with a number of others.

2.3 Measure Recognition

Measures are composed of two kinds of symbols we call
rigid andcomposite. Rigid symbols, such as rests and clefs,
consist of a single glyph of known scale, whose possible lo-
cations may have partial constraints (e.g. the vertical po-
sition of most clefs and rests). In contrast, the compos-
ite symbols, most importantly chords (including single-note
“chords”) and beamed groups, are composed of highly con-
strained arrangements of primitive symbols (note heads, led-
ger lines, stems, flags, beams, accidentals, augmentation
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dots etc.). When the rigid and composite symbols can be or-
dered left-to-right in a measure (e.g. a monophonic or homo-
phonic line), almostanyordering of symbols makes sense,
as long as the time signature constraint is obeyed. As a
consequence, it seems that a generative model for the mea-
sure symbols, such as a finite-state machine, is not likely
to be powerful or useful. In contrast, chords and beamed
groups are natural candidates for top-down model-based,
finite-state-machine-directed recognition. The result isa hy-
brid approach to measure recognition, combining both top-
down and bottom-up approaches.

We begin by identifying candidates for the composite
symbols: potential beam corners for the beamed groups and
potential stem beginnings for the chords. These candidates
are explored through principled model-based recognition stra-
tegies, as described in Sections 2.3.1 and 2.3.2. We recog-
nize the remaining rigid symbols with template matching —
for now we only consider rests and clefs at line beginnings,
though there are other possibilities. The result of this pro-
cess is a collection of mutually inconsistent overlapping hy-
potheses. Section 2.3.3 presents a method of resolving these
conflicts by seeking non-overlapping variations on the rec-
ognized symbols, perhaps completely discarding some hy-
potheses.

2.3.1 Isolated Chord Recognition

We find candidate locations for note stems by convolving
the image with appropriate masks designed to “light up”
both possible stem orientations: stem-up and stem-down. In
finding these oriented candidates we err on the side of false
positives, since stems of isolated chords missed at this stage
can never be recovered. We now discuss how we identify
the best chord beginning from one of these candidate loca-
tions. If the score, (Eqn. 2.2), of this best chord is less than
0, we do not consider the candidate further.

A chord arranges a collection of note heads on a stem,
drawing ledger lines for the notes lying off the staff, with
the constraint that note heads on the same side of the stem
must differ by at least one staff line or staff space. Figure 1
shows a generative model for the somewhat simpler scenario
in which the chord is known to be stem-up, there are no
notes below the staff, and all note heads are on the right side
of the stem. Generalizing this situation to the full range of
possibilities increases the complexity of the graph structure,
though the basic idea remains sound.

A path through the figure is a recipe for drawing a par-
ticular chord from bottom to top, as follows. We start in
the bottom node of the figure, drawing the initial portion of
the stem, followed by a series of either note heads or blank
spaces, perhaps separated by an occasional half-space as we
move between note heads centered on staff lines and those
centered on staff spaces. The graph ends with a final section
containing “self-loops” accounting for an arbitrary number
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Figure 1. A directed graph representing a family of possible
chords.

of note heads above the staff with associated ledger lines.
While not indicated in the figure, we can exit the model
after visiting (and drawing) any note head. The path that
generates a c major chord in treble clef is shown in bold.

As is often the case, such a generative model can be
turned into a recognition engine. Consider the sequence of
pixel rows beginning at the bottom of the stem, continuing
up to the top of the chord. We seek a partition of this row se-
quence into consecutive intervals:I1, I2, . . . , IK , and a la-
beling of these intervals,s1, s2, . . . , sK , such that the label-
ing is a legal sequence of states from our graph. These two
sequences must satisfy several constraints. For instance,the
initial stem must exceed some minimum length, thus con-
straining the associated interval. Furthermore, weknowthe
location of the staff lines, so each state corresponding to a
note head or space on the staff must be associated with an
interval that spans the correct region. Similar constraints
apply to “above staff” note heads and half spaces.

For any such state and interval sequence, we compute the
associated data likelihood, as follows. Each(sk, Ik) pair as-
sumes a particular labeling of black image pixels insideIk.
All states must account for the stem, thus must label the re-
gion corresponding to the stem as black. Additionally, some
of the other states account for note heads, perhaps also with
ledger lines. Finally we label a small band of white pixels
around the black pixels of each labeledIk, thus accounting
for our expectation that there will be some minimal separa-
tion between the chord and other symbols in the image. We
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Figure 2. Left: Graph describing possible beamed struc-
tures.Right: A beamed structure with an associated region
Rk. x0 is the left corner of the beamed group, whileu and
v give the beam direction and stem orientation.

can then approximate Eqn. 2.2 as

H(B,W ) ≈
K∑

k=1

H(Bk,Wk) (2)

whereBk andWk represent the black- and white-labeled
pixels in and aroundIk. (Really,Bk andWk depend on
(sk, Ik), though we have suppressed this in the notation).
Using DP, it is a simple matter to compute a global opti-
mum of this objective function over all partitions and legal
labellings of these partitions; this is the essence of our chord
recognition strategy.

A simple modification improves this approach. Due to
the buffers of white pixels, the regions the{Bk ∪Wk}Kk=1

overlap, so that some pixels are counted multiple times, per-
haps under both blackandwhite models. We resolve this by
assuming that(Bk ∪Wk)∩ (Bk+j ∪Wk+j) = ∅ for j > 1,
allowing us to correct this error in a pairwise manner. Thus
we modify Eqn. 2 to be

H(B,W ) =

K∑
k=1

H(Bk,Wk)−H(Bk−1,k,Wk−1,k) (3)

whereBk,k+1 = Bk ∩ Bk+1 andWk,k+1 = (Bk ∪Wk) ∩
(Bk+1 ∪ Wk+1) \ Bk,k+1. In other words, when we en-
counter a pixel with given two different labellings, we “de-
fer” to the black label. The modified objective function is
still expressed as a sum of terms that depend on pairs con-
secutive states, thus is still amenable to DP.

2.3.2 Beamed Group Recognition

As with chord recognition, a candidate detection phase first
finds possible locations for the left corner of potential beamed
groups, while classifying these candidates “stem-up” or “stem-
down,” and estimating the angle of the parallel beams.

Figure 2 shows the graph structure we use to model a
beamed group (without note heads). This model “draws”
the beams and note stems from left to right, forcing an alter-
nation between note stems and beams, except when partial
beams (as in dotted rhythms) are employed. For clarity’s

sake, the figure only allows one or two beams, though our
actual models can account for any number of beams. For ex-
ample, the numbered sequence of transitions generates the
beam structure in the right panel of Figure 2. As with the
chord recognition approach described above, the state graph
specifies what sequences of states “make sense,” in this way
lending itself naturally to a DP-based recognition strategy,
this time parsing along thehorizontaldimension.

Supposex0 gives the left hand corner of the beamed
group,u is a unit vector pointing in the beam direction, and
v points in the stem direction (up in the case of our Figure 2).
(x0, u, v) are estimated when we identify a beam candidate.
Thus, ifN is the maximum length of the beamed group, we
seek a partition of{0, 1, . . . , N} into intervalsI1, . . . , IK ,
with labelss1, . . . , sK for the intervals, forming a legal se-
quence from the state graph of Figure 2.

A labeled interval,(Ik, sk), corresponds to a possible la-
beling of the pixel data for the region

Rk = {x : (x− x0) · u ∈ Ik, (x− x0) · v > 0}

as shown in the right panel of Figure 2. Essentially, we
choose a black region,Bk, that “fits into”Rk. For instance,
if sk is of type “single beam,”Bk would be the parallelogram-
shaped of known height “sitting” in the bottom ofRk. Or if
sk is of type “note stem,” thenBk would be a thin vertical
line of known height fitting into the bottom of an equally
thin Rk. By including small buffers of white pixels around
the black pixels,Wk, we can form an objective function as
in Eqn. 3, withBk,k+1 andWk,k+1 defined as before. As
usual, DP leads to a global maximum of our objective func-
tion, thus estimating the desired beam structure.

As stated above, the approach only recognizes the beams
and stems, though not the note heads and ledger lines. How-
ever, an interesting variation on this idea combines the recog-
nition of both beam structure and chords into a single opti-
mization, as follows. When scoring a note stem on a par-
ticular interval, rather than only considering the stem itself,
we nest the optimization problem of Section 2.3.1insidethe
current optimization, thus substituting the best configuration
of stem, note heads and ledger lines for the single stem. The
result is the most likely beamed group configuration (not yet
considering note head “decorations” such as accidentals and
augmentation dots), starting from the initial candidate loca-
tion.

2.3.3 Resolving Conflicts Between Hypotheses

While our identification of each chord and beamed group
is highly constrained, their overall arrangement within the
measure is unconstrained. Thus, it is inevitable that we will
find overlapping and mutually inconsistent symbols. We
now describe how we resolve these conflicts, producing an
explanation for the measure in terms of non-overlapping ob-
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Figure 3. Left: Two hypotheses that both “claim” the re-
gion, C. Right: A network of overlapping regions with
various conflicts.

jects that still satisfy the essential grammatical constraints
described above.

The simplest type of conflict concerns two hypotheses
that both compete for a common subregion,C, as shown in
the left panel of Figure 3. Such a situation could arise, for
instance, when the single note on the right tries to explain
the rightmost note head of the beamed group as an acciden-
tal. We resolve this conflict by running the two recognizers
again, nowdisallowingthe use ofC in their recognized re-
sults. Such constraints are simple to incorporate into our
recognizers, and come with little additional cost over the
initial computation. Suppose thats1 ands2 are the uncon-
strained scores of the two recognizers, whiles′1 ands′2 are
the constrained scores. Here we choosemax(s1 + s′2, s

′
1 +

s2) as our optimal score, thus allocating the contested region
to the better fittingjoint model.

This general idea applies equally well to more complex
situations, as in the right panel of Figure 3, showingsev-
eral regions of conflict. Here we view the network of con-
flicts as agraph, with the recognized regions representing
nodesand the conflicts asedges. When this graph structure
is a tree, we can still compute the optimal assignment of
the contested regions to the original hypotheses, thus pro-
ducing a non-overlapping joint hypothesis. To do this, we
recognize each region subject toall possibleconflict sub-
sets. Thus, for example, the 3 conflicts involving region B
in Figure 3 would require 8 possible constrained solutions.
With the constrained solutions in place, it is a simple mat-
ter to optimally allocate the regions of conflict to the origi-
nal hypotheses using familiar “max propagation” ideas from
graphical models. In fact, this approach can be extended to
graphs containing cycles by an appropriate triangulation of
the graph, or to situations where the more than two hypothe-
ses claim a region.

This notion of conflict resolution also plays a role in our
recognition of beamed groups. After having recognized a
beamed group in the manner of Section 2.3.2, we proceed

to look for both accidentals and augmentation dots that “be-
long” to the identified note heads. Frequently, this intro-
duces conflicts into the result when these note head “deco-
rations” overlap each other or previously recognized parts
of the beamed group. In such a case, it is possible for either
the newly recognized decoration, or the original interpreta-
tion of the conflict region to be correct. We resolve such sit-
uations though pairwise conflict resolution, performing the
entire recognition of beamed group and decorations subject
to constraints that “allocate” the region of conflict. We re-
solve conflicts sequentially, moving left to right in the rec-
ognized structure. While the result is not optimal, at least it
provides an interpretation that obeys the grammatical con-
straints of the beamed group and ensures that all recognized
decorations belong to recognized note heads.

3. RESULTS

While this research is a “work in progress,” we present a
snapshot of our current state of the art here.http://www.music.in-
formatics.indiana.edu/papers/ismir11 shows the first five pages
of the Beethoven2nd Romance for Violin and Orchestra,
op. 50, as recognized by our OMR system. Even though
our recognition results contain important structural and as-
sociative information, these images simply color the regions
recognized over the original image. This coloring is done
so that any recognized black region shows up in blue, while
any recognized white region shows up as red. Most, but not
all, errors are clearly visible in these images, giving an quick
informal depiction of our current level of success.

In addition, we developed ground truth for these images,
associating each image symbol or primitive with a hand-
labeled bounding box. The table of Figure 1 gives both false
positives and false negatives for each symbol type. The ta-
ble only lists the symbols we try to recognize at present,
thus the additional symbols in the image (not included for
reasons of space) should be counted as a false negatives.
In perusing the results we observe several types of common
confusions, such as with open and closed note heads, as well
as sharps and naturals. We also see a natural tendency of
“out-of-vocabulary” symbols to create false positives. At
present, we cannot offer any comparison with other OMR
results — the evaluation problem here is a research topic in
its own right. Though our evaluation completely misses the
importantinterpretationof the symbols, it can be used for
self-comparisons with future system variations. In essence,
such a measure enables the “gradient descent” paradigm to
be applied to the overall research effort.

4. FUTURE WORK

At present, we have designed the core of an OMR recog-
nition engine, though there still remains years of work be-
tween our current system and one that can harvest large-
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symbol name False + False -
solid note head .04 74/1724 .04 68/1718
note stem .02 29/1573 .06 90/1634
ledger line .07 51/701 .06 43/693
2 beam .11 35/312 .04 13/290
1 beam .23 76/331 .08 23/278
aug. dot .52 252/481 .14 36/265
8th rest .03 7/242 .04 10/245
3 beam .04 6/138 .15 24/156
single flag down .00 0/92 .36 51/143
whole rest .21 28/132 .10 12/116
flat .07 8/107 .05 5/104
quarter rest .01 1/92 .10 10/101
open note head .28 25/88 .29 26/89
single flag up .02 1/50 .34 25/74
natural .14 7/50 .30 18/61
treble clef .00 0/60 .00 0/60
sharp .36 21/58 .16 7/44
16th rest .04 1/24 .21 6/29
bass clef .00 0/20 .00 0/20
triple flag down .43 9/21 .20 3/15
triple flag up .59 13/22 .10 1/10
alto clef .00 0/10 .00 0/10
4 beam .33 1/3 .00 0/2
double flag up - 0/0 1.00 1/1
double flag down 1.00 3/3 - 0/0

Table 1. False positives and false negatives for each symbol
and primitive.

scale symbolic music representations from the IMSLP. We
comment here on several of the tasks that must be a part of
this vision.

Many OMR authors advocate enabling the system toadapt
to a particular document. Since we have performed no train-
ing so far, we expect this will be a fruitful direction. Of
course, this opens the door to more power data models by
more intricate modeling of within-symbol grey-level distri-
butions. However, training also allows us to model a “prior”
distribution (or other regularizing notion) on thea priori
plausibility of various symbols, as well as the “wiggle room”
in the joints of the composite symbols.

An additional step lies between the current output of our
system and the symbolic music representations we desire.
While our recognition approach embeds important seman-
tic interpretation into a recognized hypothesis, our eventual
system must perform further interpretation, such as under-
standing rhythm and voicing. This is an active part of our
research efforts to date, though we do not discuss them here.
This interpretation phase may intersect with the recognition
phase, allowing us to choose between plausible image in-
terpretations through global constraints, such as those ona
measure by the time signature.

Numerous authors have also advocated the role of the
user interface in an OMR system. In short, the value of the
resulting data remain suspect until corrected and “blessed”

by a knowledgeable person. Given that a user must be in-
volved at least this much, it makes sense to think creatively
about how the user’s input can be leveraged throughout the
recognition process. An obvious possibility is allowing the
user to correct intermediate results in the chain of processing
steps, thus avoiding the potential “garbage-in garbage-out”
scenario that occasionally plagues completely automated ap-
proaches. Another alternative is to allow partial hand-labeling
of misrecognized regions. For instance, the user might iden-
tify a single pixel as belonging to a beam, thus facilitatinga
constrained re-recognition of the offending region.
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SONGLE: A WEB SERVICE FOR ACTIVE MUSIC LISTENING
IMPROVED BY USER CONTRIBUTIONS
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National Institute of Advanced Industrial Science and Technology (AIST), Japan

ABSTRACT

This paper describes a public web service for active mu-
sic listening,Songle, that enriches music listening expe-
riences by using music-understanding technologies based
on signal processing. Although various research-level in-
terfaces and technologies have been developed, it has not
been easy to get people to use them in everyday life. Songle
serves as a showcase to demonstrate how people can bene-
fit from music-understanding technologies by enabling peo-
ple to experience active music listening interfaces on the
web. Songle facilitates deeper understanding of music by vi-
sualizing music scene descriptions estimated automatically,
such as music structure, hierarchical beat structure, melody
line, and chords. When using music-understanding tech-
nologies, however, estimation errors are inevitable. Songle
therefore features an efficient error correction interface that
encourages people to contribute by correcting those errors
to improve the web service. We also propose a mechanism
of collaborative training for music-understanding technolo-
gies, in which corrected errors will be used to improve the
music-understanding performance through machine learn-
ing techniques. We hope Songle will serve as a research
platform where other researchers can exhibit results of their
music-understanding technologies to jointly promote the
popularization of the field of music information research.

1. INTRODUCTION

The goal of this research is to enrich music listening experi-
ences by using music-understanding technologies based on
signal processing. Toward this goal, we have already de-
veloped variousactive music listening interfaces[1], where
active music listening is a way of listening to music through
active interactions. In this research, the wordactive is not
meant to convey that the listeners create new music, but that
they take control of their own listening experience. For ex-
ample, the active music listening interfaceSmartMusicK-
IOSK[2] has a chorus-search function that enables a user to
access directly his or her favorite part of a song (and to skip
others) while viewing a visual representation of its music
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structure, which facilitates deeper understanding. However,
up to now the general public has not had the chance of using
such research-level interfaces and technologies in daily life.

We therefore developed a web service calledSonglethat
allows anonymous web users to enjoy music by using active
music listening interfaces on a web browser. Songle uses au-
tomatic music-understanding technologies to estimate mu-
sic scene descriptions (musical elements) [3, 4] of musical
pieces (audio files) available on the web. A user of Songle
can enjoy playing back a musical piece while seeing the
visualization of the estimated descriptions. In our current
implementation, four major types of descriptions are auto-
matically estimated and visualized for content-based mu-
sic browsing: music structure (chorus sections and repeated
sections), hierarchical beat structure (musical beats and bar
lines), melody line (fundamental frequency (F0) of the vocal
melody), and chords (root note and chord type). In partic-
ular, Songle implements all functions of the SmartMusicK-
IOSK interface, and a user can jump and listen to the cho-
rus with just a push of the next-chorus button. Songle thus
makes it easier for a user to find desired parts of a piece.

Given the variety of musical pieces on the web, however,
it is difficult to estimate music scene descriptions with high
accuracy. Because of the diversity of music genres, com-
plexity of sound mixtures, and recording conditions, auto-
matic music-understanding technologies cannot avoid mak-
ing some errors, even though the technologies are constantly
improving. As a result, users of such a web service might
be disappointed by its performance.

To overcome this difficulty, Songle enables anonymous
users to contribute by correcting music-understanding er-
rors. Each user can see the music-understanding visualiza-
tions on a web browser, with a moving cursor indicating
the audio playback position. If a user finds an error while
listening, the user can easily correct the error by select-
ing from a list of candidates, or by providing an alternative
description on Songle’s efficient error correction interface.
The resulting corrections are then shared and used to im-
mediately improve the user experience with the corrected
piece. We also plan to use such corrections to gradually im-
prove music-understanding technologies through adaptive
machine learning techniques, so that descriptions of other
musical pieces can be estimated more accurately. This ap-
proach can be described ascollaborative training for music-
understanding technologieson the web.

Development for Songle started in June 2009, and the
Songle websitehttp://songle.jpwill be open to the public
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Figure 1. Songle screen snapshot of the main interface for
music playback with the visualization of music scene de-
scriptions estimated automatically.

before the ISMIR 2011 conference. In addition to the con-
tribution of enriching music listening experiences, Songle
will serve as a showcase in which everybody can experience
music-understanding technologies and understand their na-
ture: for example, what kinds of music or sound mixture
are difficult for the technologies to handle. Furthermore,
we hope to extend Songle so that it can serve as a research
platform able to support various music-understanding tech-
nologies developed by different researchers.

2. OVERVIEW OF SONGLE

Songle is a social annotation web service where users can
retrieve, browse, and annotate musical pieces on the web.
Figure 1 shows the web page of the Songle interface after
a musical piece is selected. During the initial stage of the
Songle launch we are focusing on popular songs with vo-
cals. Songs recently released on music web services such
as Magnatune (http://magnatune.com/) and PIAPRO1 are
added (registered) to Songle. A user can also register any
song available on the web by providing the URL of its MP3
file, the URL of a web page including multiple MP3 URLs,
or the URL of a music podcast (an RSS syndication feed
including multiple MP3 URLs).

Everybody can enjoy active music listening and correct
errors as an anonymous user without logging in, but a user
has to log in with OpenID to register a new song. In addi-

1 PIAPRO (http://piapro.jp/) is a web service to which musicians can
upload their own songs created using singing synthesizers.

tion, a logged-in user can generate a playlist. Such a playlist
has a title (theme) and the user can choose whether to share
it with other users. A logged-in user can also enter and
record a preference (like or dislike) for each song to get bet-
ter song recommendations in the future.

Songle supports three main functions: retrieving, brows-
ing, and annotating songs. The retrieval and browsing func-
tions facilitate deeper understanding of music, and the anno-
tation (error correction) function allows users to contribute
to improve music scene descriptions. These improved de-
scriptions can then lead to a better user experience of re-
trieving and browsing songs.

2.1 Retrieval Function

This is a function that enables a user to retrieve a song
through a text search of the song title or artist name, or
through selection from a list of artists or a list of songs
whose descriptions were recently estimated or corrected.
This function also shows various kinds of ranking, such as
artist ranking, song ranking, and user ranking (by the num-
ber of corrected errors).

Following the idea of the active music listening interface
VocalFinder[5], which finds songs with similar vocal tim-
bres, a similarity graph of songs is also visualized so that
a user can retrieve a song according to vocal timbre simi-
larity. The graph is a radially-connected network in which
nodes (songs) of similar vocal timbre are connected to the
center node (a recommended or user-specified song). By
traversing a graph while listening to nodes, a user can find a
song having the favorite vocal timbre.

A user can play back a song in any list of songs (e.g.,
playlist, retrieved list, and ranking) for trial listening to
judge whether it is of interest. By selecting one of the songs,
the user switches over to the next browsing function. While
using the browsing function, songs in the playlist are au-
tomatically switched one after another if a user selects and
listens to a playlist.

2.2 Within-song Browsing Function

This is a function that provides a content-based playback-
control interface for within-song browsing as shown in the
upper half of Figure 1. The upper window is the global view
showing the entire song and the lower window is the local
view magnifying the selected region.

With this function, a user can view the following four
types of music scene descriptions estimated automatically:
1. Music structure (chorus sections and repeated sections)
In the global view, themusic mapof the SmartMusicK-
IOSK interface [2] is shown below the playback controls
including the buttons, time display, and playback slider.
The music map is a graphical representation of the entire
song structure consisting of chorus sections (the top row)
and repeated sections (the five lower rows). On each row,
colored sections indicate similar (repeated) sections. This
map helps a user decide where to jump. Clicking directly
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(a) Correcting music structure
(chorus sections and repeated sections)

(b) Correcting hierarchical beat structure
(musical beats and bar lines)

(c) Correcting melody line (F0 of the vocal melody) (d) Correcting chords (root note and chord type)
Figure 2. Songle screen snapshots of the annotation function for correcting music scene descriptions.

on a colored section plays that section. There are also but-
tons for jumping to the next or previous chorus sections,
and the next or previous repeated sections.

2. Hierarchical beat structure (musical beats and bar lines)
At the bottom of the local view, musical beats correspond-
ing to quarter notes are visualized by using small triangles.
The top of each triangle indicates its temporal position.
Bar lines are marked by larger triangles.

3. Melody line (F0 of the vocal melody)
The piano roll representation of the melody line is shown
above the beat structure in the local view. It is also shown
in the lower half of the global view. For simplicity, the
fundamental frequency (F0) can be visualized after being
quantized to the closest semitone.

4. Chords (root note and chord type)
Chord names are written in the text at the top of the local
view. Twelve different colors are used to represent twelve
different root notes so that a user can notice the repetition
of chord progressions.

In the lower half of Figure 1, a user can add and share
social tags and time-synchronous comments forCrowd Mu-
sic Listening[6]. Clicking on a time-synchronous comment
starts playback from that position.

2.3 Annotation (Error Correction) Function

This function allows users to add annotations to correct any
estimation errors they may come across while listening to

music. Here, annotation means describing the contents of a
song, either by modifying the estimated descriptions or by
selecting the correct candidate if available. For this purpose,
we provide an efficient error correction interface (editor) as
shown in Figure 2.

Editors for four types of music scene descriptions can be
switched between in the local view.

1. Music structure(Figure 2(a))
The beginning and end points of every chorus or repeated
section can be adjusted. It is also possible to add, move,
or delete each section. Repeated sections can serve as can-
didates for the chorus sections, but since it is not obvious
how to correct repeated sections, we plan to let a user type
in a section label (e.g., verse A, verse B, etc.) on each row.
This correction function improves the SmartMusicKIOSK
experience.

2. Hierarchical beat structure(Figure 2(b))
Several alternative candidates for the beat structure can be
selected at the bottom of the local view. If none of the
candidates are useful, a user can enter the beat position by
tapping a key during music playback. Each beat position
or bar line can also be changed directly. For fine adjust-
ment it is possible to play back the audio with click tones
at beats.

3. Melody line(Figure 2(c))
Songle allows note-level correction on the piano roll rep-
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Figure 3. Implementation overview of Songle.

resentation of the melody line. Since the melody line is in-
ternally represented as the temporal trajectory of F0, more
precise correction is also possible by choosing from F0
candidates. A user can listen to the melody line only or the
melody-cancelled background playback. More accurate
melody annotations will lead to better similarity graphs of
songs.

4. Chords(Figure 2(d))
Chord names can be corrected by choosing from candi-
dates or by explicit typing of chord names. Each chord
boundary can also be adjusted. Chords can be played back
along with the original song to make it easier to check the
correctness.

Note that users can simply enjoy active music listening
without correcting errors. We understand that it is too diffi-
cult for some users to correct the above descriptions (espe-
cially, chords). Designing an interface that makes it easier
for them to correct will be another future challenge. More-
over, users are not expected to correct all errors, only some
according to each user’s interests.

When the music-understanding results are corrected by
users, the original values are visualized as trails with dif-
ferent colors (white, gray, or yellow marks in Figure 2)
that can be distinguished by anybody. These trails
are important to prevent overestimation of the automatic
music-understanding performance after the user corrections.
Moreover, all the correction histories are recorded, and de-
scriptions before and after corrections can be compared.

3. IMPLEMENTATION OF SONGLE

The implementation overview of Songle is shown in
Figure 3. Theweb crawlercollects musical pieces (MP3
files) on the basis of their URLs and RSS feeds, which can
be added by users, and stores the pieces in the database.
Severalmusic-understanding modules, each corresponding
to a particular type of music scene description, then pro-
cess each musical piece. For example, the beat structure and
the music structure are estimated by two different modules.
When a request from an idle music-understanding module
is received by themusic-understanding manager, the next
available musical piece lacking an estimation result for the
corresponding description is handed over. After the music-
understanding module finishes processing its piece, the es-
timation result is passed to the database manager via the
music-understanding manager. Thedatabase managercon-
trols the processing state of the musical pieces and stores
their estimation results in a database together with the cor-
rections when provided by users. Finally, theweb server

works as a website that provides the Songleuser interface,
which directly plays back the MP3 file from the original
URL.

The web server of Songle was implemented by using a
web application frameworkRuby on Rails, a programming
languageRuby, a web serverPassengerandApache, and a
databaseMySQL. The client user interface was implemented
by using a scripting languageActionScript 3, an Action-
Script 3 compilerAdobe Flex Compiler, and a scripting lan-
guageJavaScript.

Music scene descriptions are estimated as follows.

1. Music structure
Chorus sections and repeated sections are estimated by us-
ing the chorus-section detection methodRefraiD[2] which
focuses on popular music. By analyzing relationships be-
tween various repeated sections, the RefraiD method can
detect all the chorus sections in a song and estimate both
ends of each section. It can also detect modulated chorus
sections.

2. Hierarchical beat structure
The beats are estimated using a hidden Markov model
(HMM) with 43 tempo states, each having 18 to 60 sub-
states corresponding to the beat phase of different tempi.
In each tempo a beat is modeled as a left-to-right HMM
in which only some states have non-deterministic transi-
tion probabilities to allow for tempo fluctuations or tempo
changes. The emission probability of a sub-state is calcu-
lated via the cosine similarity between a comb filter and a
simple onset detection function. Five different comb-filter
shapes are used to output five different beat-tracking re-
sults, including those that are likely true candidates if the
default algorithm tracks the back-beat or beats at twice the
true tempo. This strategy maximizes the likelihood of of-
fering the beat-tracking result desired by the user.
The bar lines are estimated using harmonic cues. First, we
extract tatum-synchronous bass and treble chromagrams
using NNLS Chroma [7]. We build a simple chord detec-
tion model and calculate posterior probabilities of chord
changes. Using a sliding window, we compute the cosine
similarity between the chord change probabilities and sev-
eral different bar patterns that cover the 3/4, 4/4 and 6/8
meters and all possible bar phases. We normalize the co-
sine similarities at each frame and use them as emissions
in another HMM similar to the beat-tracking model.

3. Melody line
The fundamental frequency (F0) of the vocal part is es-
timated by using the F0 estimation method for the vo-
cal melody [8], which is implemented by extending the
predominant-F0 estimation methodPreFEst [4]. This
method focuses only on the vocal melody by evaluating a
GMM-based vocal probability for each F0 candidate esti-
mated by PreFEst. Moreover, vocal activity detection was
implemented by using a method described in [9].

4. Chords
We transcribe chords using 14 chord types: major, ma-
jor 6th, major 7th, dominant 7th, minor, minor 7th, half-
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diminished, diminished, augmented, and five variants of
major chords with different bass notes: /2, /3, /5, /b7, and
/7. The resulting 14 types× 12 root notes = 168 chords
and one ‘no chord’ label are estimated using an HMM ap-
proach on the same tatum-synchronous chromagram used
for the bar-line estimation. Chord changes are allowed to
happen only on beats.
We also include knowledge from the bar-line estimation
and a key estimate. Instead of building one large model
in which chords and keys are modeled simultaneously
(e.g. [10]), we chose a less memory-intensive, progressive
approach. First, we model the key in a simple separate
HMM with three different key scales: major, natural mi-
nor, and harmonic minor. Every key state has observation
probabilities for all different chords, based on an expert
function [10]. The posterior probability obtained from the
HMM is then used to weight the chord probabilities for the
chord HMM. During Viterbi decoding we use the bar-line
estimates for dynamic transition probability weighting in
order to encourage chord changes at bar lines.

To show the similarity graph of songs, the vocal timbre
similarity between songs is calculated by using the method
used in VocalFinder [5]. The current recommendation of
songs simply uses the same similarity, which shall be im-
proved in the future.

4. DISCUSSION

While research dealing with a public web service for active
music listening and social annotation has not been pursued
in the past, there have been various approaches related to
music annotation. In the following, we introduce related
work and then discuss how Songle could contribute to soci-
ety and academic research.

4.1 Related Research

Several approaches have been proposed to collect a large
amount of ground-truth annotations. Such annotations
are useful for improving the accuracy of music informa-
tion retrieval (MIR) systems using machine learning tech-
niques, and for evaluating MIR systems [11]. For exam-
ple, Lee [12] used a web service called Amazon Mechanical
Turk (MTurk) to ask people to make similarity judgments.
Mandelet al.[13] also used MTurk for tag collection. These
approaches showed that the quality of the collected anno-
tations was sufficiently high. However, the human effort
necessary increases in proportion to the required number of
annotations.

To solve this problem, it is interesting to let non-experts
contribute to making ground-truth annotations. One promis-
ing approach is based on games. For example, Turnbullet
al. [14,15] proposed an annotation game, where players are
asked to choose the most and least suitable descriptions for
a given musical piece. Mandel and Ellis [16] proposed an-
other annotation game, where players can get points by pro-
viding useful descriptions that were not provided by other
players. Lawet al. [17] proposed another annotation game

based on the ESP Game [18] in which players are not asked
to describe a sound, but told to guess what their randomly
paired partners are thinking. Songle provides a stronger mo-
tivation for users to contribute than these related approaches
because the user is aware of improving the service for other
users.

To annotate musical pieces, various useful editors have
been developed, such as Sonic Visualiser [19], Audacity ex-
tension [20], CLAM [21], and MUCOSA [22]. The Echo
Nest API (http://developer.echonest.com/) is also useful for
access to various annotations. Songle is the first system that
allows anonymous users to collaborate to edit various mu-
sic scene descriptions (chorus, beats, melody, and chords)
directly on the web without stand-alone applications.

4.2 Contributions of Songle

Songle makes a social contribution by providing the
world’s first public web service for enjoying active mu-
sic listening interfaces with music-understanding technolo-
gies. It also promotes the popularization and use of
music-understanding technologies by raising user aware-
ness. Users can grasp the nature of music-understanding
technologies just by seeing results of the technologies ap-
plied to songs available on the web. When there are many
errors, we run the risk of attracting criticism, but we be-
lieve that sharing these results with users will promote fur-
ther popularization of this research field.

The academic contribution of this study is to propose a
new research approach to music understanding based on sig-
nal processing; this approach aims at improving both the
music-understanding performance and the usage rate while
benefiting from the cooperation of anonymous end users.
This approach is designed to set into motion apositive spiral
where (1) we enable users to experience a service based on
music understanding to let them better understand its perfor-
mance, (2) users contribute to improved performance, and
(3) the improved performance leads to a better user expe-
rience, which encourages further use of the service at step
(1) of this spiral. This is asocial correctionframework,
where users can improve the performance by sharing their
correction results over a web service. The game-based ap-
proach of Human Computation or GWAPs (games with a
purpose) [23] like the ESP Game [18] often lacks step (3)
and depends on the feeling of fun. In this framework, users
gain a real sense of contributing for their own benefit and
that of others and can be further motivated to contribute by
seeing corrections made by other users. In this way, we can
use thewisdom of crowdsor crowdsourcingto achieve a bet-
ter user experience.

Another important technical contribution of this study
is to investigate how far the performance of music-
understanding technologies can be improved by getting er-
rors corrected through the cooperative efforts of users. Al-
though we have not yet implemented a machine-learning
mechanism to improve the performance on the basis of user
corrections, we could implement such a mechanism once we
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have collected enough corrections. This study will then pro-
vide a framework foramplifyinguser contributions in mu-
sic research. In a typicalWeb 2.0service likeWikipedia,
improvements are limited to an item directly contributed
(edited) by users. In Songle, improvements will automat-
ically spread to other songs because of the improvement
of the music-understanding technologies through machine
learning techniques. This will be a novel technology of am-
plifying user contributions, which could be beyond Web 2.0
and Human Computation [23]. We hope that this study will
show the importance and potential of incorporating and am-
plifying user contributions in music research, as have been
demonstrated by PodCastle in speech research [24,25].

We think we can trust users with respect to the quality
of correction according to our experiences from PodCas-
tle [25]. Even if some users deliberately make inappropriate
corrections (the vandalism problem), we will be able to de-
velop countermeasures to acoustically evaluate the reliabil-
ity of corrections. For example, we could validate whether
the corrected descriptions can be supported by acoustic phe-
nomena. This will be another interesting topic of research.

4.3 Songle as a Research Platform

In the future, we hope to extend Songle to serve as a re-
search platform where other researchers can also exhibit re-
sults of their own music-understanding technologies. When
each technology is implemented as amusic-understanding
modulein Figure 3, which can be executed anywhere in the
world even in our current implementation, it is not neces-
sary to share its source and binary codes. Each in-house
module, even inside an Internet firewall, can just connect
to the music-understanding managerto receive an audio
file and send back music-understanding results via HTTP.
The results should always be shown with clear acknowledg-
ments/credits so that users can distinguish the sources. We
are also interested in adding other types of music scene de-
scriptions, which are not yet supported.

Once this happens, it will be interesting to com-
pare/visualize differences of modules on each music scene
description. Results from different researchers can also be
used as candidates for the correction and even as votes to let
different results converge.

5. CONCLUSION

We have described Songle, an active music listening service
that is continually improved by user contributions. In our
current implementation, four types of music scene descrip-
tions are estimated and exposed through web-based interac-
tive user interfaces. Since automatic music-understanding
technologies are not perfect, Songle allows users to make
error corrections, which are shared with other users, thus
creating a positive spiral and an incentive to keep correct-
ing. For the MIR community this platform will act both as a
test-bed or showcase for new technologies, and as a way of
collecting valuable annotations.
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ABSTRACT

We report the design and results of a web-based experi-
ment intended to support the development and evaluation
of tempo estimation algorithms, in which users tap to music
and select descriptive labels. Analysis of the tapping data
and labels chosen shows that, while different listeners fre-
quently entrain to different metrical levels for some pieces,
they rarely disagree about which pieces are fast and which
are slow. We show how this result can be used to improve
both the evaluation metrics used for automatic tempo esti-
mation and the estimation algorithms themselves. We also
report the relative performance of two recent tempo estima-
tion methods according to a further controlled experiment
that does not depend on groundtruth values of any kind.

1. INTRODUCTION

Numerous algorithms for estimating the tempo of music di-
rectly from an audio signal have been developed in recent
years, motivated by the obvious value of tempo informa-
tion to automated tools for use in playlisting and DJ mix-
ing [4]. Automatic estimation of the tempo of a track as
a simple value measured in beats per minute (bpm) is now
regarded as an established technique. Bpm estimation algo-
rithms have gained a place in widely-distributed commercial
hardware mixers for DJs, as well as software applications
and web service APIs aimed at musicians, recording labels
and mobile application developers. Meanwhile the annual
MIREX algorithm evaluation competition offers a more for-
mal benchmark for the performance of tempo estimation
software. This has led to the proliferation of rival meth-
ods: seven different algorithms were submitted to the audio
tempo estimation competition during the past year alone.

A common observation made in both informal and for-
mal evaluation of tempo estimation methods is that they fre-
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quently suffer from so-called octave error, where the ma-
chine estimate is some simple multiple or fraction of the
perceived tempo [5, 10]. These errors appear to be analo-
gous to a phenomenon observed in studies of human percep-
tion of the rhythmic properties of music: humans can also
sometimes disagree about the frequency of the main beat of
a piece of music. In particular two influential experiments
on the perception of tempo attempt to generalise observed
variations in human responses into somewhat more formal
models of tempo ambiguity [8, 9].

The definition of tempo ambiguity proposed in [8] is based
on the authors’ observation that, while users tend to agree on
a bpm value for many tracks, in the remaining cases opinion
is divided between two candidates. They quantify ambiguity
as the strength of support for the larger of these two candi-
dates, divided by their mean support:

A =
2 max(H(T1), H(T2))

H(T1) + H(T2)
(1)

where H(T1) and H(T2) are the number of users who tap at
T1 and T2, the most and second most commonly observed
bpm values, respectively. The study attempts to model the
tempo ambiguity of a track in two different ways. Firstly
the authors suggest that tempo ambiguity may be related
to the mean of H(T1) and H(T2); and secondly they in-
vestigate how a related resonance deviation statistic might
be predicted from the value of an acoustic periodicity dif-
ference feature computed from the audio signal. The first
model was found to be consistent with data collected from
a group of 33 listeners for a set of 24 ten-second excerpts,
but the result could not be replicated in a second study of 24
subjects who tapped to the beat of 60 thirty-second excerpts.
The second model was not supported convincingly by either
experiment, although a modified formulation of resonance
deviation was found to be correlated with periodicity differ-
ence in a third study of 40 subjects [9].

Despite the inconclusive results reported in [8, 9], the
studies have been indirectly influential in the research com-
munity due to the adoption of their experimental data, and
of an evaluation methodology based on their observations,
in recent rounds of the MIREX tempo estimation competi-
tion. Algorithms entered for the competition have been re-
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quired to output two different bpm estimates for each track,
together with associated weights intended to represent “per-
ceptual strength”, credit being given for weights similar to
H(T1) and H(T2), as well as for estimates close to T1 and
T2.

A separate line of research has, however, highlighted a
negative side-effect of putting tempo ambiguity at the heart
of an evaluation metric for machine estimates. Imagine a
track that has been submitted for automatic tempo estima-
tion and marked as “70bpm or 140bpm”. Is this track appro-
priate for a playlist of pieces at walking pace, as suggested
by an estimate of 70bpm? Is it more suitable for a high en-
ergy playlist, as suggested by 140bpm? Will the track really
be perceived as slow by some listeners and as fast by oth-
ers? Or is one of the values simply a poor estimate resulting
from a shortcoming of the algorithm, which would be better
ignored?

The authors of [5] go so far as to suggest that such uncer-
tainty means that machine bpm estimates are simply not us-
able in practice for many potential applications, and should
be abandoned in favour of categorical labels such as slow
and fast. The study goes on to report extremely high accura-
cies achieved with a slow-fast classifier trained on a bag of
well-known low level audio features, and using social tags
as its groundtruth annotations. This suggests that the am-
biguity intrinsic to bpm estimation may simply not arise in
relation to perceptual tempo categories.

In this paper we attempt to reconcile these apparently
conflicting views of perceptual tempo estimation by crowd-
sourcing a large set of responses through a web-based exper-
iment. The responses include both tapping data and selec-
tions from a list of categorical labels. The remainder of the
paper is structured as follows: in Section 2 we describe the
design of the experiment and give some background about
web experiments in general; in Section 3 we report results,
in particular exploring the relationship between label selec-
tion and human bpm estimates; in Section 4 we outline how
categorical labels might be used to improve bpm estimates
from existing tempo estimation algorithms; in Section 5 we
describe and report the results of a controlled experiment
to compare different algorithms without reference to any
groundtruth values; and in Section 6 we draw conclusions
and outline future work. Last but not least we provide links
to our experimental data, making it available for future re-
search and evaluation.

2. EXPERIMENTAL DESIGN

While studies of the perception of music are traditionally
carried out under laboratory conditions, in recent years the
web has begun to be regarded as a potential source of per-
ceptual data. Social tags, such as those submitted to the

music service Last.fm 1 , can be seen as an abundant source
of perceptual responses although their quality is low: the
“experimenter” has no control whatsoever over the circum-
stances in which a tag is applied, indeed there is no guar-
antee that the user of a music tagging system has even lis-
tened to the music which they are tagging. Social tags have
nonetheless been used in several studies intended to cap-
ture listeners’ characterizations of perceptual characteristics
of music [6]. The appeal of tags to researchers is that the
cost of acquiring them is essentially zero, and they are of-
ten available in sufficient numbers for statistics to be ro-
bust even if individual tags are unreliable. Other experi-
ments have been designed as appealing internet games [7].
These games give considerably more control over the cir-
cumstances in which data is collected, but require a rela-
tively large investment in design and development.

For this study we opted for a middle course, designing
our experiment along the lines of a traditional laboratory
questionnaire, but hosting it on the web and simply appeal-
ing to visitors to contribute to our research. Besides pro-
viding a source of data for the questions at hand, we were
particularly interested to find out if visitors would take part
in response to such a bald invitation. This approach, if suc-
cessful, could offer a useful platform for future research,
offering considerably more control than social tags, but at
much lower cost than an internet game. The web page for
the experiment was hosted on the companion labs site to a
large music website. Although the main site receives many
millions of pageviews per day, traffic to the labs site is sev-
eral orders of magnitude lower, typically a few thousand
pageviews per day.

On each view of the experiment, the web page shows
artist and title information, along with an associated set of
questions, for thirty-second excerpts of either one or two
tracks. The excerpts are chosen at random from a pool of
several thousand audio clips, described in more detail in
Section 3. The first excerpt starts playing as soon as the
page has fully loaded, and the second excerpt starts as soon
as the first has finished. As shown in Figure 1, users are first
asked to select a speed label for each track, choosing either
from a 3-point scale from slow to fast, or a visually sepa-
rate category to report cases where they are not sure. On a
page displaying two excerpts they are then asked whether
the second excerpt sounds slower, the same speed or faster
than the first. Finally the visitor is asked to tap along with
the main beat of the music.

The sequence in which answers can be provided is not
strictly locked down, but highlighting on the page is used to
encourage the visitor to answer the questions in order. In
particular the large call to action, shown in Figure 1, is dis-
played only once the preceding question has been answered.
Conventional audio play/pause buttons are provided, so it is

1 e.g. http://www.last.fm/tag/slow
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Figure 1. Questions asked on the experiment web page.

also possible to stop and restart the tracks at will, or to lis-
ten to them more than once. Once tapping begins, the bpm
meter is highlighted in red, changing to green once ten taps
have been recorded, to give the visitor an idea of when they
have tapped for long enough to allow a reasonable estimate
of bpm to be made. If a visitor resumes tapping after a pause
of two seconds or more, the bpm meter and its internal coun-
ters are reset and the tapping is considered as a new attempt
to answer the question. Although not explicitly messaged on
the page, this allows users to try again if they are unhappy
with their tapping for any particular track. It also imposes
a lower limit of 30bpm on the tempo which the experiment
can record. When the visitor presses the Save button, their
label choices for each track are stored, together with a single
bpm value computed simply as the mean interval between
their taps.

The web can reasonably be regarded as a hostile environ-
ment for perceptual experiments when compared to a labo-
ratory setting, but provided the rules of engagement are un-
derstood in advance then it is possible to design reasonable
safeguards into the way in which responses are collected.
We restrict access to the experiment to logged-in users of
the main website, allowing us to associate responses with
the users who have submitted them. To attract users to con-
tribute more responses, we award points for each question
answered and display total scores for top contributors on
a separate leaderboard page, a ploy which unfortunately is
also known to encourage cheating. To mitigate the effects
of cheating we store at most one set of responses per user
for each track. Although organised cheating of course re-
mains possible, it would require a very determined attempt
given the relatively low profile of the experiment website,
and spurious data associated with any particular set of users
can easily be filtered out of any analysis. In practice we dis-
carded only tapping estimates of over 300bpm, which most
likely correspond to misunderstanding of the interface.

With these considerations in mind, however, we do en-

Listeners Tracks Responses
Labels 2141 4006 21444
Bpm estimates 1919 3929 19451
Comparisons 1438 3825 7597

Table 1. Responses received at the time of writing.

sure that the design of the experiment also allows us to col-
lect data for a more robustly controlled comparison of dif-
ferent tempo estimation algorithms. This is discussed more
fully in Section 5 below.

3. ANALYSIS OF RESULTS

The experiment continues to be publicly available at
http://playground.last.fm/demo/speedo.
Table 1 summarises the number of responses received at the
time of writing. The tracks presented on any given view of
the experiment web page are chosen essentially at random,
as described in detail in Section 5, and consequently the dis-
tribution of responses between tracks is not uniform. Most
of the following analysis concentrates on tracks which were
annotated by at least five listeners: in particular 1437 tracks
received five or more speed labels, while 1263 of those re-
ceived at least five bpm estimates.

The annotated tracks are predominantly rock, country,
pop, soul, funk and rnb, jazz, latin, reggae, disco and rap,
but also include music from numerous other genres, includ-
ing punk, electronic, trance, industrial, house and folk. They
range from recent releases back to the 1960s. A full list of
tracks used in the experiment is available (see Section 6).

3.1 Ambiguity in perceptual tempo labels

As described in Section 2, visitors to the experiment were
asked both to tap along to each excerpt and to describe its
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Figure 2. Observed distribution of all bpm estimates by
speed category.

Figure 3. Distribution of peak bpm estimates by speed cat-
egory.

Figure 4. Labels submitted by half-speed tappers for tracks
generally considered to be fast.

Figure 5. Observed distribution of conflict coefficient C.

speed on a three-point scale of slow, medium and fast, or
to indicate if they found it hard to decide. Figure 2 shows
distributions of all bpm estimates computed from tapping,
for tracks annotated by at least five people of whom a ma-
jority described them as slow or fast respectively. Figure 3
shows the corresponding distributions of single peak bpm
estimates for each track, computed as follows. Individual
listeners’ estimates are histogrammed into ten bins; the peak
estimate is then the median value in the most populated bin.
If adjacent bins contain the same number of values they are
merged into a single bin before taking the median.

The shape of the distributions in Figure 2 suggests that
we can be specific about octave disagreement in human tap-
ping: when listening to tracks generally regarded as fast,
some listeners tap half as fast as the majority. Figure 4
shows the distribution of labels supplied for these tracks by
“slow tappers”: there are cases in which they consider the
music to be slow, but they are rare.

To model the extent of disagreement over perceptual slow
and fast categories, by analogy with (1) we define the con-
flict coefficient for a track:

C =
min(Ls, Lf )

max(Ls, Lf )
· Ls + Lf

L
(2)

where L is the total number of labels supplied, of which Ls

are slow and Lf are fast. The first term represents the ex-
tent to which fast and slow labels conflict, while the second
term applies a discount to this if other users have labelled
the excerpt as medium. Figure 5 gives the distribution of C
over all tracks with at least five labels, showing that, for the
huge majority of tracks, listeners do not disagree at all when
describing excerpts as either slow or fast. To test whether
listeners disagree over perceptual categories in the face of
tempo ambiguity, we define ambiguous tracks to be those
for which more than 30% of listeners tap at either double
or half the peak bpm estimate, allowing a 4% margin of er-
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ror when comparing bpm values. The mean conflict coeffi-
cient for ambiguous tracks is 0.062, slightly higher than the
mean of 0.058 for the remaining unambiguous tracks, but
the difference is not significant (p = 0.647). We conclude
that in general there is no evidence that listeners disagree
over which excerpts sound slow, and which sound fast, even
when they tap at different metrical levels.

3.2 Evaluating machine bpm estimates

In order to demonstrate the potential value of crowd-sourced
annotations in evaluating tempo estimation algorithms, we
selected excerpts for the experiment for which bpm esti-
mates were readily available from several sources. We re-
port results here for the following three sources: estimates
from the commercial EchoNest API, as distributed with the
Million Song Dataset [1]; the BPM List, a published list of
bpm values claimed to be computed at least partly by hand,
using a variety of commercially-available tools [2]; and, fi-
nally, estimates generated using an implementation of meth-
ods reported in [3] and distributed as a plugin for the VAMP
framework for audio analysis 2 .

Some selection of values was necessary for the EchoNest
and VAMP sources. The Million Song Dataset was found in
a number of cases to contain data for different versions of
the same song: we rejected any songs for which the dupli-
cate tempo estimates differed by more than 2%, and other-
wise simply used the fist value encountered. The VAMP plu-
gin is designed to produce multiple segment-wise tempo es-
timates: we selected the estimate associated with the longest
segment(s) of audio.

Table 2 shows evaluation results for the three sources rel-
ative to peak human estimates. The evaluation is restricted
to tracks for which at least five crowd-sourced bpm values
were available. In order to observe systematic types of error
in the sources, estimates not matching the human reference
values are split between six categories, corresponding to six
types of octave error, and a final ‘unrelated’ category for es-
timates that do not match any of the preceding ones. An
estimate is considered to match the groundtruth bpm, or one
of its related values, if it differs by less than 4% of the ref-
erence 3 .

The results given in Table 2 show significant differences
in the performance of the three sources: the strongest source,
the BPM List, is correct some 70% more often than the
weakest, the EchoNest. The BPM List also suffers the least
from octave error, presumably confirming that humans were
involved in the creation of its estimates. While categorised
results like Table 2 are useful to understand the strengths
and weaknesses of particular methods, a robust single per-
formance value can also easily be computed as a weighted

2 http://www.vamp-plugins.org
3 The MIREX 2010 evaluation allows a relative error of 8%.

first faster same second faster
EchoNest 39.2 27.3 33.4
Bpm List 33.9 34.7 31.4
VAMP 34.0 34.0 32.0

Table 4. Percentage of answers given when comparing two
tracks annotated with the same bpm by a particular source.

combination of the percentages of estimates classed as cor-
rect and as unrelated. The weights can be tuned to reflect
the potential harm caused by octave errors for any particular
application.

4. IMPROVING AUTOMATIC BPM ESTIMATES

Results presented in [5] report that classifiers can be trained
to recognise tracks belonging to perceptual slow and fast
categories with extremely high accuracy. The separable dis-
tributions shown in Figure 3 suggest that we can use the out-
put of such classifiers to remove a great deal of octave error
in machine estimates. The following simple algorithm can
be used to adjust bpm estimates in cases where they conflict
with predicted labels: any estimate of over 100bpm for a
track classified as slow should be halved, and vice versa for
fast tracks. While evaluating this approach directly remains
for future work, Table 3 illustrates the substantial gains pos-
sible in the best case, by assuming a classifier that always
predicts the label chosen by the majority of humans in the
experiment.

5. COMPARING ESTIMATION ALGORITHMS

In addition to allowing data collection for conventional eval-
uation against a groundtruth, the experiment was designed
to contain a controlled experiment enabling the comparison
of different sources of bpm estimates without reference to
any groundtruth. The experiment holds indexes from the
bpm estimates of each source, rounded to the nearest inte-
ger, to a list of all tracks for which the source gave that es-
timate. When a visitor arrives at the experiment web page,
the server first chooses a source at random. It then chooses
a rounded bpm value, and finally selects two correspond-
ing tracks from the index (or a single track, if the source
only annotated one track in the collection with that partic-
ular value). This ensures not only that visitors are asked to
annotate tracks with a wide range of likely tempo, but in par-
ticular that any two tracks presented together are regarded
by at least one of the sources as having the same tempo.

Sources can then be compared for consistency by exam-
ining responses to the second question shown in Figure 1,
in which listeners are asked to say which of the two tracks
sounds faster. This is clearly a leading question, likely to
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bpm * 4 bpm * 3 bpm * 2 correct bpm / 2 bpm / 3 bpm / 4 unrelated
EchoNest 0.6 1.7 30.5 40.7 2.4 0.0 0.1 24.0
Bpm List 0.0 0.2 8.2 68.1 5.2 0.1 0.0 18.3
VAMP 0.7 1.6 23.0 58.3 4.0 1.6 0.0 12.3

Table 2. Performance of three sources of bpm estimates relative to peak crowd-sourced value. Numbers in each category are
percentages of tracks evaluated for each source.

bpm * 4 bpm * 3 bpm * 2 correct bpm / 2 bpm / 3 bpm / 4 unrelated
EchoNest 0.0 0.5 19.5 53.0 1.7 0.0 0.0 25.2
Bpm List 0.0 0.0 5.7 72.8 3.0 0.1 0.0 18.5
VAMP 0.1 0.1 10.9 73.6 1.6 0.0 0.0 13.9

Table 3. Upper bound performance of three sources of bpm estimates after adjustment for label conflict.

cause the listener either to attend to subtle differences be-
tween tracks, or to pick faster or slower at random, on the
assumption that the question would be unlikely to be posed
in relation to two tracks known to be the same speed. Al-
though we cannot know in advance what proportion of lis-
teners will choose each option, we can safely assume that,
all things being equal, the proportion will be independent of
the source of the bpm estimates.

As the results given in Table 4 illustrate, this method is
successful in highlighting differences between the sources,
with the EchoNest estimates again shown to be significantly
less consistent than either other source.

6. CONCLUSIONS

This study shows how, with a suitable experiment, simple
crowd sourcing of annotations can be used to evaluate al-
gorithms such as bpm estimation. Analysis of tens of thou-
sands of responses collected within just a few days leads
to the proposal of a straightforward and robust approach to
evaluation against a human groundtruth, which is both con-
sonant with perceptions of tempo, and designed to reward
the estimates most likely to be useful in practical applica-
tions. A second controlled experiment allows validation
of these results without reference to any groundtruth val-
ues. Finally we outline a method to combine classification
with conventional tempo estimation, which promises signif-
icant improvements over current methods. Future work in-
cludes implementing and evaluating this approach, and ex-
tending crowd sourcing to evaluate a wider range of MIR
algorithms. Data collected for this study is freely available
for research purposes 4 .

4 http://users.last.fm/˜mark/speedo.tgz
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mood representations from social tags. In Proc. ISMIR,
2009.

[7] E. Law, K. West, M. Mandel, M. Bay, and J.S. Downie.
Evaluation of algorithms using games: The case of mu-
sic tagging. In Proc. ISMIR, 2009.

[8] M. McKinney and D. Moelants. Deviations from the res-
onance theory of tempo induction. In Proceedings of the
Conference on Interdisciplinary Musicology, 2004.

[9] D. Moelants and M. McKinney. Tempo perception and
musical content: What makes a piece slow, fast, or tem-
porally ambiguous? In Proc. ICMPC, 2004.

[10] L. Xiao, A. Tian, W. Li, and J. Zhou. Using a statis-
tic model to capture the association between timbre and
perceived tempo. In Proc. ISMIR, 2008.

322



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

INVESTIGATING THE SIMILARITY SPACE OF
MUSIC ARTISTS ON THE MICRO-BLOGOSPHERE

Markus Schedl, Peter Knees, Sebastian B̈ock
Department of Computational Perception
Johannes Kepler University Linz, Austria

markus.schedl@jku.at, peter.knees@jku.at, sebastian.boeck@jku.at

ABSTRACT

Microblogging services such asTwitter have become an
important means to share information. In this paper, we
thoroughly analyze their potential for a key challenge in the
field of MIR, namely the elaboration of perceptually mean-
ingful similarity measures. To this end, comprehensive eval-
uation experiments were conducted usingTwitter posts
gathered during a period of several months. We investigated
23,100 combinations of differentterm weighting strategies,
normalization methods, index term sets, Twitter query
schemes, andsimilarity measurement techniques, aiming at
determining in which way they influence the similarity esti-
mates’ quality.

Evaluation was performed on the task of similar artist re-
trieval. Two data sets were used: one of224 well-known
artists with a uniform genre distribution, the other constitut-
ing a collection of3,000 artists extracted fromlast.fm
andallmusic.com.

1. MOTIVATION AND CONTEXT

Term weighting techniques such asTF · IDF andBM25
have been used intensely for various text retrieval tasks. Al-
though a wealth of approaches to model the term vector
space [21] on the Web has been proposed throughout the
last years, e.g., [6, 12, 20, 30], IR-related research interest
in the relatively novel field of microblog mining has been
rather limited so far.

Microblogging has encountered a remarkable gain in pop-
ularity during the past couple of years. Being the most pop-
ular microblogging service,Twitter has more than100
million registered users [31]. Millions ofTwitter users
post “tweets” that reveal what they are doing, what is on
their mind, or what is currently important for them. Accord-
ing to [7], the number of tweets per day surpassed50 mil-
lions in early 2010.Twitter thus represents a rich data
source for text-based IE and IR.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

The work at hand was inspired by [32], where the au-
thors thoroughly evaluate various choices related to con-
structing text feature vectors for IR purposes, e.g., term fre-
quency (TF ), term weights (IDF ), and normalization ap-
proaches. They analyze the influence of these decisions on
retrieval behavior. Similarly, we present a systematic large-
scale study on the influence of a multitude of decisions on
music artist similarity estimation, using real-world datacol-
lections. To this end, we analyze several thousand com-
binations of the following single aspects: term frequency,
inverse document frequency, normalization with respect to
length, similarity function, index term set, and query scheme.

Elaborating musical similarity measures that are capable
of capturing aspects relating to perceived similarity is one of
the main challenges in MIR. Such measures enable various
music applications, for example, automatic playlist gener-
ators [1], music recommender systems [4], music informa-
tion systems [23], semantic music search engines [11], and
intelligent user interfaces [17] to music collections.

Similarity measures based on term profiles extracted from
artists’ Web pages have been studied in MIR for a long time,
e.g., [3, 10, 30]. In contrast, microblogs have not been har-
vested to a large extent so far for this purpose. To the best
of our knowledge, the only work considering microblogs for
similarity measurement of music artists is [24]. The authors
of the aforementioned publications, however, usually select
one (or a few) variant(s) of theTF · IDF term weight-
ing measure and apply it to documents retrieved for music
artists. The individual choices involved in selecting a spe-
cific TF · IDF variant and similarity function, however,
do not seem to be the result of detailed assessments. In the
work at hand, by contrast, we present a thorough investiga-
tion of several dimensions for modeling the music-related
term vector space on the micro-blogosphere.

2. MODELING THE MICROBLOG
TERM VECTOR SPACE

Similarly to the large scale experiments presented in [32],
we aim at analyzing if specific combinations of the inves-
tigated algorithmic choices perform considerably better or
worse than others, where performance is measured in a sim-
ilarity classification task among term vector representations
of tweets, cf. Section 3.
Table 1 contains an overview of the denominations used in
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D set of documents
N number of documents
fd,t number of occurrences of termt in documentd
ft number of documents containing termt
Ft total number of occurrences oft in the collection
Td set of distinct terms in documentd
fm
d largestfd,t of all termst in d
fm largestft in the collection
rd,t term frequency (cf. Table 3)
wt inverse document frequency (cf. Table 4)
Wd document length ofd

Table 1. Denominations used in term weighting functions
and similarity measures.

the different term weighting formulations (Tables 3 and 4)
and similarity measures (Table 5).

2.1 Query Scheme

We decided to assess two schemes to queryTwitter as
previous work on Web-MIR [26, 30] has shown that adding
music-related key terms to a search request generally im-
proves the quality of feature vectors in terms of similarity-
based classification accuracy. In Web-MIR, common terms
used as additional key words are “music review” or “mu-
sic genre style”. Taking into account the140-character-
limitation of tweets, we decided to include only “music”
as additional query term (QS M) or query without any ad-
ditional key terms, i.e., use only the artist name (QS A) as
exact phrase.

2.2 Index Term Set

Earlier work in text-based music artist modeling [9, 16, 29]
shows that a crucial choice in defining the representation
of an artist is that of the used index terms. For the work
at hand, we hence investigated various term sets, which are
summarized in Table 2. SetTS A contains all terms found in
the corpus (after casefolding, stopping, and stemming). Set
TS S is the entire term dictionary ofSCOWL [28], which
is an aggregation of several spell checker dictionaries for
various English languages and dialects. SetTS N encom-
passes all artist names present in the data set. Previous work
has shown that the correspondingco-occurrenceapproach
to music artist similarity estimation yields remarkable re-
sults, cf. [26]. Term setTS D is a manually created dic-
tionary of music-related terms that resembles the one used
in [16]. It contains, for example, descriptors of genre, in-
struments, geographic locations, epochs, moods, and musi-
cological terms. SetTS L represents the most popular tags
utilized by users oflast.fm. SetTS F comprises the ag-
gregated data set for the data typesmusical genre, musical
instrument, andemotion, extracted fromFreebase [8].

To build the inverted word-level index [33], we use a
modified version of the open source indexerLucene [14],
which we extended to representTwitter posts. The exten-
sions will be made available through ourCoMIRVA frame-
work [5, 25]. When creating the indexes for the different
term sets, we commonly employ casefolding and stopping,

e.g. [2]. Stemming, in contrast, is only performed for the
term sets for which it seems reasonable, i.e., for term sets
TS A andTS S.

2.3 TF and IDF: Term Weighting

Even though our experimental setting is guided by Zobel
and Moffat’s [32], we decided to extend theTF · IDF
formulations investigated by them withBM25-like formula-
tions. BM25 is an alternative term weighting scheme, used
in theOkapiframework for text-based probabilistic retrieval
[19]. TheBM25 model includes a priori class knowledge.
Since incorporating genre information into the term weight-
ing function would bias the results of the genre classification
experiments, we included an adapted formulation in the ex-
periments, cf. variantsTF G andIDF J in Tables 3 and 4,
respectively.

2.4 Virtual Documents and Normalization

When creating a term profile from Web pages retrieved for a
named entity (a music artist in our case), it is common to ag-
gregate the pages associated with a particular entity to form
a “virtual document”, e.g. [3, 10]. This procedure not only
facilitates handling small or empty pages, it is also more
intuitive since the item of interest is the entity under con-
sideration, not a Web page. Latest work [27] further shows
that calculating term weights on the level of individual Web
pages before aggregating the resulting feature vector per-
forms inferior for the task of similarity calculation than us-
ing “virtual documents”. It therefore seems reasonable to
aggregate all posts retrieved fromTwitter for an artist
to one “virtual post”, in particular, taking into consideration
the already strong limitation ofTwitter posts to140 char-
acters.

Since the different length of two artist’s virtual docu-
ments is likely to influence the performance of retrieval tasks,
we evaluated several normalization methods. In addition to
applying no normalization (NORM NO), we analyzed sum-
to-1 normalization (NORM SUM) and normalizing to the range
[0, 1] (NORM MAX).

2.5 Similarity Function

The similarity measures analyzed are shown in Table 5. We
included all measures investigated by Zobel and Moffat [32]
that can be applied to our somewhat differing usage scenario
of computing similarities between two equally dimensional
term feature vectors that represent two comparable entities.
We further included Euclidean similarity (SIM EUC) and
Jeffrey divergence-based similarity [13] (SIM JEF) in the
set of evaluated similarity functions.

2.6 Notation

To facilitate referring to a particular evaluation experiment,
which is defined as a combination of the choices described
above, we adopt the following scheme:

<Query Scheme>.<Index Term Set>.<Normalization>.
<TF>.<IDF>.<Similarity Measure>
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Abbr. / Term Set Cardinality Description
TS A - all terms up to1,489,459 All terms (stemmed) that occur in the corpus of the retrievedTwitter posts.
TS S - scowl dict 698,812 All terms that occur in the entireSCOWL dictionary.
TS N - artist names 224 / 3,000 Names of the artists for which data was retrieved.
TS D - dictionary 1,398 Manually created dictionary of musically relevant terms.
TS L - last.fm toptags 250 Overall top-ranked tags returned bylast.fm’s Tags.getTopTagsfunction.
TS F - freebase 3,628 Music-related terms extracted fromFreebase (genres, instruments, emotions).

Table 2. Different term sets used to index theTwitter posts.

Abbr. Description Formulation

TF A Formulation used for binary match
SB = b

rd,t =

{

1 if t ∈ Td

0 otherwise

TF B Standard formulation
SB = t

rd,t = fd,t

TF C Logarithmic formulation rd,t = 1 + loge fd,t
TF C2 Alternative logarithmic formulation suited forfd,t < 1 rd,t = loge(1 + fd,t)
TF C3 Alternative logarithmic formulation as used inltc variant rd,t = 1 + log2 fd,t

TF D Normalized formulation rd,t =
fd,t
fm

d

TF E Alternative normalized formulation. Similar to [32] we use
K = 0.5.
SB =n

rd,t = K + (1−K) ·
fd,t
fm

d

TF F Okapi formulation, according to [32]. ForW we use the vec-
tor space formulation, i.e., the Euclidean length.

rd,t =
fd,t

fd,t+Wd/avd∈D(Wd)

TF G Okapi BM25 formulation, according to [19]. rd,t =
(k1+1)·fd,t

fd,t+k1·

[

(1−b)+b·
W

d

av
d∈D

(W
d
)

]

k1 = 1.2, b = 0.75

Table 3. Evaluated variants to calculate the term frequencyrd,t.

Abbr. Description Formulation
IDF A Formulation used for binary match

SB =x
wt = 1

IDF B Logarithmic formulation
SB =f

wt = loge

(

1 + N
ft

)

IDF B2 Logarithmic formulation used inltc variant wt = loge

(

N
ft

)

IDF C Hyperbolic formulation wt =
1
ft

IDF D Normalized formulation wt = loge

(

1 + fm
ft

)

IDF E Another normalized formulation
SB =p

wt = loge
N−ft

ft

The following definitions are based on the term’s noisent

and signalst.
nt =

∑

d∈Dt

(

−
fd,t
Ft

log2
fd,t
Ft

)

st = log2(Ft − nt)

IDF F Signal wt = st
IDF G Signal-to-Noise ratio wt =

st
nt

IDF H wt =

(

maxnt′

t′∈T

)

− nt

IDF I Entropy measure wt = 1− nt

log2 N

IDF J Okapi BM25 IDF formulation, according to [18,19] wt = log N−ft+0.5
ft+0.5

Table 4. Evaluated variants to calculate the inverse document frequencywt.
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Abbr. Description Formulation
SIM INN Inner Product Sd1,d2 =

∑

t∈Td1,d2

(wd1,t · wd2,t)

SIM COS Cosine Measure Sd1,d2 =

∑

t∈T
d1,d2

(wd1,t·wd2,t)
Wd1

·Wd2

SIM DIC Dice Formulation Sd1,d2 =
2
∑

t∈T
d1,d2

(wd1,t·wd2,t)
W2

d1
+W2

d2

SIM JAC Jaccard Formulation Sd1,d2 =

∑

t∈T
d1,d2

(wd1,t·wd2,t)

W2

d1
+W2

d2
−
∑

t∈T
d1,d2

(wd1,t·wd2,t)

SIM OVL Overlap Formulation Sd1,d2 =

∑

t∈T
d1,d2

(wd1,t·wd2,t)
min(W2

d1
,W2

d2
)

SIM EUC Euclidean Similarity Dd1,d2 =
√

∑

t∈Td1,d2

(wd1,t − wd2,t)
2

Sd1,d2 =
(

maxd′
1
,d′

2
(Dd′

1
,d′

2
)
)

−Dd1,d2

SIM JEF Jeffrey Divergence-based SimilaritySd1,d2 =
(

maxd′
1
,d′

2
(Dd′

1
,d′

2
)
)

−Dd1,d2

D (F,G) =
∑

i

(

fi log
fi
mi

+ gi log
gi
mi

)

mi =
fi+gi

2

Table 5. Evaluated similarity functionsSd1,d2
.

3. EVALUATION

We performedgenre classificationexperiments to evaluate
the different algorithmic choices discussed in the previous
section. Although genre taxonomies are often inconsistent
and erroneous [15], it is commonplace in MIR to use genre
as a proxy for artist similarity. The evaluated retrieval task
consists of determiningk artists similar to a given query
artist. This task resemblesk nearest neighbor classification,
where the genre of a seed artist is predicted as the most fre-
quent genre among the seed’sk most similar artists.

3.1 Data Sets

We used two data sets for evaluation. The first one, referred
to asC224a, consists of224 well-known artists and has a
uniform genre distribution (14 genres1 , 16 artists each). It
has been frequently used to evaluate Web-/text-based MIR
approaches.
The second data setC3ka consists of3,000 music artists,
representing a real-world collection. The data has been gath-
ered as follows. We usedlast.fm’s API to extract the
most popular artists for each country of the world, which
we then aggregated into a single list. Sincelast.fm’s
data is prone to misspellings due to its collaborative nature,
we cleaned the data set by matching each artist name with
the database of the expert-based music information system
allmusic.com, from which we also extracted genre in-
formation. Starting this matching process from the most
popular artist found bylast.fm and including only names
that also occur inallmusic.com, we eventually obtained
a list of 20,995 artists, out of which we selected the top

1 The genres inC224a are Country, Folk, Jazz, Blues, R’n’B/Soul,
Heavy Metal/Hard Rock, Punk, Rap/Hip Hop, Electronica, Reggae,
Rock’n’Roll, Pop, and Classical.

3,000. These artists are categorized into18 distinct genres2

according toallmusic.com. Both data sets are available
for download.3

3.2 Experiments

To gather music-related posts, we useTwitter’s API. Ac-
counting for the time-varying behavior of the search results
and to obtain a broad coverage, we queriedTwitter dur-
ing February/March 2010 and December 2010/January 2011,
yielding a total of about six million tweets. For artist set
C224a, we achieved a coverage of100%; for setC3ka, we
achieved a coverage of96.87%.

We employed a two-staged evaluation, similar to [22]: In
order to filter inferior algorithmic combinations, we first in-
vestigated each algorithmic setting on data setC224a. 4 In
a second set of experiments, we then evaluated the remain-
ing variants on the real-world artist setC3ka. As perfor-
mance measureMean Average Precision(MAP) is used.
In the first stage of the experiments, only variants that fulfill
at least one of the following two conditions are retained:

• there is a relative MAP difference of10% or less to
the top-ranked variant

• or thet-test does not show a significant difference to
the top-ranked variant (at 5% significance level).

The top577 variants have a relative MAP difference of less
than 10% to the highest ranked combination. The pairwise
t-test shows a significant difference for the top-ranked1,809
variants. For the second stage of experimentation, conducted

2 The genres inC3ka are Avantgarde, Blues, Celtic, Classical, Coun-
try, Easy Listening, Electronica, Folk, Gospel, Jazz, Latin, Newage, Rap,
Reggae, RnB, Rock, Vocal, and World.

3 http://www.cp.jku.at/people/schedl/datasets.html
4 Excluding redundant combinations, a total of23,100 single experi-

ments have been conducted in this stage.
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on collectionC3ka, we therefore evaluated only these top-
ranked1,809 variants.

3.3 Results and Discussion

Table 6 shows the10 top-ranked and the10 bottom-ranked
variants with their MAP scores (considering15 nearest neigh-
bors) for setC224a. The MAP scores of the23,100 evalu-
ated variants span a wide range and are quite diverse, with a
mean ofµ = 37.89 and a standard deviation ofσ = 17.16.
From Table 6 it can be seen that highest MAP scores are
achieved when usingQS A, TS A, andNORM NO. At the
other end of the ranking we see thatQS M andSIM OVL
dominate the most inferior variants.

To obtain a better understanding of the individual compo-
nents that contribute to a well-performing social similarity
measure, we analyzed the distribution of each aspect among
the1,809 top-ranked variants:

Regarding the query scheme, using only the artist name
as indicator to determine related tweets (QS A) outperforms
adding music-specific key words. It seems that additional
key words too heftily pruneTwitter’s result set.
As for the term sets used for indexing, the top ranks are
dominated by algorithmic variants that use the whole set
of terms (TS A). It is noteworthy, however, that the good
performance ofTS A andTS S comes at the price of much
higher computational complexity (cf. Table 2). Hence, when
performance is crucial, the results suggest using other term
sets. A particularly good choice seems to beTS N, the list
of artist names, as it is the set that most frequently occurs
among the top-ranked variants (32.5%). Another interest-
ing finding is that the music dictionaryTS D, despite its
good performance for artist clustering based onWeb pages,
cf. [16], occurs first only at rank1,112. An empirically ver-
ified reason for this may be thatTwitter users tend to
refrain from using a comprehensive music-specific vocabu-
lary, even when they twit about music-related issues.5

As for the term weighting functions (TF and IDF vari-
ants), no clear picture regarding favorable variants emerges
from the experiments. We found, however, thatTF A only
occurs in3.15% of the top-ranked variants and should thus
be avoided. The most frequently occurring formulations on
the other hand areTF C2 (15.69%) andTF E (16.80%), the
latter being particularly present in the very top ranks. Analo-
gous toTF , for IDF variants we can easily point to formu-
lations that should be avoided, namelyIDF G (0.50% oc-
currence),IDF F (0.66%), andIDF A (2.54%). TheIDF
variants most frequently occurring within the top ranks are
IDF B2 (13.93%), IDF J (13.71%), andIDF E (13.38%).
As for the similarity measure, we found no clear evidence
that cosine similarity (SIM COS), the de-facto standard mea-
sure in IR, generally outperforms the others. It is likely that
the key advantage ofSIM COS, the document length nor-
malization, plays a minor role, because tweets are limited to
140 characters which are usually exhausted. Further support
for this hypothesis is given by the remarkably good perfor-
mance of the simple inner product measure (SIM INN) that

5 Only 478 unique terms out of the1,398 in TS D were used, only319
were used in at least two different tweets.

MAP Variant
64.018 QS A.TS A.NORM NO.TF C2.IDF E.SIM JAC
63.929 QS A.TS A.NORM NO.TF C2.IDF J.SIM JAC
63.839 QS A.TS A.NORM NO.TF C.IDF E.SIM JAC
63.810 QS A.TS A.NORM NO.TF C2.IDF E.SIM COS
63.780 QS A.TS A.NORM NO.TF C.IDF E.SIM COS
63.780 QS A.TS A.NORM NO.TF C2.IDF B2.SIM JAC
63.780 QS A.TS A.NORM NO.TF C2.IDF B2.SIM DIC
63.720 QS A.TS A.NORM NO.TF C2.IDF E.SIM DIC
63.601 QS A.TS A.NORM NO.TF C2.IDF J.SIM COS
63.542 QS A.TS A.NORM NO.TF C.IDF J.SIM JAC

· · · · · ·
3.482 QS M.TS A.NORM MAX.TF G.IDF G.SIM OVL
3.452 QS M.TS S.NORM SUM.TF B.IDF F.SIM OVL
3.423 QS M.TS A.NORM SUM.TF C3.IDF J.SIM OVL
3.363 QS M.TS S.NORM MAX.TF G.IDF F.SIM OVL
3.274 QS M.TS A.NORM SUM.TF C.IDF E.SIM OVL
3.065 QS M.TS A.NORM SUM.TF C.IDF J.SIM OVL
3.006 QS M.TS A.NORM MAX.TF G.IDF F.SIM OVL
2.976 QS M.TS S.NORM MAX.TF F.IDF F.SIM OVL
2.857 QS M.TS A.NORM MAX.TF F.IDF G.SIM OVL
2.649 QS M.TS A.NORM MAX.TF F.IDF F.SIM OVL

Table 6. MAP scores of the top-ranked and bottom-ranked
variants on setC224a.

MAP Variant
72.570 QS A.TS S.NORM NO.TF G.IDF H.SIM JAC
72.566 QS A.TS S.NORM NO.TF G.IDF H.SIM DIC
72.553 QS A.TS S.NORM NO.TF C.IDF E.SIM COS
72.553 QS A.TS S.NORM NO.TF C.IDF J.SIM COS
72.536 QS A.TS S.NORM NO.TF F.IDF H.SIM DIC

Table 7. MAP scores of the top 5 variants on setC3ka.

does not perform any length normalization. Also among the
virtual document normalization methods, using no normal-
ization at all (NORM NO) outperformed the other variants in-
vestigated, accounting for52.24% of the top ranks.

On the second data set,C3ka, the achieved results were
comparable. Spearman’s rank-order correlation coefficient
computed on the two rankings obtained with the two artist
sets revealed a moderate correlation of0.37. This indicates
that the rankings produced by the same algorithmic choices
are not largely influenced by factors such as size of artist
collection or number of artists per genre. Table 7 contains
the five top-ranked variants for setC3ka.

4. CONCLUSIONS AND OUTLOOK

We presented a large-scale evaluation of usingTwitter
posts for the purpose of artist similarity estimation. To this
end, we analyzed23,100algorithmic choices related to query
scheme, index term set, length normalization, term weight-
ing function, and similarity measure, using two data sets of
music artists. The main findings can be summarized as fol-
lows:

• Restricting the search by additional key words prunes
the resulting set of tweets too heavily. Using only the
artist name as query (QS A) should be favored.

• Best results are achieved using all terms in the corpus
(TS A), though at high computational costs. When
computational complexity is an issue, the results sug-
gest using artist names as index term set (TS N).
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• Normalizing for length does not significantly improve
the results, neither on term vectors, nor in the similar-
ity function. Taking into account the higher computa-
tional costs, we therefore recommend refraining from
normalization (NORM NO) and using, for example, the
inner product as similarity measure (SIM INN).

• The simple binary matchTF formulationTF A should
not be used. The most favorable variants areTF C2
and in particularTF E.

• Among theIDF formulations, we suggest to refrain
from usingIDF A, IDF F, andIDF G. Better alter-
natives are given by formulationsIDF B2, IDF E,
andIDF J.

Future work will focus on investigating the performance
of different approaches on the “long tail” of artists and on
incorporating temporal and geographic properties of tweets.
The contextual similarity measures analyzed in this work
will help develop more accurate social and personalized mod-
els of musical similarity. Combined with content-based mod-
els, they might pave the way for a new generation of person-
alized music applications, such as intelligent recommenders
or playlist generators.

5. ACKNOWLEDGMENTS

This research is supported by the Austrian Science Funds
(FWF): P22856-N23 and L511-N15. We further wish to
thankTim Pohlefor his contributions.

6. REFERENCES

[1] J.-J. Aucouturier and F. Pachet. Scaling Up Music
Playlist Generation. InProc. IEEE ICME, Aug 2002.

[2] R. Baeza-Yates and B. Ribeiro-Neto.Modern Informa-
tion Retrieval. Addison Wesley, 1999.

[3] S. Baumann and O. Hummel. Using Cultural Metadata
for Artist Recommendation. InProc. WEDELMUSIC,
Sep 2003.
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ABSTRACT

Computational analysis of musical influence networks and
rank of sample-based music is presented with a unique out-
side examination of the WhoSampled.com dataset. The ex-
emplary dataset maintains a large collection of artist-to-artist
relationships of sample-based music, specifying the origins
of borrowed or sampled material on a song-by-song basis.
Directed song, artist, and musical genre networks are cre-
ated from the data, allowing the application of social net-
work metrics to quantify various trends and characteristics.
In addition, a method of influence rank is proposed, unify-
ing song-level networks to higher-level artist and genre net-
works via a collapse-and-sum approach. Such metrics are
used to help interpret and describe interesting patterns of
musical influence in sample-based music suitable for mu-
sicological analysis. Empirical results and visualizations
are also presented, suggesting that sampled-based influence
networks follow a power-law degree distribution; heavy in-
fluence of funk, soul, and disco music on modern hip-hop,
R&B, and electronic music; and other musicological results.

1. INTRODUCTION

Network analysis has become a significant tool for under-
standing the dynamics of complex systems. Social network
analysis, in particular, has increasingly garnered the atten-
tion of researchers across sociology, computer science, and
statistics. Within the music information retrieval commu-
nity, this has led to the creation of artist collaboration, rec-
ommendation, similarity, and influence networks.

Early music-based networks are found in Cano and Kop-
penberger [1] and Cano et al. [2]. Similarity networks from
various online data sources are constructed with results show-
ing the potential of how network analysis can help design

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

recommendation systems. Further work of Jacobson [3, 4]
and Fields [5,6] continued to show applications of automatic
playlist generation, artist community detection, musicology,
and sociology. Most recently, Collins investigated what is
presumably the first computational analysis of musical in-
fluence using web scraping, web services, and audio simi-
larity to construct influence graphs of a collection of synth
pop music [7]. The work outlines the difficulty of construct-
ing influence networks and motivates further investigation.

Figure 1. Visualization of Genre Flow. The size and opacity
of a directed edge indicates the relative flow of samples from
one genre to another.

The musicological and sociological impact of musical in-
fluence has considerable scope. Understanding how artists,
musical styles, and music itself evolves over time can help
us understand the creative process of music-making. Over-
all influence rank is also of considerable attraction, as music
critics continually create top artist or producer lists within
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popular music (e.g. Rolling Stone Magazine). We present
work towards this goal by studying influence found within
sample-based music. 1 Directed influence graphs are con-
structed using a dataset from WhoSampled.com [8], a music
website that chronicles sampling behavior via a community
of contributors. Network analysis metrics and visualization
such as Fig. 1 are employed on song, artist, and genre influ-
ence graphs in an effort to gain musicological understand-
ing of the compositional act of sampling. In addition, a
method of influence rank and analysis is proposed to help
unify song-level networks to higher-level artist and genre
networks via a collapse-and-sum approach. Empirical re-
sults found on constructed network graphs suggest musical
influence-based networks follow a power-law degree distri-
bution; heavy influence of funk, soul, and disco music on
modern hip-hop, R&B, and electronic music; and various
other anecdotal discussions of the unique corpus.

2. UNIQUE DATASET

The dataset was provided in agreement with WhoSampled.com
and provides 42,447 user-generated records of sampling, ex-
cluding any entry involving cover song sampling. A base-
line entry or sample of the dataset consists of a song-artist
destination (who sampled the musical material) and song-
artist source (source of the musical material sampled). In
addition, other meta-data is provided, including destination
and source release year, collaborating artists, featured artists,
producers, genre, and part-sampled (i.e. vocals, drums, etc.).

For the purposes of this work, it is assumed that the large,
high-quality dataset is a good representation of sampling be-
havior found within modern popular music and independent
of any form of bias imposed by the user community. Labels
of genre include hip-hop/R&B (H), electronic dance (E),
rock/pop (P), soul/funk/disco (F), jazz/blues (J), reggae (R),
country (C), world (W), soundtrack (S), classical (L), spo-
ken word (K), easy listening (Y), gospel (G), and other (O).
The part-sampled labels include: whole track (W), drum
loop (D), bass line (B), vocals (V), hook (H), or other (O).

2.1 Genre & Part-Sampled Trends

To understand the data, we first take a look at the genre
and part-sampled trends. The relative proportions of each
genre are plotted in Fig. 2. Hip-hop/R&B, electronic dance,
rock pop, and soul/funk/disco are dominate sources of mu-
sical samples, while hip-hop/R&B and electronic music are
dominate destinations. The relative proportions and counts
of each part-sampled are (W) 7.20% (3060), (D) 37.25%
(15811), (B) 33.76% (14329), (V) 2.15% (913), (H) 17.25%
(7321), (O) 2.39% (1013). Drum and bass components are

1 Within this work, sample-based music is defined as a musical work
that in borrows material from another musical source, whether it be a direct
manipulation of a recorded sound or less direct transcribed material.

Figure 2. Source (upper) and Destination (lower) Genre
Distributions with Absolute Counts.

Figure 3. Visualization of Part-Sampled Flow. The size and
opacity of a directed edge indicates the relative flow of part-
sampled type to different genres.

the most dominant part-sampled followed by hook compo-
nents.

Fig. 1 and Fig. 3 show more advanced visualizations em-
phasizing the flow of influence between genres [9]. Node
size represents the destination proportions, while the directed
edge opacity and thickness represent the conditional distri-
bution of source genre given the destination genre. As seen,
hip-hop/R&B consumes the most samples out of all genres,
and within hip-hop/R&B most of the source material is from
soul, funk, and disco as well as prior hip-hop/R&B material.
In addition, it is also noticeable that electronic dance mu-
sic more likely samples vocal material, while hip-hop/R&B
more likely samples an entire portion of a song.

To measure how homogeneous the source material is for
each destination genre, it is useful to employ the concept
of genre entropy H, similar to discussions found in Jacob-
son [3] and Lambiotte [10]. Within this work, genre entropy
is defined as

Hgk
= −

∑
gj∈Γ

Pgj |gk
logPgj |gk

, (1)

where gk is the kth genre in the set of genres Γ and Pgj |gk

is the probability of source genre gj given the destination
genre gk. If genre gk samples only from a single other genre
gj , the entropy will be zero. If destination genre gk sam-
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Figure 4. Distribution of Unique Samples Over Time. All
samples (blue, solid), soul/funk/disco (magenta, triangles),
hip-hop/R&B (red, plus), electronic dance (green, circle),
rock pop (black, x) are shown across time for source mate-
rial (upper) and destination material (lower).

ples uniformly from each source genre gj , the entropy will
be maximized. The genre entropy for the top five destina-
tion genres is shown in Table 1. The source samples used in

Genre Entropy (bits)
electronic dance (E) 2.83
rock pop (P) 2.745
hip-hop/R&B (H) 2.356
soul/funk/disco (F) 2.242
reggae (R) 2.129

Table 1. Genre Entropy For Popular Destination Genres.

reggae music are the most homogeneous, while electronic
dance music is the most heterogeneous. A closer look at
electronic music reveals a near equal split of source ma-
terial from hip-hop/R&B, electronic music, rock/pop, and
soul/funk/disco with a slight preference towards the latter.
Such evidence suggests differences in the creative process
of sampling between genres.

2.2 Time-Based Trends

Initial observations of time-based trends are found when we
view the proportion of samples per year within each genre.
The trends can be viewed for both unique source and des-
tination material normalized by the total instances of sam-
pling as shown in Fig. 4. Plotting unique instances of source
and destination material indicates general trends within each
genre and eliminates the effect of a single popular sample
swaying the proportions (as is the case without uniqueness
enforced).

The general shape of the source material plot (upper) out-
lines the musical time frame of each genre (in terms of sam-

pled source material), showing a rough outline of the rise
and fall of soul/funk/disco and the rise of hip-hop/R&B.
The general shape of the destination material (lower) out-
lines the increased popularity of sampling and/or listener
trends within the WhoSampled.com user community. In-
terestingly, there is a sharp decrease in sample-based mu-
sic centered around 2003. While further investigation is re-
quired, it interesting to note that this event directly coin-
cides with the Recording Industry Association of America
(RIAA) first litigation on Internet piracy and music copy-
right infringement [11]. Such legal policy would have cre-
ated a more conservative and limited view of the musical
practice of sampling, thus significantly affecting the music-
making process.

3. NETWORK ANALYSIS

A discussion of network analysis, influence measures, and
rank is presented with the motivation of observing how in-
dividual songs, artists, and genres influence one another.
Complex network analysis provides significant tools for such
characterization and begins with the formulation of a net-
work graph. A graph G = (N,E) is defined by a set of
nodes N and edges E or equivalently an adjacency matrix
A. A weighted directed edge between node i and j is de-
fined via Aij = wij and 0 otherwise, where wij is the cor-
responding weight. For unweighted networks, all weights
are either zero or one.

3.1 Degree Distributions

For a first general measure of how the music sample-based
networks are constructed, degree centrality can be used to
measure the influence from each node (song, artist, or genre)
of a network. For a given node, the in- and out-degree
centrality is defined as the respective in or out edge counts
normalized by the total number of nodes |N |. The in- and
out-degree distribution is then the proportion of degree k =
1, 2, 3, ... nodes and can be used to characterize the network.

Power-law distributions f(k) ∝ k−γ are an important
family of distributions. Such distributions promote the con-
cept of preferential attachment and are referred to as scale-
free. To test the hypothesis that musical sampling follows
a power-law, we can construct an unweighted acyclic song
network using unique songs as nodes and sampling instances
to create directed edges from destination to source. The
in-degree distribution can then be computed and tested to
follow a power-law distribution or not. Using methods de-
scribed in [12], we find that the network is consistent with
the hypothesis (p-value = .16 for k ≥ 3 and γ = 2.72) and
show the cumulative in-degree distribution in Fig. 5.

In terms of networks based on musical sampling, a scale-
free network suggests the idea that very popular samples
will only continue to increase in popularity. In addition, if

331



Oral Session 4: Web

Figure 5. Cumulative In-degree Distribution P (k) of the
Sample-Based Song Network (log-log scale).

any of the very popular samples were to be removed, large
portions of sample-based music would cease to exist (or at
least be altered).

3.2 Influence Measures

To analyze and rank influence within each network, four
closely related measures are commonly used: degree cen-
trality, eigenvector centrality, Katz centrality, and PageR-
ank. Degree centrality does not capture any indirect form of
influence (as in the case of sample chains), motivating alter-
native methods. Eigenvector centrality extends degree cen-
trality by weighting the importance of neighboring nodes to
allow for indirect influence, but has limited application for
acyclic networks [13]. 2 Katz centrality and PageRank ap-
propriately modify eigenvector centrality. Both also provide
a mechanism to capture indirect influence between nodes,
compute an overall influence rank among each node, and
observe the influence of one node to another. PageRank,
however, down-weights influence created by a destination
node that samples more than once, or in the case of artist
nodes, down-weights influence from artists with lengthy ca-
reers. While this is desirable in numerous other contexts
such as web search, we wish to equally weight each instance
of sampling and restrict ourselves to Katz centrality.

The Katz influence matrix IK is defined via

IK = (I− αA)−1 − I (2)

where I is an identity matrix, A is the adjacency matrix as
before, and α is a decay factor which scales the indirect in-
fluence allowed to propagate though the network (larger α
implies greater weight on indirect influence). This can be
written in equivalent form as

IK = αA + α2A2 + ...+ αkAk + ..., (3)

where we can see that the influence is a weighted sum of
the powers of the adjacency matrix [14]. When the values
of A are zero or one, the powers of the adjacency matrix

2 The song network is exactly acyclic and the artist network is nearly
acyclic.

Ak have elements representing the number of sample chains
of corresponding length k capturing various levels of indi-
rect influence. For stability, 1/α must be greater than the
largest eigenvalue of A and for large networks, (2) becomes
increasingly difficult to invert. Typically, only the overall in-
fluence rank is desired and is computed iteratively in a fash-
ion to avoid a large memory footprint and matrix inverse
required for IK .

For our purposes, it is desirable to have both the entire in-
fluence matrix and overall rank. Given IK , we can view the
column of a node to find who influenced the node, or view
the row of the node to find who the node influenced [15].
Summing the columns of the influence matrix produces a
ranking of the most influential nodes, while summing the
rows results in a ranking of the most influenced nodes. Such
analysis is nicely suited for musicological analysis and mo-
tivates further improvements discussed below.

3.3 Collapse-and-Sum Influence Rank

For the given dataset, we would like to understand and ana-
lyze song, artist, and genre influence individually, as well as
how each network relates to one another. To do so, individ-
ual networks can be constructed for song, artist, and genre
networks with influence matrices and rank computed via (2)
or (3). Building separate graphs, however, has several draw-
backs. Most notably, there is no straightforward mechanism
to relate the influence matrices of each network together ap-
propriately. Furthermore, we would like to model the influ-
ence propagation on the song-level topology and then derive
artist and genre influence measures, as the compositional act
of sampling is presumably based on the musical material it-
self, rather than artist or genre connections.

To address this issue, a single influence matrix is con-
structed using the song-level network (see Section 3.1) and
is used to create the artist and genre influence matrices, re-
sulting in the proposed relational collapse-and-sum approach.
To construct the artist-level influence matrix IA from the
song-level network, the song-level network is first used to
compute the song influence matrix IS . Given IS , we then
compute a derived artist influence matrix IA, knowing the
source and destination song sets Ssai

and Sdai
belonging to

each artist ai. To do so, we take each artist ai in the set of
artists A and

• Sum over the destination song sets of each artist Sdai
,

collapsing the appropriate columns of IS .

• Sum over the source song set of each artist Ssai
, col-

lapsing the appropriate rows of IS .

The result of the process produces an artist-level influence
matrix IA which is directly derived from the song-level mu-
sical material, and is done so via linear combinations of the
song-level influence matrix. The process can be duplicated
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or further reduced for other relations, such as artist-to-genre
and song-to-genre influence.

Given the linear relationship from one network to the
other, we can compute the relative proportions of influence
between networks. As a result, we can analyze how in-
fluential a given song is to an overall artist’s influence or
how influential an artist is to a genre by taking ratios be-
tween the respective influence graphs, among other tasks.
Secondly, by solely computing the influence on the acyclic,
unweighted song-level network, we can compute IS from a
short, finite linear combination of the powers of the adja-
cency matrix without any iterative procedure and by know-
ing that the powers of the adjacency matrix Ak, k = 1, 2, 3...
will go to zero when k is greater than the maximum sample
chain length of the network. With sparse matrix represen-
tations, this modification can greatly reduced computation,
increase the allowable in-memory network size, and addi-
tionally releases any restriction on α, allowing the user to
choose any suitable weighting function. Application of this
approach is found below in Section 4.

4. APPLICATION

Three levels of influence analysis and rank are computed for
song, artist, and genre representations, providing a small-to-
large inspection of the data. Various values of α are used to
compare direct to indirect influence. For this purpose, (3) is
rescaled to IK = A+α1A2 + ...+αk−1Ak + ..., allowing
α = 0 to only account for direct sampling, α = 1 to equally
account for direct and all indirect sampling, and values be-
tween zero and one to preferentially weight direct samples,
but also account for indirect sampling.

4.1 Song Influence

The song-level influence matrix IS is computed from the
song network described in Section 3.1. The most influential
songs are found in Table 2. We can observe the presence of
many popular samples including “Change the Beat” by Fab
5 Freddy and the “Amen” break by The Winstons. It is par-
ticularly interesting to note that, for the “Amen” break, as α
increases, the credit of influence intuitively moves from The
Winstons to The Impressions, and finally to Jester Hairston.
This is a result of a sample chain between material origi-
nating from Jester Hairston, that was first sampled by The
Impressions, and then massively popularized by The Win-
stons.

4.2 Artist Influence

Starting with the song-level influence, we can collapse IS
to form an artist-based influence matrix IA. Table 3 shows
the top influential artists. 3 We can also inspect the influ-

3 Entries with Fab 5 Freddy also include producers Material and Bee-
side. All three artists achieved high influence from “Change the Beat”.

James Brown (1.0) James Brown (1.0) James Brown (1.0)
Dr. Dre (0.34) Dr. Dre (0.28) Run-DMC (0.25)
Marley Marl (0.29) George Clinton (0.25) Fab 5 Freddy (0.23)4

George Clinton (0.28) Marley Marl (0.25) George Clinton (0.22)
Public Enemy (0.27) Public Enemy (0.23) Russell Simmons (0.19)
Rick Rubin (0.25) Rick Rubin (0.22) Kool & the Gang (0.19)
DJ Premier (0.25) Fab 5 Freddy (0.22) Marley Marl (0.18)
Material (0.24) Material (0.21) Rick Rubin (0.17)
Fab 5 Freddy (0.24) Run-DMC (0.21) Public Enemy (0.17)
Hank Shocklee (0.23) DJ Premier (0.21) Larry Smith (0.16)

Table 3. Artist Sample-Based Influence Rank for α = 0.0
(left), α = 0.2 (middle), and α = 1.0 (right).

ence of an individual artist by looking at the correspond-
ing row or column. Table 4, for example, names the top
five influential and influenced artists of Jay-Z. Finally, we

Influential (α = 0.2) Influenced (α = 0.2)
The Notorious B.I.G. (0.97) Girl Talk (1.0)
Dr. Dre (0.91) Lil Wayne (0.80)
Puff Daddy (0.53) The Game (0.53)
Nas (0.5) DJ Premier (0.40)
James Brown (0.42) Linkin Park (0.39)

Table 4. Top Influential and Influenced Artists of Jay-Z .

can also compute the relative proportion of influence cre-
ated by each song within an artist’s overall influence. The
top three most influential songs of James Brown, for exam-
ple, include “Funky Drummer” (14%), “Think (About It)”
by Lyn Collins and produced by James Brown (9%), and
“Funky President” (7.5%). Similar measures can be com-
puted to indicate whether an artist gets more credit as a pro-
ducer or performer.

4.3 Genre Influence

The song-level influence matrix can further be reduced to a
genre-based influence IG. The most influential genres found
are: soul/funk/disco, hip-hop/R&B, rock/pop, jazz/blues, and
electronic dance, while the top influenced genres are hip-
hip/R&B, electronic dance, rock/pop, other, and reggae (for
all values of α). Alternatively, the top songs and artist for
each genre can also be computed (omitted due to space con-
straints).

5. CONCLUSIONS

An analysis of music influence and rank of sample-based
music is presented using the WhoSampled.com dataset. Gen-
eral genre and time-based trends are found, identifying where
and when the sampling source material is coming from as
well as differences in how various genres are sampling oth-
ers. Network graphs are employed to both understand gen-
eral trends of sampling behavior, but to also find influence
rank over songs, artists, and genre. A method of influence
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Change the Beat (Female Version) by Fab 5 Freddy (1.0) Change the Beat (Female Version) by Fab 5 Freddy (1.0) Change the Beat (Female Version) by Fab 5 Freddy (1.0)
Amen, Brother by The Winstons (0.82) Amen, Brother by The Winstons (0.74) Funky Drummer by James Brown (0.84)
Funky Drummer by James Brown (0.63) Funky Drummer by James Brown (0.71) Impeach the President by The Honey Drippers (0.62)
La Di Da Di by Doug E. Fresh (0.53) La Di Da Di by Doug E. Fresh (0.51) Synthetic Substitution by Melvin Bliss (0.55)
Think (About It) by Lyn Collins (0.49) Impeach the President by The Honey Drippers (0.49) Get Up, Get Into It, Get Involved by James Brown (0.54)
Impeach the President by The Honey Drippers (0.44) Think (About It) by Lyn Collins (0.45) The Big Beat by Billy Squier (0.51)
Funky President by James Brown (0.35) Funky President by James Brown (0.37) Scratchin’ by The Magic Disco Machine (0.50)
Here We Go (Live at the Funhouse) by Run-DMC (0.34) Synthetic Substitution by Melvin Bliss (0.36) We’re a Winner by The Impressions (0.46)
Bring the Noise by Public Enemy (0.33) Here We Go (Live at the Funhouse) by Run-DMC (0.34) Assembly Line by Commodores (0.46)
Synthetic Substitution by Melvin Bliss (0.32) Bring the Noise by Public Enemy (0.32) Amen by Jester Hairston (0.46)

Table 2. Song Sample-Based Influence Rank for α = 0.0 (left), α = 0.2 (middle), and α = 1.0 (right).

rank is proposed, in an effort to unify higher-level artist and
genre influence measures as appropriate linear combinations
of song-level network influence. Empirical results suggest
sample-based musical networks follow a power-law degree
distribution; heavy influence of funk, soul, and disco music
on modern hip-hop, R&B, and electronic music; and other
musicological results.
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ABSTRACT

This paper presents an overview of user studies in the Mu-
sic Information Retrieval (MIR) literature. A focus on the
user has repeatedly been identified as a key requirement for
future MIR research; yet empirical user studies have been
relatively sparse in the literature, the overwhelming research
attention in MIR remaining systems-focused. We present re-
search topics, methodologies, and design implications cov-
ered in the user studies conducted thus far.

1. INTRODUCTION

Despite recurring calls for a greater focus on user-centric
research, work in the field of Music Information Retrieval
(MIR) has been largely systems-focused. This paper reports
on the limited but growing body of user studies in the field.
A broad definition of ‘user study’ is employed in the article
selection: qualifying documents report on empirical inves-
tigations of user requirements or interactions with systems
primarily aimed at providing access to musical information,
including musical recordings, scores, lyrics, photography
and artwork, and other associated metadata.

The goals of this review are threefold: to survey the dis-
tinct topics that have been investigated by user studies in the
field; to provide an overview of the research methodologies
employed in these studies; and to report on implications for
MIR systems design offered by the works covered.

2. SYSTEMS-CENTRIC FOCUS IN MIR

Research activity in MIR has been motivated to some extent
by textual Information Retrieval (IR)—a field of research
dating back to the 1950’s. Plans for an evaluation platform
inspired by TREC (Text REtrieval Conference) [37] were
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under discussion from ISMIR’s early days [13], and even-
tually led to the creation of MIREX, the Music Information
Retrieval Evaluation eXchange [14]. Given this emulation
of early developments in the field of textual lR, it is perhaps
unsurprising that the primary emphasis of research in MIR
has been placed on systems development. Formal consider-
ation of user information needs and information behaviour
has been sparse in comparison. This imbalance is problem-
atic: a lack of grounding in user requirements makes the
real-world applicability of developed MIR systems a matter
of speculation [2]. The situation reflects the early state of
research in the field of textual IR, where similar early em-
phasis on information systems gradually gave way to a more
user-centric paradigm [10, 38].

Articles reflecting on the state of MIR have repeatedly
called for a greater focus on the potential users of MIR sys-
tems [13]. In his wide-ranging summary of the early state
of the field, Downie identifies the ‘multiexperiential chal-
lenge’ to MIR [11]: subjective musical experience varies
not only between, but also within individuals, depending on
affective and cultural context, associations between the mu-
sic and events from episodic memory, and a host of other
factors.

Users’ information needs vary accordingly; an ethno-
musicologist’s analytical requirements are likely served by
queries of a different nature to those used by a party host
compiling a playlist. Core IR concepts such as ‘similarity’
and ‘relevance’ may also be variably defined: ‘similarity’
might, for instance, refer to song structure, or to mood con-
veyed; ‘relevance’ to a tune’s bibliographical fit to a key-
word query, or to its applicability to a given use case (e.g.,
‘driving,’ ‘housework,’ or ‘exercise’).

Design decisions have typically been based on “intuitive
feelings for user information seeking behaviour,” [8] “anec-
todal evidence and a priori assumptions of typical usage sce-
narios” [25] when facing such issues. User studies, con-
ducted with the same empirical rigour and research excel-
lence we have come to expect from systems-based research,
can provide valuable insights for MIR researchers and de-
velopers, resulting in more useful systems for MIR users
and greater ecological validity in research findings.
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3. REVIEW OF USER STUDIES IN THE MIR
LITERATURE

3.1 Selection Strategy

The criteria employed in article selection for this review
employ a broad definition of the term ‘user study’, as de-
scribed above. Articles primarily reporting the results of
such user studies were targeted for inclusion. The ISMIR
Cloud Browser [16] served as a starting point for article dis-
covery; this textual information retrieval tool is capable of
generating visualisations and ranked result lists based on a
user query, using a TF·IDF-based metric [40] to match the
query to a set of 719 articles representing the output of the
first decade of ISMIR-related activity. Results from the fol-
lowing query strings were used: “human responses”; “infor-
mation behaviour”; “information use”; “information need”;
“participants”; “perceptual evaluation”; “respondents”; “us-
ability”; “user study”; and “user testing”.

Additional articles were identified through a search on
the ISI Web of Knowledge database using the query string
“‘music information retrieval’ AND user”; by following ci-
tations in the resultant documents; and by searching for ar-
ticles citing the original documents using Google Scholar.

3.2 Research Topics

A number of different aspects of music information be-
haviour have been investigated. The topics have been for-
mulated here by reference to explicit research questions,
where provided, or by the implied aims of the research:

• User requirements and information needs [1, 30];

• The information needs of specific groups [9, 17–19]
and in specific contexts [7];

• Insights into specific aspects of music perception and
preference, such as the factors that cause listeners to
dislike certain songs [5], the impact of social relations
on music acquisition and taste [23], and the effects of
demographic factors and musical background on the
semantic descriptions of music [26, 27];

• Analyses of textual MIR queries—symbolic represen-
tation of the melody sought [34], and natural language
expressions of music information needs [1, 25];

• Employment of user studies to generate ground-truth
data for use in training and evaluation corpora [31–
33].

• The organisation of digital music information [6, 17];

• Search strategies and relevance criteria used when ac-
tively seeking new music [22, 24];

• Information behaviour in passive or serendipitous en-
counters with new music [4];

3.3 Methodologies

The research methodologies employed in the user studies
are predominantly qualitative in nature. Approaches range
from situated-researcher methodologies, such as ethno-
graphic observation of information behaviour, face-to-face
user interviews, and participatory design panels, to more re-
mote methodologies such as diary studies, online surveys,
and query log analyses.

The emphasis on qualitative methodology reflects the
largely exploratory nature of existing research; only a few
studies take quantitative or mixed approaches, by quantita-
tive analysis of natural language user queries [25], by ap-
plying measures from usability engineering [34], by use of
behavioural studies [21, 36], and by systematic analyses of
demographic factors and musical background [26]. A fur-
ther group of studies employs quantitative approaches to-
wards the systems-centric goal of corpus generation, crowd-
sourcing annotations from large quantities of users com-
petiting in music-related online games [31–33].

The relatively small number of user studies is reflected
in the equally small number of researchers involved. Conse-
quently, many studies have used somewhat uniform partici-
pant pools, consisting predominantly of male subjects from
similar backgrounds. Several studies do take precautions to
ensure more representative sampling: for instance, Taheri-
Panah and MacFarlane [30] recruit participants from 3 dis-
tinct age-bands, balancing gender; and Lesaffre et al. [26]
make the effect of demographic context on the perception
and description of music a research priority in a large scale,
cross-sectional study.

The limited number of researchers has also resulted in
a somewhat homogeneous use of research methodologies;
the majority of the user studies in the field have been qual-
itative in nature, usually making use of Grounded Theory
(GT) in the analysis phase [15]. GT is an approach in which
observations are coded with no prior assumptions, allowing
theory to emerge from the data. GT is relied upon exclu-
sively in the data analysis phases of many of the articles
covered [1, 4–8, 22, 24].

GT is an appropriate tool in exploratory research, where
no conceptual models have been established to aid data anal-
ysis. As such, these studies represent valuable work; how-
ever, there is a clear opportunity for further research to build
a conceptual framework informed by the existing results, by
conducting further qualitative research to pin down the re-
quired concepts, or by pursuing quantitative work to identify
whether existing results can be generalized.

A notable exception is presented by Inskip, Butterworth,
& MacFarlane’s study into the information needs of users of
a folk music library (2008) [17]; here, qualitative, face-to-
face interviews are analysed in line with Nicholas’ frame-
work for evaluating information need (2000) [29]. The re-
searchers are thus able to base their results on an established
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analytical tool, while at the same time validating the appli-
cability of the tool in a new context.

3.4 Recommendations for MIR System Design

While the studies presented in this review are concerned
with user requirements and information behaviour, a pri-
mary goal of such research is to inform the development of
information systems to better meet such requirements and
support such behaviours. Over the last decade, researchers
have built an arsenal of algorithms and components to tackle
various aspects of MIR; however, the field has yet to pro-
duce an integrated, full-featured system, tying together these
various capabilities. Accomplishing this has been described
as the “Grand Challenge” of ISMIR’s second decade [13]
(p. 18). By conducting user-centric research and applying
findings to the design of such a system and its components,
we can “improve the quality of the community’s research
output” and help create “truly useful music-IR systems” (p.
17).

The recommendations and implications for MIR systems
concluded by the studies covered in the review originate
from a number of different contexts, e.g., digital libraries
versus personal collections. Thus, not all of the recom-
mendations are necessarily applicable to the same system;
rather, provided here is an overview of the recommendations
available, in order to guide future development efforts.

3.4.1 Undirected Browsing

Users spend much of their time seeking new music updating
and expanding their musical knowledge, without a specific
goal in mind; they are often more motivated by the plea-
sure of this activity in itself, than by an actual information
need [24]. Emphasis should be placed on such serendipi-
tous ‘discovery’ processes in the context of MIR systems
development by supporting various different browsing ap-
proaches.

One such approach is the provision of “entry points” to
the catalogue, to aid users navigating through collections of
potentially unfamiliar music [17]; this allows users to situate
themselves, encouraging subsequent browsing and discov-
ery. Audio previewing can be a useful tool in the browsing
process, allowing users to quickly sample a piece of music
to determine whether further attention is warranted; here,
MIR systems could usefully identify representative portions
of the music to sample, for instance by offering a skip-to-
chorus feature [7].

Other approaches might make use of visual elements; one
study proposes a shifting collage of CD covers accompa-
nied by snippets of songs from each album as it is given
prominence in the collage [8]. Musical content could also
be visualized symbolically, by generating map displays that
translate sound or rhythm similarity into visual proximity to

better support genre browsing [8], or by generating graph-
ics that translate audio similarity into visual similarity more
explicitly [21].

3.4.2 Goal-Directed Search

As when browsing, individuals employ different approaches
to the goal-directed search for new music. Inskip et al.
(2008) give examples of different strategies employed by
users of a folk music library, noting that strategies sig-
nificantly vary with research experience of the individual;
thus, variable search techniques should be supported [17].
Searching by similarity (to a particular song or artist) is a
popular feature among MIR system users [36]; Isikhan et al.
(2010) [20] evaluate a melody similarity metric in a percep-
tual study, aiming to improve result rankings of MIR sys-
tems. Another user study evaluates the suitability of sup-
porting textual queries for melodic content by symbolic en-
coding of the sought melodic contour; results indicate that
such queries are too difficult to be used successfully by or-
dinary users, and require considerable musical training to
construct [34]. A different approach to textual queries re-
trieves musical recommendations based on semantic quali-
ties of music through affective, structural, and kinaesthetic
descriptors [27].

Certain search strategies may be of value for use in spe-
cific contexts; for instance, a search function matching video
features to music features would have potential applications
in film making, advertising, and other domains requiring
synchronisation [18]. Casey et al. (2008) provide a far-
ranging overview of other available content-based search
approaches, outlining different use cases and query types
[3].

3.4.3 Recommendations on Metadata

Descriptive elements, stored as metadata, are used to search,
filter, and organize music collections. If the metadata in
a user’s collection is to remain cohesive and up-to-date as
new items are added, simplicity of use is paramount; adding
valid metadata to a track should be a task requiring no
more than a few clicks [6]. Beyond bibliographic infor-
mation such as artist, album, and song name, user studies
frequently identify the potential value of including lyrics in
metadata [1, 6, 7, 18]. Relational information between cat-
alogue items, such as inter-artist links, should be provided
to aid the user in his or her selection [22]. While metadata
should be accurate, ‘fuzzy’ querying should be supported;
e.g., date queries should be treated flexibily, allowing re-
trieval by decade or more blurry categories such as ‘recent’
and ‘old’, instead of requiring a year to be specified [1].

Beyond describing musical content, metadata may de-
scribe context; “use tagging” can prove valuable to users
by encoding information on different scenarios in which a
given piece of music might be relevant [6, 17]. Allowing
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users to provide arbitrary metadata would allow for flexi-
bility in this regard, and cater to a number of use cases;
for instance, attendees might seek to justify the inclusion
of a song in a party playlist at a social gathering, to the
party’s host [7]. Related to “use tagging” is the provision
of user profiles, or “music personalities”; these allow a rec-
ommender system to cater to different user contexts and
moods [22]. Demographics and musical background, and
familiarity with a particular piece, have been shown to im-
pact on users’ semantic descriptions of music [26], further
suggesting the usefulness of distinguishing between differ-
ent categories of users. Chai and Vercoe (2000) propose
an XML-like mark-up language which would encode such
contextual tagging for efficient sharing and re-use between
different MIR systems [35].

3.4.4 Social Aspects

Changes in musical taste are invariably influenced by so-
cial factors [23]; in one study, 96% of participants discussed
music with their friends [30]. To incorporate social as-
pects, researchers have suggested support for collaborative
playlist creation [7] among users in social settings; further
studies discuss collaborative browsing and search [8], anno-
tation [17], and collaborative filtering, taking into account
both preferences and dislikes [5].

Beyond collaborative access of an external catalogue,
users enjoy browsing through other users’ music libraries.
This allows them to target users with compatible tastes, and
thus discover new music [30]. Cunningham et al. (2004) [6]
discuss such sharing of personal collections, emphasising
the requirement that a collection’s public appearance must
be customisable, e.g., to hide ‘guilty pleasures’ that might
negatively affect the image the user wishes to convey of his
or her musical tastes.

Social networking techniques could create trusted recom-
mendations among users, mirroring the way that trust is built
up in musical tastes among peers [24]. An online forum
could fulfill a similar role, encouraging networking between
users [17].

3.4.5 Organization of Music Information

A study examining personal music collections reveals orga-
nization principles based on intended use: people organize
music on the basis of the situation in which they intend to
listen to a particular set of music (e.g. “work music”, “driv-
ing music”) [6]. The same study calls for functionality en-
abling links between songs or song collections and online
resources; furthermore, an archival function is suggested,
which both removes neglected tracks from the standard li-
brary, and provides a mechanism to rediscover old music.
Another study [7] recommends that media interfaces sup-
port and seamlessly integrate different file formats and me-
dia (e.g., music downloaded to the hard drive, USB sticks,

CDs, etc) into a single collection without loss of metadata.

3.4.6 User Interface Appearance

Music playback systems should feature simple, clean inter-
face designs featuring large, clearly labeled controls. Inter-
faces should be attractive and playful, avoiding the clinical
and “somewhat dark” appearance of most currently avail-
able media players [7]. Existing visual representations of
musical content, such as “landscape” representations pro-
viding a geographic view of a musical collection, have cer-
tain disadvantages [21]; one solution is a procedural algo-
rithm to generate icons to be applied to the music files of
the content they represent; this allows visual data mining of
music collections from within the file listings of a standard
computer operating system.

Special considerations must be taken into account when
developing interfaces aimed at young users. A compre-
hensive review of relevant guidelines has been established,
making use of a participatory design panel in order to create
a novel music organizer for children [9].

3.4.7 User Support

Graduated access (“training wheels”) can help inexperi-
enced users to overcome the learning curve of an unfamiliar
system. Online support should be available; in a digital li-
brary context, users should be able to contact librarians for
help [17]. Certain metadata such as genre or record label are
useless to people lacking the required knowledge to interpret
them; thus, supporting descriptions should be provided [22].
User studies are useful in shedding light on the “informa-
tion problem” of the users of MIR systems, but ultimately,
a cognitive framework will be required to better understand
the music seeking behaviour of MIR users [30].

3.4.8 Hardware/Portable MIR Device

Cunningham et al. (2007) outline plans for a portable MIR
platform. This device would be equipped with a microphone
that constantly records surrounding sounds, identifying mu-
sical extracts and saving them for later analysis by audio-
fingerprinting against a database. Such a device would be
useful in tracking down information on music encountered
serendipitously during everyday activities [4]. This direc-
tion of research seems especially relevant given the capabil-
ities and increasingly widespread adoption of smartphone
platforms [28].

4. CONCLUSIONS

User studies have been identified as key components of
music information research. A number of studies have
been conducted in this direction; however, the dominant
paradigm in the field is firmly systems-oriented.
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While the existing work has provided valuable findings
and recommendations for future MIR development, ex-
panded research attention will be required to provide a com-
prehensive, generalizable picture of music information use.
Future research might include the more widespread adop-
tion of quantitative methods; this would provide a route
towards testing the generalisability of developer’s assump-
tions and of the initial findings thus far. Crowd-sourcing
methodologies, previously applied to corpus-generation
[31–33], provide an intriguing direction for future quantita-
tive work. Furthermore, a greater emphasis on demographic
diversity and cross-sectional research will broaden the ap-
plicability of future research findings towards the listening
public at large.

If the “Grand Challenge” of the field is to provide a fully-
integrated system providing all manners of MIR access [13],
a firm focus on user requirements is important; otherwise,
convincing listeners to actually use such a system in the real
world may prove to be a Grander Challenge Still.
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ABSTRACT 

Research on everyday life information seeking has demon-
strated that people often relied on other people to obtain the 
information they need. Weak ties (i.e., acquaintances) were 
found to be particularly instrumental to get new infor-
mation. This study employed social network analysis to ex-
amine the characteristics of the ties through which late ado-
lescents (15-17 years old) discover new music. In-depth in-
terviews with 19 adolescents were conducted, which gener-
ated a sample of 334 ties. A statistical analysis of the ties 
showed that these adolescents relied mostly on strong ties 
to expand their music repertoire, that is, on people to which 
they felt very close and with whom they had frequent con-
tacts. These ties were predominantly homophilous in terms 
of age, gender and musical taste. It was also found that par-
ents were more likely than friends or other types of kins to 
be instrumental for music discovery. These findings suggest 
that a better knowledge of the characteristics of the ties 
through which people discover new music could provide 
useful insights for the design of recommender systems that 
include social networking features. 

1. INTRODUCTION 

Social psychology of music has long informed us that mu-
sic practices are inherently social: the social context molds 
how people perceive, experience or engage with music 
[12]. Cultural taste and especially musical taste often serve 
as a mean of distinction and prestige [1]. One’s music pref-
erences reflect who one is or aspire to be. Therefore, it 
would be difficult to predict one’s musical taste solely by 
analyzing the objective and intrinsic characteristics of the 
music one loves. This explains why people often rely on 
their social network to expand their music repertoire: in ad-
dition to considering one’s taste when making recommen-
dations, friends and relatives are able to take into account 
the values, attitudes and beliefs associated with the music.  

This also explains why most systems that provide per-
sonalized recommendations for music (e.g., Last.fm, iTunes 
Genius) or for other cultural items such as books (e.g., Am-

azon) or movies (e.g., MovieLens), rely on social or collab-
orative filtering rather than content-based filtering. What 
allows each of these recommender systems to distinguish 
itself from others is the algorithm it uses to generate the 
recommendations and, more specifically, the type of infor-
mation the algorithm makes use of, which can include im-
plicit feedback (e.g., listening habits, previous purchases) 
and/or explicit feedback (e.g., user ratings, lists of favorite 
artists). However, as Celma [2] points out, these systems 
also have their drawbacks, such as the so called “cold start 
problem,” which applies to both new music and new users, 
and the difficulty these systems have to provide novel, non 
obvious recommendations. Possible solutions that have 
been proposed include the development of hybrid recom-
mender systems that would combine collaborative and con-
tent-based filtering [17], and the use of some characteristics 
of the users that are known to influence musical taste, such 
as demographic characteristics, socioeconomic background 
and personality traits [15].  

Social network sites might also open new possibilities 
for generating music recommendations. A site like Face-
book already offers several ways for members to express 
their music preferences, by means of implicit feedback 
(e.g., the sharing of links to music videos) and explicit 
feedback (e.g., the list of favorite music in the user’s pro-
file, the “like” button that allows users to express interest in 
a music video shared by another user or in the page of a 
music artist). In addition to that, Facebook contains exten-
sive information about one’s social network which, again, 
can be explicit (e.g., becoming “friend” with someone, in-
dicating the type of kinship with another user) or implicit 
(e.g., the strength of a relationship can be estimated by cal-
culating the number of interactions occurring between two 
members, the number of times they tag each others on pic-
tures and/or the number of networks or friends they have in 
common). Considering the popularity of social networking 
sites and the impact of the social context on musical prac-
tices, it seems relevant to explore whether relationships 
characteristics could be exploited to improve social filtering 
algorithms in music recommender systems that include so-
cial networking features.  

A first step in that direction is to examine the character-
istics of the ties through which people discover new music 
in everyday life. It is with this objective in mind that this 
study was designed. Its aim was to study how music infor-
mation circulates within the social networks of late adoles-

 
Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page.  
© 2011 International Society for Music Information Retrieval  

341



Oral Session 5: User Studies
  

 

cents (15-17 years old) and, more specifically, to examine 
the attributes of the ties that are instrumental (or not) for 
music discovery. Older adolescents are a particularly inter-
esting population to study. According to a survey conduct-
ed for the Pew Internet & American Life Project, it is the 
age group that shows the highest percentage of social net-
working sites users [11]. Adolescence is also the period 
during which people construct their identity, and music 
plays a central role in that process [12]. Furthermore, late 
adolescence is critical in the formation of one’s taste, since 
it is the period during which the “crystallization of musical 
taste” generally occurs [11].   

2. RELATED WORK 

Previous research has demonstrated that people play an 
important role in information provision, especially to an-
swer everyday-life information needs [8, 9]. People also 
rely heavily on their social networks to discover new music 
[10, 17]. To better understand who people choose to ap-
proach to get the information they need, several research-
ers have adopted a social network perspective and found 
that weak ties (e.g., acquaintances) were usually more in-
strumental than strong ties (e.g., kins and friends) to ac-
quire new information [6, 9], which is at the origins of 
Granovetter’s “Strength of Weak Ties” theory [6]. Within 
the social network approach, the term “social capital” has 
been used to refer to resources (e.g., information) embed-
ded in a social structure [9]. 

Social network researchers have established that there 
was a clear relationship between similarity and association. 
People tend to interact more with people who have similar 
demographic characteristics (e.g., age, gender, education, 
social class), as well as people who share their behavior 
patterns, values and beliefs (e.g., political orientation) [13]. 
This is the principle of homophily, which posits that “dis-
tance in terms of social characteristics translates into net-
work distance, the number of relationships through which a 
piece of information must travel to connect two individu-
als” [13]. In other words, homophilous ties are more likely 
to be strong ties. Granovetter also demonstrated that the 
stronger the tie between two individuals, the greater the 
overlap in their social networks. As a result of the ho-
mophilous nature of strong ties and the extent of overlap in 
their social networks, strong ties usually have access or are 
exposed to similar information. This explains why weak 
ties were found to be more instrumental than strong ties in 
the acquisition of new information: not only are they usual-
ly exposed to different information, they can also act as a 
bridge between two groups of densely knit networks of 
close friends [6].  

3. METHODOLOGY 

This study is part of a larger project examining the way 
music information is shared within the social network of 
late adolescents living in an urban area. Pretest interviews 
with 6 adolescents were conducted in the summer of 2010. 

The main study was conducted in the winter and spring of 
2011 and included 19 late adolescents (15 to 17 years old). 

3.1 Social Network Analysis 
Social network analysis (SNA) was used to study how mu-
sic information is shared within the social networks of ado-
lescents. SNA focuses on “relationships among social enti-
ties, and on the patterns and implications of these relation-
ships,” [16] in particular on the flow of resources (e.g., in-
formation) among actors. It provides a set of methods and 
theoretical concepts that can be used to analyze and de-
scribe the characteristics of social networks and the ties 
they are composed of. To perform SNA, an egocentric or 
personal network approach was adopted, which consists in 
examining social networks from the perspective of focal 
persons (the “Egos”). This approach is well suited to popu-
lations that are large and difficult to delimit. It contrasts 
with the whole network approach, which looks at the ties 
that all members of a well-defined population (e.g., all 
members of an organization) maintain with each other. Alt-
hough SNA was first developed and used by sociologists, it 
rapidly proved its utility in other fields of research, includ-
ing information science. Its use in this domain was promot-
ed by several researchers, among them Haythornthwaite 
who explained that “Since information is an important re-
source, and one that often depends on making and main-
taining contact with the right people, a social network ap-
proach offers a rich variety of concepts and techniques to 
describe and explain information access” [7]. 

3.2 Data Collection  
Data were collected during in-depth, face-to-face individual 
interviews. Different instruments were used to obtain in-
formation about the social network of each participant and 
the way music information is exchanged within the net-
work. We used an adaptation of the social network mapping 
tool designed by Todd and described in [3], which consists 
of a set of seven concentric circles at the center of which is 
the participant (called “Ego”). To fill the map, participants 
were asked to think about how people were clustered in 
their life (e.g., school, family, friends from elementary 
school, friends from summer camp, etc.). These clusters or 
sectors were put on the map. To elicit the names of the per-
sons to be included on their map (called “alters”), we used 
three different methods. We used a name generator, which 
consists in asking, for each cluster identified, the names of 
the people to which they felt close or very close. Partici-
pants were also asked to name all people through which 
they had discovered music in the last year or with whom 
they often discussed music. Finally, we used a method 
called critical incident technique [4], which attempts to rely 
on a concrete situation to generate a more accurate report of 
one’s behavior than a hypothetical question would. Partici-
pants were therefore asked to recall how they had discov-
ered their favorite artist and to provide a detailed account of 
the context. To help participants recall the situation, the re-
searcher could ask additional questions, such as “When did 
you hear the music of that artist for the first time?” “Did 
someone make you listen to the music of that artist?” or 
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“Had anyone discovered that artist because of you?” Partic-
ipants were invited to position all alters generated by any of 
the three methods on their map, using the seven concentric 
circles to indicate the degree of emotional closeness with 
each of them.  

Once the map was completed, a questionnaire was ad-
ministered to the participants to collect information about 
each alter (e.g., age, gender, school level) and their rela-
tionship with him or her (e.g., nature of relationship, fre-
quency of contacts, duration of relationship). Participants 
were also asked to indicate, on a five-point scale ranging 
from “very different” to “very similar”, the degree of simi-
larity between themselves and each alter in terms of musi-
cal taste. With the objective of estimating the degree of in-
strumentality of each alter for music discovery, participants 
were asked to indicate, on a five-point scale ranging from 
“never” to “very often,” how often they discovered new 
music because of him or her.  

Because of the complexity of the task and the length of 
the accompanying questionnaire, the interviews with the 
participants lasted between 61 and 95 minutes (mean=79).  

3.3 Participants and Sample Size 
Participants were recruited from a public school located in 
downtown Montréal. This school offers programs in French 
and English, from kindergarten to grade 11. All 10th and 
11th grade students enrolled in the French sector (i.e., 173 
students) were invited to participate in the study. Nineteen 
accepted the invitation, for a response rate of 10.9%. All 
lived within the greater Montréal area, 14 were female and 
5 were male; 12 were in grade 10 and 7 in grade 11. The 
interviews with the participants elicited the names of 334 
alters, which means that our sample was composed of 334 
dyads or Ego-alter ties.  

4. FINDINGS 

Although qualitative data were also gathered during the in-
terviews, the present paper focuses on the analysis of the 
quantitative data collected via the social network mapping 
tool and the questionnaire about Ego-alter dyads. More 
specifically, the analysis focuses on the characteristics of 
the people and the ties that were considered instrumental 
for music discovery by the participants. 

Each participant named between 8 and 29 alters 
(mean=18.6; median=17), for a total of 334 alters for the 19 
participants. Of the 334 alters, 137 (41%) were not consid-
ered instrumental for discovering new music, which means 
that 197 (59%) were considered instrumental at various de-
grees. To the question “How often do you discover music 
because of this person?” participants responded “rarely” for 
61 alters (18%), “occasionally” for 61 alters (18%), “often” 
for 46 alters (14%) and “very often” for 29 alters (9%).  

A multinomial logistic regression was performed to ex-
amine the attributes of the persons and ties that were per-
ceived as instrumental. Multinomial logistic regressions are 
employed to handle cases where the dependent variable (in 
this case, the degree of instrumentality of a tie) is nominal 
or ordinal and has more than two classes, and the independ-

ent variables are nominal, ordinal and/or continuous. Con-
sidering the relatively small size of our sample, we some-
times combined categories to increase the validity of the 
analysis. For instance, for the instrumental variable, we 
combined the 4th and 5th points of the five-point scale to 
create the “very instrumental” category; and the 2nd and 3rd 
points to create the “somewhat instrumental” category. Cat-
egories were also combined for the variables emotional 
closeness, age and frequency of contacts. Results of the lo-
gistic regression analysis are shown in Table 1.  

4.1 Strength of Instrumental Ties 

The strength of a tie is usually estimated by a combination 
of factors, including emotional closeness and frequency of 
contacts. The logistic regression analysis shows that emo-
tional closeness was associated with instrumentality: the 
odds for a close person (6th and 7th grades of the seven-
point scale combined) to be considered very instrumental 
compared to an acquaintance (1st, 2nd and 3rd grades com-
bined) were increased by a factor of 3.8. Pearson’s chi-
square significance test (36.6, p<0.05) also confirmed the 
correlation between these variables. 

The duration of a relationship, on the other hand, was 
not found to be a predictor of the likelihood of a tie to be 
instrumental, but the frequency of contacts was. People par-
ticipants saw at least 3 times a week were 1.6 times more 
likely to be considered instrumental for music discovery 
than people they saw less than once a week, and 2.0 times 
more likely to be very instrumental. A high frequency of 
mediated contacts (i.e., contacts by phone calls, SMS, chat 
or email) was also positively related to instrumentality, alt-
hough this association lost its significance when both levels 
of instrumentality were considered. In all, we can safely say 
that ties through which participants discovered new music 
were mostly strong ties.  

4.2 Nature of Relationship and Instrumentality 
The nature of the relationship was significantly related to 
instrumentality. Of special interest is the surprising finding 
that parents were positively related to instrumentality. In-
deed, the odds of a parent being very instrumental were 5.7 
times greater than for a friend. To be more specific, fathers 
seemed to be particularly instrumental. Of the 15 fathers 
mentioned, all were considered instrumental at various de-
grees, and 7 were considered very instrumental. Of the 16 
mothers, 3 were not considered instrumental and only 4 
were considered very instrumental. The grandparents clear-
ly belonged to a different category: the odds of grandpar-
ents being instrumental were decreased by a factor 0.03 
compared to friends. As for siblings, they were not signifi-
cantly related to instrumentality. This finding should be in-
terpreted carefully, however. Although the sample size did 
not allow for the consideration of more specific categories 
for the logistic regression, a look at the data suggests that 
younger and older siblings should probably be treated sepa-
rately. Of the 13 younger brothers/sisters mentioned by the 
participants, 9 were considered “not instrumental”, 2 were 
“somewhat instru-mental” and 2 were “very instrumental”.  
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Table 1. Logistic regression analysis of the significance of people and relationship characteristics for instrumentality 

 Sample All Instrumentala Somewhat Instrumentalb Very Instrumentalc 

 % Odds ratio 
(95% CI) P Odds ratio 

(95% CI) P Odds ratio 
(95% CI) P 

Nature of relationshipd        
Friende 58% 1.0  1.0  1.0  
Parent 9% 5.3 

(1.6-18.1) 
.008** 5.1 

(1.4-18.1) 
.012* 5.7 

(1.5-21.6) 
.010* 

Sibling 6% 0.6 
(0.2-1.6) 

.343 0.6 
(0.2-1.8) 

.352 0.7 
(0.2-2.4) 

.558 

Grandparent 7% 0.03 
(0.003-0.187) 

<.001** 0.04 
(0.005-0.296) 

.002**   

Emotional closeness        
Not closee 8% 1.0  1.0  1.0  
Moderately close 33% 1.4 

(0.6-3.4) 
.431 1.3 

(0.5-3.3) 
.411 1.8 

(0.5-6.8) 
.011 

Close 59% 2.6 
(1.1-5.9) 

.026* 2.1 
(0.8-5.2) 

.041* 3.8 
(1.1-14.0) 

.009** 

Duration of relationship  
Less than 2 yearse 8% 1.0  1.0  1.0  
2-5 years 35% 0.9 

(0.4-2.1) 
.617 0.7 

(0.3-1.8) 
.455 1.4 

(0.4-5.0) 
.571 

More than 5 years 57% 0.8 
(0.4-1.9) 

.764 0.6 
(0.3-1.5) 

.315 1.4 
(0.4-4.6) 

.608 

Frequency of in-person contacts 
Less than once a 
weeke 

47% 1.0  1.0  1.0  

1-2 times a week 9% 1.6 
(0.7-3.5) 

.262 1.6 
(0.7-3.8) 

.314 1.6 
(0.6-4.5) 

.375 

3 or more times a 
week  

43% 1.6 
(1.0-2.5) 

.043* 1.4 
(0.9-2.4) 

.175 2.0 
(1.1-3.6) 

.028* 

Frequency of mediated contacts 
Nevere 8% 1.0  1.0  1.0  
Occasionally 53% 1.8 

(0.8-4.3) 
.149 1.8 

(0.7-4.8) 
.209 1.8 

(0.6-6.0) 
.304 

Often 39% 2.7 
(1.1-6.4) 

.024* 2.5 
(0.9-6.8) 

.063 3.0 
(0.9-9.8) 

.074 

Age of alter         
> 50e 11% 1.0  1.0  1.0  
25-49 15% 4.9 

(1.9-12.3) 
.001** 4.6 

(1.6-13.4) 
.005** 5.3 

(1.5-19.0) 
.011* 

18-24 6% 5.9 
(1.8-19.2) 

.003** 5.0 
(1.3-19.1) 

.020* 7.6 
(1.7-34.5) 

.009** 

15-17 59% 4.4 
(2.0-9.3) 

<.001** 4.3 
(1.8-10.5) 

.001** 4.5 
(1.5-13.6) 

.009** 

< 15 9% 1.1 
(0.4-3.1) 

.909 1.1 
(0.3-3.8) 

.864 1.0 
(9.7-70.1) 

.975 

Education institution        
Different schoole 8% 1.0  1.0  1.0  
Same school 33% 2.5 

(1.3-4.6) 
.005** 1.7 

(0.9-3.2) 
.136 5.9 

(2.2-15.7) 
<.001** 

*p<.05, **p<.01 
a Alters for which egos answered any value other than “never” to the question “How often do you discover music 
because of this person?”  
b Alters for which egos answered “occasionally” or “rarely”. 
c Alters for which egos answered “often” or “very often”. 
d Some categories were omitted as they did not include enough data (e.g., cousin, uncle/aunt, teacher, librarian)  
e Reference category for the variable. 
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In comparison, all 6 older brothers/sisters were con 
sidered instrumental at various degrees (4 were “some-
what instrumental” and 2 “very instrumental”).  
 
4.3 Characteristics of Instrumental Alters 

An examination of the characteristics of the instrumental 
alters also revealed some patterns. The logistic regression 
analysis on friendship ties showed that friends who were 
current schoolmates of the ego were 2.5 times more likely 
to be instrumental for discovering music than the friends 
attending a different school. Age was also significantly 
related to instrumentality. Compared with people over 50, 
the likelihood of being very instrumental for discovering 
music were increased by a factor of 4.5 for people in the 
15-17 age category, by 7.6 for people in the 18-24 catego-
ry, and by 5.3 for the people in the 25-49 category.   

4.4 Homophily/Heterophily of Very Instrumental Ties 

Ties can also be characterized by their degree of ho-
mophily or heterophily. To investigate that aspect, we 
compared the demographic characteristics of participants 
with those of very instrumental ties, as well as the global 
characteristics of the sample (see Table 2). When we look 
at the sample data, we notice that the participants’ social 
networks were composed of a majority of homophilous 
ties in terms of age (60% of the alters mentioned were at 
most 1 year older or younger than the ego) and gender 
(69% of alters were the same sex than the ego). This is 
hardly surprising considering that, according to the prin-
ciple of homophily (see Section 2), people tend to interact 
more with people who are similar to them. Perhaps of 
greater interest is the fact that people who were consid-
ered by participants as being very instrumental for dis- 
covering new music followed almost exactly the same 
distribution for these variables, which means that instru- 

Table 2. Characteristics of very instrumental alters com-
pared to characteristics of ego 

mental ties were also predominantly homophilous in age 
and gender. That being said, a non-negligible proportion 
of both the sample ties and the instrumental ties were 
much older than the ego (24% of all alters and 21% of 
very instrumental alters were more than 12 years older 
than Ego). In both cases, these people were mostly family 
members: Family members represented 93% of the much 
older alters and 94% of the much older very instrumental 
alters.  

On some aspects, a greater proportion of the ties on 
which participants relied to expand their music repertoire 
were homophilous compared to the ties of the whole sam-
ple. While 68% of the friends in the sample attended the 
same school than the ego, 92% of the friends who were 
very instrumental did. Unsurprisingly, an examination of 
the data on the similarity of musical taste shows that the 
distribution of the very instrumental ties was skewed to-
wards the end of the scale whereas the ties of the whole 
sample seemed to follow a normal distribution. In other 
words, participants tended to prefer people in their social 
network who shared their musical taste to get music rec-
ommendations. It should be noted, however, that not all 
alters who had very similar taste than Ego were consid-
ered very instrumental (only 67% were), which means 
that a high degree of similarity in musical taste did not 
always lead to instrumentality for music discovery.  

Overall, very instrumental ties included a similar or 
greater proportion of homophilous ties compared to all 
ties of the sample, depending on the characteristics we 
examine. This contradicts the idea that people tend to rely 
on weak and heterophilous ties to gain new information.  

5. DISCUSSION AND CONCLUSION 

The data analysis revealed that discovering new music is 
dissimilar in many ways from other information-seeking 
situations. While previous research supports the im-
portance of weak ties in the acquisition of new infor-
mation, the present study concludes that the late adoles-
cents we interviewed relied mostly on strong ties to ex-
pand their music repertoire, that is, on people to which 
they felt very close and with whom they had frequent con-
tacts. These ties were also predominantly homophilous in 
terms of age, gender and musical taste, although we high-
lighted the fact that a minority but significant proportion 
of the very instrumental alters were much older than the 
participants. Related to that, we found that parents, and 
especially fathers, were more likely than friends or other 
types of kins to be instrumental for music discovery.  

The analysis of the qualitative data collected during 
that project should help better understand these findings. 
In the meantime, we can provide some potential explana-
tions. Three reasons can be offered for the important role 
strong ties play in this context.  Firstly, adolescents are 
very exposed to music, mainly because of recent techno-
logical innovations. Music is widely available on the 
Web, legally or illegally, in streaming or for download, 
making it more accessible than it has ever been. Video-
sharing sites such as YouTube also offer a wide variety of 

 Very instru-
mental 

Sample 

 n % n % 
Age     
Younger (more than 1 year) 3 4% 22 7% 
Same (± 1 year) 48 64% 199 60% 
Slightly older (2-12 years) 8 11% 33 10% 
Much older (more than 12 
years) 

16 21% 80 24% 

Gender     
Same 22 29% 105 31% 
Different 53 71% 230 69% 
School (for friends)     
Same 33 92% 105 68% 
Different 3 8% 50 32% 
Musical taste      
Not similar 2 3% 36 13% 
Slightly similar 3 4% 62 22% 
Moderately similar 14 19% 77 28% 
Similar 34 45% 71 25% 
Very similar 22 29% 33 12% 

345



Oral Session 5: User Studies
  

 

music videos, which can easily be shared using social 
networking sites. In addition, many adolescents have 
smartphones or portable music players on which they can 
carry large music collections they can share with their 
friends: seeing two adolescents splitting earphones to lis-
ten to music together is very common. As a result, adoles-
cents who are not highly invested in music might not feel 
the need to actively seek music recommendations. Sec-
ondly, discovering music, although important in the con-
struction of identity in adolescence, is certainly not as 
crucial in one’s life as seeking job- or health-related in-
formation when needed. People might therefore be less 
inclined to make efforts to meet these needs and seek ad-
vice from music mavens or from people whose job it is to 
recommend music (e.g., music store staff, librarians) but 
are less readily available. Thirdly, because of the subjec-
tivity of music interpretation, as well as the attitudes and 
values associated with the music, recommending music 
requires a much better knowledge of the information-
seeker than answering other types of information needs 
does, a knowledge that is difficult to grasp through a short 
interview. It is therefore plausible that adolescents prefer 
to rely on strong ties because they consider that people 
who know them well and know their taste provide more 
relevant recommendations.   

We can also offer different possible explanations for 
the instrumentality of parents for music discovery. The 
Strength of Weak Ties theory could shed some light on 
this phenomenon. Although parents are strong ties, they 
are more heterophilous than friendship ties. Parents are 
much older and, as such, have been exposed to music 
from different periods. Considering that musical taste 
usually crystalizes in late adolescence, it is likely that the 
music to which they listen today dates, at least partly, 
from that period. Were it not for older people in their life, 
adolescents would possibly not be exposed to this music. 
However, this does not explain why parents were found to 
be more instrumental than uncles, aunts, or grandparents. 
Other explanations could be that they are more accessible 
and/or that music familiarity often leads to music appreci-
ation [5]. As one participant of our pilot study put it, “The 
songs you grew up with, whether you want it or not, you 
always end up listening to them again.” 

The findings of this research reiterate how complex the 
task of recommending relevant music is and how intri-
cately bound musical taste is to social context. They sug-
gest that a better understanding of the process through 
which people discover new music through friends, rela-
tives or other acquaintances could provide some useful 
insights for the design of music recommender systems 
that integrated social networking features. Further re-
search is now needed to investigate whether these results 
can be extended to other late adolescent populations or to 
older or younger populations.  
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ABSTRACT

To help maximise the usefulness of MIR technologies in the
wider community, we conducted an ethnographic study of
music lessons in secondary schools in London, UK. The
purpose is to understand better how musical concepts are ne-
gotiated with and without technology, so we can understand
when and how MIR tools might be useful. We report on
some of the themes uncovered, both about the range of tech-
nologies deployed in schools and about the ways different
musical concepts are discussed. Importantly, this rich ob-
servation elicits some of the nuances between various high-
and low-technologies. In particular, we discuss issues of
multimodality and the role of technologies such as Youtube,
as well as specific issues around musical concepts such as
genre and rhythm.

1. INTRODUCTION

Over the past decade the field of Music Information Re-
trieval (MIR) has blossomed, leading to the creation of many
useful analysis techniques and systems. We wish to increase
the benefit of MIR techniques to society, and to help develop
MIR in ways that connect with new use cases in real-world
contexts. This requires that we work with user groups di-
rectly, adapting our approach and conceptual toolset to that
of the user groups: in other words, it requires recognising
that MIR has its associated culture with its own assumptions
and interests, which may differ from the assumptions and in-
terests of a particular user group, and working to bridge any
divides. Connecting with user communities in this way is
not just a way to disseminate research outputs, but can bring
fresh ideas and perspectives into the research process.

The present study was conducted in this spirit, with a spe-
cific view to investigate how new digital music technologies
might be developed or adapted for the school music context.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

This paper discusses some of the issues brought out from
research conducted in London secondary schools over the
period November 2010 – March 2011. The full ethnographic
analysis cannot be represented in six pages; in this paper
we first describe the setup of the study before considering a
range of findings relevant for the MIR community. We dis-
cuss the use of different musical concepts (Section 3) and
different technologies (Section 4), before ending with a dis-
cussion reflecting on the lessons for the use of MIR technol-
ogy in the school music-lesson context.

2. SETTING AND METHODS

We chose to use an ethnographic approach, so as to elicit
a rich thick description of the way music-related ideas are
used and relate to each other in a specific context. The sen-
sitising questions used to guide the ethnography were:

What music-related concepts do teachers and
students negotiate in music classes?
How do they achieve this – with, and without,
technology?

We note that such “sensitising questions” do not serve as
narrow research questions to be answered specifically, but
as a thematic core for the observations and analysis.

The study was conducted in music lessons at two sec-
ondary schools in London. The two schools were selected
after contacting a small selection of comprehensive secondary
schools in the London area with music programmes.

• School A was located in East London, with around
1200 students. The school had ≈ 15% having special
educational needs, and ≈ 50% obtaining five or more
A*–C GCSEs and equivalent (a standard UK measure
of attainment) in 2010. The music department had six
full-time music teachers.

• School B was located in West London, with around
1000 students. The school had ≈ 15% having special
educational needs, and ≈ 30% obtaining five or more
A*–C GCSEs and equivalent in 2010. The perform-
ing arts department had two full-time music teachers.
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Each school ran a two-weekly timetable, meaning the visits
(over the period November 2010 – March 2011) typically
covered about six lessons of each particular class. Various
secondary-level lessons were included in the study (Year 7
to Year 11, i.e. students aged approx. 11–16).

Observations were conducted by one observer with note-
book and pen; to minimise disruption and facilitate access,
video/audio recording were not used. Analysis of the field-
notes was conducted as described in [4] using focused cod-
ing followed by thematic analysis. In the following, any per-
sonal names of teachers/students that appear are pseudonyms.

3. THEMES OF MUSICAL CONCEPT

A high-school classroom context of course involves nego-
tiation of various types of known and unknown concepts.
One can get a first impression of the concepts that are dis-
cussed in music lessons by looking at the curriculum specifi-
cation. 1 However, such a document does not reveal how the
discussions might play out in the actual classroom context:
which concepts are more easily negotiated through which
modalities, how new ideas relate to prior knowledge, and
any subtleties in the way teachers and students approach dif-
ferent concepts.

3.1 Musical instruments are easy

Musical instruments, familiar and unfamiliar, were the basis
for many discussions in the observations, but were found to
be amenable to negotiation through a wide range of strate-
gies: by name, by comparing against other known instru-
ments, by describing physical characteristics, by miming,
by showing pictures, or of course by having one in the room
to show and/or use. The concreteness of instruments – they
are generally physical objects – is of course a strong reason
for this, allowing access to discussion of instruments includ-
ing those from unfamiliar cultures. Indeed, the most difficult
negotiation observed in relation to musical instrument was
about the more abstract idea of classification into Western
orchestral sections, for example why an electric guitar is not
included in the string section. Even here, the concepts’ an-
choring in the concreteness of musical instruments makes
them amenable to negotiation.

Musical notes were also relatively straightforward to ne-
gotiate, by name (“C sharp”) or number (“third fret” or a
note’s number in a sequence), or by pointing at their position
on a keyboard or fretboard. This doesn’t mean notes were
easy to recognise or memorise – note the recurrent practice
of using a felt-tip to mark the note-names on the keys of
the MIDI keyboard – but that there were stable commonly-
understood ways to refer to them. In our observations, West-

1 http://curriculum.qcda.gov.uk/
key-stages-3-and-4/subjects/key-stage-3/music/,
http://www.edexcel.com/quals/gcse/gcse09/music/

ern 12tet tuning was an unchallenged common ground for
note tunings, and we might conjecture that this supported
the ease of discussion; although the schools did include some
non-Western music in their curriculum, we did not observe
any discussion going beyond the Western 12tet scale.

3.2 Genre terms are contextual and useful

Genre-type terms were observed in many conversations, used
to navigate known and unknown music – both in curriculum-
oriented conversation and more informal conversation about
music that people like or dislike. In the MIR context this is
notable because genre has been a topic of some debate – see
Section 5 for further discussion.

The use of genre-type terms has an important role in
mapping out a landscape of musical styles and exploring
that landscape. Note that the labels do not form a compact
or mutually-exclusive set of categories (unlike the “record
shop” approach to genre); instead they function more like
landmarks, having particular traits which can be discussed
and compared against other genres.

The following brief excerpt shows a function of genre in
a lesson, as one student shares music with a peer:

Preston (American, recently new to the class) was sitting at
a computer in the corner of the room, next to Terry. He was
listening to something on earphones. He offered one earphone
to Terry:

Preston: Check this out

Terry took the earphone and listened. Preston turned up the
volume loud so it was audible in the room. He nodded along
to the slowish beat and looked around the room smiling with a
satisfied look.

Terry: How dyou dance to this
[Pause.]
Preston: This is car music bro. You just ride
around with a fucked-up ass car.

They carried on listening to the music.

Here “car music” functions as a genre term, defined through
a trait not of how it is made or its sonic aspects, but of what
listeners do with the music.

The excerpt concerns social music sharing rather than a
class task, yet the use of genre was consistent in many ob-
servations. When genre labels are used in a task set by the
teacher, they function as a route in to discussing and find-
ing out about different ways of performing and using music,
and thus broadening students’ awareness. The labels often
don’t appear as entirely new concepts, rather as references
to musical styles including ones the students may only have
a vague awareness of. Thus an important role of genre terms
here appears to be to provide named landmarks to navigate
the world of known and unknown musics.
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Note also that there may be negotiation of musical genre
terms – the terms are not universal/objective, but local ne-
gotiation is sometimes required to come to an agreed un-
derstanding. Hence in one class task, the term “bhangra”
was unfamiliar to some students, leading to a discussion re-
solving its meaning by reference to known terms such as
“Indian” and “Bollywood”. Although such a comparison
might seem inaccurate to some bhangra/Bollywood fans, it
helped resolve the term “bhangra” as a landmark useable in
further group discussion.

3.3 Nameless rhythms

In contrast to the genre talk just considered, negotiation of
rhythm generally occurred without a stable set of labels or
ways to refer to different rhythms: rhythms generally were
included in discussion only by acting them out – whether on
a drum, by clapping, or vocally.

Acting out rhythms is an important part of music edu-
cation, but discussion can be impeded if there is no shared
set of common terms used as shorthand. (Musicologists do
have names for many rhythms, e.g. son clave; and note du-
rations can be named as e.g. quaver or quarter note, though
these don’t lead directly to shorthand names for rhythms.)
In our observations we found a general tendency for rhythm
talk to be limited by this lack of names, sometimes causing
confusion or difficulties in remembering which is which.

The closest to a stable terminology was the “one and two
and three and” approach used by some musicians, though
even here there was ambiguity, in part because counting
can be done at different metrical rates, or the accents can
be counted rather than the underlying tactus. For example,
on one occasion a teacher talked this approach through out
loud, saying “one and two and three and four and” and ask-
ing the students, “which number was the ‘and’ after?” How-
ever he became unsure himself, miming playing the drums
while saying “one and two and” and then “one and two and
three and”, and coming to the decision that the right answer
was three. This answer seemed not to affect subsequent use
of the rhythm in class, since the rhythm pattern was subse-
quently negotiated only by performing it, not by referring to
any ‘and’s or numbers.

4. THEMES OF MODALITY

Having contrasted the uses of some different types of mu-
sical concept in music lessons, we next turn to consider the
modalities used by teachers and students.

4.1 Multimodality

From our observations we found a strong pattern in the tech-
nological and non-technological modes that teachers and
students use to negotiate music-related concepts: they use a

wide variety of modes, both digital and otherwise, in quick
succession and often in parallel. The classroom is a rich
environment in which a wide variety of resource types can
be called upon instantly, without necessarily planning in ad-
vance. To give an overview – teachers and students:

• talk about musical concepts verbally, using descrip-
tions, counting, and references to known artists/musics;

• they demonstrate concepts by acting them out using
physical instruments, voice, software sequencers, or
(surprisingly often) mime;

• they convey concepts by talking someone else through
acting them out;

• they call upon resources including posters, physical
instruments, smartphones/MP3 players, slideshows,
Wikipedia articles, Youtube videos, and web searches;

• and they share specific music pieces by means of head-
phones, earphones, loudspeakers, singing, and occa-
sionally file-transfer.

This list is an aggregation, but not an aggregation of dis-
parate phases of activity: the prevailing behaviour of teach-
ers and students during music lessons involves using many
of these in parallel, even when a task set for students might
formally seem to revolve around one specific mode.

One example of a technology incorporated into the resource-
rich classroom context is the Interactive Whiteboard (IW) –
i.e. a projector screen with a touch interface, and the abil-
ity to be written on with digital pens etc. In the UK there
was previously special funding for IWs in schools, and they
were present in all classrooms observed. However, there
was a very strong pattern in the use of IWs, which was
that they were heavily used as more “traditional” projection
screens and rarely if ever for their touchscreen or digital-
pen capabilities. The projected screen was very often used
by the teacher to project Powerpoint slides (of task instruc-
tions, learning objectives, descriptions of musical concepts),
to demonstrate software use (how to fill in a form, or use a
music sequencer), and to play videos. Students were often
allowed to control what was projected, e.g. in choosing a
music video. It was rare for a classroom session not to in-
volve the projected screen: it often served as a focal point
(e.g. when playing a video to the class), and also very often
as a highly visible place to leave reference information, such
as task instructions or a musical scale or chord progression.
The projected screen was very commonly used in conjunc-
tion with other resources, such as playing back a video while
students played along to it using instruments.

There are multiple potential explanations for why the IW’s
interactive features were not generally used. Teachers and
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students both showed awareness of how to use those fea-
tures, such as by tapping the screen to dismiss a screen-
saver; so lack of awareness was not a factor here. Rather it
seems that the projected screen is easily incorporated along-
side other activities such as playing an instrument or writing,
while the IW-specific features make demands (such as being
close to the screen, and sometimes holding a special pen)
which reduce their ease of integration into multimodal ac-
tivities. Contrast this with Shannon and Cunnigham’s study
in a class of young children with special needs, in which
the largest effect was said to be that IW placement and other
factors led to symbolic “ownership” of the IW by the teacher
[7]. We did not observe such effects in our study, with stu-
dents generally as comfortable as the teachers to make use
of the IW, but both used its projected screen as part of mul-
timodal activities rather than using the interactive features.

4.2 Youtube

One of the most-used technologies in the classes observed
was the youtube.com website. (There was some non-
Youtube use of internet video, but to a very much smaller ex-
tent.) Youtube’s breadth of coverage appears to be what sup-
ports its thorough integration into classroom practice: stu-
dents and teachers often searched in Youtube without hav-
ing checked in advance they would find something relevant,
and almost always found a video which satisfied them.

Youtube was used by teachers and by students for many
purposes, including:

• playing a song to support a lesson topic (e.g. to demon-
strate a musical style);

• playing documentaries about musical topics;

• playing examples of live performance;

• playing a track to work out its chords and/or instru-
mentation;

• playing a “with-lyrics” video of a track (showing ani-
mated lyrics), to work out or sing along to the lyrics;

• playing a track to perform along to (playing instru-
ments and/or dancing);

• playing back old TV/radio adverts (to demonstrate the
use of music in them);

• playing background music quietly;

• finding sound effects or soundtrack elements whose
audio could be ripped and used;

• and music sharing (playing liked music to others).

There was a strong overlap between teachers’ and students’
initiation of Youtube for these uses, and a strong overlap in
whether the projected screen or a student’s individual screen
was used for playback.

Contrary to the suggestions made by Webb [9], Youtube
usage was generally not oriented around carefully-planned
and -structured video-based activities, but as a resource ca-
sually integrated into many multimodal activities. A re-
source treated in the same way was Wikipedia, a source
commonly turned to for factual and textual information (as
well as web searches more generally). Wikipedia shares
with Youtube the features of having a very broad coverage
and text search, allowing teachers and students to use it at
short notice without having to consider in advance whether
material will be found.

4.3 Singing

Singing is used within music lessons, sometimes as the main
focus of an activity, sometimes briefly to convey a melody
or musical idea. However, the use of singing as a medium
is not always straightforward: singing in UK culture can
be susceptible to embarrassment and concern with being
“out of tune”, with specific inhibition at secondary school
age [5]. In the following excerpt, in which students were
playing/singing along to Coldplay’s “Clocks” on a with-
lyrics Youtube video, we see how a reluctance to sing can
affect the progress of a task which requires it:

On the screen, Amy had been searching the web and nav-
igated to a webpage showing the lyrics to “Clocks”. The
Youtube video was still playing (in a background window or
tab) but then it ended.

Jo to Amy/Donna: Are you guys ready to sing?
Donna: [Pause.] No.
Amy: We need Andrew.
Jo: I’ll play it and you sing, we need to practice
it.

Jo played the chords, but Amy/Donna seemed unwilling to
sing. Corinne (the teacher) came back in.

Corinne: Right has the music finished?
Amy: Yes
Corinne: Right let’s have a run-through. Toby
start with the bass.
Toby: Me?

After a pause, Toby started with the bass. Jo joined in on guitar.
Then Amy/Donna sang but very quietly.

Corinne: Right stop. Can you guys hear them
singing?
Jo: No
Toby [loudly]: No!

Corinne negotiated with Amy and Donna to try and encourage
them to sing more loudly. Amy protested that “when I sing
loud it goes out of tune”. Corinne got the group to do another
playthrough, but Amy and Donna started singing then stopped,
saying they didn’t know where they were in the words.
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Beyond the end of this excerpt, the two students offered
further reasons not to sing. The multiplicity of reasons given,
whether or not they were the main motivations for reluc-
tance to sing, suggest that singing can in some contexts in-
duce confidence issues which instrument-playing generally
does not.

However singing is not always so inhibited. In some
lessons, students would spontaneously sing together for fun
(not connected with a class task). Sometimes the teacher
would co-opt this for a learning purpose, while sometimes
it would continue separately from the class task.

4.4 Exploration

A theme that cuts across all modalities is that of student ex-
ploration. Most classroom activities are unbounded, with
students engaged in exploratory and/or creative tasks. This
is in part connected to the teaching strategies currently in
use; here we are concerned with the implications for tech-
nology design.

The casual use of various modalities and resources is
part of this tendency towards exploration. For example, the
search and browsing features of Youtube, Wikipedia and
web search were often used to explore available informa-
tion, beyond the basic satisfaction of a single search objec-
tive. Exploration was also how students engaged with mu-
sical instruments, trying out new possibilities (such as the
various sounds available on a MIDI keyboard, or what hap-
pens when you shout into a saxophone).

It is worth noting that the authorised/unauthorised sta-
tus of much student activity is ambiguous, in part because
of this exploratory mode. Students’ actions evolve quickly
in interaction with many things around them (socially and
physically), and even if one particular action is authorised/-
unauthorised by a teacher’s intervention, the students’ ac-
tivity very quickly moves beyond that specific action. Even
actions which start out as specifically non-curricular (social
or undirected) may be co-opted by the teacher.

It is evident that technologies which support broad ex-
ploratory activity are more likely to be generally useful, and
that the authorised/unauthorised status of activities can only
be determined in the particular context in negotiation be-
tween teacher and students. There were occasions when
exploratory activity caused problems for teachers – such
as when students spent more time formatting their Power-
point presentation than researching musical concepts for it
– but teachers often encourage exploratory activity as part
of lessons.

4.5 Music sharing

Music sharing has been discussed in the literature most often
in terms of social music sharing (e.g. [3]), but of course mu-
sic lessons are a context in which people share well-known

and unfamiliar music with each other. For this reason, and
also because we observed non-curricular instances of mu-
sic sharing in the classroom context, the various modes and
meanings of music sharing in music education emerged as a
recurrent theme in our analysis.

In the age of the Internet, developments in the music in-
dustry have led to the idea of “music sharing” becoming as-
sociated with digital circulation of music recordings. In our
study, students did occasionally share music with each other
or with teachers by sending files electronically, but more
often they might share their earphones to share what they
are listening to, or sing a melody out loud, or tell someone
how to search for a particular artist online. We observed
many instances of music sharing, with the most common
modes being sharing headphones/earphones, playing tracks
out loud, and singing. As noted in the previous discussion, it
is often unclear whether specific instances of music sharing
are authorised or unauthorised in a particular music lesson,
and there can be conversion between the two: teachers often
make use of music that students like, to enhance engagement
and to connect musical concepts to familiar music.

In our observations, the vast majority of students had mo-
bile phones/MP3 players and earphones with them, so mu-
sic sharing by sharing earphones could and did happen quite
often. Although we were studying the music lesson context
and not the students’ lives more generally, the casual avail-
ability of speakers, earphones and singing seemed to make
them the preferred form of music sharing, rather than digital
means. Compare this with Laplante’s study [6] which em-
phasises the importance of young people’s social networks
(both strong and weak ties) in music discovery, though La-
plante does not directly explore which modalities are used
separating out different possible modes of music sharing.

5. DISCUSSION

5.1 Genre and labels

Genre has been the subject of debate in the MIR community,
from foundational genre classification experiments [8] to
more recent discussions problematising the “record-shop”
model of genre and moving towards more multi-facteted ap-
proaches such as social tagging [1] – or towards the aban-
donment of genre labels in favour of music similarity met-
rics. The outcomes from this study suggest that the aban-
donment of genre-type labels would be a mistake, as such la-
bels function as useful landmarks in the negotiation of both
familiar and unfamiliar musics. The comparison against
rhythm talk is illustrative: the lack of stable labels for rhythms
can make discussion unwieldy. (MIR tools to help under-
stand rhythm might help address this, and/or perhaps the
use of specific rhythm labels in teaching.)

In this respect the work of Craft [2] accords well with
our observations. Craft argues that genre is not an inherent
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attribute of a track, but a label that emerges from a person’s
interaction with it and with their context: “meanings of mu-
sic, such as the categories into which an individual puts mu-
sic, are emergent qualities of the music when given social
contextualization, rather than merely objective attributes of
it” (p. 167). Further, he argues that a situated approach to
genre is nevertheless amenable to analysis by MIR tools.
Our research supports this position and suggests that such
an approach would be more likely to make such analyses
useful to real-world contexts such as school music lessons.

5.2 Designing for multimodality and exploration

Our study found that teachers and students predominantly
engaged in highly multimodal activities during music lessons.
Teachers and students use a variety of technologies casu-
ally, often in parallel/combination and without prior plan-
ning. Also, most student activity is exploratory in nature,
due to both the tasks set by teachers and the students’ inter-
actions with their environment. Technologies designed for
the classroom must fit with these modes of use: they must be
amenable to use in combination with other resources/tech-
nologies, at short notice, and ideally facilitate exploration
across a wide range of potential topics. They should not be
designed as if they will be the focus of uninterrupted atten-
tion for long periods, but function as part of the rich class-
room environment, often lying latent until needed.

Discussion of technology and education often focuses on
the high-tech, but the combination of high- and low-tech
must be remembered. Physical musical instruments are of
course used in music lessons for various purposes, but also
singing, mime and posters are called upon as part of negoti-
ating musical ideas. On one specific topic, we note the issue
of students’ potential anxiety when asked to sing, at least in
the UK context, while singing is an activity that music teach-
ers often want to encourage and develop. Any MIR system
that worked with the singing modality (such as query-by-
singing/humming, singing transcription) would need to be
designed with sensitivity to such issues.

Returning to the idea of open-ended exploration, it may
be a challenge to build a system with a breadth of coverage
on the order of that of Youtube or Wikipedia. One solution
might be to piggyback on larger systems such as Youtube
(for example, offfering an MIR analysis of Youtube videos
on demand). Alternatively, linked data and the semantic web
offer the potential to connect up with myriad large music-
related resources, so might provide the infrastructure for a
useful resource.
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ABSTRACT

Without a rich understanding of user behaviours and needs,
music information retrieval (MIR) systems might not be ide-
ally suited to their potential users. In this study, we fol-
lowed an ethnographic methodology to elicit some of the
strategies used by musicologists to explore and document
musical performances, in order to investigate if and how
technologies could enhance such a process. Observations
of musicologists studying historical recordings of classical
music were conducted at the British Library. The observa-
tions show that the musicologists alternate between a closed
listening practice, relying exclusively on aural observations,
and a multimodal listening practice, where they interact with
various music representations and information sources us-
ing different media (e.g. metadata about the recordings and
performers, sound visualisations, scores, lyrics and perfor-
mance videos). The spoken parts of broadcast recordings
brought historical/extra-musical clues helping to understand
music performance practices. Sound visualisation and com-
putational methods fostered the analysis of specific musi-
cal expression patterns. We suggest that software designed
for musicologists should facilitate switching between closed
and multimodal listening modes, interaction with scores and
lyrics, and analysis and annotation of speech and music per-
formance using content-based MIR techniques.

1. INTRODUCTION

The interdisciplinary research area of music information re-
trieval (MIR) has developed from two needs: managing in-
creasing collections of music material in digital form, and
solving fundamental problems related to music analysis and
perception [1]. Over the past decade, a wide variety of
MIR techniques and tools have been developed using var-
ious types of music representations (audio, symbolic, vi-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

sual and metadata). However, as Cunningham [2] points
out, they have often been designed based on anecdotal evi-
dence, intuitive feelings, or a priori assumptions of user be-
haviours and needs. Without a rich understanding of the
latter, systems designed using MIR research might not be
ideally suited to their potential users. Bridging the gap be-
tween the research laboratory and real-world situations is
one of the goals of this study. This requires working with
specific user groups in order to better understand their activ-
ity and how they interact with technologies.

We focused on eliciting some of the strategies used by
musicologists to explore musical documents, and the inter-
actions with music-related technologies during this process.
Bonardi [3] proposed interesting solutions to improve musi-
cologists’ workstations using MIR technologies by examin-
ing their needs when analysing the contemporary catalogue
at IRCAM’s digital library. He stated that the workstations
should allow various representations of music (e.g. graphi-
cal, sound, and symbolic), listening to recordings while con-
sulting different musical documents (‘active’ listening), and
reading (e.g. the score) and writing using the same media.

In this study, we sought to obtain evidence to test the
validity of such statements, and whether they would be rel-
evant in a different context (setting, different types of mu-
sicological studies, and musical repertoires). We conducted
an ethnographic study based on the observation of musicol-
ogists working with classical music recordings at the British
Library in London. The ethnographic method is a qualita-
tive approach by which findings are not inferred from sta-
tistical tests but from the detailed analysis of the behaviours
and actions of the participants across a large number of field
observations. The outcomes of our research are twofold:
they give insights on how to adapt or improve existing digi-
tal music technologies to fit user needs better (e.g. MIR tech-
niques, software features, user interface design), and they
can raise ideas for the development of new systems.

The remainder of the paper is structured as follows. Sec-
tion 2 presents the setting and methods of the ethnographic
study. Sections 3, 4, and 5 are devoted to thematic analy-
ses based on the observations. We discuss the findings in
Section 6 and give a conclusion in Section 7.
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2. SETTING AND METHODS

Via the Edison Fellowship scheme, the British Library (BL)
encourages musicological studies devoted to the history of
recordings of classical music and music in performance, by
creating the conditions for concentrated use of the Library’s
recordings collection to scholars selected on a yearly ba-
sis. The BL’s sound archive counts more than 3.5 million
published and unpublished recordings of sounds and mu-
sic including many unique historic items. In an era where
the Library develops the access and analysis of digitised
recordings, and given the close link between MIR and li-
brary science (e.g. representation, classification, metadata),
the BL is a good setting for investigating the possible roles
of music-related technologies in musicological research. We
contacted four Edison Fellows with the collaboration of the
BL’s music department staff, and obtained their consent to
participate in the study. The names used in the fieldnotes
presented throughout the article are pseudonyms. The group
was formed of two British and two American males (average
age 38). Their professional activities included research and
teaching positions (PhD in musicology, lecturer in music,
singing teacher), as well as performance (pianist, singer).
Two of them had received training in science and technol-
ogy. The musical repertoires they studied were varied: early
music (e.g. medieval dance, vocal and consort music), clas-
sical and romantic music (e.g. art songs, operas, piano solo
pieces), and contemporary music (electronic music).

We chose an ethnographic methodology primarily based
on participant observation [4]. One of the advantages of ob-
serving the actions of participants performed in a concrete
setting is that it gives access to what people do and how
(behaviours) rather than what people say (attitudes), the lat-
ter being obtained with other qualitative methods such as
survey, questionnaire, or interviews. Furthermore, staying
for a relatively long period of time in the environment of
the group studied fosters the collection of rich details which
would otherwise demand a high degree of self-awareness
and a great power of recall for people to report out of the
context of the activity. To achieve this level of detail, it is
necessary to focus on a small number of participants. This
tradeoff of quantity for quality is common in disciplines re-
lying on qualitative methods (e.g. psychology) [4, 5].

The observations were made by focusing (i) on the pro-
cesses underlying musicological research, and (ii) on the re-
lationships with music-related technologies and their roles
during such processes. The observations took place in the
music department of the BL where the Fellows had a re-
served desk space at their disposal. They were conducted by
one ethnographer during repeated visits (twice a week, on
average) over a period of three months. The observational
data were collected by taking fieldnotes using a notebook
and pen. Due to the regulations of the British Library and
in order to minimize disturbance to the staff, video/audio
recordings were not used. Ancillary sources of information

were also used in addition to the observations. Ethnographic
interviews [4] occurred during the research in the field in or-
der to shed light on specific tasks and to have a deeper under-
standing of the scope of the studies of the participant. Some
of the participants’ own working notes were also employed,
with their consent. The collected data were analysed using
the approach proposed in [6], which draws from methods
developed by sociologists following the grounded theory:
coding of the fieldnotes (identifying and naming specific an-
alytic dimensions and categories), and analysis by themes
which reflect recurrent or underlying patterns of activity.

3. USE OF RECORDINGS

3.1 Retrieval and metadata

Metadata were used to facilitate the retrieval of recordings in
the BL’s catalogue (by using details such as the record num-
ber, the label, or the conductor’s name). Additional meta-
data were fetched during the listening process (see Subsec-
tion 4.2), using various sources of information: the knowl-
edge of the Library’s curators, the web, the recordings’ car-
riers, liner notes, or accompanying manuscript documents
(e.g. a paper card system that an original collector had kept).

3.2 Format and playback technologies

The recordings already digitized were immediately accessi-
ble through the British Library Sound Server as MP3 files.
When the recordings were unique or held on fragile for-
mats (e.g. reel to reel tapes), the Fellows were provided with
analog copies of the recordings or digitized versions on au-
dio CDs, or less commonly, VHS tapes (PCM). The ana-
log formats included reel to reel tapes, compact audio cas-
sette (K7), as well as long-playing (LP) and 78 rpm discs.
The recordings held on a physical support were played us-
ing dedicated playback equipment connected to an ampli-
fier. The MP3 files from the Sound Server were played from
the desktop computer using Windows Media Player Clas-
sic. In some cases, they also listened to and analysed owned
commercial recordings with their laptops using iTunes to
play recordings, and Sonic Visualiser 1 as a player and anal-
ysis tool (see Subsection 4.2). For some of the Fellows, the
format was not an issue since they were interested in the
content of the recordings and not the carrier itself. In that
case, they were not bothered by use of MP3 files rather than
uncompressed digital or original analog recordings. On the
contrary, digital recordings were preferred because the navi-
gation in recordings was made easier and quicker. However,
others preferred to deal with recordings in their original for-
mat (“There is more context when you have the original, the
labels, how it was held for instance. With most MP3s you
do lose something. I do wonder whether sometimes you’re
losing the core product.”).

1 http://www.sonicvisualiser.org/
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4. LISTENING AND OBSERVING

4.1 Listening practices

The listening process lay at the center of the study of the
recordings. The musicologists commonly alternated two
distinct but complementary practices of listening. In the
first listening practice, the analysis of the recordings was
performed exclusively through aural observations. The sec-
ond listening practice was multimodal and characterised by
an interactivity with musical, textual or visual documents
enriching or modifying the aural observations.

4.1.1 Closed listening

Closed listening was characterised by a careful and focused
listening to the recording without using any other source of
information than that provided by the sound: William put
his headphones on to listen to Telemann’s Concerto in F for
3 recorders, 2 oboes, 2 violins, and continuo, performed by
the Early Music Consort. After starting the recording in the
CD player, he sat back in his chair, closed his eyes, and lis-
tened carefully to the music. A moment later, I noticed that
he was tapping the beat with his foot. This example shows
how the aural experience became a physical one (tapping the
beat with the foot) while retrieving information about the
timing of the musical piece (tempo). In the closed listening
mode, the musicologists drew aural observations involving
perceptual and cognitive aspects (a recollection of the score,
for instance). Either in parallel or shortly after the listening
process, they wrote down their aural observations by hand
or using a text editor. Typed notes had the advantage that
they could be queried quickly by using keywords such as
the name of a composer.

4.1.2 Multimodal listening

A different practice was characterised by the use of vari-
ous music-related documents (e.g. the biography of a com-
poser, information on the recording) and music represen-
tations (e.g. scores, feature visualisations) while listening.
This listening practice can be described as an active pro-
cess [3], since it does not just consist of receiving musical
information, but is on the contrary based on a set of mul-
timodal interactions between the listeners and musical doc-
uments. The advantages of using multiple modalities were
an increased access to meaning, uncovering the context of
a recording and the intentions of composers, conductors, or
performers, and better understanding of the perception of
the music. Multimodal listening was performed by varying
the media and technologies used to document the musical
recordings.

4.2 Documenting the music recordings

4.2.1 Contextual information

In the multimodal listening practice, the musicologists com-
monly used web resources to seek several types of informa-
tion related to the recordings: contextual (finding metadata
about a musical piece, for instance), bibliographic (music
artists’ websites, Wikipedia), as well as visual and icono-
graphic (YouTube videos were sometimes used to uncover
visual aspects of performance, Google Images was used to
provide pictures of specific musicians). Such resources were
also used without listening to the recordings.

4.2.2 Scores and lyrics

The online music sheet database from the International Mu-
sic Score Library Project 2 was often used to retrieve public
domain editions of scores, which are provided as scanned
images in PDF format. Some of the musicologists read the
score using a printed copy, while others used the electronic
format and followed the music with the mouse while listen-
ing. When they were available, scores were used both in
order to retrieve general information such as the key of a
piece, and more detailed information through a close analy-
sis of the notes and expressive notation. Singing while read-
ing the score was sometimes used to find the scale used by
the composer (e.g. Lydian mode). Scores acted as a refer-
ence against which to test whether the intentions of the com-
poser were respected by performers, as the following notes
show: “Seems really consistent with markings in the score.
Beautifully sung - singing the note values and generally the
dynamics written by Samuel Coleridge-Taylor.”, “Is much
freer with the interpretation of the score. Interpolates a high
note at the end and changes the melodic line at the end of
the song.” In the case of vocal music compositions, reading
the lyrics while listening also helped to follow the musical
structure and to understand the expression, as shown in this
note describing the timbre of the performer’s tones by ref-
erence to the lyrics rather than the pitch: “quite shrill and
shaky on ‘A wind comes and let me be’, and more mellow
on ‘said it slow’.”

4.2.3 Sound visualisation, acoustical analyses, and
time-stretching

Musicologists with previous background in music technolo-
gies (coming either from their education, personal training,
or from collaboration with computer scientists) also used
software (Sonic Visualiser) to analyse and visualise music
recordings. The visualisation of the waveform was help-
ful to navigate digital recordings by jumping between sec-
tions that have different dynamics (e.g. between a spoken
part and the start of an orchestral part, for instance). Spec-
trogram representations were used to analyse the subtleties
of expressive effect such as the vibrato: “If I’m looking at

2 http://www.imslp.org/
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a waveform [the one from a tone’s partial] and I can see
there is vibrato in the note, I hear it much better”. Such
acoustical analyses helped to understand the perceptual ef-
fects experienced when listening: “The spectrogram shows
you that the real skill to her [Emma Kirkby’s] vibrato use
is that the note starts with very very minimal vibrato. So
your mind is fed a very accurate pitch, before the pitch is
then decorated by vibrato. So that’s why you hear it as such
a pure voice, because she’s already told you the informa-
tion about exactly what the note is before it vibrates, so your
brain somehow keeps on that central tuning issue during the
vibration [...] Whereas singers that immediately start with
vibrato, you can never really tell what they’re singing.”

Acoustical measurements were performed from the spec-
trogram representations (a measure tool is provided in Sonic
Visualiser) in order to characterise the properties of vibrato
(frequency, and pitch extent). These measurements were
conducted in a systematic way for various performers by
comparing long sustained notes. The resulting quantitative
data gave clues to understand or nuance aural observations
made on vibrato by other musicologists: “The minimal vi-
brato sounds that Munrow listed [...] were all faster and
shallower than the other examples of vibrato. When this is
combined with Munrow’s own explicit disapproval of con-
stant vibrato, we begin to understand that he is suggesting a
preference for ‘controlled’ vibrato”.

The time-stretching technique provided by Sonic Visu-
aliser which preserves the original pitch and timbre was also
used to produce slowed-down versions of notes or musical
passages. These slowed-down excerpts were played while
visualising scrolling spectrogram representations giving the
time to the ear and the eye to uncover fine details: “I knew
something was up through listening but I couldn’t tell what
was up, and then when I visualised ... when I slowed down,
more of it made sense, I realised the vibrato was not consis-
tent, but I couldn’t work out that it started without vibrato
without the spectrogram”. Spectrogram analyses and time-
stretching were also used to validate intuitions obtained with
aural observations to explain the technique and expression
of a pianist. By looking at the alignment of the notes on the
spectrogram while listening to a slowed-down passage, sub-
tle differences of timing between chord notes played by the
left and the right hands were noticed.

5. MUSICAL FEATURES

5.1 Instrumentation and tuning

Details about the instrumentation were retrieved in several
ways: from the recordings’ metadata, from the announcer
in the case of broadcast music programmes, or by ear when
listening to a musical piece. The choice of instrumentation
was an important aspect in the study of historically informed
performances of early music (e.g. choice of epoch instru-
ments rather than modern ones), especially since early mu-

sic scores do not indicate instruments. The recognition of
modern versus epoch instruments in musical performances
was not a trivial process to perform aurally (“I’m assuming
these are modern instruments, 440 etc.”). Similarly, iso-
lating a specific instrument amongst an ensemble (e.g. the
violin in a string ensemble: “‘Quan je voy le duc’ - most at-
tractive instrumental piece of collection but horrid scratchy
string playing, fiddle?”), or retrieving the number of musi-
cians playing a part in a specific register (“Two sopranos?”)
were not easy tasks. The tuning of the instruments was also
used to judge musical interpretations (e.g. “Lamento della
Nymfa particularly telling with too many harpsichords I feel
- each one slightly out of tune.”, “Tuning of violins not great
in second track”).

5.2 Musical expression

Various musical features correlated to musical expression
were recurrently analysed, including: dynamics (e.g. “Deller
using great sweeping phrases with many dynamic nuances.”),
timing (e.g. tapping the beat while listening to increase the
sensation of the tempo, measuring the duration of a perfor-
mance, detailed analyses of pianists’ hand asynchronies us-
ing spectrograms), timbre (e.g. “When she sings softer, she
doesn’t have the same quality. The notes sound mellower.”),
pitch (e.g. “The King’s Singers’ style hasn’t changed much
but alto sound is flat!”), vocal style (e.g. “Overabundance
of rolled ‘R’s - stylistically ok, but a bit obtrusive in an oth-
erwise beautiful rendition.”), vibrato (e.g. “Deller consort
still has a lot of vibrato in tenor(s) but very good ensem-
ble singing.”), and phrasing (e.g. “Reminiscent of baroque
phrasing rather than renaissance.”).

Musical expression was analysed either by considering
a specific performer (e.g. the singer Deller), or by consid-
ering an ensemble (e.g. the King’s Singers, the tenors), by
focusing on the notes, or on phrases, the latter showing the
use of different time scales in the analyses. Some features
were more difficult to describe solely based on aural obser-
vations than others. If dynamics variations seemed to be
easily perceived, some variations of pitch and timbre were
more difficult to detect confidently (e.g. “Not sure it stays
in tune too well, sinking over the whole perf, less than a
semi.”, “May be because of the choice of quality for notes
of the same pitch on two different pieces, the voice doesn’t
sound the same: it doesn’t sound as shrill as it did on the G.
May be due to the key D[.”). Often the expertise of the musi-
cologists as performers was employed to find causal expla-
nations of sound effects based on instrumental techniques:
singers were able to associate vocal timbre variations with
the vocal technique used to produce them (“Deller seems
to use chest voice for the second, lower, ‘Zion’.”), pianists
were able to detect timing effects between notes by focusing
on the hand technique (hand asynchrony in chords) charac-
teristic of the style of the performer. Musical expression was
also described in a critical way by using aesthetic judgments
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(“Soprano sound is rather lovely it must be said”, “‘des-
olata’ is quite seasick”, “I love the bottom of her voice”,
“Beautiful - very clear rendition”, “Very rousing and exhil-
arating rendition by Webster Booth”).

6. DISCUSSION

6.1 Visualisation and computational analysis enrich the
empirical evidence

Even though, as educated and expert listeners, musicolo-
gists were able to perceive extremely fine details, visuali-
sation and computational analysis conveyed empirical ev-
idence which helped them to confirm and prove aural ob-
servations (“The tools on one hand, I don’t need them, I
could describe that, on the other hand I can’t prove it. This
tool [Sonic Visualiser] is allowing me to express that in
some way it [the finding] is objective.”). As put forward by
Cook [7], computational methods bring the potential for mu-
sicology to be pursued as a more data-rich discipline. The
observations reported in Subsection 4.2.3 show the utility
of multiple sources of information to analyse music perfor-
mance practices. Visualisations and quantitative data re-
trieved through signal measurements were helpful in dis-
cussing, interpreting, or proving hypotheses about qualita-
tive data collected through aural observations. Furthermore,
these analyses enabled systematic comparison of the mu-
sical expression of various performers in different musical
pieces (e.g. measurement of the rate and extent of the vi-
brato on long sustained notes based on spectrogram analy-
ses) and led to explanations of expressive techniques which
could not be reached through aural observations alone (“You
can only hear the pitch aspect of the vibrato as an educated
listener with no software or technology.”).

6.2 Cross-modal effects exist between auditory and
visual feedback

Many of the examples given in Subsection 4.2.3 also show
that the visualisation and listening processes (either at the
original speed or using slowed playback) affect each other.
For example, the spectrogram helps to hear vibrato much
better, the slowed playback of a tone helps to uncover that
the vibrato is not constant, while the spectrogram aids in
understanding that the variation comes from the fact that the
note starts without vibrato. Hence, new empirical evidence
emerges from the cross-modal effects between auditory and
visual feedback. Visualisation was described by one of the
Fellows as a “learning process” (“Now I’ve seen the spec-
trogram, I can only hear it [the vibrato], it’s there now ...
in my understanding.”). However, cross-modal effects be-
tween auditory and visual feedback also raise a paradox: if
visualisation brings to the aural experience an “increased
emphasis on what you can see”, it concomitantly “deem-
phasises what you can’t see”. Therefore the ear may dis-

card relevant aspects when the eye focuses on a spectrogram
representation while listening. After performing analyses
based on spectrograms, one Fellow noted “I completely for-
got about the bassoon, it feels like it is unimportant now,
but I was once struck by it.”. For this reason, being able to
listen to a musical piece at first without visuals was deemed
to be important, otherwise visualisation may “irreversibly
edit stuff out of your brain that you can’t see”. The design-
ers and users of music feature visualisation software need to
be aware of cross-modal interactions which might affect the
objectivity of their observations [8].

6.3 Software for musicologists should support closed
and multimodal listening practices

We suggest that software designed for assisting musicolo-
gists in their analyses of recordings should be in line with
their listening practices by supporting both closed and mul-
timodal listening. Due to the cross-modal effects mentioned
in the previous section, it would be helpful for the user in-
terface first to provide a closed listening mode without visu-
als, and then offer the possibility of switching to a more ad-
vanced listening mode offering multimodal feedback. The
multimodal mode should link the music documents and rep-
resentations using aural, visual, textual, and symbolic in-
formation (see Subsection 4.2). Different software or user
interfaces may be needed to handle primary (e.g. scores and
sound visualisations) and secondary (e.g. music biographies)
information sources.

One way of providing textual and visual information re-
lated to a recording (e.g. metadata, pictures) is via semantic
web technologies. Linked data offer promising ways to fa-
cilitate the retrieval of metadata describing the recordings
(date, album art covers, etc.) and the musicians (biogra-
phies, photos, etc.). In addition to visualisations of acoustic
parameters (see Subsections 4.2.3 and 6.1), the visualisation
of scores and/or lyrics within the software would facilitate
the analysis of music recordings. Semantic web technolo-
gies may also provide ways to retrieve scores from online
databases directly from the audio player. Scores could then
be used as a reference to compute the performers’ expres-
sive deviations using content-based MIR techniques. The
visualisation of expressive deviations could help musicolo-
gists to determine the extent to which expressive markings
in the score are followed in the performance (see the note
mentioned earlier: “Seems really consistent with markings
in the score.”), and to characterise the artistic intentions of
the conductor and/or performers.

Based on the observations reported in Subsection 4.2,
the alignment of scores, lyrics or other time-based meta-
data to audio recordings could also aid performance prac-
tice analysis, by facilitating multimodal listening and pro-
viding better navigation of audio documents. For annota-
tion of recordings, the inclusion of text editing function-
ality into analysis and playback software would be a wel-
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come feature, since musicologists generally write down ob-
servations while listening. This could indeed be a means to
connect notes up with the actual point-in-time of the mu-
sic which would ease further proof-reading or enrichment
of the notes. Controlling the audio playback, with either the
keyboard or with a transcription foot pedal, would facilitate
tasks such as the transcription of interviews from broadcast
recordings including speech and music, and avoid the con-
stant switches between various computer software or differ-
ent devices which are time-consuming (“It’s so irritating
transcribing from a computer file because you’re also try-
ing to write on the same computer, so you have to keep go-
ing into that program to move the recording back a bit, go
back to the word program to type up that sentence more ac-
curately. So [...] if it’s my file on my iPod, I can start and
stop using a different device than the computer, or here I’m
using the CD player.”).

6.4 Can content-based MIR aid musicological study?

Several areas of content-based MIR are relevant for musico-
logical purposes. For instance, automatic speech/music seg-
mentation would help the navigation between spoken and
music parts of documentaries and other broadcast material.
Speech recognition software would also be of considerable
help to automatically transcribe interviews, enabling search
of the non-music audio segments for conversations about
specific topics or musicians. Regarding the analysis of per-
formance practices, automatic source separation techniques
could facilitate separate analysis of the musical expression
of different performers or groups of performers (see Sec-
tion 5.2). Variations of timbre are more difficult to qualify
aurally than other variations such as in timing. Therefore
MIR techniques improving timbre characterisation (e.g. at
the note level) and identification of instrumentation or per-
formers could help answer questions like: “Is that Janita
using some vibrato in the solos?”

7. CONCLUSION

In this paper, we presented and analysed ethnographic ob-
servations of musicologists studying classical music record-
ings. The observed patterns revealed the importance of: (i)
the alternation of closed and multimodal listening modes;
(ii) the use of visualisation and computational methods to
provide empirical evidence about listeners’ impressions; (iii)
scores and lyrics acting as a reference in performance analy-
sis; and (iv) web sites and speech recordings supplying his-
torical and extra-musical information.

These findings give clues regarding how to improve soft-
ware designed for musicologists. Such software should both
support closed and multimodal listening, minimising dis-
tractions and allowing the user to decide on the display of
any feature visualisations during listening. The features of

interest for computer-assisted musicology are those charac-
terising artistic choices such as performers’ expressive in-
tentions (e.g. tuning, temperament, timing, pitch, timbre,
dynamics, articulation and vibrato), most usefully displayed
in conjunction with scores and lyrics. Content-based meta-
data sonification should be handled to facilitate the interpre-
tation of the features (e.g. pitch). Interfaces managing the
retrieval of contextual information (e.g. metadata, biogra-
phies, articles, pictures) during multimodal listening would
benefit the historical approach to musicology. Linked data
offers a promising way to connect such extra-musical in-
formation with the recordings by exploiting web resources
such as the open music encyclopedia MusicBrainz 3 .
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ABSTRACT

Hundreds of thousands of music scores are being digitized
by libraries all over the world. In contrast to books, they
generally remain inaccessible for content-based retrieval and
algorithmic analysis. There is no analogue to Google Books
for music scores, and there exist no large corpora of sym-
bolic music data that would empower musicology in the
way large text corpora are empowering computational lin-
guistics, sociology, history, and other humanities that have
printed word as their major source of evidence about their
research subjects. We want to help change that. In this pa-
per we present the first result of our work in this direction
- the Music Ngram Viewer and search engine, an analog of
Google Books Ngram Viewer and Google Books search for
music scores.

1. INTRODUCTION

This project seeks to do for music scores what Google Books
Search does for books. We are aiming at indexing all scanned
music scores and making their content available for query-
ing and algorithmic analysis. We would like to help build
up the foundation needed for computational musicology re-
search by assembling a large corpus of symbolic music data.

We have developed a search engine and processing pipeline
for scores from the Petrucci Music Library (IMSLP,
http://imslp.org), the largest music score library on the Inter-
net. Our system takes the scores in PDF format, runs optical
music recognition (OMR) software over them, indexes the
data and makes them accessible for querying and data min-
ing. The search engine is built upon Hadoop and HBase and
runs on a cluster. Our system has already recognized more
than 250 million notes from about 650 thousand sheets, or
45 thousand scores.

We chose the Petrucci library as our first data source be-
cause of the low entry barrier: both the scores and their
scans at the IMSLP are free from copyright, and so we were
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free to use them without asking for permission. Therefore at
the beginning of the development it was the easiest collec-
tion to work with. But the Petrucci Library contains only a
small part of all scores digitized by the libraries worldwide.
We would like to help libraries not only make their score
collections searchable, but also to present them in novel
ways. In this paper we present one such interface - the Mu-
sic Ngram Viewer and search engine.

The paper is structured as follows. First, we provide a
short review the related work in the areas of symbolic mu-
sic corpora and music search engines. Then we introduce
our search engine and analysis platform, describe its archi-
tecture and talk about the data collected so far. The next
section presents the application built on top of the platform,
the Music Ngram Viewer and search engine. We provide
some statistics collected during the first three months after
the public launch of the Ngram Viewer. This section is fol-
lowed by a short conclusion.

2. RELATED WORK

2.1 Music data collections

Existing corpora of symbolic music data vary in size and
quality. Probably the largest collection is the Kunst der
Fuge collection with about 18,000 MIDI files (mostly piano
works or reductions) contributed by the Internet users. A
comparably large collection can be accessed via the search
engine at Musipedia.com, although the data set is not avail-
able for download or purchase. A collection from the Cen-
ter for Computer Assisted Research in the Humanities at
Stanford University is of excellent quality, containing com-
plete orchestral scores in MusicXML format, but is com-
parably small with 880 manually encoded compositions in
4116 movements. It also provides a search interface for the
collected data, the Themefinder. The online version of Bar-
low and Morgenstern’s Dictionary of Musical Themes con-
tains 9,825 monophonic melodies of a few measures length.

2.2 Search engines and interfaces

Two existing systems are most relevant for our work: the
Musipedia search engine and the Probado project.

Musipedia offers multiple querying interfaces: query by
humming, virtual keyboard, search by rhythm and by typed
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in melody. The database behind Musipedia is assembled
from different MIDI and MusicXML collections. Most mu-
sic is either composed or transcribed for piano, and there are
few orchestral scores in the system.

The Probado project offers a very advanced interface for
simultaneously browsing the scores and the audio record-
ings aligned to them (cf. [2], [3]). The scores have been
recognized using the SharpEye OMR software.

3. SEARCH ENGINE AND ANALYSIS PLATFORM

3.1 System architecture

Our system consists of two major components: the frontend
and the backend.

The backend is responsible for importing, processing and
indexing the scores and the metadata. For importing and
preprocessing the scores we use a cluster of Linux machines.
The workflow relies on Amazon’s Simple Queue Service for
passing tasks between different processing steps.

We have implemented wrappers for various optical music
recognition systems: an open source Java-based Audiveris,
and the proprietary Windows-based and GUI-only Sharp-
Eye, CapellaScan and Smartscore. For the GUI-only OMR
systems we implemented wrapper scripts that allow us to
integrate these systems into the recognition workflow while
running inside the VMWare virtual machines. After evaluat-
ing these OMR systems in our environment we came to the
conclusion that Smartscore currently offers the best recog-
nition rates among the four systems we tested, and so the
majority of the scores in our database are recognized using
Smartscore 10.3.2.

The workflow components responsible for indexing and
metadata processing are running in the Hadoop and HBase
environments [8]. The frontend presenting the processed
data is hosted on Google’s App Engine.

Using HBase for data storage offers the advantage of
built-in redundancy and compression. Currently, the inverse
index of the ngram viewer and the search engine, which
are described in the next section, uses 50 Gigabytes. With-
out compression, this number would be an order of mag-
nitude higher. Another advantage of using Hadoop in the
processing backend is the ability to scale it easily with vari-
ous providers, like Amazon EC2 or supercomputing centers,
which is beneficial for a research project.

Using Google App Engine for the frontend has the ben-
efit of reliability, security and ease of development and de-
ployment. In our setup we use the App Engine also as a
caching layer for the Hadoop backend, where the bulk of
the data is stored.

3.2 Data

Currently the search engine contains the data from the Petrucci
Music Library. The system has already recognized more
than 1,000,000 sheets from more than 65,000 scores. Here
are some occurrence counts of musical symbols recognized
by the system. The database contains 264M notes, 45M
measures, 3.7M keys, 2.8M parts, 630K staves, 52K trill
marks and 23 fffff signs. The following figure contains the
occurrence counts of piano signs:

p 1808243
pp 403366
ppp 20945
pppp 1024
ppppp 10
pppppp 2

Figure 1. Counts of piano signs in the IMSLP scores recog-
nized so far.

4. MUSIC NGRAM VIEWER AND SEARCH
ENGINE

Inspired by the Google Books Ngram Viewer [1], we imple-
mented a similar application for music scores on top of our
platform. We extracted the score metadata provided by the
users of Petrucci Music Library from the web site. For all
scores with available date of composition or at least of first
publication (about two thirds of all scores), for all voices we
extracted all melodies of up to fifteen notes length. Chords
were represented as rising note sequences. Then, for each
year we stored the occurrence counts of melodies that oc-
curred three or more times in scores published or composed
during that year. We published our system at
www.peachnote.com. We also provided the dataset behind
the Ngram Viewer under the Creative Commons Attribution
license. As far as we know, these are the first publicly avail-
able system and dataset of the kind.

4.1 User Input

Users can use virtual piano keyboard implemented in Flash
to enter their queries. In the current version query are se-
quences of pitches. The note duration is not considered.

4.2 Ngram Viewer

Currently the database contains ngrams up to the length 15,
or melodies of up to sixteen notes. If a melody occurs in
some year more than two times, it is stored in the database.
This results in approximately 200 million ngram-year records
in the database.
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Figure 2. Occurrences of the Ode to Joy motif

The above chart shows the occurrences of the Ode to Joy
motif from Beethoven’s Ninth Symphony, encoded differ-
entially (the numbers represent differences between conse-
quent notes) - a 7-gram, ”0 1 2 0 -2 -1 -2”. What the y-axis
shows is this: of all the 7-grams contained in the OMR’ed
scores from IMSLP, the Petrucci Music Library, how many
are identical with the first 8 notes of Ode to Joy up to a patch
shift? Here, you can observe a peak around 1822 - the year
of the Ninth’s composition. Apparently, the score of the
Ninth symphony contains most occurrences of this pattern.
It is interesting to learn what the other peaks are. Our search
engine described in the next section provides an answer to
this question.

The next graph shows the frequency of occurrence of ma-
jor and minor chords:

The following graph shows the emergence of the whole-
tone scale at the turn of the 20th century.

The graph below depicts the number of occurrences of
twelve intervals from the minor second to the octave in our
database, by year:

The gap between 1925 and 2000 is due to scores still
being under copyright protection and hence unavailable on
IMSLP. Modern composers, however, are free to upload
their own compositions, and indeed they do so, as the bump
on the right tells.

The next figure shows the data for the same time frame
and same intervals, but this time it is normalized by the total
number of notes published in a given year and stored in our
database.

The more scores we have for any given year, the more
reliable are the statistics.

4.3 Search Engine

For each ngram which is stored in the Ngram Viewer dataset,
we also provide the information about the scores containing
the given sequence. Using the dynamic ngram chart users
can select the time range and get the list of scores composed
during this time which contain the given note sequence. The
list of compositions is paginated and sorted by the number
of occurrences of the query in the scores. For each score
we provide a list of pages containing the query. In future
releases we will display the score sheets and highlight the
locations of the queried note sequences. Also, for queries
returning less than 10,000 scores we provide users the abil-
ity to filter the search results by text, using corresponding
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tags provided by users of the IMSLP website. This way
users can select pieces of particular genre (for example sym-
phonies or quartets), participating instrument or instrument
group (harp, winds), or composer.

4.4 Usage data

The system has been launched on May 5-th of this year,
when the Petrucci library added the ”Search by Melody”
link on its home page. There has been a short announce-
ment on the IMSLP Journal, but apart from that we have not
promoted the search engine in any way, since we wanted
to test it and improve its quality first. We installed Google
Analytics to gain insights into our users’ behavior. In the
following we present a few data points we collected using
Google Analytics.

In the first three months the system has been used by
more than 50,000 people from over 160 countries. On av-
erage the search engine processed a search query every 5
seconds.

To see how the system has been used by people who are
really interested in the insights it provides and to separate
them from casual users, we looked at the statistics for visits
with duration longer than 20 minutes. There have been 1385
such visits, and the average time on site was 60 minutes,
which gives a total of 1385 hours of intensive research using
the database. We also looked at the number of users who
visited the website often. More than 1500 people used the
system more than 10 times, 426 users visited the site more
than 50 times, and 177 of them visited more than 100 times.

The files from the Ngram dataset have been downloaded
more than 800 times.

5. CONCLUSION

In this paper we have presented a new music score search
engine and analysis platform. The system opens new ways
to explore notated music. The users can easily obtain in-
sights that were hard to come by in the past. We also pro-
vide a large data set that can be used in computational mu-
sicology research. We continue digitizing score collections
and will build additional search indexes that will allow more
precise and musically meaningful queries.
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ABSTRACT

NEUMA is an on-line library that stores collections of sym-
bolic scores and proposes a public interface to search for
melodic pieces based on several kinds of patterns: pitches-
based, with or without rhythms, transposed or not. In addi-
tion, searches can be either exact or approximate. We de-
scribe an index structure apt at supporting all these searches
in a consistent setting. Its distinctive feature is an encod-
ing of the various information that might be involved in the
pattern-matching process with algebraic signatures. The
properties of these signatures are suitable to represent in a
compact and expressive way the sequences of complex fea-
tures that constitute a melodic description.

1. INTRODUCTION

Context and motivation. NEUMA is a Digital Score Li-
brary devoted to the publication of digital music scores. Putting
this material on-line offers an opportunity for web-based
sharing of musical scores archives, including collaborative
production, annotation, and large-scale corpus analysis. In
the present paper, we focus on the functionalities that per-
mit to undertake large-scale studies of melodic, harmonic
or stylistic material. One of the musical investigations cur-
rently conducted by our fellow musicologists working with
NEUMA considers a melodic répertoire in a given cultural
area, and studies how this répertoire is exchanged and bor-
rowed throughout various styles, periods and composers.
Using efficient tools to retrieve and compare similar melodies
leverages the scope of investigations that can be conducted
for such a study. To this end, NEUMA provides a set of
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functions that support the analysis process. The pattern-
matching function takes a pattern P and carries out a search
over the score collections, looking for all the melodic frag-
ments that “match” P . The function can be parameterized
by combining one of the following options: Exact search,
which can itself be refined as Transposed/non transposed
and/or With/without rhythm, and Approximate search, which
compares P to melodic fragments considered in their full
dimensions (pitch, rhythm) and applies a similarity func-
tion. The user is free to choose an appropriate combination
of these choices (called an interpretation in the following),
and this yields a quite appreciated flexibility to the system.
This flexibility has a cost, though, since the system must be
ready to face several possible pattern interpretations.

Indexing the pattern-matching retrieval process. As our
collections grow, the need for an indexing mechanism able
to directly access the scores of interest for a given pattern
became prominent. Building an index for each possible in-
terpretation would have been cumbersome due to the major
redundancy of information in the associated descriptors. We
rather chose to design a specialized index, able to satisfy
several interpretations. This design, and the experiments
that validate the resulting structure, constitute the purpose
of the present paper.

In short, the principles of our index, called Melodic Sig-
nature Index (MSI), can be summarized as follows: (i) its
kernel structure is that of a traditional hash file, with an in-
memory directory that refers to a list of on-disk buckets; (ii)
each entry e in the directory corresponds to the hash value
he of some fixed-size melodic fragments, called n-grams,
present in at least one score of the collections; the associ-
ated bucket actually contains the list of all the n-gram occur-
rences that hash to he; (iii) the index implementation is con-
sistently built over algebraic signatures computed from the
melodic n-grams, and representing the various aspects that
might be addressed by one of the possible pattern-matching
interpretations.
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Whereas the first two aspects are drawn from the state-
of-the-art in terms of large text-encoded indexing [14], the
last one is inspired by recent work on signature-based text
processing [7, 10], tailored to the specifics of symbolic mu-
sic retrieval. The resulting structure enjoys several features
that make it a suitable choice for large score libraries index-
ing, namely (i) flexibility – a single index supports several
distinct pattern-matching operations, (ii) compactness – in
spite of the rich information content it contains, the index
space requirement is only a fragment of the overall collec-
tion storage, and (iii) efficiency – as shown by our analytic
study and experiments, a few milliseconds suffice to retrieve
the result, even for very large patterns searched for in very
large collections.

Related work. Two main approaches for off-line indexing
score collections have been investigated: tree-based [9, 13,
20] and inverted files [3,5,16]. [5,16] propose to index both
the pitch interval and rhythm sequences in an inverted file.
We adopt a similar approach, with a much richer encoding
that allows to reach a constant search complexity and more
flexibility in terms of search options.

The subjective nature of measuring music similarity lead
to the introduction of several error measures. The δ and
(δ, α) approximations [2] use exact matching algorithms for
similarity search. Many algorithms for efficient computa-
tion of similarity matching through exhaustive search have
been proposed [1, 4]. In general, indexing can be achieved
with a high-dimensional structure whose performances are
known to deteriorate as the dimension increases. In the spe-
cific context of the edit distance, several indexing methods
have been suggested, an overview of which can be found
in [15]. A classical technique is to introduce an measure ap-
proximating the edit distance but easier to index [12]. The
idea of using n-gram for melody retrieval and measuring
music similarity is not new in monophonic [17,19] as well as
polyphonic pieces [6, 8], although they usually model only
some of the music information. Our structure enjoys the
nice feature of being able to index both exact search with
many variants, and approximate search based on the edit
distance. This makes it a structure of choice to solve the
addressed problem of index pattern searches in large score
databases.

The rest of the paper presents our structure (Section 2)
and the pattern-matching algorithms (Section 3). Section 4
briefly reports the performance results obtained over a large
collection of scores, and Section 5 concludes the paper.

2. THE MELODIC SIGNATURE INDEX

We outline in this section the index structure in NEUMA,
with emphasis on algebraic information put in index records.

2.1 Index overview

NEUMA interprets scores content according to a “model” of
symbolic music. The model of interest to this work relies
on a synchronized time series approach that sees a score as
a superposition of voices. Each voice is a sequence of ele-
ments in E × D, where E is the domain of musical “events”
(notes, chords, rest, etc.) and D the musical duration. A de-
scriptor can be text-encoded in the form <e1-d1; e2-d2;
. . .; en-dn> where each ei encodes an event and each di
its duration. In the following, we shall blur the distinction
between a descriptor and its textual encoding. Given a de-
scriptor d, we denote as ε(d) the sequence of events (without
durations) and as ρ(d) the sequence of durations (without
events) of d.

Example 1 Voice v, in score 354, encodes a melody begin-
ning with a G3 (half), followed by an A3 (half), a B3 (flat,
quarter), etc. Its descriptor dv is: (22-2;24-2;25-4;24-4;22-
4;21-4;22-4;. . . ) Moreover, ε(dv) = (22, 24, 25, 24, 22, 21,
22, . . . ) and ρ(dv)=(2, 2, 4, 4, 4, 4, 4, . . . ).

In the example above, note heights are encoded with chro-
matic notation (number of semi-tones from the lowest pos-
sible sound). Rest, chords, and silence are encoded with
other, non ambiguous, symbols: we do not elaborate fur-
ther E which provides a compact representation of melodic
sequences.

Given a pattern P , a search retrieves the scores such that
for at least a voice v, and at least an offset (position) o in
v, P matches the fragment v[o]v[o + 1] . . .. The seman-
tics of a matching attempt depends on the interpretation of
P , chosen by the user at query time. We explain the pro-
cess with an example: let P be the pattern described by
37-4;35-4;34-2. Then, under the exact search, trans-
posed, without rhythm interpretation, P matches the voice
v of Example 1 at offset 3 (offsets start at 0). If we take
the rhythm into account, this is no longer true. Using a non-
transposed interpretation also leads to a failure, with or with-
out rhythm. Finally, an approximate search likely detects a
high similarity between P and v at position 3.

2.2 Algebraic signatures

We interpret our melodic events in E as elements of a Galois
field GF (2f ) of size 2f . The elements of GF are bit strings
of length f . Since |E| ≤ 255, we let f = 8 in the following.
A Galois field is a finite set that supports addition and mul-
tiplication. These operations are associative, commutative
and distributive, have neutral elements 0 and 1, and there ex-
ist additive and multiplicative inverses. A primitive element
α of GF is such that its powers enumerate all the non-zero
elements of the Galois field. Let D = e0e1 · · · eM−1 be a
descriptor encoding a sequence of M events interpreted as
GF elements. We define an AS signature as follows.
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Definition 1 The AS α-signature of a descriptor D is de-
fined by

ASα(D) = e0 + e1 · α+ e2 · α2 . . .+ eM−1 · αM−1 (1)

If we consider m primitive elements α1, α2, . . . , αm, the
m-symbols signatureNASm(D) is obtained by concatenat-
ing the set ofASαi(D), 1 ≤ i ≤ m, seen as bit strings. This
allows to obtain a signature of size m.

Given a descriptor D, we are interested in partial alge-
braic signatures calculated from substrings of D.

Definition 2 Let l ∈ [0,M − 1] be any offset in D. The
Cumulative Algebraic Signature (CAS) at l, CAS(D, l), is
the algebraic signature of the prefix of D ending at el, i.e.,
CAS(D, l) = AS(e0 . . . el).

The Partial Algebraic Signature (PAS) from l′ to l is the
value PAS(D, l′, l) = AS(el′el′+1 · · · el), with 0 ≤ l′ ≤ l,
We most often use the PAS of sub-sequences of length n,
i.e., of n-grams.

Definition 3 The n-gram Algebraic Signature (NAS) of D
at l is NAS(D, l) = PAS(D, l − n+ 1, l), for l ≥ n− 1.

e
l

e
l−n+1

e
l’

e
0

e
M−1

CAS(l) PAS(l’, l)NAS(l)

Descriptor D

Figure 1. CAS(l), PAS(l′, l) and NAS(l) in descriptor D

We may dropD whenever it is implicit for brevity’s sake.
Figure 1 shows the respective parts of the record that define
the CAS, PAS and NAS at offset l. The following simple
properties of algebraic signatures are useful for what fol-
lows. Properties 2 and 3 let us incrementally calculate next
CAS and NAS while indexing the score, or preprocessing
the pattern, instead of recomputing the signature entirely.
This speeds up the process considerably.

CAS(l) = CAS(l − 1) + el · αl (2)

NAS(l) =
NAS(l − 1)− el−n

α
+ el · αn−1 (3)

Property 4 finally is fundamental for the match attempt
calculus. For 0 ≤ l′ < l:

CAS(l) = CAS(l′) + αl
′+1PAS(l′ + 1, l) (4)

We refer the reader to [11] for more details about defini-
tions and properties of algebraic signatures. The above are
sufficient to describe the MS-index features.

2.3 The Melodic Signature index

The Melodic Signature Index (MS-Index) is a classical hash
file, denoted HD[0..L − 1], with directory length L = 2v

being a power of 2 (Figure 2). Elements of HD refer to
buckets or lines of variable length.

Buckets

records for CAS c

r2 <i1,o1,c1,c’1,A1,u1>

L−1

0

C

C
0

i

H
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h
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ec
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D

r1

records for CAS c’

Structure of a bucket

...<ik,ok,ck,c’k,Ak,uk>

<i2,o2,c2,c’2,A2,u2>

...

Figure 2. Structure of the MS-Index
.

Each bucket stores a list of hash records (records in short),
each indexing some fixed-size fragment of a voice descrip-
tor, called n-gram. Fragment (24-4;22-4;21-4) is for in-
stance a 3-gram extracted from the descriptor of Example 1.
The actual value of n is a parameter of the MS-Index, to
be discussed next. To build the index, we process all n-
grams in the score library. From each n-gram G of the form
e1-d1;...;en-dn we derive a number of algebraic sig-
natures that determine the index organization and content.

We first use signatures to calculate the index i of the line
that refers to G. Let τ be the transform that extracts from
G a (n-1)-gram with the sequence of pitch intervals. We
calculate i by hashing on the intervals signature. Let s =
NASm(ε(G)) be the m-symbol signature of G for some
m (see below), interpreted as a large, unsigned integer and
compute index i as:

i = hL(S) = S mod L

Since L = 2v , this amounts to extracting the last v bits of
S. m should be such that m ≤ n and m ≥ dv/fe.

Example 2 LetG be the 4-gram (24-4;22-4;21-4;22-4). Then
ε(G)=(24, 22, 21, 22) and τ(ε(G))=(-2, -1, 1) (e.g., the
pitch interval encoding). Assume m = 3. We select three
independent primitive elements α1, α2, and α3 in the Ga-
lois Field. The index of G in the hash file is:

ASα1
(τ).ASα2

(τ).ASα3
(τ) mod L

where . represents bit string concatenation.

The properties of AS signatures ensure a balanced distri-
bution of the hash values in the range [0..L − 1]. Next, we
insert in HD[i] a record describing G, defined as follows:
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Definition 4 Let G be an n-gram at offset o in a descrip-
tor D. The record indexing G, denoted R(G), is a 6-uplet
(id(D), o, cε, cρ, ASρ,⊥) where

1. cε is CAS(ε(D), o), i.e., the event CAS of G at o;

2. cρ is CAS(ρ(D), o), i.e., the rhythm CAS of G at o;

3. ASρ is NASm(ρ(D), o), i.e., its rhythm signature;

4. ⊥ is the minimal pitch index inG, representing (along
with the previous signatures) its absolute height.

The hash record of an n-gram contains all the informa-
tion necessary to evaluate matching attempts at run time, by
combining the signatures with the Galois Field operators to
evaluate the required pattern interpretation.

Example 3 Consider again the 4-gramG of Example 2, as-
suming it is found at offset 3. Then cε and cρ are obtained
from the cumulative values at offset o − 1, thanks to Prop-
erty 2; Aρ is the NAS signature of ρ(G)=(4, 4, 4, 4); ⊥ is
21, the minimal pitch of the n-gram.

Construction time complexity. The MS-index is built in lin-
ear time in the size of the score library. Note in particular
that the cumulative signature at offset o can be derived from
the cumulative at offset o− 1.
Space complexity. The size of the directory, HD, is neg-
ligible. Given a descriptor D, a record occupies 3 + 2 +
1 + 1 + 1 + 1 = 9 bytes, and the index size is therefore
|L| × τD × 9, where τD denotes the ratio of descriptor’s
size with respect to a full score size. Standard indexed file
compression techniques (e.g., variable bytes compression)
further reduce the space requirements. As shown by our ex-
periments, τD is typically of the order of 10/00 and, in spite
of its rich content, our index occupies a small fraction of the
whole library space.

3. SCORE RETRIEVAL

Due to space limitation, we give in this section an informal
presentation of the algorithms.

3.1 Exact search, basic algorithm

We explain (Figure 3) an exact search, transposed and with-
out rhythm (that is, we consider as a match any sequence
of pitch intervals similar to that of P ). First, we preprocess
P for three signatures: (i) of the initial n-gram S1, (ii) of
the final n-gram S2 and (iii) of the suffix Sp of P after S1.
Hashing on S1 locates the bucket with every record r1 hash-
ing to the signature of S1. Likewise, hashing on S2 locates
the bucket with every r2 hashing to the signature of S2. We
only consider pairs of records that are in the same voice and
at the right distance among them (looking at offsets). We

failure

Pattern PS1

Sp

S2

h(S1)

h(S2)

H
as

h 
di

re
ct

or
y

e1

e2

AS(e1, e2, Sp)

success

Figure 3. A matching attempt with MS-Index

thus locate any descriptor D matching P on its initial and
terminal n-gram, at least by signature. An algebraic calcu-
lation AS(r1, r2, Sp), based on the cumulative signatures,
determines whether Sp may match the suffix of D as well.
Search complexity. By limiting disk accesses to the two
buckets associated to the first and last n-grams of the P ,
MS-Index search runs independently from P ’s size. The
cost of the search procedure outlined above is reduced to
that of reading two buckets. The hash directory is cached
in RAM. With an appropriate dynamic hashing mechanism
that evenly distributes the records in the structure and scales
gracefully, the bucket size is expected to remain uniform
enough to let the MS-Index run in constant time.

3.2 Exact search, other interpretations

Other interpretations than the basic one are obtained with
straightforward extensions to the above algorithm, namely
1) non-transposed search, without rhythm, is obtained by
comparing the minimal pitch index of P ’s initial n-gram
and the value ⊥ of r1 ; 2) searching with rhythm implies
a calculus similar to that on intervals, using r1.cρ, r2.cρ and
Aρ as input ; 3) any combination of these criteria is possible
to achieve the required interpretation.

The cost analysis remains similar, since the signatures
comparison is negligible regarding that of buckets access.

3.3 Approximate search

Our index supports the similarity measure using n-grams
introduced by Ukkonen [18]. The more n-grams the two
strings have in common, the higher the similarity. The n−gram
profile is a vector GP such that GP [S] is the number of oc-
currences of the n-gram S in P . The “distance” between
two strings P and Q is then:

An(P,Q) = Σv∈Σn |GP [v]−GQ[v]|,

where Σn is the set of all possible n−grams.
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collection 1 # files files size # desc. desc. size
bach 280 27.1 MB 1,243 539 KB
gut 137 197.2 MB 352 2,413 KB
hausmusik 452 140.9 MB 1,218 1,944 KB
hymns 1,752 84.6 MB 3,885 1,954 KB
musicxml 405 38.9 MB 1,738 713 KB
wikifonia 3,583 302.7 MB 3,570 2,787 KB
wima 961 427.3 MB 3,110 4,624 KB
misc 94 8.9 MB 101 89 KB
all 7,664 1,227.6 MB 15,517 15,063 KB

Table 1. MusicXML collections used in NEUMA

The approximate search of a pattern P in a symbolic
score proceeds as follows. Given a descriptorD = e1 . . . eN ,
a pattern P = p1 . . . pm we pre-process P to get all the n-
grams S1, S2, . . .Sq occurring in P . We access the MS
index and retrieve, for each Si, i ≤ q, the list of the records
featured in the document with the same signature than h(Si).
We then sort-merge all lists into one list, ordered with re-
spect to each descriptor. We take the first list of offsets and
apply a moving window of size L = 2m − n + 1 in which
we solve the approximate search problem. Indeed we can
show that a window of size L has 2m − 2n + 2 n-grams,
from which at most m − n + 1 belong to P and at least
m− n+ 1 do not belong to P . For windows of size greater
than 2m − n + 1, n-grams not belonging to P will always
outnumber those who do.

We compute the An distance between the pattern and all
subsequences starting on the left edge of the window, and
keep track of the ending position for the best one inside the
window. We repeat this process for all offsets of the list
by sliding the window along the list. We return all triplets
(istart , iend , di) which comply to the maximum error toler-
ance.

4. EXPERIMENTS

We built a library of MusicXML scores collected from sev-
eral public on-line collections, reported in Table 1. There
exists an important discrepancy in the size of the descrip-
tors. The average descriptor size is 967 bytes, and it ranges
from 444B on average in bach to 7,020B in gutenberg
(noted gut). The ratio (descriptorsize/documentsize)
varies from 9 0/00 in wikifonia to 23 0/00 in hymns.

Table 2 reports the building time and the size of the MS-
Index for different datasets. For bach, gut and wima, we
choose 4-grams. The building time does not linearly in-
crease with the descriptors size. For instance gut, whose
descriptors size is half that of wima, requires a third of the

1 bach: www.jsbchorales.net, hausmusik: www.hausmusik.ch,
gut: www.gutenberg.org/wiki/Gutenberg:The Sheet Music Project,
hymns: www.hymnsandcarolsofchristmas.com,
musicxml: www.musicxml.org, wikifonia: www.wikifonia.org,
wima: www.icking-music-archive.org

building time of wima, while all (4-gram), with a descrip-
tor size 3 times larger than wima, needs 7.5 times more
time. This results from both the handling of hash collisions
and variable-bytes compression (not detailed here).

As expected, the size of the index linearly depends on the
descriptors size. Finally using larger n-grams has a minor
impact on the index size, but an important one on the build-
ing time: e.g 7-gram index requires 25% more space than
3-gram index thanks to lower compression rate, but a build-
ing time 7 times higher, due to less collisions to handle and
less compression to perform.

collection building time size
bach 0.7 s 1.0 MB
gut 3.3 s 5.1 MB
wima 11.4 s 9.5 MB
all (3-gram) 206.6 s 28.5 MB
all (4-gram) 82.6 s 29.7 MB
all (5-gram) 47.0 s 31.3 MB
all (6-gram) 35.9 s 33.2 MB
all (7-gram) 33.2 s 35.1 MB

Table 2. Building time for different collections

n−gram size3 4 5 6 7

time (ms)

20

40

60

80

with rhythm

transposed

exact

Figure 4. Impact of the n-gram size on matching time

Figure 4 shows that the longer the n-grams, the faster
the search, whatever the interpretation 2 . Longer n-grams
means less collisions, and thus smaller buckets. Differences
between exact, transposed or without rhythm search perfor-
mances are mostly due to the selectivity of the search cri-
teria. Unlike transposed search (TR), we eliminate for an
exact search (EX) records in the first bucket (retrieved using
the NAS of the first n-gram) by checking the first note on the
n-gram. This decreases the comparisons to perform. Search
transposed with rhythm and search exact with rhythm ex-
hibit similar performances, and run faster than TR or EX

since we filter records using an additional signature.
Finally we study the search time in Table 3 and compare

performances with those of an exhaustive scan. MS-Index
overperforms for all datasets the exhaustive search (the ra-
tio ranging from 800% to 10,000%). The search time with
MS-Index does not depend on the descriptors size: wima is
twice larger than gut but searches are performed 4 times

2 We limit the presentation of the results to exact search.
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coll. TR TR+RY EX EX+RY

gut
MS-index 38.1 27.8 36.9 32.4
SC 323.1 212.2 293.4 302.1
speed-up 8.5 7.6 7.9 9.3

wima
MS-index 10.4 7.5 9.7 7.5
SC 637.4 432.1 581.1 595.2
speed-up 61.3 57.6 59.9 79.3

all
MS-index 41.6 20.7 33.3 24.5
SC 2,514.2 1,490.2 2,305.3 2,030.1
speed-up 60.4 72.0 69.2 82.9

Table 3. Impact of the dataset size on search time (ms)

faster, and the same ratio holds when comparing to all
whereas its size is 3 times larger. Our index performances
are more sensitive to the data distribution since skewness
leads to large bucket, thus a larger number of tests. Searches
with rhythm are faster since they filter out records in the first
bucket (resp. n-grams) for the MS-Index (resp. exhaustive
scan), skipping useless comparisons. The speed-up is lower
for gut than for other collections. The rationale is that gut
presents a few, large files (137) with more records for each
document in a bucket. Since the id of the document is also
a filtering condition (we try to match an entry of the first
bucket with one of the second bucket from the same docu-
ment), more matching attempts are carried out.

5. CONCLUSION

We described in this paper a practical approach to the prob-
lem of indexing pattern-based searches in a large score li-
brary. Our solution supports exact and approximate searches,
and permits to refine exact searches by taking account of the
many components that constitute a melodic descriptor. Our
experiments show that a few milliseconds suffice to obtain
the result in all cases even for significantly large datasets.

A nice feature of our index is that it also acts as an ini-
tial filter in a two-steps similarity search method that per-
forms a final check on the candidates against the full de-
scriptor. This leaves the opportunity to adapt the edit dis-
tance to the specifics of music score similarity search. We
are currently investigating the relevance of such adaptations
with our users.
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ABSTRACT

We consider the problem of transposition and time-warp
invariant (TTWI) polyphonic content-based music retrieval
(CBMR) in symbolically encoded music. For this setting,
we introduce two new algorithms based on dynamic pro-
gramming. Given a query point set, of sizem, to be searched
for in a database point set, of size n, and applying a search
window of width w, our algorithms run in time O(mnw)
for finding exact TTWI occurrences, and O(mnw2) for par-
tial occurrences. Our new algorithms are computationally
more efficient as their counterparts in the worst case sce-
nario. More importantly, the elegance of our algorithms lies
in their simplicity: they are much easier to implement and to
understand than the rivalling sweepline-based algorithms.

Our solution bears also theoretical interest. Dynamic
programming has been used in very basic content-based re-
trieval problems, but generalizing them to more complex
cases has proven to be challenging. In this special, seem-
ingly more complex case, however, dynamic programming
seems to be a viable option.

1. INTRODUCTION

In this paper we study how to search for excerpts of music in
a large database resembling a given query pattern. We allow
both the query pattern and the database to be polyphonic.
Typically the query pattern constitutes a subset of instru-
ments appearing in the database while the database may
represent a full orchestration of a musical piece. The gen-
eral setting requires methods based on symbolic representa-
tion capable of dealing with true polyphonic subset match-
ing; audio-based methods are only applicable to rudimen-
tary cases where queries are directed to clearly separable
melodies.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

Except for some trivial cases, the straightforward CBMR
approach of linear string representation combined with a
string matching algorithm does not properly capture the poly-
phonic CBMR problem. Recently, a more appropriate, geo-
metric modeling of music has been succesfully used by sev-
eral authors [5–7]. This approach models polyphonic music
very naturally, but usually also takes into account another
important feature intrinsic to the problem: the matching pro-
cess ignores extra intervening notes in the database that do
not appear in the query. Extra notes may occur because of
different polyphonic arrangements, musical decorations and
unexpected noise. Recent geometric methods [2, 3, 6] have
challenged different timing problems. In the first setting,
the occurrences may be tranposed and time-scaled copies
of the query [2, 6]. Under the transposition and time-scale
invariance (the TTSI setting), however, the queries need to
be given exactly in tempo. In a realistic application local
time jittering occur in every note-onset in the query, and a
stronger, transposition and time-warp invariance is required
for a successful matching (the TTWI setting). The latter is
the setting for our algorithms to be introduced. The first
solutions for the TTWI setting was recently presented by
Lemström and Laitinen [3].

Our algorithms are based on the pitch-against-time rep-
resentation of note-on information (see Fig 1). The musical
pieces in a database are concatenated in a single geometri-
cally represented file, denoted by T ; T = t0, t1, . . . , tn−1,
where each element tj ∈ R2 for 0 ≤ j ≤ n − 1 and the el-
ements are sorted in the lexicographic order. Any symbolic
music file is convertible in this representation. Later it may
be possible to convert audio files and sheet music by using
audio transcription and optical music recognition. Although
both processes are error prone, it may be the case that the
resulting representations are usable due to the robustness
of our algorithms against noise. In a typical retrieval case
the query pattern P , P = p0, p1, . . . , pm−1; pi ∈ R2 for
0 ≤ i ≤ m− 1, to be searched for is monophonic and much
shorter than the polyphonic database T to be searched; our
algorithms, however, deal equally well with monophonic
and polyphonic input. Sometimes a search window w is
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Figure 1. On top, an excerpt from Schubert’s Der Leiermann.
Below, the related point-set representation. The points associated
with the vocal part are depicted by squares.

applied and typically w ≤ m, i.e. w ≤ m� n.
The problems under consideration are modified versions

of two problems originally represented in [7]. Below we
give the original problems P1 and P2 (pure transposition
invariance, TI), their transposition and time-scale invariant
versions S1 and S2 (TTSI), and the transposition and time-
warp invariant modifications W1 and W2 under considera-
tion (TTWI). For the partial matches in P2, S2 and W2, one
may either use a threshold α to limit the minimum size of
an accepted match, or to search for maximally sized matches
only.

• Find pure (P1) / time-scaled (S1) / time-warped (W1)
translations of P such that each point in P matches
with a point in T .

• Find pure (P2) / time-scaled (S2) / time-warped (W2)
translations ofP that give a partial match of the points
in P with the points in T .

Fig. 2 gives six query patterns to be searched for in the ex-
cerpt of Fig. 1, exemplifying the six problems P1, S1, W1,
P2, S2 and W2 given above.

Ukkonen et al. introduced online algorithms for problems
P1 and P2 that run in timesO(mn) andO(mn logm) in the
worst case, respectively, and in O(m) additional space [7].
Lemström et al. [4] showed that the practical performance
can be improved at least by an order of magnitude by com-
bining sparse indexing and filtering. P2 is known to belong

)
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Figure 2. Example queries. For query A an occurrence in Fig. 1
would be found in all the six problem cases P1-2, S1-2, W1-2; for
B in cases P2, S2, W2; for C in S1-2, W1-2; for D in S2, W2; for
E in W1-2 and for F in W2 only.

to a problem family for which o(mn) solutions are conjec-
tured not to exist. Nevertheless, there is an online approxi-
mation algorithm for it running in time O(n log n) [1].

In [6], Romming and Selfridge-Field gave a geometric-
hashing based algorithm for S2 working in time O(wnm3)
and space O(w2n). Lemström [2] generalized algorithms
P1 and P2 to the time-scaled problems S1 and S2. The
algorithms work in O(mΣ log Σ) time and O(mΣ) space,
where Σ = O(wn) when searching for exact occurrences
and Σ = O(nw2) when searching for partial occurrences.

The first algorithms for W1 and W2 were introduced only
very recently in [3]. The sweepline-based algorithms are
further generalizations of those above. In this TTWI case
the windowing takes an invaluable role; the number of false
positives would grow uncontrollably without it. The asymp-
totic time and space complexities, however, remain the same
as with the solution for S1 and S2.

In this paper we introduce new algorithms for the TTWI
setting. Our algorithms are based on dynamic program-
ming and their asymptotic worst case complexities are lower
than those of the earlier rivals: for the case W1 we have
an O(mnw) algorithm; for the W2 case our algorithm runs
in time O(mnw2). In our experiments, however, in usual
query settings the sweepline-based algorithms often outper-
form our dynamic programming algorithms. The main con-
tribution of the new algorithms is in their simplicity which
makes them easy-to-understand and easy-to-implement. In
addition to this elegance, in the worst-case scenario our new
algorithms clearly outperforms the sweepline-based algo-
rithms.

It is also theoretically very interesting to discover that dy-
namic programming is applicable in the TTWI setting. Ap-
plying dynamic progamming for the more straightforward
problems, including the TTSI setting, has thus far proven to
be too challenging.
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DPW2(P, T,w)

1 M = A four-dimensional array, filled with −1
2 for i = 0 to P.size − 1
3 for j = 0 to T.size − 1
4 FILL-M(M,P, T,w, i+ 1, j + 1, 1, 1)
5 REPORT-RESULTS(M)

FILL-M(M,P, T,w, pcur, tcur, x, y)

1 // Return result if it has been already calculated
2 if M [pcur, tcur, x, y] 6= −1
3 return M [pcur, tcur, x, y]
4 // Bounds checking, base case for recursion
5 if tcur ≥ T.size or pcur ≥ P.size
6 return 0
7 best = 0
8 // Do the notes under investigation match each other?
9 if Ttcur.y − Ttcur−y.y == Ppcur.y − Ppcur−x.y

10 a = FILL-M(M,P, T,w, pcur + 1, tcur + 1, 1, 1)
11 best = max(a+ 1, best)
12 // Can we still extend the search inside the window?
13 if y < w
14 a = FILL-M(M,P, T,w, pcur, tcur + 1, x, y + 1)
15 best = max(a, best)
16 // Finally, find the matches with Pp not included
17 a = FILL-M(M,P, T,w, pcur + 1, tcur, x+ 1, y)
18 best = max(a, best)
19 M [pcur, tcur, x, y] = best
20 return best

Figure 3. Pseudocode illustration for DPW2. In DPW1 lines
17-18 need to be removed.

2. ALGORITHMS

In this section we describe two new algorithms to find ex-
act and partial transposition and time-warp invariant occur-
rences of a pattern P from a given database T . To distinct
our new algorithms from the previous sweepline algorithms
W1 and W2 (solving problems W1 and W2), we shall re-
fer to our dynamic programming algorithms by DPW1 and
DPW2, respectively.

The new algorithms require the input to be given as a list
of notes, where each note is represented by a pair (x, y) in
a two-dimensional coordinate system. The x-component of
the pair represents the note-on time, the y-component rep-
resents the pitch of the note. We assume both P and T to
be lexicographically sorted, i.e. a precedes b if and only if
a.x < b.x or a.x = b.x and a.y < b.y.

Let us next introduce some important definitions. A trans-
lation of P with vector f results in P + f = p0 + f, p1 +
f, . . . , pm−1 + f , where pi + f = (pi.x+ f.x, pi.y + f.y).

This translation captures two significant musical phenom-
ena, as f.x aligns the excerpt time-wise, while f.y trans-
poses the excerpt to a lower or higher key. We also define
musical time-scaling with σ, σ ∈ R+. This time-scaling
only affects horizontal translation, i.e. scales only the time
components.

The following examples and definition illustrate the type
of occurrences we aim at finding with the algorithms.

Example 2.1 Let p = 〈3, 1〉, f = 〈2, 5〉 and σ = 2. Then
p+ σf = 〈7, 6〉.

Definition 2.2 tτ0 . . . tτm−1
, a subsequence of T , is a time-

warp occurrence of pπ0 . . . pπm−1 , a subsequence of P , if
for each i, 0 ≤ i ≤ m− 2, there is a time-scaling σi ∈ R+

such that σi(pπi+1 − pπi) = tτi+1 − tτi and 0 ≤ πj < m,
πj < πj+1, 0 ≤ τj < n and τj < τj+1 for all j.

Let us next illustrate the essence of the definition, where
we have an exact time-warping occurrence of P .

Example 2.3 Let p0 = 〈2, 7〉, p1 = 〈4, 8〉, p2 = 〈6, 8〉, p3 =
〈9, 7〉 and t0 = 〈1, 1〉, t1 = 〈2, 3〉, t2 = 〈3, 2〉, t3 = 〈4, 2〉, t4 =
〈5, 1〉. Then t0, t2, t3, t4 is an exact time-warping occur-
rence of p0, p1, p2, p3 with σ0 = 1, σ1 = 1

2 and σ2 = 1
3 .

Had we had t4 = 〈5, 0〉 in Example 2.3, then t0, t2, t3 would
have been a partial time-warping occurrence of P , matching
p0, p1 and p2.

In [3], Lemström and Laitinen defined two problems:
finding exact and partial translation and time-warp invariant
occurrences of P from T . The exact nature of an occurrence
is captured in definition 2.2. These problems can be de-
scribed followingly: in the exact case, we aim to find a sub-
sequence tτ0 , tτ1 , . . . , tτm−1

so that for each pi, i < m− 1,
pi+1.y−pi.y = tτi+1 .y− tτi .y holds. In the partial case, we
aim to find longest subsequence from P for which we can
find a matching subsequence from T , as in the definition 2.2.

In our setting, it is useful to apply a windowing restric-
tion, which states that two consecutive notes in the database
subsequence cannot be more than w notes away from each
other in the database. The window size w is designed to
limit the number of senseless occurrences, and it is also able
to significantly speed up the algorithms.

Our algorithms are recursive in nature, and are very sim-
ilar to each other. We will cover the more complex DPW2
in depth, and pinpoint the differences to DPW1.

In the beginning, the aim of the algorithms is to fill the
M -table by calling function FILL-M (see Fig. 3) with ap-
propriate base states. FILL-M takes 8 parameters, 4 of which
are variables: pcur, tcur, x and y. These variables define the
state FILL-M is currently solving.

FILL-M returns the length of the longest occurrence we
can construct from the state it was given. In the case of
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Figure 4. Time resource performance comparison of W2
and DPW2.

DPW2, the current state is defined by the four parameters.
The parameters define the state followingly: ppcur−x is the
last note chosen from the pattern, ttcur−y is the last note
chosen from the database, whereas ppcur, ppcur+1, . . . , pm−1

and ttcur, ttcur+1, . . . , tn−1 are the notes that can be se-
lected in future from pattern and database, respectively.

In the case of DPW2, FILL-M has at maximum three pos-
sible options in any state. FILL-M evaluates, which of the
options is the best one, and returns the length of the longest
occurrence. If the note under investigation can be legally
added to the pattern, then the algorithm adds the note, and
moves on to find new ones. Also, if we have not yet reached
the windowing limit, then we can move on without adding
any notes, and finding a new candidate further away in the
database. Our third option, which is available in the case of
DPW2, is skipping ppcur altogether and not including it to
the match at all. In the case of DPW1, we can never skip any
ppcur, since otherwise the match being constructed would
not be exact anymore.

The algorithm can legally add notes to the occurrence, if
note pairs (ppcur−x, ppcur) and (ttcur−y, ttcur) match each
other under the translation and time-warp invariances, i.e.
ppcur.y − ppcur−x.y = ttcur.y − ttcur−y.y. Then we can
call FILL-M recursively with a state (pn, tn, xn, yn) where
xn = yn = 1, pn = pcur + 1 and tn = tcur + 1. This
means that in the new state, the previous notes that were
picked from pattern and database, were ppn−1 and ttn−1,
respectively. Naturally, in the new state, we can find new
matching notes from ppn

and ttn onwards.
Also, if the parameters for FILL-M are same that have

been used previously, then the algorithm can avoid calculat-
ing this state again, since every time FILL-M is called with
the same parameters, it has to return the same result. There-
fore every time we have finished calculating a state, we can
store the result, and return the stored result whenever FILL-

Figure 5. Time resource performance comparison of W2
and DPW2. Database used represented the worst case sce-
nario for W2.

M is again called with the same parameters.
The case of DPW1 is very similar to that of DPW2. In

DPW1, however, we cannot allow the algorithm to skip any
notes from the pattern, which means that x will always be 1.
As x is not a variable anymore, we do not have to store it in
the M -table; it is initialized it to be 3-dimensional.

As FILL-M requires that at least one note has been se-
lected from both the pattern and the database, we must ini-
tialize theM -table by calling FILL-M with all possible com-
binations of first notes (see Fig. 3). Once the M -table is
filled, we can construct the matches we are interested in by
investigating the M -table in a similar fashion to the way
FILL-M does. Also, if we are only interested in the length
of the longest occurrence, we do not need to investigate M -
table afterwards at all, as FILL-M itself returns the length of
the longest occurrence.

The time complexities for DPW1 and DPW2 areO(mnw)
and O(mnw2), respectively. The number of states depends
of the possible values of the variables. The variables can
vary followingly: 0 ≤ pcur < m, 0 ≤ tcur < t, 1 ≤ x ≤
w and 1 ≤ y ≤ w. In DPW1 x is not a variable, so there are
O(mnw) states, and in DPW2 we get w times more states,
due to the fact that x can vary. Since the amount of calcula-
tion in each state is constant, the time complexities become
simply the number of states in both cases.

3. EXPERIMENTS

We compared the performance of W2 to that of DPW2 in
different scenarios, and also W1 against DPW1 in a typical
scenario. In our experiments, we used music data from Mu-
topia database so that the pieces of music were concatenated
together to form a large database. In the worst case compar-
ison databases and patterns were specifically tailored. In
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Figure 6. Time performance comparison of W1 and DPW1.

all tests, we kept the pattern and window sizes constant,
m = w = 10.

It was expected that in cases where the database size is
small, W2 would be slightly faster than DPW2, since the
complexity difference would not be able to kick in with
smaller database sizes, and the ability of being able to skip
non-compact matches would outweigh the additional loga-
rithmic term. However, it seemed likely that DPW2 would
become gradually faster with larger database sizes when com-
pared with W2.

In our experiments, W2 outpeformed DPW2 in the smaller
cases, as expected. With growing database sizes, however,
DPW2 was not able to catch up, and instead the performance
difference became even larger in favour of W2.

It seems that the fact that W2 calculates only the compact
matches, while DPW2 calculates exactly all matches, is re-
sponsible for the difference. Even though theoretical time
complexity suggests that W2 should eventually be slower
with larger databases, it seems that in a typical setting the
ability of W2 to eliminate matches grows faster than the ad-
ditional logarithmic term, as depicted in Fig. 4. This sug-
gests that the expected complexity of W2 would be signifi-
cantly smaller than its worst-case complexity.

The property of being able to skip non-compact matches
is even more visible in the exact case, where DPW1 is signif-
icantly slower than W1 in a real-world scenario (see Fig. 6).
It seems that the penalty for finding all possible matches is
even larger here.

To further experiment on the effect of getting rid of addi-
tional matches, we constructed the absolute worst case sce-
nario for W2, where all the notes in both the pattern and the
database have the same pitch. In this setting, W2 would not
be able to eliminate many matches, which results in a large
amount of additional work. In Fig. 5, we depict the time us-
age of the two algorithms in the worst case for W2. From the
figure it is evident that W2 uses a significant amount of time
in this type of setting, even with very small databases. It is

also noteworthy that the time usage of W2 grows quickly.

4. CONCLUSIONS

In this paper we presented two new algorithms for the trans-
position and time-warp invariant (TTWI) content-based poly-
phonic music retrieval setting. We used the geometric frame-
work where each note is represented as a point in the Eu-
clidean plane (pitch value against on-set time). The frame-
work has several advantages: it is intuitive, it intrinsically
deals with polyphonic music, transposition invariance and
subset matching. The TTWI setting that allows for local
time jittering makes the approach usable in real-world ap-
plications where queries are always somewhat out of tempo.
Our DPW1 algorithm solves the exact matching problem un-
der the TTWI setting while DPW2 is for the partial matching
problem under the same setting. The algorithms, based on
dynamic programming, have better asymptotic worst-case
time complexities than their only existing rivals [3], here
called W1 and W2, based on the sweepline techique.

Our experiments revealed that in a typical query case W2
is faster than DPW2. This is due to the capability of W2
to eliminate non-compact matches while DPW2 thoroughly
scrutinizes every possible match. The impact of the elimi-
nation, however, was surprisingly strong given that W2 has
an additional logarithmic term in its asymptotic complexity.
Nevertheless, when looking for consistent performance, our
DPW2 is the choice to be taken as in complex query cases
W2 freezes suddenly. The elegance of our new algorithms
lie in their simplicity: they, unlike the rivaling algorithms,
are very easy both to implement and to understand.

As hinted by Fig. 4, with the future very large music
databases, neither W2 nor DPW2 alone would work in an
interactive setting. As a future work, we will study a dis-
tributed calculation process. Even though the sweepline-
based solutions were somewhat faster in typical real-world
queries in our experiments, the distributed setting is pre-
sumed to be significantly different: dynamic programming
algorithms are generally easily distributable, while distribut-
ing sweepline-based algorithms may prove to be very chal-
lenging.
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ABSTRACT

In this paper, we focus on the rhythmic component of sym-
bolic music similarity, proposing several ways to extract
a monophonic rhythmic signature from a symbolic poly-
phonic score. To go beyond the simple extraction of all
time intervals between onsets (noteson extraction), we se-
lect notes according to their length (short and long extrac-
tions) or their intensities (intensity+/− extractions). Once
the rhythm is extracted, we use dynamic programming to
compare several sequences. We report results of analysis on
the size of rhythm patterns that are specific to a unique piece,
as well as experiments on similarity queries (ragtime music
and Bach chorale variations). These results show that long
and intensity+ extractions are often good choices for rhythm
extraction. Our conclusions are that, even from polyphonic
symbolic music, rhythm alone can be enough to identify a
piece or to perform pertinent music similarity queries, espe-
cially when using wise rhythm extractions.

1. INTRODUCTION

Music is composed from rhythm, pitches, and timbres, and
music is played with expression and interpretation. Omit-
ting some of these characteristics may seem unfair. Can the
rhythm alone be representative of a song or a genre?

Small rhythmic patterns are essential for the balance of
the music, and can be a way to identify a song. One may
first think of some clichés: start of Beethoven 5th symphony,
drum pattern from We will rock you or Ravel’s Boléro. More
generally, Query By Tapping (QBT) studies, where the user
taps on a microphone [10,12], are able in some situations to
identify a monophonic song. On a larger scale, musicolo-
gists have studied how rhythm, like tonality, can structure a
piece at different levels [5, 16].

This article shows how simple extractions can, starting
from a polyphony, build relevant monophonic signatures,
being able to be used for the identification of songs or for
the comparison of whole pieces.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

In fact, most rhythm-only studies in Music Information
Retrieval (MIR) concern audio signal. These techniques of-
ten rely in detection of auto-correlations in the signal. Some
studies output descriptors [9, 15, 17] that can be used for
further retrieval or classification. Several papers focus on
applications of non-Western music [11, 13, 24].

There are other tools that mix audio with symbolic data,
comparing audio signals against symbolic rhythmic pattern.
For example, the QBT wave task of MIREX 2010 proposed
the retrieval of monophonic MIDI files from wave input
files. Some solutions involve local alignments [10]. Another
problem is rhythm quantization, for example when aligning
audio from music performances against symbolic data. This
can be solved with probabilistic frameworks [2]. Tempo and
beat detection are other situations where one extracts sym-
bolic information from audio data [7, 18].

Some rhythm studies work purely on symbolic MIDI data,
but where the input is not quantized [22], as in the QBT
symbolic task in MIREX 2010. Again, challenges can come
from quantization, tempo changing and expressive interpre-
tations. Finally, on the side of quantized symbolic music,
the Mongeau and Sankoff algorithm takes into account both
pitches and rhythms [14]. Extensions concerning polyphony
have been proposed [1]. Other symbolic MIR studies focus
on rhythm [3, 4, 19–21].

However, as far as we know, a framework for rhythmic
extraction from polyphonic symbolic music has never been
proposed. Starting from a polyphonic symbolic piece, what
are the pertinent ways to extract a monophonic rhythmic
sequence? Section 2 presents comparison of rhythmic se-
quences through local alignment, Section 3 proposes dif-
ferent rhythm extractions, and Section 4 details evaluations
of these extractions for the identification of musical pieces
with exact pattern matching (Section 4.2) and on similarity
queries between complete pieces (Sections 4.3 and 4.4).

2. RHYTHM COMPARISONS

2.1 Representation of monophonic rhythm sequences

For tempo-invariance, several studies on tempo or beat track-
ing on audio signal use relative encoding [10]. As we start
from symbolic scores, we suppose here that the rhythms are
already quantized on beats, and we will not study tempo and
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meter parameters. If necessary, multiple queries handle the
cases where the tempo is doubled or halved.

Rhythm can be represented in different ways. Here, we
model each rhythm as a succession of durations between
notes, i.e. inter-onset intervals measured in quarter notes or
fractions of them (Figure 1).

 

!" " "

Music engraving by LilyPond 2.12.3—www.lilypond.org

Figure 1. The monophonic rhythm sequence (1, 0.5, 0.5, 2).

Thus, in this simple framework, there are no silences,
since each note, except the last one, is considered until the
beginning of the following note.

2.2 Monophonic rhythm comparison

Several rhythm comparisons have been proposed [21]. Here,
we compare rhythms while aligning durations. Let S(m,n)
be the best score to locally align a rhythm sequence x1 . . . xm

to another one y1 . . . yn. This similarity score can be com-
puted via a dynamic programming equation (Figure 2), by
discarding the pitches in the Mongeau-Sankoff equation [14].
The alignment can then be retrieved through backtracking in
the dynamic programming table.

S(a, b) = max



S(a− 1, b− 1) + δ(xa, yb)
(match, substitution s)

S(a− 1, b) + δ(xa,∅)
(insertion i)

S(a, b− 1) + δ(∅, yb)
(deletion d)

S(a− k, b− 1) + δ({xa−k+1...xa}, yb)
(consolidation c)

S(a− 1, b− k) + δ(xa, {yb−k+1...yb})
(fragmentation f )

0 (local alignment)

Figure 2. Dynamic programming equation for finding the
score of the best local alignment between two monophonic
rhythmic sequences x1 . . . xa and y1 . . . yb. δ is the score
function for each type of mutation. The complexity of com-
puting S(m,n) is O(mnk), where k is the number of al-
lowed consolidations and fragmentations.

There can be a match or a substitution (s) between two
durations, an insertion (i) or a deletion (d) of a duration.
The consolidation (c) operation consists in grouping sev-
eral durations into a unique one, and the fragmentation (f)
in splitting a duration into several ones (see Figure 3).
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Figure 3. Alignment between two rhythm sequences.

Matches, consolidations and fragmentations respect the
beats and the strong beats of the measure, whereas substitu-
tions, insertions and deletions may alter the rhythm structure
and should be more highly penalized. Scores will be eval-
uated in Section 4 where it is confirmed that, most of the
time, the best results are obtained when taking into account
consolidation and fragmentation operations.

3. RHYTHM EXTRACTION

How can we extract, from a polyphony, a monophonic rhyth-
mic texture? In this section, we propose several rhythmic
extractions. Figure 4 presents an example applying these
extractions on the beginning of a chorale by J.-S. Bach.

The simplest extraction is to consider all onsets of the
song, reducing the polyphony to a simple combined mono-
phonic track. This “noteson extraction” extracts durations
from the inter-onset intervals of all consecutive groups of
notes. For each note or each group of notes played simul-
taneously, the considered duration is the time interval be-
tween the onset of the current group of notes and the fol-
lowing onset. Each group of notes is taken into account
and is represented in the extracted rhythmic pattern. How-
ever, such a noteson extraction is not really representative of
the polyphony: when several notes of different durations are
played at the same time, there may be some notes that are
more relevant than others.

In symbolic melody extraction, it has been proposed to
select the highest (or the lowest) pitch from each group of
notes [23]. Is it possible to have similar extractions when
one considers the rhythms? The following paragraphs intro-
duce several ideas on how to choose onsets and durations
that are most representative in a polyphony. We will see in
Section 4 that some of these extractions bring a noticeable
improvement to the noteson extraction.

3.1 Considering length of notes: long, short

Focusing on the rhythm information, the first idea is to take
into account the effective lengths of notes. At a given onset,
for a note or a group of notes played simultaneously:

• in the long extraction, all events occurring during the
length of the longest note are ignored. For example,
as there is a quarter on the first onset of Figure 4, the
second onset (eighth, tenor voice) is ignored;

376



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

!

!!
!
!
!
!intensity+  

"

!

!
!
!
!
!
!

"!
!

!
!

!
!
!
!
!

#

$
!
!
!

!

%

&"

intensity–  

%

&

long 

!
'

!
!

!

"

(
(
(
(

) " (
) " (
) " (
* " (

(

!
!
!
!
!
!
!
!

%"

!

!
!

!

!
!'

!
!
!
!
!

%

!'

!'

+
noteson 

"

short 

!
!
!
!

!

!
!
!
!
!

!

!
!

!

!
!
!
!
!
!
!
,

!
!
-

! "
+

%

!
!
!
!
!
!

!

!
!

!

!
!

!
!
!
!

"
!
!

!
!
!
!
!

%

!
!
!
!
!!

!
!
!

"
%"

"

!

!
!
!
!

%
%

Figure 4. Rhythm extraction on the beginning of the Bach
chorale BWV 278.

• similarly, for the short extraction, all events occur-
ring during the length of the shortest note are ignored.
This extraction is often very close to the noteson ex-
traction.

In both cases, as some onsets may be skipped, the con-
sidered duration is the time interval between the onset of
the current group of notes and the following onset that is
not ignored. Most of the time, the short extraction is not
very different from the noteson, whereas the long extraction
brings significant gains in similarity queries (see Section 4).

3.2 Considering intensity of onsets: intensity+/−

The second idea is to consider a filter on the number of notes
at the same event, keeping only onsets with at least k notes
(intensity+) or strictly less than k notes (intensity−), where
the threshold k is chosen relative to the global intensity of
the piece. The considered durations are then the time inter-
vals between consecutive filtered groups. Figure 4 shows an
example with k = 3. This extraction is the closest to what
can be done on audio signals with peak detection.

4. RESULTS AND EVALUATION

4.1 Protocol

Starting from a database of about 7000 MIDI files (including
501 classical, 527 jazz/latin, 5457 pop/rock), we selected
the quantized files by a simple heuristic (40 % of onsets on
beat, eighth or eighth tuplet). We thus kept 5900 MIDI files
from Western music, sorted into different genres (including
204 classical, 419 jazz/latin, 4924 pop/rock). When applica-
ble, we removed the drum track (MIDI channel 10) to avoid
our rhythm extractions containing too many sequences of
eighth notes, since drums often have a repetitive structure in
popular Western music. Then, for each rhythm extraction

presented in the previous section, we extracted all database
files. For each file, the intensity+/− threshold k was choosen
as the median value between all intensities. For this, we
used the Python framework music21 [6].

Our first results are on Exact Song identification (Sec-
tion 4.2). We tried to identify a song by a pattern of several
consecutive durations taken from a rhythm extraction, and
looked for the occurrences of this pattern in all the songs of
the database.

We then tried to determinate if these rhythm extractions
are pertinent to detect similarities. We tested two particular
cases, Ragtime (Section 4.3) and Bach chorales variations
(Section 4.4). Both are challenging for our extraction meth-
ods, because they present difficulties concerning polyphony
and rhythm: Ragtime has a very repetitive rhythm on the
left hand but a very free right hand, and Bach chorales have
rhythmic differences between their different versions.

4.2 Exact Song Identification

In this section, we look for patterns of consecutive notes
that are exactly matched in only one file among the whole
database. For each rhythm extraction and for each length be-
tween 5 and 50, we randomly selected 200 distinct patterns
appearing in the files of our database. We then searched for
each of these patterns in all the 5900 files (Figure 5).
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Figure 5. Number of matching files for patterns between
length 5 and 35. Curves with points indicate median values,
whereas other curves indicate average values.

We see that as soon as the length grows, the patterns are
very specific. For lengths 10, 15 and 20, the number of pat-
terns (over 200) matching one unique file is as follows:

Extraction 10 notes 15 notes 20 notes
noteson 49 85 107
short 58 100 124
long 85 150 168
intensity+ 91 135 158
intensity− 109 137 165
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We notice that the long and intensity+/− extractions are
more specific than noteson. From 12 notes, the median val-
ues of Figure 5 are equal to 1 except for noteson and short
extractions. In more than 70% of these queries, 15 notes are
sufficient to retrieve a unique file.

The results for average values are disturbed by a few pat-
terns that match a high number of files. Figure 6 displays
some noteworthy patterns with 10 notes. Most of the time,
the patterns appearing very frequently are repetitions of the
same note, such as pattern (a). With long extraction, 174
files contain 30 consecutive quarters, and 538 files contain
30 consecutive eighths. As these numbers further increase
with noteson (and short) extractions, this explains why the
long extraction can be more specific.
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Figure 6. Some patterns with 10 durations, with the number
of matching files in noteson and long extractions.

The number of occurrences of each pattern is mostly de-
termined by its musical relevance. For example, in a pat-
tern with three durations, (d) appears more often than (g),
which is quite a difficult rhythm. In the same way, among
patterns with only quarters and eighths, (b) and (c) can be
found more often than (f). We also notice that patterns with
longer durations, even repetitive ones such as pattern (e),
generally appear in general less frequently than those con-
taining shorter durations.

4.3 Similarities in Ragtime

In this section and the following, we use the similarity score
computation explained in Section 2.2. Ragtime music, one
of the precursors of Jazz music, has a strict tempo main-
tained by the pianist’s left hand and a typical swing created
by a syncopated melody in the right hand.

For this investigation, we gathered 17 ragtime files. Then
we compared some of these ragtime files against a set of files
comprising the 17 ragtime files and randomly selected files
of the database. We tested several scores functions: always
+1 for a match, and −10, −5, −2, −1, −1/2 or −1/3 for

an error. We further tested no penalty for consolidation and
fragmentation (c/f).
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Figure 7. Best ROC Curves, with associated AUC, for re-
trieving 17 Ragtime pieces from the query A Ragtime Night-
mare, by Tom Turpin, in a set of 100 files.

Figure 7 shows ROC Curves for A Ragtime Nightmare. A
ROC Curve [8] plots sensibility (capacity to find true posi-
tives) and specificity (capacity to eliminate false positives)
over a range of thresholds, giving a way to ascertain the per-
formance of a classifier that outputs a ranked list of results.
Here one curve represents one rhythm extraction with one
score function. For each score function, we computed the
true positive and the false positive rates according to all dif-
ferent thresholds. The long extraction, used with scores +1
for a match and −1 for all errors, gives here very good re-
sults: for example, the circled point on Figure 7 corresponds
to 0.88 sensitivity and 0.84 specificity with a threshold of 45
(i.e. requiring at least 45 matches).

Considering the whole curve, the performance of such a
classifier can be measured with the AUC (Area Under ROC
Curve). Averaging on 9 different queries, the best set of
scores for each extraction is as follows:

Extraction Scores Mean AUC
s/i/d c/f match

noteson −5 0 +1 0.711
short −1 −1 +1 0.670
long −1 0 +1 0.815

intensity+ −1/3 0 +1 0.622
intensity− −1 −1 +1 0.697

Most of the time, the matching sequences are long se-
quences of eighths, similar to pattern (a) of Figure 6. If such
patterns are frequent in noteson database files (see previous
section), their presence in long files is more frequent in Rag-
time than in other musical styles. For example, pattern (a)
is found in 76 % of Ragtime long extractions, compared to
only 25 % of the whole database.

Indeed, in ragtime scores, the right hand is very swift
and implies a lot of syncopations, while the left hand is bet-
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Figure 8. Possum Rag (1907), by Geraldine Dobyns.

ter structured. Here the syncopations are not taken into ac-
count in the long extraction, and the left hand (often made of
eighths, as in Figure 8) is preserved during long extractions.

Finally, intensity+ does not give good results here (un-
like Bach Chorales, see next Section). In fact, intensity+

extraction keeps the syncopation of the piece, as accents in
the melody often involve chords that will pass through the
intensity+ filter (Figure 8, last note of intensity+).

4.4 Similarities in Bach Chorales Variations

Several Bach chorales are variations of each other, shar-
ing an exact or very similar melody. Such chorales present
mainly variations in their four-part harmony, leading to dif-
ferences in their subsequent rhythm extractions (Figure 9).
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Figure 9. Extraction of long rhythm sequences from differ-
ent variations of the start of the chorale Christ lag in Todes-
banden. The differences between variations are due to dif-
ferences in the rhythms of the four-part harmonies.

For this investigation, we considered a collection of 404
Bach chorales transcribed by www.jsbchorales.net
and available in the music21 corpus [6]. We selected 5
chorales that have multiple versions: Christ lag in Todes-
banden (5 versions, including a perfect duplicate), Wer nun
den lieben Gott (6 versions), Wie nach einer Wasserquelle
(6 versions), Herzlich tut mich verlangen (9 versions), and
O Welt, ich muss dich lassen (9 versions).

For each chorale, we used one version to query against
the set of all other 403 chorales, trying to retrieve the most
similar results. A ROC curve with BWV 278 as a query is
shown in Figure 10. For example, with intensity+ extraction
and scores −1 for s/i/d, 0 for c/f , and +1 for a match,
the circled point corresponds to a threshold of 26, with 0.80
sensitivity and 0.90 specificity. Averaging on all 5 chorales,
the best set of scores for each extraction is as follows:

Extraction Scores Mean AUC
s/i/d c/f match

noteson −1 0 +1 0.769
short −1 0 +1 0.781
long −5 −5 +1 0.871

intensity+ −1 0 +1 0.880
intensity− −5 0 +1 0.619

Even if the noteson extractions already gives good results,
long and intensity+ bring noteworthy improvements. Most
of the time, the best scores correspond to alignments be-
tween 8 and 11 measures, spanning a large part of the cho-
rales. We thus managed to align almost globally one chorale
and its variations. We further checked that there is not a bias
on total length: for example, BWV 278 has a length of ex-
actly 64 quarters, as do 15% of all the chorales, but the score
distribution is about the same in these chorales than in the
other ones.
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Figure 10. Best ROC Curves, with associated AUC, for
retrieving all 5 versions of Christ lag in Todesbanden from
BWV 278 in a set of 404 chorales.

5. DISCUSSION

In all our experiments, we showed that several methods are
more specific than a simple noteson extraction (or than the
similar short extraction). The intensity− extraction could
provide the most specific patterns used as signature (see Fig-
ure 5), but is not appropriate to be used in similarity queries.
The long and intensity+ extractions give good results in the
identification of a song, but also in similarity queries inside
a genre or variations of a music.
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It remains to measure what is really lost by discarding
pitch information: our perspectives include the comparison
of our rhythm extractions with others involving melody de-
tection or drum part analysis.
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ABSTRACT 

An algorithm and a software application for recombining in 

real time MIDI drum loops that makes use of a novel analy-

sis of rhythmic patterns that sorts them in order of their 

complexity is presented. We measure rhythmic complexity 

by comparing each rhythmic pattern found in the loops to a 

metrical template characteristic of its time signature. The 

complexity measure is used to sort the MIDI loops prior to 

utilizing them in the recombination algorithm. This way, the 

user can effectively control the complexity and variation in 

the generated rhythm during performance.    

1. INTRODUCTION 

Devising different strategies for generating rhythm in real 

time is one of the goals of the project “Kinetic controller 

driven adaptive music composition systems”. After propos-

ing the use of Genetic Algorithms [1], and proposing a 

method for generate a metrical rhythm performance sto-

chastically [2], we now propose a simple yet effective 

method for recombining MIDI drum loops of a certain style 

(such as those available in Apple’s GarageBand). We de-

veloped a measure of rhythmic complexity in order to sort 

the loops prior to utilizing them in the recombination pro-

cess. In this Max/MSP [3] application, the user can recom-

bine in real time, with different degrees of complexity, a 

batch of MIDI drum loops in order to get non-excessively 

repetitive combinations of loops during a performance. The 

user can control the amount of variation in recombination 

during performance, as well as different degrees of com-

plexity.  

2. THE ALGORITHM 

Recombinance is an effective technique to generate music 

according to a certain style [4]. The kin.recombinator appli-

cation generates rhythmic patterns by recombining existing 

ones. The recombination process consists of playing back 

MIDI drum loop files by selecting portions of these files at 

regular intervals. An analysis of the files is performed prior 

to the recombination, in order to sort them according to 

their complexity and, in this way, better control the result-

ing rhythms.     

The algorithm can be divided in two phases. In the first 

phase a set of MIDI drum loop files input by the user are 

analyzed and sorted according to how complex they are, 

from the simplest to the most complex. This complexity 

measure is based on a new method for measuring syncopa-

tion, by comparing the patterns against a template charac-

teristic of their meter. 

In the second phase, the patterns are played back and re-

combined. A new pattern is selected for playback on every 

beat. Playback is performed in a cyclic way; it restarts when 

reaching the end of the file. When a new a file is selected, 

playback always continues at the beat from where it was left 

in the previous file, always preserving the metrical position. 

The user controls the complexity of the resulted rhythm and 

the amount of variation by determining which patterns get 

selected for playback in an easy and intuitive way based on 

their order of complexity. 

2.1 Calculation of the complexity scores and sorting of 

MIDI drum loops 

Various approaches for measuring complexity in rhythmic 

patterns exist, such as pattern matching techniques [5], 

rhythmic syncopation measures [6] and analysis of the 

mathematical or geometrical properties of the patterns 

[6][7]. Here, we define a new one, which is based on the 

same principle as G. Toussaint’s metric complexity [6], 

which is a comparison of a rhythmic pattern against a tem-

plate characteristic of its meter. Unlike Toussaint’s ap-

proach that uses the template as a way of calculating the 

metrical accents, we use the template as the fundamental 

tool for analyzing and defining relationships between the 

events comprising the pattern. Moreover, unlike most meth-

ods for measuring complexity, which use a binary represen-

tation of the patterns and ignore the amplitudes of the 

events that comprise the pattern, we take into account the 

relative amplitudes of the events in our calculation. 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that cop-

ies bear this notice and the full citation on the first page.  
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 The user provides rhythmic patterns in the form of a col-

lection of MIDI files. The MIDI files are read and are quan-

tized according to a fixed quantization grid. This way each 

measure in a pattern is subdivided into pulses according to 

the time signature and the quantization grid. The quantiza-

tion grid value we use is the 32
nd

 note. Deviations from that 

grid are considered to be micro-timing deviations and they 

are not treated in the current analysis. An amplitude value is 

assigned to each pulse, according to the MIDI velocities 

found at that time position after the quantization.  

A metrical template that defines metrical hierarchy is 

constructed by stratifying the meter found in the MIDI files. 

This template consists of the metrical levels which comprise 

the meter. A “metrical accent” value is calculated and as-

signed to each pulse according to the metrical level it be-

longs to. Each rhythmic pattern found in the MIDI files is 

compared against the metrical template yielding a separate 

score for each pulse in the pattern. The result is further fil-

tered by the aforementioned values of the metrical accents. 

The calculated scores can be thought of as a measure of 

how much each pulse contradicts the metrical structure de-

scribed by the template and, in this sense, how much each 

pulse contributes to the syncopation of the pattern. Finally, 

a complexity score is assigned to each MIDI file taking into 

account, in addition to the syncopation, the density of MIDI 

events in each file.  

2.1.1 Constructing  rhythmic patterns from MIDI files 

The user provides the MIDI drum loops as a set of MIDI 

files with the same bar-length and time signature. The MIDI 

note-on events are extracted from each file and their posi-

tions are quantized to a 32
nd

 note grid. The lists of ampli-

tudes for each pulse in the meter (i.e., their velocity value) 

make the rhythmic patterns to be constructed. It is common 

in MIDI drum loops that each different MIDI note number 

corresponds to a different timbre, e.g. one note number for 

a kick drum sound and another for a hit cymbal. We con-

struct a different rhythmic pattern for each MIDI note num-

ber according to the MIDI velocity and time position of any 

note-on events corresponding to that note number. The final 

complexity score calculated for the MIDI file is obtained by 

averaging the scores of each rhythmic pattern constructed 

from the file. 

Two more ways of translating MIDI note-on events into 

rhythmic patterns are provided: one for single-timbre MIDI 

instruments, where all notes correspond to the same timbre 

with different pitch, and one for a general MIDI drum li-

brary. For single-timbre instruments, MIDI note numbers 

are ignored and a single rhythmic pattern is constructed by 

taking the maximum MIDI velocity in each pulse. For the 

General MIDI drum library case, different groups of MIDI 

note numbers correspond to different patterns, e.g. all hi-hat 

notes are grouped together to construct one rhythmic pat-

tern while other notes like bells are treated each one sepa-

rately.  

2.1.2 Constructing  the metrical template 

A metrical structure as the one described by F. Lerdahl and 

R. Jackendoff [8] can be constructed for each meter found 

in the MIDI files. It must be noted that in order for the met-

rical structure to be meaningfully in relation to the rhythmic 

patterns extracted from a MIDI file, we must assume that 

the meter of the template is in fact the meter of the patterns; 

that is, the time signatures found in the MIDI files are the 

actual time signatures of the drum loops contained in the 

files. 

The meter is stratified into metrical levels in a hierar-

chical manner so that each pulse belongs to a specific met-

rical level and all lower ones. In order to stratify the meter 

the number of pulses is decomposed into prime factors (see 

Figure 1). Each prime factor describes how each stratifica-

tion level is subdivided. Different permutations of the prime 

factors describe different metrical hierarchies. The stratifi-

cation process is described in detail in [9]. A simplified ver-

sion can also be found in [6]. A metrical accent value is as-

signed to each pulse based on the stratification level i it be-

longs to, following an exponential equation: 
i

iM 5.0    (1) 

Since the number of pulses in a certain meter is deter-

mined by the quantization grid, the lowest stratification lev-

el will always correspond to that grid. For the sake of sim-

 

Figure 1. Stratification of a 3/4 meter to the 16
th

 note level. 

Each pulse belongs to a stratification level and all lower 

ones.  
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plicity, in the examples presented here we omitted the 32
nd

 

note metrical level.  

2.1.3 Comparing the rhythmic patterns to the template 

The comparison of a rhythmic pattern to a metrical template 

is essentially a process of spotting the pulses in the rhythmic 

pattern that contradict the prevailing meter described by the 

template. In that sense, these pulses are mainly responsible 

for any syncopation present in the rhythmic pattern and the 

result of the comparison is a measure of that syncopation. 

Eliminating the events that occur regularly on the beat in 

some metrical level helps distinguishing the syncopating 

pulses. Events that occur regularly on the beat do not gener-

ate syncopation. The remaining events would be isolated 

ones, that mostly occur in low metrical levels, i.e. in “off-

beat” positions, and that contributes to the complexity more 

actively. For example, a cymbal hit on every quarter note 

beat with more or less the same amplitude contributes less 

than a snare that happens only at specific off-beat positions 

and contributes more to a more complex rhythm.  

In order to define how each pulse contributes to a steady 

beat, its relation to the rest of the pulses must be examined. 

We examine the relations between the pulses of the pattern 

in light of the metrical template, taking advantage of its hi-

erarchical character. Each metrical level is examined sepa-

rately, so that each pulse in a pattern is assigned a separate 

score for each metrical level it belongs to. A low score in a 

metrical level signifies that the pulse contributes to a steady 

beat in that level and therefore does not contradict the me-

ter, e.g. a quarter note surrounded by equally loud quarter 

notes has a low score in the quarter note metrical level, 

while a loud quarter note with no neighbors will have a 

higher score. After examining all metrical levels, the mini-

mum score for each pulse is kept. 

The score is calculated as the average difference of the 

amplitude of the pulse under consideration from the ampli-

tudes of the neighbor pulses in each metrical level. In the 

example of Figure 2, pulse number 5 gets three scores, one 

for each metrical level it belongs to, namely that of the 

quarter note (1), the eighth note (2) and the 16
th

 note (3). 

Each score is the average of the two differences of ampli-

tudes between pulse 5 and i) pulses 1 and 9 for metrical 

level 1, ii) pulses 3 and 7 for level 2 and, finally, iii) pulses 

4 and 6 for level 3. On the other hand, pulse 10 gets only 

one score (metrical level 3) arising from the two differences 

from pulses 8 and 11. Negative differences are always set 

equal to zero. 

One important feature of the metrical structure of the 

template is the alternation of metrical levels, in other words, 

the highest metrical level of a pulse is always different from 

the ones of its immediate neighbors. As a consequence, 

pulses in low metrical levels are always surrounded by 

pulses in higher levels and in most cases their neighbors al-

so belong to different metrical levels (see pulse 10 in Figure 

2). An isolated event in such a pulse produces a strong syn-

copation feel. This syncopation is stronger when the differ-

ence of the metrical levels of the pulses is larger. Compare, 

for example, any of the pulses 4, 6, 8 or 10 to pulses 2 or 

12. In the absence of an event in pulse 1, pulses 2 and 12 

create a stronger contradiction to the meter because pulse 1 

belongs to the highest metrical level (see Figure 3, A and 

B). Having this in mind, we introduced a weighting factor in 

the amplitude differences calculated above. This factor is 

proportional to the difference of the highest metrical level 

of the two pulses that the amplitudes are taken from. This 

way the amplitude difference between pulse 2 and 1 has 

more weight than the one between 6 and 5. Similarly, the 

amplitude difference between pulse 5 and 1 has more 

weight than that between 5 and 9.  

An important aspect of rhythmic patterns is the direction 

in which they are always performed. Time in music, as in 

everything else, flows in only one direction. Pulses succeed 

one another in a specific order. The relation of a pulse to its 

previous pulse is not equivalent to that to the following 

pulse. Two equally loud events one after another create the 

impression of an accent on the second event rather than on 

the first. Let us return to our example template of Figure 2. 

 

Figure 2. Pulse number 5 belongs to metrical levels 1, 2 

and 3. Pulse 10 belongs only to level 3.  

Figure 3. Left: The contradiction of the rhythmic pattern to 

the meter is greater in pattern B than in A since pulse 1 be-

longs to a higher metrical level than pulse 5. Right: A loud 

event before an accent (C) enforces the accent while a loud 

event after an accent (D) weakens the accent. 
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Consider the relation between pulse 7 and pulses 5 or 9. A 

loud event on pulse 7 affects differently a loud event on 

pulse 5 from one on pulse 10 (see Figure 3, C and D). In 

order to take into account this fact in our evaluation of how 

much an event contradicts the meter, the weights discussed 

in the amplitude differences calculations need to be modi-

fied, so that a smaller weight is to be given to the amplitude 

difference with the previous pulse than with the following 

one. 

The various pulses in a rhythmic pattern have a different 

potential in contradicting the prevailing meter, or syncopat-

ing, depending on which metrical levels they belong to. 

This syncopation potential can be thought of as the opposite 

of the metrical accent, which essentially is the potential of a 

pulse to contribute to a steady beat. A loud event in a pulse 

that belongs to a high metrical level (high metrical accent), 

does not have a lot of “chance” of contradicting the meter, 

even if it is isolated without any events in its vicinity. The 

scores calculated above represent how much a pulse contra-

dicts the meter with respect to its relation to its neighbors 

but do not take into account this syncopation potential. We 

therefore multiply the scores previously calculated by a fac-

tor proportional to the inverse of the metrical accent of 

equation (1). This way a pulse that belongs to metrical level 

0 could never contradict the meter, irrelevant of if an event 

exists in this or any other pulses of the meter. Of course, the 

absence of an event in a high level pulse creates the possi-

bility for an event in some other pulse, probably of a low 

metrical level, to produce a strong syncopation, but this is 

reflected on the syncopation potential of the low metrical 

level pulse.  

The last step taken in the calculation of our syncopation 

measure is to sum the scores of all pulses in the pattern and 

normalize the result. Normalization is performed by divid-

ing the result by the maximum possible sum for the meter 

and bar-length. This maximum is calculated by comparing 

against the metrical template a pattern in which all pulses of 

the lowest metrical level have maximum amplitudes and all 

other pulses have zero amplitude. 

As it was described in the previous paragraphs, the 

weights used in the amplitude differences are calculated ac-

cording to the metrical levels of the pulses and to whether 

the difference is taken from the previous or the following 

pulse. We set the exact weights empirically, by experiment-

ing with various combinations. For differences between 

pulses of the same metrical level the weight was set to be 

half of that between pulses which belong to the two extreme 

metrical levels. The difference from the previous pulse was 

set to the 80% of the weight of that from the next pulse. 

2.1.4 Examples of measuring syncopation 

In this section an illustrative example of the method for 

measuring syncopation is given. A short evaluation of the 

method follows, by measuring the syncopation of six clave 

and bell rhythms of the African, Brazilian and Cuban music. 

A similar comparison of other syncopation and complexity 

measures based on these patterns can be found in [6]. 

The two patterns of Figure 4 are compared against the 

same metrical template, namely that of a 3/4 meter. The on-

ly difference between the two patterns is found in pulse 9, a 

pulse that belongs to a high metrical level. In pattern A 

pulse 9 is silent while in pattern B it has maximum ampli-

tude. Although this difference does not cause any changes 

in the score of that pulse, it affects drastically the scores of 

the other pulses in the patterns. The two immediate neigh-

bors, pulse 8 and 10, both have maximum amplitudes. 

When no event exists in pulse 9, both pulses have high 

scores since no events exist in their vicinity, with that of 

pulse 8 being a little higher. In pattern B, the amplitude of 

pulse 9 causes both scores of pulses 8 and 10 to drop. This 

drop is larger for pulse 8, so that, pulse 8 now has a smaller 

score than pulse 10. This inversion in the relation of the 

scores of the two pulses is the result of the amplitude 

weights used. In the absence of an event in pulse 9, the pre-

vious pulse creates a stronger syncopation. In the presence 

of high amplitude in pulse 9, the following pulse weakens 

the accent, while the previous one tends to enforce it. Alt-

hough the difference is small, it can be of importance when 

sorting drum loops of the same music style with little differ-

ences. 

In the absence of an event in pulse 9, a small contribu-

tion in the total syncopation of pattern A arises in pulse 5. 

Pulse 5 and 9 are related through the quarter note metrical 

level. The contribution is small for two reasons. On one 

hand, because of the high amplitude of pulse 1 which be-

longs to a higher metrical level and therefore gets a higher 

weight than pulse 9. On the other hand, pulse 5 belongs to a 

pulse with a high metrical accent, so that its syncopation 

 

Figure 4. Two patterns (grey bars) compared to the same 

metrical template (dashed squares). The black bars repre-

sent the score of each separate pulse. The total syncopation 

score is shown above each pattern. 
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potential is low. 

In order to evaluate the syncopation measure described 

above, we measured six clave and bell rhythmic patterns, 

namely the Shiko, Son, Soukous, Rumba, Gahu and Bossa-

Nova. These patterns are all five-note patterns with 4/4 time 

signature and are some of the most frequently used in the 

African, Cuban and Brazilian music. 

In Figure 5 the six patterns are presented together with 

their syncopation scores. Dynamic accents were not consid-

ered; all pulses have either maximum amplitude or are 

completely silent. The black bars represent the relative con-

tribution of each pulse to the total syncopation score. The 

scores obtained by the calculations seem to agree with our 

experience that Shiko is the easiest pattern, Rumba is of 

medium complexity and Gahu and Bossa-Nova are amongst 

the most difficult to perform. The order from simple to 

complex is also in agreement with the cognitive complexity 

measure proposed by J. Pressing (see [5] and [6]).  

2.1.5 Calculating the complexity of a MIDI file 

The complexity of a drum loop can be thought of as a vec-

tor in a two dimensional space, where one dimension is the 

density of the events and the other is the syncopation. The 

length of the vector is the complexity score. The syncopa-

tion measure is already normalized and can be directly used 

as one of the coordinates of the vector. The density of 

events is calculated as the sum of all the MIDI velocities 

found in the MIDI file. This sum represents an effective 

density, since it does not correspond to the number of 

events in the pattern. This number needs to be normalized 

before it can be used as a coordinate in our complexity 

plane. We normalize the density by dividing with the largest 

density value in the collection of MIDI files provided by the 

user. The total complexity of a file is then calculated as: 

22 nsyncopatiodensityComplexity          (2) 

This is the value used to sort the MIDI files, from the 

most simple to the most complex.  

2.2 Recombining the rhythmic patterns 

The sorted MIDI files form a two dimensional space, where 

the vertical dimension represents their order of complexity 

and the horizontal represents their evolution in time (see 

Figure 6). All files share the same time signature and have 

the same bar-length and, therefore, are perfectly aligned. 

 A global transport controls the current playback position 

which is common to all files. The tempo of each file is ig-

nored and the playback follows the transport's tempo, con-

trolled in real time by the user. Playback is performed in a 

loop. At every beat, a new file is randomly selected and 

playback continues in this file at the current transport's posi-

tion (see Figure 6), preserving always the metrical position.  

The duration of the recombination beat is defined according 

to the time signature, e.g. in a 4/4 meter, the beat would 

correspond to the quarter notes. 

Instead of selecting a file out of the whole collection of 

the provided MIDI files, the selection process is restricted 

to a smaller collection of files. During the performance, the 

user controls the resulted rhythm by controlling in real time 

the range of files, from the simplest to the most complex 

that can be selected for playback. Increasing the range leads 

to more variation in the resulted rhythm, while moving the 

entire range vertically to more or less complex patterns con-

trols the complexity of the rhythm. 

The output of the recombination algorithm undoubtedly 

depends on the provided MIDI files. In order for the output 

to be coherent, all files should belong to the same music 

style. When the files have a similar structure, either a large 

 

Figure 5. The syncopation of the six fundamental 4/4 clave 

and bell patterns is measured.  

 

Figure 6. The rhythmic patterns, sorted from simple to 

complex, are selected for playback at regular intervals. An 

example of three patterns (middle) and their recombination 

(right) for two complexity values, simple (bottom) and 

complex (top) are shown. 
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scale structure consisting of several bars, or at the beat lev-

el, this structure will be reflected also in the outcome of the 

recombination. This comes about as a direct result from us-

ing a global transport to control playback.   

3. MAX/MSP APPLICATION 

The algorithm has been implemented as the 

kin.recombinator Max/MSP application. A collection of 

Max/MSP externals, java classes suitable to be loaded to 

the mxj Max/MSP object and Max/MSP abstractions were 

developed as parts of the application.  

The user drags and drops a folder containing MIDI files 

into the Max/MSP application. The files are automatically 

sorted and the global Max/MSP transport controls play-

back. The user can graphically control the range of files be-

ing recombined at any one time with a range slider like the 

one in Figure 7.  

The MIDI files are read and quantized to the 32
nd

 note 

level by the java class kinMIDIFileReader. Rhythmic pat-

terns are constructed in the form of lists of amplitudes and 

are passed together with the respective time signatures to a 

subpatch where the effective density and syncopation score 

are calculated by the kin.OffBeatDetector Max/MSP exter-

nal.  

The score is then stored in a collection object. After fin-

ishing calculating the scores for all the files, the files are 

sorted according to their scores. 

The kin.RecombineMIDIFiles abstraction is performing 

the playback. It selects at every beat a new file for playback 

which is read by the kin.MIDIFileReader. 

The kin.recombinator Max/MSP application, as well as a 

Max/MSP patch for testing out the syncopation measure can 

be downloaded at the group’s web site: 

http://smc.inescporto.pt/kinetic/ 
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ABSTRACT 

Machine learning and artificial intelligence have great po-
tential to help researchers understand and classify musical 
scores and other symbolic musical data, but the difficulty of 
preparing and extracting characteristics (features) from 
symbolic scores has hindered musicologists (and others 
who examine scores closely) from using these techniques. 
This paper describes the “feature” capabilities of music21, 
a general-purpose, open source toolkit for analyzing, 
searching, and transforming symbolic music data. The fea-
tures module of music21 integrates standard feature-
extraction tools provided by other toolkits, includes new 
tools, and also allows researchers to write new and power-
ful extraction methods quickly. These developments take 
advantage of the system’s built-in capacities to parse di-
verse data formats and to manipulate complex scores (e.g., 
by reducing them to a series of chords, determining key or 
metrical strength automatically, or integrating audio data). 
This paper’s demonstrations combine music21 with the 
data mining toolkits Orange and Weka to distinguish works 
by Monteverdi from works by Bach and German folk mu-
sic from Chinese folk music. 

1. INTRODUCTION 

As machine learning and data mining tools become ubiqui-
tous and simple to implement, their potential to classify da-
ta automatically, and to point out anomalies in that data, is 
extending to new disciplines. Most machine learning algo-
rithms run on data that can be represented as numbers. 
While many types of datasets naturally lend themselves to 
numerical representations, much of the richness of music 
(especially music expressed in symbolic forms such as 
scores) resists easily being converted to the numerical 
forms that enable classification and clustering tasks.  

The amount of preprocessing needed to extract the most 
musically relevant data from notation encoded in Finale or 
Sibelius files, or even MIDI files, is often underestimated: 
musicologists are rarely content to work only with pitch 
classes and relative note lengths—to name two easily ex-
tracted and manipulated types of information. They also 
want to know where a pitch fits within the currently im-
plied key, whether a note is metrically strong or weak, what 
text is being sung at the same time, whether chords are in 
open or closed position, and so on. Such processing and 
analysis steps need to run rapidly to handle the large reper-
tories now available. A robust system for data mining needs 
to integrate reliable and well-developed classification tools 
with a wide variety of methods for extracting data from 
large collections of scores in a variety of encodings. 

The features module newly added to the Python-
based, open source toolkit music21, provides this needed 
bridge between the demands of music scholars and of com-
puter researchers. Music21 [3] already has a well-
developed and expandable framework for importing scores 
and other data from the most common symbolic music for-
mats, such as MusicXML [4] (which Finale, Sibelius, 
MuseScore, and other notation software can produce), 
Kern/Humdrum [6], CCARH’s MuseData [11], Notewor-
thy Composer, the common folk-music format ABC [10], 
and MIDI. Scores can easily be transformed from symbolic 
to sounding representations (by uniting tied notes or mov-
ing transposing instruments to C, for instance); simultanei-
ties can be reduced to chords that represent the pitches 
sounding at any moment; and the key or metrical accents of 
a passage can be analyzed (even for passages that change 
key without a change in key signature).  

The features module expands music21’s data mining 
abilities by adding a battery of commonly used numeric 
features, such as numerical representations of elements pre-
sent or absent in a piece (0s or 1s, used, for example, to in-
dicate the presence of a change in a time signature), or con-
tinuous values representing prevalence (for example, the 
percentage of all chords in a piece that are triadic). Collec-
tions of these features can be used to train machine learning 
software to classify works by composer, genre, or dance 
type. Or, making use of notational elements found in cer-
tain input formats, they could classify works by graphical 
characteristics of particular interest to musicologists study-
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ing the reception of the work. Such graphical elements 
might identify the scribe, editor, or publisher of a piece. 

In the following sections, we will describe the feature-
extraction methods (FEMS) of music21. Because music21 
has many powerful, high-level tools for analysis and trans-
formation, FEMS can be tailored to the characteristics of 
particular repertories and can be combined to create more 
powerful FEMS than those available in existing software 
packages. This paper describes how new FEMS can be add-
ed to music21 and demonstrates their usefulness in classi-
fying both classical and popular works. 

2. FEATURE EXTRACTION IN MUSIC21 

2.1 Feature Extractors from jSymbolic 

One of the most useful aspects of the Features module is 
the integration of 57 features of the 111 implemented in 
Cory McKay’s jSymbolic toolkit [9], a subset of his larger 
jMIR toolkit that classifies music encoded in MIDI [8].  
(Music21 aims for full jSymbolic compatibility in the near 
future.) Because music21 is “encoding agnostic,” files in 
any supported format now have access to these FEMS, so 
that MusicXML and ABC files (among others) can, without 
conversion, be run through the same extractors that jSym-
bolic provided for MIDI files. In addition, Music21 FEMS 
are optimized so that closely related feature extractors that 
require the same preprocessing routines automatically use 
cached versions of the processed data, rather than recreat-
ing it.  

Example 1 shows how a single feature extractor, bor-
rowed from jSymbolic, can be applied to data from several 
different sources and datatypes. While using a single fea-
ture extractor on one or two works is not a useful way to 
classify these works, it is a convenient and informative way 
to understand the system and test the FEMS. All FEMS have 
documentation and code examples on the music21 website 
at http://mit.edu/music21. The website also gives instruc-
tions for obtaining and installing the software, as well as 
tutorials and references on using the toolkit. 

Example 1 shows how the fraction of ascending notes 
in a movement of Handel’s Messiah (encoded as MuseDa-
ta) can be found. 
 
from music21 import * 
handel = corpus.parse('hwv56/movement3-05.md') 
fe = features.jSymbolic.\ 
         DirectionOfMotionFeature(handel) 
feature = fe.extract() 
print feature.vector 
[0.5263] 

Example 1. Feature extraction on a MuseData score. 

Example 2 shows feature extraction run first on a lo-
cal file, and then on a file from the Internet. The feature ex-
tractor determines whether the initial time signature is a tri-
ple meter and returns 1 or 0.  The result is returned in a Py-
thon list, since some FEMS return an array of results, such as 
a 12-element histogram showing the count of each pitch 
class.  Like Example 1, this example uses file formats 
(ABC and MusicXML) that cannot be directly processed 
by jSymbolic. (In all further examples, the initial line, 
“from music21 import *” is omitted.) 
 
# a 4/4 basse danse in ABC format 
bd = converter.parse("/tmp/basseDanse20.abc") 
fe = features.jSymbolic.TripleMeterFeature(bd) 
print fe.extract().vector 
[0] 
# softly-softly by Mark Paul, in 3/4 
soft = converter.parse( 
 "http://static.wikifonia.org/10699/musicxml.xml") 
fe.setData(soft) 
print fe.extract().vector 
[1] 

Example 2. A local file and a web file in two different 
formats run through a triple-meter feature extractor. 

2.2 Feature Extractors Native to music21  

In addition to recreating the feature extraction methods of 
jSymbolic, music21’s features.native sub-module includes 
17 new FEMS. These FEMS take advantage of the analytical 
capabilities built into music21, its ability to work with no-
tational aspects (such as a note’s spelling or representation 
as tied notes), or the richer, object-oriented programming 
environment of Python. For example, native music21 
FEMS can distinguish between correctly or incorrectly 
spelled triads within a polyphonic context. (The Incorrect-
lySpelledTriadPrevalence FEM, called on Mozart’s pieces, 
returns approximately 0.5% of all triads, mostly reflecting 
chromatic lower neighbors). Notational features that do not 
affect playback, such as a scribe’s predilection for beaming 
eighth notes in pairs (as opposed to in groups of four) in 
4/4, can similarly form the basis for feature extraction. Fea-
ture extractors can also use a work’s metadata, along with 
the larger capabilities of the Python language, to add pow-
erful classification methods. An example of this is the 
ComposerPopularity feature, which returns a base-10 loga-
rithm of the number of Google hits for a composer’s name 
(see Example 3). 
s = corpus.parse('mozart/k155', 2)  
print s.metadata.composer 
W. A. Mozart 
fe = features.native.ComposerPopularity(s) 
print fe.extract().vector 
[7. 0334237554869485] 
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Example 3. The ComposerPopularity feature extractor re-
ports that there are about 10 million Google results, or ap-
proximately 107, for the form of Mozart’s name encoded 
in the version of K155 movement 2 that appears in the 
music21 corpus, a collection of approximately ten thou-
sand works provided with the toolkit. 

Several of the native FEMS are adaptations of jSym-
bolic extractors, expanded by capabilities offered by other 
modules in music21. For instance, McKay’s “Quality” 
feature classifies a piece as either in major or in minor 
based on information encoded within the initial key signa-
ture of some MIDI files. For files without this information, 
music21’s enhancement of this FEM (fea-
tures.native.QualityFeature) will also run a Krumhansl-
Schmuckler probe-tone key analysis (with the default 
Aarden-Essen weightings) [7] on the work to determine the 
most likely mode. The native module also includes many 
chord-related FEMS that were proposed by McKay but not 
included in the present release of jSymbolic. 

2.3 Writing Custom Feature Extractors 

One of the strengths of music21’s feature system is the 
ease of writing new FEMS. After inheriting the common su-
perclass FeatureExtractor, new FEMS can be created and 
used alongside existing FEMS. The core functionality is im-
plemented in a private method called _process(), which sets 
the values of the vector of an internally stored Feature ob-
ject. The FeatureExtractor superclass provides automatic 
access to a variety of presentations of the score, from a flat 
representation (using the .flat property) to a reduction as 
chords, along with  histograms of commonly requested mu-
sical features such as pitch class or note duration. These 
representations are cached for quicker access later as keys 
on a property called data (such as self.data['chordify']). The 
object also allows direct access to the source score through 
the stream property. 

Example 4 creates a new feature extractor that reports 
the percentage of notes that contain accidentals (including 
double sharps and flats, but excluding naturals) that are not 
B-flats. This feature could help chart the increased usage 
over the course of the Renaissance of musica ficta, that is, 
chromatic notes beyond B-flat (the only accidental common 
to Medieval and Renaissance music). 
# Feature Extractor definition 
class MusicaFictaFeature( 
             features.FeatureExtractor): 
 name = 'Musica Ficta' 
 discrete = False 
 dimensions = 1 
 id = 'mf' 
     
 def _process(self): 
  allPitches = self.stream.flat.pitches 
  # N.B.: self.data['flat.pitches'] works  
  # equally well and caches the result for  

  # faster access by other FEMS. 
  fictaPitches = 0 
  for p in allPitches: 
   if p.name == "B-": 
    continue 
   elif p.accidental is not None \ 
     and p.accidental.name != 'natural': 
    fictaPitches += 1 
  self._feature.vector[0] = \ 
     fictaPitches / float(len(allPitches)) 
 
# example of usage of the new method on two pieces 
# (1) D. Luca early 15th c. Gloria 
luca = corpus.parse('luca/gloria.mxl') 
fe = MusicaFictaFeature(luca) 
print fe.extract().vector 
[0.01616915422885572] 
# (2) Monteverdi, late 16th c. madrigal  
mv = corpus.parse('monteverdi/madrigal.3.1.xml') 
fe.setData(mv) 
print fe.extract().vector 
[0.05728727885425442] 

Example 4. A custom feature extractor to find musica fic-
ta, applied to an early 15th-century Gloria and a late 16th-
century madrigal. 

3. MULTIPLE FEATURE EXTRACTORS AND 
MULTIPLE SCORES 

Since the previous examples have extracted single features 
from one or two scores, similar results could have just as 
well been obtained through the object model or analytical 
routines of the music21 toolkit. But machine learning 
techniques require a large group of scores and many fea-
tures. The features module shines for such studies by mak-
ing it easy and, through caching, fast to run many scores (or 
score excerpts) through many FEMS, and to graph the results 
or output them in the formats commonly used by machine 
learning programs. 

3.1 Extracting Information from DataSets 

The DataSet object of the features module is used for clas-
sifying a group of scores by a particular class value using a 
set of FEMS. Its method addFeatureExtractors() takes a list 
of FEMS that will be run on the data. (For ease of getting a 
large set of FEMS, each feature extractor has a short id 
which allows it to be found by the method extractorsById(). 
The special id “all” gets all feature extractors from both na-
tive and jSymbolic libraries.) The addData() method adds a 
music21 Stream [1] (i.e., a score, a part, a fragment of a 
score, or any other symbolic musical data) to the DataSet, 
optionally specifying a class value (such as the composer, 
when the task at hand is classifying composers) and an id 
(such as a catalogue number or file name). For conven-
ience, addData() can also take a string containing a file 
path to the data (in any of several formats), a URL to the 
score on the internet, or a reference to the work in the mu-
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sic21 corpus. Example 5 sets up a DataSet to run three 
FEMS related to note length on four pieces: two by Bach, 
one by Handel, and an “unknown” work (also by Handel).  
If a file has been read in once and is unmodified since the 
last reading, its parsed version is cached in a Python “pick-
le” file for quicker reading in subsequent runs. 

ds = features.DataSet(classLabel='Composer') 
fes = features.extractorsById(['ql1','ql2','ql3']) 
ds.addFeatureExtractors(fes) 
 
b1 = corpus.parse('bwv1080', 7).measures(0,50) 
ds.addData(b1, classValue='Bach', id='artOfFugue') 
ds.addData('bwv66.6.xml', classValue='Bach') 
ds.addData('c:/handel/hwv56/movement3-05.md',  
              classValue='Handel') 
ds.addData('http://www.midiworld.com/midis/other/h
andel/gfh-jm01.mid') 
ds.process() 

Example 5. Setting up and processing a DataSet with 
three FEMS and four scores. 

Extracting the data from a DataSet is simple once pro-
cess() has been called.  The simplest way of getting the 
output of multiple feature extractors is through DataSet’s 
write() method, which can take a filename or a file format 
(if no file path is given, a file is saved to the user’s “temp” 
directory). File formats are specified as strings that call the 
appropriate OutputFormat object. Music21 comes with 
OutputFormats for comma-separated values (csv), tab-
delimited output (tab) for Orange, and Attribute-Relation 
File Format (arff) for Weka. The OutputFormat object is 
subclassable, so additional formats for R, Matlab, native 
Excel (an .xls reader/writer is packaged with music21), or 
json (for Java, Max/MSP, or other systems) can easily be 
developed.  

Other ways of obtaining extracted features include 
DataSet’s getFeaturesAsList() method, which returns a list 
of lists, one list of feature results for each piece, and 
getString(), which returns the data as a single string in any 
of the supported formats. If the optional Python package 
Matplotlib is installed, the data can also be graphed from 
within music21. Finally, because the DataSet is fully inte-
grated with the rest of the toolkit, specific Streams can be 
examined in notation. Example 6 takes the DataSet object 
from Example 5 and examines it in several ways.  Part (a) 
writes it out as an comma-separated file; (b) prints the at-
tribute labels; (c) gets the entire feature output as a list of 
lists and prints one line of it; (d) displays the entire feature 
data in OrangeTab output. Part (e) examines the feature 
vectors and displays as pngs (via Lilypond) any scores 
where the most common note value is an eighth note 
(length = 0.5); the resulting output contains the two Handel 
scores. Part (f) plots the last two features (most common 
note length and the prevalence of that length) for each 
piece. 
 

(a) 
ds.write('/usr/cuthbert/baroqueQLs.csv') 
 
(b) 
print ds.getAttributeLabels() 
['Identifier', 'Unique_Note_Quarter_Lengths', 
'Most_Common_Note_Quarter_Length', 
'Most_Common_Note_Quarter_Length_Prevalence', 'Composer'] 
 
(c) 
fList = ds.getFeaturesAsList() 
print fList[0] 
['artOfFugue', 15, 0.25, 0.6287328490718321, 'Bach'] 
 
(d) 
print features.OutputTabOrange(ds).getString() 
Identifier Unique_Note… Most_Common… Most_Com..Prevalence Composer 
string discrete continuous continuous discrete 
meta    class 
artOfFugue 15 0.25 0.628732849072 Bach 
bwv66.6.xml 3 1.0 0.601226993865 Bach 
hwv56/movem… 7 0.5 0.533333333333 Handel 
http://www.mid... 14 0.5 0.768951612903  

 
(e) 
for i in range(len(fList)): 
  if fList[i][2] == 0.5: 
    ds.streams[i].show('lily.png') 

[HWV 56 3-5, from the Messiah] 

 
[“Mourn ye afflicted Children,” from Judas Maccabaeus] 

 
(f) 
p = graph.PlotFeatures(ds.streams, 
           fes[1:], roundDigits = 2) 
p.process() 

 
Example 6. Viewing the contents of a DataSet object. 
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3.2 Using Feature Data for Classification 

Once the DataSet object has been plotted or viewed as mu-
sical data to check the results for obvious errors, then the 
outputted data can be fed into any number of standard data 
mining packages for analyses such as clustering or classifi-
cation. The package Orange (http://orange.biolab.si) inte-
grates well with music21 since it provides a Python inter-
face to its classification algorithms (in addition to having a 
GUI); other toolkits such as Weka [5] can also easily be 
used. Below, we include sample code for using Orange, but 
the results of Examples 8 and 9 were produced in Weka. 
Complete code examples, along with our sample data, can 
be found in the demos directory in the music21 distribu-
tion.   

4. DEMONSTRATIONS AND RESULTS 

We end this paper with two demonstrations of the power of 
feature extraction in music21 to enable automatic classifi-
cation of musical styles and composers from symbolic data 
encoded in many formats. The first example uses 24 pitch- 
and rhythm-based feature extractors (p1–16, 19–21, and 
r31–35) to classify monophonic folksongs from four files 
in the Essen folksong database as being from either China 
or Central Europe (mostly Germany). Two files, 
folkTrain.tab and folkTest.tab, are created according to the 
same model as Example 5. (Full source for this part of the 
example is available in the music21 distribution as de-
mos/ismir2011/prepareChinaEurope().) The files contain 
969 and 974 songs, respectively, and the extractors de-
scribed above result in 174 features, although about half are 
discarded during preprocessing because they have the same 
value for every song.  

Example 7 applies two classification methods (or 
learners) to the pair of data files, using the songs in the first 
file for training the classifier and those in the second for 
testing (i.e., validating) the classifier’s predictions. The first 
method, MajorityLearner, simply chooses the classification 
that is most common in the training data (e.g., for the data 
in Examples 5-6, it would label the unknown data as Bach, 
because Bach is represented twice as often as Handel in the 
labeled data), and thus reports a baseline accuracy for other 
classification methods to be measured against. The second 
method, k-nearest neighbors (kNN) [12], assigns to each 
test example the majority label among the k most similar 
training examples. After assigning an origin to each song in 
folkTest, the program consults the correct answer or 
“ground truth,” and in the end it prints the fraction of songs 
correctly labeled by each classifier: 69% for the baseline 
(MajorityLearner) and over 94% for kNN. The perfor-
mance of kNN over MajorityLearner stands only to in-
crease with the development, in the near future, of FEMS 
more suited to the nuances of folk music. 
 

import orange, orngTree 
trainData = orange.ExampleTable('/folkTrain.tab') 
testData  = orange.ExampleTable('/folkTest.tab') 
 
majClassifier = orange.MajorityLearner(trainData) 
knnClassifier = orange.kNNLearner(trainData) 
     
majWrong = 0 
knnWrong = 0 
     
for testRow in testData: 
  majGuess = majClassifier(testRow) 
  knnGuess = knnClassifier(testRow) 
  realAnswer = testRow.getclass() 
  if majGuess == realAnswer: 
    majCorrect += 1 
  if knnGuess = realAnswer: 
    knnCorrect += 1 
    
total = float(len(testData)) 
print majCorrect/total, knnCorrect/total 
0.68788501026694049 0.94353182751540043 

Example 7. Using data output from the features module of 
Music21 to classify folksongs in Orange. 
 
In Example 7, the training and testing data are split approx-
imately 50-50. We can increase both the amount of data 
used to train the models and the number of predictions they 
make by using a technique called 10-fold cross-validation. 
Example 8 shows the results of doing this, on the same da-
ta, using a variety of classifiers in Weka. 
 

Classifier Accuracy 
Majority (baseline) 63% 
Naïve Bayes 79% 
Naïve Bayes (using supervised  
       discretization option) 

91% 

Decision tree 93% 
Logistic regression 95% 
K-nearest neighbor (using k = 3) 96% 

Example 8. Accuracy of classifiers for distinguishing 
Chinese from Central European folk music. 

While kNN was the best classifier in all our experi-
ments, decision tree-based classification systems [2] can be 
helpful for users wishing to understand how a classifier  
decides which features are important. Example 9 shows a 
decision tree built to distinguish the vocal works of Bach 
and Monteverdi. Given a data set of 46 works from each 
composer, and the same features used previously, the clas-
sifier has selected just 6 features as informative when 
building this tree. (In a 10-fold cross-validation experiment, 
trees like this achieved about 86% classification accuracy.)  

Although it is not always possible to explain the algo-
rithm's choices intuitively, some of them make sense upon 
examination. For example, although Monteverdi uses 
sharped notes, he does not ever use sharps in his key signa-
tures, and thus sharped notes remain uncommon in his 
pieces. The decision tree picks up on this predilection in its 
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top-level split, the single most informative rule learned (fi-
nal line of Example 9): if more than 14.4% of the piece’s 
notes are MIDI note 54 (F#3), then the piece is by Bach 
(true all 30 out of 30 times in the data set).  
 
Basic_Pitch_Histogram_54 <= 0.144578 
| Initial_Time_Signature_0 <= 3: Bach (4.0) 
| Initial_Time_Signature_0 > 3 
| | Range <= 32: Bach (6.0) 
| | Range > 32 
| | | Basic_Pitch_Histogram_64 <= 0.05: Bach (3.0) 
| | | Basic_Pitch_Histogram_64 > 0.05 
| | | | Basic_Pitch_Histogram_60 <= 0.921569: Monteverdi (47.0/1.0) 
| | | | Basic_Pitch_Histogram_60 > 0.921569 
| | | | | Relative_Strength_of_Top_Pitches <= 0.96875: Bach (4.0) 
| | | | | Relative_Strength_of_Top_Pitches > 0.96875: Monteverdi (2.0) 
Basic_Pitch_Histogram_54 > 0.144578: Bach (30.0) 

Example 9. Decision tree algorithm applied to distinguish 
Bach and Monteverdi’s choral pieces. 

The results of these classification tests of folk and baroque 
music demonstrate music21’s utility in automatically de-
termining musical style from a score without human inter-
vention. Sophisticated style analysis tools open up oppor-
tunities in other areas, such as more accurate notation and 
playback. For instance, a program could choose appropriate 
instruments for digital performance depending on the esti-
mated location in which the piece was composed: fiddles 
for Irish jigs, kotos and shō for Japanese folk music. By 
lowering the barriers to using feature extraction, music21 
can bring the fruits of MIR to a wide audience of computer 
music professionals.  

5. FUTURE WORK 

Though these tools are extremely powerful already, the de-
velopment of new FEMS in music21 and application of the-
se features to the classification of musical scores is still in 
its infancy. The authors and the music21 community will 
continue to add new feature extractors to solve problems 
that range from assigning composer names to anonymous 
works of the Middle Ages and Renaissance, to genre classi-
fication of popular music leadsheets. to charting the slow 
change in use of chromatic harmony in the nineteenth cen-
tury. More sophisticated data mining tools such as support 
vector machines and clustering algorithms can be explored 
to improve the accuracy of the classification methods. The 
newest releases of music21 can take audio data as input; 
thus we hope to combine MIR of symbolic music data with 
feature extraction methods applied to audio files, inching 
closer to the goal of creating software for sophisticated mu-
sical listening. 
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ABSTRACT

Hierarchical music analysis, as exemplified by Schenkerian
analysis, describes the structure of a musical composition
by a hierarchy among its notes. Each analysis defines a set
of prolongations, where musical objects persist in time even
though others are present. We present a formal model for
representing hierarchical music analysis, probabilistic in-
terpretations of that model, and an efficient algorithm for
computing the most probable analysis under these interpre-
tations. We represent Schenkerian analyses as maximal out-
erplanar graphs (MOPs). We use this representation to en-
code the largest known data set of computer-processable
Schenkerian analyses, and we use these data to identify sta-
tistical regularities in the human-generated analyses. We
show that a dynamic programming algorithm can be ap-
plied to these regularities to identify the maximum likeli-
hood analysis for a given piece of music.

1. INTRODUCTION

Schenkerian analysis [13] is a widely used and well-developed
approach to music analysis. Analyses interpret composi-
tions as a hierarchical structure of musical events, allow-
ing a user to view a tonal composition as a collection of
recursive musical elaborations of some fundamental struc-
ture. The method of analysis starts from the original com-
position and produces a sequence of intermediate analyses
illustrating successive simplifications or reductions of the
musical structure of the piece, ultimately arriving at an irre-
ducible background structure. Each reduction is a claim that
a group of musical events (such as notes, intervals, or har-
monies) X derives its function within the composition from
the presence of another group of events Y , and therefore
the overarching musical structure of the collection X ∪Y is
determined predominantly by the events in Y . In Schenke-
rian terms, we often say the events in X constitute a pro-
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c© 2011 International Society for Music Information Retrieval.

longation of the events in Y , in that the events in Y remain
“in effect without being literally represented at every mo-
ment.” [2]

Schenker’s ideas may be viewed as a set of tools for con-
structing a hierarchical analysis of a composition according
to the analyst’s own musical intuition, or as theory of tonal-
ity such that every tonal composition, and only tonal compo-
sitions, should be derivable from the “rules” of Schenkerian
analysis [1, 15].

Opinions differ about the underlying goals of Schenke-
rian analysis. However, one thing is clear: Schenker’s ideas
alone do not prescribe an unambiguous and complete algo-
rithm for analysis. That said, generations of music theo-
rists have used Schenker’s ideas to construct analyses. In
this paper, we pursue an empirical strategy for discovering
the underlying regularities of those analyses and producing
new analyses based on those regularities. Specifically, we
derive statistical regularities from the largest known corpus
of machine-readable Schenkerian analyses, and we identify
an algorithm for deriving the maximum likelihood analysis,
given these regularities. We demonstrate that the algorithm
can reproduce the likelihood ranking implied by a proba-
bility distribution over possible analyses. Together, these
findings provide the foundation of an empirical strategy for
unlocking the basic concepts underlying any method of hi-
erarchical music analysis.

2. REPRESENTATIONS AND ALGORITHMS FOR
SCHENKERIAN ANALYSES

Tree-like data structures are natural representations for hier-
archies. Combined with the Schenkerian idea of the analysis
procedure revealing multiple levels of musical structure in a
composition, many researchers have used different types of
trees to represent an analysis and the structural levels within.

A commonly used tree representation of an analysis uses
leaf nodes to represent notes or chords of the original com-
position, and interior nodes to represent Schenkerian reduc-
tions of each node’s children. This formulation has been
used by Frankel, Rosenschein and Smoliar [3,4], Rahn [12],
Lerdahl and Jackendoff [8], Marsden [9, 10] and Kirlin [7].
Algorithms for analysis that use such representations have
had varying levels of success [6, 10, 11, 14].
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Yust argues for using a hierarchy of melodic intervals—
the spaces between the notes—rather than the notes or chords
themselves. He contends that such a hierarchy of inter-
vals better reflects Schenker’s original ideas and reduces
the size of the search space of analyses [15]. Mavromatis
and Brown [11] and Gilbert and Conklin [5] also suggest
an interval-based hierarchy would alleviate some represen-
tational problems.

Consider Figure 1(a), an arpeggiation of a G major triad
with passing tones between the notes of the chord. Rep-
resenting this musical figure as a hierarchy of notes forces
us to choose a single parent note for each passing tone, ob-
scuring the nature of a passing tone as a voice-leading con-
nection from one note to another. Using a hierarchy among
intervals between the notes, however, allows us to represent
the musical structure as the tree in Figure 1(b). If we then
replace the nodes of this tree with edges, we obtain the rep-
resentation in Figure 1(c), a particular kind of graph called
a maximal outerplanar graph, or MOP, a representation for
musical analysis first suggested by Yust [15]. MOPs are
isomorphic to binary trees representing interval hierarchies
such as that in Figure 1(b), though because the MOP does
not duplicate notes as the tree does, it is a more compact
representation of the hierarchy.

!!"# !! !!(a)

(b)

(c)

D–G
D–B B–G

D–C C–B B–A A–G

D G
B

C A
Figure 1. (a) An arpeggiation of a chord with passing tones.
(b) A hierarchy among the melodic intervals in the arpeggia-
tion. (c) The MOP corresponding to the arpeggiation.

Every MOP defined on a given sequence of notes is a
triangulation of the polygon formed by the edges between
consecutive notes and the edge from the first note to the
last note. Each triangle in the MOP specifies a prolongation
among three notes; we will occasionally refer to a triangle
as containing two parent notes and a single child note, or
a single parent interval and two child intervals. Either in-
terpretation is musically correct: the left parent note is pro-
longed by the child note during the time span between the
left and right parent notes, or the melodic interval between
the left and right parent notes is prolonged by the motion to
and away from the child note.

Because every prolongation requires two parent notes, in-
complete prolongations, such as incomplete neighbor notes,
present a representational challenge in MOPs. Yust argues

that in these situations, it is appropriate to have the nearest
structural note substitute for the missing parent note. To al-
low for incomplete prolongations at the beginning or ending
of a piece, the MOP model places special “initiation” and
“termination” events at the beginning and ending of the pas-
sage being analyzed that may be used as parents for such
prolongations.

The MOP model offers a new look at representation of
analyses that more closely parallels Schenkerian analysis in
practice due to the MOP’s emphasis on preserving voice
leading connections. Further discussion of MOPs may be
found in Yust’s dissertation [15].

3. A GENERALIZATION OF MOP: OPC

The definition of a MOP stated above can only handle a sin-
gle monophonic sequence of notes, though the model can
be extended to allow for a single structure to represent the
analysis of a contrapuntal or polyphonic composition [15].
However, in the interest of simplicity, we have chosen to
store such analyses as collections of separate MOPs occur-
ring simultaneously in time. For instance, in a two-voice
composition, there would be one MOP to represent the up-
per voice, and one MOP to represent the lower voice. Tak-
ing both MOPs together as a collective representation of an
analysis gives us an OPC (outerplanar graph collection).

The OPC representation also relaxes one restriction on
the constituent MOPs, namely that the polygon formed by
the edges connecting the notes of the composition must be
completely triangulated. This is allowed because many anal-
yses done by humans contain prolongations with multiple
child notes. Such prolongations must necessarily be repre-
sented by polygons larger than triangles; in general, a pro-
longation with n children will be represented in an OPC by
a polygon with n+ 2 sides.

We devised a text-based file format that can encode many
of the annotations found in a Schenkerian analysis, includ-
ing any type of prolongation (such as passing tones, neigh-
bor tones, and similar diminutions), voice exchanges, ver-
ticalizations of notes, repeated notes merged in an analy-
sis, and instantiations of the Ursatz (the fundamental back-
ground structure posited by Schenker). The format is easy
for the human to input and easy for the computer to parse.
We also developed an algorithm to convert an analysis in
this encoding into an OPC.

4. EXPLORATION OF ANALYSES AS MOPS

We collected a set of eight excerpts of music along with
Schenkerian analyses of the excerpts. The excerpts and anal-
yses were drawn from Forte and Gilbert’s Introduction to
Schenkerian Analysis [2] and the accompanying instructor’s
manual, and were chosen for their similar characteristics:
they are all from compositions for a keyboard instrument in
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a major key, do not modulate within the excerpt, and have a
complete instance of the Ursatz, possibly with an interrup-
tion. The analyses were algorithmically translated to OPCs.
The data set contained 66 measures of music and 617 notes.
Overall, 270 prolongations were translated into 356 poly-
gons in the OPCs. Though small, this corpus represents
the largest known data set of machine-readable Schenkerian
analyses. 1

Because we are interested in prolongational patterns and
each triangle in a MOP specifies the prolongation of an in-
terval by two other intervals, we examined how often certain
types of triangles occurred in the human-produced analyses
represented as OPCs. We defined a triangle by an ordered
triple of the size of the parent interval and the sizes of the
two child intervals. Intervals were denoted by size only, not
quality or direction (e.g., an ascending major third was con-
sidered equivalent to a descending minor third), except in
the case of unisons, where we distinguished between per-
fect and non-perfect unisons. Intervening octaves in inter-
vals were removed (e.g., octaves were reduced to unisons),
and furthermore, if any interval was larger than a fourth, it
was inverted in the triple. These transformations equate pro-
longations that are identical under octave displacement.

Because OPC analyses permit polygons larger than trian-
gles, extra care was required to derive appropriate triangle
frequencies for these larger polygons. As any polygon can
only be triangulated in a fixed number of ways, and each
of those triangulations contains the same number of trian-
gles, for every polygon larger than a triangle we counted the
frequencies of every possible triangle over all possible tri-
angulations of the polygon and weighted the resulting fre-
quencies so that they would sum to the number of triangles
expected in a triangulation.

We tested the triangle frequencies to see if they were sta-
tistically significant given the null hypothesis that the Forte
and Gilbert analyses resemble random analyses (where any
triangulation of a MOP is as likely as any other) in their
triangle frequencies. The expected frequencies under the
null hypothesis are not uniformly distributed, even if all the
notes in a composition are considered distinguishable from
each other. Therefore, for each excerpt in our corpus, we
generated 5,000 analyses of the excerpt uniformly at ran-
dom. Each of these analyses was produced by taking the
corresponding human-created analysis as an OPC and re-
triangulating each MOP inside. We used these random anal-
yses to compute the expected frequencies of every type of
triangle possible and compared them to the observed fre-
quencies from the human-produced analyses. We ran indi-
vidual binomial tests for each type of triangle to determine
if the observed frequency differed significantly from the ex-
pected frequency.

Five types of triangles had differences between their ob-

1 Analyses are available at http://www.cs.umass.edu/∼pkirlin/schenker.

served and expected frequencies that were statistically sig-
nificant at the 5% level; these are shown in Figure 2. A
canonical prolongation for each type of triangle is depicted
at the far left of each row in the figure, though because inter-
vals have had intervening octaves removed and are inverted
if larger than a fourth, each type of triangle represents an
entire class of prolongations. Triangles that contained a per-
fect unison as a child interval are not shown in this table,
as we suspect their frequencies are biased due to the way
merged notes are encoded in an analysis. Consecutive notes
of the same pitch are often implicitly merged in a Schenke-
rian analysis, and these are encoded as prolongations of the
interval from the first note with the repeated pitch to the note
following the last note with the repeated pitch.

We can musically interpret each of the five types of tri-
angles shown in Figure 2 and hypothesize the reasons for
the differences in frequency. The first row in the figure
(p = 0.001) tells us that triangles describing an interval of
a third being elaborated by two seconds are more likely to
appear in a human-produced analysis than in a randomly-
generated analysis. A passing tone filling in the interval
of a third would fall into this category. We suspect such
patterns are numerous due to the theorist’s preference for
identifying stepwise voice leading connections in an analy-
sis. The second row (p = 0.003) shows us the commonality
of a melodic second being elaborated by a third and then a
step in the opposite direction, for instance, when the inter-
val C–D is elaborated as C–E–D. Again, this corresponds to
the frequent situation of a stepwise pattern being decorated
by an intermediate leap. The third row (p = 0.02) shows
the preponderance of melodic fifths (inverted fourths) be-
ing elaborated by consecutive thirds, corresponding to the
arpeggiation of a triad. Harmonies are frequently prolonged
by arpeggiations of this type.

The fourth row in Figure 2 (p = 0.03) shows that trian-
gles corresponding to a melodic second elaborated by a step
and then a leap of a third in the opposite direction occur less
frequently than expected. An example would be the interval
C–D being elaborated by the pattern C–B–D. Interestingly,
this is the reverse case of the second row in the table. We
hypothesize that analysts tend not to locate this type of pro-
longation because the leap of a third could suggest a change
of harmony, and therefore it is more likely that the first note
of the new harmony—the B in the example—would be the
more structural note and not the D as would be implied by
such a prolongation. The last row (p = 0.05) illustrates
another type of prolongation found less often than the ran-
dom analyses would suggest: a melodic fourth being elabo-
rated by a step and a leap in the same direction. Musically,
this type of prolongation could be located infrequently in an
analysis for the same reasons as the prolongation described
in the fourth row.

These statistically significant differences show that there
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Figure 2. Observed and expected frequencies of triangles in the corpus of OPC analyses.

are consistencies in the prolongations that analysts locate
during Schenkerian analysis. Whether those consistencies
are due to the analysis method or the analyst’s own procliv-
ities is irrelevant, as the consistencies can be exploited to
produce an analysis algorithm in either case.

5. PROBABILISTIC INTERPRETATIONS OF MOPS

We now show how to harness the frequencies computed in
the previous section to produce an algorithm capable of hi-
erarchical music analysis. Though we previously defined a
triangle by the intervals between the notes of its vertices,
in this section we will explore triangles defined by the notes
themselves. Defining a triangle in this fashion requires more
data than we currently have to obtain statistical significance,
but we believe using this formulation will lead to better per-
formance in the future.

With a set of triangle frequencies defined by the end-
points of the triangles in a MOP, we may define a number of
different probability distributions using these frequencies. If
we call the left parent note L, the right parent note R, and
the child note C, we define the joint triangle distribution as
P (L,R,C). This distribution tells us the overall probability
of seeing a certain type of triangle in any analysis. We also
define the conditional triangle distribution as P (C | L,R),
which tells us the probability that the interval between the
left parent note and the right parent note will be elaborated
by the child note C.

Using either of these two distributions, we can define the
probability of a Schenkerian analysis in the MOP model.
Given that a MOP is completely defined by its constituent
triangles, we define the probability of a MOP analysis for
a given sequence of notes as the joint probability of all the
triangles that comprise the MOP. If a MOP analysis A for
a given sequence of notes N contains triangles T1, . . . , Tn,
then we state P (A | N) = P (T1, . . . , Tn). However, train-
ing such a joint model directly would require orders of mag-
nitude more data than we suspect could ever be collected.
Instead, as an approximation, we will assume that the pres-
ence of a certain triangle in an analysis is independent of

the presence of all the other triangles. Thus, P (A | N) =
P (T1) · · ·P (Tn).

The question remains whether to use the joint or condi-
tional triangle distributions to define P (Ti). The joint model
better reflects overall frequencies of triangles, but the con-
ditional model easily provides a generative strawman algo-
rithm for producing an analysis: to analyze a sequence of
notes n1, . . . , nk, find arg maxi∈{n2,...,nk−1} P (C = i |
L = n1, R = nk) to find an appropriate child note of n1

and nk, then recursively perform the same operation on the
two resulting child intervals.

The issue of triangle independence remains, regardless of
the specific triangle model chosen. An experiment justifies
our independence assumption. Our goal in the experiment
is to use a random procedure to generate a multiset of anal-
yses for a single piece of music, with the frequencies in the
multiset reflecting the real-world distribution of how ana-
lysts would interpret a piece. The ranking of the analyses by
frequency in the multiset serves as ground-truth. Using this
corpus of generated analyses, we compute triangle frequen-
cies from the corpus as described in Section 4 (though using
triangle endpoints instead of intervals between endpoints)
and obtain a probability estimate for each analysis by using
the independence of triangles assumption. We compare the
ground-truth ranking with a new ranking obtained by sorting
the analyses by the newly-obtained probability estimates.

The exact procedure is as follows. We assumed that every
note in the piece was distinguishable from every other note,
something not feasible for earlier experiments but done here
with the knowledge that humans may use a note’s location
within the piece as a feature of the note to guide the analysis
procedure. Therefore, each piece was a sequence of inte-
gers N = 1, 2, . . . , n. We took a uniform sample of 1,000
MOPs from the space of possible MOPs over N . 2 We ran-
domly chose one MOP to be the “best” analysis, and created
an array A with the 1,000 MOPs sorted in decreasing order
of similarity to the best MOP, where similarity was defined
as the number of triangles in common between two MOPs.

2 The number of MOPs for a sequence of length n is the (n + 2)th
Catalan number [15], which is exponential in n, hence the sampling.
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The best MOP was placed at A[0]. We used a variation of
the normal distribution to sample one million MOPs fromA
as follows: each sample was the MOP at position i in the
array, where i was the absolute value of a normal random
variable with µ = 0 and varying σ, rounded down. Values
of i that corresponded to MOPs outside of array A were re-
sampled. The one million sampled MOPs were placed into a
multisetM and sorted by decreasing frequency into an array
R, representing the ground-truth ranking of MOPs.

We then computed the frequency of each triangle in mul-
tiset M , calculated the probabilities for each triangle under
the joint and conditional models, and used the independence
of triangles assumption to compute a probability estimate
for each MOP. We generated a new ranking R′ of the MOPs
from their probability estimates, and computed Spearman’s
ρ and Kendall’s τ ranking correlation coefficients for R ver-
sus R′ using lengths of note sequences between 10 and 50,
and standard deviations σ for the normal distribution vary-
ing between 1 and 20. σ determines the number of analyses
r ranked in R and R′ by the formula r ≈ 4.66σ + 1.65. In
other words, when σ = 1, the random procedure only se-
lects five or six analyses from the 1,000 available in A, but
when σ = 20, approximately 95 are selected.

Figure 3 shows heatmaps for ρ; darker values are closer
to 1, indicating R′ being closer to R. The heatmaps for
τ are similar. For the joint model, mean values of (ρ, τ)
are (0.9630, 0.8848) while for the conditional model they
are (0.9478, 0.8286), indicating that the joint model slightly
outperforms the conditional model.
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Figure 3. The joint model reproduces the ground-truth rank-
ing slightly better than the conditional model.

Assuming independence among the triangles in a MOP
provides us with an algorithm for calculating the most prob-
able MOP, regardless of whether we choose the joint or con-
ditional models for the probability of an individual triangle,
or some other model of triangle probability. Because con-
structing a MOP is equivalent to triangulating a simple con-
vex polygon, we may take advantage of the fact that this
optimal triangulation problem can be solved in O(n3) time
using a Viterbi-like dynamic programming algorithm where
n is the number of notes in the composition. We will refer

to this algorithm as OPT-MOP.

6. EVALUATION

To evaluate OPT-MOP and the suitability of the joint and
conditional triangle models, we performed a leave-one-out
cross-validation test. We generated 1,000 optimal analyses
of the MOPs contained in each of the eight excerpts in our
corpus by using, for each excerpt, triangle probabilities de-
rived only from the ground-truth analyses of the other seven
excerpts. We needed to compute multiple optimal analyses
as occasionally ties appeared among the probabilities; OPT-
MOP broke these ties randomly. Additionally, we generated
1,000 analyses uniformly at random for each excerpt.

To measure the quality of a candidate analysis A, we cal-
culated the number of triangles in A that were compatible
with the corresponding ground-truth analysis. We say a tri-
angle is compatible with the ground-truth if it is present in
the ground-truth (the three specific notes of the excerpt are
triangulated the same way in both analyses), or if there is
nothing in the ground-truth analysis that would prevent such
a triangle from appearing in the ground-truth. The second
provision is required because the ground-truth is human-
produced and may contain prolongations that do not specify
a complete triangulation. Therefore, any triangle that could
result from further triangulation is deemed compatible.

We compared the mean percentage of compatible trian-
gles in the optimal analyses with the corresponding per-
centage for the random analyses. Comparisons were done
separately for the joint and conditional models. Table 4
shows the mean compatibility percentages under both mod-
els, along with a p-value calculated under the null hypoth-
esis that the OPT-MOP does not perform better than ran-
dom. These data indicate that both models perform better
than random as a whole, because if the null hypothesis were
true, we would expect only one of the eight pieces to have
a p-value less than 0.1 for either model. Furthermore, the
joint model outperforms the conditional model on average.

There are a number of possible reasons why the results
are not better. First, the ground-truth analyses are not com-
pletely triangulated, and this puts an upper bound on how
well OPT-MOP can improve over random analyses. As an
extreme example, if a MOP were not triangulated at all, then
all triangles produced by any analysis algorithm would be
compatible with the ground-truth, and therefore both OPT-
MOP’s analyses and the random analyses would both obtain
scores of 100%.

Second, it is not surprising that a training set of only
seven pieces (due to leaving one out) did not appear to cap-
ture all of the statistical regularities of Schenkerian analysis.
Our corpus is the largest available and we are actively en-
gaged in increasing its size. We are gathering analyses from
music journals, textbooks, and Schenker’s own published
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Model:

Mozart, Piano Sonata in A major, K. 331, I
Mozart, Piano Sonata in B-flat major, K. 333, III
Mozart, Piano Sonata in C major, K. 545, III
Mozart, 6 Variations on an Allegretto, K. Anh. 137
Schubert, Impromptu in B-flat major, Op. 142, No. 3
Schubert, Impromptu in G-flat major, Op. 90, No. 3
Haydn, Divertimento in B-flat major, Hob. II/46, II
Haydn, Piano Sonata in C major, Hob. XVI/35, I

0 302010 40%

p-value 

Mean percentage of triangles in predicted
analyses compatible with ground-truth analysis Conditional model

Joint model

0.145 0.018
0.009 0.158
0.001 0.137
0.013 0.033
0.192 0.586
0.084 0.175
0.150 0.369
0.019 0.008

Joint CondExcerpt

Figure 4. Leave-one-out cross-validation results for each of the eight excerpts in the corpus.

works. Third, we cannot overlook the possibility that OPT-
MOP cannot produce a good analysis due to the model mak-
ing incorrect assumptions or being too simplistic. Along
with gathering more data, we are also working to improve
our model of the analysis procedure.

7. CONCLUSIONS

Our work shows that actual Schenkerian analyses have sta-
tistical regularities that can be represented, discovered, and
reproduced. We have shown statistically significant regu-
larities in a data set of Schenkerian analyses and illustrated
how those regularities may be exploited to design an algo-
rithm for automatic analysis. Our experiment in ranking
MOPs illustrates that assuming independence among the tri-
angles comprising a MOP results in a satisfactory approxi-
mation to the joint probability of all the triangles. The prob-
abilities of individual triangles in a MOP may be defined in
numerous ways; in the future, we plan on collecting more
contextual information surrounding prolongations, such as
metrical positioning and harmonic information, and using
these features to derive better probabilities over triangles.
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ABSTRACT

This paper proposes a finite-state model for detecting har-
monic cycles as described by neo-Riemannian theorists. Given
a string of triads representing a harmonic analysis of a piece,
the task is to identify and label all substrings correspond-
ing to these cycles with high accuracy. The solution method
uses a noisy channel model implemented with weighted finite-
state transducers. On a dataset of four works by Franz Schu-
bert, our model predicted cycles in the same regions as cy-
cles in the ground truth with a precision of 0.18 and a re-
call of 1.0. The recalled cycles had an average edit distance
of 3.2 insertions or deletions from the ground truth cycles,
which average 6.4 labeled triads in length. We suggest ways
in which our model could be used to contribute to current
work in music theory, and be generalized to other music
pattern-finding applications.

1. INTRODUCTION

Though significant attention has been devoted to segmenta-
tion and labeling algorithms for discovering chords [14, 16,
19] and keys [4,16,18] in music scores, little work has been
done on automating higher-level music analysis. One reason
for the small body of research on this topic is that such anal-
ysis is highly subjective and relies heavily on musical intu-
ition. Another reason is that there are numerous methods of
analysis, which are often best suited to a particular corpus
of music. We take a step toward bridging this gap between
labeling and higher-level analysis by tackling the problem
of finding neo-Riemannian cycles in chord sequences using
a finite-state approach.

Neo-Riemannian music theory [17] posits that harmonies
are related by means of transformations, rather than a com-
mon tonic. The theory defines three primary transformations
P , L, and R that operate over the set of 24 major and minor

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

triads (assuming enharmonic equivalence). Each transfor-
mation involves two triads that share two common tones.
P transforms a triad to its parallel major or minor triad, L
transforms a major triad to a minor triad whose root is four
semitones higher (and vice-versa), and R transforms a triad
to its relative major or minor triad. A cycle is generated by
obtaining a triad, and repeatedly applying an identical per-
mutation of either LP , RP , LRP , or LR at least until the
originating triad is reached again. These cycles partition the
harmonic space and give structure to certain musical works.

When neo-Riemannian theorists analyze a musical work,
they locate a passage and identify harmonies that “partici-
pate” in a cycle. There are several motivations for automat-
ing this process. The first is to attempt to formalize the task,
and in the process arrive at a more rigorous definition and
understanding of what constitutes a cycle—and by exten-
sion what musical judgements are made during an analysis.
The second is to facilitate a more comprehensive study of
these cycles than currently exists [3]. Computer-aided anal-
ysis could provide a critique of the theory itself, as well as
shed light on other music theoretic issues.

The existence of insertions and deletions presents chal-
lenges to accurately finding neo-Riemannian cycles. Sup-
pose Tn is the composition of n transformations along a cy-
cle. In theory, a cycle consists of a sequence of triads, such
that each successive triad is generated by a single T1 trans-
formation. In practice, inserted harmonies intermix with the
triads that participate in the theoretical cycle; and, triads
in the theoretical cycle can be missing from the observable
cycle due to the use of compound operations (Tn, where
n > 1), or because the cycle is incomplete. On the surface,
this problem may appear best solved by string matching
algorithms. Approximate string matching algorithms [12]
can handle insertions and deletions, and some methods have
been developed to search for multiple strings [2]. The main
problem with this approach is the representation of the search
strings. LP cycles, for instance, consist of all strings begin-
ning with LPLPLP or PLPLPL and continuing in like
fashion, of which there are many. LP cycles alone partition
the set of triads into four distinct cycles, each of which has
six distinct originating triads and two directions of motion.
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In contrast, a finite-state model facilitates the concise en-
coding of a cycle using transformations. It also enables us to
represent transformational music theory in a visual and in-
tuitive way. Specifically, we propose a noisy channel model
to represent the task of finding an intended message (a cy-
cle) given an observation sequence (of chords). Our imple-
mentation of the model uses weighted finite-state transduc-
ers (WFSTs). [15] describes this method, as applied to the
realm of speech recognition.

Finite-state transducers (FSTs) are used extensively in
language and speech processing [9], with potential applica-
tions to music. WFSTs, which are used to represent proba-
bilistic finite-state machines in speech processing [11], could
be used similarly in audio music processing. [10] uses WF-
STs in the task of audio music identification as both an acous-
tic model and a compact language model. Drawing on ef-
forts in language processing that implement the noisy chan-
nel model with WFSTs [13], our model is a novel applica-
tion of this technique to symbolic music analysis.

The remainder of the paper is organized as follows. In
Section 2, we formalize the problem statement and present
the noisy channel model. In Section 3, we describe the input
data, as well as the training and evaluation methods for our
model. Finally, in Section 4 and Section 5, we present the
results of our experiment and discuss our conclusions.

2. THE MODEL

Our goal is to design a system that will accurately iden-
tify and label all strings of harmonies corresponding to neo-
Riemannian cycles in a music score. The input to the system
is a string of triad labels representing a harmonic analysis,
and the desired output is a version of that analysis with all
musically salient cycles demarcated and labeled.

2.1 Problem Statement

Let Σ1 be the alphabet consisting of symbols representing
the 24 enharmonically distinct major and minor triads, and
let Σ2 = {P,L,R}, the alphabet of basic neo-Riemannian
transformations. Also let Σ3 = {[, ]}, an alphabet of special
demarcation symbols outside of Σ1 and Σ2. Now, suppose
w is a string of symbols in Σ1, corresponding to a harmonic
analysis of a music score. The task is to identify exactly
the substrings of w that correspond to neo-Riemannian cy-
cles. These cycles should be labeled with the corresponding
transformations from Σ2 and bounded by symbols from Σ3.

2.2 Noisy Channel Model

We implement the proposed noisy channel model with a
cascade of WFSTs. Each component of the noisy channel
model—a theory model, a noisy channel, and an observa-
tion sequence—is encoded as an FST. For simplicity of im-

plementation, we reverse the direction of the model. Our re-
verse implementation is equivalent to the formal definition
due to the closure of FSTs under inversion.

Our implementation is the composition

Score ◦ ScoreEdit ◦ Cycles

of FSTs representing chords in the observation sequence,
chord edits in the noisy channel, and a model of (theoret-
ical) cycles, respectively. We use the OpenFst library [1]
implementation of FSTs and the Viterbi algorithm with the
tropical semiring to calculate the path of lowest cost from
Score to Cycles . This scheme is appropriate to our transi-
tions, which use weights rather than probabilities.

2.2.1 Score

Score is the FST over Σ1 that represents the observation
sequence. As shown in Figure 1, Score accepts and outputs
exactly the string corresponding to our input data with no
penalty. Its construction is simple to automate, since each
transition from the start state to the final state corresponds
to a triad in the input (in order). While we have not used this
capability, our model can accommodate multiple weighted
analyses of a piece, as shown in Figure 2.

Figure 1. The Score FST representing the score “C G C.”

Figure 2. An FST representing a probabilistic encoding of
two possible analyses of a hypothetical score.

2.2.2 ScoreEdit

ScoreEdit is the FST that represents the noisy channel (in
reverse). It transduces from Σ1 to Σ1 ∪Σ3 and is defined as

ScoreEdit = AddBrackets ◦ TriadsEdit , (1)

where AddBrackets and TriadsEdit are two smaller FSTs
described below.

AddBrackets , shown in Figure 3, is a formatting step
that demarcates cycles by inserting non-overlapping pairs
of brackets into the score. In order to prevent an excessive
number of cycles, we associate a cost B with the insertion
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of a bracket pair, denoted ε : [ /B, meaning “Do not read an
input chord. Add a bracket, at cost B.” A transition labeled
Σ1 : Σ1 / 0 is shorthand for all possible transitions labeled
σi : σi / 0 such that σi ∈ Σ1.

Figure 3. The AddBrackets FST.

Bracketing cycles in this way enables TriadsEdit to per-
form edits on the score that are sensitive to cycle boundaries.
TriadsEdit operates over Σ1 ∪ Σ3 and is defined as

TriadsEdit = OutsideEdit · (OpenBracket

· InsideEdit · ClosedBracket

·OutsideEdit)∗,

(2)

where OpenBracket and ClosedBracket are simple two-
state FSTs that recognize the languages {[} and {]}, re-
spectively. As shown in Figure 4, OutsideEdit is a single-
state FST over Σ1 that deletes any number of triads (with
cost X), and InsideEdit is a single-state FST over Σ1 that
deletes, inserts, and reads any number of triads (with costs
D, I , and 0, respectively). By construction of Equation (2),
OutsideEdit operates only outside of cycles, InsideEdit
operates only inside cycles, and zero or more cycles can oc-
cur anywhere in the score. We describe a method of training
these weights (costs) in Section 3.2.

Figure 4. The OutsideEdit (left) and InsideEdit (right)
FSTs.

2.2.3 Cycles

Cycles is the FST from Σ1 ∪ Σ3 to Σ2 ∪ Σ3. It transduces
neo-Riemannian transformations from the cycles and is de-
fined as

Cycles = (OpenBracket ·Map · ClosedBracket)∗

◦ (OpenBracket ·Definitions

· ClosedBracket)∗,

(3)

where Map and Definitions are the FSTs described below.

Map transduces from Σ1 to Σ2 and converts triads into
transformations. It has a start state with transitions to each
of the 24 other states corresponding to the major and minor
triads. Each state corresponding to a triad is a final state, and
has outgoing transitions to three other states according to P ,
L, and R transformations. Whenever Map in the start state
reads a triad corresponding to a particular state, it moves to
that state and outputs ε (with cost 0). From there, it is able
to read successive triads and output the appropriate transfor-
mation symbols. For clarity, Figure 5 shows only a portion
of Map corresponding to an LRP cycle, which contains 6
out of the 24 possible triads.

Figure 5. The Map FST (abbreviated).

Definitions is the FST over Σ2 that recognizes any de-
fined neo-Riemannian cycle. By construction, Equation (3)
ensures that one of those cycles occurs within each set of
brackets. Definitions is the union of all FSTs that represent
a desired cycle, like the one shown in Figure 6.

Figure 6. The LP Cycle FST. Each transition exiting the
start state is shorthand for the transitions and intermediary
(non-final) states necessary to transduce the labeled sub-
string to itself with zero weight.

2.3 Generalizability

Our model is highly generalizable, and could be adapted to
recognize various properties in a variety of music-theoretic
systems. One could define new edit operations by modifying
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ScoreEdit , incorporate other types of harmonies [6, 7] or
transformations [5,8], or change Map to accommodate other
conceptions of harmonic distance [20]. One could envision
using our model to detect cycles in other music features such
as rhythm (where the symbols might be durations rather than
neo-Riemannian transformations), and patterns other than
cycles.

3. EXPERIMENT

3.1 Input Data

We were able to obtain only a small quantity of input data
from scores in the desired corpus of late Romantic music
scores, to which neo-Riemannian analysis is typically ap-
plied. Neither a dataset of harmonic analyses, nor a reliable
way of automatically converting music scores into analyses
is presently available. Thus, the first author performed all
analyses manually prior to the automated analysis. Seventh
and other extended chords were reduced to their underlying
triads, and vertical sonorities without a prominent major or
minor triad identity were ignored.

Our input data are selections from four works by Franz
Schubert in which [17] identifies LP and RP cycles. [17]
analyzes two LP cycles in the exposition of the first move-
ment of the A major Piano Sonata, D. 959, one LP cycle in
the fourth movement of the G major Piano Sonata, D. 894,
one LP cycle in the coda of the first movement of the E-
flat major Piano Trio, D. 929, and one RP cycle in the first
movement of the C major String Quintet, D. 956. Since the
focus of this experiment isLP andRP cycles, we define the
Definitions FST to recognize either one. Given the small
size of our dataset, it was not necessary to perform the usual
determinization and minimization algorithms to make the
FSTs in our model time- and space-efficient, respectively.

In order to describe and classify the cycles that comprise
our ground truth, we identify properties of cycles that are
visible to our model. Let p be the number of triads in an
observable cycle that are labeled with transformations, let o
be the number of triads that are not labeled (insertions), and
let n = o+p be the overall length. Also, letm be the number
of deletions, and let l be the length of the shortest complete
theoretical cycle of the type being labeled (e.g. l = 7 forLP
cycles). Note that p + m = l, except for extended cycles,
where p + m > l. Table 1 shows o, m, p, and l for each of
the cycles in our input data.

We also calculate two quantities in Table 1 that help us
to classify cycles. o

o+p is the proportion of insertions rela-
tive to the observable length, and m

m+p is the proportion of
deletions relative to the length of the corresponding theoret-
ical cycle. We will use these two quantities, also graphed in
Figure 8, to explain our results.

Piece Measures o m p l o
o+p

m
m+p

D. 959 (ex. 1) 28–36 9 4 5 7 0.64 0.44

D. 959 (ex. 2) 82–103 24 0 9 7 0.73 0

D. 894 154–160 21 3 4 7 0.84 0.43

D. 956 233–250 9 2 7 9 0.56 0.22

D. 929 585–612 9 0 7 7 0.56 0

Table 1. Cycles in the ground truth and their properties.

3.2 Training Method

Training our model consists of setting four parameters: B,
D,X , and I , which are the costs of bracketing cycles, delet-
ing chords inside cycles, deleting chords outside of cycles,
and inserting chords, respectively (described in Section 2.2).
While systems can be trained with musically-informed rules [19],
we calculate weights empirically. Our method involves set-
ting up a system of linear inequalities by determining the
behavior of our system over isolated strings of n triads.

To privilege labeling a cycle of n triads over deletion, we
use equations of the form

B + oD +mI < nX. (4)

To privilege deletion, we would simply reverse the inequal-
ity. We generate instances of Equation (4) from a ground
truth labeling of a score by selecting each cycle and calcu-
lating o, m, and n. In order to prevent our system from
arbitrarily extending cycles it labels, we also require that

D > X. (5)

We solve the resulting system by minimizing the objective
function B +D + I +X .

3.3 Evaluation

The desired performance metric should measure the success
of both segmentation and labeling of cycles.

We propose an evaluation method that uses global string
alignment applied separately to each region in the score with
one or more overlapping cycles in either the ground truth or
the prediction. Since a string of transformations does not
uniquely determine the underlying triads, we do not com-
pare those strings. Instead, we calculate the edit distance
between the string of triads labeled with transformations
(i.e. not insertions) in the prediction with the corresponding
string in the ground truth. Allowable edit distance opera-
tions are insertion and deletion, like in our model. If a cycle
does not exist in one labeling, the edit distance is simply the
cost of deleting all symbols in the other string. This metric
has the property that segmentation errors are proportional to
p and not o; it is a measure of divergence in transformational
content rather than overall observable content.
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Piece 1 2 3 4 5 6 7 8 9 10 11 Sn Sp St

D. 959 5 4 6 0 5 4 16 20
D. 894 8 10 6 8 10 22 32
D. 956 6 5 9 7 0 7 6 5 0 45 45
D. 929 6 5 6 7 8 7 7 8 4 7 2 2 65 67

Table 2. Alignment costs for each piece, broken down by
region. Bold formatting indicates that the region contains a
cycle in the ground truth.

The evaluation score St of a prediction is equal to the
sum of all edit distances calculated as just described, i.e.
St = Sn + Sp, where Sn is the sum of all edit distance op-
erations on regions with a cycle in the ground truth, and Sp

is likewise defined on all other aligned regions. Sn and Sp

measure in some sense the amount of “false-negativeness”
and “false-positiveness,” respectively, in a prediction.

We use leave-one-out cross-validation on our four pieces
of input data. Training for validation on D. 959, D. 956,
and D. 929 each yielded weights I = 1, B = 1, D =
1.0065, and X = 1.0055, and training for validation on
D. 894 yielded weights I = 1, B = 1, D = 1.003, and
X = 1.002. Table 2 shows a breakdown of performance by
aligned region for each score.

4. RESULTS

In our experiment, we used the cycles analyzed by [17] as
our “ground truth.” If we define successful retrieval of a
cycle in the ground truth as prediction of a cycle in the
same aligned region, our model achieved precision and re-
call scores of 0.18 and 1.0. (The model predicted a cycle in
every aligned region containing a cycle in the ground truth.)
The cycles recalled from the ground truth, on average, had
length p = 6.4 and alignment score 3.2.

Our choice of ground truth cycles impacted our preci-
sion score and led to many predicted cycles in regions not
analyzed. Viewed as strings of harmonies, these predicted
cycles are difficult to distinguish from cycles in the ground
truth. In particular, our model predicted an RP cycle in
measures 304–329 (aligned region 7) of D. 929 with dimen-
sions o = 8, m = 2, p = 7, and l = 9, which almost exactly
match the dimensions of the ground truth RP cycle in D.
956 (see Table 1). We arrive at the conclusion that either
the ground truth is incomplete, or that other factors affect
theorists’ decisions on what constitutes a cycle.

Our model also labels cycles on a more detailed level
than is often done in music analysis. In practice, theorists
often describe transformations acting on a cluster of chords
with a prominent harmonic identity, rather than a particu-
lar chord with that identity. By contrast, our model always
labels specific chords with transformations. Our evaluation
measure does not penalize this type of over-specification.

Aligned region 5 of D. 956, which received one of two per-
fect alignment scores, illustrates this point. In translating the
analysis in [17] to the ground truth labeling, the first author
selected the second D major chord shown in Figure 7 for
participation in the theoretical cycle based on cadential and
inversional information in the score. Our model selected the
first D major chord instead, but was not penalized by con-
struction of our evaluation method.

Figure 7. Aligned region 5 of D. 956 (mm. 233–250), with
ground truth labels (curved connectors) and predicted labels
(elbow connectors).

While our model predicted a cycle in each aligned re-
gion containing a cycle in the ground truth, misalignments
of varying severity also occurred. The predicted cycles in
aligned region 11 of D. 929, aligned region 2 of D. 959,
and aligned region 2 of D. 894 received increasingly large
evaluation scores. These increasing scores reflect the costs
of identifying an extended cycle, a cycle with the desired
harmonic content but opposite direction, and a cycle with
altogether different harmonic content, respectively.

In order to understand why these cycles posed challenges
to our model, consider Figure 8. Distance from the origin
correlates with the alignment scores of these three cycles.
In addition, there seems to be a direct link between distance
from the x-axis (corresponding to the relative number of
deletions) and poor performance. Tellingly, the three cycles
with the best scores (aligned region 4 of D. 959, aligned
region 5 of D. 956, and aligned region 11 of D. 929) are
located on or near the x-axis, but not particularly near the
y-axis, suggesting that the model is able to handle many in-
serted triads, so long as there are few deletions. The two
remaining cycles in the figure, located furthest from the x-
axis, were more costly to align. Each consists of strictly
T2 transformations, resulting in many deletions. The finite-
state model is not in general well-equipped to reward regu-
larity in patterns, and in this case was not able to recognize
regularity of motion within a cycle.

To view the complete set of musical excerpts and ex-
tracted harmonic analyses, please visit http://www.
jonathanbragg.com/ismir2011.

5. CONCLUSION

This paper presents the essential design and performance
of a finite-state approach to harmonic cycle detection. The
model performed well on the task at hand: with access to
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Figure 8. Plot of proportion of deletions vs. proportion of
insertions (data from Table 1).

very little music feature data, it predicted all cycles in the
ground truth, some with very high accuracy, and suggested
other potentially viable cycles. As more harmonic analysis
data becomes available, it will be possible to do more exten-
sive testing of the model, and to incorporate other features.
In its current form, the model could be used as a tool for
theorists, to propose potential cycles which might be ana-
lyzed and catalogued, and ultimately contribute to a better
understanding of cycles and neo-Riemannian theory. This
approach is highly generalizable and can be applied to other
kinds of pattern matching in music.
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ABSTRACT

Digitalizing sheet music using Optical Music Recognition
(OMR) is error-prone, especially when using noisy images
created from scanned prints. Inspired by DNA-sequence
alignment, we devise a method to use multiple sequence
alignment to automatically compare output from multiple
third party OMR tools and perform automatic error-correction
of pitch and duration of notes.

We perform tests on a corpus of 49 one-page scores of
varying quality. Our method on average reduces the amount
of errors from an ensemble of 4 commercial OMR tools.
The method achieves, on average, fewer errors than each
recognizer by itself, but statistical tests show that it is sig-
nificantly better than only 2 of the 4 commercial recogniz-
ers. The results suggest that recognizers may be improved
somewhat by sequence alignment and voting, but that more
elaborate methods may be needed to obtain substantial im-
provements.

All software, scanned music data used for testing, and
experiment protocols are open source and available at:
http://code.google.com/p/omr-errorcorrection/

1. INTRODUCTION AND RELATED WORK

Optical music recognition (OMR) is an active field, but suf-
fers from a number of technical pitfalls, even in the “typ-
ical” case where only music notation in modern, conven-
tional western style is considered [3,8,13]. While affordable
commercial tools for OMR are available, imperfections in
scanned sheet music make these error-prone (see Fig. 1).

One possibility for improving the accuracy of OMR pro-
grams is to use multiple recognizers: Let several programs
(recognizers) perform OMR independepently, and combine
the results afterwards using a combined recognizer. The

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

Figure 1. Example of a recognizer missing a note. Left: Bar
6 of the bass part of a piano arrangement of “God save the
Queen” by T.A. Arne. Right: The output of Capella-Scan
1.6.

practical possibility of using multiple recognizers has been
investigated by Byrd et al. [5–7], and appears promising, but
brings new pitfalls with it; in extreme cases, OMR programs
could fail dismally at different tasks, hence–in theory–making
the combined result worse than the output of the individual
recognizer.

In contrast, we take a workmanlike approach to multi-
ple recognizers: The basic tenet is that every commercially
available tool will not fail dismally on a single aspect of
OMR in most cases (the product would be too poor to use),
and that different tools are likely to fail in different aspects.
Byrd et al. [6,7] suggest amassing a set of rules, or attaching
weights to certain single recognizers, based on their prior
performance, to obtain maximal increase of accuracy in a
multi-recognizer tool; however, they also note that this is
a moving target, due to new versions of existing products
improving on some aspect of recognition. In contrast, we
are simply satisfied if a multi-recognizer is, on average, bet-
ter than any single-recognizer, to a high degree of statistical
significance.

To account for the fact that different recognizers may
make different errors, hence causing misalignment of their
respective outputs (see Fig. 2) we align their outputs using
a multiple sequence alignment algorithm and subsequently
use a simple voting procedure to resolve conflicts. A pre-
requisite for such an approach to work is that no single rec-
ognizer significantly outperforms the others, as a multiple
recognizer would then perform worse as the suboptimal rec-
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Figure 2. Misaligned notes from the third bar of “Mon beau
sapin” by E. Anschütz. Top: Original; middle: Capella-
Scan 6.1; bottom: Photoscore Ultimate 6.

ognizers introduce noise in the sequence alignment.
Our work was originally motivated by our desire to ex-

amine melodic and harmonic progression as used by dif-
ferent composers, and how the statistical properties of such
progressions changed over the lifetime of composers. Our
results are thus restricted to aspects of melody and harmony;
we thus consider only notes, rests, bars, keys, etc., but omit
dynamic indications (p, pp, etc.) and the–admittedly more
difficult–problem of slurs and complex annotations.

1.1 Related work

Byrd et al. [5–7] report on several experiments using an
OMR system based on several different recognizers, includ-
ing a prototype system for sequence alignment, but do not
give details on the numerical improvement of the multi-recog-
nizer system. Szwoch [15] uses alignment within bars to au-
tomatically obtain error counts for OMR systems, but does
not give numerical evidence. Pardo and Sanghi [12] em-
ploy multiple sequence alignment to find optimal matching
works in databases of polyphonic music when queried with
monophonic pieces; they consider an alphabet where each
musical symbol is a note with pitch and duration, and each
part in a polyphonic score corresponds to a sequence. Al-
lali et al. substantially extend this approach to encompass
polyphonic queries [1, 2].

While the work of Byrd et al. is very similar to ours, we
believe our work offers the following incremental benefits:
(i) confirmation of the positive results obtained in the exper-
iments of Byrd et al., (ii) comparison of different commer-
cial tools with each other and with a system based on multi-
ple recognizers with statistical significance testing, (iii) full,
numerical reporting of results, (iv) full release of all tools
as open-source software, including the MusicXiMpLe XML
Schema Definition (XSD) and sequence alignment software.

MusicXML

Result in
MusicXiMpLe

Resulting
sequence

Aligned
sequences

Sequences

MusicXiMpLe

Sequencer

Voter

Sequence aligner

Sequencer

Converter

Figure 3. Pipeline for the OMR system. Rectangles rep-
resent data objects and boxes machinery for processing or
converting data. The left topmost rectangle contains n dif-
ferent pieces of MusicXML data from n different OMR pro-
grams.

2. ALIGNMENT OF OUTPUT FROM MULTIPLE
RECOGNIZERS: PRACTICAL OVERVIEW

Our combined recognizer takes the output from several rec-
ognizers in a common format, converts the output to sev-
eral sequences of musical symbols which are then aligned
with conflicts resolved by majority (colloquially: “The pro-
grams vote for the symbols” after alignment); the resulting
sequence is then converted to the common format (see Fig.
3.

We employed four commercial recognizers: Capella-Scan
6.1, SmartScore X Pro 10.2.6, PhotoScore Ultimate 6, and
SharpEye 2. VivaldiScan was briefly investigated, but dis-
carded as it (for our purposes) was only a wrapper for the
OMR procedures of SharpEye. All tools support several
output formats; we chose MusicXML as all programs sup-
port it and the format is amenable to manipulation.

The converter converts MusicXML to a standard format
called MusicXiMpLe (see Section 2.1) with the purpose of
normalizing notation. The sequencer converts MusicXiM-
pLe to an internal representation of music as a sequence
of symbols (see Section 3.1). The Sequence aligner (see
Section 3.2) uses multiple sequence alignment to align the
sequences, and the Voter is used to settle disputes among
OMR programs after alignment. The Sequencer is then used
again to convert from the internal sequence representation to
the standard format.
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2.1 A common output format: MusicXiMpLe

Due to the ambiguities in MusicXML, a piece of music can
be represented in different ways, and different recognizers
may output starkly different MusicXML, even if all recog-
nizers read the music correctly. Furthermore, MusicXML
is quite verbose, containing more information and metadata
than needed for our experiment. To address these issues,
we created an XML Schema Definition (XSD) containing
solely those elements needed for analysis. We call the set of
XML-data conforming to our XSD “MusicXiMpLe”; note
that valid MusicXiMpLe is also valid MusicXML.

Briefly, MusicXiMpLe holds the following data. In con-
trast to ordinary MusicXML, restrictions are noted in [square
brackets]: (i) parts [each part holds exactly one staff], (ii)
measures [only part-wise structures are allowed, not time-
wise], (iii) notes [only pitch, duration, octave, alternation
and simultaneity are recorded], (iv) rests [only duration is
recorded], (v) the MusicXML “musical counter”, (vi) re-
peats and alternative endings, (vii) time-signature, (viii) key,
(ix) chord symbols.

3. MUSICAL SYMBOLS AND MUSIC DATA AS A
SEQUENCE

Sequence alignment is the task of comparing and aligning
n > 1 sequences of symbols. As an example, consider the
sequences s1 and s2 constructed using the symbol set {A, B,
C, D, E}:

s1 = AABBCCDA
s2 = ABCE

Sequence alignment of s1 and s2 might give the following
result (depending on the algorithm used):

a1 = AABBCCDA
a2 = -AB-CE--

where a1 and a2 represents the aligned sequences of s1 and
s2 respectively and ’-’ represents a gap inserted by the align-
ment algorithm.

Sequence alignment algorithms calculate similarity scores
for the elements in the sequences; high similarity will occur
at points in a score where two recognizers output the same
symbols, for instance barlines in the same place. These
scores are then used to align the sequences. When given
N sequences as input, multiple sequence alignment returns
N aligned sequences, possibly with gaps inserted. In our
case, this corresponds to N aligned scores; we will reduce
these to a single score, by letting each recognizers “vote” for
each single element in the N aligned sequences (ties broken
randomly).

3.1 Symbolic music data as a sequence

We consider music data as any sequence of elements ewhere
e is generated from the following grammar:

e := note+ | rest |barline | repeat | ending | key |
time | clef

A note above is a quadruple (p, a, o, l) where p ∈ {A, . . . , G}
is the pitch class, a ∈ {flat,natural, sharp} the alterna-
tion, o ∈ {0, . . . , 9} the octave, and l ∈ Q the duration of
the note. An element holds one or more notes, hence may
function as a chord. The notes in an element may have dif-
ferent lengths (see Fig. 4). Intuitively, the sequence has an
element for each “change” in the music. With chords con-
taining notes of different lengths, a single note missed by a
recognizer may lead to very distinct sequences of elements
for two different recognizers (this problem is addressed in
the sequence alignment, as similarity scores between ele-
ments are computed in such a way that elements that only
differ by “few” notes are counted “almost similar”).

Figure 4. Bars 11–12 of “O Christmas tree!” by E. An-
schütz . Elements of the sequence alphabet are indicated by
red outlines (accidentals and duration are included in each
element).

We consider each staff to hold a single sequence of sym-
bols, and perform sequence alignment per-staff. For sheet
music with notes where it is unclear to which staff a given
note belongs, different recognizers may assign notes to dif-
ferent staves, negatively affecting subsequent sequence align-
ment.

3.2 Progressive sequence alignment of symbolic music
data and voting

We briefly outline the method for multiple sequence align-
ment below. Note that our choice of algorithms is not due
to any intrinsic properties of symbolic music; the employed
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algorithms could very likely be replaced by other algorithms
from the sequence alignment literature without detrimental
effect to correctness or performance.

Due to its tradeoff between speed and precision, we em-
ploy progressive multiple sequence alignment [16] in which
(a) pair-wise alignment of all sequence-pairs is performed,
followed by (b) computation of a similarity-scoreD for each
pair, and (c) the two most similar are aligned first, producing
two new sequences that are then (d) progressively aligned
with the remaining sequences in descending order of simi-
larity score.

Progressive alignment is greedy and non-optimal–as op-
posed to dynamic programming methods–but is significantly
faster. For pairwise alignment, we use the classic Needleman-
Wunsch algorithm [11]. This method finds the alignment of
two sequences s1 and s2 of length k and l by first creat-
ing the similarity matrix M defined by the (k + 1, l + 1)-
dimensional matrix Mi,j where M0,j = g · j, and

Mi,j = max

∣∣∣∣∣∣
Mi−1,j−1 + α(s1[i], s2[j])
Mi−1,j + g
Mi,j−1 + g

(1)

where i ∈ {0, 1, ..., k}, j ∈ {0, 1, ..., l}, the function
α(x, y) returns a score based on whether the two elements
x and y are similar or not, and g is the gap penalty which
is the score of inserting a gap into one of the sequences. In
addition, the algorithm maintains a trace matrix T of iden-
tical dimensions. This matrix holds information about how
the value of each element in M was found. If for example
the value of M1,2 is M0,1 + α(s1[1], s2[2]), T1,2 will hold
the coordinates (0,1).

For two musical elements e1, e2, we define their similar-
ity as α(e1, e2) = d if the elements are completely distinct,
and α(e1, e2) = ks/n if the elements are similar, where
n is the combined number of symbols in e1 and e2, and k
is the number of symbols they have in common (note that
notes of identical pitch, but different length are counted as
being distinct). The parameters g, d and s can be set accord-
ing to preference or performance. All our experiments were
conducted with g = −2, d = −1 and s = 1. To avoid spuri-
ous “elements” containing notes in combinations with time
signatures, bar lines or clefs, such combinations were heav-
ily penalized by setting their similarity scores effectively to
−∞.

When the matricesM and T have been constructed, pair-
wise alignment proceeds by following the path from Tk,l

back to T0,0 using the coordinates stored in the cells of T .
In the example above, the returned solution is a1 = ABBCE,
a2 = A--CD.

To extend the pairwise alignment to multiple alignent, a
so-called guide is constructed that specifies the sequence in
which pairwise alignments are performed. The guide is con-
structed by the standard technique of neighbor-joining [14].

A B B C E
0 -2 -4 -6 -8 -10

A -2 1 -1 -3 -5 -7
C -4 -1 0 -2 -2 -4
D -6 -3 -2 -1 -3 -3

Figure 5. A similarity matrix M using input strings
s1 =ABBCE and s2 =ACD.

A B B C E
(0,0) (0,1) (0,2) (0,3) (0,4)

A (0,0) (0,0) (1,1) (1,2) (1,3) (1,4)
C (1,0) (1,1) (1,1) (1,2) (2,2) (1,3) (2,4)
D (2,0) (2,1) (2,1) (2,2) (2,2) (2,3) (3,3) (2,4)

Figure 6. The trace matrix T corresponding to the similar-
ity matrix from Figure 5. Entry Ti,j holds the coordinates
of the entry that led to the value of the lower-right entry
of M . Multiple coordinates in an entry give rise to multi-
ple paths. The path corresponding to the optimal solution
is highlighted in bold: ((2,4) → (1,3) → (1,2) → (1,1) →
(0,0)).

For every position in the set of N aligned sequences, we
collect all symbols from all sequences and their count. For
a symbol to be included in the final output, it must have an
absolute majority (exceptions are clefs and time signatures
that only need half the votes, as we found that the existing
recognizers tend to miss them).

4. EXPERIMENT

We collected a corpus (Corpus A) of 25 scanned, public do-
main, one-page pieces of western classical music. The cor-
pus consisted solely of western classical music ranked in
5 groups of 5 each according to quality (1 worst, 5 best;
see Fig. 7). The corpus was composed prior to any OMR
scanning by the various recognizers; the music ranged from
1–15 staves with either chords or multiple voices present in
most staves. We supplemented Corpus A by acquiring the
24 scanned pages from the original study of Byrd et al. [6]
(Corpus B). This corpus consisted mostly of high-quality
scans (qualities 3–5 on our scale) with mostly a single voice
on a single staff. In both corpora, we employed 300DPI
scans, using the “uncleaned” scans of Corpus B. We ap-
plied the four commercial products to the combined corpus
A+B, using Finale Songwriter 2010 to read the output Mu-
sicXML, and performed error counts by hand.

4.1 Error counting

Error counting in OMR is notoriously difficult and ambigu-
ous [3, 4, 6, 9]. Droettboom and Fujinaga [9] and Bellini et
al. [4] argue that error counting at the level of atomic sym-
bols such as noteheads, flags etc. is markedly different from
the case with composite symbols (beamed notes, chords,
etc.), and that a single error in an atomic symbol may cause
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Figure 7. Scores of quality 5 (left: Bar 12 of “God save the
Queen” by T.A. Arne) and quality 1 (right: Staff 3, Bar 17
of “La Baladine Caprice” by C.B. Lysberg).

numerous errors in composite symbols out of proportion.
In addition, there are inherent ambiguities in error counting
(see Tab. 1). There appears to be no consensus in the lit-
erature on the “correct” way to resolve ambiguities, so we
chose as a guideline that the sound (pitch, duration, etc.) of
the music should be preserved, that is, if a recognizer fails
to read symbols correctly, but replaces them with identically
sounding ones (e.g. replacing a whole note rest by two half
note rests), we do not count it as an error. However, to avoid
penalizing OMR tools for missing the beginning clef or key
signature (in which case most or all of the notes in the piece
would be counted as in error), we only count one error for
such a miss. For potential ambiguities in the error count,
we followed a strict disambiguation procedure, described in
Table 1 along with their resolution.

Original score Post-OMR score Ambiguity (A) and Resolution (R)

«« « A: Unclear which of the two notes is miss-
ing. R: Count one note missing error.

Ù
« A: Note has been misread both in duration

and pitch. R: Counts as one note error.

«�
«

A: Unclear which note is missing and which
note has been transposed. R: Count one
missing note and one transformed note,
yielding two errors.

Ù
Ù
Ù Ù

Ù
A: Unclear which of three notes is missing.
R: Count one missing note and one trans-
formed note, yielding two errors.

A ��� ÙÙ Ù
A: Unclear how the remaining notes after
missing clef should be read. R: Count one
missing clef, no note errors, yielding one er-
ror.

Ù� Ù Ù
Ù Ù Ù Ù

Ù A: Unclear of the effect of the missing sharp
pitch. R: Missing accidentals results in note
errors for every alterated note within the tab,
yielding two errors.

�� �� ����� A: Unclear how to count the added acciden-
tals. R: The MusicXiMpLe format adds the
extra accidentals, and these are denoted for
each note. This yields no errors

Ù Ù ÿ� ÿ� A: The resulting document from conversion
to MusicXiMpLe breaks beams. R: Cos-
metic issue, yields no errors.

Table 1. (Non-exhaustive) list of common ambiguities for
error counts and their resolution

4.2 Qualitative assessment

Naked-eye inspection during error counts revealed that all
recognizers have errors on most pages. Furthermore, the
combined recognizer seems to perform better on Corpus B
than on Corpus A, containing mostly single-staff, single-
voice music. It would thus appear that sequence alignment
and voting is impaired by chords, and that a refined distance
metric between “similar” chords is needed. Another oppor-
tunity for improvement is that the sequence alignment is af-
fected negatively if several recognizers misread a clef: All
notes will be dissimilar, to the detriment of the alignment al-
gorithm; this problem could possibly be avoided by letting
each recognizer output using a notation format or relative
pitch notation, rather than a music format (where pitches
are absolute).

4.3 Quantitative assessment

For testing whether one recognizer significantly outperformed
the other, we performed an experiment with our two cor-
pora (N = 49). To avoid spurious assumptions about the
normality of the error rate of each recognizer, we eschewed
parametric tests and instead performed (a) non-parametric
Friedman tests on the ensemble of all tools, (b) sign tests
on each pair of recognizers against the null hypothesis that
applying a pair of recognizers to a random score the recog-
nizers are equally likely to yield fewer errors than the other.
Both tests avoid debatable comparisons of the absolute num-
ber of errors per page, comparing only the relative number
of errors for each pair of recognizers. Tests were performed
at significance level of p < .05.

Ranking the five recognizers from least errors (rank 1)
to most errors (rank 5), the combined recognizer (CR) per-
formed best on average: CR: 2.43, Sharpeye: 2.83, Smart-
score: 2.86, Photoscore: 3.26, Capella-Scan: 3.62. The
Friedman test showed a significant difference in the set of
ranks of the five recognizers (χ2 = 16.286, df = 4, p =
.003). A post-hoc sign test with Bonferroni correction only
yielded significance for the pair CR vs. Capella-Scan (Z =
−3.166, p < .005). The sign test on all pairs of recogniz-
ers yielded significant results for CR vs. Photoscore (Z =
−1.960, p = .049), CR vs. Capella (Z = −3.166, p =
.001), and Capella-Scan vs. Sharpeye (Z = −2.261, p =
.023), while the remaining pairwise comparisons were non-
significant.

The results suggest that Capella-Scan often made more
errors than the remaining tools, and that Sharpeye often made
fewer errors. The sign test also revealed that none of the
recognizers consistently outperform each other, for exam-
ple in the 46 scores that both recognizers were able to scan,
Capella-Scan had fewer errors than Sharpeye in 14, 2 ties,
and more errors in 30.

While the average rankings of the tools suggest that the
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combined recognizer generally performs better, the fact that
we can only give reasonable statistical evidence for this sup-
position for two of the commercial tools tempers the conclu-
sion somewhat. We have little doubt that given a test corpus
of scores in the hundreds we would obtain significant differ-
ences for the remaining tools, but clearly the improvement is
small. Even for high-quality (4 and 5) scores, all recognizers
had error counts above 0 (only on a single score in Corpus
B did every tool perform spotlessly). It appears that fully-
automated, error-free music recognition is not possible and
that human post-correction is almost invariably warranted.

5. CONCLUSION AND FUTURE WORK

We have shown that a simple OMR system based on multi-
ple recognizers and sequence alignment can outperform the
commercially available tools. Our results confirm the ear-
lier work of Byrd et al. suggesting that recognizers may be
improved somewhat by sequence alignment and voting, but
that more elaborate methods may be needed to obtain sub-
stantial improvements. For future work, we suggest tack-
ling dynamics, slurs, articulations, ornaments, arpeggiated
chords, and other embellishments. We advocate the estab-
lishment of sizable online repositories of scores both for
benchmarking multiple recognizers and for the output of
such systems (i.e., reliable, error-free scores), using a suit-
able interchange format, e.g. [10].
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ABSTRACT

Given a scanned score page, Optical Music Recognition
(OMR) attempts to reconstruct all contained music informa-
tion. However, the available OMR systems lack the ability
to recognize transposition information contained in complex
orchestral scores. 1 An additional unsolved OMR problem
is the handling of orchestral scores using compressed no-
tation. 2 Here, the information of which instrument has to
play which staff is crucial for a correct interpretation of the
score. But this mapping is lost along the pages of the score
during the OMR process. In this paper, we present a method
for retrieving the instrumentation and transposition informa-
tion of orchestral scores. In our approach, we combine the
results of Optical Character Recognition (OCR) and OMR
to regain the information available through text annotations
of the score. In addition, a method to reconstruct the in-
strument and transposition information for staves where text
annotations were omitted or not recognized is presented. In
an evaluation we analyze the impact of transposition infor-
mation on the quality of score-audio synchronizations of
orchestral music. The results show that the knowledge of
transposing instruments improves the synchronization accu-
racy and that our method helps in regaining this knowledge.

1. INTRODUCTION

A conductor reading an orchestral score can easily recog-
nize which instrument is notated in which staff of a system.

We gratefully acknowledge support from the German Research Foun-
dation DFG. This work has been supported by the PROBADO project (grant
CL 64/7-2) and the ARMADA project (grant CL 64/6-2).

1 For transposing instruments the written notes are several semitones
higher/lower than the sounding notes.

2 In our context, the notion of compressed score is used to describe a
score, where after the first system staves of instruments not playing are
temporarily removed from a system.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

For this to be possible, a set of common conventions of type-
setting scores was developed. Examples are the introduction
of all instruments playing in a piece of music by labeling the
staves of the first system, a fixed instrument order or the us-
age of braces and accolades to cluster instruments [12]. In
case of compressed scores, in addition to the labeling of the
first system, subsequent systems are annotated with instru-
ment text labels as well (see Figure 1). However, these are
typically annotated by abbreviations instead of full instru-
ment names. In several scores, labels are omitted when a
system does not differ structurally from the preceding sys-
tem.

...
...

...
...

...
...

Figure 1. Extracts from Franz Liszt: Eine Sinfonie nach Dantes
Divina Commedia using compressed notation (Publisher: Breit-
kopf & Härtel).

The PROBADO project 3 aims at developing a digital li-
brary system offering new presentation methods for large
collections of music documents (i.e., scans of sheet music
and digitized music CDs). Similar to a conductor following
the score while listening to a performance, the PROBADO
system highlights the measure in the score matching the cur-
rently audible part of an audio track. One prerequisite for
this type of presentation is a mapping/synchronization of
pixel areas in the score scans to time intervals in the au-
dio track (see Section 3). The first step in calculating this
mapping is the reconstruction of the musical information
contained in the score scans using OMR. 4 However, for
orchestral scores the existing OMR systems lack the abil-
ity to reconstruct all information given in the score. Or-
chestral scores contain instrumentation information which

3 http://www.probado.de
4 We apply SharpEye2 (http://www.visiv.co.uk)
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might be important, e.g., for extracting the score of a sin-
gle instrument. In addition, the instrument text labels also
mark transposing instruments in the score. Their ignorance
results in shifts of single voices with respect to the rest of
the voices in the score. In [14] the impact of typical OMR
errors on the results of score-audio synchronizations was an-
alyzed. It turned out that lacking transposition information
has to be classified as the most influential OMR error. This
suggests that the transposition information contained in the
score should be reconstructed. Unfortunately, at the cur-
rent state no OMR system known to us offers the extraction
of transposition information as well as a correct instrument
labeling 5 of the score. SharpEye provides some text recog-
nition. However, the recognitions are not analyzed with re-
spect to instrument names and are not mapped to the ac-
cording staves, let alone propagated to the following (un-
labeled) systems. The OMR system PhotoScore Ultimate
6 6 offers instrument labeling to some extent. The included
OCR engine recognizes the instrument texts (often includ-
ing transpositions) and maps them to the staves. In addi-
tion, the recognized instrument text labels from the first sys-
tem are propagated to the following systems. However, the
used method seems to be rather simple. PhotoScore maps
the instrument text labels extracted from the first system to
the following systems line by line. Unfortunately, text la-
bels from these systems and structural differences in case of
compressed scores are ignored. Therefore, particularly for
compressed scores, incorrect instrument labelings are cre-
ated. Another OMR system dealing with instrument labels
is capella-scan. 7 The observed abilities of capella-scan to
create and propagate instrument and transposition labels are
comparable to those of PhotoScore. In both OMR systems,
the recognized transposition text labels—even if correctly
recognized—do not seem to be transformed into transposi-
tion labels that are considered during the creation of a sym-
bolic representation, such as MIDI or MusicXML.

In OMR research two crucial questions exist: Firstly,
which music format is processed? Each format (e.g., hand-
written score, medieval score) calls for specialized recon-
struction methods. Secondly, what is the application sce-
nario? The intended application strongly influences the re-
quired OMR accuracy. On the one hand, there are situa-
tions where an exact reconstruction of the score is crucial.
In this context, OMR systems that allow for manual cor-
rections of the recognition results were proposed (e.g., [5]).
Learning mechanisms integrated into those systems then use
the user feedback to gradually improve the OMR accuracy.
On the other hand, some applications demand OMR pro-

5 In contrast to the text actually placed on the score—which we call
instrument text label—instrument labels are language independent. All
known abbreviations or names of the same instrument are mapped to the
same label. These labels are used to identify which instrument is meant to
play in a staff.

6 http://www.sibelius.com/products/photoscore/
ultimate.html

7 http://www.whc.de/capella-scan.cfm

cesses providing a sufficient quality without requiring user
interactions. In our scenario, we are interested in process-
ing a large data collection with as little user interaction as
possible. The generated OMR results are only required for
score-audio synchronization, which is robust with respect to
missing notes and incorrect note durations. Therefore, in
this situation accuracy loss in favor of automation is desir-
able.

Although a great deal of research on OMR has been con-
ducted (see, e.g., [1]), the special challenges of orchestral
scores have not yet been addressed. However, the extrac-
tion of instrumentation and transposition information has to
be considered a crucial part of OMR for orchestral scores
regardless of whether the goal is an exact digital reconstruc-
tion of the score (e.g., for score-informed voice separation)
or a rough representation intended for further processing.

In this contribution we present a method to reconstruct
the missing instrument and transposition labels in orches-
tral scores. We combine OCR and OMR to regain informa-
tion from text labels in the score. Subsequently, instrument
and transposition labels for staves lacking text annotations
are reconstructed using music-related constraints and prop-
erties.

In Section 2 we will describe our instrument and trans-
position label reconstruction method. In Section 3 we will
give a short description of the applied score-audio synchro-
nization technique. Afterwards, the results of our evaluation
using a set of 11 orchestral pieces are presented and dis-
cussed. We close this paper with a summary and an outlook
on possible future work in Section 4.

2. METHOD

We present our method to reconstruct the instrument and
transposition labels in staves of orchestral scores. Basically,
the algorithm can be subdivided into three parts: In the first
part of the process (Subsection 2.1) the text areas on the
score scans are identified and processed by an OCR soft-
ware. Subsequently, the recognition results are transformed
into instrument labels and matched to the corresponding
staves. After this step, all staves, where textual informa-
tion was given in the score and recognized by the OCR soft-
ware, possess an instrument label. But in orchestral scores,
after the first system, instrument text labels are often omit-
ted. Therefore, in the second step of the algorithm (Sub-
section 2.2) missing labels are reconstructed by propagating
existing labels. Afterwards, each staff has an instrument la-
bel associated with it. In the final step of the algorithm the
transposition labels that were found in the first system are
propagated through the score (Subsection 2.3).

We impose some assumptions on the scores processed
with our method:

• The first system contains all instrument names that occur
in the piece.
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• The instrument order established in the first system is not
changed in subsequent systems.

• A maximum of two staves share a common instrument
text label.

• When first introduced, full instrument names are used.
• For compressed scores, text labels are given if the instru-

mentation changed compared to the preceding system.

For most orchestral scores these assumptions are met.
We will now provide a detailed account of the three steps

of the instrument and transposition labeling algorithm. For
an even more extensive description we refer to [15].

2.1 OCR-based instrument labeling

In this part of the reconstruction, we analyze textual infor-
mation given on the score sheets to create instrument and
transposition labels.

First, given a scanned score image, the contained con-
nected components (CCs) of black pixels are determined
[11, 15]. Afterwards, CCs that definitely do not contain let-
ters are discarded. Using a sweep line algorithm [3] hori-
zontally neighboring CCs are then merged to form words.
Subsequently, the thereby determined image areas are used
as input for the ABBYY FineReader 10 OCR software. 8

At this point, we have a list of OCR recognitions and
their positions on the score scans. To achieve a proper in-
strument labeling two additional steps are required. First,
the recognized text is compared to an instrument library.
The library contains names and abbreviations for typical or-
chestral instruments in German, English, French, and Ital-
ian. Using the Levenshtein distance [8], the library entries
with the longest word count that are the most similar to the
recognitions are identified and used as instrument labels in
the according text areas. Secondly, using the staff position
information available in SharpEye, the identified instrument
labels are mapped to the according staves of the score.

In the majority of cases, transposition information is
available from text labels like “clarinet in A” (see Figure 2).
To detect transpositions we therefore search for occurrences
of text labels containing the keyword “in” followed by a
valid transposition.

2.2 Instrument label reconstruction

This section constitutes the main part of the proposed meth-
od. We will use the labeling from the previous section as
initialization of an iterative process to reconstruct the label-
ing for all staves. Given the score of a piece of music, we
define the sequence of all systemsM = (M0, . . . ,Mm) and
the set of all instrument labels I of system M0 that were re-
constructed in Section 2.1. With S = [1:N ] we enumerate
all the staves in M and let Sa ⊂ S denote the staff num-
bers corresponding to Ma. Furthermore, we create a ma-

8 http://finereader.abbyy.com

trix π ∈ [0, 1]S×I , where π(i, I) will be interpreted as the
“plausibility” of staff i having the instrument label I . The
submatrix πa ∈ [0, 1]Sa×I corresponds to Ma. We initial-
ize π with the instrument labels determined in Section 2.1.
As plausibility values, the Levenshtein distances between
the instrument labels and the original instrument text on the
score sheets are applied. Note that due to this initialization,
several instruments might be mapped to one staff (e.g., for
the text label “viola and violoncello”). Afterwards, the plau-
sibility matrix π0 := π is iteratively updated using an update
method that can be subdivided into three steps

πk+1 = IOC ◦ IP ◦ POP (πk).

We will now explain these three steps of the update process
in chronological order.

2.2.1 Propagation of plausibilities (POP)

In this step we will propagate the plausibilities from system
Ma to system Mb, for several a < b specified below. To
perform a plausibility propagation, we fist calculate the set
Ca,b ≡ Ca,b(πa, πb) consisting of all triples (i, j, I) ∈ Sa×
Sb×I whose joint plausibility πa(i, I) ·πb(j, I) is positive.
We then reduce Ca,b by removing all crossings. A crossing
between two triples (i, j, I) and (k, `,K) with i < k occurs
if j > `. In case of a crossing, the triple with smaller joint
plausibility is removed. The resulting set will be denoted
by C ′a,b. By projecting the elements of C ′a,b onto the first
two components, (i, j, I) 7→ (i, j), we end up with the set
C×a,b ≡ C

×
a,b(πa, πb). To deal with uninitialized systems and

full scores, we add the pairs (0, 0) and (|Sa|+1, |Sb|+1) to
C×a,b. After sorting C×a,b lexicographically, we perform the
following update process ↑(πb|πa) for πb given πa:

1. For the smallest element (i, j) ∈ C×a,b search the minimal
t ≥ 1 such that (i+ t, j + t) ∈ C×a,b.

2. If no such t exists, goto 5.
3. ComputePij consisting of all (i+s, j+s) ∈ Sa×Sb\C×a,b

such that s ∈ [1 : t−1] and staff i+s and staff j+s share
the same clef label.

4. For all (`, I) ∈ Sb × I update πb as follows:
πb(`, I) = max ({πb(`, I)} ∪ {πa(k, I) | (k, `) ∈ Pij}).

5. Update C×a,b by removing (i, j).
6. If |C×a,b| > 1, goto 1.

Using this local update instruction, we define POP (πk)
in two steps. First we calculate π̃k

b :=↑ (πk
b |πk

0 ) for all
b ∈ [1 :m] and then POP (πk

b ) :=↑ (π̃k
b |POP (πk

b−1)) is
recursively computed. We redefine πk := POP (πk).

2.2.2 Applying instrument properties (IP)

In this step, we extract knowledge from the plausibility ma-
trix to reconstruct missing instrument labels and to fortify
already existing plausibility entries. We define some staff-
related properties E1, . . . , Ep as subsets of S where i ∈ Ej
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means that staff i has propertyEj (e.g., staff i has treble clef
or staff i is the first/last staff in the system). Similarly, we
define properties F1, . . . , Fq ⊂ ∪m

a=0Sa × Sa between two
staves of the same system (e.g., staff i is in the same brace
as staff j). We now use these staff related properties and π
to deduce instrument related properties.

For each instrument I we calculate the probability distri-
bution PI on E := {E1, . . . , Ep} given π:

PI(E|π) =

∑
i∈E wi · π(i, I)∑

E′∈E
∑

i∈E′ wi · π(i, I)
,

where wi = 3
4 for staves i in S0 and wi = 1

4 otherwise. For
(I, F ) ∈ I × F with F := {F1, . . . , Fq} we compute the
probability distribution PI,F on I given π: 9

PI,F (J |π) :=

∑
(i,j)∈F wi

√
π(i, I) · π(j, J)∑

J′∈I
∑

(i,j)∈F wi

√
π(i, I) · π(j, J ′)

.

Using these global instrument properties, we now define
the plausibility increase

π∆(I, i) :=
∑

E∈E:i∈E

wEPI(E|π) +

∑
j∈S,J∈I

∑
F∈F:(i,j)∈F

wF

√
π(j, J)PI,F (J |π),

where wE , wF are suitable property weights. Using π∆, we
define IP (πk) := N(πk +πk

∆), where for a non-zero matrix
X , N(X) := X/maxij |xij |. We redefine πk := IP (πk).

2.2.3 Exploiting the instrument order constraint (IOC)

A common convention for score notation is that the instru-
ment order established in the first system is not altered in
subsequent systems. Therefore, we use the instrument la-
bels of S0 to penalize systems where the instrument order
established by S0 is violated.

Given M0 and a system Ma, a > 0, we extract the se-
quences I0 = (I1, . . . , I|S0|) and Ia = (J1, . . . , J|Sa|) of
most plausible instrument labels. Afterwards we calculate
the set L0a of all pairs (i, j) ∈ S0 × Sa with Ii = Jj

for which a pair (k, `) ∈ S0 × Sa exists with Ik = J`

such that (i, j, Ii) and (k, `, Ik) constitute a crossing (Sub-
section 2.2.1). The plausibility decrease π∇,a(j, Jj) :=
λ
∑

i:(i,j)∈L0a
πa(i, Ii) with suitable parameter λ > 0 is

calculated for all a ∈ [1 : m]. Finally, the plausibility
update using the instrument order constraint is given by
IOC(πk) := N(πk−πk

∇), where πk
∇ =

(
πk
∇,0, . . . , π

k
∇,m

)
.

2.3 Transposition propagation

During the OCR-based reconstruction of the instrument la-
bels, the available transposition information is also trans-
formed into transposition labels and subsequently mapped

9 We chose two different probability distributions to account for the dif-
ferences between the two sets of properties E and F.

to the according staves. After the reconstruction process de-
scribed in the previous subsection has terminated, the trans-
position labels from the first system are propagated through
the whole score. For each staff in S0 holding a transposition
label, the occurrences of its instrument label in the rest of
the score are determined. The concerned staves will then be
assigned with the transposition label from S0.

In the context of our evaluation in Section 3 we used this
method to propagate manually corrected transposition labels
in the first system to the whole score.

We are aware of the fact that some orchestral scores con-
tain transposition information next to arbitrary staves. How-
ever, extracting those short text labels (e.g., “in A”) is a new
challenge and is left to be analyzed.

3. EVALUATION

As the need for an algorithm that reconstructs the transposi-
tion information contained in musical notations arose from
our application scenario, we will evaluate the impact of our
method with respect to the task of score-audio synchroniza-
tion. In Subsection 3.1 we provide a short overview of the
technique of score-audio synchronization. Afterwards, we
give a detailed account on the performed evaluations (Sub-
section 3.2).

3.1 Score-audio synchronization

The goal of music synchronization in general is the calcu-
lation of a mapping between each position in one represen-
tation of a piece of music to the musically matching posi-
tion in another representation of the same piece of music.
For score-audio synchronization tasks the given input docu-
ments are score scans and audio tracks.

In the first step of the synchronization both music docu-
ments are transformed into a common representation which
then allows for a direct comparison. We chose to use the
well-established chroma-based features. For details on the
calculation of chroma features from audio recordings we re-
fer to [2,9]. To extract chroma features from score scans the
given sheets are first analyzed with an OMR system to re-
construct the musical information. After storing the recogni-
tion results in a MIDI file, the chroma features are calculated
similarly as for the audio recordings.

In the next step a similarity matrix is calculated from the
two feature sequences. Finally, by applying multiscale dy-
namic time warping [10, 13] a minimal path through this
matrix is calculated. The synchronization between the mu-
sic documents is then encoded by this path.

3.2 Experiments

For our evaluation, we employ the beat annotations from the
RWC Music Library [6] as ground truth. We extracted the
measure starting points from these files to generate a ref-
erence synchronization on the measure level. As test data
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we selected the 11 orchestral pieces which contain at least
one transposing instrument (see Table 1). In addition, the re-
spective orchestral scores were collected and processed with
SharpEye (data sources: IMSLP 10 and Bavarian State Li-
brary 11). For four of the pieces we found scores that use a
compressed notation. Obviously, the labeling task is harder
for those scores than for scores using a full notation. To
perform the synchronization experiments, we took audio
excerpts of roughly two minutes length and the according
score clippings.

Label Work Publisher
C1 Haydn: Symphony no. 94 in G major, 1st mvmt. Kalmus
C2 Tchaikovsky: Symphony no. 6 in B major, 4th mvmt. Dover Publications
C3 Mozart: Le Nozze di Figaro: Overture Bärenreiter
C4 Wagner: Tristan und Isolde: Prelude Dover Publications
F1 Beethoven: Symphony no. 5 in C minor, 1st mvmt. Breitkopf & Härtel
F2 Brahms: Horn Trio in Eb major, 2nd mvmt. Peters
F3 Brahms: Clarinet Quintet in B minor, 3rd mvmt. Breitkopf & Härtel
F4 Mozart: Symphony no. 40 in G minor, 1st mvmt. Bärenreiter
F5 Mozart: Clarinet Quintet in A major, 1st mvmt. Breitkopf & Härtel
F6 Mozart: Violin Concerto no. 5 in A major, 1st mvmt. Bärenreiter
F7 Strauss: “An der schönen Blauen Donau” Dover Publications

Table 1. Overview of the test data. The scores of C1–C4 use
compressed and the scores of F1–F7 use full notation.

Before presenting the synchronization results, we want to
briefly comment on the accuracy of the instrument labeling
results of the proposed method. For our test data there were
a total of 464 instrument text labels given in the score. In
addition, 87 transposition text labels were found. Our eval-
uation method could correctly reconstruct 88% of the instru-
ment and 77% of the transposition labels (see Table 2). The
error sources are diverse (e.g., OCR misrecognitions, un-
considered instrument abbreviations) and some will be dis-
cussed after the presentation of the synchronization results.

Instrument labels % Transposition labels %
total errors total errors

Compressed 401 53 87 75 17 77
Full 63 1 98 12 3 75

Total 464 54 88 87 20 77

Table 2. Percentage of wrongly reconstructed text labels.

For each piece of music we calculated four synchroniza-
tions. In the first case, we used the MIDI created from the
SharpEye recognition data (OMR) to create the score-audio
synchronization. In the other cases we manipulated the
OMR recognition before performing the synchronization. In
the second case, we manually annotated the missing trans-
position labels in the scores (OMR∗). In the third case, we
applied the label reconstruction method described in Sec-
tion 2 (OMR+LR). 12 In the last case, we manually cor-
rected the transposition labels in the first system before the
transposition propagation is performed (OMR+LR∗). Ta-
ble 3 shows the evaluation results for all of the mentioned

10 http://imslp.org/wiki/Main_Page
11 http://www.bsb-muenchen.de
12 We performed 18 iterations of the process described in Section 2.2 and

chose suitable experimentally determined parameter settings.

settings. The numbers state the mean and standard devia-
tions from the ground truth. Comparing the results of OMR

Label OMR OMR∗ OMR+LR OMR+LR∗
mean std mean std mean std mean std

C1 456 1016 283 441 456 1016 283 441
C2 434 502 385 378 424 505 425 503
C3 247 349 128 178 134 183 181 247
C4 1005 980 889 884 889 884 889 884
Av 536 712 421 470 476 647 445 519
F1 462 700 265 391 284 493 265 391
F2 390 672 110 125 110 125 110 125
F3 266 803 124 84 124 84 124 84
F4 93 88 93 86 93 88 93 86
F5 243 383 65 53 65 53 65 53
F6 79 81 69 66 69 66 69 66
F7 451 658 310 492 310 492 310 492
Av 243 405 148 185 151 200 148 185

Table 3. Overview of the deviation of the different synchroniza-
tion results from the ground truth (in ms).

and OMR∗, it becomes evident that knowing all transposi-
tion labels results in a significant improvement of the syn-
chronization results.

For six pieces—one of which has a compressed score—
our method could correctly reconstruct all transposition la-
bels (C4, F2, F3 and F5–F7, see column OMR+LR). For
the remaining pieces, other than C1 and F4, the method im-
proved the synchronization results compared to not apply-
ing any post-processing. By annotating the transposition la-
bels in the first system manually before propagating them
through the score (OMR+LR∗) the results became equal to
OMR∗ for all full scores and the compressed score C1. Al-
though, manual interaction was still required, only annotat-
ing the first system constitutes a significant improvement
compared to annotating all systems of an orchestral piece
manually. For C2 and C3 a correct reconstruction of the
transposition labels was not possible. In addition, using the
propagation of the transposition labels from the first system
results in a degradation of the synchronization compared to
OMR+LR (due to instrument labeling errors).

We will now discuss the labeling results for some scores
in more detail. For two pieces the transposition text labels
given in the score were not recognized. In C1 the score no-
tation uses an unusual setting of the transposition text labels
(see Figure 2). The text labeling in C1 results in the recog-
nition of three separate text labels (“in”, “G”and “Sol”) in-
stead of one text label (e.g., “in G”). Therefore, our method
could not reconstruct the transposition labeling. In F4 the
alignment of the transposition text labels would allow for
a successful recognition but the OCR engine produced re-
sults such as “i n Sol” or “inSiw”. In both of these examples
the keyword “in” with a subsequent space was not available.
Although for all other pieces the transposition labels in the
first system were correct, some instrument labeling errors
occurred which sometimes influenced the transposition la-
beling of subsequent systems in a negative manner. Some
of these errors result from incorrect OCR recognitions (e.g.,
recognition of “FI.” instead of “Fl.” (flute) results in a map-
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ping to “Fg.” (Fagott, German for bassoon)). Furthermore,
some text labels are wrongly interpreted as instrument text
labels and thereby produce wrong instrument labels. An in-
teresting mix-up occurred for C3. Here, Italian text labels
are used and both the clarinet and the trumpet are part of the
instrumentation. However, in Italian the trumpet is called
“clarino” which is abbreviated by “Cl.”. But, in English this
abbreviation is used for the clarinet.

Figure 2. Examples of missed transposition text labels.

We also performed an evaluation of the impact of other
OMR errors (clefs, accidentals, pitches, durations) on the
prospective synchronization results (see Table 4). In accor-
dance with the results in [14], correcting the OMR data al-
most consistently resulted in an improvement. However, the
accuracy increase is less pronounced than for transpositions.

Label OMR OMR∗ OMR+LR OMR+LR∗
mean std mean std mean std mean std

C4 1018 967 936 856 936 856 936 856
Av 486 517 426 405 436 449 445 457
F1 342 528 151 169 172 219 151 169
Av 269 471 131 144 134 151 131 144

Table 4. Synchronization results for corrected OMR data. The
averages are calculated for C1–C4 and F1–F7, respectively.

4. CONCLUSIONS AND FUTURE WORK

We presented a method for the reconstruction of instrument
and transposition labels from orchestral scores. Our method
reconstructs instrument labels based on an OCR recognition
and propagates those labels to staves where no instrument
text labels existed in the score. We tested our method in
the context of score-audio synchronization. The evaluation
showed both the need for the reconstruction of transposition
labels to improve the synchronization results and the ability
of our method to achieve this.

At the moment our method is being integrated into the
preprocessing workflow of the PROBADO application (see
[4]). We hope to thereby reduce the manual annotation effort
required to administer large music databases.

To make the reconstruction more robust—especially for
compressed scores and with respect to the imposed assump-
tions—we suggest several ideas. We found that although
ABBYY FineReader produces a very high recognition rate
for words (> 97%), the recognition of instrument abbre-
viations was often inferior to other OCR engines. There-
fore, a promising idea is the combination of several OCR
engines to make the initial OCR-based instrument labeling

more reliable. Our method takes advantage of some con-
ventions for music notation while currently ignoring several
others. We assume that, e.g., key signatures, braces, and
instrument groups form powerful tools w.r.t. the task of in-
strument labeling. However, SharpEye does not recognize
those features reliably and prevents their reasonable usage.
We therefore suggest to reconstruct them by, e.g., combining
several OMR engines as proposed in [7] and to subsequently
integrate them into the proposed method.
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ABSTRACT

The aim of this study is to explore how we could use
computational technology to help determination of the chronol-
ogy of music manuscripts.

Applying a battery of techniques to Bach’s manuscripts
reveals the limitation in current image processing techniques,
thereby clarifying future tasks. Analysis of C-clefs, the cho-
sen musical symbol for this study, extracted from Bach’s
manuscripts dating from 1708–1748, is also carried out. Ran-
dom forest using 15 features produces significant accuracy
for chronological classification.

1. INTRODUCTION

In the development of western music, handwritten scores
and parts have played a significant role even after the inven-
tion of making prints because they allowed composers to ex-
press their ideas in a personalized way. In manuscripts, the
writer’s intention is assumed to be present, and manuscripts
are often the only surviving witness for them and their work,
and for this reason, they should be analyzed with utmost
care and attention.

Although optical music recognition (OMR) has been in-
vestigated actively for this, there has been little research in-
vestigating such aspects of music manuscripts beyond OMR.
Enote history 1 [3, 4] and the researches by Fornes [10] are
such examples, which deals with such as writer identifica-
tion or how just a subtle change of handwriting could reveal
the situation under which the writer was working.

This paper explores the analysis of Bach’s C-clefs and we
associates the image processing issues. C-clefs have been

1 Enote history is a name of the project which mainly concerns scriber
identification in handwritten music manuscripts from the 18th century. This
was achieved by the cooperation of several research institutes: the library
of the university of Rostock, the department of musicology at the univer-
sity of Rostock, the database research group at the department of computer
science, and the Fraunhofer institute for computer graphics.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

identified by Bach scholars as one of the most crucial criteria
to date the manuscript. Musicologists such as Dadelsen [21]
and Emery [9] claim that Bach’s C-clef can be categorized
into three or four groups and each group mainly appears
in a specific period. Dadelsen applied this to identification
of the chronological order of Bach’s manuscripts. One of
the weaknesses of their discussions seems to be the lack of
any quantitative evaluation of their hypothesis. Their inves-
tigation is apparently supported by their deep background
knowledge and experience, which cannot be easily emulated
by computer. This lack of reproducibility of their research
can be addressed in the musicology of the future. High re-
producibility is in fact one of the biggest advantages of com-
putational analysis.

Figure 1 shows the C-clefs found in Bach’s manuscripts
arranged in a chronological order suggested by musicolo-
gists [14], which demonstrates that the shape of Bach’s hand-
writing changed over time. Bach scholars investigate the is-
sue of chronology by examining various types of evidence
holistically. Evidence typically include watermarks, hand-
writing, a documented use of the manuscripts giving clues
to specific dates, notational styles, and librettists. It seems
risky, therefore, to draw a conclusion by contemplating only
a single type of evidence such as C-clefs.

However, computational analysis can offer a totally ob-
jective and independent result, which can then be combined
with other sources and knowledge such as the evidence men-
tioned above, which will hopefully lead to more reliable re-
sults. Can computational analysis offer the same conclu-
sions as those arrived at by musicologists? The remainder
of the paper is focused on this question by addressing the
computational analysis of C-clefs.

2. IMAGE PROCESSING OF BACH’S
MANUSCRIPTS

The extraction of C-clefs from the manuscripts requires ac-
curate segmentation. However, the segmentation of old hand-
written manuscripts proves to be a difficult task [6,17]. The
main difficulty seems to be caused by degradation such as
show-through and bleed-through effects.
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(a) 1708 (b) 1723 (c) 1733 (d) 1736 (e) 1739 (f) 1748

Figure 1. The C-clefs of Bach’s handwriting in the order of
chronology suggested by musicologists.

In addition, microfiche, the primary medium of the Bach’s
manuscripts in the study, gives the images in low-resolution,
which creates further problems for image processing.

(a) Clear manuscript (b) Obtained image by adaptive binariza-
tion and staff-line removal from (a)

(c) Unclear and degraded manuscript (d) Obtained image by adaptive binariza-
tion and staff-line removal from (c)

Figure 2. Two results of staff-line removal; almost all the
staff-lines are left in (d).

As text line localization is the essential part of the OCR
process [12], staff line detection is one of the most diffi-
cult but important aspects of OMR, since staff lines, which
are used to give meaning to certain symbols such as note-
heads, prevent the segmentation of musical symbols. Al-
though there are arguments about the necessity of the staff-
line removal, most research regards it as essential. The vol-
ume of research dealing with staff-line detection and re-
moval [5, 7, 8, 15, 16, 19] indicates the difficulty inherent in
this process, especially in the case of handwritten music.

(a) (b) (c) (d) (e)

Figure 3. C-clefs cropped by the proposed method and pre-
pared for feature extraction: (a)original clef; (b)binarization
using Niblack’s method; (c)line removal using Dalitz’s
method; (d)(e)other examples including irrelevant pixels.

We experimented with several staff-line removal meth-
ods implemented in Gamera 2 , and we found Dalitz’s method
[7] effective although it has sometimes failed to find staff-
lines, probably because it is sensitive to deformation. This
happened especially when the staff-lines were curved or sig-
nificantly thinner than usual. Figure 2 shows typical results
of the staff-line removal. In addition to the difficulty inher-
ent in the staff-line removal from the manuscripts, Bach’s
dense notation and the irrelevant pixels, which are most com-
monly resulted from the degradation of paper, cause touch-
ing symbols. Moreover, unclear and degraded manuscripts
are often fragmented by binarization process. These prob-
lems make it difficult to automatically decide bounding box
of each musical symbol.

As it still requires further work to resolve these difficul-
ties, for the present study we decided to collect C-clefs by
manually deciding the bounding box. Figure 3 shows the
C-clef extracted by this method. This extraction is followed
by both morphological operation and staff-line removal to
procure clear image, in order to prepare for the feature ex-
traction. This is shown in Figure 3(b) and (c).

3. EXPERIMENT

This section explores the classification of the C-clefs. Be-
cause there is a controversy among Bach scholars regard-
ing both the authorship and chronology of C-clef forms, we

2 Gamera is a toolkit for building document image recognition systems
and cross platform library for the Python programming language. It pro-
vides a set of commonly needed functionality for document image analysis
and allows for custom extensions as C++ or Python plugins and as toolkits.
See http://gamera.informatik.hsnr.de/index.html for more detail.
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have carefully selected the sample dataset from an undis-
puted portion of Bach’s fair copies that date between 1708
and 1748. The detailed information of this is shown in Ta-
ble 1. 3 We prepared two classification tasks using the same
dataset: one is eight-class classification using the date pro-
posed by Kobayashi as the label; the other is two-class clas-
sification which only distinguishes between A B C and D E
F G H. This corresponds to determining if a certain clef was
written before Bach arrived at Leipzig (i.e. May 1723) to
assume his role as Thomas cantor as well as the director of
music for the town, or after that date.

Feature selection is also an important factor for success-
ful classification. For the present study, 15 features imple-
mented in Gamera were used. Each feature is explained as
follows 4

• area

The area of the bounding box.

• aspect ratio

The aspect ratio of the bounding box.

• black area

The number of black pixels.

• compactness

The volume to surface ratio.

• moments

The centre of gravity on x and y axis normalized by
width and height.

• ncols feature

The number of columns.

• nholes

The averaged number of white runs not touching the
border. This is computed both for each row and each
column.

• nholes extended

Divides the image into four strips and then does a
nholes analysis on each of those strips. This is first
done vertically and then horizontally, resulting in a
total of eight feature values.

• nrows feature

The number of rows.
3 See [13] and [14] for detailed discussion on the chronological issue of

J.S.Bach’s work.
4 See http://gamera.sourceforge.net/doc/html/features.html#features for

detailed information of the features.

• skelton features

Generates a number of features based on the skeleton
of an image.

• top bottom

The first feature is the first row containing a black
pixel, and the second feature is the last row containing
a black pixel.

• volume

The percentage of black pixels within the rectangular
bounding box of the image.

• volume16regions

Divides the image into a 4 x 4 grid of 16 regions and
calculates the volume within each.

• volume64regions

Divides the image into a 8 x 8 grid of 64 regions and
calculates the volume within each.

• zenrike moments

Computes the absolute values of the normalized zernike
moments [18] up to order six.

In the experiment, the performance of random forest (RF),
which worked the best in the preliminary experiment, was
investigated using 10-fold cross-validation compared with
other methods: support vector machine (SVM), bagging,
and boosting 5 . RBF kernel was used as the kernel func-
tion of SVM, and this was automatically estimated from the
result of a preliminary experiment. CART Algorithm was
used as underlying classifiers for all the ensemble classifiers
and the other parameters were set as default.

Table 2 shows the result of 10-fold cross-validation. The
best accuracy for two-class classification was 89.95% ob-
tained by random forest. This accuracy seems significant
considering that the classification of Bach’s handwriting has
been attempted by only a few experts. The eight-class clas-
sification is far more complicated and thus extremely dif-
ficult even for human experts. The best accuracy 73.82%
was achieved by RF for eight-class classification, which is
in itself remarkable. While there is much room for improve-
ment, these classifications may serve as a rough barometer
for musicologists.

Tables 3 and 4 indicate the confusion matrix for the two-
class and the eight-class classification. Note that this confu-
sion matrix is the result of the classification using out of bag
data, and its error rate tends to be higher than that of cross
validation. In Table 3 , misclassification of B(during and

5 See [1, 2, 11, 20] for detailed explanation of each classifier used in the
experiment. We used the implementation included in R package for all the
classifiers. See http://www.r-project.org/ for more information about R.
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Table 1. Data set used for the experiment.

ID Name of the piece BWV Name of the source Estimated date Number of the clefs extracted
A Cantata “Gott ist mein König” BWV71 D-B, Mus. Ms. Bach P 45 1708 89
B Alles mit Gott und nichts ohn’ Ihn BWV1127 D-W, Ra B 24 1713 11
C Inventions and Sinfonias BWV772–801 D-B, Mus.ms. Bach P 610 1723 188
D Sanctus BWV232/III D-B, Mus. ms. Bach P 13 1724 77
E Magnificat BWV243 D-B, Mus.ms. Bach P 39 1733 221
F St Matthew Passion BWV244 D-B, Mus.ms. Bach P 25 1736 633
G Well-Tempered Clavier II, No. 10, 19, and 24 BWV879, 888, and 893 GB-Lbl, Add.MS. 35021 1739 69
H Canonic Variations on Vom Himmel hoch BWV769 D-B, Mus.ms. Bach P 271 1748 22

Table 2. Classification accuracy evaluated by 10-fold cross
validation for the best four classifiers

Two-class Eight-class
Random forest 89.95% 73.82%

SVM 85.25% 72.36%
Bagging 88.35% 73.09%
Boosting 86.20% 60.35%

Table 3. Confusion matrix for two-class classification
A B class.error

A 189 99 0.34
B 33 989 0.032

after Leipzig) to A(before Leipzig) is limited . The misclas-
sification of A to B seems to be caused by a small sample
size of A compared to B. In Table 4, the misclassification
of classes such as A D and H into F is noticeable. This
result implies that classes with a low sample size tends to
be classified as the class with a large sample size such as
F. It is interesting that class G is classified with fairly high
accuracy although it has small sample size. This is proba-
bly because the deviation of the shapes of the C-clefs in G
is small enough to achieve the high classification accuracy
even with small sample data.

4. CONCLUSION AND FUTURE WORK

In this study, we proposed a new method to work out the
chronology of music manuscripts by classifying the shape of
C-clefs. Applying a battery of techniques to Bach’s manuscripts
revealed the limitation of the current image processing tech-
niques. The method of classifying C-clefs using 15 features
and RF produced a result of 89.95% accuracy in two-class
classification and 73.82% in eight-class classification.

The automatic collection of musical symbols from Bach’s
manuscripts proves to be a challenging task, but is worth in-
vestigating further. The accuracy of C-clef classification can

be improved by investigating the implementation of musi-
cal knowledge, and this should be explored in collaboration
with musicologists. In this study, we assumed that all the
clefs from the same page were written in the same period.
However, there is deviation in shape even in the clefs on the
same page and sometimes they looked as if they were added
subsequently or even possibly by a different hand. For this
level of analysis, it requires more sophisticated image pro-
cessing techniques that are capable of handling more subtle
changes in each music symbol.

Chronological identification is not a straightforward task.
In contrast to OMR system, musicologists would take a com-
plex approach, combining it with chronological, composi-
tional, and notational information, placing them against the
historical background of the source such as the situation un-
der which the initial copying and revisions took place, the
diplomatic polices that might reveal the purpose for which
the score was made, and so on, to verify the initial hypoth-
esis. It is hoped that quantification and statistical analyses
such as what demonstrated in this paper will be perfected in
future research, and that they are adopted by future musicol-
ogists to discover many more exciting facts hidden deep in
the beautiful manuscripts of Johann Sebastian Bach.
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ABSTRACT

In this paper we present our research in the development of a
pitch-finding system to extract the pitches of neumes—some
of the oldest representations of pitch in Western music—
from the Liber Usualis, a well-known compendium of plain-
chant as used in the Roman Catholic church. Considerations
regarding the staff position, staff removal, space- and line-
zones, as well as how we treat specific neume classes and
modifiers are covered. This type of notation presents a chal-
lenge for traditional optical music recognition (OMR) sys-
tems because individual note pitches are indivisible from the
larger ligature group that forms the neume. We have created
a dataset of correctly-notated transcribed chant for compar-
ing the performance of different variants of our pitch-finding
system. The best result showed a recognition rate of 97%
tested with more than 2000 neumes.

1. INTRODUCTION

Optical music recognition (OMR) is the process of turn-
ing musical notation represented in a digital image into a
computer-manipulable symbolic notation format. Music no-
tation, however, comes in many different forms, and so there
is no single OMR system that can recognize all types of mu-
sic.

Plainchant is a large collection of monophonic melodies,
which exist as one of the oldest types of notated music in Eu-
rope. These melodies have been part of (Western) Christian
liturgy since the Middle Ages and have formed the basis for
much Western music that followed. Its unique system of no-
tation, constructed on groups of pitches known as neumes,
is still in use in liturgical settings and was most famously
re-popularized in the late 19th Century by the monks at the
Solesmes monastery in France.
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Perhaps the most used book produced by the Solesmes
community was the Liber Usualis, a 2000-page service book
that contains most of the texts and chants for the offices and
masses of the church, designed to be a practical reference
book by those responsible for performing these services. As
a modern production, many qualities of older manuscript
sources—notably the variation in scribes handwriting and
degradation due to age—are not present in the Liber, but
its sheer size and comprehensiveness provides an excellent
foundation for training automatic neume recognizers.

In this paper we present our work to date for producing a
neume recognition system. This work concerns the recogni-
tion of printed neume pitches, specifically in the style used
throughout the Liber, known as square-note notation. In
square-note notation, most neumes are ligatures that repre-
sent multiple pitches, and so accessing the individual notes
of a neume can be problematic. We have developed a sys-
tem whereby we recognize the position of the first pitch of a
neume group, and then employ a unique approach using au-
tomatic class labels to recognize the remainder of the pitches
in that group.

1.1 Notation: From Neumes to MEI

We have chosen the Music Encoding Initiative (MEI) for-
mat 1 as the basis for capturing the output of our recogni-
tion system. This format provides an extensible approach to
encoding different types of music documents [7]. As part
of this project, we have developed an extension to the MEI
format that captures the particular qualities and nuance of
Solesmes-style square-note notation. We convert the output
from the recognition system into MEI files through the use
of the PyMEI library 2 .

1.2 Notation Systems

Plainchant notation is a precursor to modern music notation.
Initially it was conceived as a means of providing some in-
dication of melodic contour to a text that was chanted during

1 http://music-encoding.org/
2 https://github.com/ahankinson/pymei
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a liturgical service, and provided no indication of absolute
pitch values. With the invention of the musical staff between
the 9th and 10th Centuries, some forms of neumes made the
transition to being “heightened,” or given absolute pitches in
relation to a staff and clef. Solesmes notation features abso-
lute pitch, and so its pitch values may be extracted directly.

Dalitz et al. [1] have presented a system for symbol recog-
nition of Byzantine chant notation using neume forms unique
to this repertoire. This system of notation, however, does
not use a staff to specify absolute pitch. The neume shapes
for this type of notation specified melodic contour and rel-
ative pitch direction, and the authors do not report any at-
tempt at supplying absolute pitch information. Gezerlis and
Theodoridis [2] have also presented a system for recogniz-
ing Byzantine chant notation, however, like Dalitz et al.,
their system does not perform any pitch transcription.

Laskov and Dimitrov [3] have presented a system for per-
forming image segmentation for neume notation, separat-
ing the neumes as objects of interest from the background.
Again, however, this system is for unpitched neumes and
thus the authors made no attempt at extracting pitches.

Finally, Ramirez and Ohya [4] have presented a classifi-
cation system used to classify eight basic types of neumes
in pitched manuscript sources from the 14th Century. This
system classifies these symbols accurately, but the authors
did not report any attempt at performing pitch recognition
from the recognized classes. The authors also made no in-
dication of how their system would perform outside of the
eight standard neume forms they used.

In our paper, we address a method of performing neume
classification and pitch transcription from 11 basic types of
neumes and its multiple variants presented on a staff.

2. WORKFLOW

We are creating a fully searchable, web-based version of the
Liber. This project will allow users to search for specific
melodic sequences or patterns in the book; our system will
return all matching patterns, highlighting them in the origi-
nal image. To accomplish this goal, we needed to extract all
musical and textual information from the Liber. Although
it contains text and music, this paper will focus only on the
music. We are using the digitized, downloadable version
of the Liber published by Desclée & Co in 1961 3 , which
comes as a PDF file with 2340 pages. Different categories
of information and content can be found on the pages: title,
text, staves, lettrines, and lyrics. These were separated into
different layers during an automated preprocessing step to
allow for easier content analysis.

3 http://musicasacra.com/2007/07/17/
liber-usualis-online/

2.1 Page Preprocessing

We converted the PDF file into Tagged Image File Format
(TIFF) image files so that they could be read by Aruspix [5],
a cross-platform application devoted to optical music recog-
nition on music printed during the European Renaissance.

The preprocessing capabilities of Aruspix include skew
correction, resizing, cleaning, staff-position retrieval, and
classification of the elements in a page in the following cat-
egories: frames and borders, lettrines, lyrics, inter-staff ele-
ments, and titles. These page elements are uniquely coloured
to allow the separation of the page elements into discrete
layers for extraction. The colouring feature is also use-
ful for manual correction. Aruspix returns a container file,
which includes the original binarised TIFF image, a sec-
ond coloured TIFF image with each one of the page ele-
ments in a different colour, and an XML file with infor-
mation about the processes performed on the page. After
automatically preprocessing the entire TIFF images using
Aruspix, we manually corrected any misclassified page ele-
ments. We then modified the Gamera4Aruspix (G4A) Gam-
era Toolkit 4 to extract the preprocessed layers into sepa-
rate images, providing us with images containing only mu-
sic staves.

2.2 Retrieving Staff Position and Removing Staff-Lines

We processed the images containing only music notation
with the MusicStaves Gamera Toolkit 5 . This toolkit al-
lowed us to extract each staff line position in the staff, store
its location for later determination of pitches and remove all
lines for later glyph classification. MusicStaves is designed
to work with an arbitrary number of lines, which was re-
quired because the Liber features 4-line staves.

2.2.1 Staff Detection

The MusicStaves toolkit has a number of different algo-
rithms for detecting the position of staff lines in the image
and removing them, leaving only the remaining elements
in the resulting image. These algorithms provide different
results depending on the notation style and image deforma-
tions. We tested two different staff-finding algorithms. For
the first approach, we retrieved the average vertical position
of each one of the lines horizontally across the whole page,
and named this approach AvgLines. This approach allowed
us to determine the gross slope of a staff line across the page
and thus to correct for staff lines that are not straight. In the
second approach, we used the Miyao algorithm, capable of
breaking a staff line into equidistant segments to provided
a more precise means of determining horizontal staff slope

4 https://github.com/vigliensoni/G4A
5 http://lionel.kr.hs-niederrhein.de/∼dalitz/data/

projekte/stafflines/
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Figure 1. Extract of neumes in page 1045, stave 2 of
the Liber with the notation we developed for encoding the
glyphs and intervals for each one of the neume variations.

changes in inclined, braked, or flexed staves [8]. We pre-
served the position of all staff segments and named this ap-
proach Miyao.

2.2.2 Staff Removal

A previous study by Dalitz et al. [6] shows that there is no
single superior algorithm for performing staff removal. On
a number of different metrics, they observe that for images
with deformations, the performance of many algorithms for
staff removal is very similar, and so there is no clear best
technique. We informally tested the five algorithms pro-
vided by MusicStaves and determined that for our reper-
toire, the Roach & Tatem algorithm performed the best.

2.3 Neume Classification and Labeling

After the detection and removal of the staves, the images
were loaded into the Gamera interactive classifier. The glyphs
from 40 pages of the Liber were manually classified to cre-
ate a training dataset for later automatic classification. Our
pitch-finding approach would only retrieve the position of
the first part of a glyph, so for different variations of neumes,
an encoding scheme was developed that uniquely captured
the shape of the entire neume, grouping like neumes into the
same class. This encoding scheme identified the intervals as
well as other auxiliary shapes in the neume and served as a
class identifier. Those other elements that have an effect on
the shape of a neume, such as dots, horizontal and vertical
episemas, the quilismas, which are alterations of the note
shapes, or the combination of some of those elements, are
explicitly declared and encoded. Figure 1 shows an excerpt
of the Liber with the notation we developed for encoding
the neumes and other notational elements. It can be seen
that the interval between two consecutive points in a neume
is encapsulated into the glyph class name in the Gamera in-
teractive classifier. Consequently, finding the pitch of the
starting note allows us to derive pitches for all notes in a
given neume.

2.3.1 Automated Neume Pre-classification

After manually training the classifier with 40 pages of neumes,
we had a dataset large enough to be used as a model for au-
tomatic classification of elements for the remaining pages.
A classification and optimization script was developed to
automatize the process of classifying elements in the new
pages and optimize the classifier. By this means, the classi-
fier increased in size with new neumes or new neume varia-
tions only.

2.3.2 Human-supervised Neume Classification

There were inevitable errors in the automatic classification,
and so we performed a manual correction of each page by
musicologists trained in the Solesmes notation system. This
ensured that all glyphs for every single page were correct.

3. PITCH-FINDING APPROACHES

To calculate the pitch of the starting point for each neume,
we needed to know its location on the staff as well as the
clef type and its position. To accomplish this, we created
imaginary lines, ledger lines, and zones, line- and space-
zones, in the staff and calculated the placement of neumes
in these zones.

3.1 Ledger Lines

We detected the staff-line positions using the Miyao and
AvgLines approaches described previously. However, some
neumes, or notes inside a neume, were located on ledger
lines above the first (upper) or below the fourth (lower) line.
Therefore, we virtually extend the number of staff lines by
creating four imaginary ledger lines, two above the stave
and two below. The distance between two staff lines for the
ledger lines was determined by projecting the distance of the
closest actual staff lines as the ledger lines.

3.2 Space- and Line-Zones

Notes of a given neume can be located either on the staff
lines or in the spaces between lines. We defined imaginary
zones between the staff lines where the neumes could be lo-
cated. We calculated these imaginary zones by segmenting
the space between two lines into four segments. The sec-
ond and third segments correspond to a space-zone, and the
first and fourth were grouped with the previous fourth and
first, respectively, to designate a line-zone. We assigned to
each zone an unique number which corresponds to what we
named the note-position of each neume on the staff. Figure
2 shows the imaginary ledger lines and zones in a stave.

3.3 Bounding Box

To determine the pitches of the neumes, we first tested an
approach based on the bounding boxes of each one of the
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Figure 2. Stave showing imaginary upper and lower ledger
lines as well as line- and space-zones.

glyphs—that is, the rectangular area that defines the bounds
of a particular glyph. These bounding boxes are generated
by Gamera and can be easily accessed. We determined that
many neumes began in either the top left of the bounding
box (the up position) or the bottom left of the bounding box
(the down position). A neume position was pre-determined
for its specific neume class, and the up or down position of
the first note was correlated with all possible line or space
zones in a staff. From there the pitch of the first note of the
neume was determined. Although this approach worked for
most of the neumes, some of them, especially torculus and
compound neumes (see Figure 1, glyph 8), do not neces-
sarily start with a note in the upper or lower position. The
starting note of those neumes can be located between their
bounding box’s left vertices, making the bounding box ap-
proach impractical for use across the entire Liber. Because
of this limitation we abandoned this approach.

3.4 Horizontal Projection and Center of Mass

A more robust approach is based on the horizontal projec-
tion of the neumes. To find the starting note for each one of
the neumes we created a sub-image—a vertically split ver-
sion of the original neume with a width of the size of a single
punctum. This unit was chosen because we considered the
punctum (see Figure 1, glyph 3) as the nominal neume unit.
Before creating the sub-images, we calculated the average
punctum size among all punctums on a page and used that
size for any sub-image creation. We then retrieved the hor-
izontal projection of each one of the neumes and calculated
its centre-of-mass, that is, the point around which the black
pixels of the sub-image were equally distributed. By using
this method, we found the mean location of the starting po-
sition of a neume, and we determined the staff zone for this
starting point, allowing us to automatically derive its start-
ing pitch.

3.5 Clef Type and Position for Shifting Pitch Notes

The pitches of the neumes in a staff depend on the clef type,
C or F, and its line position on the staff. The Gamera clas-
sification process does not treat the clef in a special way,
and so a method must be devised to allow any pitch-finding
system to automatically detect the closest clef on a given
staff so that all notes on that staff may be correctly identi-
fied. The coordinates (relative to the staff boundaries) where
each neume was located was stored temporarily. After all
elements in the staff were classified, they were then sorted
according to their vertical position, rounded to the nearest
staff boundary, and then by their position on the x-axis, left
to right. This produced a sequence of neumes, ordered by
staff and then occurrence on the staff, and their pitch was
assigned according to the clef, which is always the first ele-
ment for each stave.

3.6 Special Neumes and Neume Modifiers

Although the centre-of-mass approach provided a more ro-
bust method of initial pitch detection, there were still some
neume shapes that required further processing, in particu-
lar the podatus, epiphonus, cephalicus, scandicus, and their
variations (see Figure 1, glyphs 4, 5, 6, and 7). These shapes
have sub-images with two notes or elements that are verti-
cally stacked, shifting the centre-of-mass and making our
projection system an inaccurate method of finding the ini-
tial pitch position of the neume on the staff. To fix this
issue and improve accuracy, we made a number of excep-
tions where the sub-image was determined by first split-
ting these neumes horizontally. The centre-of-mass of the
sub-image’s largest connected component was then consid-
ered the centre-of-mass of the neume. Similar processing
was needed for neumes that had horizontal episemas, ver-
tical episemas, or dots. Their centre-of-mass was shifted
due to the presence of these modifiers, and so we removed
these elements before calculating their vertical position on
the staff. We left this feature of treating some neumes and
neume modifiers in the described way as an option for test-
ing its performance in comparison to the standard approach.
We named the former Exceptions and the latter No Excep-
tions.

3.7 Moving the Space- and Line-Zones

The position of the space- and line-zones in relation to the
staff lines has an impact in the performance of the pitch-
finding system, and we informally tested several values for
this relation in order to see how its performance could be
improved. For the final comparison of settings, we tried two
approaches for the spacing: a regular spacing of the zones,
already described, and a shifted spacing, with the upper line
of the space-zone shifted down by 2/16 and the lower one
by 1/16 of the staff-space in that staff segment.
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Figure 3. Visualization of pitch find algorithm performance in page 1242 stave 5 of the Liber Usualis using the Python Imaging
Library and the original image.

4. TESTING AND RESULTS

To evaluate the performance of our six pitch-finding sys-
tems and their variants (Miyao, AvgLines, Exceptions, No
Exceptions, Regular Spacing, Shifted Spacing), we created
a ground truth dataset consisting of 20 random pages with
a total of 2219 neumes and 3114 pitches correctly labeled.
We used the MEI format for storing the music notation. This
format has the ability to correlate zones on an image with
musical structures encoded in XML [7]. We developed a
script for highlighting neumes on the page image and iden-
tifying its pitch in text next to the note on the screen (Figure
3). This visualization tool allowed us to quickly identify and
correct the miscalculated pitches in the MEI file in order to
create a ground truth dataset.

We tested our system using six different variants based on
the staff-line detection approaches we developed, the treat-
ment of glyphs with special conditions, and a shift in the
spacing of the line- and space-zones. The nomenclature we
used for these variants can be seen in Table 1.

Table 1. Nomenclature used for the different variants of
the experimental testing for the performance of our pitch-
finding system.

Figure 4 shows the recognition rates achieved by the six
methods for the different neume classes (the compound and
scandicus neumes are not included in the graph because they
are relatively rare in our dataset.)

Overall, the best variant performance was MES, i.e., the
variant that included the Miyao algorithm, the handling of
special exceptions, and correction for vertical spacing, with
a 97% recognition rate in finding the pitch of the first note
of a neume only. This value was reduced to 95% when we
retrieved and compared all notes from all neumes with the
ground-truth dataset. ANR performance was the worst at
85% for the first note pitch and 81% for all pitches.

From the graph we can see that the cephalicus and po-
datus, and to a lesser degree the epiphonus, scandicus, and
torculus, share a common pattern: their best results were
achieved with the MES, AES, and MER variants, i.e., the
variants that include handling of the special exceptions. These
are the neume shapes for which the special exceptions to
the centre-of-mass approach were designed, and so, it is
clear that these special exceptions were necessary. On the
other hand, clivis, porrectus, and punctums, and to a lesser
degree, the virgas, have in common that their high perfor-
mance was accomplished using MES and MNS, i.e., the
variants that include both the Miyao algorithm and correc-
tion for vertical spacing. Collectively, these neumes rep-
resent more than 80% of all neumes in the dataset, and so
it is clear that the use of the Miyao approach with shifted
spacing is important for achieving the most accurate recog-
nition possible. Confirmatory testing with logistic regres-
sion showed that overall, all three of our innovations—use
of the Miyao algorithm, special treatment of exceptions, and
spacing correction—produced statistically significant (α =
0.05) improvements to the recognition rate. Furthermore, as
Figure 4 illustrates, these improvements are large enough to
make an important difference in the quality of our output,
bringing the overall recognition rate from 85% to 97%.

5. FUTURE WORK

Formal research should be done to determine the best po-
sition and spacing of the line- and space-zones. We discov-
ered that this feature is an important factor to find the correct
pitches for some neumes. Secondly, we want to calculate the
performance of all the automated workflow, including the
neume classification and pitch recognition, to see how our
system performs automatically, without human supervision.

As was stated, at the end of our project we will have the
entire Liber Usualis fully transcribed and searchable. We
hope that it will be a great source of information for mu-
sicologists as well as church goers and musicians. At the
same time, however, we will have a massive ground truth
of correctly transcribed melodies and neumes, and it could
be used as the starting point for digitizing and research us-
ing other books and manuscripts with Solesmes and similar
notation.
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Figure 4. Precision and error bars for the neume classes in the ground truth dataset in finding pitches of the six variants we
tested.
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ABSTRACT

A higher level of interdisciplinary collaboration between
music information retrieval (MIR) and musicology has been
proposed both in terms of MIR tools for musicology, and
musicological motivation and interpretation of MIR research.
Applying association mining and content citation analysis
methods to musicology references in ISMIR papers, this pa-
per explores which musicological subject areas are of inter-
est to MIR, whether references to specific musicology areas
are significantly over-represented in specific MIR areas, and
precisely why musicology is cited in MIR.

1. INTRODUCTION

At the tenth anniversary ISMIR 2009 several contributions
discussed challenges in the further development of music
information retrieval (MIR) as a discipline, including re-
quests for deeper musical motivation and interpretation of
MIR questions and results, and envisaging closer interaction
with source disciplines such as computer science, cognitive
science and musicology [4, 9, 20].

Suggestions for interdisciplinary collaboration have of-
ten considered musicology as a target discipline, emphasis-
ing the usefulness of MIR tools to musicology (e.g. [18]).
Occasionally mutual benefits have been explored (e.g. [15]).
The current study addresses associations between MIR and
musicology as a source discipline. It presents a systematic
analysis of how MIR, as represented at ISMIR, has drawn
on musicology so far, by applying data mining and content
citation analysis to musicology references in ISMIR publi-
cations.

Related quantitative ISMIR surveys mainly analyse top-
ics and trends [3, 7, 10]. The study by Lee et al. [10] per-
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formed a citation analysis of papers within ISMIR, counting
references to individual authors and papers. It briefly ad-
dressed citer motivations such as identification of data and
methods or paying homage, and concluded that: “Without a
more in-depth analysis of the individual contexts surround-
ing each citation, it is difficult to tease out the precise mo-
tivations for all the references” (p. 61). Functions of refer-
ences to one particular study were discussed in the editorial
to the JNMR Special Issue on MIR in 2008 [1].

This study extends previous work in several ways: It
analyses inter-disciplinary references (musicology cited in
MIR) rather than intra-MIR references; also, the references
are analysed at the level of MIR and musicology subject cat-
egories instead of individual papers. The quantitative analy-
sis goes beyond citation counts; association mining is used
here to yield interdisciplinary associations. In addition, ci-
tation contexts are analysed in depth to reveal functions of
musicology citations in ISMIR papers, taking into account
both MIR-specific functions and more general referencing
purposes to allow comparison with existing studies.

2. DATA SELECTION AND ANALYSIS

This section presents the corpus development and the as-
sociation mining and citation analysis methods used for ex-
tracting and analysing associations between musicology and
music information retrieval.

2.1 Sampling

From the cumulative ISMIR proceedings (www.ismir.net)
as a sampling frame, first all available full papers from 2000
until 2007, and all oral/plenary session papers for 2008 to
2010, were selected. This resulted in 416 papers. Then the
reference lists of those papers were screened and a purposive
sample was taken of all papers which contain references to
musicology as a source discipline, excluding self-citations
and references to other ISMIR papers. The final analysis
corpus consisted of 184 papers. These papers are identified
by their IDs within the cumulative proceedings (e.g. ID135).
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2.2 Encoding

The 184 papers of the analysis corpus were labelled accord-
ing to their MIR research topic and the musicology areas
that they cite, using the following categorisations.

MIR Categories. In a first step of encoding, the 184
papers were classified into MIR research areas (Table 1).
As no single standardised and comprehensive taxonomy of
MIR topics exists [3,6], an organisation of topics was devel-
oped based on ISMIR calls and programs, harmonising cate-
gories across conferences. Each ISMIR paper is assigned to
exactly one MIR category. Numbers in brackets in Table 1
indicate the number of papers in each category.

Research paradigms (6)
Epistemology, interdisciplinarity
Representation & metrics (24)
Representation, metrics, similarity
Data & metadata (11)
Databases, data collection & organisation, metadata, anno-
tation
Transcription (42)
Segmentation, voice & source separation, alignment, beat
tracking & tempo estimation, key estimation, pitch tracking
& spelling
OMR (5)
Optical music recognition, optical lyrics extraction
Computational music analysis (21)
Pattern discovery & extraction, summarisation, chord la-
belling, musical analysis (melody & bassline, harmonic,
rhythm and form analysis)
Retrieval (19)
Query-by-example
Classification (32)
Genre classification, geographical classification, artist clas-
sification & performer identification, instrument-voice clas-
sification (instrument recognition, instrument vs voice dis-
tinction, classification of vocal textures), mood & emotion
classification
Recommendation (5)
Recommendation methods & systems, playlist generation,
recommendation contexts
Music generation (4)
Music prediction, improvisation, interactive instruments
Software systems (10)
Prototypes & toolboxes, user interfaces & usability, visuali-
sation
User studies (5)
User behaviour (music discovery, collection organisation)

Table 1. Thematic categories and examples of topics of
MIR research.

History, criticism & philosophy
History of music (8)
Philosophy of music & music semiotics (3)
Textual criticism, archival research & bibliography (22)
Electronic & computer music (7)
Popular & jazz music studies (5)
Film music studies (1)
Theory & analysis
Music theory & analysis (36)
Performance studies (6)
Ethnomusicology
Ethnomusicology (non-Western) (5)
Ethnomusicology (folk music) (9)
Ethnomusicology (other) (1)
Systematic Musicology
Acoustics (11)
Psychology of music (perception & cognition) (93)
Psychology of music (emotion & affect) (8)
Psychology of music (other) (1)
Sociology & sociopsychology (18)

Table 2. Thematic categories of musicology.

Musicology Categories. In a second step, the musicol-
ogy references in the 184 papers were assigned to musicol-
ogy areas (Table 2). As the interest of this study is in mu-
sicology as a source discipline, the labels used are based
on traditional subject organisations (e.g. [11, 14, 16]) rather
than more recent developments such as empirical or com-
putational musicology which potentially overlap with music
information retrieval (e.g. [18]). Category counts in Table 2
refer to the number of ISMIR papers citing this musicology
area one or more times. A paper may reference more than
one musicology category.

2.3 Association Mining

Data mining of the analysis corpus is used to reveal asso-
ciations between papers in specific MIR categories and pa-
pers that have citations to specific musicology categories.
For every musicology category A and MIR category B, the
support (number of papers) s(A) and s(B) were computed.
Also the support s(A,B) of an association 〈A,B〉 (number
of papers containing references to musicology category A
which are also in MIR category B) and the statistical signif-
icance of the association were computed.

The null hypothesis is that for an association 〈A,B〉 the
two categories are statistically independent, i.e. that the pro-
portion of papers citing musicology category A that are in
MIR category B does not differ significantly from the rel-
ative frequency of MIR category B in the general popula-
tion. Given the small corpus and low counts for many cat-
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egories, the appropriate test for statistical independence is
Fisher’s one-tailed exact test on a 2x2 contingency table [5].
For an association 〈A,B〉 with support s(A,B), this gives
the probability (p-value) of finding s(A,B) or more papers
of category B in s(A) samples (without replacement) in
n = 184 total papers. If the computed p-value is less than
the significance level α = 0.05, then we reject the null hy-
pothesis that the categories are independent.

Prior to computing the p-values, the counts of all MIR
categories B (and hence the p-values of associations) are
slightly adjusted upwards to account for the fact that only
papers citing musicology were included in the sample of
n = 184 papers from the larger corpus of 416 papers. Under
the null hypothesis of independence, it is assumed that the
larger set of papers has the same distribution of MIR cat-
egories as the smaller corpus. The adjustment is done by
increasing n to 416 and s(B) to 416× s(B)/184.

In line with the view of musicology as a source disci-
pline, significant associations were oriented into rules from
musicology to MIR categories. For every significant associ-
ation 〈A,B〉, the confidence of the oriented ruleA→ B was
computed as s(A,B)/s(A), indicating the empirical proba-
bility of a paper being in MIR category B given that it cites
a paper in musicology category A.

2.4 Content Citation Analysis of Referencing Functions

Papers supporting significant associations were analysed in
more detail to reveal functions of musicology references.
Studies of citation behaviour have proposed several clas-
sifications of citer motivation (e.g. [2, 12, 13, 17]). In our
analysis, we are mainly interested in (a) the function of the
reference in the citing paper rather than conclusions about
the cited work, and (b) referencing purposes that can be sug-
gested from the content of the citing paper and the co-text of
the citation. Musicology references were analysed in their
context in the ISMIR paper, and recurring referencing func-
tions extracted and linked to existing citation classifications.

3. RESULTS

This section presents the associations and referencing func-
tions uncovered in the corpus.

3.1 Associations

Figure 1 presents the network of all associations with sup-
port ≥ 3 extracted by the association mining method de-
scribed in Section 2.3. The figure highlights that MIR areas
generally draw on more than one musicology discipline. But
there are differences in the level of co-citation, i.e. occur-
rences within the same ISMIR papers: For example, eight
out of the ten papers on representation and metrics which
cite music theory and analysis literature also cite psycholog-
ical work on perception and cognition. On the other hand,

perception and cognition research and acoustics are cited by
different subsets of papers on transcription.

Comparing Figure 1 against MIR topics in Table 1, addi-
tional links could have been expected e.g. between papers
on data and metadata and references to textual criticism,
archival research and bibliography or history of music [15]
or between classification and performance studies (for per-
former identification), acoustics (for instrument-voice clas-
sification) and popular music studies or history of music (for
genre classification). However, these relations are supported
by only one or two papers each and thus do not appear
in Figure 1. Surprisingly, the category of ethnomusicology
(folk music) (Table 2) does not feature in associations with
MIR categories above the support threshold.

Of the 21 associations shown in Figure 1, nine are statis-
tically significant (Section 2.3). Table 3 enumerates those
associations that have a p-value less than α = 0.05. In
Figure 1 these particular associations are shown in bold lines,
with a directed arrow indicating in brackets the confidence
of the oriented rule. Overall the relatively low confidence
values confirm that in general musicology areas are cited
across MIR categories.

Generally an association will be significant if the asso-
ciation support s(A,B) is high relative to the size of one
involved category. Here this applies in particular for small
categories like ethnomusicology (non-Western), OMR, user
studies or recommendation. Significance becomes harder to
achieve for associations between large categories; it is more
likely to achieve the observed level of support at random
given the individual category distributions in the corpus. For
example, perception and cognition research is linked to sev-
eral MIR categories with high support, but the distribution
of those MIR categories across the 93 papers citing percep-
tion and cognition does not differ significantly from their
distribution across all sampled papers.

3.2 Referencing Functions

For the content citation analysis we selected the ISMIR pa-
pers supporting the associations in Table 3, as these papers
are examples of musicology and MIR categories that are
significantly correlated. Of these 47 papers, 17 papers (5
computational music analysis papers, 8 representation and
metrics papers and 4 retrieval papers) also cite perception
and cognition research; these references were also consid-
ered. The in-depth analysis of citation contexts in these
papers demonstrates that musicology is used for a variety
of purposes. Figure 2 presents a taxonomy of referencing
functions and the references’ contribution in the MIR work
(boxes), with examples of co-text. Related features from
the citation analysis literature [2, 12, 13, 17] are included in
italics.

431



Poster Session 3

Data
& metadata

Psychology of music
(emotion & affect)

3 (0.4)

Computational
music analysis

Psychology of music
(perception & cognition)

11

Music theory
& analysis

10 (0.3)

Representation
& metrics

10 (0.3)

Classification
3

19

Sociology
& sociopsychology

4

Ethnomusicology
(non Western)

3 (0.6)

Recommendation

3 (0.2)

User studies

4 (0.2)

Transcription

27

8

Acoustics

5

15

Textual criticism,
archival research
& bibliography

4

Retrieval

6 (0.3)

OMR5 (0.2)

11

History of music

3 (0.4)
Software
systems

4

3

Figure 1. Associations (support≥ 3) between musicology categories (dark boxes) and MIR categories. Edges are labelled with
the support of the association, and significant (α = 0.05) associations are indicated with dark oriented edges. Rule confidence
is indicated in brackets for significant associations.

A B s(A,B) p-value
textual criticism, archival research & bibliography omr 5 9.7e-05
sociology & sociopsychology user studies 4 0.00068
music theory & analysis computational music analysis 10 0.0035
psychology of music (emotion & affect) data & metadata 3 0.0078
sociology & sociopsychology recommendation 3 0.0091
music theory & analysis representation & metrics 10 0.01
textual criticism, archival research & bibliography retrieval 6 0.016
history of music retrieval 3 0.037
ethnomusicology (non western) classification 3 0.038

Table 3. Significant (α = 0.05) associations found in the corpus. A: musicology category; B: MIR category; s(A,B): support
of the association; p-value of the association.
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Function Co-text examples
Relevance “Repeated patterns [...] represent therefore one of the most salient characteristics of musical works

[music theory references]” (ID242)
Contribution “This paper addresses systematic differences in the performance of final ritardandi by different pianists

[...] the kinetic model is arguably too simple [...] In this work [...] [psychology of music references]”
(ID159)

Task definition “As stated in [music theory reference] musical analysis is ’the resolution of a musical structure into
relatively simpler constituent elements, and the investigation of the functions of these elements within
that structure”’ (ID24)

General approach “The [basic] idea is motivated by the results of musicological studies, such as [...]” (ID859)
Method/algorithm “HMM initialization [...] The covariance matrix should also reflect our musical knowledge [...], gained

both from music theory as well as empirical evidence [psychology of music reference]” (ID30)
Data “we evaluated both [OMR] systems on the same set of pages to measure their accuracy [...] [textual

criticism, archival research & bibliography reference]” (ID729)
Related work “dimensions of dissimilarity have been interpreted to be e.g. [...] [psychology of music reference]”

(ID345)

Figure 2. Taxonomy of referencing functions (top) and selected examples of co-text (bottom).

4. DISCUSSION AND CONCLUSIONS

The findings presented in this study are based on direct and
explicit references to musicology. However, not all refer-
ences are explicit: papers sometimes refer to musicologi-
cal work reported in earlier MIR publications; incorporate
concepts or approaches like music-analytical methods into
the main text without including specific references; charac-
terise the considered repertoire such as non-Western tradi-
tions without making explicit whether the description is de-
rived from musicological research, common cultural knowl-
edge or the researchers’ personal experience; or use music
examples without citing a musicological source. Taking into
account such references is expected to strengthen rather than
change the picture of associations presented here.

For this study the analysis corpus only contained full IS-
MIR papers (Section 2.1). Future work could extend the
corpus to also include posters, in particular those from IS-
MIR 2008 onward (because these are of equal length and
status to full papers); apply multilevel association mining
methods [8] to hierarchical subject categorisations; allow a
paper to be within multiple MIR categories; and evaluate
whether the associations found here persist and whether new
significant associations arise. Furthermore, if an encoding
of the complete ISMIR proceedings was available, other in-
teresting types of analysis would be possible, e.g. exploring

whether certain MIR areas are over- or under-represented in
the corpus of papers citing musicology, or comparing use of
musicology references against other source disciplines like
computer science or cognitive science.

Several observations can be drawn from the results pre-
sented in this paper. First, less than half of the full papers
in the cumulative ISMIR proceedings (184 out of 416) cite
musicology. Given the close interdisciplinary links between
MIR and musicology a larger percentage had been expected.
Second, the most frequently cited category is music per-
ception and cognition research (93 citing papers across all
MIR categories in our corpus). On the other hand, histor-
ical musicology and especially history of music appear to
be under-represented in our corpus, compared to their tra-
ditional weight in musicology [16]. Third, the association
mining has revealed significant associations between certain
musicology and MIR categories. However, most pairings
are not significant, and this may indicate opportunities for
category refinement and for specific interdisciplinary collab-
oration. Fourth, the content citation analysis yields a range
of citation purposes, from justifying the MIR topic and spec-
ifying the MIR task, through informing methods or provid-
ing data, to references which demonstrate awareness of the
research context but remain without direct implications for
the MIR work.
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Following the discussions at ISMIR 2009 [4, 9, 20], in
the further development of MIR we would expect that with
the increasing interest in ethnic music (e.g. [3, 19]) ethno-
musicology will more strongly feed not only into classifi-
cation but also MIR areas such as representation and met-
rics, transcription or retrieval; envisage more musicology
references, including history of music, in defining MIR re-
search questions and in interpreting MIR results; and en-
courage more projective references highlighting potential of
MIR achievements for musicology, beyond providing tech-
nological tools. The association mining and content analy-
sis methods applied in this paper will be invaluable to study
the continuing evolution of the field of music information
retrieval.
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ABSTRACT

With the rapid growth of music information and data in
today’s ever changing world, exploring and analyzing mu-
sic style has become more and more difficult. Traditional
content-based methods for music style analysis and newly
emerged tag-based methods usually assume music items
are independent of each other. However, in real world ap-
plications, do there exist some relationships among them.
In this paper, we construct the social relation graph among
different music artists by extracting the friendship infor-
mation from social media such as Twitter, and incorporate
the generated social networking graph into tag-based mu-
sic style clustering. Experiments on real data show the
effectiveness of this novel integration of different infor-
mation sources.

1. INTRODUCTION

As the rapid growth of music items on the Internet, music
style analysis such as music classification and clustering
has become increasingly prevalent in music information
retrieval research. Traditional methods usually focus on
audio feature extraction and acoustic content analysis. For
example, Pampalk et al. [19] integrate different similari-
ty sources based on fluctuation patterns and use a nearest
neighbor classifier to categorize music items. Chen and
Chen [3] apply both long-term and short-term features and
uses support vector machines to classify music genres.

More recently, methods utilizing music social tags have
emerged and have been receiving more and more atten-
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tion. Social tags are free-text descriptions added by user-
s to express their personal views and interests in music
items such as songs, artists, albums, and playlists. The
tags provide direct insights into user behavior and opin-
ions and the retrieval methods using tags have been shown
to be more effective than the traditional methods solely
based on music content analysis [14,24,27]. For example,
Bischoff et al. [2] demonstrate that different types of so-
cial tags can improve music search. Symeonidis et al. [23]
propose a music recommendation algorithm using a user-
tag-item tensor. Wang et al. [26] show the effectiveness of
tag features by way of joint analysis of tags and contents.

Although the content-based and tag-aware methods are
successful in many music information retrieval applica-
tions, they make a somewhat curious assumption that mu-
sic items are independent of each other, which is not al-
ways true. In this paper, we assume that music items are
related to each other and try to establish relations among
them by discovering relationships among artists. To do
this we look for the “following” information on Twitter
and construct a linked graph to represent the artist so-
cial network. We then propose a novel tag-aware music
style clustering system utilizing this network by way of
matrix factorization. By assuming that the “follower” re-
lationship as represented in the social network thus build
is transitive, we can capture indirect relationships among
the artists, which are usually ignored in the existing music
style clustering methods.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 introduces our pro-
posed approaches for constructing the artist social graph,
generating artist relation matrix, and clustering using rela-
tion matrix based factorization. We conduct experiments
on a real world data set and Section 4 presents the experi-
mental results. Section 5 gives an conclusion and discuss-
es the future work.
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2. RELATED WORK

Automatic music analysis such as music item clustering,
classification, and similarity search has been playing a
central role in music information retrieval. Traditional au-
tomatic music analysis methods usually focus only on au-
dio content analysis via audio feature extraction. Timbral
texture features [25] are the most widely used features,
which usually consist of Short-Term Fourier Transform
(STFT) and Mel-Frequency Cepstral Coefficients (MFC-
C) [21]. Various data mining and statistical methods have
been applied to such features for classification and clus-
tering of music items, such as artists, songs, and album-
s [3, 4, 6, 12, 20, 25].

Analysis of music social tags is a subject quickly gain-
ing popularity in music information retrieval research.
Music social tags are free-text descriptions of any length
(though in practice there sometimes is a limit in terms of
number of characters) with no restriction on the words to
be used. Because they are free texts, they are thought of
as representing feelings of listeners on the music items
(artists, songs, etc.) for which they leave tags. Also, be-
cause they are free texts, they range from a single character
(e.g., “!”) to a full sentence (e.g., “I love you baby, can I
have some more?”). However, in many cases, they are one
or two words, such as “Sad”, “Happy”, “Black Metal”,
“Loved it”, and “Indie Pop”. As can be easily seen social
tags include words that do not necessarily appear as labels
experts such as musicologists provide. Their amateurism
notwithstanding, by collecting a large number of tags for
one single piece of music item, an understanding can be
obtained on how the general listeners appreciate the item.
With that idea, work has been done to show the promise of
using tags for music data analysis. For example, Lamere
and Pampalk [15] use tags to enhance simple search, sim-
ilarity analysis, and clustering of music items. Lehwark
et al. [17] generate visual clustering of tagged music da-
ta. Karydis et al. [13] propose a tensor-based algorithm to
cluster music items using 3-way relational data involving
song, users, and tags. The effectiveness of tags may come
from the fact that the distance between the original data
source and the tag in terms of informativeness appears to
be much smaller. There also exist a few efforts in combin-
ing content-based and tag-based analysis. For example,
F. Wang et al. [27] attempts to integrate audio contents and
tags for multi-label classification of music styles. D. Wang
et al. [26] explores the integration of music content and
tags in the problem of artist style clustering.

In addition to social tags, much more social informa-
tion has become available on the Internet. For instance,
social networking sites, such as Facebook and MySpace,

and a social medium Twitter can provide the friendship
information among users by adding a friend on Facebook
or following a tweet page on Twitter. Recent work by
Anglade et al. [1] uses complex network theoretic analysis
to group similar listeners. Jacobson et al. [11] and Fields
et al. [8] study the influence of social networks for the mu-
sic community detection and playlists generation. In this
paper, we explore the effectiveness of the joint use of the
analysis of the social networking graph and the tag-based
music style clustering.

3. METHODOLOGY

3.1 Framework

Figure 3.1 shows the framework of our proposed music
style clustering system that integrates tag and social graph
analysis. Given a collection of representative music pieces
from different artists, we first obtain the tags describing
these music pieces to construct a music-tag matrix and
generate the social networking graph among the artists,
from which the artist relation matrix is created. We then
perform matrix factorization on the music-tag matrix us-
ing artist relation matrix as the base. Upon the conver-
gence of the factorization, we can obtain the music style
indicator matrix and finally partition the music pieces into
different style groups.

music tag
representation

artist social
graph

artist relation
matrix

factorization using artist
relation matrix as basesrelation matrix as bases

artist style
cluster

tag style
cluster

indicator indicator

Figure 1. The framework of the proposed method.

3.2 Artist Social Graph Construction

In order to construct an artist social graph, we select 327
artists that are active users of Twitter. The genres cov-
ered these artists are Pop, Jazz, Rock, Hip Hop, and Coun-

436



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

try. Each node of the graph represents an artist. For these
artists we extract the “following” information among these
artists using the API provided by Twitter. If artist Ai is
“following” the tweets of artistAj , there will be a directed
link from node Ai to node Aj . An example of the gener-
ated social graph is shown in Figure 2.

Rihanna Nicki Minaj

Katy Perry
Pink

Lady Gaga

Bruno Mars
Taylor Swift

Britney Spears

Figure 2. An Example Social Graph Generated from
Twitter.

3.3 Artist Relation Matrix Generation

Based on the artist social graph, we can generate the artist
relation matrix which considers both the direct and indi-
rect relationships using the method proposed in [9]. Sup-
pose that artist Ai is followed by a set of artists Fi, a
matrix S to represent the direct relationships among the
artists can be computed in this way:

Sji =

{
1/|Fi| ifAj ∈ Fi

0 otherwise
,

where |Fi| is the size of set Fi. To capture the indirect
relationships, we perform a random walk on the directed
graph denoted by S. An artist can be identified as a relat-
ed one if the random walk stops at the node representing
him/her. A parameter α is used to specify the probability
that the random walk stops at the current node which is set
to 0.99 in the experiments, and based on the properties of
random walk, the relation matrix can be computed as

B = (1− α)(1− αS)−1.

3.4 Factorization with Artist Relation Base Matrix

3.4.1 the Model

In order to obtain the music style clusters, we perform ma-
trix tri-factorization [7] using the artist relation matrix as

the base matrix. The problem can be treated as an opti-
mization problem with the following objective:

min
B≥0,U≥0,V≥0

||X −BUV T ||, s.t.UTU = I, V TV = I,

where X denotes the artist-tag matrix, and B is the gen-
erated artist relation matrix as described in Section 3.3.
From U , we can obtain the artist-style clusters, and from
V we can get the tag-style clusters. To solve this opti-
mization problem, we use an algorithm similar to the tri-
factorization [7] and nonnegative matrix factorization (N-
MF) [16] to iteratively update U and V as follows:

Uas ← Uas[CB
TV ]as

Vts ← Vts[BD
TU ]ts,

where Cij = Xij/[UV
TB]ij , and Dij =

Xij/[BUV
T ]ij . Different with the traditional tri-

factorization approach, here we use the social relation
matrix as the base matrix to incorporate social networking
information among the artists, and the base matrix is fixed
during the updates of the other two matrices. The benefit
of using the base matrix is that the artist relations obtained
from the social media can be naturally incorporated to
guide the factorization procedures.

3.4.2 Computational Algorithm

In the algorithm derivation, we follow the Expectation-
Maximization (EM) procedure to maximize the marginal-
ized likelihood of observations by iteratively updating the
artist-style and tag-style matrices until convergence. The
computational algorithm is described in Algorithm 1.

3.4.3 Algorithm Correctness

Now we prove the loss `(U, V ) is nonincreasing under the
update rules.

Proof Let αiklj = BikŨklṼjl/[BŨṼ
T ]ij . Applying

Jensen’s inequality, we obtain

`(U, V ) =
∑
ij

(
∑
kl

BikUklVjl −Xij ln(
∑
kl

BikUklVjl))

≤
∑
ij

∑
kl

(BikUklVjl −Xij ln
BikUklVjl

αiklj
)

=−
∑
ijkl

CijBikŨklṼjl ln(UklVjl)

def
=Q(U ,V; Ũ , Ṽ).

(1)

The equality holds when U = Ũ and V = Ṽ . Instead
of minimizing `, we minimizeQ without the non-negative

437



Poster Session 3

Algorithm 1 Factorization given an artist relation base.

Input: X: artist-tag matrix.
B: artist-artist matrix;

Output: U : artist-style matrix;
V : tag-style matrix.

begin
1. Initialization:

Randomly initialize U and V .
2. Iteration:

repeat
2.1 Compute Cij = Xij/[UV

TB]ij ;
2.2 Assign Uas ← Uas

[
BTCV

]
st

,
and normalize each column to 1;

2.3 Compute Dij = Xij/[BUV
T ]ij ;

2.4 Assign Vts ← Vts

[
DTBU

]
dt

,
and normalize each row to 1;

until convergence
3. Return U , V
end

constraints. Later on, we find that the update rules satisfy
the non-negative constraints. The Lagrangian of Q is

L(U ,V; ξ) = Q(U ,V; Ũ , Ṽ) + ξT (UT 1− 1).+ ζT (V1− 1).
(2)

The Karush-Kuhn-Tucker (KKT) conditions are

∂LUkl =− 1

Ukl
Ũkl

[
BTCṼ

]
kl

+ ξl = 0, (3)

∂LVjl =− 1

Vjl
Ṽjl

[
DTBŨ

]
jl

+ ζj = 0, (4)

∂Lξl =
∑

k

Ukl − 1 = 0, (5)

∂Lζj =
∑

l

Vjl − 1 = 0 (6)

We derive the update rule from the KKT conditions. We
can verify that the update rules keep U and V non-
negative.

4. EXPERIMENTS

4.1 Data Collection

For experimental purpose, we select 327 most popular
artists of the following 5 styles: Pop (91 artists), Rock (67
artists), Country (55 artists), Jazz (48 artists), and Hip Hop
(66 artists). We use the API provided by Twitter to check
if there is a “following” relationship among these artists.

The style information and tags of the artists are collected
from Last.fm (http://www.last.fm).

4.2 Implemented Baselines

We implement the following baselines to compare them
with our proposed method which integrating the social
tags and the social networking graph.

• K-means - performs standard K-means clustering
on the artist-tag matrix.

• Normalized Cuts (Ncut) [28] - conducts graph-
based spectral clustering using normalized cuts.

• Nonnegative Matrix Factorization (NMF) [16] - per-
forms nonnegative matrix factorization on the artist-
tag matrix to obtain the artist-style matrix from
which the artist cluster assignments can be obtained.

• Tri-factorization (Tri-fac) [7] - performs tri-
factorization on the artist-tag matrix.

• Probabilistic Latent Semantic Indexing (PLSI) [10]
- performs PLSI on the artist-tag matrix.

• PLSI+PHITS [5] - combines the tag-based analy-
sis with social graph using PLSI plus Probabilistic
Hyperlink-Induced Topic Search (PHITS).

These baseline methods that we use in the experiments
are most widely used clustering algorithms and some new
emerged methods combing content and link analysis in da-
ta mining, information retrieval, and social network anal-
ysis areas. We aim to compare our proposed models with
the state-of-the-art methods for artist clustering.

4.3 Evaluation Methods

To measure the artist style clustering performance, we use
accuracy and normalized mutual information (NMI) as
performance measures.

• Accuracy measures the relationship between each
cluster and the ground truth class. It sums up the
total matching degree between all pairs of clusters
and classes. Accuracy can be represented as:

Accuracy = Max (
∑

Ck,Lm

T (Ck, Lm))/N,

where Ck denotes the k-th cluster, and Lm is the
m-th class. T (Ck, Lm) is the number of entities
which belong to class m and are assigned to cluster
k. Accuracy computes the maximum sum of
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T (Ck, Lm) for all pairs of clusters and classes, and
there is no overlap among these pairs. It is obvious
that the greater accuracy, the better clustering
performance.

• NMI [22] measures the amount of statistical infor-
mation shared by two random variables represent-
ing cluster assignment and underlying class label.
Suppose entry nij denotes the amount of data item-
s belonging to cluster i and class j. NMI is then
computed as:

NMI =

∑c
i=1

∑k
j=1

nij

n log
nijn

ni.n.j√
(
∑c

i=1
−ni.

n log ni.

n )(
∑k

j=1
−n.j

n log
n.j

n )
,

where ni. =
∑k

j=1 nij , n.j =
∑c

i=1 nij , n, c, k
denote the total number of data objects, the number
of clusters, and the number of classes, respectively.
Based on our prior knowledge of the number of
classes, we set the number of clusters equal to the
true number of classes, i.e., c = k.

4.4 Experimental Results

Figure 3 and Figure 4 show the accuracy and NMI results
of different clustering methods respectively.
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Figure 3. The accuracy results of different clustering
methods.

The clustering results of our proposed method outper-
forms the state-of-the-art methods significantly. From the
results, we have the following observations.
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Figure 4. The NMI results of different clustering method-
s.

• (1) Graph-based and factorization based tag-aware
clustering methods outperform traditional cluster-
ing methods such as K-means.

• (2) Methods incorporating social networking graph
analysis (such as PLSI+PHITS and Ours) demon-
strate more promising performance than the meth-
ods using only social tag information, which shows
the effectiveness of the integration of the different
information sources.

• (3) Our factorization with given artist relation bases
outperforms PLSI+PHITS which is one of the
most widely used combination methods because our
method takes the indirect relationships into consid-
eration and naturally incorporates it into the algo-
rithm.

5. CONCLUSION AND FUTURE WORK

In this paper, we explore the potential benefits of integrat-
ing tags and social networking graphs in music style clus-
tering. Given a collection of artists and their representative
music pieces, social tags of free languages are extracted to
describe the music pieces. The direct and indirect rela-
tionships among the artists are also discovered from the
artist social networking graph, which is generated from
popular social media sites, such as Twitter. Then a fac-
torization based algorithm is derived to make use of both
the two types of information. Experimental results on real
world data demonstrate the effectiveness of the proposed
method.
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This is a pilot study of incorporating social networking
analysis into music style clustering, and the initial results
show the promising future of research in this direction.
In the future work, large-scale data sets will be collected
and further experiments will be performed on them. We
will also discover other meaningful and useful types of
information and examine if they can facilitate the task of
music style analysis.
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ABSTRACT

Music fascinates and touches most people. This fascina-
tion leads to opinions about the music pieces that reflects
people’s exposure and personal experience. This inherent
bias of people towards music indicates that personal opin-
ion is inappropriate for defining the quality of music and
musicians. This paper takes a holistic view of the prob-
lem and delves into the understanding of the structure of
Brazilian music rooted in Network Sciences. In this paper
we work with a large database of albums of Brazilian music
and study the structure of collaborations between all the mu-
sicians and composers. The collaboration is modelled as a
social network of musicians and then analyzed from differ-
ent perspectives with the goal of describing what we call the
structure of that musical genre as well as provide a ranking
of musicians and composers.

1. INTRODUCTION

Brazilian Music is admired worldwide due to its diversity
and richness of sounds. The music from Brazil is in fact a
confluence of many different cultural influences [1, 2]. This
process of globalization of the popular music of Brazil has
come to a full circle when other genres around the world
started to incorporate Brazilian rhythms and refer to Brazil-
ian music as an influence to them. It is known that world
greats such as Miles Davis and Frank Sinatra, and more re-
cently the likes of Pat Metheny and Bill Frisell (jazz gui-
tarists), have been influenced by and even worked with many
Brazilian musicians.

When it comes to the arts, is hard to define a canon due
to subjective opinions. For classical art, the use of networks
has improved our ability to understand the importance of
many works [13]. In popular art, the definition is a lit-
tle harder because it could depend on many factors such as

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

sales, and playtime on the radio. However, this paper pro-
poses to use techniques from networks sciences to model
the network of collaborations among musicians and derive
from the social network a good ranking of musicians and
composers in Brazilian music.

Many Brazilian musicians are well-known to people in
Brazil and respected for their body of work. In Brazilian
popular music (Música Popular Brasileira in Portuguese)
[11], hereafter referred to as MPB, names such as Tom Jo-
bim, Chico Buarque, and Noel Rosa are likely to be fa-
vorites. But does the social network of collaborations in
Brazilian support the view of critics about musicians such
as the ones mentioned above? What makes a person impor-
tant to his art? This paper looks initially at collaborations
between musicians from a point of view albums recorded.
We have build a dataset of Brazilian albums (CDs, LPs, etc)
and created a network of musicians in where they are linked
if they participated together in at least one album. We then
repeat the study with composers who are linked to one an-
other if they wrote a song together. In both instances, the
weight of the collaboration is given by how many times the
collaboration was repeated. The goal of the study is to im-
prove the understanding of the structure of Brazilian music
as well as to use networks for providing a ranking of musi-
cians and composers in MPB.

2. A BRIEF HISTORY OF BRAZILIAN MUSIC

Brazil is a country of continental proportions and, as such,
presents a rich variety of sounds and rhythms in its mu-
sic. Brazil has long been seen as a source of inspiration
to many world-class musicians. It is easy to understand that
the universality of the music of Brazil is a reflection of the
country’s history that includes native Brazilians with their
rhythms and harmonies, being mixed with European (Por-
tuguese primarily) and African sounds.

Brazilian music was also influenced by sounds from other
parts of the world. By the end of the 1950s, one of the
most important movements in MPB came to light: the Bossa
Nova, which introduced to the world names such as Tom Jo-
bim, João Gilberto and Luiz Bonfá. By the end of 1960s,
the influence of rock has reached Brazil leading to a move-
ment called Tropicalismo led by the likes of Caetano Veloso,
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Gilberto Gil and Tom Zé. Other smaller movements: Jovem
Guarda (driven by a need for songs with simple lyrics) Pes-
soal de Minas (from Minas Gerais State) and Pessoal do
Ceará (from Ceará State).

What is important to notice is that these movements were
influenced different styles: jazz, rock, regional sounds, coun-
try music, etc.

3. MUSICIAN COLLABORATIONS AS SOCIAL
NETWORKS

The understanding of musical relationships between styles
and cultures, as well as the relation between music and other
sciences (particularly Math) have for a long time been of in-
terest to musicologists, independently of the music origin,
be it classical, popular, or other genre [3, 7, 14, 17]. More
recently we have seen a revival of works on musical rela-
tionships due to the demand for recommendation systems
in the online world [6, 10, 15]. Companies would like to
know more about people’s taste based on prior knowledge
about their likes and dislikes. There are many approaches
for recommendation systems and in one way or the other
they require some understanding of musical relationships.

Since the late 1990s we have been seeing the emergence
of a new multidisciplinary field, named Network Sciences.
This field provides a framework for modeling interactions
between entities so as to reveal properties at a macro level
which may not be noticeable at the individual level.

Techniques from Network Sciences have been success-
fully applied to music. In general, the works relating mu-
sic and networks do not attempt to create recommendation
systems although that can be seen as a consequence of the
understanding of the relationships. Park et al. [12] have de-
scribed a study in which a social network of contemporary
musicians have been created from the allmusic.com (AMG)
and compared it with another music network in which mu-
sicians are connected based on critics views of their simi-
larities. Gleiser and Danon [9] studied communities in Jazz
using the edge-betweenness community detection algorithm
from Girvan and Newman [8]. The network was created by
linking musicians if they played in the same band. The com-
munity analysis found that racial divisions exists within Jazz
bands with groups members being mostly black or mostly
white. Gleiser and Danon have also created a jazz band net-
work in which bands are linked if they have a musician in
common. The jazz band analysis found that communities
of bands are divided based on the location they generally
record.

Recently, the application of concepts of complex net-
works have been discussed as very useful to systems dealing
with music recommendation [5]. As we move increasingly
towards online delivery of music and as the concept of an
album is replaced by people picking and choosing individ-
ual songs they enjoy, recommendation becomes an impor-
tant process to the music industry. Music recommendation
systems are also crucial in a world where the availability of

music can easily overwhelm the listener. In this paper, we
move closer towards understanding the structure of the net-
work of collaborations in Brazilian music which in turn may
aid the development of recommendation systems for MPB.

4. BUILDING SOCIAL NETWORKS FROM
COLLABORATIONS

The first step in our study was to collect a dataset related to
Brazilian Music. There are many sites available online with
catalogues of records (CDs, LPs) of MPB. The two most fa-
mous ones are: Ricardo Cravo Albin’s dictionary of Brazil-
ian music 1 and Maria Luiza Kfouri’s personal discogra-
phy 2 . Although the former is more extensive it lacks a in-
formation about the songs and the musicians of each album.
We opted to go with the later because it is quite complete
about musicians who participate on the record, all songs in
the album, the composers of each song, and the musicians
involved in the recording.

After all was done, we had a dataset with 6,149 albums
of which 5,302 feature musicians. There are 506 albums
with only one musician, therefore, because of the way we
define an edge, these musicians would not appear in the net-
work unless they appear in another album that feature two
or more musicians. There are 16,718 musicians that con-
tributed to 85,133 tracks. There are 10,490 composers and
1,913 artists. In order to better understand the structure of
Brazilian music we concentrate on musicians (who play the
music) and composers (who write the music).

4.1 Metrics

The literature in Network Sciences includes a number of
metrics that can be computed to characterize a network which,
in turn, may reveal interesting patterns in the relationships
of nodes. The analysis of metrics related to the topology
of networks have long been used in Social Networks in an
area generally referred to as Social Network Analysis (SNA)
[16]. In this paper we concentrate on two measures of nodes
in the social networks we deal with because they enable us
to rank nodes.

Node Degree: The degree of a node is a metric that refers
to how many connections the entity represented by
the node has in the social network. Higher degree
is generally associated with a higher influence in the
network because that node can quickly reach many
others.

Pagerank: Although the degree looks at the importance of
a node, it considers the importance in isolation. How-
ever, it is generally the case that the importance of a
node depends on the importance of nodes that have a
relation with it. In PageRank, important nodes pass
on their importance to other nodes they are connected

1 www.dicionariompb.com.br
2 www.discosdobrasil.com.br
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to. If an important node points to many other nodes,
its importance is weighted by the number of connec-
tions it has.

4.2 Networks of Collaborations in Brazilian Music

One pre-condition to perform network analysis is to cor-
rectly chose what the nodes in the network represent and
what is used for the relationship between these nodes [4].
In this paper we would like to understand the structure of
Brazilian music by looking at networks of musicians and
composers. These networks will allow us to move a step
closer to answering questions like: who are the seminal in-
dividuals in the Brazilian music world?

In our first network, we look at the structure of people
who play the music, what we call the Network of Musicians
(NoM). Secondly, we look at who is writing the music being
played, what we call Network of Composers (NoC). To cre-
ate these networks we have to look at the dataset and find ap-
propriate information by projecting the dataset on these two
kids of relationships. In the NoM, a musician is linked to an-
other if they have participated together in at least one album.
For the NoC we have used composers as nodes and the re-
lationship between them exists if they have composed some
music together—Brazilian music is in fact quite unique in
this sense since most songs are born out of collaborations.
In both network instances, since a person can participate in
more than one collaboration, we use a weighted represen-
tation of the relationship in which the weight of the edge
(i, j), wij , represents the total number of albums the mu-
sicians i and j have played together for the case of NoM,
and how many songs they have composed together for the
case of NoC. The NoM contains 16,442 nodes and 844,223
edges, while the NoC is a much sparser network with 8,152
nodes and 12,923 edges.

5. ANALYSIS OF THE NETWORKS

The social network we analyzed contains works from more
than 60 years of Brazilian music. When discussing the in-
fluence of a person in a social network the number of collab-
orations she has is of prime importance. In social network
terms, the number of collaborations is expressed by the de-
gree of the node in the network. For instance, if a node x
representing a person collaborated with 4 others his degree,
deg(x) = 4. Note however that degree does not consider
the “size” of the collaboration, so if a person collaborated
with the another 5 times, only the weighted degree, wdeg
captures this information. In order to have a complete pic-
ture we need both the degree (number of different collab-
orations) and weighted degree (number of total collabora-
tions). We have used the entire dataset and ranked musi-
cians and composers by the number of collaborators. Tables
1 and 2 show the rankings by degree but we also display the
weighted degree.

Table 1 shows the list of musicians in Brazilian music.
Most of these are probably unknown to the general pub-

lic because they form what we like to call the “scaffold-
ing of Brazilian music”. With a few exceptions, these are
the musicians who are respected in their art but generally
do not work as leaders in recordings. Some of the num-
bers presented are quite impressive. Despite the incomplete-
ness of our dataset (see Section 6 for description of our fu-
ture work), we see many musicians who have collaborated
with more than 2,000 others, a feat not so easily achievable.
These musicians are able to carry influences from an album
to another and are major contributors of cross-fertilization
between brazilian styles.

Another interesting observation from Table 1 is that the
national instrument from Brazil, the classical guitar (Hornbostel-
Sachs number 321.322), is not present. We believe that this
is the case because the musicians above belong to this “scaf-
folding” class which works on albums as supporting mem-
bers and not as the main personnel. The table shows the
importance of classical instruments even for popular music.

Table 2 describes the ranking of composers according to
degrees. Here the disparities are more prominent between
deg and wdeg. This is expected because some composers
collaborate with few others but write many compositions
with them. For instance, this is the case with Vinicius de
Moraes (in bold in Table 2) has deg=59 but wdeg=3,392. It
is worth noticing that our wdeg is based on the total number
of compositions that appears in the dataset (not on unique
compositions); this choice is made on purpose for the com-
posers study because we want wdeg to be more than just a
count of different compositions but also give a notion of im-
portance of the individual. If a composers has then one col-
laboration (deg=1) but that composition has been recorded
1,000 times in the dataset, his wdeg=1,000. For us that
composer is important to the structure of brazilian music
although she has not composed many pieces—she would
be important because his composition has been frequently
recorded.

Table 2. List of top 30 composers by the number of dif-
ferent collaborations (deg). However some of the collabo-
rations are repeated, meaning that the composers may write
more than one song with a collaborator. The weighted de-
gree (wdeg) column is an indication of repeated collabora-
tions. Names in shown in bold are used as specific examples
in the text.
deg Name wdeg deg Name wdeg

83 Paulo César Pinheiro 1,047 50 Chico Buarque 1,186
74 Arnaldo Antunes 411 47 Francis Hime 488
65 Caetano Veloso 320 45 Moraes Moreira 344
61 Aldir Blanc 960 45 Ataulfo Alves 257
61 Ivan Lins 668 44 Nei Lopes 192
60 Milton Nascimento 917 44 Tom Zé 142
60 Gilberto Gil 427 44 Martinho da Vila 118
59 Vinicius de Moraes 3,392 43 Wilson Batista 260
59 Noel Rosa 731 43 Itamar Assumpção 115
59 Luiz Gonzaga 706 42 Heitor Villa-Lobos 263
57 João Donato 474 41 Carlinhos Brown 212
56 Nelson Cavaquinho 634 40 Pedro Luı́s 72
52 Ronaldo Bastos 364 39 Tom Jobim 2,486
52 Hermı́nio Bello de Carvalho 348 39 Zeca Baleiro 89
52 Délcio Carvalho 190 37 Fausto Nilo 165
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Table 1. List of top 30 musicians by the number of different collaborations (deg). However some of the collaborations are
repeated, meaning that the musicians may play in many albums with the same musicians. The weighted degree (wdeg) column
is an indication of repeated collaborations.

deg Name wdeg Instrument deg Name wdeg Instrument

3,002 Márcio Eymard Mallard 15,635 Cello 2,062 Jorge Helder 7,633 Bass
2,782 José Alves da Silva 15,122 Violin 2,051 Wilson das Neves 7,891 Drums
2,659 Jorge Kundert Ranevsky 13,474 Cello 1,990 Ricardo Amado 7,878 Violin
2,579 Paschoal Perrota 13,398 Violin 1,990 Gordinho 7,477 Percussion
2,563 Jaques Morelenbaum 10,558 Cello 1,967 Alfredo Vidal 9,864 Violin
2,470 Walter Hack 13,290 Violin 1,949 Jamil Joanes 7,317 Bass
2,445 Alceu de Almeida Reis 12,319 Cello 1,897 Jesuı́na Noronha Passaroto 7,968 Viola
2,405 Robertinho Silva 7,135 Drums 1,862 Zé Carlos Bigorna 6,593 Sax, Flute
2,400 João Daltro de Almeida 11,280 Violin 1,849 Aizik Meilach Geller 9,263 Violin
2,331 Carlos Eduardo Hack 11,696 Violin 1,810 Ovı́dio Brito 5,376 Percussion
2,314 Frederick Stephany 11,071 Viola 1,804 Nailor Proveta 4,438 Sax
2,251 Bernardo Bessler 9,751 Violin 1,792 Cristóvão Bastos 8,373 Piano
2,268 Giancarlo Pareschi 12,405 Violin 1,771 Márcio Montarroyos 7,243 Trumpet
2,251 Michel Bessler 10,254 Violin 1,759 Carlos Malta 4,529 Flute
2,201 Marcos Suzano 5,640 Tambourine 1,748 Marie Christine Springuel 7,076 Viola

The list in Table 2 is somewhat surprising at first because
of names such as Arnaldo Antunes, Carlinhos Brown, Pedro
Luı́s, and Zeca Baleiro (also in shown in bold). However
these names represent the new generation of Brazilian com-
posers who make very good use of social media and collab-
orate with many other musicians. The rankings in the table
considerers all data in the dataset. To better understand the
evolution of these rankings we performed a temporal analy-
sis but using pagerank rather than degree ranks.

The first study we have performed using pagerank is shown
in Figure 1. These ranks are per decade and follow the po-
sition of the top 50 musicians and composers in the most
recent decade. It is important to understand that the rank-
ing in decades other than the most recent one is relative to
each other. We took the top 50 musicians and composers
in the most recent decade and followed their relative ranks
in other decades. For instance, Noel Rosa appears as the
top ranked composer in Figure 1(right) for the most recent
decade but in the 14th position in the 80s; this 14th means
relative to the 50 composers listed in the 2000 decade. In ab-
solute terms, Noel Rosa can (it probably is) lower than the
14th position. The connections in the social networks for
each decade considers only the collaborations in albums of
that decade, which explain sudden changes in the rankings.
A musician or composer that was top in a decade may be
irrelevant in others because he was not active or because his
compositions were not recorded by musicians in that period.

We can see in Figure 1 that composers ranks are more
stable than the musicians meaning that the relative ranks are
better maintained for composers (the lines not cross as of-
ten and as radically). We can also argue that musicians do
not have as high longevity as composers. A musician who
is very active today may not have been very active a few
years back. A clear example of this is the musician Michel
Bessler who does not even appear in albums prior to 1980 al-

though he is 10th most important musician of today. Bessler
is the spalla of the Brazilian Symphony Orchestra and has
participated in many popular albums (see Table 1). Figure 1
confirms this longevity observation, which is expected since
the NoM requires active participation of the musician in the
recording while the NoC includes people who may have
even be deceased but continue to have their music recorded
(e.g. Noel Rosa).

Last we look at the evolution of rankings using accu-
mulative networks. While Figure 1 looks at collaborations
in isolation, Figure 2 shows the ranking (also according to
pagerank) of musicians and composers using an accumula-
tive approach. Here we want to see how the ranks evolve
if we consider the collaborations until a particular year but
including all information since the first date we have infor-
mation on the dataset. For instance, the ranking in 2010
considers all the works available in the dataset, that is, the
full collaboration network. Antecedent years (2007, 2004,
etc.) consider collaborations from the first data available in
the dataset until the given year. Hence, the change from one
year to another (3 years appart) is due to the work produced
in the last 3 years.

The use of accumulated networks allows us to see a lit-
tle better how the structure changes as new musicians and
composers become active. An excellent example of this is
Arnaldo Antunes who appears in Figure 2(right) in 4th posi-
tion but decrease his relative rank quite rapidly until disap-
pearing completely in 1986. Arnaldo Antunes appeared to
in Brazilian music scene as a member of a rock band called
Titãs in the mid-80s. After leaving the band, he emerged
as one of the main composers in Brazil with many collab-
orators (which influences his pagerank). Most recently, his
compositions have been part of recordings of many respected
brazilian singers such as Marisa Monte and Cássia Eller.

Another interesting class of composers that we can see in
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Figure 1. Rank of the top 50 musicians (left) of the last decade and how these ranks evolve per decade. The pagerank of
2000 is absolute but for the other decades it represents how these musicians rank against each other. For instance, none of the
musicians ranked today were present in recordings from 1950s (1950-1959). On the right picture, we have the rank of the top
50 composers of the last decade and how these ranks evolve per decade. Individuals marked with an→ are examples discussed
in the text.

Figure 2 is well represented by Caetano Veloso. The accu-
mulated ranking shows that Caetano Veloso has maintained
himself active through several decades (by composing and
having his songs recorded by other artists) and he is today
still the 5th most important composer in Brazil. Compare
this to his position in Figure 1; since that analysis considers
only recordings per decade in isolation we see that Caetano
Veloso is not so well positioned in more recent years. The
fact is that Figures 2 and 1 taken together give us a good
idea of the ranking of a musician and composer and how it
evolves.

Lastly, our results allow us to observe scenarios like what
happens to Zeca Baleiro in Figure 1. Because the study takes
decades in isolation we can see that he appears high in the
rankings but not at all in the accumulative ranking in Figure
2. This is a case where we have a upcoming composer who
has been active only very recently and is part of the ranking
of the last decade but not yet part of the entire history.

6. CONCLUSION AND FUTURE WORK

In this paper we demonstrated that the construction of social
networks and the use of metrics rooted in network sciences
may help us understand the structure of Brazilian music.
Rankings related to music are always controversial because
of the attachment people feel to music. However we believe
our approach is less biased and provides a good understand-
ing of the structure of Brazilian music. Our work shows
that the network of musicians is less stable than the network

of composers. This result is expected because musicians
actively participate in the recording while composers par-
ticipate by having their songs recorded—a composer may
even be deceased when his composition is recorded. Our
hope was to have a social network of musicians based on
them playing together on specific tracks rather than on an
album as we believe this is a more accurate representation
of the collaboration. However to our knowledge, no dataset
of MPB includes the information per track.

The two kinds of rankings provided (and their visualiza-
tion) also allows us to understand how the rankings change
with time. An analysis not included in this paper (due to
space restriction) seem to indicate that a composer needs to
be well ranked for about 30 years to appear in the accumu-
lative rankings. This appears to indicate that 30 years for
Brazilian music a measure of “success” for a composers—
what differentiates them from one-hit composers.

We continue to work on the current dataset on many fronts.
We are currently collecting more data to make the dataset
more complete since it is still incomplete particularly with
regards to older recordings. Next, we intend to consider the
date of the composition in our analysis although this data is
appearing to be very hard to gather. With this information
we believe we can have another dimension of the structure
of composers. Last, our ultimate goal is to be able to add
the concept of reputation to the study and for that we may
have to consider a third category of individuals. A composer
may become part of the rankings by having one of his com-
positions recorded by major singers (e.g. Elis Regina). We
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Figure 2. This picture shows the rank of the top 20 musicians (left) and composers (right) for the year 2010 and how they rank
against each other in the antecedent years. Note that the ranks for all other years are not absolute. This means that if a person is
listed in the 1st position it only means that the person is in the 1st position relative to the other people listed in the year 2010.
In this case, the network of collaborations is not taken in isolation, so the data for the year 2007 includes all collaborations until
2007. Individuals marked with an→ are examples discussed in the text.

are currently considering how this reputation can be added
to the study given that some of these singers and have never
composed songs are not musicians either.
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[5] Òscar Celma. Music Recommendation and Discovery: The
Long Tail, Long Fail, and Long Play in the Digital Music
Space. Springer Verlag, 2010.

[6] Hung-Chen Chen and Arbee L. P. Chen. A music recommen-
dation system based on music and user grouping. Journal of
Intelligent Information Systems, 24:113–132, 2005.

[7] Janet M. Cliff. On relationships between folk music and folk
games. Western Folklore, 51(2):129–151, 1992.

[8] M Girvan and Mark E Newman. Community structure in social
and biological networks. PNAS, 99(12):7821–7826, Jun 2002.

[9] Pablo M. Gleiser and Leon Danon. Community structure in
jazz. Advances in Complex Systems: A Multidisciplinary Jour-
nal, 6(4):565–573, 2003.

[10] Beth Logan. Music recommendation from song sets. In Pro-
ceedings of the International Society for Music Information
Retrieval Conference, pages 425–428, 2004.

[11] Chris McGowan and Ricardo Pessanha. The Brazilian Sound.
Temple University Press, 1998.
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ABSTRACT

Complex networks have shown to be promising mechanisms
to represent several aspects of nature, since their topological
and structural features help in the understanding of relations,
properties and intrinsic characteristics of the data. In this
context, we propose to build music networks in order to find
community structures of music genres. Our main contribu-
tions are twofold: 1) Define a totally unsupervised approach
for music genres discrimination; 2) Incorporate topological
features in music data analysis. We compared different dis-
tance metrics and clustering algorithms. Each song is rep-
resented by a vector of conditional probabilities for the note
values in its percussion track. Initial results indicate the ef-
fectiveness of the proposed methodology.

1. INTRODUCTION

Complex networks have received much attention in recent
years due to their capability of characterizing and helping in
the understanding of many interdisciplinary aspects of the
real-world [3]. Regarding music and artistic aspects, music
networks have been studied and their topological character-
istics shown to be useful for the analysis of dynamics and
relations between the involved elements. Examples are the
work of Gleiser and Danon [13] concerning a collaboration
network of jazz artists and bands; the work of Parket et al [8]
about a social network of contemporaneous musicians; and
the work of Cano et al [12] involving an analysis of the sim-
ilarities between songs and bands.

Community structures have also been studied in music
networks. Teitelbaum et al [19] analysed two different so-
cial networks using similarities and collaborative attributes
of music artists. They described some organization patterns
and they comment aspects that reflect in the growth of such
networks. Lambiotte and Ausloos [17] addressed the diffi-
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culty for a general agreement of the genre taxonomy through
an empirical analysis of web-downloaded data.

Although there are several works in the literature that
provide significant results for more complex case of audio-
based analysis [7], in audio files all information is mixed
together. Differently, the use of symbolic format like MIDI,
may indicate a clearer analysis of what is in fact contributing
for the discrimination of the genres [15]. On the other hand,
Markov models on high-level rhythm features is an area rel-
atively few explored nowadays. Markov chains in rhythm
features and their capability for discriminating music gen-
res has been studied by [3]. The authors investigated that
use of Markov chains with memory one and two suggests
an evidence that the pattern of note values in the percussion
may differ from one genre to another.

Our main goal is to analyse the community structure of
music networks, which is a new and promissing research
area. We believe that mixing temporal features (rhythmic
patterns) and global topology information from proper mu-
sic networks can be effective in understanding the relation-
ship of music genres. We summarize our main contribu-
tions as: comparison of different 1) distance metrics, and
2) community detection algorithms in order to find commu-
nity structures in the music networks, defining a completely
unsupervised and low computational cost approach.

The remainder of the paper is organized as follows: sec-
tion 2 describes the proposed method; and section 3 presents
the primarily experiments and provide some discussions. Fi-
nally, section 4 shows the conclusions and final remarks.

2. METHOD

2.1 Data Description

The database consists of 280 samples (or songs) in MIDI
format equally divided into four genres: blues, mpb (Brazil-
ian popular music), reggae and rock. Although it indicates a
small database, these songs contain high variability in their
rhythmic patterns. Besides, this database allows a qualita-
tive investigation of the music graphs (by visual inspection
of their topology). Our motivation for choosing these four
genres is the availability of online MIDI samples with con-
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Figure 1. Example of a percussion track.

Beat 4 4 4.5 5 5 5 5.5 5.5 6 6 6.5 7 7 7
Relative 0.5 1 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1 0.5 0.5 0.5 1
Duration

Table 1. Matrix representation of second measure of the
percussion in Figure 1. First beat starts at 0.

siderable quality and the different tendencies they represent.
Despite being simpler to analyse than audio files, MIDI

formats have the advantage of being a symbolic representa-
tion, which offers a deeply analysis of the involved elements
and takes much less space. We used the Sibelius software
and the free Midi Toolbox for Matlab computing environ-
ment [18]. In this toolbox a MIDI file is represented as a
note matrix that provides information like relative duration
(in beats), MIDI channel, MIDI pitch, among others. The
relative note duration is represented in this matrix through
relative numbers (for example, 1 for quarter note, 0.5 for
eighth note, 0.25 for sixteenth note and so on). Sibelius
software has an option called “Live Playback”. If this op-
tion is not marked, the note values in the MIDI file respects
their relative proportion (e.g., the eighth note is always 0.5).
In this way, we can solve possible fluctuations in tempo.

For each song the track related to the percussion is ex-
tracted. We propose that the percussion track of a song is
intrinsically suitable to represent the rhythm in terms of note
values dynamics. Once we have separated the percussion
track, we can obtain a vector that contains the sequence of
relative note values present in it. The instrumentation is not
been considered. If two or more note events occurs at the
same beat, the median duration of them is taken. To illus-
trate the idea, Figure 1 shows the first measures of the per-
cussion track of the music From Me To You (The Beatles).

Part of the percussion matrix corresponding to the second
measure is indicated in Table 1. As we can see, different
instrument events occur at a same beat. Taking the median
value in such cases, the final note duration vector of this
measure will be: [0.5 0.5 0.5 0.5 0.5 0.5 0.5]. For each song
in the database, we compute the note vector of the whole
percussion. All these steps can be automatically performed.

2.2 Markov modeling for note duration dynamics

Markov chains use a conditional probability structure to cal-
culate the probability of future events based on one or more
past events [5]. We can analyse different numbers of past

events, which indicates the order of the chain. A first order
Markov chain takes into consideration only a predecessor of
a event. If instead, the predecessor’s predecessor is consid-
ered, then we have a second order Markov chain, and so on.
Generally, an nth-order Markov chain is represented by a
transition matrix of n + 1 dimensions. This is an interesting
matrix, since it gives the information about the likelihood of
an event’s occurrence, given the previous n states.

In our case, the events are the relative note values of the
percussion in the songs, obtained with the steps described
in section 2.1. For each song (represented by a vector of
note values), we compute the first and second order transi-
tion matrices. Therefore, we have the probability that each
note value or a pair of note values is followed by other note
duration in the song. Higher-order Markov chains tend to
incorporate senses of phrasal structure [2], while first-order
ones help to identify more often subsequent notes.

In order to reduce data dimensionality, we performed a
preliminary analysis of the relative frequency of note values
and pairs of note values concerning all the songs, in a way
that extremelly rare transitions were discarded. For the first
order Markov chain we have a matrix of probabilities with
18 rows and 18 columns (we considered 18 different note
values in this dataset). Each entry (i, j) of this matrix ex-
presses the probability that a note value i is followed by a
note value j in the percussion of the respective song. Then
this matrix is treated as a 1 x 364 feature vector.

For the second order Markov chain, the matrix of proba-
bilities for each song is 167 (rows) x 18 columns, treated as
a 1 x 3006 (167 * 18) feature vector (we considered 167 dif-
ferent pair of note values). Similar, each entry (i, j) of this
matrix expresses the probability that a specific pair of note
values represented in line i follows a specific note value j.
If we concatenate both feature vectors we will have the final
feature vector of each song with 3330 elements. It is in-
teresting to mention that, we experimented to built the mu-
sic networks considering first and second order probabilities
separately. However, for both isolated cases, the Clauset-
Newman-Moore community detection algorithm clustered
5 different groups, while considering feature vectors com-
posed by the concatenation of first and second order models
led to the detection of 4 groups. This fact suggests that a
single Markov chain is not sufficiently to model all the dy-
namics that characterizes the 4 original genres. Another ev-
idence is that when we consider both Markov chains, the
accuracy obtained in the classification of these four gen-
res is higher: 70% for first-other Markov chain, 85% for
the second-orther, and 92% for both chains. (We used the
Bayessian classifier under Gaussian hyphothesis.)

2.3 Music Networks

A complex network is a graph that exhibits a relatively so-
phisticated structure between its elements when compared
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to regular and uniformly random structures. Basically speak-
ing, a network may be composed by vertices, edges (or links)
and a mapping that associates a weight in the connection of
two vertices. The edges usually has the form w(i, j) indicat-
ing a link from vertex i to vertex j with weight w(i, j). Rep-
resenting music genres as complex networks may be inter-
esting to study relations between the genres characteristics,
through a systematic analysis of topological and structural
features of the network.

From the first and second-order transition matrixes of the
Markov chains we can build a music network. Each vertex
represents a song. The links between them represent the dis-
tance of the two respective songs, considering their vectors
of conditional probabilities of the note values. However,
with a full-connected network it may be difficult to obtain
intricate structure. There are several forms to define which
vertices will be connected and several distance metrics. We
propose some possibilities in the following and try to form
clusters of vertices that can represent the music genres.

3. EXPERIMENTS AND DISCUSSION

It is worthwhile to mention that the proposed characteriza-
tion of the music genres is performed in an unsupervised
way (community finding algorithms). The obtained groups
are based on similarities in the feature set and the classes
are not supposed to be known in advance. To illustrate the
complexity of the problem, Figure 2 presents the first and
second components (new features) obtained by LDA (Lin-
ear Discriminant Analysis), which is a supervised technique
for feature analysis whose principal aim is to maximize class
separability. Even with the LDA new features, reggae and
rock classes are still overlapped. This overlapping could
be observed in all performed experiments. Considering the
rhythms patterns, rock and reggae music are pretty similar.

We know that the use of only four genres with seventy
samples each may represent a small dataset. Our purpose is
to perform an initial study of rhythmic features and its rep-
resentation, but with an evidence that the proposed features
may be useful and viable for genre characterization.

3.1 Community detection on K-NN graphs

Through the dynamics of the note values in the percussion
we built several networks. From the point of view of parti-
tioning the genres into communities, different groups may
be obtained, depending on the used criteria. In this sec-
tion, we used the Clauset, Newman and Moore [1] and Gir-
van and Newman [10] algorithms for community detection.
Such algorithms are widely known in the complex networks
literature. The former is based on a hierarchical clustering
of the dataset. The latter is based on centrality metrics to
determine the community boundaries.

Figure 2. The first and second features obtained by LDA.

Mpb Rock Blues Reggae
G1 41 29 15 21
G2 4 13 1 11
G3 17 15 50 20
G4 8 13 4 18

Table 2. The groups in network of Figure 3.

For each of the following cases, the networks may be
built as follows: 1) From the feature matrix (with 280 lines
(the songs) and 3330 columns (the features)), we computed
the distance between each pair of feature vector (or each
pair of song). This led to a 280 x 280 symmetric matrix
of distances, with zero values in the diagonal. In this case,
we have a full network, with all vertices connected to each
other; 2) For each song (or vertex), we only link the K near-
est songs of it. The weight of each link is the distance be-
tween this par of songs; 3) Consider the obtained K-regular
network. Or; 4) For each vertex, take the mean distance,
considering the linked vertices. Keep the link between ver-
tices only with their distance is smaller than the mean dis-
tance. The main variations of the networks analysed here
are consequence of the choice of different distance metrics,
different values of K, and the execution or not of step 4.

For the network showed in Figure 3 we used the cosine
distance, K = 10 and kept the network 10 regular. The
songs are spread as indicated in Table 2. Each group has a
different dominant class. Blues and mpb songs are concen-
trated in G3 and G1, respectively. Reggae songs are almost
equally divided into the groups. Rock songs are almost 50%
in G1, overlapping with mpb songs. The other 50% divided
into the remaining groups. This behavior substantially re-
flects the projections of LDA in Figure 2. The G3 group
reflects the blues songs that are more discriminative. The
G1 group reflects mainly the overlapping present in mpb,
reggae and rock. And G2 and G4 mainly reflect the overlap-
ping between reggae and rock songs.

For the same network, Figure 4 shows the groups ob-

449



Poster Session 3

Figure 3. The network of genres. Cosine distance.
Groups formed by the Clauset-Newman-Moore algorithm.
All colored images available at http://cyvision.ifsc.usp.br/ deboracor-
rea/MusicandComplexNetworks.html

tained by the Girvan and Newman algorithm. Since it is
an algorithm based on vertex centrality indices, the network
was split into nine groups. The result is still interesting
since many songs of a same genre are placed together in
each group. In addition, this result opens a promising fur-
ther studies aimed at analysing the presence of sub-genres
in these small groups. Are, for example, blues-rock or pop-
rock songs more concentrated in a specific group? This is an
interesting study that can benefit of this investigative work.

Figure 4. The network of genres. Cosine distance. Groups
formed by the Girvan and Newman algorithm.

If instead of cosine distance, we use the Euclidian dis-
tance, we will get the network in Figure 5, according to the
Clauset, Newman and Moore algorithm. Table 3 shows the
groups. Reggae songs are more concentrated (31 in G3);
and G4 is smaller than in the first case, with only 12 songs.

Considering all the experiments, including those not pre-

Figure 5. The network genres. Euclidian distance. Groups
formed by the Clauset-Newman-Moore algorithm.

Mpb Blues Reggae Rock
G1 35 18 15 30
G2 19 41 23 10
G3 13 10 31 23
G4 3 1 1 7

Table 3. The groups in network of Figure 5.

sented here, we can describe some overall characteristics
of the clusters found by the Clauset-Newman-Moore algo-
rithm. The most discriminative genre is blues. In most ex-
periments one group was always small. Actually, in some
variations the algorithm returned three large groups. This
may indicate that, although we have four genres labeled by
the usual taxonomy, in terms of the proposed rhythm fea-
tures there are only three. If we listen to the whole song, we
may differ the genres in a successful way. But if we listen to
only the percussion track of each song, this discrimination
may be harder and one song could be labeled into more than
one genre. Therefore, considering that we have a completely
unsupervised approach, the proposed investigation indicates
that note duration dynamics can be a useful information in
characterizing and discriminating music genres.

3.2 Spectral graph partitioning

Topologic-based graph metrics are generally correlated and
dependent [16]. For this reason, spectral analysis is a pow-
erful tool that has been widely explored in the characteriza-
tion of graphs and complex networks. The basic idea can
be summarized as follows: in mathematical terms, when we
analyze a graph in the spectral domain we have a represen-
tation in terms of orthogonal components, which means that
information is somehow uncorrelated. Thus, proper analy-
sis of eigenvalues and eigenvectors of adjacency or laplacian
matrices idenficates aspects that cannot be seen in the topol-
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Reggae Blues Rock Mpb
G1 20 4 13 8
G2 21 46 6 15
G3 17 9 23 20
G4 12 11 18 27

Table 4. The groups in network of Figure 6.

ogy domain. Please, refer to [4,11] for a good review on the
mathematical fundamentals of algebraic graph theory.

In this paper, we use a spectral graph partitioning method
based on the analysis of the eigenvalues of the Laplacian
matrix. Let A and B be the adjacency and incidence matri-
ces of a graph G = {V,E}, where V is a set of vertices and
E is a set of edges. The Laplacian matrix, Q, is given by:

Q = BBT = ∆−A (1)

where ∆ is a diagonal matrix of the degrees of V .
The second smallest eigenvalue of the Laplacian matrix

is known as the algebraic connectivity of a graph and it has
many interesting properties. More precisely, the eigenvector
associated to this eigenvalue, known as the Fiedler vector
[9], has proven to be directly related to graph connectivity.
Often, in practice, the signs of the Fiedler vector can be used
to partition a graph in two regions. This can be seen as a
quantization to binary digits, zero or one.

Here, we propose to do a quantization of the Fiedler vec-
tor coefficients in C values, where C represents the num-
ber of desirable clusters or groups. By doing so, we are
essentially partitioning a graph or network in C subgraphs
or communities, which is equivalent to finding C − 1 val-
leys in the histogram that represents the distribution of its
coefficient values. In this paper, the thresholds were chosen
by visual inspection of the histogram, but several methods
for automatic multilevel threshold estimation are available
in the image processing literature [14]. A deeper mathemat-
ical analysis and discussion about the eigenvectors of the
Laplacian matrix and its properties can be found in [16].

For the following experiment, we used the non-regular
network generated by first building a K-NN graph with K =
30 and then, for each vertex v, cutting the edges whose
weights were above a threshold obtained by averaging the
weights of every edge incident on v. Thus, the resulting net-
work is not modeled as a k-regular graph anymore. Figure 6
shows the resulting network, with the four detected clusters.
The Fiedler vector for this graph and the corresponding his-
togram for the distribution of its coefficients are plotted in
Figures 7 and 8, respectively. The distribution of coefficient
values of the second smallest eigenvector of the Laplacian
matrix clearly indicates the presence of different clusters or
communities in the network. Table 4 shows the groups for
the spectral partition. Rock and mpb songs are more spread
in the four groups than in the former cases.

Figure 6. The network of genres by the Fiedler vector.

Figure 7. The Fiedler vector for the network in Figure 6.

4. FINAL REMARKS AND ONGOING WORK

In this investigative study we proposed a characterization of
music genres by detecting communities in complex music
networks. Each vertex represents a song through a feature
vector that captures the likelihood of first and second order
Markov chains of the note values in the percussion track.
The distance between the feature vectors (or between the
songs) defines the weight of the links. We tested two differ-
ent distance metrics (cosine and Euclidian) and two different
approaches for finding clusters in the network (traditional
algorithms on K-NN graphs and spectral partioning).

Regarding the formed clusters, we found that the results
are promising since in most experiments each cluster is dom-
inated by a different genre. Observing the LDA projections,
it is possible to see that many samples from different gen-
res are overlapped (mainly reggae and rock samples). LDA
is a supervised technique that maximizes class separability.
Therefore, even without any supervised analysis, significant
results could be obtained. In addition, most MIDI databases
available in the Internet are single-labeled, sometimes with
different taxonomies of music genres. In some situations,
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Figure 8. Distribution of coefficient values of the Fiedler
vector for the network depicted in Figure 6.

a sample receives different labels in different sites (for ex-
ample, wikipedia). This introduces noise to the system and
reflects in the evaluation of the results.

From the obtained communities and considering the four
genres used in this study, we can say that blues is the more
discriminative genre. Representing the older genre, and hav-
ing specific characteristics, blues may have influenced the
following genres, which contributted along years for a mix-
ture of some features between genres. Reggae, rock and
mpb are more similar genres, sharing many overlapped sam-
ples. In fact, along years mpb music started to include dif-
ferent rhythms like rock and latine music such as reggae and
samba. Reggae music, on the other hand, had stylistc origns
in jazz, R&B, rocksteady and others. These tendencies are
interesting and are somehow reflected in the results. Actu-
ally, the use of graph representation (instead of clustering
methods in a vector space) is promising, since it combines
graph topological features and similarity characteristcs in
order to infer the data structures.

Music networks is somehow a new reseach area in the
literature. To the best of our knowledge, we could not find
a different approach that used partitional network methods
for music genres. Comparing with the hierarquical cluster-
ing with Euclidian distance metric used in [3], the groups
in Table 3 have some differences: the blues songs are sig-
nificantly more concentrated in one group; the largest group
does not concentrate too many samples of all genres, which
is not the case in the hierarquical clustering. An advantage
of this kind of unsupervised analysis relies on the possibil-
ity of the characterization of music sub-genres, which can
contribute to the definition of a more unified taxonomy.

There are many possibilities for future works. First, many
other rhythm attributes can be analysed (like the intensity
of the beat), as well as other open music databases [15].
Another interesting work that has been started is the inves-
tigation of sub-genres present in sub-clusters of the main
groups. It would be promising if a system could be sen-
sitive to various styles inside a genre. Contextual analysis
through Markov Random Field models may also bring ben-

efits, since with this kind of modeling we can measure how
individual elements are influenced by their neighbors, ana-
lyzing spatial configuration patterns of vertices.
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ABSTRACT

With over 4.5 million tablatures and chord sequences (col-
lectively known as tabs), the web holds vast quantities of
hand annotated scores in non-standardised text files. These
scores are typically error-prone and incomplete, and tab col-
lections contain many duplicates, making retrieval of high
quality tabs difficult. Despite this, tabs are by far the most
popular means of sharing musical instructions on the in-
ternet. We have developed tools that use text analysis and
alignment for the automatic retrieval, interpretation and anal-
ysis of such tabs in order to filter and estimate the most ac-
curate tabs from the multitude available. We show that the
standard means of ranking tabs, such as search engine ranks
or user ratings, have little correlation with the accuracy of a
tab and that a better ranking method is to use features such
as the concurrency between tabs of the same song. We also
compare the quality of top-ranked tabs with state-of-the-art
chord transcription output and find that the latter provides a
more reliable source of chord symbols with an accuracy rate
10% higher than the ranked hand annotations.

1. INTRODUCTION

There are a number of digital music notation formats, such
as Music XML, the MIDI file format, and various formats
for images of scanned sheet music. However it is tabs, which
are plain text files containing tablature and/or chord symbols
and lyrics, that have become the most commonly used mu-
sic notation format on the internet. A comparison of the
most popular MIDI, sheet music and tab websites’ unique
visitors per month can be seen in Table 1. The popularity of
tabs is due to a simple, intuitive approach to the instructions
that requires no formal training to understand nor specific
software to read or write. Added to this is the fact that tabs
are commonly free to use and the amount of data needed to
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personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

File type Most popular site Visitors
tabs ultimate-guitar.com 2,541,482
sheet music 8notes.com 470,010
MIDI freemidi.org 17,437

Table 1. Unique visitors per month to music score websites from
http://siteanalytics.compete.com

transfer the text instructions is almost negligible. However,
due to the lack of standardisation there are many variations
in how they are structured, making machine parsing of tabs
difficult. Also, since even beginners can use the format to
annotate music, many of the tabs found are of poor quality,
suffering from errors and incompleteness. A further prob-
lem is that multiple tabs exist for many songs, making it dif-
ficult for the user to locate the most accurate and complete
instance among the alternatives. These difficulties motivate
the current work.

We address these problems by developing a parser for
guitar tabs and using music information retrieval methods to
analyse and compare the tabs. We propose several features
and evaluate their effectiveness as predictors of tab accuracy,
in order to improve the quality of tab retrieval. Overall, we
aim to evaluate the viability of data-mining a noisy source
of metadata from the internet, and we compare our results
with those obtained by content-based analysis of audio for
determining the chord sequence for a given song.

Despite the popularity of tabs on Usenet groups such as
alt.guitar.tab in the 1990’s and more recently on web sites
such as ultimate-guitar.com, little attention has been given to
this source of data by the music information retrieval com-
munity. In recent work McVicar and De Bie [8, 9] showed
how chord sequences from guitar tabs, synchronised with
the music, can help improve machine learning methods for
chord recognition. Audio and video analysis were used in
[3] to find the simplest tablature transcription of chords and
a guitar tablature score follower was demonstrated in [5] that
used score following to display tabs on small screens.

2. THE BEATLES DATA

In this work we focus on The Beatles due to the availability
of ample annotated data and guitar tabs for this band.
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2.1 Ground Truth Chord Sequences

The ground truth chord sequence annotations for The Bea-
tles used in this work come from transcriptions by Chris
Harte [2]. This data includes chord sequences for 180 tracks
from 12 Beatles’ studio albums, which is the set that we fo-
cus on in our evaluation.

2.2 Ground Truth Structure Segmentation

These are structural segmentations consisting of start time,
end time and segment label for the same 180 The Beat-
les tracks [6]. The labels are words such as verse, refrain,
bridge, intro, outro, and silence, which are often qualified
with details, e.g. verse a, verse b, and verse (guitar solo).

2.3 Web-Mining

We used two search engines to locate guitar tabs. The first,
911tabs.com, is a guitar tab search engine with over 4.5 mil-
lion tabs indexed. We wrote a web crawler that retrieved all
the correctly labelled Beatles tabs from 911tabs.com corre-
sponding to the 180 tracks in our test set. For the second
search engine, Google, we found a combination of search
terms (‘guitar’, ‘tab’ and some filters for unwanted content
such as ‘-video’) that, when combined with the artist and
track name, gave a high ratio of tabs in the results. After
the first 100 results for each tab search, the number of tabs
returned was low, so we focused on the top 100 results for
each song. In total we found 24746 tabs relating to the 180
Beatles tracks in our ground truth data. Additionally, we
mined the web for an initial chord dictionary of 264 com-
mon chords from chordie.com and guitarsite.com.

3. TAB PARSING

We see decoding tabs as an example of noisy text analytics,
which are often applied to determine meaning from web-
mined resources such as online chat, forums, blogs and wikis.
To interpret the noisy semi-structured tab data, we imple-
mented a large set of simple heuristics to handle the many
varied tab writing styles that exist. The following steps are
a brief outline of the stages involved in parsing tabs.

• Interpret any HyperText Markup Language (HTML)
specific tags. For instance, &nbsp; and <br> tags are
changed to spaces and new lines, respectively.

• Analyse each line to determine what (if any) type of
tab line it is. For example the line could contain a
‘structural marker’, ‘chord line’, ‘chord and lyrics line’,
‘tablature line’, etc. Non-tab-specific text is discarded.

• For each tab line, decode the tab elements accord-
ingly. As such, chords will be extracted from any
‘chord line’ or ‘chord and lyrics line’, notes will be

[Intro]
Riff1
e------0-|-3---3---5---5-|-10-------------------|------8---------|
B---3--1-|-3---3---7---7-|-12----12-0--0--12-0--|------10--10--7-|
G--------|-4---4---7---7-|-12----12-12-12-12-12-|-9----9---------|
D--------|---------------|----------12-12-12-12-|-10-------------|
A--------|---------------|----------------------|(10)------------|
E--------|---------------|----------------------|----------------|

Riff2
e--3--3--3--3--|--0--0------(0)-|
B--3--3--3--3--|--3--3--(3)-----|
G--0--0--2--2--|--0--0----------|
D--0--0--0--0--|--2--2---0---2--|
A--2--2--x--x--|--2--2----------|
E--3--3--2--2--|--0--0----------|

G D/F# Em

G D/F# Em
Love love love
G D/F# Em
Love love love
D7/A G D7/F# D7/E
Love love love
D C Riff3

Figure 1. Tab Sample 1. Chords Extracted:
G D/F# Em G D/F# Em G D/F# Em D7/A G D7/F# D7/E D C

A taste of [Am]honey, [C]tasting much [G]sweeter than [Am]wine

I [Am]dream of [C]your first [G7]kiss and [D]then
I [Am]feel a[C]part, my [G7]lips are [D]gett’n
A taste of [Am]honey, [C]tasting much [G]sweeter than [Am]wine

{Chorus:}
I [A]will re[C]turn, yes [D]I will re[Em]turn
I’ll come [F]back for the [G]honey and [Am]you.

Figure 2. Tab Sample 2. Chords Extracted: Am C G Am Am C
G7 D Am C G7 D Am C G Am A C D Em F G Am

extracted from a ‘tablature lines’, new chords will be
added to the tabs chord dictionary from any ‘chord
definition line’.

• Reorganise the tab sections into an organised tab ac-
cording to given structural information. Any indica-
tors of repetitions will be expanded so that ‘x2’ will
result in the current section being duplicated.

We developed our heuristics for parsing guitar tabs on
a set of 20 tabs for which we manually annotated ground
truth. The chord retrieval from these tabs, as an example,
extracts 806 out of the 807 chords correctly. Figures 1 -
2 demonstrates two different samples of tab formats along
with the chords extracted by our parsing tool in each case.

4. EVALUATION

In this section we evaluate the precision of the tabs them-
selves and then compare various means of ranking the tabs.
In order to do this, we first describe the features used for
measuring and predicting the tabs’ accuracies. We also ex-
plain existing ranking methods, such as 911.com’s user rat-
ing and Google’s page rank. We then use correlation to
determine the suitability of using these features as ranking
methods. Also, for each feature, we compare the selected
chord sequences with the output of a state-of-the-art auto-
matic chord detection system.

454



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

C# C#6 Db Fm7 C/B A11 Dm/C#
C# 0.0 0.25 0.0 0.5 1.0 0.8 0.75

Table 2. Chord Similarity (CS) cost examples.

4.1 Features

4.1.1 Chord Similarity (CS)

In order to measure two chords’ similarity, we use the Lev-
enshtein Distance (LD) [4] of the alphabetically ordered notes
in the chord, as interpreted from the chord definitions. The
LD uses dynamic programming to find a path P (U, V ) =
(p1, p2, ..., pW ) through a matrix of costs between sequences
U = (u1, u2, ..., uM ) and V = (v1, v2, ..., vN ). This cost
matrix is described as dU,V (m, n) where m ∈ [1 : M ] and
n ∈ [1 : N ] where each pk = (mk, nk). LD uses a cost of
0 for matches and 1 for any insertion, deletion or alteration.
The maximum cost is the length of the longest sequence.
We normalise and invert this cost to give a similarity value
from 0 to 1, between two chords (note sequences), U and V .

CS(U,V) =

(
1− LD(U, V )

max(M,N)

)
(1)

Due to how tab parser interprets chord definitions, this
cost function treats any enharmonic chords or notes equally.
Examples of this cost function (CS) can be seen in Table 2.

4.1.2 Chord Sequence Similarity (CSS)

The Chord Sequence Similarity is a measure of how similar
two tab chord sequences, T1 and T2 are. For this method
we use DTW, a generalisation of LD, which has been used
for synchronisation in applications such as score following
[1]. Unlike the binary comparison in LD, DTW can use a
more detailed cost function such as the inner product of the
pair of feature vectors, which returns a value between 0 and
1 for each pair of feature vectors. In our case the DTW
uses the CS cost function to compare chords. The overall
similarity cost is given by the sum of the individual chord
match costs along the DTW path P and the maximum cost
is the length of the longest sequence. We normalise and
invert this similarity cost and express it as a percentage:

CSS(T1,T2) =

(
1− DTW(T1, T2, CS)

max(|T1|, |T2|)

)
× 100 (2)

Examples of the CSS can be seen in Table 5.

4.1.3 Chord Accuracy (CA)

The Chord Accuracy measures the similarity of the overall
sequence of chords T in a tab to the chord sequence G in
the ground truth data for the song. Transpositions are not
considered in this factor.

CA(T, G) = CSS(T, G) (3)

4.1.4 Segment Chord Accuracy (SCA)

Many tabs have incomplete chord sequences, and rely on
the user to piece together the complete tab based on cues,
intuition and knowledge of the song. A more flexible ac-
curacy measurement, the Segment Chord Accuracy, finds
the accuracy of each segment in the tab independently. For
each structural segment of a song, as defined in our struc-
tural ground truth data, the SCA takes the closest matching
sub-sequence from the tab’s overall chord sequence. In ad-
dition, chord sub-sequences which match to more than one
segment may be reused and transpositions of the data are
allowed in the SCA measurement. The pseudo-code for the
SCA is shown in Algorithm 1.

Input: Segmentation S = {s1, s2, ..., sl}, Ground Truth
Chords G, Tab Chords T

Output: Segment Chord Accuracy SCA
SCA = length(G);
for Transposition Tr = 0 to 11 do

TranspositionCost = 0;
for i = 1 to l do

SegCost = length(si);
for start = 0 to length(T) do

for len = 1 to length(T) − start do
T ′ = subsequence(T,start,len)
if CSS(si, T ′) < SegCost then

SegCost = CSS(si, transpose(T ′, Tr));
end

end
end
TranspositionCost += SegCost ;

end
if TranspositionCost < SCA then

SCA = TranspositionCost;
end

end
return SCA;

Algorithm 1: Segment Chord Accuracy

4.1.5 Chords Concurrence (CC)

To determine how well tabs of a song agree with each other,
we define the Chords Concurrence as the average of the sim-
ilarities between a tab’s chord sequence Tk and the chord
sequences Ti(i 6= k) of all the other tabs of the same song.

CC(Tk) =

n∑
i=1,i6=k

CSS(Tk, Ti)/(n− 1) (4)

4.1.6 Structure Similarity (SS)

In order to calculate Structure Similarity we first normalise
the labelling of structural segments, so that a musical struc-
ture such as (Intro, Verse, Chorus, Verse,...) is represented
by the sequence of characters (A, B, C, B, ...). We then use
the LD, normalised and inverted to provide a percentage:

SS(T1, T2) =

(
1− LD(T1, T2)

max(T1, T2)

)
× 100 (5)

Note that we only compute Structure Similarity where
the structure is explicitly given in the tab.
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4.1.7 Structure Accuracy (SA)

The Structure Accuracy is a measure of how similar the
structural sequence T of a tab is to the structural sequence
G of the ground truth data.

SA(T ) = SS(T, G) (6)

4.1.8 Structure Concurrence (SC)

The Structure Concurrence is the average of the similarities
between a tab’s structural sequence Tk and the structural se-
quences Ti of all the other tabs of the same song.

SC(Tk) =

n∑
i=1,i6=k

SS(Tk, Ti)/(n− 1) (7)

4.1.9 911 Rating

The 911 Rating is the average user rating assigned to the tab
at www.911tabs.com from 1 (bad) to 5 (good). The number
of votes that went into this average rating is not provided by
the tab site. 1246 tabs with chords had 911 Ratings.

4.1.10 Google Rank

The tab’s Google Rank corresponds to where the URL of the
tab is found in the ordered list of Google’s ranked search re-
sults [10]. Values range from 1 (best) to 100 (worst known).
5619 tabs found had Google Ranks associated with them,
1931 of which had chord sequences.

4.1.11 Date Modified

If posted tabs are edited and reposted, it might be the case
that more recent tabs are more accurate on average than ear-
lier tabs. A tab’s Date Modified is the last modified value
of the HTML file on the tab server, expressed as the number
of milliseconds since 00:00:00 January 1, 1970 GMT. 2022
of the tabs with chord sequences had an associated last date
modified.

4.2 Guitar Tab Statistics

Of the 24746 tabs found with our web-mining tool, 7547 had
recognisable chord content and 4643 had structure explicitly
defined, with at least 3 chords/sections. The average tab
Chord Accuracy (CA) for tabs, tabs that were duplicates and
non duplicates is 61.8%, 63.4%, and 58.3% respectively. A
similar pattern was observed in the Structure Accuracy (SA)
of 50.0%, 50.3%, and 49.1%, suggesting that more accurate
tabs are more likely to be copied. The accuracy difference
is however small, and the Pearson-rank correlation shows a
very weak correlation between accuracy and whether a tab
is duplicated (0.12 for CA and 0.03 for SA).

Filter Method Pearson-rank correlation Samples
CA SCA

Chords Concurrence 0.54 0.51 7547
911 Rating 0.07 0.06 1161
Google Rank -0.07 -0.08 1935
Date Modified 0.03 0.01 2022

Table 3. Correlations between various features and the Chord
Accuracy (CA) and Segment Chord Accuracy (SCA).

Filter Method Pearson-rank correlation Samples
SA

Structure Concurrence 0.19 4643
911 Rating 0.02 620
Google Rank -0.07 1197
Date Modified 0.06 1337

Table 4. Number of samples and correlation values between var-
ious features and the Structure Accuracy (SA).

4.3 Tab Ranking Systems

The Pearson-rank correlation is an indication of how effec-
tive a ranking system is. For example, if there is a high
and statistically relevant correlation between a tab’s score
in its 911 Rating and its CA, we can deduce the 911 Rat-
ing favours accurate tabs. Table 3 shows the correlations
found between the tabs’ CA, SCA and 4 relevant features
discussed above. Similarly, we give the correlations with
the Structure Accuracy in Table 4.

Two of the correlations from Table 3 can be seen in the
scatter plots in Figures 3 and 4. Each point represents the
CA (vertical coordinate) plotted against a feature value (hor-
izontal coordinate) for a single tab. The features used are
Google Rank (Figure 3) and CC (Figure 4). A negative
correlation in Figure 3, shows that tabs with higher Google
Ranks (lower numbers) are more accurate. A stronger trend
can be seen in Figure 4, where the tabs with a higher Chord
Concurrence have a higher Chord Accuracy. Figure 5 shows
the correlation between Structure Accuracy and Structure
Concurrence from Table 4. Again, there is a clear trend be-
tween concurrence and accuracy.

For the sample sizes provided; the required absolute value
for statistical significance is less than 0.1. Surprisingly, the
rating given by users at 911tabs.com, the date the tab was
made and the Google Rank had no statistically significant
correlation with the accuracy of the tab. The strongest cor-
relation was provided by the Concurrence methods that had
a Pearson-rank correlation of 0.54 for CA, 0.51 for SCA,
and 0.33 for SA.

These results show it is possible to improve the ranking
of tabs by search engines based on analysing the contents of
tabs in relation to other tabs of the same track.
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Figure 3. The scatter plot relates the Chord Accuracy to
the Google Rank. Note that lower numbers correspond to
higher rank. The weak negative trend between the Google
Rank and accuracy of the tabs is not significant.

Figure 4. This scatter plot shows a strong trend relating
Chord Accuracy and Chord Concurrence.

Figure 5. This graph shows the trend between the Structure
Accuracy and the Structure Concurrence.

4.4 Automatic Chord Transcription

Our final experiment was to compare the results with auto-
matic chord detection methods. Both methods satisfy the
same information need: finding the chords to a given song.
We selected the top ranking tab for each feature and com-
pared the accuracy of its chord sequence with the output of
a state-of-the-art automatic chord detection system [7].

In Table 5 there is an example of the chord sequences
produced by the automatic chord recognition system, those
selected by our features, and the ground truth annotations
for The Beatles’ Don’t Pass Me By. The chord accuracies
are also given. Table 6 shows the average accuracy of the
methods. There is a clear superiority in the automatic detec-
tion algorithm which is over 10% more accurate, on average,
than the tabs selected by any of our features. Of the features,
the Chord Concurrence is the most successful feature for se-
lecting the tab to use. Additionally, we can improve results
by selecting only tabs with a high Chord Concurrence value.
For example, those with 90% CC or more have an average
Chord Accuracy of 79.9%. However, only 24 out of 7547
tabs have such a high Chord Concurrence.

4.5 Dependance on Sample Size

A potential weakness of the Concurrence methods could be
in being dependent on the number of tabs available for a
particular song. To see if this would effect performance, we
calculated the correlation between N (the number of tabs for
a particular song) and C (correlation between CA and CC)
for each of our 180 tracks. The result, 0.039, is not statisti-
cally significant for the sample size, suggesting that Chord
Concurrence is a relevant indicator of Chord Accuracy re-
gardless of the number of tabs on which it is based.

5. DISCUSSION AND FUTURE WORK

Using tab concurrence, we are able to order tab search re-
sults so that the more accurate tabs are given preference,
thereby improving the tab search experience. If ranking
tabs based on one feature leads to a clear improvement over
current ranking systems, it is possible that greater improve-
ments can be made by selecting tabs using more sophis-
ticated combinations of features. Whilst we have limited
ourselves to analysing just the guitar tabs themselves, we
see possible synergies in combining this work with other
projects based on web-mining multimodal music metadata
[11], content-based analysis [7], and other scores.

The usefulness of Chord Concurrence is not surprising,
as errors are less likely to be replicated in independently
produced tabs, than the correct chords. However, the au-
tomatic transcription result shows that a machine listening
method performs better than the average human annotator,
and this result holds even when features are used to select
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Source CA Chord Sequence
Ground Truth - C C F G F C C F G F C C F C G F C C F G F C C F C G F C C/5 C C F C G F C F G Csus4 C C

Auto (Mauch) 90.4% C C F G F C/5 F G F C Cmin7 F C G F C F G F C/5 F C G F C G Gmaj6 G7 C Cmin C F C G F C F G C C/5 F

Chord Concurrence 89.4% C F G F C C F G F C F C G G F C F G F C F C G F C

911 Rating 82.9% C F G F C C F G F C C F C G F C F G F C

Google Rank 63.4% G C D C G G C D C G G C G D C G G C D C G G C G D C G G C G D C G

Date Modified 63.4% G C D C G G C D C G G C G D C G G C D C G G C G D C G G C G D C G

Table 5. Example chord sequences retrieved by the various chord detection methods for the song Don’t Pass Me By showing
the Chord Accuracy (CA) of these sequences.

Detection Method Chord Accuracy
Auto (Mauch) 79.3%
Chord Concurrence 68.8%
911 Rating 66.9%
Google Rank 65.6%
Date Modified 62.3%
Randomly Selected 61.8%

Table 6. The average Chord Accuracy of the chord se-
quences, over 180 Beatles tracks, that were provided by the
top-ranked tabs and the chord detection methods. The final
row shows the average as if the tab was randomly selected.

better-than-average tabs. This raises an interesting question
about ground truth: To what extent can human annotations
from unknown sources be used as ground truth in MIR?

In future work we plan to improve on the ranking tech-
niques demonstrated here for the purposes of recommenda-
tion, synchronisation, tab generation and score following.
This work has shown that the concurrence of tabs indicates
their accuracy, therefore we hypothesise that concurrency
in subsequences and tablature notation will follow this rule.
The prevalence of tabs and the tools described here present
many interesting avenues of research, including artist simi-
larity, the use of chord idioms and influences across genres.
Our experiments show, with others [8,9], that tabs are a use-
ful source of data for research in MIR.
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ABSTRACT 

This paper describes updates to the Greenstone open source 

digital library software that significantly expand its func-

tionality with respect to music. The first of the two major 

improvements now allows Greenstone to extract and store 

classification-oriented features from audio files using a 

newly updated version of the jAudio software. The second 

major improvement involves the implementation and inte-

gration of the new jSongMiner software, which provides 

Greenstone with a framework for automatically identifying 

audio recordings using audio fingerprinting and then ex-

tracting extensive metadata about them from a variety of 

resources available on the Internet. Several illustrative use 

cases and case studies are discussed. 

1. INTRODUCTION 

Users of modern digital music collections benefit from 

many advantages relative to users of even a decade ago. 

Amongst the greatest of these advantages is cheap and con-

venient access to diverse and rich on-line sources of musi-

cal data and metadata. Of particular convenience to re-

searchers and programmers, many on-line sources provide 

access to their data through convenient web service APIs. 

Such resources include The Echo Nest, Last.FM, Mu-

sicBrainz, Amazon, Yahoo! and many others. 

It is also possible to extract features directly from both 

audio and symbolic musical representations. The resulting 

feature values can then simply be stored directly as part of 

digital music collections. Alternatively, these features can 

be processed using data mining techniques in order to ar-

rive at additional metadata, such as class labels or links to 

other musical entities. 

It is necessary to overcome certain important challenges 

in order to effectively take advantage of the plentiful data 

and metadata that is available, however. One must find ef-

ficient and effective ways of automatically accessing and 

integrating information about a given music collection from 

the diverse and often inconsistent on-line resources; one 

must ensure that proper identifiers are used to uniquely re-

fer to the individual entities about which information is ac-

cessed (e.g. recordings, albums, musicians, etc.), even when 

the different resources from which data is extracted may 

identify entities in entirely different ways; one must filter 

out noisy or inaccurate information, which can be a signifi-

cant problem when dealing with much of the musical data 

that is available on-line; one must structure acquired data so 

that it can be queried and otherwise accessed in ways that 

are consistent and meaningful; and one must make the data 

accessible to users in ways that are convenient to them in a 

variety of use cases. 

This paper presents an upgrade to the well-established 

and open-source Greenstone Digital Library software [10] 

that is intended to address these issues. This upgrade dra-

matically expands Greenstone’s ability to collect musical 

information and make it conveniently available to users. 

Part of this upgrade includes the integration of parts of the 

jMIR [8] music information retrieval software into Green-

stone, specifically jAudio [7,8], which allows content-based 

features to be extracted from audio recordings.  

The second major component of the Greenstone upgrade 

is the creation and integration of the new jSongMiner soft-

ware, which provides a framework for automatically ac-

quiring and structuring many types of metadata from di-

verse sources of information about music, including both 

on-line resources and metadata embedded in files. This 

software is highly configurable, in order to meet the needs 

of a wide variety of different user types. It is also specifi-

cally designed to be easily extensible so that different kinds 

of information can be extracted from different data sources 

as they become available. 

So, given a set of musical recordings of interest, users 

can now have Greenstone automatically identify unknown 
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recordings—or verify the identity of labelled recordings—

using audio fingerprinting, extract a wide variety of 

metadata from different on-line sources related to each re-

cording, extract content-based features from each recording 

and extract any metadata embedded in the tags of each re-

cording. All of this data is then automatically integrated, 

structured and saved. 

Users may then take advantage of Greenstone’s estab-

lished interface to organize, browse or search the newly-

built music collection. They may also use the Greenstone 

interface to further annotate or edit the collection if desired. 

The musical data can also be published and maintained us-

ing Greenstone’s many existing tools and features. 

2. RELATED RESEARCH 

There are a number of software packages for building digi-

tal libraries that can serve as alternatives to Greenstone, 

including both commercial and open source systems. Ex-

amples of the latter include DAITSS, DSpace, EPrints, Fe-

dora and Keystone DLS. Marill and Lucza provide a dis-

cussion of their comparative merits [6]. Although many of 

these are excellent products, Greenstone has the particular 

advantage of a longstanding association with MIR research 

dating to the beginnings of the ISMIR conference. 

There are also a number of audio feature extraction 

packages available that may be used as alternatives to jAu-

dio, including Marsyas [9], MIRtoolbox [5] and Sonic Vis-

ualiser [4]. Although these are all excellent systems, jAudio 

has the special advantage of combining an easily extensible 

plug-in architecture for adding new features (as does Sonic 

Visualiser) with a cross-platform Java implementation.  

There are also a few existing software platforms for min-

ing a variety of Internet resources, such as Mozenda [15], 

and related research on integrating metadata is also being 

done in the semantic desktop community (e.g. NEPOMUK 

[17]). To the best of the authours’ knowledge, however, 

jSongMiner is the only such software focusing specifically 

on music, and has the essential advantages of being both 

open source and specifically designed for integrating ex-

tracted data with digital repository software like Green-

stone. The closest existing software is jMIR’s jWebMiner 

[8], which focuses on extracting statistically-derived nu-

merical features from the Internet, rather than the raw 

metadata mined by jSongMiner. 

3. GREENSTONE 

Greenstone [10] is an open-source and multilingual soft-

ware suite for building and distributing digital library col-

lections. A particular emphasis has been placed on promot-

ing digital libraries in developing countries and in 

UNESCO’s partner communities and institutions. Alt-

hough Greenstone is intended for library collections that 

can consist of a wide and heterogeneous range of materials, 

not just music, it has certainly effectively been applied to 

musical collections in the past (e.g. in [2] and [3]).  

A Greenstone library consists of one or more collections. 

These can each store many different types of documents, 

such as HTML files, PDFs, images, videos, audio files, 

MIDI files, etc. Each such document can be annotated with 

metadata tags, which can in turn be used to index, browse, 

search or otherwise organize or process a collection. 

Given a set of documents, Greenstone can automatically 

build and link a collection, a process that can include the 

automated extraction of metadata as well as the creation of 

new documents. Greenstone comes packaged with a variety 

of such metadata extractors for different types of docu-

ments, and can be extended with document plugins for ad-

ditional document types, as has been done here with jAudio 

and jSongMiner. For example, Greenstone can apply the 

CANTOR [1] optical music recognition tool to scans of 

scores as they are added to collections in order to automati-

cally generate symbolic representations of the music. 

Users can also use Greenstone to manually annotate re-

sources with metadata using the librarian’s interface. 

Greenstone collections can also be easily and automatically 

expanded by adding new documents to them. 

Greenstone can publish digital libraries either to the In-

ternet or to physical media such as CD-ROMs. The latter 

option is particularly important when working to make digi-

tal libraries accessible in locations where network access is 

limited or unavailable, such as in developing countries. The 

particular metadata fields that are published, as well as how 

they are formatted, are both highly configurable. 

The Greenstone software and sample collections can be 

accessed at www.greenstone.org. 

4. JMIR 

jMIR [8] is a suite of software tools and other resources 

developed for use in automatic music classification re-

search. jMIR includes the following components: 

• jAudio: Extracts features from audio files. 

• jSymbolic: Extracts features from symbolic music files. 

• jWebMiner 2.0: Extracts statistical features from cul-

tural and listener information available on the Internet. 

• jLyrics: Extracts features from lyric transcriptions. 

• ACE 2.0: A metalearning-based automatic classifica-

tion engine. 

• jMusicMetaManager: Software for managing and de-

tecting errors in musical datasets and their metadata.  

• lyricFetcher: Mines lyrics from the Internet. 

• jMIRUtilities: Performs infrastructural tasks. 

• ACE XML: Standardized MIR file formats. 
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• Codaich, Bodhidharma MIDI and SAC/SLAC: Mu-

sical research datasets. 

All of the jMIR components emphasize extensibility, 

and they may be used both individually and as integrated 

groups. All jMIR components are open-source and are dis-

tributed free-of-charge at jmir.sourceforge.net. 

5. EXTRACTING FEATURES FROM AUDIO 

DOCUMENTS IN GREENSTONE 

As noted above, jAudio [7,8] is a jMIR component that ex-

tracts content-based features from audio files. A new jAu-

dio Greenstone plugin has been implemented so that 

Greenstone can now automatically run jAudio to extract 

and store features from each audio file added to a Green-

stone collection. jAudio itself has also been updated and 

expanded in order to make it easier to install and use, and 

to expand the range of codecs that it can use. 

One way to take advantage of the features extracted by 

jAudio is to simply use them as descriptors, just like any 

other Greenstone metadata, something that can be particu-

larly useful for higher-level features than have an explicit 

musical meaning. The extracted features may also be pro-

cessed by classification software—such as jMIR ACE 

[8]—in order to arrive at still further metadata labels that 

can themselves be stored, such as content-derived predic-

tions of labels like genre, mood, artist, etc. 

jAudio can extract features from a variety of audio file 

formats, including MP3, FLAC, WAV, AIFF and AU. It is 

distributed with 28 base implemented features, including 

both low-level features (e.g. spectral flux and spectral cen-

troid) and higher-level features (e.g. rhythmic features de-

rived from beat histograms). This number of extracted fea-

tures can be dramatically expanded at runtime, as jAudio 

includes metafeatures and aggregators [7,8] that can be 

used to automatically derive further features from base fea-

tures, such as the standard deviation, rate of change or av-

erage of a given feature across a set of analysis windows. 

In addition, one of the most important advantages of 

jAudio is that it is a relatively simple matter to add newly 

developed features using jAudio’s plugin interface, without 

the need to recompile jAudio (or Greenstone). jAudio is 

also highly configurable, so users can decide which features 

to extract, whether or not to apply pre-processing like nor-

malization or downsampling, etc. 

Once features are extracted, they can simply be stored 

directly in the Greenstone collection metadata. They can 

also be exported as ACE XML [8] or Weka ARFF [11] 

files for external processing if desired. 

6. USING JSONGMINER TO MINE METADATA  

As noted above, jSongMiner is a novel software package 

that provides a framework for extracting metadata about 

musical entities from resources available on the Internet. 

Although it has been designed in the specific context of 

Greenstone, jSongMiner has been implemented such that it 

can also be used as a stand-alone application if desired, or 

used in conjunction with other jMIR components.  

jSongMiner begins by identifying unknown audio files 

using audio fingerprinting (The Echonest’s [14] fingerprint-

ing services are used by default). jSongMiner can also iden-

tify recordings using metadata that is embedded in audio 

files or that is manually specified. 

Once jSongMiner has identified a recording, it then ex-

tracts metadata about it from APIs offered by various on-

line sources, or from metadata embedded in the audio file. 

jSongMiner keeps a record of resource identifiers in as 

many namespaces as possible while doing this, thus facili-

tating the integration of information from different sources.  

In addition to collecting metadata about songs, jSong-

Miner can also automatically acquire metadata about artists 

and albums associated with songs. So, if given an unidenti-

fied song, jSongMiner will first identify it using audio fin-

gerprinting, and then extract all available metadata on this 

song from all of the on-line resources that it has access to. 

If this metadata includes artist and/or album identifiers, 

then all available fields will also be extracted for this artist 

and/or album as well. In order to avoid redundant queries, 

jSongMiner can be set to only extract metadata on albums 

and artists for which it has not already extracted metadata. 

jSongMiner thus allows users to treat songs, artists and 

albums as separate resource types, and allows information 

to be extracted and saved independently for each of them, 

whilst at the same time maintaining information outlining 

the connections between resources of the same and differ-

ent types. Users also have the option of packaging artist and 

album metadata together with song metadata if they prefer. 

Once metadata has been extracted relating to a song, art-

ist and/or album, this metadata can be saved as an ACE 

XML [8] file or as a return-delimited text file. In the con-

text of Greenstone, the jSongMiner Greenstone plugin al-

lows all acquired data and metadata to be automatically in-

corporated into Greenstone’s internal data structures. In any 

of these cases, jSongMiner allows the storage of metadata 

containing diverse character sets. 

Each piece of metadata extracted by jSongMiner in-

cludes the field label, the metadata value and an identifier 

for the source from which the metadata was collected. The 

field labels are standardized, so that a given type of infor-

mation will always be assigned the same field name by 

jSongMiner, regardless of where it is acquired from. For 

461



Poster Session 3  

 

example, jSongMiner will place the title of a song in the 

“Song Title” field, regardless of whether one data source 

might refer to it as “Song Name” and another as “Title”.  

The ability to identify the source of each piece of 

metadata is also important, as different sources might sup-

ply different results for a given field. For example, one 

source might identify the artist associated with a song as 

“Charles Mingus”, and another might specify “Charlie 

Mingus”. For this reason, jSongMiner allows multiple re-

sults for the same field to be extracted and stored in paral-

lel. If the metadata is cleaned at some later point, the cor-

rection algorithm (or person) can be defined as a new 

source, and the original uncleaned metadata can be main-

tained or deleted, as desired. All of this means that jSong-

Miner organizes metadata from diverse sources in a struc-

tured and consistent way, whilst at the same time allowing 

any idiosyncrasies and subtleties implicit in the original da-

ta sources to be maintained and referenced if desired.  

jSongMiner’s ability to store multiple values for a given 

metadata field, from the same or different sources, also 

helps to make it possible to move beyond simple flat data 

structuring. This is enhanced by jSongMiner’s (and ACE 

XML’s) ability to link to external resources (including RDF 

ontologies) via metadata field entries, as well as by the way 

in which jSongMiner treats songs, artists and albums as dis-

tinct but linked entities. 

Users can opt to have extracted metadata presented using 

unqualified or qualified Dublin Core [13] tags. In order to 

make this possible, jSongMiner includes original Dublin 

Core schemas. This use of Dublin Core can be particularly 

useful from a librarian’s perspective. 

The primary objective of jSongMiner is to provide a 

general framework that users can extend to incorporate 

whatever web services and data sources they wish. It was 

consciously decided not to design jSongMiner as a frame-

work linked to any specific web services, as APIs change, 

web services go off-line and new ones appear. Furthermore, 

each on-line resource has its own terms of service potential-

ly limiting which and how much data can be accessed and 

stored. A strong emphasis was therefore placed on design-

ing jSongMiner in a modular way that allows it to be easily 

extended so that it can be used with arbitrary data sources, 

rather than biasing its architecture towards the APIs of any 

particular data sources. 

So, one of the primary advantages of jSongMiner is the 

way in which it provides the basic extensible framework for 

incorporating functionality for accessing particular web 

services. Furthermore, it standardizes the ways that extract-

ed metadata is labelled, structured and made accessible. 

Having noted this, the decision was made to implement 

functionality for accessing data made available through the 

Echo Nest [14] and Last.FM [12] APIs, two of the richest 

sources of on-line metadata at the time of this writing. This 

was done primarily as a proof of concept and to make 

jSongMiner immediately useful out of the box. 

Using the Echo Nest and Last.FM web services, jSong-

Miner can currently extract over one hundred song, artist 

and album metadata fields. In addition, many of these fields 

can have multiple values. For example, there will usually 

be multiple artists listed in the “Similar Artist” field. 

The jSongMiner fields range from standard musical 

fields (e.g. “Song Title” or “Genre”) to primary keys (e.g. 

“Echo Nest Song ID” or “Music Brainz Artist ID”) to con-

tent-based information (e.g. “Duration (seconds)” or “Tem-

po (BPM)”) to consumption-based data (e.g. “Last.FM 

Track Play Count” or “Echo Nest Artist Hotness (0 to 1)”) 

to links to external textual data (e.g. “Artist-Related Blog” 

or “Last.FM Album Wiki Text”) to links to multimedia 

(e.g. “Artist-Related Image” or “Artist-Related Video”). 

In order to make jSongMiner as flexible as possible, the 

software is highly customizable in terms of what kinds of 

information are extracted, where it is extracted from and 

how the data is structured. Such options can be set through 

jSongMiner’s configuration files and its command line.  

Every effort has been made to make jSongMiner as easy 

to use as possible, with ample documentation in the manu-

al, so even users with only moderate computer backgrounds 

should still have relatively little difficulty using the soft-

ware. In addition to including a command line and configu-

ration file-based interface that makes the jSongMiner easy 

to run from other software, jSongMiner also has a well-

documented API in order to facilitate the use of jSong-

Miner as a library incorporated into other software. 

If the jSongMiner Greenstone plugin is being used, then 

the user never needs to interact with jSongMiner directly 

while using Greenstone. The plugin simply has jSongMiner 

perform tasks in the background, and data it extracts is au-

tomatically structured and linked within the collection pro-

duced by Greenstone. jSongMiner configuration settings 

can also be specified within the Greenstone interface. 

Like all jMIR components, jSongMiner is cross-

platform, open-source and available for free at 

jmir.sourceforge.net. 

7. USE CASES AND CASE STUDIES 

Greenstone is designed to be used for a variety of different 

musical purposes by a variety of user types. This section 

briefly describes a few of the many possible use cases. 

MIR researchers, especially those specializing in music 

classification, are the first user group that will be consid-

ered. Such researchers often have a need for datasets that 

can be used to evaluate and compare algorithms. These da-

tasets should ideally also be well-annotated with metadata 
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that can, among other things, serve as class labels. Green-

stone could be used by those building MIR research da-

tasets not only to harvest rich metadata about their music 

files, but also to export and publish information about the 

dataset to the web as linked HTML that other researchers 

could search and browse when choosing a dataset to use in 

their own research. It should be emphasized that Green-

stone’s ability to extract content-based features is especially 

useful in this context, as this facilitates the publication and 

distribution of a dataset’s extracted features even when the 

music itself cannot be distributed due to legal limitations. 

To serve as an example, a Greenstone collection was 

generated from the audio files of SAC/SLAC, a research 

dataset that has been used in a number of previous studies 

(e.g. [8]). Greenstone automatically extracted content-based 

features and mined metadata from the web, as described 

above. The result is an automatically annotated Greenstone 

collection, whose metadata can be browsed, searched, edit-

ed and published. Figure 1 shows a screen shot of one sam-

ple entry. The full published Greenstone collection is post-

ed at www.nzdl.org/greenstone2-jmir. 
 

 

Figure 1: A sample entry on Sing, Sing, Sing, by Benny 

Goodman, from the COSI-SLAC Greenstone research col-

lection. Under the particular display configuration settings 

that were chosen for this collection, the main entry dis-

plays only basic summary information, and the audio fea-

tures and full detailed metadata are left to be downloaded 

as ACE XML files for machine processing or viewing. 

Mined images are also displayed, and the audio itself is 

streamed. 

Considered from a somewhat different perspective, some 

of the metadata mined by jSongMiner can also be used di-

rectly as features, even though this is not its primary pur-

pose (e.g. “Tempo BPM”, “Key”, “Time Signature”, etc.). 

This type of usage is facilitated by jSongMiner’s (and 

Greenstone’s) ability to save metadata in ACE XML [8], a 

machine learning-oriented format. 

The SLAC collection was also used to investigate this 

application experimentally. jSongMiner identified each of 

the audio recordings in SLAC using fingerprinting, and was 

then used in combination with jMIR’s jWebMiner [8] in 

order to mine a variety of features using the APIs of 

Last.FM and Yahoo. These features were then used to per-

form a 10-class 10-fold genre classification experiment, 

where jMIR’s ACE [8] provided the machine learning func-

tionality. This resulted in an average 83% classification 

success rate, compared to 68% when only audio content-

based features extracted by jAudio were used. For the sake 

of comparison, 86% was achieved when the same web-

derived features were used, but model curated identifiers 

were used to extract them rather than identifiers derived 

from jSongMiner’s fingerprinting results. 

Music librarians are another important potential user of 

the updated Greenstone software. Even those libraries with 

extensive digital collections tend to have relatively limited 

metadata available for the bulk of their collections. The cost 

of manually annotating music is a major stumbling block, 

and Greenstone now allows the process to be cheaply and 

easily automated. Librarians simply need to provide music 

to Greenstone, which will then automatically annotate it 

with metadata. Librarians can then validate the extracted 

metadata if they wish, a process much cheaper than actually 

entering it. The metadata can then be published to the web 

or CD using Greenstone to provide increased access to li-

brary patrons, and the Dublin Core tags generated by 

Greenstone can be used for internal reference purposes. 

There are also many other potential user types. Private 

music collectors might wish to use Greenstone to annotate 

their collections, for example, or to detect wrongly labelled 

recordings using fingerprinting. To give another example, 

those in the music industry might use it to enrich their own 

catalogue or marketing data in a variety of ways. It is espe-

cially important to emphasize that jSongMiner is designed 

to be easily extended to mine data using arbitrary APIs, so 

there may be many types of data which could potentially be 

accessed in the future which have not been envisioned yet. 

8. CONCLUSIONS AND FUTURE RESEARCH 

The incorporation of the updated jAudio and the new 

jSongMiner software into Greenstone significantly ex-

pands Greenstone’s value to those wishing to automatically 

construct, annotate, organize and make accessible large 

music collections. Greenstone can now identify unknown 

audio recordings, extract content-based information from 
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audio files and mine Internet resources in order to automat-

ically build a rich set of metadata about musical entities. 

Such Greenstone collections can consist of many different 

types of documents associated with each musical piece, 

artist or album, such as audio files, scores, videos, images 

and PDFs. Users also have the ability to use jSongMiner or 

jAudio outside of the Greenstone framework if they wish. 

One of the main priorities of future research is to more 

fully incorporate Greenstone and jMIR into the Networked 

Environment for Music Analysis [16] project. This will al-

low Greenstone collections to be built and accessed in a 

distributed framework that will further increase its useful-

ness to MIR researchers. 

Another priority is the design of Greenstone plugins for 

other jMIR components, so that, for example, features may 

also be automatically extracted from MIDI files added to a 

Greenstone collection using jSymbolic, or from lyrical tran-

scriptions using jLyrics. 

An additional priority is the direct incorporation of fur-

ther web services into jSongMiner. Although the main val-

ue of jSongMiner is as a framework that facilitates the in-

corporation of arbitrary web services as they become avail-

able, it would still be advantageous for some potential users 

to build in immediate support for further currently existing 

on-line resources, such as MusicBrainz, Yahoo! and Ama-

zon, to name just a few. 

The fourth priority is the integration of functionality for 

automatically detecting errors in collected metadata. The 

already existing functionality in jMIR’s jMusicMeta-

Manager [8] will be a good starting point. This functionali-

ty will also ideally be expanded to perform auto-correction 

that can automatically update the data sources from which 

erroneous metadata was mined, if permitted. 
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ABSTRACT

This paper presents preliminary work on musical in-
struments ontology design, and investigates heterogene-
ity and limitations in existing instrument classification
schemes. Numerous research to date aims at represent-
ing information about musical instruments. The works
we examined are based on the well known Hornbostel
and Sach’s classification scheme. We developed repre-
sentations using the Ontology Web Language (OWL),
and compared terminological and conceptual heterogene-
ity using SPARQL queries. We found evidence to sup-
port that traditional designs based on taxonomy trees
lead to ill-defined knowledge representation, especially
in the context of an ontology for the Semantic Web.
In order to overcome this issue, it is desirable to have
an instrument ontology that exhibits a semantically rich
structure.

1. INTRODUCTION

Ontologies are used to represent knowledge in a formal
way. For instance, they can be used to enable machines
to make sense of the unstructured nature of informa-
tion available on the Web. Compared to simple meta-
data encoding, ontologies provide meaning by defining
concepts and relationships in an application domain, as
well as constraints on their use. Furthermore, they per-
mit interoperability, automatic reasoning and access to
information using complex queries.

Knowledge representation in the domain of musical
instruments is a complex issue, involving a wide range
of instrument characteristics, for instance, physical as-
pects of instruments such as different types of sound
initiation, resonators, as well as the player-instrument
relationship. Since the 19th century, numerous studies
developed systems for representing information about

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and

that copies bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

musical instruments, for instance, (ethno)musicologists
have been working on creating a common vocabulary,
which represents all instruments with relevant charac-
teristics in a systematic way. The classification of in-
struments has also been investigated by organologists
and museologists [8]. Hornobostel and Sachs [14] pro-
posed a musical instrument classification scheme as an
extension of Mahillon’s scheme [9], originally designed
to catalogue the worldwide collection of musical instru-
ments housed in the Brussels Conservatory Instrumen-
tal museum.

The Hornobostel and Sachs classification scheme (H-
S system) relies on a downward taxonomy by logical di-
vision. The method later coined Systematik by Dráger
[4]. Although many attempts have since been made by
scholars to improve the Hornobostel and Sachs’ Sys-
tematik, it is still predominant in museums around the
world. Kartomi [8] attributes the success of the classi-
fication system to the fact that it is essentially numer-
ical rather than lexical, making it an international sys-
tem (e.g. 211.11-922 refers to the timpani or kettledrum
in the H-S system). Elschek [5], was the first to pro-
pose an upward method of classification based on in-
strument attributes complementing downward classifi-
cations schemes such as the Systematik.

The purpose of our paper is to investigate knowledge
representation issues of musical instruments on the Se-
mantic Web, by taking various musical instrument clas-
sification schemes into account. The rest of the pa-
per is organised as follows: In section 2, we give an
overview of the Semantic Web standards used in this
study. In section 3, we describe the Music Ontology
and the related instrument ontologies. In section 4, we
detail knowledge representation issues of various mu-
sical instrument classification schemes, and highlight
their conceptual heterogeneities. In section 5, the OWL
representations of these classification schemes are ex-
amined using SPARQL queries. Finally, in the section
6, we note on further difficulties of the research prob-
lem, and outline our future work.

465



Poster Session 3

2. SEMANTIC WEB TECHNOLOGIES

The Semantic Web is an initiative of the World Wide
Web Consortium (W3C) which proposes standards un-
derlying the technologies of the Web [10]. The W3C in-
vestigates how to maintain interoperability and univer-
sality of the Web using open standards and languages.
The technologies relevant in our examination of issues
in musical instrument ontology design are presented in
this section.

RDF: The Resource Description Framework (RDF) 1

is a simple data model, that associates subjects and ob-
jects using a predicate. A series of connections can
be made using triples or three-tuple associations, which
form a graph of semantic relationships. RDF is the basis
for more complex knowledge representation languages
such as the RDF Schema Language (RDFS). See for in-
stance [2] for more details.

SKOS: The Simple Knowledge Organization Systems
(SKOS) 2 is a semi-formal model for expressing con-
trolled vocabularies (classification schemes, thesauri, tax-
onomies) in RDF. It defines skos:Concept, whose
individuals may be associated with one or more lex-
ical labels, skos:prefLabel, skos:altLabel
and placed within a hierarchy using skos:broader,
skos:narrower, or skos:related properties, ex-
hibiting a thesaurus model [1].

OWL: The Ontology Web Language (OWL) 3 is a
a W3C recommendation for defining and instantiating
web ontologies. Like RDFS, OWL permits the defi-
nition of classes, properties and their instances, and is
used to explicitly represent the meaning and relation-
ships of terms in vocabularies, and express constraints
on their use. Such a representation is called ontology.
OWL has a richer vocabulary than RDFS and SKOS, for
example, for specifying cardinality, equality, character-
istics of properties such as transitivity or symmetry and
enumerated classes. [1].

SPARQL: Simple Protocol and RDF Query Language
(SPARQL) 4 defines a standard access protocol for RDF
that provides Semantic Web developers with a power-
ful tool to extract information from large data sets. A
query consists of several graph patterns, which can be
combined recursively to form arbitrarily complex query
patterns. It may be used for any data source that can be
mapped to RDF.

1 http://www.w3.org/TR/rdf-primer
2 http://www.w3.org/TR/skos-reference
3 http://www.w3.org/TR/owl-primer
4 http://www.w3.org/TR/rdf-sparql-protocol

3. RELATED WORK

Our primary aim is to develop a semantically rich on-
tology of instruments which can be used in conjunction
with the Music Ontology 5 . In this section, we outline
this ontology and previously published Semantic Web
ontologies of musical instruments.

The Music Ontology [13] provides a unified frame-
work for describing music-related information (i.e. ed-
itorial data including artists, albums and tracks) on the
Web. It is built on several ontologies such as the Time-
line Ontology 6 , the Event Ontology 7 , the Functional
Requirements for Bibliographic Records (FRBR) On-
tology 8 , and the Friend Of A Friend (FOAF) Ontol-
ogy 9 . It subsumes specific terms from these ontologies,
useful to describe music related data. The Timeline and
Event ontologies, can be used to localise events in space
and time. The FRBR model links books and other in-
tellectual works with their creators, publishers or sub-
jects, and provides a model to describe the life cycle of
these works. This is reused by the Music Ontology to
describe the music production workflow from composi-
tion to delivery. Finally, FOAF defines people, groups
and organisations. The Music Ontology does not cover
every music related concept, rather, it provides exten-
sion points where a domain specific ontology, such as
a musical instrument or a genre ontology may be inte-
grated.

Based on the Musicbrainz 10 instrument tree, Her-
man 11 published a musical instrument taxonomy ex-
pressed in SKOS. This serves as an extension to the Mu-
sic Ontology. While SKOS is well suited for hierarchi-
cal classification schemes, it provides limited support
for other types of relationships; skos:related for
example, may be used to describe associative relations,
but only in a semi-formal way, without a more explicit
definition. Moreover, the transitivity of broader and nar-
rower relations are not guaranteed in SKOS, therefore it
is difficult to infer for instance the instrument family of
a given instrument, without additional knowledge not
expressed in the model. While this taxonomy is suit-
able for applications that require only a semantic label
to represent instruments associated with audio items, it
is insufficient if the heterogeneity of instrument rela-
tions has to be explicitly represented.

The Kanzaki Music Ontology 12 also contains a small
instrument taxonomy. However, there are only 5 instru-

5 http://musicontology.com/
6 http://purl.org/NET/c4dm/timeline.owl/
7 http://purl.org/NET/c4dm/event.owl/
8 http://vocab.org/frbr/core/
9 http://xmlns.com/foaf/spec/

10 http://musicbrainz.org/
11 http://purl.org/ontology/mo/mit#
12 http://www.kanzaki.com/ns/music
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ment families defined (e.g. string instruments, wood-
wind instruments, brass instruments, percussion, and
keyboard instruments), with 26 corresponding instru-
ment classes. Although these works provide instrument
taxonomies that can be used on the Semantic Web, there
remains a need for a semantically rich ontology, which
represents the heterogeneity as well as different compo-
nents and aspects of musical instruments on the Web.

Finally, a recently published XML-based taxonomy
serves as an extension to Music XML 13 . This system
departs form Hornobostel and Sachs, and proposes a
classification scheme based on materials and performance
mechanism, instead of the sound production mechanism.
However, it remains at a hierarchical design. Further-
more, XML in itself is insufficient for rich knowledge
representations, therefore it is hard to see how this model
may be extended to account for the heterogeneity and
the diverse set of properties of musical instruments, and
enable logical reasoning or answering complex queries.

4. ISSUES IN MUSICAL INSTRUMENT
ONTOLOGY DESIGN

Conceptualising a domain is inherent in developing knowl-
edge based systems. In the fields of ethno-musicology
and Music Information Retrieval (MIR), most concep-
tualisations of the domain of musical instruments are
based on the taxonomical H-S system, and very few
studies departed from this system. Taxonomies allow
us to organise data in a hierarchical structure very effi-
ciently. However, taxonomies encode a strict relation-
ship between a parent node and a child node by us-
ing sub-class or part-of axioms, without defining the
detailed relationships among instrument objects, there-
fore they are semantically weak structures for express-
ing knowledge [3, 6, 7]. Musical instruments however
have a multi-relational model, thereby instruments can
belong to more than one instrumental family or sub-
family. In order to illustrate the heterogeneity and taxo-
nomic design problems occurring in current knowledge
representations of instruments, two different instrument
classification systems were taken into account: i) one
proposed by Henry Doktorski 14 which will be denoted
taxonomy ‘A’, and ii) one proposed by Jeremy Montagu
& John Burton [11] which will be denoted taxonomy
‘B’. We implemented both of the taxonomies in OWL,
and they can be found at corresponding URL 15 . Figure
1 illustrates an example from the ontology design of the
chordophones/string instrument family based on Henry
Doktorski’s taxonomy.

13 http://www.recordare.com/musicxml/
14 http://free-reed.net/description/taxonomy
15 http://isophonics.net/content/

musical-instrument-taxonomies

Figure 1. An example from musical instrument ontol-
ogy design of chordophone/string instruments based on
Henry Doktorski’s instrument classification system

As shown in Figure 1, the violin and cello are classi-
fied as bowed instruments, the guitar and banjo are clas-
sified as plucked instruments, and the piano is classified
as a struck instrument. However, violinist can vary their
playing technique depending on the expressive inten-
tions: the strings can be excited by drawing the hair of
the bow across them (arco), or by plucking them (pizzi-
cato). For these reasons, the violin should be classi-
fied as either a bowed or plucked instrument. In Fig-
ures 1 and 2, the concepts that occurred multiple times
in various instrument families, are shown using dashed
lined shapes ( e.g. struck, plucked and rubbed). We can
demonstrate similar examples in the family of percus-
sion instruments. For instance, in Figure 2, the tam-
bourine is classified as a membranophone, whereas if it
is only shaken, it jingles, and therefore it could be clas-
sified as an idiophone as well. Many examples may be
observer related to taxonomic classification problems,
not only in the ethno-musicology, but also in other ap-
plications that rely on musical instrument knowledge
representation or information management.

In taxonomy B, the use of classifications such as,
species, genus, family, sub-order, order, based on the
taxonomical system of Carl Linnaeus known as the fa-
ther of modern taxonomy. However, this study only pro-
vides a terminological departure from the H-S system,
since it is still based on the same taxonomy structure. A
partial instrument ontology design of this classification
scheme is depicted in Figure 3.

The use of different words to refer to similar con-
cepts, or different conceptualisations, induce termino-
logical or conceptual heterogeneities among ontologies,
that can be observed from the given graphical illustra-
tions so far. For instance, in Figure 3, the idiophones
and the membranophones are defined as a major instru-
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Figure 2. An example from musical instrument ontol-
ogy design of percussion instruments based on Henry
Doktorski’s instrument classification system

ment family according to taxonomy B, whereas both of
these classes can be seen as sub-classes of the percus-
sion instruments in taxonomy A (Figure 2).

The heterogeneity among these classes continues down-
ward towards to the sub-class nodes: For instance, id-
iophones are divided into unpitched and pitched sub-
categories, while membranophones are divided into de-
terminate pitch and indeterminate pitch sub-categories
(Figure 2). On the other hand, the idiophones have sub-
classes such as struck, shaken, striligilated and plucked
sub-classes, while membranophones have kettle, single
head and double head sub-classes (Figure 3). Some con-
cepts are present in the same taxonomic level without
defining the relationship among concepts, and the con-
cepts are classified according to sound initiation type
(e.g. struck, plucked, or shaken), whereas others are
classified according to the instrument construction type
(e.g. single head, double head, harps, lyres and lutes).
Therefore, the taxonomic classifications applied tradi-
tionally are not only heterogeneous in structure, but also
provide an arbitrarily problematic solution to instrument
classification, because of the inadequately defined knowl-
edge representation.

5. QUERY DRIVEN EVALUATION

Both taxonomies described in the previous section were
implemented in OWL and tested using SPARQL queries
involving instruments present in both systems. In the
following examples, we query the ontology structure, as
well as RDF data corresponding to specific statements

about instruments. Since in most knowledge-based en-
vironments, data and ontology can be represented in the
same graph, these queries also demonstrate real-world
use cases for instrument knowledge representation. The
first example is based on the tuba, which is available in
both taxonomies. The following paragraph taken from
[12] provides a description of the tuba:

The tuba is the lowest pitched Aerophone. Sound is pro-
duced by vibrating or buzzing the lips into a large cupped mouth-
piece, which is coupled to a coiled tube about 18 feet in length
with a slow rate of conical flare terminating in a large bell-
shaped mouth. The tuba is usually equipped with three valves,
each of which adds a different length of tubing. With piston
valves it is possible to change the length of the air column.

Identifying an instrument by its sound can be a diffi-
cult task, even for someone with a decent musical back-
ground. For this reason, visual cues can be just as im-
portant as hearing in instrument identification. For ex-
ample, recognising the characteristic shape of an instru-
ment is important, since it has a profound effect on the
generated sound. Based on these considerations, we
prepared the following four queries to retrieve the in-
formation underlined in the definition of the tuba above:
What is the instrument family, the characteristic shape,
the sound initiation type and the number of valves of the
tuba?

PREFIX io: <http://example.org/io/taxonomyN#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

SELECT ?x WHERE { io:Tuba rdfs:subClassOf ?x }

Listing 1. Retrieving the immediate super class of the
tuba.

In the first query the non-determined variable ?x is
assigned when the query engine finds the super class
of the entity named Tuba. The query result for taxon-
omy ‘A’ is io:WithValves, and for taxonomy ‘B’ is
io:ValvesBugles. This demonstrates terminolog-
ical heterogeneity immediately on the first upper level.
Note that name space prefixes such as io: and rdfs:
are expanded to full URIs by the query engine. In the
following queries, they will be omitted for brevity.

In order to retrieve the instrument family, we can ei-
ther expand the query until we reach the correspond-
ing node as shown in listing 2, or use a program to
do so appropriately. This assumes knowledge about
the depth and organisation of the taxonomy tree, that
is, what information is described on each level given a
specific branch. Given this information, a reasoning en-
gine could infer the instrument family relation, so that
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Figure 3. An example from musical instrument ontology design based on Jeremy Montagu & John Burton’s instrument
classification system

SELECT ?sc1 ... ?sc(N)
WHERE { io:Tuba rdfs:subClassOf ?sc1 .
OPTIONAL { ?sc1 rdfs:subClassOf ?sc2 } .

.

.
OPTIONAL { ?sc(N-1) rdfs:subClassOf ?sc(N) } .

}

Listing 2. Hypothetical query for finding the instrument
family of the tuba.

a direct query could be written. However, taxonomy
based knowledge organisation systems do not contain
this type of information, which is their main drawback
in answering complex queries.

Intuitively, this query graph means that there exists
an entity Tuba that is a subclass of ?sc1 having a rela-
tion with another entity whose name is non-determined.
We may recursively go on until finding the entity Aero-
phones, the super-class of the last non-determined class.
The query would succeed at the 4th super-class node for
the taxonomy ‘A’ (e.g.WithValves, BrassInstrument, Pi-
peAerophones, Aerophones), whereas the correspond-
ing result would be obtained at the 10th node for the tax-
onomy ‘B’ (e.g.ValvedBugles, SingleBell, Valves, End-
Blown, Metal, Conical, DoubleLipReed, Reeds, Aero-
phones).

The main problem with taxonomical representations
is that it’s difficult to answer certain queries without
a more explicit knowledge representation. Taxonomic
systems propagate meaning via the parent child rela-
tionship. We could infer that the tuba is an (is-a, or
rdf:type) instrument with Valves, a Brass instrument
and an Aerophone, according to taxonomy ‘A’. The in-
strument family could be directly encoded using a se-
mantically rich ontology. Although both taxonomies
are based on the H-S system, it is easy to observe the
diversity among different instrument taxonomies from
these query results. The problem is not only the con-
ceptual heterogeneity of the instruments themselves, but

also the terminological heterogeneity among different
knowledge representation schemes.

@prefix io: <http://example.org/io/taxonomyN#>
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix owl: <http://www.w3.org/2002/07/owl#> .
@prefix mo: <http://purl.org/ontology/owl/> .
@prefix ex: <http://example.com/> .

ex:guy_klucevsek
a mo:MusicArtist ;
foaf:name "Guy Klucevsek" ;
owl:sameAs <http://dbpedia.org/page/Guy_Klucevsek> ;

ex:guy_klucevseks_accordion
a io:Accordion .

ex:ellltl
a mo:Composition ;
dc:title "Eleven Large Lobsters Loose in the Lobby"ˆˆxsd:string ;
mo:composer ex:guy_klucevsek ;
mo:produced_work ex:w_ellltl;
owl:sameAs

<http://dbtune.org/musicbrainz/page/track/8093f69e-194f-4cb1-8943-2d11fac6dcc6> .

ex:p_ellltl
a mo:Performance ;
rdfs:label "A performance of the composition."ˆˆxsd:string ;
mo:performer ex:guy_klucevsek ;
mo:performance_of ex:w_ellltl ;
mo:instrument ex:guy_klucevseks_accordion .

Listing 3. RDF Data based on Music Ontology and Mu-
sic Instrument Taxonomy (Herny Doktorski).

The second query is ’What is the characteristic shape
of the tuba?’. To find this information, an upward recur-
sive query, such as the one in Listing 2, or downward
recursive query, which starts from the Conical concept,
can be used to verify that the tuba is a conical instru-
ment. However, both types of queries rely on external
knowledge that can not be inferred from the pure taxo-
nomical relationships directly. While taxonomy ’B’ at
least contains the information about the characteristic
shape of the tuba, being Conical, taxonomy ’A’ does not
contain this information. In the third and fourth ques-
tions, we ask ’What is the sound initiation type of the
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tuba ?’ and ’How many valves the tuba has?’. Unfor-
tunately none of the implemented systems encode these
relationships, therefore it is not possible to write queries
to answer these questions that would produce any re-
sults.

In our second example shown in listing 3, we use
the Music Ontology to represent the Composition and
Performance events from the sentence below, assuming
the composer also performed the piece:

The American accordionist and composer Guy Klucevsek
has written a piece for solo accordion, ’Eleven Large Lob-
sters Loose In The Lobby’, which does not use the reeds of
the accordion. The performer produces sounds by clicking
the register switches, tapping the keys, and other percussive
means. In this piece the accordion is used as an idiophone
and not as a free-reed.

This example presents a case for knowledge discov-
ery using instrument taxonomies. As shown in the ex-
ample, lacking a more detailed ontological representa-
tion, we could not describe the accordion further to take
into account the specific playing style. Since none of the
taxonomies may be used to encode information about
possible alternative sound initiation types, we may only
obtain the instrument’s default characteristics given a
taxonomy, using recursive queries such as query 2. Given
this representation a reasoner can only infer that the
Accordion is a Hand blown, Free-reed, Aerophone in-
strument. However, in this particular example, the in-
strument was played using different techniques, such
as clicking the register switches and tapping the keys,
which implies its use as an idiophone. The inductive
challenge is to infer statements about the relations and
objects that are true but unobserved. Due to the draw-
backs of traditional taxonomies, the reasoner would not
be able to discover new knowledge about the particular
individual played as an idiophone in this specific exam-
ple.

6. CONCLUSION

In this study, we investigated some issues arising in the
representation of knowledge about musical instruments.
In order to demonstrate their drawbacks in complex query
answering, we implemented two instrument taxonomies
based on the well-known H-S system in OWL. We found
that many instrument classification schemes exhibit in-
sufficient or ill-defined semantics for our purposes, thus
a more flexible representation is required. We demon-
strated using different SPARQL queries that depend-
ing on the terminology and conceptualisation used by
(ethno)musicologists, we obtain different results for the
same instrument object. It also became evident, that
ontologies that define relationships between entities are
better than traditional taxonomies at providing mean-

ingful answers to queries. Our work however represents
only a preliminary analysis of current musical instru-
ment schemes. Future work includes developing a mu-
sical instrument ontology, and further investigation on
how to represent heterogeneous instrument classifica-
tions in a Semantic Web environment.
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ABSTRACT

This paper introduces the Studio Ontology Frame-
work for describing and sharing detailed information
about music production. The primary aim of this on-
tology is to capture the nuances of record production by
providing an explicit, application and situation indepen-
dent conceptualisation of the studio environment. We
may use the ontology to describe real-world recording
scenarios involving physical hardware, or (post) pro-
duction on a personal computer. It builds on Semantic
Web technologies and previously published ontologies
for knowledge representation and knowledge sharing.

1. INTRODUCTION

Recognising that simple metadata based approaches are
insufficient in complex music information management
and retrieval scenarios, researchers has been focusing
on using cultural information and the use of content-
based features extracted from commercially released au-
dio mixtures. Certain types of these information are
rapidly becoming available on the Semantic Web and
via a number of Web services. For example, events
(concerts, tour dates) and artist relations can be obtained
and used in intuitive ways to find connections in mu-
sic [12]. However, these data remain largely editorial,
and focussed on artists as opposed to music and pro-
duction. We argue that another invaluable source of in-
formation exist, largely neglected to date, pertaining to
the composition context, history, production and pre-
release master recordings of music. Due to the lack of
comprehensive open standards and methodologies for
collecting production information, its use hasn’t been
explored yet.

While music making is an increasingly social activ-
ity, the Semantic Web could become a platform for shar-
ing not just music, but ideas between artists and engi-
neers. To facilitate this process, our ontologies can be
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and
that copies bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

utilised to denote information about music production,
and propagate it through the recording workflow. They
enable building better models for music information re-
trieval (MIR), and answering queries such as: How was
this song produced? What effects and parameters were
used to achieve that particular sound of the guitar? How
was the microphone array configured when recording
this orchestra?

In the rest of this paper, we first discuss why we de-
part from existing metadata standards, and use Semantic
Web technologies and the Music Ontology [20] instead.
Next, we introduce the Studio Ontology framework fo-
cussing on its foundations. Finally, we discuss some
applications and conclude.

2. RELATED WORK

Numerous metadata standards are available to capture
at least parts of the information we outlined previously.
However, their adaptation in audio applications remains
low, while a large number of concerns have been re-
ported by researchers, developers and end-users [3], [11],
[21], [22], [1]. The reasons are complex, and beyond the
scope of our discussion, see [17], [6]. for thorough re-
views. Instead, we summarise the main causes which
makes us move away from the adaptation of existing
metadata standards.

Perhaps the most important problem is the prevail-
ing use of XML instead of logical data models. XML
specifies the structure of a document, but it is insuffi-
cient in itself for defining relationships and constraints
over a set of terms, hence their meaning remains am-
biguous [14]. Interoperability is hindered by the lack
of semantics, which also prevents automated reasoning
over data sets. Essential vocabulary terms are scattered
across different domains. While harmonisation is pos-
sible, it requires reverse engineering [3], [11], [1] and
it remains unclear if and how these efforts can converge
into a clear common conceptual model. Finally, the lack
of shared unique identifiers makes publishing, linking
and the use of these data difficult in anything but small
MIR problems.

Notable frameworks to facilitate interoperability in
research include ACE XML [16], for sharing content-
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based features in MIR, and the Integra Extensible Data
format (IXD) [4] linking audio processing and com-
position environments such as PD or Max/MSP. These
XML-based formats however are too specific for our
use, difficult to extend, and suffer from the same draw-
backs mentioned above. In the next section, we outline
how Semantic Web technologies can be used to avoid
these drawbacks.

3. KNOWLEDGE REPRESENTATION IN THE
RECORDING STUDIO

The dual role of the sound engineer can be characterised
by the aim of fulfilling artistic goals on one hand, and
by the use of specific domain knowledge on the other.
Capturing this knowledge, the aesthetic choices, and the
use of tools in music production workflows is the pri-
mary focus of our research. It requires formalised data
models and languages to represent, structure, transfer,
store and query this information.

A naı̈ve model for information management simply
attaches metadata tags to audio items, but further de-
scriptions of the entities described by tags is not possi-
ble. A relational data model resolves this issue, how-
ever its common implementation is not sufficient in it-
self for knowledge representation: We can not describe
a hierarchy between tables or constraints over the use of
terms in relational database schemata. Object orientated
models resolve these limitations, but they have no sound
theoretical foundations, do not support efficient query
evaluation, or logical reasoning. Graph based models,
such as the Resource Description Framework (RDF) 1 ,
and expressive Description Logic (DL) [10] and Seman-
tic Web ontology languages provide a better alternative.
We briefly introduce these techniques next.

3.1 Semantic Web Technologies

Semantic Web technologies include Web standards for
communication and information sharing. The Uniform
Resource Identifier (URI), provides a unique naming
scheme for concepts and relationships (resources), while
RDF allows structuring data using simple statements
consisting of subject—predicate—object triples. A set
of triples is seen as a graph of semantic relationships.
Each term is identified using a URI, which enables them
to quote other resources creating a Web of structured
and linked data 2 . RDF ensures clear separation of syn-
tax from semantics and conceptual model. There are
concise human readable serialisations like N3 3 and an
efficient query language called SPARQL 4 supported by

1 http://www.w3.org/TR/rdf- syntax/
2 http://linkeddata.org
3 http://www.w3.org/DesignIssues/Notation3.html
4 http://www.w3.org/TR/rdf-sparql-query/

several databases and open source libraries.
Using RDF alone, one can make rather arbitrary state-

ments however, therefore to have common ground for
applications to interpret our data, we need to be able to
define, and later refer to concepts such as a Song or an
audio processing Plugin and its parameters, as well as
their pertinent relationships. Ontology languages pro-
vide for these definitions to be declared, while knowl-
edge representation schema describing a domain is what
we call an ontology.

3.2 Knowledge Representation and Ontologies

Ontology languages such as the Ontology Web Lan-
guage (OWL) 5 are formal languages to express a shared
conceptualisation 6 of a domain. Although using a for-
mal language facilitates syntactic interoperability in it-
self, making ontological commitments 7 pertaining to
the meaning of terms require higher level constructs of a
logical system. The presence or lack of this system sig-
nifies the difference between data models and knowl-
edge representations. Most Semantic Web ontologies
are based on Description Logics corresponding to frag-
ments of First Order Logic for which practical reason-
ing procedures [10] can be created. The Music Ontol-
ogy and the Studio Ontology are published in OWL.

4. OVERVIEW OF THE MUSIC ONTOLOGY

The Music Ontology provides a clear conceptualisation
of the music domain to facilitate publishing music-related
data on the Semantic Web. It was introduced in [20]
and thoroughly described in [19]. We refer the reader
to the literature for an introduction and its applications.
Here, we outline some features which make the Music
Ontology more suitable for our work than its alterna-
tives [1], [13], [8] [11].

• Modular and extensible design: Published as a
modular ontology library whose components may
be reused or extended outside of its framework.

• Workflow-based conceptualisation of the music
domain: It is built on the life-cycle of intellectual
works — defined in the Functional Requirements
for Bibliographic Records (FRBR) [18], — rang-
ing from abstract to concrete entities: Musical-
Work, Expression, Manifestation, Item.

• Event decomposition model: Events are mod-
elled as first-class objects with participating agents
and passive factors, and may be decomposed into
sub-events.

5 http://www.w3.org/TR/owl-ref/
6 Formally, a set of relations R over a universe of discourse D. [9]
7 We say that an agent commits to an ontology if its observable

actions are consistent with the definitions in the ontology. [9]
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• Timelines and temporal entities can be used to
localise events on different timelines: abstract,
discrete, or continuous; relative, or physical.

• Adaptation: It has become a de-facto standard to
publish music-related data on the web.

The above models provide the basis for content an-
notation as well as the decomposition of events in com-
plex workflows, so that we can precisely say who did
what and when. While elements of these models can
also be found in other ontologies, they are not present
all at once in a single unified framework. The Music
Ontology provides a model to describe the production
workflow from composition to delivery, including mu-
sic recording, but it lacks some very basic concepts to
do so in detail. The Studio Ontology fills this gap.

5. THE STUDIO ONTOLOGY FRAMEWORK

The Studio Ontology 8 is presented as a modular and
extensible ontology library. It is designed to reuse exist-
ing terms and models published elsewhere that fit its re-
quirements. The framework contains some general, do-
main independent elements, a set of core concepts and
relationships to describe the studio domain, and some
extensions covering more specific areas like microphone
techniques and multitrack production tools.

5.1 Foundational elements

The foundational parts of the ontology deal with de-
scribing tools in audio engineering workflows.

5.1.1 Workflows, Events and Timelines

We distinguish between two types of workflows: pre-
scriptive and descriptive. Prescriptive workflows are
best understood as templates describing common data
access and manipulation steps. Descriptive workflows
may be seen as denotation of specific instances of the
above, broadly speaking a description of who (or what)
produced what, when, and how, using what. Such a de-
scription requires a workflow based conceptualisation
of entities existing at various stages. The Music Ontol-
ogy provides such a conceptualisation: A composition
(MusicalWork) may be performed producing a sound,
which may be recorded producing a signal (MusicalEx-
pressions). We obey this model and hook into it exactly
at this level. When the sound engineer manipulates a
sound or a signal, new expressions are created to which
additional information can be attached on how it was
produced. In order to describe this process, we need
to be able to talk about events (performance, record-
ing, mixing, transformation), which may be spatially

8 http://isophonics.net/content/studio-ontology

and temporally localised, and linked with agents (engi-
neer) and factors (tools). We use the Event and Timeline
Ontologies [20] for this purpose. The Music Ontology
sets aside the problems of how and using what from the
workflow above. We address this issue next.

5.1.2 Technological Artefacts

The Device Ontology can be used to describe artefacts
of technology. The Device concept may be subsumed
by anything, a watch, a plugin, or a microphone in a
more specific ontology. Our ontology generalises con-
cepts from [7], [2], which are specific for their applica-
tion domains, namely smart phones and computer net-
works. Similarly to the Event and Timeline Ontologies,
the Device Ontology approaches a foundational domain
independent status in the sense described in [15]

rdfs:subClassOf rdfs:subClassOf

device:service device:state

device:Device

device:component

device:

AbstractDevice

device:

PhysicalDevice

device:Statedevice:Service

Figure 1. Overview of the Device Ontology

A device may participate in an event as a passive fac-
tor, providing a particular service in a particular state.
A state may be useful to represent a configuration, such
as the polar pattern or sensitivity settings of a micro-
phone during a recording. We borrow knowledge repre-
sentation elements from the OWL description of UML
state machines of [5]. This resembles the paradigm of
event driven finite state machines, in that it describes
events related to an application of a device as reason for
state changes. Events are tied together as sub-events of
a main event. This has the benefit of encoding chains
of state changes (in a temporal context), and the ability
to assign additional information to entry and exit condi-
tions modelled as events themselves. This may be a link
to an engineer to encode details such as an option turned
on by one engineer and then turned off by another, or
classifications of change events, such as automatic con-
trol, fault conditions or engineering decisions.

Our ontology commits to a categorical distinction
between physical and abstract devices, which worth mak-
ing for the following considerations. Physical and ab-
stract objects have different primary characteristics. For
instance, physical devices have size and weight, and
may be decomposed into physical or abstract compo-
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nents, such as an extension module or firmware. Ab-
stract devices on the other hand may be intangible mod-
els of physical devices. Form a mereological point of
view our model expresses a partial order relation on the
set of components of a device, which is a reflexive, tran-
sitive and anti-symmetric property 9 .

5.1.3 Signal Processing Devices

An important class of devices in music production are
tools for manipulating audio signals. We define the con-
cept SignalProcessingDevice as a subclass of the more
general device concept described in §5.1.2, having in-
puts and outputs for signal connectivity. From an onto-
logical point of view this is sufficient to identify a sig-
nal processing device. It is interpreted broadly, and may
stand for anything from a basic filter to a complex unit
such as a mixing console or an audio effect. The con-
cept is defined in a dedicated ontology called the Signal
Processing Device Ontology, together with some funda-
mental signal processing components.

5.1.4 Device Connectivity

The Connectivity Ontology allows for describing how
signal processing devices, or other tools, such as mi-
crophones, in a recording and processing workflow are
interconnected. Its paramount concept Terminal repre-
sents inputs and outputs in an abstract way, encompass-
ing electrical or software interfaces and may be linked
with a particular physical connector and communica-
tion protocol. In figure 2 we illustrate its basic struc-
ture. The exemplified instances of Connector and Pro-
tocol can be thought to represent the output of a digital
microphone having a 3 pin male XLR connector, and
using the AES42 digital microphone interface protocol.
The ontology defines some individuals of connectors
and protocols common in audio production. An inter-
esting feature of the ontology is that we can use it to
match signal characteristics to interface characteristics,
for instance the number of accepted channels.

5.2 Core components

The core Studio Ontology parallels the three levels of
expressiveness of the Music Ontology and provides stu-
dio specific extensions. On the first level it provides for
describing recording studios and facilities. For exam-
ple, we can differentiate between commercial, project
and home studios, different audio engineering roles such
as mixing or mastering engineer, describe various record-
ing rooms and the equipment in them. This includes a
large vocabulary of tools with top level concepts such as
Amplifier, Analyser, MixerDevice, MonitoringSystem,
EffectUnit, DigitalAudioWorkstation or Plugin.

9 Note that it requires OWL2 to express all constraints.

rdfs:subClassOf

rdfs:subClassOf

con:connector con:protocol

con:Terminal

con:Optical
Terminal

con:Electrical
Terminal

con:Protocolcon:Connector

rdfs:subClassOf

rdfs:subClassOf

con:Analog
Terminal

con:Digital
Terminal

con:XLR_3M

rdf:type

con:AES42

rdf:type

Figure 2. Overview of the Connectivity Ontology (with
simplified examples)

The second level includes complex events such as
different types of recording and post production ses-
sions, and provides for describing the production work-
flow on the level of audio transformations and signal
processing as described in §5.2.1

The third level provides some extension points to de-
scribe specific tools, such as multitrack audio produc-
tion software (see §5.3.4); the audio editing workflow
and project structure.

5.2.1 Signal Processing Workflows

To describe how a piece of music is processed in the
studio, it is insufficient in itself to describe a signal flow
(i.e. flow chart) or a set of transformations. We need
to consider a random set of mixing or transformation
events, as in non-linear editing, as well as real-rime,
quasi-simultaneous 10 transformations, such as a signal
routed through several processing units for recording.
To fulfil both requirements, we consider parallel signal
and event flows linked using signal entities that are in-
stances of the mo:Signal concept. This is illustrated
in figure 3. The concepts Recording, Mixing, and Trans-
form are subclasses of Event defined in the Event Ontol-
ogy (see §5.1.1) while MixerDevice and EffectUnit sub-
sume SignalProcessingDevice defined in §5.1.3. Sev-
eral signals (not shown for brevity) can be attached to a
mixing event and corresponding device. This set up sig-
nifies our ontological commitment to changing identi-
ties, a problem thoroughly discussed in philosophy [23].
Once transformed, a signal receives new identity which
alleviates difficult transaction management problems in
our system regarding the changing attributes of signals.

5.3 Extensions

Ontology extensions are useful to allow the user to choose
a desired level of granularity, given some domain spe-

10 Apart from the small latency of signal processing units, these
have the same duration as the recording event itself.
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signal flow

RecordingSession PostProductionSession

event flow

mo:Music Ontology

studio:Studio Ontology

con:Connectivity Ontology
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con:Output 
Terminal

studio: 
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studio:
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device:output
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effect
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mo:Signalmo:Signalmo:Signal

consumed_signal
studio: studio:

Figure 3. Recording, mixing and transformation events with an associated signal flow

cific details provided by the modeller. In this section we
describe some extensions of the Studio Ontology.

5.3.1 Audio Recording

The Microphone Ontology includes a small taxonomy
of microphones organised by their transducer principle
(i.e. CondenserMicrophone, RibbonMicrophone etc...).
It also allows for describing most properties one may
find in a microphone data sheet, for instance diaphragm
type and size or polar pattern. The Configuration con-
cept (subclass of device:State) can be used to de-
scribe variable parameters of microphones such as sen-
sitivity, or variable polar pattern setting, in a particular
recording event. The ontology includes the concept Mi-
crophoneArrangement and allows for describing stereo
and spatial recording techniques, such as a Blumlein-
Pair or DeccaTree, with their constituent microphones,
and their distances, angles and configurations.

5.3.2 Audio Mixing

The Audio Mixer Ontology allows detailed description
of mixing consoles both in terms of static characteris-
tics and particular settings (such as channel strip con-
figuration) in an event. The ontology is modelled after a
generalised blueprint of mixing consoles obtained from
studying several commercial hardware designs, how-
ever software implementations were also taken into ac-
count. It defines concepts such as Channel, Bus or In-
sertTerminal and properties to describe fader levels, pan-
ning, equalisation (linked to an Audio Effect Ontology)
and routing in a particular event, including automation.

5.3.3 Audio Effects

The core ontology includes concepts to refer to audio
effect units and plugins that are particular hardware or
software devices, and a small taxonomy of audio ef-
fects based on their typical applications in audio engi-
neering. However, audio effects are best conceptualised
as physical phenomena, separated from implementation
(circuit designs or algorithms), concrete devices, and
their applications to signals. Therefore, we have four

conceptual layers which include the concepts: AudioEf-
fect, Model, Implementation, EffectDevice, Transform.
The Studio Ontology sets the problem of implementa-
tion details aside. Creating an Audio Effects Ontology
based on multidisciplinary classification [24] is ongoing
work in our lab.

5.3.4 Audio Editing

Modern digital audio workstations organise recording
projects into a set of tracks — which may correspond to
input channels or created in an ad hoc way — and poten-
tially overlapping clips contained in them correspond-
ing to various takes during a recording session. The
Multitrack Ontology relates the the hierarchy of Clips
and Tracks to other concepts in the Music and Studio
ontologies. It defines terms such as MultitrackProject,
MediaTrack, AudioTrack, and AudioClip [6].

A small Edit Ontology provides for describing a suc-
cession of edit decisions modelled as events linked to
the universal timeline using event:time and the au-
dio signal timeline using edit:media_time. These
ontologies may be subsumed to describe operations in a
specific tool such as a multitrack audio editor.

6. APPLICATIONS AND IMPLEMENTATION

The ability to provide machine-processable representa-
tions of the information one may find on web pages
of recording studios is a contribution to the Semantic
Web in itself. It facilitates finding studios with specific
equipment or personnel using complex queries. How-
ever, a more significant benefit comes with the ability
to denote how a piece of music was produced. We can
argue that contributions form the producer or the sound
engineer are just as important in modern music as com-
position, but we had no way to record his/her actions
and choices with the transparency music is denoted us-
ing scores. Collecting these data in production is a sig-
nificant effort, however a lot can be done automatically
if ontology based models are available in digital mix-
ing consoles and post production tools. The Meta Ob-
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ject Facility Specification 11 enables source code gener-
ation from conceptual models. To take the continuously
evolving nature of ontologies into account, we provide
an alternative using run-time model generation [6].

7. CONCLUSIONS AND FUTURE WORK

We presented a novel conceptualisation of the record-
ing studio environment and its implementation as a Se-
mantic Web ontology. Our framework is unique in it-
self, therefore we have no grounds for direct compar-
ison, but we evaluated it against a music production
text corpus, and found that it has good lexical coverage,
and represents approximately 75% of commonly occur-
ring production situations. Further extensions remain
future work, as well as audio editor prototypes which
enable automatic collection of production information,
and provide easy to use data entry facilities for captur-
ing data external to a computer system. However, to
achieve its full potential, our system should be included
in digital music production tools.
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ABSTRACT

We propose a novel model for music structural segmentation
aiming at combining harmonic and timbral information. We
use two-level clustering with splitting initialization and ran-
dom turbulence to produce segment labels using chroma and
MFCC separately as feature. We construct a score matrix to
combine segment labels from both aspects. Finally Non-
negative Matrix Factorization and Maximum Likelihood are
applied to extract the final segment labels. By comparing
sparseness, our method is capable of automatically deter-
mining the number of segment types in a given song. The
pairwise F-measure of our algorithm can reach 0.63 without
rules of music knowledge, running on 180 Beatles songs.
We show our model can be easily associated with more so-
phisticated structural segmentation algorithms and extended
to probabilistic models.

1. INTRODUCTION

Identifying music structural segmentation is one of the most
important and difficult problems in music information re-
trieval (MIR). Its goal is to automatically locate the musi-
cally repetitive parts within a piece of music (e.g. verse,
bridge and chorus in popular music). It has applications
such as music thumbnail, segment-based editing and segment-
based navigation. It may also facilitate other MIR tasks like
beat tracking and chord detection.

There are some noteworthy existing systems, which in-
spire our proposed model. Foote [1] proposed self-similarity
matrix for structure representation. Levy et al [2] proposed a
two-level model for structural segmentation problem. In the

This work was performed while interning at Institute of Acoustics,
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lower level, they introduced Hidden Markov Models (HMMs)
to quantize audio feature vectors into discrete states; in the
upper level, they formed histograms by counting the HMM
states in local windows and designed a clustering algorithm
to quantize histogram vectors into segment labels. Weiss at
el [3] showed the potential of Non-negative Matrix Factor-
ization (NMF) in the structural segmentation problem. No-
tably, they make use of sparseness constraint to automat-
ically determine the number of segment types in a song.
Kaiser et al [4] exploited NMF on self-similarity matrix and
clustering to differentiate segment types.

Undoubtedly, music structure is perceived based on many
sources of information, among which harmony and timbre
are primary players. Some existing systems use multiple
features as starting points, listed in [5], but few found a good
model to combine them. As is shown in [4], combining har-
monic and timbral information works even worse than using
timbral information alone. In this paper, we focus on build-
ing a model to combine the two sources to reach higher seg-
mentation performance.

Our model is comprised of two parts. The first part is a
two-level clustering algorithm, which produces segment la-
bels using either harmonic or timbral information. The sec-
ond part is a novel algorithm to bring segment labels from
two different aspects together into a score matrix, and ex-
ploiting NMF to extract segment labels and sparseness to
automatically determine the number of segment types in a
given song. We call the score matrix and NMF based algo-
rithm SM-NMF for short.

In Section 2 we describe our two-level clustering algo-
rithm. In Section 3 we describe the SM-NMF algorithm. In
Section 4 we present our experimental results and explain
for them. In Section 5 we introduce possible extension of
our model in future research. For convenience, we define the
following symbols that will be used in the paper. n: number
of frames in a song, each corresponds to a state label. m:
dimension of feature vectors. N : number of windows in a
song, each corresponds to a segment label. k: number of
segment types.
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2. TWO-LEVEL CLUSTERING

Our two-level clustering algorithm is shown in Figure 1. From
the feature extraction module we get frame-based feature
vectors used for the lower-level feature clustering module,
which quantizes feature vectors into states. The histogram
module counts states in windows and forms histogram vec-
tors used for the higher-level histogram clustering module,
which quantizes histogram vectors into segment labels. This
algorithm is similar to [2], except that we substitute HMMs
with another clustering and no constraint is imposed.

feature 
extraction 

feature 
extraction 

feature 
clustering histogram histogram 

clustering 

two-level clustering 

  

  

  

  

     
      

frame 

frame 

window 

window 

Figure 1. The flowchart and illustration of intermediate re-
sults of two-level clustering. The lower two graphs’ colors
only illustrate different labels for better looking.

2.1 Feature Extraction

We extract two types of vector features separately from au-
dio files. Chroma is a 12-dimension representation indicat-
ing the power within each of the 12 pitch classes. So chroma
has a close relationship with the harmonic characteristics of
music. See [6] for algorithm of extracting chroma. Mel-
frequency Cepstrum Coefficients (MFCC) is usually a 13-
dimension representation describing the spectral envelope.
It is easy to calculate and potential to reveal timbral simi-
larity in feature space. See [7] for algorithm of extracting
MFCC.

We divide the whole song with fixed frame length of Lf

ms and hop size of Lfh ms, then calculate feature for each
frame.

2.2 Clustering Algorithm

Clustering is a process of gathering points in the feature
space to a fixed number of clusters so that hopefully neigh-
boring points would have the same cluster label. K-means
is one of the most straightforward algorithms to perform
clustering [8]. Firstly, a fixed number of k cluster centers
µ1, µ2 . . . µk are initialized, often randomly. Then two steps

alternate iteratively: a) assign each point xj to its closest
cluster center; b) recalculate each cluster center, until the
objective function

G(x, µ) =

k∑
i=1

∑
xj∈Ci

DistanceMeasure(xj , µi)

converges, where Ci is the set of feature vectors assigned to
the ith cluster. Note that k-means is the coordinate descent
of G(x, µ) so only local minimum is guaranteed.

In our experiments, we find that using uniform distribu-
tion to randomly initialize cluster centers sometimes con-
verges to unreasonable local minima, so we apply an “ini-
tial guess by splitting” method described in [9] instead. If
the target number of clusters is not power of 2, we split the
cluster with largest variance until we achieve the right num-
ber. We find that using this technique most unreasonable
results are avoided.

We have described one level of clustering. Now we move
to two-level clustering. Firstly, we perform clustering on ei-
ther chroma or MFCC into kl clusters, using Euclidean dis-
tance as distance measure, to obtain a state label for each
frame, which can be interpreted as harmonic unit or timbre
unit. Then we slide a window with length of Lw frames
and hop size of Lwh frames throughout the whole song, and
count the occurrence of every state. Now we have an ar-
ray of histogram vectors, which are further normalized to
be probabilistic. We perform clustering on histogram vec-
tors into kh clusters, using symmetric Kullback-Leiber (KL)
divergence [10] as distance measure.

KL(P ||Q) =
1

Lw

kl∑
i=1

Pi log
2Pi

Pi +Qi
+Qi log

2Qi

Pi +Qi

Symmetric KL divergence describes how dissimilar P and
Q are to the assumed actual distribution (P + Q)/2. The
resulting labels indicate segment types.

To further reduceG(x, µ), we insert a random turbulence
module between splitting initialization and two-step itera-
tion, for both levels of clustering. To do this, we add a vector
with tiny norm and random direction to each cluster center.
Make sure the shifted centers satisfy probability constraints
for KL divergence. Then we perform clustering for T times
to get T slightly different solutions. We can pick out the
solution with lowest G(x, µ).

In our experiments, we notice in most cases the solutions
with lowest G(x, µ) do not necessarily correspond to good
results (see Table 2 for results). Therefore, to further im-
prove the performance, we have to keep all T solutions for
further analysis.
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3. COMBINING HARMONIC AND TIMBRAL
INFORMATION

In this section, we describe how to combine harmonic and
timbral information, i.e. the two-level clustering results from
chroma and MFCC, to produce better segmentation results.
For convenience, we name the segment labels produced by
chroma as chroma solution. Similarly we have MFCC so-
lution. We name the segment labels produced by the SM-
NMF algorithm described below as final solution.

To motivate our idea, we show the typical results from
chroma and MFCC respectively in Figure 2. Although both
features produce fair results (pairwise F-measure 0.61 and
0.62), they are from completely different perspectives. For
example, the chroma solution fails to distinguish verse and
verse(instrumental) because the underlying harmonic pat-
terns are exactly the same, but is good at distinguishing
verse and bridge because of different harmonic patterns; the
MFCC solution separates verse(instrumental) successfully
because the timbre in this segment is very different from oth-
ers, but cannot distinguish verse and bridge for their similar
timbres.

Therefore, we set up the following rule for combination:
two windows should have identical segment labels only if
the two windows are both harmonically and timbrally simi-
lar. However, we cannot simply mix a chroma solution and
an MFCC solution because segments from two aspects usu-
ally do not have common boundaries. There will often be
lots of fragments in the outcoming results. In order to obtain
a result with the same level of detail as chroma or MFCC so-
lution, we make use of all T chroma solutions and T MFCC
solutions to smooth the boundaries. Now we describe how
to bring all 2T solutions into one final solution.

chroma 

MFCC 

intro  verse     bridge half  verse    bridge      verse      bridge  outro 
intro (instrumental) 

Figure 2. The results of clustering using chroma and MFCC
respectively, along with the ground truth, of “In My Life”.

3.1 Score Matrix

By analyzing T different chroma or MFCC solutions from
clustering with random turbulence, we find that typically
some pairs of windows always have identical labels. These

windows are lying within steady regions of a song. By con-
trast, some pairs occasionally have identical labels. Then ei-
ther of them is lying within boundary regions (for example
the short transition between segments with complicated in-
strumentation changes). Therefore, counting the times two
windows having identical labels can reveal the steady re-
gions and boundary regions in a song. We can construct a
score matrix to describe how likely it is for two windows to
have identical labels. This idea can be directly extended to
a score matrix describing how likely it is for two windows
to have identical labels in both chroma solution and MFCC
solution.

To implement this, initialize anN×N matrix with all ze-
ros. Perform two-level clustering using chroma and MFCC
as feature separately, with splitting initialization and random
turbulence, for T times. Then investigate all the T 2 chroma-
MFCC solution pairs: If the ith and jth windows in both
chroma solution and MFCC solution have identical labels,
the corresponding element in the score matrix increases by
one. Finally, normalize all the elements by dividing by T 2.

The resulting score matrix serves the same purpose of
visualizing music structure as Foote’s self-similarity matrix,
but the score matrix is much more well-structured and smooth.
See Figure 3 for a graphical example.

Figure 3. The score matrix of “Help!”. The same song’s
self-similarity matrix is shown in [4].

3.2 Non-Negative Matrix Factorization

We can view the score matrix as an array of column vec-
tors. Each vector corresponds to a window. Suppose we
have a set of vector templates. Vectors in the steady regions
of a song may be directly found in the set, while vectors in
the boundary regions may be approximated by linear com-
bination of vector templates. This observation pushes us to
Non-negative Matrix Factorization (NMF) [11].

TheN×N score matrix is approximately factorized into
product of a N × k matrix W and a k ×N matrix H. The
jth column of W can be viewed as the vector template for
the jth segment type. The jth column of H describes the
intensities of the k segment types for the jth window. An
example in shown in Figure 4.
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We implement NMF using the multiplicative update rules
[11]. Similar to clustering, NMF can only guarantee a local
minimum of the sum of errors between the score matrix and
W ×H. So we run NMF for several times with uniformly
distributed random initialization and pick out the factoriza-
tion result with lowest sum of errors.

After we obtain H , we apply Maximum Likelihood by
assigning the segment label associated with the largest en-
ergy to each window. Note that in [4], clustering was used
for the same purpose. In our experiment, we find that clus-
tering and Maximum Likelihood produce almost the same
performance. We choose Maximum Likelihood because it’s
simpler and more consistent.

  

score matrix ( × )   ( ×  )   ( ×  ) 

Figure 4. The score matrix is approximately factorized into
the product of W and H , from “Drive My Car”.

3.3 Automatic Determination of the Number of
Segment Types

Automatically determining of the number of segment types
in a song is hard for two-level clustering, because clustering
is a process of hard decision and all information about a win-
dow is its associated cluster label. However, using NMF, we
have the matrix H whose columns involve intensities of all
segment types. An example is shown in Figure 5. Intuitively
one will agree k = 3 is the optimal number of segment types
because the H with k = 3 is the most “resolute” one with
least windows having much energy spread into multiple seg-
ment types. So we want a measure to quantify how much
energy of a column is concentrated in as few components
as possible. Sparseness [12] is a good measure which can
satisfy the need.

sparseness(h) =

√
k − (

∑
|hi|)/

√∑
hi

2

√
k − 1

where h is a column of H. The sparseness listed in Figure 5
is the average sparseness of all N columns. We hope the
columns of H to be as sparse as possible, so we factorize
the score matrix with different k, then we pick out the H
with largest average sparseness.

To summarize, we show the whole process of our model
in Figure 6.

 = 2,           = 0.789 

 = 3,           = 0.939 

 = 4,           = 0.881 

 = 5,           = 0.879 

(optimal) 

Figure 5. Obtaining H with different k, we can use the
result with largest average sparseness.
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labels:  
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labels:  
chroma solutions 
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MFCC solutions 

Figure 6. The complete flowchart of our proposed model.
See Figure 1 for detail of two-level clustering.

4. EVALUATION

4.1 Parameters Configuration

We describe how to set up parameters (shown in Table 1)
for two-level clustering. Lf and Lfh are set by assuming
the audio signal is stationary for all frequency components
in this short time duration. kl should be set a large num-
ber according to [2]. In our experiment, we see kl = 64
works best. Lw and Lwh are not affecting the performance
(pairwise F-measure) much, except that too small Lw might
make a very short segment longer than its actual length.
kh can be viewed as the number of types of harmoni-

cally similar segment or timbrally similar segment. kh = 3
is a reasonable number, because a typical song has about 3
harmonic patterns (such as intro, verse and bridge) and also
about 3 timbral patterns (such as intro, verse/bridge and in-
strument solo).

frame length Lf 100 ms
frame hop size Lfh 50 ms
# of states kl 64
slide window length Lw 10 s
slide window hop size Lwh 1 s
# of segment types kh 3
# of loops T 7

Table 1. Parameters used in two-level clustering.
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4.2 Overall Results

Our database comprises 180 Beatles’ songs, consistent with
the available ground truth annotations in Isophonics 1 . All
songs are in the wav format of 16kHz/16bit/mono. We eval-
uate pairwise F-measure (PFM) [2] of our algorithms on the
whole database referencing Isophonics annotations. Clus-
tering processes with chroma and MFCC share the same set
of parameters in Table 1.

Table 2 shows the PFM of two-level clustering with split-
ting initialization and without random turbulence, and the
PFM of running two-level clustering with splitting initial-
ization and random turbulence for T times and minimiza-
tion with regard to G(x, µ). k cannot be automatically de-
termined in clustering, so we fix k = 3, which can produce
highest PFM in our experiments.

chroma MFCC
random no yes no yes
PFM 0.58 0.58 0.58 0.60

Table 2. PFM of two-level clustering with and without ran-
dom turbulence.

We note that minimizing with regard to G(x, µ) can re-
duceG(x, µ) dramatically, but not necessarily improve PFM.
So the relationship between PFM andG(x, µ) is not straight-
forward.

Then we evaluate our proposed SM-NMF algorithm. k is
automatically selected from {3, 4, 5} according to the largest
sparseness in the corresponding H. We note that although
many songs have more than 5 segment types according to
annotations, such as the one shown in Figure 2, intro and
half-intro are both harmonically and timbrally identical so
it is impossible to discriminate them using only harmonic
and timbral information. Therefore it is normal that the au-
tomatically determined k is smaller than the actual number
of segment types in annotations. In Table 3, besides SM-
NMF, we also show the results using NMF with fixed k for
comparison. We see that SM-NMF produces better results
than two-level clustering (Table 2) and sparseness is a good
measure for the number of segment types.

fix k automatically
k = 3 k = 4 k = 5 determine k

PFM 0.62 0.62 0.61 0.63

Table 3. PFM of SM-NMF.

In Table 4 we show the results of a different way to form
score matrix – by counting how many times two windows
have identical labels using only one type of feature. The
results indicate it is combining harmonic and timbral infor-

1 www.isophonics.net

mation that actually makes the main contribution to the per-
formance of SM-NMF.

only chroma only MFCC both
PFM 0.59 0.61 0.63

Table 4. Forming score matrix with either harmonic or tim-
bral information versus both information.

Finally, in Table 5, we compare our results with other
state-of-the-art methods, which use the same Isophonics an-
notation, listed in [3]. To be more informative, we also
list pairwise precision rate (PPR) and pairwise recall rate
(PRR).

System PFM PPR PRR
Mauch et al [13] 0.66 0.61 0.77
SM-NMF 0.63 0.61 0.69
Weiss et al [3] 0.60 0.58 0.68
Levy et al [2] 0.54 0.58 0.53

Table 5. Segmentation performance of SM-NMF and other
state-of-the-art methods on the Beatles data set.

Our algorithm does not involve any post-processes based
on music knowledge such as eliminating too short segments
or restricting segment length to multiples of 4 beats [13].
These rules can help reduce fragments, so we can expect
our algorithm to produce higher PRR, and thus higher PFM,
if we consider them.

4.3 Case Study

We study an example shown in Figure 7. In the chroma
solution, we see that a verse is oversegmented into three
segments (blue, red, green). We see in the score matrix
that the red-labeled segment is tolerated in larger boxes but
the green-labeled segment is not. This is because the red-
labeled segment is a correctable mistake produced by some
unstable clustering results, while the green-labeled segment
is an uncorrectable mistake produced by the interference
from heavy drumming. In the MFCC solution, we see that
the first and second verse are given different label from the
third and fourth verse. This is produced by the differences
in background choir, by which MFCC solution is confident
that they have two distinct timbres. So we see in the score
matrix the upper left four large boxes are completely sep-
arated from the lower right four large boxes. The final so-
lution will hide all correctable mistakes but display all un-
correctable mistakes. Therefore, SM-NMF performs well
when the front-end structural segmentation algorithm (two-
level clustering for this paper) makes as few uncorrectable
mistakes as possible.
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intro  verse    verse   bridge   verse  bridge  verse outro 

  

Figure 7. Example:“You Won’t See Me”. The last four la-
bels are respectively final solution, chroma solution, MFCC
solution and ground truth.

5. SUMMARY AND FUTURE WORKS

We have described a novel model for music structural seg-
mentation, to bring the results of two-level clustering using
chroma and MFCC separately into one final solution, aim-
ing at combining harmonic and timbral information. We
use splitting initialization and random turbulence to pro-
duce slightly different chroma and MFCC solutions from
two-level clustering. Then we construct a score matrix to
exhibit the pairwise relation between chroma solutions and
MFCC solutions. We apply NMF and Maximum Likelihood
to reveal music structure and sparseness to automatically de-
termine the number of segment types in a given song. The
PFM of our proposed SM-NMF method outperforms two-
level clustering using single feature.

There is lots of space for improvement. We have shown
in Section 4.3 that one obstacle in SM-NMF method is the
reliability of solutions of the front-end algorithm. The two-
level clustering can be replaced by any structural segmen-
tation algorithm as long as random turbulence is included
to produce slightly different solutions. We note that the re-
liability is not equivalent to the value of PFM, because for
example we cannot expect MFCC alone to identify harmon-
ically different segments or discriminate intro and half-intro.
We need ground truth directly related to harmonically simi-
lar segments or timbrally similar segments.

Besides, NMF might produce better results with some

constraints exploiting symmetry and sparsity. The score ma-
trix is a flexible representation, which might be associated
with probabilistic models. For example, if we view the score
matrix as a “term frequency-inverse document frequency (tf-
idf)” matrix, we might make use of Probabilistic Latent Se-
mantic Analysis [14] to give a more elegant algorithm. We
might also introduce constraints such as segment length and
inter-segment transition probabilities to produce more mu-
sically meaningful results.
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ABSTRACT

This paper presents a general approach for the structural
segmentation of songs. It is formalized as a cost optimiza-
tion problem that combines properties of the musical con-
tent and prior regularity assumption on the segment length.
A versatile implementation of this approach is proposed by
means of a Viterbi algorithm, and the design of the costs
are discussed. We then present two systems derived from
this approach, based on acoustic and symbolic features re-
spectively. The advantages of the regularity constraint are
evaluated on a database of 100 popular songs by showing
a significant improvement of the segmentation performance
in terms of F-measure.

1. INTRODUCTION

Music structure is one of the properties which contributes to
the characterization of a music piece. It describes its tem-
poral organization at a high level, by means of segments
labeled according to their musical content and their rela-
tionships with one another. The automatic structural seg-
mentation of songs is generally addressed by analyzing the
homogeneity and the repetitiveness of the musical content
over time (timbre, harmony, rhythm, melody).

Recent work [2] proposes a single-level definition of the
structure of a music piece based on a regularity assump-
tion. It implies the prevalence of one (or a few) typical
segment duration(s) within each song, i.e. structural pulsa-
tion period(s). Indeed, a large part of western popular music
is built on musical patterns (rhythmic cells, chord progres-
sions, melodies...) which show cyclic behaviors and which
are fully or partly repeated over time. This induces some
sort of regularity in the structure of songs.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies
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The present work is based on this regularity assumption
in music. We introduce a general segmentation framework,
which consists of an optimization method to find the best
segmentation combining the similarities and/or the contrasts
in musical content and the regularity of the segments. An
implementation of this method is proposed by means of a
Viterbi algorithm.

A similar segmental Viterbi algorithm was briefly
sketched in [10] in the context of a probabilistic model
(segmental HMM). In this paper, we make it more explicit
and we extend it to any type of cost function. This makes
it possible to exploit combinations of clustering-based and
similarity-matrix-based approaches and to a wider variety of
situations outside the probabilistic framework. We also dis-
cuss the importance of the regularity cost in the estimation
of the segment boundaries, and provide experimental results
with several choices for the two terms of the segmentation
cost.

The structure of the paper is as follows. In section 2
we present the general music segmentation method, with-
out considering a particular musical feature or temporal
scale. Section 3 describes its implementation by means of a
Viterbi algorithm, and discusses the expression of segmen-
tation costs. In section 4, after briefly reviewing former
work on music structure, we apply the proposed segmen-
tation method to this particular problem. We then present
two structural segmentation systems based on the algorithm
developed above. Section 5 evaluates the effect of the incor-
poration of regularity constraints thanks to the evaluation of
these systems on the RWC popular music database [6].

2. GENERAL APPROACH

This section presents a general method for the temporal
segmentation of music pieces, when regularity assumptions
can be hypothesized on the segment length. It consists of
an optimization process where the optimal segmentation is
searched simultaneously considering the properties of the
data and the regularity of the segmentation.

A music piece X can be described as a sequence of N
features {xt}1≤t≤N along a particular temporal scale (e.g.
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frames, or beats...). We denote Xtj
ti = {xt}ti≤t<tj the se-

quence of features associated to the temporal interval [ti, tj [.
Let us define a segmentation S = {sk}1≤k≤n of X as a

sequence of n intervals sk = [tk, tk+1[, with the following
conventions :

• t1 = 1 < ... < tk < ... < tn < tn+1 = N + 1,

• s0 = [t0, t1[= [0, 1[, for the algorithm initialization,

• mk = tk+1 − tk is the length of sk.

We aim at finding the optimal segmentation, by minimiz-
ing a certain cost function.

We assume that the cost function C can be written as

C(S) =

n∑
k=1

Γ(sk) (1)

with

Γ(sk) = Φ(sk) + λ(τ)Ψ(sk) + ε (2)

where

• Φ(sk) is a content-based segmentation cost, which
takes low values when the sequence of features in sk
is likely to correspond to a structural segment. This
cost can be described according to different families
of functions, like change detection functions or sim-
ilarity functions. It can also, for instance, be derived
from a probabilistic function P (sk), as −logP (sk).

• Ψ(sk) is a regularity cost. We consider that the reg-
ularity of a segmentation depends on the deviation of
the length of its segments to a prior reference length
τ called the structural pulsation period (as a conse-
quence, Ψ(sk) decreases as mk approaches τ ). Note
that, if the values of mk are expected to follow a par-
ticular distribution π(mk) around τ , Ψ(sk) can be set
as Ψ(sk) = − log(π(mk)).

• λ(τ) is a balance parameter between these two costs.

• In practice, we add a small constant ε > 0 to give a
slight advantage to longer segments in the case where
Φ and Ψ would be equivalent for several segmenta-
tions.

3. IMPLEMENTATION

This section presents an implementation of the approach
presented above, and describes possible choices of cost
functions Φ, Ψ and parameter λ.

Figure 1. Admissible predecessors for t and their costs

3.1 Viterbi algorithm

Let st,h be the interval corresponding toXt
t−h = [xt−h, xt[,

the set of features which precede the temporal index twithin
a window of length h. We denoteH as the maximal window
length considered 1 .

• Initialization (t = 1)

We set S1 = {[0, 1[} and C1 = 0.

• For t = 1 : N − 1

We consider {st,h}1≤h≤H′ , withH ′ = min(t−1, H)
as the set of admissible predecessors for temporal in-
dex t.

The optimal segmentations {St−h}1≤h≤H′ ending
at indexes {t − h}1≤h≤H′ are assumed to be
known, as well as their associated cumulative costs
{Ct−h}1≤h≤H′ .

Then, the best partial segmentation St is built by
choosing the extension of the former partial segmen-
tation St−h with the lowest cost. We evaluate respec-
tively :

1. Γ(st,h) for 1 ≤ h ≤ H ′,
2. b(t) = argmin1≤h≤H′{Ct−h + Γ(st,h)},
3. Ct = Ct−b(t) + Γ(st,b(t))

We can note that St = St−b(t) ∪ {St,b(t)}.

The optimal segmentation for X , noted Sopt with cost
CN+1, is obtained by backtracking the optimal prede-
cessors stored in b(t). The associated temporal indexes
{tk}1≤k≤nopt

are then found thanks to the following recur-
sion :

1. tnopt+1 = b(N + 1),

2. tk = b(tk+1), for 1 ≤ k ≤ nopt.

nopt is the number of boundaries of Sopt, obtained after this
backtracking process.

1 Typically, H = N , but smaller values can be used (e.g. multiples of
τ ).
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3.2 Design of the cost functions

3.2.1 Content-based segmentation cost Φ

The objective of the content-based segmentation cost is to
evaluate a set of segments according to the redundancy
of their content. Segmentations with lower costs are ex-
pected to consist of segments built on the same musical pat-
terns. Different families of functions can be considered, like
abrupt change detection criteria or similarity functions.

Abrupt change detection criteria assign a low cost to
segments associated to probable boundaries. In automatic
structure inference, [3] uses for example a “novelty func-
tion” based on the analysis of the local homogeneity of the
song over time.

Similarity functions aim to assign a low cost to segments
made of sequences of features repeated elsewhere in the
song. We can define such a function as

Φ(sk) = minθ∈Zk
{φ(Xtk+mk

tk
, Xθ+mk

θ )}. (3)

The lowest dissimilarity φ is taken between the sequence
of features Xtk+mk

tk
from sk (of length mk) and any other

sequence of the same length contained in a portion Zk ofX .
In particular, Φ(sk) = 0 when the sequence of features of sk
is exactly repeated elsewhere in Zk, Φ(sk) > 0 otherwise.
Zk = [1, tk−mk

] ∪ [tk+mk
, N ] can be chosen to avoid

intra-segment comparisons. In the case of a binary dissimi-
larity, where a song is described as a sequence of symbolic
features, the following function can be chosen :

φ(Xtk+mk
tk

, Xθ+mk

θ ) =

mk−1∑
p=0

1− δ(xtk+p, xθ+p), (4)

where δ is Kronecker’s delta (equals 1 when arguments have
the same value, 0 otherwise). More generally any non-
binary function can be used in equation (3).

3.2.2 Regularity cost Ψ

The regularity cost Ψ of a segmentation is based on the mea-
sure of the deviation between the length of its segments from
a reference length τ . It can show the following properties :

1. Ψ(τ) = 0,

2. Ψ(mk) > 0, taking higher values as the segment
length mk moves away from τ .

A lot of functions can satisfy these properties. We consider
two categories of functions : convex and non-convex func-
tions. As non-convex functions verify the property :

Ψ(τ) + Ψ(τ + ∆) < Ψ(τ + ∆1) + Ψ(τ + ∆2) (5)

with
∆ = ∆1 + ∆2, (6)

Figure 2. Examples of regularity costs Ψα for
α = {0.5, 1, 2} and τ = 32

∆1 > 0 and ∆2 > 0 (7)

they favor segmentations made of fewer irregular segments.
By contrast, convex functions tend to favor segmentations
with irregularities spread across several segments.

As an illustration, we consider the following family of
symmetric functions derived from the lα norm :

Ψα(mk) = |mk

τ
− 1|α (8)

mk is the length of interval sk, and α controls the convexity
of the function (we have a non-convex function if 0 < α <
1, and a convex one if α ≥ 1). Figure 2 shows Ψα for
α = {0.5, 1, 2}.

3.3 Balance parameter λ

We consider that λ depends on τ as the probability of having
irregular segments grows with the number of segments, and
therefore with the inverse of τ . We choose the linear relation
λ(τ) = λτ , where λ is a constant parameter to be tuned.

4. APPLICATION TO THE STRUCTURAL
SEGMENTATION OF SONGS

The work presented in section 3 is primarily intended to the
structural segmentation of songs. Automatic music structure
inference is a difficult task, because the problem to be solved
is usually ill-posed. Moreover, it requires the analysis and
the complex combination of features and criteria through the
development of sophisticated metrics and algorithms. In this
section, we review briefly the main state-of-the-art methods
for automatic structural segmentation of songs, before de-
scribing two structural segmentation systems implemented
from the proposed method.

4.1 State-of-the-art

Different approaches have been proposed to the problem of
automatic structure inference. They generally use acous-
tic features, such as Mel-Frequency Cepstral Coefficients
(MFCCs) and Chroma vectors, which characterize the in-
strumental timbre and the harmonic content respectively.
Other features are described in [17], [1], and [8]. Struc-
tural segments are assumed to show stable instrumentation
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(often associated to homogeneous timbre) and therefore to
appear as blocks with specific textures in similarity matri-
ces [3,12], or sequences of similar states in Hidden Markov
Models (HMMs) [11].

Repeated harmonic progressions can be detected by lo-
calizing the sequences of high similarity coefficients in sub-
diagonals of the chroma-based similarity matrix [4]. Other
approaches, like HMMs [10,14], or more recently Non neg-
ative Matrix Factorization [20] are also used for the recogni-
tion of repeated harmonic patterns. Some methods use dy-
namic programming : Shiu et al. interpret the chroma-based
similarity matrix as a time-state representation and use the
Viterbi algorithm to find the path with the highest score in
terms of similarity through it [15]. A constraint is set to give
priority to the diagonal direction for the path, and implicitly
influence the length of the estimated structural segments.

Some other approaches combine these content-based
methods by means of optimization problems, as in [8, 12].
A more detailed state of the art is available in [13].

In the following section, we present two systems that in-
fer the structural segmentation of a song, incorporating the
idea of ”structural pulsation period” 2 .

4.2 Presentation of the systems

These systems perform a structural segmentation of songs
combining content-based segmentation under a regularity
constraint by means of the Viterbi algorithm presented in
section 3.1. System 1 uses acoustic features to compute
change detection criteria and estimates the main structural
pulsation period τ from the audio. System 2 analyzes sym-
bolic features, uses a similarity function and prior knowl-
edge of τ (fixed at 32 beats). As features are considered
at the beat scale, a beat detection system is needed. We
evaluate for these 2 systems the impact of incorporating a
regularity constraint on the relative performance of the seg-
mentation.

4.2.1 System 1 : combination of change detection criteria
on acoustic features

The system we consider is the one described in [16]. In
this paper, we consider variants of this system both with
and without the regularity constraint in order to analyze its
impact on structural segmentation inference. The content-
based segmentation cost is based on 3 statistical criteria
which measure for each temporal index the likelihood ratio
of a structural segment boundary. This criterion combines
instrumental changes, short events and contrastive patterns
over time.

The criteria are combined in a weighted sum to form
what we name here the content-based segmentation cost. A

2 This can be seen as a way to constrain the ill-posed problem of struc-
tural segmentation towards a well-defined solution.

linear regularity cost function is used to perform the Viterbi
approach described in section 3.1, to find the segmentation
with lowest cost. The main structural pulsation period of the
song is estimated by a Fourier transform on the instrumental
change criterion.

4.2.2 System 2 : similarity function on symbolic features

It is interesting to consider symbolic features for structure
inference as other means of music description. The joint
use of various features in a global and versatile retrieval sys-
tem may increase the accuracy of the estimated segmenta-
tion [19]. The symbols can be obtained for instance from a
score of the piece. System 2 uses chords estimations to com-
pute the similarity function described with the equations (3)
and (4) of section 3.2.1. Each chord class is associated to a
different symbol, to obtain a quite neutral symbolic descrip-
tion of the song. The size of the alphabet of symbols we use
is the number of chord classes used by the chord estimator
(e.g. 24 classes for major and minor chords). Each symbol
corresponds to a duration of 2 beats, in order to be consistent
with the temporal scale used in [2].

The structural pulsation period value τ is considered as
prior knowledge and used in the regularity cost Ψα of equa-
tion (8), section 3.2.2. The content-based cost and the reg-
ularity cost are then combined using equations (1) and (2)
from section 2, and the segmentation with lower cost is
found using Viterbi algorithm from section 3.1.

5. EVALUATION

5.1 Evaluation database

The algorithms have been evaluated using the RWC popular
music database [6], and the set of reference annotations pro-
vided by [2], used in MIREX 2010. This database consists
of 100 songs written and produced for research purposes.

5.2 Evaluation metrics

The evaluation of the segmentation is done by Precision (P ),
Recall (R) and F-measure (F ) metrics. Let sR be the set of
reference boundaries (annotations) and sE the set of esti-
mated ones, they are respectively defined as :

P =
|sE ∩ sR|
|sE |

;R =
|sE ∩ sR|
|sR|

;F =
2PR

(P +R)
. (9)

The matching of reference and estimated boundaries is
performed within particular tolerance windows. We con-
sider 0.5 s and 3 s as in MIREX 2010. Note that each bound-
ary is used only once during the matching process.

5.3 Feature extraction and algorithm parametrization

System 1 (which uses change detection criteria) uses 20
MFCCs (including the 0th coefficient), extracted from

486



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

Tolerance window = 0.5 sec.
system α λ P (%) R(%) F (%)

1 - 0 10.1 53.6 17.0
1 0.5 23.9 24.3 23.8

Tolerance window = 3 sec.
system α λ P (%) R(%) F (%)

1 - 0 16.8 89.3 28.2
1 0.5 61.2 63.0 61.4

Table 1. Average Precision (P ), Recall (R), and F-measure
(F ) for two versions of System 1 on the RWC pop database.

frames of length 23.2 ms, and a hop size of 11.6 ms (us-
ing scripts from MA toolbox by Beth Logan and Malcolm
Slaney 3 ). Chroma vectors (12 coefficients) are extracted
from frames of length 92.9 ms, and a hop size of 23.2 ms.
Chroma vectors and beats estimation are computed thanks
to LabRosa scripts 4 .

System 2 (based on a similarity function) inputs the
chords transcriptions obtained by the algorithm from Ueda
et al., described in [18], and uses the downbeat annota-
tions available with the RWC database 5 . The reference
annotations show that more than 80% of the songs have
a main structural pulsation of 32 beats. We will then use
τ = 32 beats as prior knowledge for our evaluation, and
H = 3τ as the maximal number of admissible predecessors
for each temporal unit.

A preliminary study on a subset of RWC popular was car-
ried out to identify reasonable values of λ which fall within
the interval [0, 1]. Three values of α are chosen to con-
sider regularity costs functions with different convexities :
a non-convex regularity cost function (α = 0.5), a convex
regularity cost function (α = 2), and the intermediate case
α = 1.

5.4 Results

The values gathered in Tables 1 and 2 for System 1 and
2 show that the overall mean F-measures increase signifi-
cantly when the regularity cost is introduced.

Figure 3 shows the average F-measure obtained with Sys-
tem 2 for the 3 regularity costs mentioned in 5.3. The values
of λ corresponding to optimal performance appear in Table
2 for each case. The value of α has an impact on the accu-
racy of the estimated boundaries : it can be seen that, for a
small tolerance, a non-convex regularity cost function gives
better boundary accuracy than a convex one. This can be
explained by the fact previously mentioned, that the convex
case (α = 2) tends to spread structural irregularities (devi-

3 http://www.ofai.at/elias.pampalk/ma/documentation.html
4 http://labrosa.ee.columbia.edu/projects/coversongs/
5 http://staff.aist.go.jp/m.goto/RWC-MDB/

Tolerance window = 0.5 sec.
system α λ P (%) R(%) F (%)

2 - 0 17.9 31.9 22.0
0.5 0.30 37.7 34.8 35.6
1 0.30 34.7 32.3 33.0
2 0.95 29.3 26.8 27.5
Tolerance window = 3 sec.

system α λ P (%) R(%) F (%)

2 - 0 36.1 64.7 44.5
0.5 0.15 63.1 63.1 62.0
1 0.15 63.4 64.1 62.7
2 0.60 64.5 60.0 61.2

Table 2. Average Precision (P ), Recall (R), and F-measure
(F ) for System 2 (optimally tuned, considering λ ∈ [0 : 1]),
on the database described in 5.1.

ations from the ideal segmentation with segments of length
τ ) across several structural segments. On the contrary, the
non-convex case (α = 0.5) tends to concentrate them on a
few segments. These results therefore show not only the ad-
vantage of the regularity constraint but also the importance
of the fine properties of the corresponding cost function.

As a point of comparison, the best system in struc-
tural segmentation at MIREX 2010 6 (MND1) obtained F-
measures of 35.9% and 60.5% (for tolerance windows of
0.5 s and 3 s respectively) on the same database. Note
however that System 2 relies on a manual annotation of the
downbeats.

6. CONCLUSION

The work presented in this paper has highlighted the rele-
vance of incorporating a regularity constraint in the task of
structural segmentation. Even with very basic cost func-
tions as the ones considered in the present work, the very
existence of the regularity constraint favors the retrieval of
a well-defined solution. The Viterbi implementation, which
we have detailed, allows a fast calculation of the optimal so-
lution, and it can be applied in a generic way to any type of
cost function.

The corresponding Matlab code will be made available to
the MIR community 7 for enabling further experimental in-
vestigation within diverse structural segmentation systems
and possibly for other tasks in MIR where the regularity
constraint can be meaningful.

6 http://nema.lis.illinois.edu/nema out/mirex2010/results/struct/mirex10
/summary.html

7 http://www.irisa.fr/metiss/logiciel/
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Figure 3. Evolution of the average F-measures of Sys-
tem 2 on the database described in 5.1, as a function of
balance parameter λ, for 3 types of regularity cost function
(Ψα={0.5,1,2}, τ = 32).
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ABSTRACT

We propose the novel audio feature structural change for
the analysis and visualisation of recorded music, and argue
that it is related to a particular notion of musical complex-
ity. Structural change is a meta feature that can be calcu-
lated from an arbitrary frame-wise basis feature, with each
element in the structural change feature vector representing
the change of the basis feature at a different time scale. We
describe an efficient implementation of the feature and dis-
cuss its properties based on three basis features pertaining
to harmony, rhythm and timbre. We present a novel flower-
like visualisation that allows us to illustrate the overall struc-
tural change characteristics of a piece of audio in a compact
way. Several examples of real-world music and synthesised
audio exemplify the characteristics of the structural change
feature. We present the results of a web-based listening ex-
periment with 197 participants to show the validity of the
proposed feature.
Keywords: audio, musical complexity, visualisation

1. INTRODUCTION

A piece of music has many qualities that influence how it is
perceived by human beings. These qualities include timbre,
rhythm and harmony. One further, distinct property is the
way in which timbre, rhythm, harmony and other features
are temporally organised into units of various lengths over
the course of the piece, from the smallest note change to the
change between two sections. In this paper we propose an
audio feature aimed at characterising part of this temporal,
structural organisation.

A measure of structural change can be useful for mu-
sic browsing within a track or in collections of music. In
particular, suitable visualisations of the feature can directly

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

be used for concise thumbnail-like descriptions of musical
pieces. As a measure of complexity, structural change lends
itself to the exploration of the cultural evolution of music.

Parry [8] provides an overview of research in music com-
plexity and applies several measures of complexity on sym-
bolic music. In the audio domain, Streich [10] gives a com-
prehensive description of existing theories and techniques.
He also discusses many definitions of complexity in science
and their application to music, noting that pure information-
theoretical and mathematical approaches such as entropy
and Kolmogorov complexity can limit the exploration of
human-perceived complexity.

Our approach is inspired by a biological notion of com-
plexity [1] according to which things are defined as more
complex the less likely they could have come into existence
by chance. More specifically, we focus on the aspect of dis-
tinction, the fact that “different parts of the complex behave
differently” [5]. As an example in the domain of audio, con-
sider two ten-second waveforms: one exclusively consisting
of pink noise, the other one consisting of five seconds of
pink noise followed by five seconds of white noise. Clearly,
something must have happened in the middle of the second
waveform that resulted in this change, or, in musical terms,
the second piece must have had a ‘composer’.

In real music, such structural changes happen in all
musical qualities (including rhythm and harmony), and—
equally importantly—they happen on all time scales within
the range of the length of a piece. Our proposed feature
captures these structural changes at several time scales. Our
assumption is that it correlates with the degree to which the
music was composed, an indication of complexity.

We would like to stress that the structural change feature
is unrelated to any instantaneous complexity listeners may
perceive. The timbre of a complete orchestra playing the
same note, or the harmony of a rare jazz chord may sound
complex, but our method exclusively aims at discovering the
quantity of change.

Given an arbitrary audio feature (for example chroma),
calculated for short frames across a piece of music, our pro-
posed method calculates a meta-feature at every frame by
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comparing statistics of the feature in a window before the
current frame with statistics of a window after the current
frame, i.e. a it compares left to right. This method resembles
Foote’s convolution with a checkerboard kernel [2], which
is used for structural segmentation. Our approach focuses
on the amount of change itself as a valid property of mu-
sic. It is more similar in scope to Streich’s tonal complexity
measure [10, Chapter 4], which compares the harmonic con-
tent in one short-term window to that in a longer window.
However, we are concerned with multiple time scales, and
in order to capture the structural changes at different time
scales this calculation is done for several different window
sizes, resulting in a vector-valued feature.

There has been previous research in multi-time-
scale analysis of audio properties, most prominently the
keyscapes proposed by Sapp [9] and extensions thereof [4].
These analyses are aimed at providing information about
what classes of harmonies are present in the signal at dif-
ferent time scales. While a visualisation of these classes
may reveal changes in the signal, our proposed feature is
concerned with the amount of change in any kind of frame-
wise audio feature. In short, our approach combines Foote’s
measure of change with Sapp’s multi-time-scale approach,
and Streich’s application to musical complexity.

The remainder of the paper is structured as follows. Sec-
tion 2 provides a general formulation of our proposed fea-
ture and outlines an efficient implementation. In Section 3
we exemplify the use of the feature with three different ba-
sis features and propose a visualisation that summarises the
resulting structural change features for a whole track. In
Section 5 we provide evidence for the validity of our fea-
ture based on a crowd-sourcing experiment. We discuss our
approach and future work in Section 6.

2. STRUCTURAL CHANGE ALGORITHM

This section formulates the structural change feature in
mathematical terms and provides a description of an effi-
cient implementation.

2.1 Formulation

The formulation of the structural change feature is relatively
straight-forward. Since it is designed as a meta-feature, we
assume that the m-dimensional audio feature vector xi ∈
Rm, i = 1, . . . , N has been calculated for all N frames of a
music track.

At frame i, the idea is to compare a summary
s[i−k+1:i−1] ∈ Rm of the features in the k frames to the
‘left’ to a summary s[i:i+k] ∈ Rm of the features in the k
frames to the ‘right’. 1 For example, in our implementation
below the summary is the mean vector.

1 The dimension of the summary does not have to be the same m as that
of the feature, but we use it here for simplicity.

We also assume that we have a non-negative divergence
function d : Rm × Rm → R+ that assigns a divergence
to a pair of feature summaries, for example the Euclidean
distance or the Jenson-Shannon divergence (as in our im-
plementation, see Section 3.2). Effectively, d will compare
the windows to the left and right of the ith frame.

The characteristic of the structural change feature is that
it samples the divergence of the left and right windows at
different window sizes wj , j = 1, . . . , n. The structural
change feature at the ith frame is the n-dimensional vector
vi =

(
v1

i , . . . , vn
i

)
of the resulting divergences, where

vj
i =


d(s[i−wj+1:i−1], s[i:i+wj ]),

if wj < i < N − wj + 1

0 otherwise.
(1)

While the window widths are arbitrary, it is convenient to
think of them as increasing. For example, one possibility is
to use window widths increasing by powers of 2:

wj = 2j−1. (2)

Using several large windows increases the number of com-
putations, an issue which we address below.

2.2 An efficient implementation strategy

Calculation of the structural change is relatively costly be-
cause 2n summaries s[.:.] have to be calculated at every
frame, two for every window width. Even in the case
where the summary is simply the mean of the feature vec-
tors’ elements over time computations can become expen-
sive: calculating the sums (required for the means) leads to
2mN

∑n
j=1(wj − 1) = 2mnN(W − 1) additions for the

whole track, where W is the average window width. For a
feature with m = 12 dimensions, a track with N = 2500
frames, n = 8 different window widths and an average win-
dow size of W = 100 these are nearly 48 million additions.
However, when the summary function is indeed the mean,
then we can calculate every single summary as just one vec-
tor difference (m differences)

s[i1 : i2] = ci2 − ci1 (3)

of two vectors from the cumulative feature matrix C =
(c0, . . . , cN ). The matrix C can be easily pre-calculated
as

ci =

i∑
i′=0

xi′ , (4)

where we set x0 = 0. Pre-calculating C is cheap, it costs
nN additions, and the additions performed during the struc-
tural change calculations are reduced to 2mnN , i.e. by a
factor of W . We have implemented the algorithm in C++
as a library that can be directly included into Vamp feature
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plugins 2 . The source code for this library can be obtained
from http://github.com/lastfm/.

The window sizes from Equation (2), the mean summary
function and the Jenson-Shannon divergence are used in our
example implementation below, which represents one par-
ticular possibility of configuring the algorithm.

3. IMPLEMENTATION WITH
THREE BASIS FEATURES

We apply the structural change algorithm to three differ-
ent features chosen to represent three qualities of music:
chroma (harmony), rhythm and timbre. This section de-
scribes the design choices we have made to achieve this.

3.1 The Basis Features

For each of the qualities described by the basis features—
chroma, rhythm and timbre—we separately extract the
structural change features (SC) as described in Section 2:
chroma SC, rhythm SC and timbre SC. All features are ex-
tracted from mp3 files sampled at 44100 kHz.

Chroma. Chroma [3] is a 12-dimensional feature of
activity values pertaining to the twelve pitch classes (C,
C], . . . , B), a representation of the instantaneous harmony.
We use an existing Vamp plugin implementation 3 . The
method [6] makes use of the discrete Fourier transform to
obtain a spectrogram, maps every spectral frame to the log-
frequency space (pitch space) via a linear transform and up-
dates the values to adjust for tuning differences; the chroma
vectors are weighted sums of the adjusted pitch space spec-
tral bins. We do not use the approximate transcription
(NNLS) step but otherwise use the default parameters with
a step size of 11025 samples (250 ms).

Rhythm. The fluctuation patterns (FP) feature [7] was
designed to describe the rhythmic signature of musical au-
dio. The FPs are calculated on Hamming-windowed seg-
ments of approximately 3 seconds length, with a step size of
one second (44100 samples), which are further sub-divided
into 256 frames with a length of 512 samples. The main
idea is to use the dB amplitude of these 256 frames at dif-
ferent frequency bands as a time series: the spectrum of this
time series at a particular frequency band is the FP of that
frequency band. We sum the FPs of all frequency bands into
one band in order to eliminate timbre influence.

Timbre. The Mel-spectrum is a warped frequency spec-
trum obtained by taking the discrete Fourier transform of an
audio signal, taking the logarithm of the spectral energies
to obtain dB values, and mapping the spectrum onto Mel-
frequency spaced bins that are linear with respect to human
pitch perception. We use 36 Mel-frequency bins. Since the
feature is extracted together with the FP, the hop size is one

2 http://www.vamp-plugins.org/
3 http://isophonics.net/nnls-chroma

second and the spectral bins are means taken over 256 small
frames (512 samples) across a 3 second window.

3.2 Window, Summary and Divergence Functions

We choose power-of-two window widths (Equation 2). In
order to align time-scales we set j = 1, . . . , 6 for both
rhythm and timbre features, and j = 3, . . . , 8 for the chroma
feature. This means that the structural change feature is 6-
dimensional with window widths (i.e. those of the left or
right windows) are 1, 2, 4, . . ., 32 seconds.

We use the mean summary function s, which is imple-
mented as described in Section 2.2. Since all basis fea-
tures can be interpreted as distributions in their respective
domains, we normalise each summary vector, and use the
Jenson-Shannon divergence as our divergence measure d,
i.e. for two normalised summary vectors s1 and s2

d(s1, s2) =
KL(s1||M) + KL(s2||M)

2
(5)

where M = s1+s2

2 and KL is the Kullback-Leibler diver-
gence given by

KL(x||y) =

n∑
i=1

xi log(xi/yi). (6)

3.3 An Example

We have marked a few interesting aspects of the structural
change features for the song ‘Lucky’ in Figure 1 (light
colours mean high values). The labels a mark two drum
stops, before the first chorus and the first bridge, respec-
tively. Timbre and rhythm SC both show a double bulge,
especially in the three bins of short time scales, one at the
beginning and one at the end of each drum stop. At b only
the timbre SC shows a high value, indicating the beginning
of the second chorus (without a clear rhythm change). La-
bel c marks a part with little musical movement: no actual
chord changes, but lots of sound variation, including spo-
ken voice excerpts: this is reflected in relatively low chroma
SC activity, but relatively high timbre SC activity. Label d
marks a calm bridge section (no drums), followed by the
key change that leads into the next chorus. Two clear timbre
SC peaks show the boundaries of the bridge, and the high
chroma long-scale SC values reflect the key change.

4. TRACK-LEVEL SUMMARISATION AND
VISUALISATION

In some contexts it is useful to be able to summarise the
structural change of a piece of music, for example, sum-
marising the feature for further processing by machine
learning algorithms. Summarisation is also necessary to
generate track-level visualisations, such as the Audio Flow-
ers, which we present below.
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Figure 1: Structural change in the three basis features for the song ‘Lucky’ as performed by Britney Spears. See Section 3.3.

4.1 Statistics

The most straight-forward way of summarising the SC
frames is to take the mean average over all structural change
feature frames of the whole piece, resulting in one mean fea-
ture vector. In cases where structural change is concentrated
in a small part of the piece of music, however, the mean can
be misleading because it suggests that the rate of change in
the whole piece is relatively high. The median is a more ro-
bust average statistic, since it discards such outliers. We use
both because mean, median and their difference are interest-
ing properties of a piece of music.

We extracted the structural change features for our three
basis features from mp3 files of 17,116 pieces of popular
from the British singles charts between 1951 and 2011, then
averaged them in two ways by taking the mean and median
over time. Since we have six window widths, three basis
features and two averages for each of the combinations, each
of the tracks has 6 × 3 × 2 = 36 values. For each of the
36 dimensions we apply quantile normalisation (normalised
ranking) to spread values within the interval [0, 1] with re-
spect to the whole collection of songs.

4.2 Audio Flowers

In order to turn the 36 values for each track into an intuitive
visual representation (examples in Figure 3), we treat each
musical quality separately to create a flower ‘petal’: red for
rhythm, green for harmony, and blue for timbre. In any of
the three petals, the central, opaque part visualises the nor-
malised median values, the translucent part corresponds to
the normalised mean. The values closest to the centre of the
Audio Flower represent short time scales, the values near
the tips of the petals represent the longest time scale. The
plot is realised by calculating a 100-point smoothed inter-

polation of the six values. We chose the median to be used
for the opaque part because it is a robust average of a track’s
structural change and is likely to be the most reliable mea-
sure. The translucent part is only visible where the mean ex-
ceeds the median value. This happens in cases when strong
structural changes happen, but on a relatively short section
of a track, as we will illustrate below.

Figure 2 shows the results for a few artificially con-
structed pieces of audio. Figure 2a illustrates 300 seconds of
pink noise, Figure 2b 150 seconds of pink noise followed by
another 150 of white noise. The white noise Audio Flower
shows virtually no sign of structural change, while the Au-
dio Flower of the mixed pink and white noise file has a slight
bulge indicating a rare long-term change in timbre (the cor-
responding rhythm value is slightly raised, too). This in-
dication of ‘composedness’, or complexity, is exactly what
we would expect in that situation (cf. Section 1). The other
two Audio Flowers are closer to real music: Figure 2c rep-
resents a single chord, played on a piano but with two differ-
ent rhythms alternating at a relativley long time scale of (24
seconds). As we could expect, here too, harmonic change is
virtually absent, and the high values towards the tip of the
red rhythm petal reflects the long-term rhythm changes. The
change in timbre that comes with the rhythm change can be
observed, too. Figure 2d was produced from a piece of mu-
sic with the same rhythm structure, but instead of a single
chord we used a cadence, i.e. a more complex chord pattern.
The Audio Flower represents this added complexity as high
values towards the origin of the green harmony petal, while
the rest of the flower remains virtually unchanged.

Figure 3a shows the Audio Flower of the song ‘Lucky’,
which we have already treated in Figure 1. The key change
happens only once during the piece, indicated through the
high levels of chroma SC at d in Figure 1. Due to this ‘out-
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(a) pink noise (b) pink noise, then white noise

(c) chord, changing rhythm (d) cadence, changing rhythm

Figure 2: Artificial examples: (a) pink noise, (b) pink noise
followed by white noise, (c) single major piano chord with
different rhythmic sections, (d) repeated major cadences
with different rhythmic sections.

lier’ the normalised median is smaller than the normalised
mean at long time scales—the translucent part of the Audio
Flower becomes visible.

Figure 3b depicts the Audio Flower of the song ‘Smells
Like Teen Spirit’ as recorded by the band Nirvana. The most
striking aspect of this song is the mushroom-shaped timbre
petal (blue). This is common in songs that are organised
alternating soft and loud sections.

In comparison, the timbre petal of the Audio Flowers in
Figures 3c and 3d is decidedly thicker, especially at shorter
timescales (towards the origin). In fact, the shape of tim-
bre and chroma petals is very similar between these two
Audio Flowers. This is not surprising because they are in-
deed two renditions of the same song ‘Time After Time’,
one by Cyndi Lauper, one by Ronan Keating. The shape of
the rhythm petal is, however, quite dissimilar, which sug-
gests their approaches to rhythm are different. A gallery
of further examples can be found at http://last.fm/
playground/demo/complexity.

5. INTERNET-BASED EXPERIMENT

Finding evidence to support our hypothesis that our features
correspond with human perception of structural change is
hard because unless the listeners are musicians we cannot

(a) Lucky (b) Smells Like Teen Spirit

(c) Time After Time (Lauper) (d) Time After Time (Keating)

Figure 3: Audio Flowers for the songs (a) ‘Lucky’ (as per-
formed by Britney Spears), (b) ‘Smells Like Teen Spirit’,
and two renditions of ‘Time After Time’, (c) by Cyndi Lau-
per, (d) by Ronan Keating.

assume that they even think in terms of harmony, rhythm
or timbre. In order to test whether any correlation can be
observed we set up an informal experiment on an Internet
page. A participant would randomly be given two 30 second
sound excerpts from our collection of chart singles and was
then asked to decide which changed more in terms of one
of our three basis features. The tracks were chosen to dif-
fer in their amount of structural change: the average of the
normalised median structural change values 4 for one track
was high (> 0.7) and that of the other one was low (< 0.3).
The web page clearly states that we look for change and di-
versity. Upon casting their rating the listener is shown the
Audio Flowers of the two songs in question as a reward and
is told which of the two our analysis deemed more change-
able. The rating was realised as a set of three radio-buttons
(first track, second track and a third one labelled ‘not sure’).
We had no control over whether the participants listened to
the tracks before voting.

At the time of writing we have collected 1428 votes from
401 raters with an mean number of 3.9 ratings (median: 2).
We analysed the 1165 ratings of the 197 participants who
voted at least three times. There is moderate agreement be-
tween user ratings and our high and low classes: in 61.4 %

4 Taking into account the short duration of the excerpts, only the first
four dimensions of the features were used in the structural change value.
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of all cases users agreed with the automatic analysis. Test-
ing against the null hypothesis of users randomly choosing
an answer, we obtain a very low p value of p < 10−14,
i.e. we are very confident that the participants’ choice is not
random. This also applies to the three qualities separately:
users agree with rhythm SC (60.0%, p < 10−3), chroma SC
(63.3%. p < 10−6) and timbre SC (60.8%, p < 10−4).

In all cases the agreement is not very high, but at this
stage we can only speculate about the causes: our feature
might express something different from what we intended
or what participants understood; the un-controlled nature
of the experiment may have led participants to randomly
choose their rating; the participants may not have had the
necessary musical experience to provide meaningful ratings.
However, the fact that we found significant agreement for all
three features separately suggests that the structural change
feature capture musical qualities listeners can relate to.

6. DISCUSSION AND FUTURE WORK

Our implementation presented in Section 3 is only one way
of using the structural change feature, and many can be
added by using alternatives for the window width func-
tion, left/right summary function and divergence function
presented here. We are particularly interested in exploring
different divergence functions, such as inverse correlation
and Euclidean distance (see also [10, Chapter 4]). Using
a different divergence function will allow us to use features
that are not necessarily non-negative, such as mel-frequency
cepstral coefficients (MFCCs) or other chroma mappings.

The proposed feature will allow classic Music Informa-
tion Retrieval tasks (such as cover song retrieval and genre
classification) to access a semantic dimension that is not
covered by existing audio features, and hence may lead to
improvements in these areas.

Finally, we hope that future studies will reveal how the
structural change feature is related to musical complexity as
perceived by humans.

7. CONCLUSIONS

We have proposed the novel audio feature structural change
for the analysis of audio recordings of music. The fea-
ture can be regarded as a meta-feature, since it measures
the change of an underlying basis feature at different time
scales. As part of our proposal we have presented the gen-
eral algorithm and an efficient implementation strategy of a
special case. We have implemented the feature with three
different basis features representing chroma, rhythm and
timbre. Analysing more than 17,000 tracks of popular mu-
sic allowed us to find a meaningful normalisation to the fea-
ture values. Based on this normalisation we have introduced
a track-level visualisation of structural change in chroma,
rhythm and timbre. Several of these visualisations, Audio

Flowers, have been presented to illustrate the features’ char-
acteristics and show that interpreting the amount of struc-
tural change as musical complexity is possible. We con-
ducted a informal web-based experiment whose results sug-
gest that our proposed feature correlates with the human per-
ception of change in music.
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ABSTRACT

An unsupervised approach for automatic music structure anal-
ysis is proposed resorting to the following assumption: If
the feature vectors extracted from a specific music segment
are drawn from a single subspace, then the sequence of fea-
ture vectors extracted from a music recording will lie in a
union of as many subspaces as the music segments in this
recording are. It is well known that each feature vector stem-
ming from a union of independent linear subspaces admits
a sparse representation with respect to a dictionary formed
by all other feature vectors with nonzero coefficients associ-
ated only to feature vectors that stem from its own subspace.
Such sparse representation reveals the relationships among
the feature vectors and it is used to construct a similarity
graph, the so-called ℓ1-graph. Accordingly, the segmenta-
tion of audio features is obtained by applying spectral clus-
tering to the ℓ1-graph. The performance of the just described
approach is assessed by conducting experiments on the Pop-
Music and the UPF Beatles benchmark datasets. Promising
results are reported.

1. INTRODUCTION

A music signal carries a highly structured information at
several levels. At the lowest level, a structure is defined
by the individual notes, their timbral characteristics, as well
as their pitch and time intervals. At an intermediate level,
the notes build relatively longer structures, such as melodic
phrases, chords, and chord progressions. At the highest
level, the structural description of an entire music recording
(i.e., its musical form) emerges at the time scale of music
sections, such as intro, verse, chorus, bridge, and outro [16,
17].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c⃝ 2011 International Society for Music Information Retrieval.

The musical form of a recording is a high-level informa-
tion that can be exploited in several music information re-
trieval (MIR) tasks, including music thumbnailing and sum-
marization [3], chord transcription [12], music semantics
learning and music annotation [1], song segment retrieval
[1], and remixing [9]. Consequently, the interest in the au-
tomatic music form extraction or structure analysis has in-
creased as is manifested by the considerably amount of re-
search that has been done so far [1,9,10,16,19]. For a com-
prehensive review the interested reader is referred to [6, 17]
(and the references therein). The majority of methods tested
for automatic music structure analysis applies a signal pro-
cessing stage followed by a representation stage. In the first
stage, low-level feature sequences are extracted from the au-
dio signal in order to model its timbral, melodic, and rhyth-
mic content [17]. This is consistent with the findings of
Bruderer et al., who state that the perception of structural
boundaries in popular music is mainly influenced by the
combination of changes in timbre, tonality, and rhythm over
the music piece [2]. At the representation stage, a recur-
rence plot or a similarity matrix is analyzed in order to iden-
tify repetitive patterns in the feature sequences by employ-
ing hidden Markov models, clustering methods, etc. [6, 17].

In this paper, an unsupervised approach for automatic
music structure analysis is proposed. To begin with, each
audio recording is represented by a sequence of audio fea-
tures capturing the variations between the different music
segments. Since the music structure is strongly determined
by repetition, a similarity matrix should be constructed, that
will be analyzed next. Here, the similarity matrix is built
by adopting an one-to-all sparse reconstruction rather than
one-to-one (i.e., pairwise) comparisons. To this end, the
ℓ1-graph [5] is constructed in order to capture relationships
among the feature vectors. The segmentation of audio fea-
tures is obtained by applying spectral clustering to the ℓ1-
graph. Apart from the conventional mel-frequency cepstral
coefficients and chroma features, frequently employed in mu-
sic structure analysis, the auditory temporal modulations
are also tested here. The performance of the proposed ap-
proach is assessed by conducting experiments on two man-
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ually annotated benchmark datasets, namely the PopMu-
sic [10] and the UPF Beatles. The experimental results val-
idate the effectiveness of the proposed approach in music
structure analysis reaching the performance of the state-of-
the-art music structure analysis methods.

The remainder of the paper is as follows. In Section 2,
the audio features employed are briefly described. The ℓ1-
graph based music structural analysis framework is detailed
in Section 3. Datasets, evaluation metrics, and experimental
results are presented in Section 4. Conclusions are drawn
and future research directions are indicated in Section 5.

2. AUDIO FEATURE REPRESENTATION

Each 22.050-Hz sampled monaural waveform is parameter-
ized by employing three audio features in order to capture
the variations between different music segments. The fea-
ture set includes the auditory temporal modulations (ATMs),
the mel-frequency cepstral coefficients (MFCCs), and the
chroma features.

1) Auditory temporal modulations: ATMs are obtained
by modeling the path of human auditory processing. They
carry important time-varying information of the music sig-
nal [15]. First, by modeling the early auditory system, the
acoustic signal is converted into a time-frequency distribu-
tion along a logarithmic frequency axis, the so-called au-
ditory spectrogram. In this paper, the early auditory sys-
tem is modeled by employing the Lyons’ passive ear model
[11]. The derived auditory spectrogram consists of 96 fre-
quency channels ranging from 62 Hz to 11 kHz. The audi-
tory spectrogram is then downsampled along the time axis
by a factor of 150 ms, which allows to focus on a more
meaningful time-scale for music structural analysis. The
underlying temporal modulations of the music signal are de-
rived by applying a wavelet filter along each temporal row
of the auditory spectrogram for a set of 8 discrete rates r
∈ {2, 4, 8, 16, 32, 64, 128, 256} Hz ranging from slow to
fast temporal rates [15]. Consequently, the entire auditory
spectrogram is modeled by a three-dimensional representa-
tion of frequency, rate, and time, which is then unfolded
along the time-mode in order to obtain a sequence of two-
dimensional ATM features.

2) Mel-frequency cepstral coefficients: MFCCs param-
eterize the rough shape of spectral envelope [13] and thus
encode the timbral properties of the music signal, which
are closely related to the perception of music structure [2].
Following [16], the MFCCs calculation employs frames of
duration 92.9 ms with a hope size of 46.45 ms, and a 42-
band filter bank. The correlation between frequency bands
is reduced by applying the discrete cosine transform along
the log-energies of the bands. The lowest coefficient (i.e.,
zero-th order) is discarded and the subsequent 12 coeffi-
cients form the feature vector that undergoes a zero-mean

normalization.
3) Chroma: Chroma features are adept in characteriz-

ing the harmonic content of the music signal by projecting
the entire spectrum onto 12 bins representing the 12 distinct
semitones (or chroma) of a musical octave [13]. They are
calculated using 92.9 ms frames with a hope size of 23.22
ms as follows. First, the salience for different fundamental
frequencies in the range 80− 640 Hz is calculated. The lin-
ear frequency scale is transformed into a musical one by se-
lecting the maximum salience value in each frequency range
corresponding to one semitone. Finally, the octave equiva-
lence classes are summed over the whole pitch range to yield
a 12-dimensional chroma vector.

All the aforementioned features are averaged over the
beat (i.e., the basic unit of time in music) frames by em-
ploying the beat tracking algorithm described in [8]. Thus a
sequence of beat-synchronous feature vectors is obtained.

3. MUSIC STRUCTURE SEGMENTATION BASED
ON THE ℓ1-GRAPH

Since repetition governs the music structure, a common strat-
egy employed is to compare each feature vector of the music
recording with all other vectors in order to detect similari-
ties. Let a given audio recording be represented by a feature
sequence of N beat frames, i.e., {x1,x2, . . . ,xN}. The
similarity between the feature vectors is frequently mea-
sured by constructing the self-similarity matrix (SDM) D ∈
RN×N with elements dij = d(xi,xj), i, j ∈ {i, 2, . . . , N},
where d(·, ·) is a suitable distance metric [9, 16, 17]. Com-
mon distance metrics are the Euclidean, dE(xi,xj) = ∥xi−
xj∥2 and the cosine distance, dC(xi,xj) = 0.5(1− xT

i xj

∥xi∥2∥xj∥2
,

where ∥.∥2 denotes the ℓ2 vector norm. However, the afore-
mentioned approach suffers from two drawbacks: 1) It is
very sensitive to noise, since the employed distance metrics
are not robust to noise. 2) The resulting SDM is dense and
thus it cannot provide the locality information (i.e., to re-
veal the relationships among neighbor feature vectors that
belong to the same segment class), which is valuable in the
problem under study.

In order to alleviate the aforementioned drawbacks, we
propose to measure the similarities between the feature vec-
tors in an one-to-all sparse reconstruction manner rather
than to employ the conventional one-to-one distance appro-
ach by exploiting recent findings in sparse subspace cluster-
ing [7].

Formally, let a given audio recording of K music seg-
ments be represented by a sequence of N audio feature vec-
tors of size M , i.e., X = [x1|x2| . . . |xN ] ∈ RM×N . By
assuming that the feature vectors belonging to the same mu-
sic segment lie into the same subspace, the columns of X
are drawn from a union of K independent linear subspaces
of unknown dimensions. It has been proved that if a feature
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vector stems from a union of independent linear subspaces,
it admits a sparse representation with respect to a dictio-
nary formed by all other feature vectors with the nonzero
coefficients associated to vectors drawn from its own sub-
space [7]. Therefore, by seeking the sparsest linear combi-
nation, the relationship with the other vectors lying in the
same subspace is revealed automatically. A similarity graph
built from this sparse representation, the so-called ℓ1-graph
[5] is used then in order to segment the columns of X into
K clusters by applying spectral clustering.

Let Xi = [x1|x2| . . . |xi−1|xi+1| . . . |xN ] ∈ RM×(N−1).
The sparsest solution of xi = Xic can be found by solving
the optimization problem:

argmin
c

∥c∥0 subject to xi = Xic, (1)

where ∥.∥0 is the ℓ0 quasi-norm returning the number of the
non-zero entries of a vector. Finding the solution to the opti-
mization problem (1) is NP-hard due to the nature of the un-
derlying combinational optimization. An approximate solu-
tion to the problem (1) can be obtained by replacing the ℓ0
norm with the ℓ1 norm as follows:

argmin
c

∥c∥1 subject to xi = Xic, (2)

where ∥.∥1 denotes the ℓ1 norm of a vector. It is well known
that if the solution is sparse enough and M << (N −
1), then the solution of (1) is equivalent to the solution of
(2). The optimization problem (2) can be solved in poly-
nomial time by standard linear programming methods [4].
The well-posedness of (2) relies on the condition M <<
(N − 1), i.e., the sample size must be much larger than the
feature dimension. If the ATMs are used to represent au-
dio, the sample size (i.e., the number of beats) is not much
larger than the feature vector dimension and thus the just-
mentioned condition is violated, because M = 768 and
N ≈ 500 on average in the experiments conducted. Ac-
cordingly, c is no longer sparse. To alleviate this problem,
it has been proposed to augment Xi by an M ×M identity
matrix and to solve:

argmin
c

∥c∥1 subject to xi = Bc, (3)

instead of (2), where B = [Xi | I] ∈ RM×((N−1)+M) [20].
Since the sparse coefficient vector c reveals the relation-

ships among xi and the feature vectors in Xi, the overall
sparse representation of the whole feature sequence X can
be summarized by constructing the weight matrix W using
Algorithm 1. W can be used to define the so-called ℓ1-graph
[5]. The ℓ1-graph is a directed graph G = (V,E), where
the vertices of graph V are the N audio feature vectors and
an edge (ui, uj) ∈ E exists, whenever xj participates in
the sparse representation of xi. Accordingly, the adjacency

Algorithm 1 ℓ1-Graph Construction [5].
Input: Audio feature sequence X ∈ RM×N .
Output: Weight matrix W ∈ RN×N .

1: for i = 1 → N do
2: B = [Xi | I].
3: argminc ∥c∥1 subject to xi = Bc.
4: for j = 1 → N do
5: if j < i then
6: wij = cj .
7: else
8: wij = cj−1.
9: end if

10: end for
11: end for

matrix of G is W. Unlike the conventional SDM, the adja-
cency matrix W is robust to noise. The ℓ1-graph G is an un-
balanced digraph. A balanced graph Ĝ can be built with ad-
jacency matrix Ŵ with elements ŵij = 0.5 (|wij |+ |wji|),
where |.| denotes the absolute value. Ŵ is still a valid rep-
resentation of the similarity between the features vectors,
since if xi can be expressed as a compact linear combina-
tion of some feature vectors including xj (all from the same
subspace or music segment here), then xj can also be ex-
pressed as a compact linear combination of feature vectors
in the same subspace including xi [7]. In Figure 1, the Ŵ is
depicted for the three features tested. It can be seen that Ŵ
has a block structure for the ATMs, while it is unstructured
and more dense for the MFCCs and the Chroma features.
This observation validates that the main assumptions made
in the paper hold here for the ATMs, but not for the MFCCs
and the Chroma features.

The segmentation of the audio feature vectors can be ob-
tained by spectral clustering algorithms, such as the normal-
ized cuts [18] as illustrated in Algorithm 2.

Algorithm 2 Music Segmentation via ℓ1-Graph.
Inputs: Audio feature sequence X ∈ RM×N and number
of segments K.
Output: Audio feature sequence segmentation.

1: Obtain the adjacency matrix W of ℓ1-graph by
Algorithm 1.

2: Build the symmetric adjacency matrix of the ℓ1-graph
Ĝ: Ŵ = 0.5 · (|W|+ |WT |).

3: Employ normalized cuts [18] to segment the vertices of
Ĝ into K clusters.
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Figure 1. The adjacency matrix Ŵ of the ℓ1-graph for the song “I saw her standing there” by The Beatles for (a) the ATMs,
(b) the MFCCs, and (c) the Chroma features.

4. EXPERIMENTAL EVALUATION

The performance of the proposed music structure analysis
approach is assessed by conducting experiments on two man-
ually annotated datasets of Western popular music pieces.
Several evaluation metrics are employed to assess system
performance from different points of view.

4.1 Datasets

PopMusic dataset [10]: The dataset consists of 60 music
recordings of rock, pop, hip-hop, and jazz. Half of the
recordings originate from a variety of well-known artists
appeared the past 40 years, including Britney Spears, Em-
inem, Madonna, Nirvana, etc. This subset is abbreviated as
Recent hereafter. The remaining 30 music recordings are by
The Beatles. The ground-truth segmentation of each song
contains between 2 and 15 different segments classes. The
number of classes is 6, while each recording is found to con-
tain 11 segments on average [1,10]. The subset contains the
Beatles recordings is referred ta as Beatles.

UPF Beatles dataset: 1 The dataset consists of 174
songs by The Beatles that are annotated by the musicolo-
gist Alan W. Pollack. Segmentation time stamps were in-
serted at Universitat Pompeu Fabra (UPF) as well. Each
music recording contains on average 10 segments from 5
unique classes [19]. Since all the recordings are from the
same band, there is less variation in the music style and the
timbral characteristics than the other datasets.

4.2 Evaluation Metrics

Following [1,9, 10,16,19], the segment labels are evaluated
by employing the pairwise F -measure, which is one of the
standard metrics of clustering quality. It compares pairs of

1 http://www.dtic.upf.edu/ perfe/annotations/sections/license.html

beats, which are assigned to the same cluster by music struc-
ture analysis against the reference segmentation. Let FA be
the set of similarly labeled pairs of beats in a recording ac-
cording to the music structure analysis algorithm and FH be
the set of similarly labeled pairs in the human reference seg-
mentation. The pairwise precision, Ppairwise, the pairwise
recall, Rpairwise, and the pairwise F -measure, Fpairwise,
are defined as follows: Ppairwise = |FA∩FH |

|FA| , Rpairwise =
|FA∩FH |
|FH | , and Fpairwise = 2 · Ppairwise·Rpairwise

Ppairwise+Rpairwise
, where |.|

denotes the set cardinality. The average number of segments
per song in each dataset is reported as well.

The segment boundary detection is evaluated separately
by employing the standard precision, recall, and F -measure.
Following [1, 10, 16], a boundary detected by the proposed
approach is considered correct, if it falls within some fixed
small distance δ away from the reference boundary. Each
reference boundary can be retrieved by at most one out-
put boundary. Let BA and BH denote the sets of segment
boundaries according to the music structure analysis algo-
rithm and the human reference, respectively. Then, P =
|BA∩BH |
|BA| , R = |BA∩BH |

|BH | , and F = 2 · P ·R
P+R . The parameter δ

is set to 3 s in our experiments as was also done in [1,10,16].

4.3 Experimental Results

The structural segmentation is obtained by applying the pro-
posed approach to various feature sequences. Following the
experimental setup employed in [1,9,10,16,19], the number
of clusters K was set to 6 for the PopMusic dataset, while
K = 4 for the UPF Beatles dataset. For comparison pur-
poses, experiments are conducted by applying the normal-
ized cuts [18] apart from the ℓ1-graph and the SDM with the
Euclidean distance computed for the three audio features.
The segment-type labeling performance for the PopMusic
and the UPF Beatles datasets is summarized in Table 1 and
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Table 2, respectively.

Method/Reference Dataset Fpairwise Av. Number of Segments
Beatles 0.6140 8.8333

ATM + ℓ1-graph Recent 0.5885 12.6087
based segmentation PopMusic 0.5912 11.8679

Beatles 0.4029 199.3667
MFCCs + ℓ1-graph Recent 0.3884 248.2826
based segmentation PopMusic 0.3966 239.6316

Beatles 0.4191 153.7667
Chroma + ℓ1-graph Recent 0.3520 260.3043
based segmentation PopMusic 0.3900 200

Beatles 0.4243 145.7000
ATM + SDM Recent 0.3975 141.3913
based segmentation PopMusic 0.4027 125.5283

Beatles 0.3664 226.3667
MFCCs + SMD Recent 0.3663 305.9130
based segmentation PopMusic 0.3664 260.8868

Beatles 0.3499 220.4333
Chroma + SDM Recent 0.3312 276.1739
based segmentation PopMusic 0.3418 244.6226
MFCCs unconstrained [1] PopMusic 0.577 17.9
MFCCs constrained [1] PopMusic 0.620 10.7
Chroma constrained [1] PopMusic 0.51 12

Beatles 0.425 N/A
K-means Recent 0.457 N/A
clustering [10] PopMusic 0.441 N/A

Beatles 0.538 N/A
Mean-field Recent 0.560 N/A
clustering [10] PopMusic 0.549 N/A

Beatles 0.604 N/A
Constrained Recent 0.605 N/A
clustering [10] PopMusic 0.603 N/A

Table 1. Segment-type labeling performance on the Pop-
Music dataset.

By inspecting Tables 1 and 2, it is clear that the ℓ1-graph
based segmentation outperforms the SDM based segmenta-
tion in terms of pairwise F -measure for all the audio fea-
tures employed in both datasets. Moreover, the ATMs offer
a parsimonious representation for the task of music struc-
ture analysis, especially when employed in the construction
of the ℓ1-graph.

The best results reported for segment-type labeling on
the PopMusic dataset are obtained here, when the ATMs are
employed for audio representation and the segmentation is
performed on the ℓ1-graph defined by them. These results
are comparable to the best reported results by Levy and San-
dler [10], while inferior to those reported by Barrington et
al. [1]. It is worth noting that the clustering is performed
without any constraints in the proposed approach, which is
not the case for the best results reported in [1, 10]. In an
unconstrained clustering setting, the proposed system out-

Method/Reference Fpairwise Av. Number of Segments
ATM + ℓ1-graph based segmentation 0.5938 8.5215
MFCCs + ℓ1-graph based segmentation 0.4664 181.9950
Chroma + ℓ1-graph based segmentation 0.4563 116.2989
ATM + SDM based segmentation 0.4711 81.0376
MFCCs + SDM based segmentation 0.3985 190.5489
Chroma + SDM based segmentation 0.4066 167.9239
Method in [10] as evaluated in [16] 0.584 N/A
[16] 0.599 N/A
[19] 0.600 N/A
[9] 0.621 N/A

Table 2. Segment-type labeling performance on the UPF
Beatles dataset.

Method/Reference Dataset F P R

ATM + ℓ1-graph based segmentation PopMusic 0.5227 0.4737 0.6274
MFCCs constrained [1] PopMusic 0.610 0.620 0.650
Chroma constrained [1] PopMusic 0.420 0.410 0.460
EchoNest reported in [1] PopMusic 0.450 0.410 0.560
K-means clustering [10] PopMuic 0.437 0.809 0.311
Mean-field clustering [10] PopMusic 0.448 0.366 0.665
Constrained clustering [10] PopMusic 0.590 0.648 0.567
ATM + ℓ1-graph based segmentation UPF Beatles 0.5304 0.5338 0.5670
Method in [10] as evaluated in [16] UPF Beatles 0.612 0.600 0.646
[16] UPF Beatles 0.55 0.521 0.612
Timbre [9] UPF Beatles 0.586 0.581 0.619
Chroma [9] UPF Beatles 0.500 0.465 0.522
Timbre & Chroma [9] UPF Beatles 0.536 0.49 0.55

Table 3. Boundary detection performance on the PopMusic
and the UPF Beatles dataset.

performs the systems discussed in [1, 10].
In the UPF Beatles dataset, the best results for segment-

type labeling are obtained again when the ATMs are em-
ployed for audio representation and the segmentation is per-
form on the ℓ1-graph constructed using Ŵ. The reported
results are comparable to those obtained by the state-of-the-
art music structure analysis on this dataset [16, 19]. The
proposed approach is not directly comparable to that in [9]
due to the use of slightly different reference segmentations.

The average number of segments detected by our ap-
proach is 11.86 and 8.52, when according to the ground-
truth the actual average number of segments is 11 and 10
for the PopMusic and the UPF Beatles dataset, respectively.
This result is worth noting since no constraints have been
enforced during clustering.

The performance of the proposed approach deteriorates
when either the MFCCs or the chroma features are employed
for music representation. The low pairwise F -measure and
the over-segmentation can be be attributed to the fact that
the underlying assumptions set in Section 3 do not hold for
such representations.

Since the performance of our approach is clearly inferior
when MFCCs or chroma features are used for music rep-
resentation, only the ATMs are employed in the segment-
boundary detection task. The boundary detection results are
summarized in Table 3 for both the PopMusic and the UPF
Beatles datasets. EchoNest refers to the commercial online
music boundary detection service provided by The Echon-
est and evaluated in [1]. By inspecting Table 3 the pro-
posed approach is clearly inferior to the system proposed
by Levy and Sandler [10] for music boundary detection on
both datasets. The success of the latter approach can be at-
tributed to the constraints imposed during clustering. Con-
sequently, the results obtained by the proposed approach in
music boundary detection could be considered as accept-
able, since the performance of our system is rated above
that reported for many other state-of-the-art systems with or
without constraints (e.g., the EchoNest online service). It
is worth mentioning that neither of the methods appearing
in Table 3 reaches the accuracy of the specialized bound-
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ary detection methods (e.g., that in [14]) which achieves a
boundary F -measure of 0.75 on a test set similar to the Bea-
tles subset of the PopMusic dataset. However, such bound-
ary detection methods, do not model the music structure
and provide no characterization of the segments between the
boundaries as the proposed approach as well as the methods
in [1, 9, 10, 16, 19] do.

5. CONCLUSIONS

A novel unsupervised music structure analysis approach has
been proposed. This framework resorts to ATMs for mu-
sic representation, while the segmentation is performed by
applying spectral clustering on the ℓ1-graph. The perfor-
mance of the proposed approach is assessed by conducting
experiments on two benchmark datasets. The experimental
results on music structure analysis are comparable to those
reported by other state-of-the-art music structure analysis
systems. Moreover, promising results on music boundary
detection are reported. It is believed that by imposing con-
straints during clustering in the proposed approach both the
music structure analysis and the music boundary detection
will be considerably improved. This point will be investi-
gated in the future. Another future research direction is to
automatically detect the number of music segments.
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ABSTRACT

This paper investigates techniques for predicting sequences
of continuous-valued feature vectors extracted from musi-
cal audio. In particular, we consider prediction of beat-
synchronous Mel-frequency cepstral coefficients and chroma
features in a causal setting, where features are predicted as
they unfold in time. The methods studied comprise autore-
gressive models, N-gram models incorporating a smoothing
scheme, and a novel technique based on repetition detec-
tion using a self-distance matrix. Furthermore, we propose
a method for combining predictors, which relies on a run-
ning estimate of the error variance of the predictors to in-
form a linear weighting of the predictor outputs. Results in-
dicate that incorporating information on long-term structure
improves the prediction performance for continuous-valued,
sequential musical data. For the Beatles data set, combining
the proposed self-distance based predictor with both N-gram
and autoregressive methods results in an average of 13% im-
provement compared to a linear predictive baseline.

1. INTRODUCTION

Our goal is to devise methods for predicting music in a
causal setting. Given a stream of observed music feature
vectors extracted from an audio signal, we seek to predict
future values of feature vectors. Furthermore, we seek to
incorporate domain knowledge about the underlying music
signal into the prediction process: Across musical genres,
music exhibits hierarchical temporal structure, arising cen-
trally from the identity relations between structural elements
[11]. In Western music, elementary events are typically
rhythmic, melodic or harmonic and give rise to long-term
structure characteristic of a piece’s musical form, through
application of variation and repetition. Conversely, identify-
ing parallelism in music — the occurrence of variation and
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c© 2011 International Society for Music Information Retrieval.

repetition — is agreed to bear great importance in music-
theoretical analysis [2].

This view may be considered to encompass cognitive pro-
cesses involved in music listening. Here, music consists of
a stream of events unfolding in time and experienced by a
listener [9]. The listening process is associated with predic-
tions of future events, which depend on the listener’s evolv-
ing internal model of musical structure generated by previ-
ously observed events in the stream of music. This work
is based on this causal prediction setting, where at a given
point in time only events in the past inform predictions.

Accurate prediction of spectro-temporal features, such
as Mel-frequency cepstral coefficients (MFCCs), chroma or
rhythmograms [15], is motivated by a number of applica-
tions. Firstly, audio visualisation tasks might benefit from
prediction, since live performance environments typically
constrain the permissible amount of latency introduced in
the audio processing chain [6]. Similarly, it is of interest to
investigate robust real-time audio streaming applications for
live music performance [10]. In the latter case, employing
prediction techniques might allow the effect of network la-
tency to be offset. Further applications of audio based pre-
diction are automated musical accompaniment [8, 20] and
audio feature models for automated music transcription.

In addition, prediction accuracy can be related to the as-
sumed model of the underlying distribution of observations.
In terms of inductive inference [19], accurate prediction re-
lates to effective data compression of observations. This re-
lationship might be exploited in online music content analy-
sis applications. Existing work has examined the problem of
offline music content analysis, where compressibility is used
to evaluate structural similarity between pieces of music [1].
A related application is information-dynamic modelling of
musical audio [4].

In this work, we evaluate several prediction methods, in-
cluding autoregressive models, N-gram models, and a novel
technique based on utilising the long-term structure of mu-
sic signals. In addition, we propose a method for combining
predictors by estimating predictors’ error variance. We con-
sider chroma and MFCC features, which describe harmonic
and timbral information in musical audio signals [15]. Re-
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sults indicate that combining the self-distance approach with
autoregressive or N-gram models substantially improves the
accuracy of predicting continuous-valued music features.

1.1 Causal music feature prediction

Suppose we have a sequence of vectors v1, . . . ,vT , corre-
sponding to T feature observations made at times τ1, . . . , τT .
Each vector occupies k-dimensional feature space, v ∈ Rk,
according to an unknown probability distribution. Causal
prediction involves approximating the unknown conditional
probability distribution p(vt |v1, . . . ,vt−1). The predicted
feature at time τt is then obtained by computing the expecta-
tion E[vt|v1, . . . ,vt−1]. The prediction task is causal, since
observations v1, . . . ,vt−1 inform predictions vt. Succes-
sive predictions are formed by increasing t, so that the ob-
servation history accumulates over time.

Causal predictive models have been applied to music in
symbolic formats [16]. In the audio domain, the concern of
our presented work, [8] proposes an approach for prediction
driven musical expectation modelling. In [3] prediction is
examined in the context of planning, as a means of creating
anticipatory music systems. In [20] a method is proposed
for automatic harmonic accompaniment based on repetition
detection.

2. PREDICTION TECHNIQUES

We investigate prediction techniques for beat-synchronous
chroma and MFCC features, as described in the following.

2.1 Autoregressive models

In a multivariate autoregressive (MAR) model [12], pre-
dicted feature vectors vt are computed as linear combina-
tions of N preceding feature vectors’ components. Correla-
tion between separate components is taken into account, so
that

vt =
N∑

n=1

Anvt−n + rt (1)

where matrices An incorporate information on correlations
between between components of vt−n and vt. Vector rt

is an independent and identically distributed Gaussian noise
term.

Let us use vt,u to denote the uth component of vector
vt. A special case of the MAR model arises when indepen-
dence between feature components is assumed. In that case,
matrices An are diagonal, so that

vt,u =
N∑

n=1

an,uvt−n,u + rt,u (2)

with 1 ≤ u ≤ k. Coefficients rt,u are described by k uni-
variate Gaussian noise processes with finite mean and vari-

ance. The model in Equation 2 is equivalent to a component-
wise linear predictive coding (LPC) model, with each LPC
model defined by index u.

2.2 N-gram prediction

N-gram models have been used to model symbolic music
[16]. In this model, observations are quantised. Let et de-
note a quantised observation symbol. Symbols are members
of a specified alphabet A. For convenience, we use et−1

t−n

to denote the sequence of symbols et−n, et−n+1, . . . , et−1.
The conditional probability of predicted event et, given the
history of observations is assumed to obey the Markov prop-
erty. That is, p(et|et−1

1 ) = p(et|et−1
t−n), where n is the or-

der of the Markov model. An estimator for this conditional
probability is

p(et|et−1
t−n) =

c(et|et−1
t−n)∑

e∈A c(e|et−1
t−n)

(3)

where c(et|et−1
t−n) denotes the number of times symbol et

has been observed following context et−1
t−n, computed over

the entire observation sequence et−1
1 . To estimate the prob-

ability of unobserved events, we incorporate a smoothing
approach [14], so that recursively,

p(et|et−1
t−n) =

{
α(et|et−1

t−n) for c(et|et−1
t−n) > 0

γ(et−1
t−n) p(et|et−1

t−n+1) otherwise.
(4)

In Equation 4, α(·|·) is defined as follows. It is used as
long as the sequence et

t−n has previously been observed at
least once. Alternatively, the conditional probability is re-
cursively evaluated using a function γ(·) and a lower order
estimation p(et|et−1

t−n+1).
As employed in [8], α(·|·) and γ(·) are defined as

γ(et−1
t−n) =

d(et−1
t−n)∑

e∈A c(e|et−1
t−n) + d(et−1

t−n)
(5)

α(et|et−1
t−n) =

c(et|et−1
t−n)∑

e∈A c(e|et−1
t−n) + d(et−1

t−n)
(6)

where d(et−1
t−n) denotes the number of distinct symbols ob-

served as continuations of context et−1
t−n. Intuitively, as d(·)

increases, more emphasis is placed on shorter contexts when
estimating unobserved symbol probabilities.

Since the N-gram model is based on an alphabet of dis-
crete symbols, we quantise our continuous-valued feature
vectors prior to learning this model. This is achieved using
online k-means clustering, described in Section 3.2.

2.3 Repetition detection

We propose the use of a repetition detection algorithm to in-
form predictions in conjunction with autoregressive and N-
gram approaches. To incorporate information on long-term
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structure as described in Section 1, the similarity between
feature vector sequences is computed during the prediction
process. As incorporated in [20], the approach uses a self-
distance matrix (SDM). Given observations v1, . . . ,vt−1,
the SDM D is defined as [D]i,j = d(vi,vj), with 1 ≤ i, j <
t. As proposed in [7], for the distance function d(·, ·) we use
the cosine distance,

d(vi,vj) = 0.5
(

1− vi · vj

‖vi‖ ‖vj‖

)
. (7)

Assume a predefined sequence comparison length L. We
use the SDM to consider all alignments between past se-
quences vs−L, . . . ,vs−1 and the most recently observed fea-
ture vectors vt−L, . . . ,vt−1, with L < s < t. Comparing
vector-wise with the most recently observed feature vectors,
the past sequence with minimal average distance is selected
as the conjectured repeated sequence. This sequence is used
for prediction, assuming that vt ≈ vs. With L < t ≤ T ,
the tth prediction wt is obtained using index p of past vector
vp, with

p = argmin
L <s <t

{dµ(s, t)} , (8)

where dµ(s, t) denotes the average distance between two
subsequences of length L,

dµ(s, t) =
1
L

L∑
`=1

[D]s−`,t−`. (9)

Computing the entire sequence of predictions has poly-
nomial time complexity against the total sequence length T ,
since each prediction at step t requires O(T ) operations. We
observe that using beat-synchronous features results in an
average sequence length of approximately 650, for the data
set of popular music chosen for evaluation. Therefore scal-
ability is not thought to restrict the algorithm’s utility, for
music signals with similar duration to those in the data set.
Furthermore, it is possible to deal with longer music sig-
nals by imposing a maximum size on the SDM, discarding
observations which fall outside a specified history limit.

2.4 Combining multiple predictors

To combine the predictions generated by the SDM and N-
gram approaches, we propose a linear weighting scheme
based on estimated variance of error 1 . For a set of M pre-
dictors, define the tth prediction by each predictor vi

t, with
1 ≤ i ≤ M . Define the true value of the tth vector to be v∗t .
We assume an observation model where predictions vi

t are
the sum of observations v∗t and an error term εi

t,

vi
t,u = v∗t,u + εi

t,u (10)

where indices u denote vector components, with 1 ≤ u ≤ k.
We assume components εi

t,u to be normally distributed, with

1 The method is similar in spirit to aggregation methods reviewed in
[21].

variance σ2
i,u. Using H predictions as samples, the variance

of the error σ2
i,u can be estimated as

σ̂2
i,u =

1
H − 1

H∑
h=1

(
vi

t−h,u − v∗t−h,u

)2
. (11)

Because the error is assumed to be normal, we have p(vi
t,u|v∗t,u) =

N (v∗t,u, σ2
i,u). Using Bayes’ theorem, we have

p(v∗t,u|vi
t,u) =

p(vi
t,u|v∗t,u) p(v∗t,u)

p(vi
t,u)

. (12)

If we assume the ratio of p(vi
t,u) and p(v∗t,u) is non-

informative, we then have p(vi
t,u|v∗t,u) = p(v∗t,u|vi

t,u). We
further assume independence between predictors and denote
βi,u = 1/σ2

i,u for notational convenience. Then, the distri-
bution of v∗t,u can be expressed as

p(v∗t,u|v1
t,u, . . . , vM

t,u) =
M∏
i=1

N
(

v∗t,u; vi
t,u,

1
βi,u

)

= N

(
v∗t,u;

∑M
i=1 βi,u∑M
j=1 βj,u

,
1∑M

i=1 βi,u

)
.

(13)

Given all predictions, the expected value of v∗t,u, E[v∗t,u] is
then the weighted sum

E
[
v∗t,u
]

=
∑M

i=1 βi,u vi
t,u∑M

j=1 βj,u

. (14)

Equation 14 describes the weighting scheme used to com-
bine multiple predictions. Note that values βi,u describe the
precision of prediction method i, estimated over prediction
history of length H .

3. METHOD

The data set used for evaluation consists of 180 mono audio
tracks of songs by The Beatles, with each track sampled at
44.1kHz [13].

3.1 Feature extraction

We extract beat-synchronous chroma features using the ap-
proach and implementation described in [5]. These chroma
features are based on the mapping of FFT bins to twelve
pitch class components, using phase derivatives to reduce
the influence of non-tonal components present in the spec-
trum. Chroma frames are based on an FFT window size
of 2048 with 75% overlap. This approach compensates for
mistuning by computing the optimal alignment between fre-
quency peaks and chroma bins over the entire signal.

Furthermore, we extract beat-synchronous MFCCs, us-
ing the approach and implementation described in [18]. The
MFCCs are based on an FFT window size of 512 with 50%
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overlap. The filter bank consists of 13 linearly spaced fil-
ters and 27 log spaced filters. We extract the 12 first cepstal
coefficients, omitting the d.c. coefficient. Beat-synchronous
MFCCs are then obtained by computing mean feature val-
ues within each beat onset interval, applying the same onset
intervals used for chroma feature extraction.

The beat onset times are estimated using the code and
approach described in [5]. In terms of the causal predic-
tion problem which this work addresses, we note that the
method’s application of dynamic programming is non-causal.
In this work, we treat the beat tracking routines as an oracle
for obtaining beat onset times.

3.2 Online clustering

To obtain discrete symbols for the N-gram predictor, we
quantise observed feature vectors using online k-means clus-
tering. As described in [8], an initial codebook of K cen-
troids µ1, . . . , µK is constructed according to the first Q ob-
served symbols. Thereafter, upon observing feature v∗t , the
closest centroid

µt = argmin
1≤k≤K

{
‖v∗t − µk‖2

}
(15)

is updated according to

µt := µt + η(v∗t − µk). (16)

In our evaluation, we set Q = K. A hold-out set of 60 ran-
dom songs is formed. A learning factor of η = 0.4 is deter-
mined, based on MFCC and chroma prediction performance
and using the described data set with a fixed codebook size
of K = 64. For fixed η = 0.1, alternative strategies for
codebook construction were evaluated, involving initialisa-
tion to held out data. However, these revealed no compelling
improvement over the aforementioned method, in terms of
N-gram prediction performance.

For the N-gram predictor, prediction proceeds causally,
so that after the tth prediction, N-gram probabilities are up-
dated to include the actually observed symbol e∗t and its con-
text et−1

t−n. The N-gram predictor is learned using only ob-
servations from the target song. Given the average length of
650 symbols per song, we estimate the required codebook
size to be in the order of

√
650 ≈ 25 symbols. Consider-

ing that the N-gram model incorporates a smoothing scheme
(cf. Equation 4), we set the Markov order to constant n = 5,
observing similar prediction performance for n = 2. Using
the held-out data set of 60 songs, we set respective SDM
prediction lengths L = 22, L = 36, which maximise pre-
diction performance for chroma and MFCCs.

3.3 Performance statistics

The statistics used for evaluation are the sum of squares er-
ror (SSE), the Jensen-Shannon divergence (JSD) and the
absolute deviation (AD). The SSE for the tth prediction is

computed as

SSE(vt,v∗t ) = ‖vt − v∗t ‖2. (17)

The JSD is a symmetrised version of the Kullback-Leibler
divergence. It is computed as

JSD(vt‖v∗t ) =
1
2

KL (vt, F ) +
1
2

KL (v∗t , F ) (18)

where KL(·‖·) denotes the Kullback-Leibler divergence and
F is defined as

F =
1
2

(vt + v∗t ) . (19)

Finally, the absolute deviation is computed as

AD(vt,v∗t ) = ‖vt − v∗t ‖1 (20)

where ‖ · ‖1 denotes the `1-norm.
We compute the statistics for all predictions and average

over predictions in the entire data set. For example, the av-
erage sum of squares error SSEµis computed as

SSEµ =
1
T

T∑
t=1

SSE(vt,v∗t ). (21)

Average prediction results therefore describe vector-wise pre-
diction error and do not account for variability in song du-
ration. We compute 99% confidence intervals on average
performance data. Relative to LPC prediction performance,
confidence intervals do not exceed 3.4%, 1.8%, 0.2%, in
terms of average SSE, JSD and AD, respectively.

4. RESULTS

We evaluate autoregressive, N-gram and SDM predictors.
Designating the LPC predictor as a baseline, Figure1 illus-
trates prediction performance relative to the LPC baseline,
in terms of average SSE, JSD, AD. Performance values are
expressed as the quotient S/B, where S is the average pre-
diction error of the sample and B is the average prediction
error of the LPC baseline.

4.1 Single predictor performance

We first consider the accuracy of individual predictors, with
no method of combining them applied. On the left hand
side of Figure 1 (a), (b), we include results for four predic-
tion techniques. Based on the assumption of local station-
arity, the predictor termed ‘Copy’ estimates the tth predic-
tion as vc

t = v∗t−1. The predictor termed ‘LPC’ applies
the linear predictor described in Equation 2. The predic-
tor termed ‘MAR’ performs multivariate autoregression ac-
cording to Equation 1. The predictor termed ‘SDM’ corre-
sponds to repetition detection using a self-distance matrix,
as described in Section 2.3. For both LPC and MAR pre-
dictors, all observations v∗1, . . . ,v

∗
t−1 are incorporated into
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a least-squares regression [12]. Results are reported for sec-
ond order LPC models (chroma), third order LPC models
(MFCC) and first order MAR models (chroma and MFCC),
with orders selected to maximise held-out data performance.

Considering chroma feature prediction in Figure 1 (a),
we observe that Copy prediction is significantly outperformed
by all remaining predictors, for all evaluated statistics. Ob-
serving that the MAR model is outperformed by LPC based
prediction, it appears that for the given sequence lengths and
the chosen features, it is preferable to assume independence
between feature components.

For the considered codebook sizes, the N-gram model is
almost consistently outperformed by the LPC predictor. To
reduce the error that is due to quantisation alone, we weight
predicted feature vectors using the linear combination (1 −
γ)vn + γ vc, where vn is the discrete N-gram prediction.
Parameter γ is varied within the unit interval, in steps of
0.1. Based on 10 × 2 cross-validation on the remaining 120
songs, results are reported for γ = 0.4, which maximises
SSE performance for both chroma and MFCC features. In
Figure 1, this predictor is termed ‘Weighted’.

Considering MFCC feature prediction in Figure 1 (b),
we observe that SDM prediction offers less advantage over
Copy prediction, compared to chroma prediction.

Turning to the effect of increasing codebook size, we
observe that SSE performance improves for chroma pre-
dictions. Surprisingly, for MFCC prediction increasing the
codebook size adversely affects SSE performance. In both
cases, JSD and AD performance degrades when increasing
codebook size.

4.2 Combined predictor performance

Results for combinations of predictors are shown on the
right hand side of Figure 1 (a), (b). To restrict the param-
eter space, the evaluation is based on the aforementioned
baseline results. Thus, the linear chroma weighting factor is
set to γ = 0.4. Based on Equation 14, a running estimate of
precision values βi is formed using min{H, t−1} preceding
predictions.

Results for chroma and MFCC feature prediction reveal
that combining SDM with weighted N-gram approaches re-
sults in substantial improvement over single predictor per-
formance. The result is largely consistent across the evalu-
ated SSE, JSD and AD statistics. We observe a similar re-
sult when combining LPC and SDM predictors. Compared
to the latter result, combining LPC, SDM and weighted N-
gram predictors further improves performance.

For comparison, a linear and constant weighting scheme
was evaluated. As reported in Figure 1 (‘constant’), no im-
provement over history based weighting is obtained using
this approach.

(a) Chroma feature prediction
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(b) MFCC feature prediction
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Figure 1. Performance results for chroma and MFCC fea-
ture prediction. Parameter K denotes codebook size. Pa-
rameter H denotes amount of prediction history used to in-
form predictor combination. See main text for a descrip-
tion of predictor labels. Absolute chroma performance val-
ues for the LPC baseline are 0.0568 (SSE) 0.0882 (JSD)
0.453 (AD). Absolute MFCC performance values for the
LPC baseline are 0.893 (SSE) 0.406 (JSD) 2.282 (AD).

505



Poster Session 4

Approach Chroma MFCC Average
N-gram (weighted) 5% 5% 5%

LPC + SDM 14% 6% 10%
N-gram (weighted) + SDM 15% 7% 11%

N-gram (weighted) + SDM + LPC 16% 10% 13%

Table 1. Summary of average chroma and MFCC prediction
performance. Scores are gains relative to the LPC baseline.

4.3 Summary of results

Table 1 summarises the obtained results. For each statistic,
we describe performance gains relative to the LPC baseline,
averaged across SSE, JSD and AD statistics.

We observe that using the weighted N-gram approach
yields minor improvement over the baseline LPC method.
This result is consistent for both chroma and MFCC predic-
tion tasks. A further result concerns the inclusion of the
SDM approach: In combination with either weighted N-
gram or LPC approaches, we observe average performance
gains in excess of 6%. Average chroma prediction perfor-
mance improves by at least 14%. Furthermore, combin-
ing N-gram and SDM predictors yields minor improvement
over the analogous LPC and SDM combination.

5. CONCLUSIONS AND FURTHER WORK

In this work, we have considered the problem of causal mu-
sic prediction using MFCC and chroma features. We have
comparatively evaluated the performance of predictors for
series of continuous-valued and quantised feature vectors.
We have considered how musical parallelism might be har-
nessed for causal prediction of spectro-temporal features.
The prediction approach proposed in this work is based on
repetition detection using a self-distance matrix.

For the evaluated statistics, combining the SDM predic-
tor with LPC or N-gram approaches allows substantial im-
provements in prediction accuracy to be made, compared
to the baseline. This suggests that incorporating informa-
tion on long-term musical structure might have utility for
the causal prediction of spectro-temporal features.

Considering the obtained results, we plan investigations
to determine the effectiveness of online quantisation, the
prerequisite for applying discrete-event models such as the
N-gram model used in this work. Furthermore, we aim
to perform an evaluation of hierarchical language models
based on the N-gram model used in this work. Finally, we
aim to consider music prediction from a perceptual perspec-
tive, to identify correlates between perceived musical simi-
larity and prediction accuracy.
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ABSTRACT

We propose a new approach for assigning audio data in large
missing audio parts (from 1 to 16 seconds). Inspired by im-
age inpainting approaches, the proposed method uses the
repetitive aspect of music pieces on musical features to re-
cover missing segments via an exemplar-based reconstruc-
tion. Tonal features combined with a string matching tech-
nique allows locating repeated segments accurately. The
evaluation consists in performing on both musician and non-
musician subjects listening tests of randomly reconstructed
audio excerpts, and experiments highlight good results in
assigning musically relevant parts. The contribution of this
paper is twofold: bringing musical features to solve a sig-
nal processing problem in the case of large missing audio
parts, and successfully applying exemplar-based techniques
on musical signals while keeping a musical consistency on
audio pieces.

1. INTRODUCTION

Audio signal reconstruction has been of major concern for
speech and audio signal processing researchers over the last
decade, and a vast array of computational solutions have
been proposed [6, 7, 9, 10]. Audio signals are often subject
to localized audio artefacts and/or distortions, due to record-
ing issues (unexpected noises, clips or clicks), or to packet
losses in network transmissions, for instance [1]. Recov-
ering such missing data from corrupted audio excerpts to
restore consistent signals has thus been challenging for ap-
plicative research, in order to restore polyphonic music re-
cordings, to reduce audio distortion from lossy compression,
or to bring network communications robustness to back-
ground noise, for example [10].

The problem of missing audio data reconstruction is usu-
ally addressed either in the time domain, aiming at recov-
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ering entire gaps or missing excerpts in audio pieces, or
in the time-frequency domain, aiming at recovering miss-
ing frequencies that cause localized distortions of audio pie-
ces [18]. A typical trend for the latter one, often referred to
as audio inpainting, is to treat distorted samples as missing
and to attempt to restore original ones from a local analy-
sis around missing parts. Common approaches include lin-
ear prediction for sinusoidal models [9], Bayesian estima-
tors [7], autoregressive models [6] or non-negative matrix
factorization solving [10]. These studies usually either base
on the analysis of distributions of signal features around
missing samples, or use local or global statistical charac-
teristics over audio excerpts [18].

However, missing data problems are usually addressed
on relatively small segments of audio data at the scale of
audio piece duration. Indeed, most audio reconstruction
systems proposed so far are based on signal features. The
non-stationary aspect of such features makes it particularly
difficult to assign data for large missing parts. Thus, audio
gaps are generally reduced to a maximum duration of 1 or 2
seconds under particular conditions for the recovered qual-
ity to remain satisfying (see [9] for instance). In this paper,
we address the challenging problem of reconstructing larger
missing audio parts, namely audio gaps over several seconds
(from 1 up to 16 seconds of missing data), in music audio
pieces.

A similar problem is already addressed in image process-
ing. Indeed, image inpainting aims at restoring and recov-
ering missing data in images in a not easily detectable form
(see for instance [2] and references therein). A common and
simple approach, from texture synthesis, uses the notion of
self-distance by considering that an image has a lot of rep-
etitions of local information. This approach can be seen as
an exemplar-based copy-and-paste technique [3,5].

Similarly to exemplar-based image inpainting approaches,
the proposed method analyses perceived repetitions in mu-
sic audio to recover large missing parts. Note that while po-
tentially allowing the reconstruction of large parts, suchan
exemplar-based approach induces the limit of reconstructing
exclusively parts that are approximately repeated to main-
tain a musical consistency. To restore such an amount of
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missing information, we consider the signal not only as au-
dio excerpts but also as music pieces, therefore taking into
account that sounds are temporally organized and may fea-
ture redundancies. Indeed, it is the organization and rela-
tionships between sound events in music that make music
differ from random sound sequences [14]. In Western pop-
ular music, for instance, choruses and verses often are ap-
proximately repeated parts whose occurrences share a high
degree of perceptual similarity. Other examples include clas-
sical music pieces, where the repetition of musical phrases
structures the forms, or electronic music where repetitive
loop techniques are frequently employed. We propose to use
this kind of musical redundancy in order to recover missing
data. Note that the method described in this paper aims at
assigning a musically consistent part, and could be easily
combined with signal-based approaches to be used for prac-
tical signal reconstruction of large missing parts.

Our method consists in representing each music piece as
a sequence of tonal features employed to describe the per-
ceived harmonic progressions. Then, a string matching tech-
nique is applied to retrieve the part that best fits the miss-
ing segment, according to its left- and right-sided tonal con-
texts. The identified repetition is finally used as a reference
to fill-in missing data. Technical details of the method are
described in Section 2. We detail in Section 3 the test proto-
col employed for evaluating the effectiveness of the system
on human listeners and present the results obtained on mu-
sician and non-musician subjects. Section 4 finally brings
concluding remarks and depicts future work.

2. METHOD

2.1 Musical representation

In a first step, audio signals are represented on musical-
based criteria. The key to a well-suited representation in
the particular application of finding perceived repetitions is
to characterize some meaningful local variations in music
while being robust to musical changes. As such, pitch con-
tent is particularly adapted to retrieve musical repetitions in
the context of analyzing Western music. Indeed, harmonic
and melodic progressions are constantly identified by listen-
ers, consciously or not, and composers classically organize
the whole structure of their pieces around such progressions
and their variations or repetitions. Most state of the art meth-
ods dealing with musical structure analysis [16] or relatedto
the detection of musical repetitions [11] rely on the richness
of tonal information to retrieve similar segments. We there-
fore chose to use pitch-related features to represent audio
pieces on their musical structure.

Harmonic Pitch Class Profiles (HPCP) are often used to
describe this type of musical informations [8]. These fea-
tures can be summarized as a classified representation of
spectral energies into separate bins that correspond to the

frequency class where they appear. The considered frequen-
cy classes take into account the cyclical perception of pitch
in human auditory system: thus, two harmonic sounds con-
tribute to the same chroma bin, or pitch class. Moreover,
HPCP features were proven to be rather insensitive to non-
pitched variations in noise, timbre, dynamic, tuning or loud-
ness for instance, which makes them very efficient in quali-
fying only tonal contexts in audio pieces [8].

2.2 Tonal features extraction

Audio signals are first divided inton segments, or audio
frames. We chose to use constant-length frames (as oppo-
site to beat-synchronous windows, for instance) in order to
optimize the proposed mono-parametric signal representa-
tion and to enable our system to be potentially used on di-
verse musical genres. Each frame is represented by aB-di-
mensional vectorh = (h1, · · · , hB) that corresponds to a
HPCP holding its local tonal context. The dimension value
B stands for the precision of the note scale, or tonalreso-
lution, usually set to 12, 24 or, in our case, 36 bins. Each
HPCP feature is normalized by its maximum value; each
vectorh is thus defined on[0, 1]B. Hence, each audio sig-
nal can be represented as a sequenceu = h1h2 · · ·hn of n
B-dimensional vectors.

In the following process, we need a similarity measure
to compare audio features between each other. The Pearson
correlation measurer is better adapted to pitch class pro-
files comparisons than Euclidean-based measures, for in-
stance, because it provides invariance to scaling. Such a
measure then yields a good estimation of tonal context sim-
ilarities [20], and is used in the following. It is defined as:

r(hi, hj) =

∑B

k=1 (hi
k − hi)(hj

k − hj)√∑B

k=1 (hi
k − hi)2

√∑B

k=1 (hj
k − hj)2

(1)

wherehi andhj denote the mean value over the vectorshi

andhj , respectively.
In the particular case of comparing HPCP features, an

enhanced measure was proposed by Serràet al. [17] based
on theOptimal Transposition Index(OTI). The principle is
to compute the local similarity measure, herer, between the
first HPCP vector and each musical transposition (i.e., cir-
cular shift) of the second compared vector. The OTI denotes
the transposition index of the lowest distance found. Finally,
according to the OTI, a binary score is assigned as the re-
sult of the comparison. In the case of a 12-split note scale
(B = 12), for instance, a low cost is assigned to the OTI
equals to 0 (no transposition was necessary: the local tonal
context is similar) whereas a higher cost is given for any
greater value of the OTI. Authors highlighted in their paper
the superiority of such a binary measure over usual similar-
ity metrics for HPCP. Based on this comparison technique,
the similarity measures employed for our system is:
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s(hi, hj) =

{
µ+ if OTI(hi, hj) ∈ {0, 1, B − 1}
µ− otherwise

(2)

whereµ+ andµ−, are two possible scores assigned for the
comparison ofhi andhj .

The first representation step of our system thus computes
an HPCP vector for each frame, which provides a sequence
of chroma features that can now be treated as an input for
string matching techniques.

2.3 String matching techniques

A string u is a sequence of zero or more symbols defined
on an alphabetΣ. In our context, each HPCP vector repre-
sents a symbol. We introduce a particular “joker” symbol
φ assigned to each frame that contains at least one missing
audio sample. Thus, the alphabet considered in our context
is denoted byΣ = [0, 1]B ∪ {φ}. We denote byΣ∗ the
set of all possible strings whose symbols are defined onΣ.
The ith symbol ofu is denoted byu[i], andu can be writ-
ten as a concatenation of its symbolsu[1]u[2] · · ·u[|u|] or
u[1 · · · |u|] where|u| is the length of the stringu. A stringv
is asubstringof u if there exist two stringsw1 andw2 such
thatu = w1vw2.

Needleman and Wunsch [15] proposed an algorithm that
computes a similarity measure between two stringsu and
v as a series of elementary operations needed to transform
u into v, and represent the series of transformations by dis-
playing an explicit alignment between strings. A variant of
this comparison method, the so-calledlocal alignment[19],
allows finding and extracting a pair of regions, one from
each of the two given strings, which exhibit the highest sim-
ilarity. In order to evaluate the score of an alignment, several
scores are defined: one for substituting a symbola by an-
other symbolb (possibly the same symbol), denoted by the
following functionCm(a, b), and one for inserting or delet-
ing symbols, denoted by the functionCg(a). The particular
values assigned to these scores form thescoring schemeof
the alignment.

The local alignment algorithm [19] computes a dynamic
programming matrixM such thatM [i][j] contains the lo-
cal alignment scores between the substringsu[1 · · · i] and
v[1 · · · j], according to the recurrence:

M [i][j] = max


0
M [i− 1][j] + Cg(u[i]) (α)
M [i][j − 1] + Cg(v[j]) (β)
M [i− 1][j − 1] + Cm(u[i], v[j]) (γ)

(3)
whereu andv represent the two strings (HPCP sequences)

to be compared, and with the initial conditionM [0][0] =
M [i][0] = M [0][j] = 0, ∀i = 1 . . . |u|, ∀j = 1 . . . |v|. (α)

  

  

   

 

 

   

 

  

  

 

    

 

 

 

Figure 1. Overview of the algorithm.(a): audio wave-
form with missing data.(i): string provided by the mu-
sical representation step (Section 2.2).(ii): string align-
ments performed by our algorithm.(iii): aligned strings
(Section 2.4).(b): reconstructed audio waveform. Dashed-
circled regions correspond to an overlap-add reconstruction
(Section 2.5).

represents the deletion of the symbolu[i], (β) represents the
insertion of the symbolv[j], and(γ) represents the substitu-
tion of the symbolu[i] by the symbolv[j].

In the following, the local alignment algorithm is denoted
by the functionalign(u, v). As a result, it yields a triplet
(x, u′, v′) wherex is the best similarity score between two
strings, andu′ andv′ are the two aligned substrings respec-
tively in u andv.

Considering two HPCP featureshi andhj , the scoring
scheme used in our experiments is defined as follows:

µ+ = 1
µ− = −0.9
Cg(h

i) = −0.7 if hi 6= φ, 0 otherwise

Cm(hi, hj) =


s(hi, hj) if hi 6= φ andhj 6= φ
0.1 hi = φ xor hj = φ
0 otherwise

(4)
Numerical values were obtained empirically on a subset

of 80 songs from the datasets presented in Section 3.2. The
disjunction case for symbolφ is motivated by constraints
over the alignment of frames that correspond to frames of
missing data.

2.4 Algorithm

The general principle of our exemplar-based method is to
identify in the partially altered music piece sequence the part
that best fits the missing section. We call this best-fitting
part thereference part. We denote aslocal tonal context
tonal progressions that occur prior and after the missing part.
More formally, we introduce a thresholdδ that corresponds
to the size of tonal contexts considered before and after the
missing segment, as a number of frames.
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Figure 1 depicts an overview of the applied algorithm.
Formally, the computation is performed as follows:

(i) Let u be the string representing a music piece,i.e., the
HPCP sequence obtained from the signal representa-
tion step. By hypothesis,u contains a stringvφ =
φ · · ·φ of joker symbols, and there existst1, t2 in Σ∗

such thatu = t1vφt2.

(ii) Define as the left (resp. the right)context stringvl

(resp. vr) of vφ the unique string of lengthδ such
that there existst′1 andt′2 ∈ Σ∗ verifying t1 = t′1vl

and t2 = vrt
′
2. Compute(x1, u1, v1) as the result

of align(t1, vlvφvr) and(x2, u2, v2) as the result of
align(t2, vlvφvr).

(iii) If x1 > x2, then keepu1 as the reference part,u2

otherwise.

This process provides both areference partu′ (u1 or u2)
corresponding to the excerpt that best fits the missing sec-
tion, and adestination partv′ (v1 for u1, v2 for u2) that was
aligned withu′. Note that the scoring constraints described
in Eq. 4 ensure that the identified partv′ contains the miss-
ing segmentvφ.

2.5 Audio data assignment

In order to fill-in missing data, the method consists in as-
signing data from the identified reference part into the des-
tination part. Since the identified destination partv′ may be
longer than the missing data segmentvφ, the samples as-
signment may overlap existing samples in the audio piece.
In order to ensure a smooth audio transition, overlap-add
reconstructions are performed [4].

Note that we deliberately chose not to implement any
beat, onset or any kind of synchronization, in order to avoid
the addition of potential analysis errors and to enable the
strict evaluation of this exemplar-based audio alignment me-
thod. We leave as a perspective such more advanced audio
synchronizations or overlapping techniques.

3. EXPERIMENTS AND RESULTS

Our alignment system is based on musical features. The
identified repetitions only depend on a musical criterion:
pitch content. Therefore, variations in timbre, rhythm or
lyrics may appear between occurrences of an identified rep-
etition and original and reconstructed audio signals may be
completely different. Hence, standard signal processing met-
rics such as SNR seem inadequate to the evaluation of mu-
sical resemblance. Since it works on a musical abstraction,
the aim of the method is to produce perceptually consistent
results,i.e., reconstructions satisfactory for human listen-
ers. The proposed experiments are therefore based on hu-
man subjective evaluation of reconstructed audio files.

3.1 Test data generation

The tests of our method consist in erasing random audio
parts in a dataset of music pieces, recovering missing data
with our system and asking human listeners to evaluate the
audio reconstruction. Since our method uses an exemplar-
based approach, a part needs to be approximately repeated
in the same piece at least once in order for our system to
recover it. Thus, we introduce arepetitiveness hypothe-
sis prior to the evaluation of the proposed system: every
concealed part for audio tests must belong to a repeated
structural section, according to a structural ground truth.
For instance, for a music piece annotated with the structure
ABCAAB, the hypothesis force concealed parts to be chosen
within one of the repeated patternsA, B or AB.

The test data generation is performed according to the
following process:
1. Select randomly a concealment lengthl between 5 and
16 seconds.
2. According to an annotated structural ground truth, select
randomly a repeated section lasting at leastl.
3. Select randomly a beginning time instantd in this chosen
part.
4. Perform the concealment: erase every sample betweend
andd + l.
5. Perform the reconstruction using the algorithm described
in Section 2.4.
6. Finally, select two random durationst1, t2 between 5 and
10 seconds, and trim the reconstructed audio piece between
d − t1 andd + l + t2.
The last step is dedicated to reducing the duration of ex-
cerpts in order to reduce the test duration. Note that whereas
this last step makes the experiment more comfortable (faster)
for the testers, it tends to sharpen up their attention around
to the reconstructed region, and requires the reconstruction
to be specially accurate.

3.2 Dataset

As a test dataset, we elected the OMRAS2 Metadata Project
dataset [13] that provides structural annotations for Western
popular audio music of different artists1 . For our experi-
ments, we chose to test on 252 music pieces mostly from
The Beatles(180 pieces),Queen(34 pieces) andMichael
Jackson(38 pieces). These artists were most likely to be
known by listeners, hence reinforcing their judgment. Note
that audio pieces were taken from mp3-encoded music col-
lections compressed with a minimum bit-rate of 192 kbps.

In order to compute HPCP features on audio signals, we
chose the window size of46ms in order to keep accurate
alignment on audio data. Performing preliminary tests on a
few songs, the local context threshold value ofδ = 4 sec-
onds appeared to be sufficient for consistent alignments.

1 http://www.isophonics.net/content/reference-annotations
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Figure 2. Probability of randomly choosing repeated parts
according to the ground truth. Plain line shows the average
values over the whole dataset, while dashed lines stand for
the different artists’ songs: square points forQueen, circle
points forMichael Jacksonand triangle points forThe Bea-
tles.

To evaluate how restrictive the repetitiveness hypothesis
may be on this specific dataset, we computed the average
percentage of parts in audio pieces that are repeated accord-
ing to the structural ground truth. Figure 2 shows the aver-
age probability of finding a repetition as a function of the
size of the randomly chosen part. The plain line shows the
average values over the dataset. The graphic shows for in-
stance that a random part that lasts8 seconds corresponds
to a fully repeated section in structural ground truth48%
of the time on average. Repetitiveness seems to vary be-
tween artists in the dataset, as suggested by the different
dashed lines. Thus, the probability of finding repeated parts
in pieces fromThe Beatles, for instance, is between8.7%
and16.2% higher than on pieces fromQueen. The hypothe-
sis of deleting exclusively random parts inside repeated sec-
tions therefore induces the consideration of35% of 15 sec-
onds parts in audio pieces, to65% for 1 second parts on
average.

The previously described data generation process was
performed once for each music piece in the dataset.252
excerpts were thus generated, each lasting between10 and
30 seconds, with an average duration of21.8 seconds over
the set. The artificial data concealment durations were ran-
domly generated between1 and16 seconds, with an average
value of8.2 seconds.

3.3 User tests

The test protocol employed for evaluating our system is in-
spired from the MUSHRA audio subjective test method [12].
In order to respect a maximum test duration of approxi-
mately 10 minutes, each subject is asked to listen for 26 au-

dio excerpts from the generated test dataset. Among these,
5 excerpts are proposed in every test and correspond to non-
altered audio excerpts. These are supposed to observe in-
dividual effect, enabling for instance the detection of ran-
domly answering subjects. The 21 remaining excerpts are
randomly chosen among the reconstructed database. Each
subject is asked to listen to each of these excerpts once, with
no interruption, and to indicate whether or not he detected
any audio artefact or distortion. If so, the subject is asked
to rate the quality of the reconstruction applied: 1) Very dis-
turbing, 2) Disturbing, 3) Acceptable, 4) Hardly perceptible.
The rate of 5 is assigned for no distortion heard. Note that
the exact meaning of terms in the context of the experiment
is not provided to the testers, hence letting them define their
own subjective scale. Finally, a few additional information
is asked, such as which audio restitution material is used,
and whether or not the tester is a musician.

3.4 Results

Tests were carried out on80 distinct listeners,34 musicians
and46 non musicians. The average number of observations
per audio excerpt is7.1, values ranging from1 to 15 ob-
servations for altered excerpts. The5 common non-altered
pieces logically led to400 observations among which10
were incorrectly evaluated (artefacts perceived). Since all
of these invalid rates were attributed by distinct users, we
chose to take into account every subject in the evaluation
(no abnormal behavior). Table 1 summarizes the results ob-
tained for both classes of testers and for the different artists
in the dataset. Note that the rates attributed to the5 non-
altered excerpts were not used for computing these average
values. Overall results highlight an average rate of4.04 out
of 5 for the quality of the applied data assignment. More
precisely,30% of reconstructed excerpts were attributed the
rate5 by all of their listeners, which highlights very accurate
audio assignments on a third of the dataset. The distribution
of other average rates is as follows:31% pieces rated be-
tween4 and5, 17% pieces between3 and4, 15% between
2 and3 and7% between1 and2. Reminding that 4 corre-
sponds to a “hardly perceptible” reconstruction and 5 to no
distortion perceived, the method therefore seems successful
in performing inaudible or almost inaudible reconstructions
in 61% of the cases.

As one could expect, musician subjects perceive more
distortions with an average rate of3.92 against4.13 for non
musicians. Scores obtained for each audio material class
highlight a slightly better perception of reconstructionsfor
headset restitution, with an average value of3.98 against
4.05 for other material. However, since all musician testers
chose to use headset, musician and headset scores may be
closely related. Reported distortions include short rhyth-
mic lags, unexpected changes in lyrics, sudden changes in
dynamics or abrupt modification of instruments. Results
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Musicians Non musicians Total
The Beatles 3.95 4.13 4.05
Michael Jackson 4.21 4.26 4.24
Queen 3.40 3.94 3.71

Whole dataset 3.92 4.13 4.04

Table 1. Audio test results. Values correspond to average
rates on a 1 (very disturbing reconstruction) to 5 (inaudible
reconstruction) scale.

also vary between artists; for instance, reconstructions on
Michael Jacksonsongs seem to be better accepted, with an
average value around4.24 whether listeners are musicians
or not. Contrastingly, reconstructions onQueenpieces were
more often perceived, with an average value of3.94, and
musicians assigned a0.5 lower rate on average. An ex-
planation for such gaps between artists may be the more or
less repetitive aspect of similar structural sections, such as
choruses that tend to vary often alongQueenmusic pieces.
Moreover, a few pieces such asWe will rock youby Queen
were assigned particularly low rates (1.25 in this case for8
observations) probably because their pitch content is insuf-
ficient for the algorithm to detect local similarities.

4. CONCLUSION AND FUTURE WORK

In this paper, we addressed the problem of reconstructing
missing data in large audio parts. We used a tonal represen-
tation to obtain a feature sequence on a musical criterion,
and analyzed it using string matching techniques to extracta
musically consistent part as a reference for substitution.We
generated audio test data introducing random concealments
between1 and16 seconds long in repeated structural parts,
and tested out our music assignment system in an audio
evaluation on 80 subjects. Results highlighted a good per-
formance of the method in recovering consistent parts with
30% random reconstructions undetected, and31% hardly
perceptible.

As a future work, in order to make this method useful in
practice, the algorithm may be combined with other signal-
based approaches. For instance, audio synchronizations could
be applied by aligning assigned beats with original ones.
Other possible audio improvements include the correction
of dynamics, or the combined use of other musical descrip-
tions (timbre features, rhythm,etc.). We also leave as a
perspective the improvement of the comparison algorithm,
which could retrieve a set of parts locally fitting the missing
data section and combine such parts iteratively, or the devel-
opment of an inspired approach performing real-time audio
reconstruction.
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ABSTRACT

Existing audio-score alignment methods assume that the au-
dio performance is faithful to a fully-notated MIDI score.
For semi-improvised music (e.g. jazz), this assumption is
strongly violated. In this paper, we address the problem
of aligning semi-improvised music audio with a lead sheet.
Our approach does not require prior training on performances
of the lead sheet to be aligned. We start by analyzing the
problem and propose to represent the lead sheet as a MIDI
file together with a structural information file. Then we
propose a dynamic-programming-based system to align the
chromagram representations of the audio performance and
the MIDI score. Techniques are proposed to address the
chromagram scaling, key transposition and structural change
(e.g. a performer unexpectedly repeats a section) problems.
We test our system on 3 jazz lead sheets. For each sheet
we align a set of solo piano performances and a set of full-
band commercial recordings with different instrumentation
and styles. Results show that our system achieves promising
results on some highly improvised music.

1. INTRODUCTION

In this work we investigate the problem of aligning an audio
recording of semi-improvised music to a lead sheet. This
problem belongs to a more general research problem called
score alignment, i.e. finding the time mapping between a
musical performance and its score. The fulfillment of this
task would be very useful for a number of applications like
synchronizing multiple sources (video, audio, score, etc.) of
music in a digital library and automatically accompanying a
musical performance.

In the last two decades, many methods have been pro-
posed for score alignment in different problem settings: MIDI
to MIDI, audio to MIDI, monophonic or polyphonic audio

Permission to make digital or hard copies of all or part of this work for
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not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
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performances, online or offline, etc. [4]. However, most
methods assume faithful performances to a fully-notated score,
with at most a tempo change and key transposition.

We call modern jazz semi-improvised, because many sig-
nificant elements of the music are improvised but deeper-
level structural aspects remain relatively fixed. The score for
semi-improvised music is called a lead sheet. A lead sheet
specifies only essential elements like a basic melody, har-
mony, lyric and a basic musical form. A performer typically
improvises all the notes in a solo, changes in tempo, ac-
companiment figuration and even some structural elements
of a piece (e.g. repeating a chorus). The nature of semi-
improvised music makes the alignment to a lead sheet very
challenging. Even for an educated musician it is sometimes
difficult to align an improvisation to the lead sheet when the
improvisation has high degree of freedom.

For aligning such performances, a few methods have been
proposed. Dannenberg and Mont-Reynaud [5] aligned a
jazz solo performance with the chord progression on the
score. Pardo and Birmingham [10] aligned a polyphonic
semi-improvised MIDI performance with its lead sheet. They
also proposed a method [11] to follow a performance with
possible structural variations, i.e., deviating from the ex-
pected path written on the score by skipping or repeating
a section. The above-mentioned methods have loosened the
faithful performance assumption, however, they are either
limited to deal with MIDI performances [10,11], or can only
follow a solo performance under a 12-bars blues form [5].
Arzt and Widmer [1] also proposed an alignment system
to handle structural variations, but only for non-improvised
(classical) music. To our knowledge, there is no existing
methods that align a semi-improvised (polyphonic) audio
performance under an arbitrary form with its lead sheet.

This problem is in some ways similar to Cover Song
Identification (CSI), i.e. identifying different performances
(usually by different artists) of the same song [7]. How-
ever, variations of these performances are generally much
less than those in what we called semi-improvised music
such as modern jazz. In addition, the alignment methods
used in CSI only serve as an intermediate step for similarity
calculation, and no precise time mappings are required.

In this paper, we attempt to address the semi-improvised
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music audio-score alignment problem, without prior train-
ing on example performances of the lead sheet to be aligned.
We first analyze the problem’s unique properties in Section
2, then propose an alignment system regarding these prop-
erties in Section 3. In Section 4 we describe experiments to
test the system on real performances of solo piano and jazz
combo. Section 5 concludes this paper.

2. PROBLEM ANALYSIS

2.1 Basic Properties

The problem considered in this paper is aligning an audio
recording of a semi-improvised music performance to its
lead sheet. A lead sheet usually only specifies a basic melody,
harmony, lyric and a basic musical form (structure). Take
Figure 1(a) as an example. The melody is indicated by note
heads. Harmony is indicated by chord symbols above the
staff. Lyrics are indicated as text below the staff. The text
“A” with a square indicates the start of Section A, and the
repeat sign besides it suggests that this section is often re-
peated in a performance. We can translate this lead sheet
into a MIDI file by setting a tempo (e.g. 120BPM), render-
ing harmony as block chords with root notes in the C2-C3
octave and discarding the lyric and music structure informa-
tion. The piano-roll representation of this MIDI is shown in
Figure 1(b). We mark measures with vertical dash lines.

(a) Lead sheet

0 2 4 6 8
C2

C3

C4

C5

Time (seconds)

P
itc

h

(b) Lead sheet converted to MIDI

0 2.532 4.579 7.134 9.414
C2

C3

C4

C5

Time (seconds)

P
itc

h

(c) First improvised performance

0 1.828 3.627 5.479 7.376
C2

C3

C4

C5

Time (seconds)

P
itc

h

(d) Second improvised performance

Figure 1. Four measures of the lead sheet for Dindi by An-
tionio Carlos Jobim, and its two semi-improvised piano per-
formances.

In semi-improvised performances, the performer views
the lead sheet as a reference and continuously creates new
musical elements that are not on the score. Figures 1(c) and
1(d) show the piano-rolls of two semi-improvised piano per-
formances by two different pianists of the lead sheet, with
measure times marked by vertical dash lines. We can see
that the two performances have different tempi from the lead
sheet. Also, harmony is rendered in free rhythmic patterns.
We also notice that the melody contour of the lead sheet re-
mains in the first performance, while is significantly altered
in the second performance.

2.2 Representing Harmonic Content

Harmonic content is the most similar feature that an semi-
improvised performance and its lead sheet shares. We need
to find a representation of harmonic content, robust to vari-
ations among different performances, on which to do the
alignment. The chromagram is a good representation which
has been used in many audio-score alignment methods [4].
In these methods, chroma features are usually calculated for
every short time frame (e.g. 46 ms), so that the alignment
can be precise at the millisecond level. However, this choice
is not suitable in our problem, as we can see in Figure 1 that
performed notes can be significantly different from the notes
written on the lead sheet at any one 46 ms frame. In fact,
chord labels on the lead sheet are more like sets of high-
likelihood notes to be played over given time periods (e.g.
two beats of D minor 7), and aggregating performed notes
across larger time spans (e.g. two beats) makes for a clearer
correspondence to the score. Therefore we choose to calcu-
late chroma features in this scale.

2.3 Utilizing Structural Information

Structural information on the lead sheet is also important
for an alignment system. Performers often modify the ba-
sic musical form, but not arbitrarily. For example, the basic
form of Dindi is “Intro-[A-A-B-C]”, where the bracket rep-
resents a repeat sign. Performers may skip the Intro section
at the beginning but play it at the end. They may change the
repeat bracket by including the Intro section or excluding
the A sections. Basically, they view musical sections as toy
bricks, selecting and shuffling them during a performance.
However, it is not common to make other structural changes
such as making a jump at the middle of a section.

However, structural information on the lead sheet is not
encoded in the MIDI representation shown in Figure 1(b).
Therefore, we encode it in an additional file, as shown in
Table 1. Basically, this file stores two kinds of information:
1) musical section definitions and boundaries; 2) possible
jumps that an semi-improvised performance might make.
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Sections from to Jumps from to
Intro 1 16 48 1
A 17 24 48 17
A 25 32 48 33
B 33 40
C (A) 41 48

Table 1. Structural information extracted from the lead
sheet for Dindi. Section C is very similar to Section A.

3. PROPOSED SYSTEM

Based on the above analysis, we design our system as shown
in Figure 2. We represent both the audio and MIDI with a
chromagram where chroma vectors are extracted at the 2-
beats scale, then use a modified string alignment algorithm
that can handle structural changes to align the chromagrams.

Figure 2. Overview of the proposed system.

3.1 Audio Beat Tracking

In order to extract chroma features from audio at the 2-beat
scale, we need audio beat times of the performance. We
use the original implementation of the beat tracking algo-
rithm proposed by Ellis [6]. While this is a high-quality beat
tracker, the estimated tempo often has halfing/doubling er-
rors, as described in [6]. In addition, when the performance

has an unstable tempo, the algorithm may find extra beats or
miss some beats.

3.2 Audio Chroma Feature Extraction

We first chop the audio signal into 46 ms long time frames
with a 23 ms hop size and calculate a chroma vector for
each frame. The frame-level chroma vector is 12-d, and is
calculated by “folding” the local maxima of the hamming-
windowed Short Time Fourier Transform (STFT) spectrum
to the 12-pitch classes. This tends to suppress the non-
harmonic part of the spectrum.

As discussed in Section 2.2, the ideal analysis unit is not
the 46 ms frame, but something on the order of 2 musi-
cal beats. We therefore average the chroma vectors of the
frames into segments of length l and a hop size h, where
these values are measured in beats. The resulting chroma-
gram is a sequence of the segment-level chroma vectors. In
our experiments, we set l and h to 2 beats and 1

4 beats, re-
spectively. A segment size of two beats worked well for the
harmonic rhythm of the music analyzed, with the shortest
duration chords typically being 2 beats. For the hop size h,
theoretically a smaller h leads to a more precise alignment.
However, the computational complexity increases quickly
as h shrinks (O(1/h2)). We investigate the influence of dif-
ferent parameters on the alignment result in Section 4.

3.3 MIDI Chroma Feature Extraction

As with the audio chromagram, we segment the MIDI repre-
sentation of the lead sheet into segments of length l and hop
size h, and calculate a chroma vector for each segment. We
simply sum up the lengths of notes in each segment to their
corresponding pitch-class bins. We generate 12 transposed
MIDI chromagrams to cope with the possible key transposi-
tion of the audio performance.

3.4 Chromagram Scaling Problem

In Section 3.1, we note that the estimated tempo of the au-
dio might be half or twice the true tempo. Therefore the au-
dio and MIDI chromagrams might be on temporal different
scales, which will strongly influence the alignment result.

To address this problem, we also segment the MIDI file
and calculate the chromagram in three ways, with segment
length and hop size of (l, h), (2l, 2h) and ( 1

2 l, 1
2h), respec-

tively. Therefore, for each audio-MIDI pair, we have 1 audio
chromagram and 36 MIDI chromagrams, corresponding to
3 scales and 12 key transpositions. It is noted that the idea
of time scaling and key transposition has been used in other
music information retrieval systems such as [3].

3.5 Aligning Chromagrams

Let A = (a1,a2, · · · ,am) be the audio chromagram, S =
(s1, s2, · · · , sn) be the score chromagram, where ai is the
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chroma vector of the i-th audio segment and sj is the chroma
vector of the j-th score segment. We describe a dynamic-
programming algorithm to align them. Unlike standard string
alignment algorithms, this algorithm utilizes structural in-
formation provided by the lead sheet (as shown in Table 1)
to handle possible structural changes in the semi-improvised
performance. To do so, we define a parent-index set P(j)
for each score segment index j. Each element k of P(j) is a
score segment index, from which a semi-improvised perfor-
mance might transition to j. This transition can be a smooth
progression i.e. k = j − 1, or a forward/backward jump. In
the latter case, the pair (k, j) is a possible jump listed in the
structural information file as Table 1.

Now we recursively define a (m + 1) × (n + 1) align-
ment cost matrix C, where the value C(i, j) is the lowest
cost of the alignment between the initial sub-chromagrams
(a1, · · · ,ai) and (s1, · · · , sj). For all i = 1, · · · ,m and
j = 1, · · · , n, C(i, j) are calculated as follows:

C(0, 0) = 0,C(i, 0) = i · c1,C(0, j) = 0 (1)

C(i, j) = min


C(i, j − 1) + c1

C(i− 1, j) + c2

mink∈P(j) C(i− 1, k) + d(ai, sj)
(2)

where c1 and c2 are constants specifying the costs of skip-
ping one segment of audio and score in the alignment, re-
spectively. d(ai, sj) specifies the cost of mismatching the
i-th audio segment with the j-th score segment.

Note that Eq. (1) is not symmetric, i.e. C(i, 0) is set to
i · c1, but C(0, j) is set to 0 instead of j · c2. This means
that we penalize skipping audio segments at the beginning
but do not penalize skipping score segments, i.e. we as-
sume that the performance can start anywhere but must be
on the lead sheet. Although sometimes performers play sev-
eral measures that are unrelated to the lead sheet at the be-
ginning, this is short compared to the whole performance
and we ignore this case. In addition, the third line in Eq.(2)
is calculated from C(i − 1, k) for all possible parents k of
the j-th score segment, while in an standard string alignment
algorithm it is only calculated from C(i−1, j−1). This al-
lows the performance to play to the j-th score segment in all
possible ways, either progress smoothly from the previous
segment j − 1 or jumping from other segments.

The mismatch cost function d(ai, sj) is defined as:

d(ai, sj) = arccos
(

aT
i sj

∥ai∥∥sj∥

)
(3)

We use cosine angle distance instead of Euclidean distance
to make it loudness insensitive. This is because the loudness
of the audio may vary from the loudness calculated from the
score differently in different performances. Since angle dis-
tance between an arbitrary audio-score chroma vector pair is
around 1, we set c1 = c2 = 1 to match the three penalties.

While calculating C, we fill another m × n matrix P,
where P(i, j) stores the index pair (i′, j′) from which C(i, j)
is calculated in Eq. (2). When the calculation of C is fin-
ished, the final alignment cost is calculated as minj C(m, j).
Let j1 = arg minj C(m, j). We than trace back from the in-
dex pair (m, j1) through P to some index pair (1, j2). The
sequence of index pairs (1, j2), · · · , (m, j1) give the align-
ment between A and B. Note that the last pair is (m, j1)
instead of (m,n). This allows the audio performance to end
at any position of the score.

If we view each score segment as a state, each audio seg-
ment as an observation, then the proposed algorithm is es-
sentially equivalent to the forward-backward algorithm for a
Hidden Markov Model (HMM) [12]. The transition matrix
T has a positive value t1 on the diagonal, corresponding to
the penalty of skipping an audio segment c1. It also has a
positive value t2 on the superdiagonal (elements (j − 1, j))
and elements (k, j) for all k ∈ P(j), corresponding to the
penalty of skipping a score segment c2 by smooth progres-
sions and jumps, respectively. If c1 = c2, then t1 = t2. We
also notice that this algorithm is equivalent to the one pro-
posed by Fremerey et al. [8], which also handles jumps and
repeats in synchronizing a score with a performance.

Finally, for each audio-MIDI pair, we do the alignment
36 times corresponding to the 36 MIDI chromagrams. The
alignment that achieves the lowest final alignment cost is
selected as the output of the system.

4. EXPERIMENT

4.1 Dataset

Our dataset consists of 36 semi-improvised performances of
3 jazz lead sheets: Dindi by Antonio Carlos Jobim, Nicas’s
Dream by Horace Silver and Without A Song by Vincent
Youmans, selected from commonly used jazz fake books.
For each song, the performances consist of two subsets. The
first subset contains MIDI recordings performed by profes-
sional Chicago jazz pianists obtained from [9]. In [9], four
pianists each gave three different performances scaled to
three subjective levels of difficulty, ranging from a perfor-
mance closely adhering to the given lead sheet to a more
“free” interpretation. After recording, these pianists also
annotated their own performances with beat, measure and
structural branch point information, encoded as MIDI data.
We include the two less difficult levels into our dataset (de-
noted as easy and medium), totalling 8 jazz piano perfor-
mances for each song. We render these MIDI performances
into audio recordings with the Logic Audio software using
Grand Piano sound samples. We use the pianists’ annota-
tions to generate the ground-truth audio-score alignment.

The second subset contains 4 commercially released record-
ings for each lead sheet. Table 2 shows basic information for
them. To generate the ground-truth audio-score alignment,
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two musicians listened to these recordings, marked beat and
measure time points and identified the score position (score
measure number) of each measure of the audio. Audio mea-
sures that are unrelated to the lead sheet (e.g. an improvised
cadenza) were labeled score measure number 0.

ID Performer(s) Instruments

D
in

di

1 Astrud Gilberto female, violin, guitar
2 Charlie Byrd guitar, saxophone
3 Ohta San guitar
4 Sadao Watanabe string, saxophone

N
ic

a’
s.

.. 1 Art Farmer trumpet, trombone, brass
2 Benjamin Koppel Quintet saxophone, piano, conga
3 Cal Tjader vibraphone, piano
4 The Hot Club violin, guitar

W
ith

ou
t..

. 1 Diane Schuur female, piano, bass
2 Joe Henderson saxophone, brass, piano
3 Oscar Peterson piano, brass
4 Sonny Rollins saxophone, brass, guitar

Table 2. Improvised performances played by jazz bands.

For each improvised performance, we use two experi-
mental settings. In the first setting, we align the whole per-
formance with the lead sheet. This is to observe our sys-
tem’s behavior on a larger time scale (usually several min-
utes). In the second setting, we randomly select 10 excerpts
of the performance and align them with the lead sheet. The
length of each excerpt ranges from 16 measures to 48 mea-
sure. This is to observe our system’s behavior on a smaller
scale (usually 30 seconds to 2 minutes) and would be repre-
sentative of the task of selecting a portion of audio in a mu-
sic player and asking to be shown the corresponding place
on the lead sheet. The second setting is in general more
challenging, as there is less context information.

4.2 Evaluation Measures

A commonly used measure for audio-score alignment is Align
Rate (AR) as proposed in [2]. It is defined as the percent-
age of correctly aligned notes in the score, where “correct”
means that the note onset is aligned to an audio time which
deviates less than a short time (e.g. 250 ms) from the ground-
truth audio time. In our problem, however, there is no bijec-
tive correspondence between score notes and audio notes,
hence it is very hard to define the ground-truth audio time
for each score note and AR is not suitable.

We formulate our problem as a classification problem,
by assigning to each audio frame a score measure number.
Given this, we simply use Accuracy as our measure. It is
calculated as the proportion of audio frames which are cor-
rectly assigned score measure numbers as the ground-truth.
We exclude those audio frames where the performance is
unrelated to the score. This measure ranges from 0 to 1.

4.3 Results

Figure 3 shows overall results of aligning whole performances.
Among the 36 performances, 11 have accuracies higher than
75%, 13 between 50% and 75%, while 6 lower than 10%.
Their average is 54.8%. It is noted that a random guess
alignment would get an accuracy as the reciprocal of the
number of measures on the lead sheet, about 2%.

D N W D N W D N W
0

0.2

0.4

0.6

0.8

1

Easy piano    Medium piano   Jazz combo

A
cc

ur
ac

y
Figure 3. Alignment accuracies of all the 36 whole perfor-
mances. ’D’, ’N’ and ’W’ represents the lead sheet names
Dindi, Nica’s Dream and Without A Song, respectively.

We show three examples with different alignment accu-
racies in Figure 4. In the upper panel, the system’s output
alignment matches with the ground-truth perfectly except
in two parts (51-58 seconds, 193 seconds - end). In both
parts the performance is unrelated to the lead sheet. It is
noted that the accuracy measures always underestimate the
performance of the system, because the audio beat bound-
aries estimated by the beat tracking module are not perfectly
aligned with the ground-truth beat boundaries, hence the as-
signed score measure numbers of the audio frames that are
close to these boundaries are often off for ±1 measures.

In the middle panel, the performance sometimes repeats
from the Intro section and sometimes from Section A. Our
system handles this uncertain structural change well. How-
ever, it incorrectly identifies the two B sections around 150
seconds (also the two B sections around 250 seconds) as
only one B section with about half the tempo. Interestingly,
it comes back to the right position after this error. In addi-
tion, after incorrectly identifying Section A (175-192 sec-
onds) as C and B, the system identifies another A section
(192-210 seconds) as Section C. Since Section A and C are
almost the same on the lead sheet, this error is reasonable.
Excluding this error causes accuracy to increase to 65.8%.

In the bottom panel, our system fails totally. Audio frames
are constantly skipped after about 16 seconds. This exam-
ple played by Diane Schuur, however, is very difficult. First,
there are four parts (0-12, 91-97, 162-165 seconds and 179
seconds - end) that the performance is unrelated to the lead
sheet. Second, the performance plays at half the tempo
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in Section C (142-162 seconds). Third, the performance
switches to a new key at 165 seconds till the end. The au-
dio, MIDI and alignment results of these and other examples
can be accessed at http://www.cs.northwestern.
edu/˜zdu459/ismir2011/examples.

Intro

A

A

B

C(A) Acc: 87.9%
Dindi
Medium piano

0 50 100 150 200
1

17

25

33

41

48

Intro

A

B

C(A)
Acc: 57.4%
Nica’s Dream
Easy piano)

0 50 100 150 200 250
2

10

27

37

52

A

B(A)

C

D(A)
Acc:2.6%
Without A Song
Jazz combo

0 50 100 150
1

18

34
42

57

Figure 4. Three alignment examples. The horizontal axis
is audio time in seconds. The left vertical axis shows sec-
tion names of the lead sheet. The right vertical axis and the
horizontal dash lines show the boundaries of the sections in
measure numbers. Red solid lines show the system’s align-
ments. Blue dash lines show the ground-truth alignments.

Figure 5 shows the average alignment accuracies over all
360 performance excerpts with different chroma length l and
hop size h settings. Our choice of l = 2, h = 1/4 achieves
an accuracy of 49.3%, which is one of the highest among
all the parameter settings. This is in accordance to the anal-
ysis in Section 2.2. This result shows that with much less
contextual information, our system still works well on some
highly improvised audio excerpts.

5. CONCLUSION

In this paper, we attempted to align semi-improvised mu-
sic audio with its lead sheet. We proposed a simple sys-
tem to align chromagram representations of audio and score
based on a modified string alignment algorithm, which uti-
lizes structural information of the lead sheet. Experiments

1/8 1/4 1/2 1 2 4
0.2

0.3

0.4

0.5

0.6

Chroma length/hop size (Beat)

A
cc

ur
ac

y

 

 

length varies
hop size varies

Figure 5. Average accuracies over all 360 excerpt perfor-
mances, versus chroma length (fix hop size = 1/4) or hop
size (fix chroma length = 2).

on 36 audio performances and their 360 excerpts of 3 lead
sheets showed promising results. This work is supported by
NSF grant IIS-0643752.
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ABSTRACT

Audio recordings of classical music pieces reflect the artistic

interpretation of the piece as seen by the recorded perform-

ing musician. With many recordings being typically avail-

able for the same music piece, multiple expressive rendition

variations of this piece are obtained, many of which are in-

duced by the underlying musical content. In earlier work,

we focused on timing as a means of expressivity, and pro-

posed a light-weight, unsupervised and audio-based method

to study timing deviations among different performances

through alignment patterns. By using the standard devia-

tion of alignment patterns as a measure for the display of

individuality in a recording, structural and interpretational

aspects of a music piece turned out to be highlighted in

a qualitative case study on five Chopin mazurkas. In this

paper, we propose an entropy-based deviation measure as

an alternative to the existing standard deviation measure.

The obtained results for multiple short-time window reso-

lutions, both from a quantitative and qualitative perspective,

strengthen our earlier finding that the found patterns are mu-

sically informative and confirm that entropy is a good alter-

native measure for highlighting expressive timing deviations

in recordings.

1. INTRODUCTION

In classical music, music pieces are usually conceived by

composers and translated into scores. These are studied and

interpreted by musicians, who each give their own personal,

expressive account of the score through their actual perfor-

mance of the piece. With an increasing number of such per-

formances becoming available in digital form, we also gain

access to many different artistic readings of music pieces.

The availability of recordings of multiple performances

of music pieces previously has strongly been exploited in

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2011 International Society for Music Information Retrieval.

the field of audio similarity-based retrieval. In this, the focus

was on matching musically closely related fragments (audio

matching [6,8]), or finding different versions of a song at the

document level, ranging from different performances of the

same notated score (opus retrieval [2]) to potentially radi-

cally different new renditions of a previously recorded song

(cover song identification [11]). In general, matching and

retrieval of classical music pieces were shown to be achiev-

able with near-perfect results [1, 4]. Another category of

previous work largely focused on analyzing and/or visual-

izing the playing characteristics of individual performers in

comparison to other performers [3, 9, 10].

At certain moments, a performer will display larger per-

sonal expressive freedom than at other moments, guided by

theoretical and stylistic musical domain knowledge as well

as personal taste and emotion. By comparing expressive

manifestations in multiple recordings of the same piece, we

therefore can gain insight in places in the piece where the

notated musical content invites performers to display more

or less expressive individualism. Such information on the

interplay between performance aspects and the notated mu-

sical content provides a novel perspective on the implicit in-

terpretative aspects of the content, which can be of a direct

benefit for many Music Information Retrieval (MIR) tasks,

ranging from music-historical performance school analysis

to quick and informed differentiating and previewing of mul-

tiple recordings of the same piece in large databases.

In recent previous work [5], we proposed a light-weight,

unsupervised and audio-based method to study timing devi-

ations among different performances. The results of a qual-

itative study obtained for 5 Chopin mazurkas showed that

timing individualism as inferred by our method can be re-

lated to the structure of a music piece, and even highlight

interpretational aspects of a piece that are not necessarily

visible from the musical score. In this paper, we introduce

an entropy-based approach as an alternative to our previous

standard deviation-based approach, and will study the char-

acteristics of both methods in more depth at multiple short-

time window resolutions. While this task does not have a

clear-cut ground truth, the introduction of our new entropy

method allows for quantitative comparative analyses, pro-

viding deeper and more generalizable insight into our meth-
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ods than the largely qualitative pioneering analyses from [5].

This paper is organized as follows. After a summary

of our previous work from [5], we will describe our new

entropy-based method. This will be followed by a descrip-

tion of the experimental setup and corresponding results. Fi-

nally, the paper will end with a conclusion and discussion of

future directions.

2. AUDIO-BASED ALIGNMENT AND ANALYSIS

OF MULTIPLE PERFORMANCES

2.1 Audio-based alignment of multiple performances

In [5], we proposed a method to infer timing expressivity

in an audio-based, objective and unsupervised data-driven

way, largely building on novel work in audio similarity-

based retrieval.

As short-time harmonic audio signal descriptor features,

we adopt the recent Chroma Discrete Cosine Transform-

reduced Log Pitch (CRP) features, which outperformed tra-

ditional chroma representations in timbre-robustness and au-

dio matching performance [7]. We use the CRP feature im-

plementation as made available by the original authors 1 . If

A is a set with n audio recordings of the same piece, we

obtain n CRP profile vectors r establishing a set R, where

each r represents an audio recording a ∈ A.

As different performances of the same piece may differ

in global tempo, the CRP profile vectors r ∈ R will have

different lengths. Through Dynamic Time Warping (DTW)

techniques, we can align the vectors and find a time map-

ping between corresponding events in different recordings.

For this, we apply the DTW alignment technique from [11],

which used a binary cost measure and imposed local con-

straints to avoid pathological warpings. This method was

shown to be very powerful in cover song retrieval settings.

We choose a CRP profile vector rref ∈ R, correspond-

ing to a reference recording that may be arbitrary chosen.

By aligning rref with the vectors r ∈ R\{rref}, corre-
sponding to all other recordings in the set, full alignment

between performances is achieved through rref . For each

alignment between rref and an r ∈ R, an alignment ma-

trix X is constructed. The alignment value Xi,j between

two CRP profiles at time instances i and j in rref and r, re-
spectively (rref [i] and r[j]), is computed adopting the local

constraints as suggested in [11]. Initialization procedures,

binary similarity measures and other parameters were also

taken from this article, to which the interested reader is re-

ferred for more details.

An explicit alignment path is obtained by tracing back

from the point corresponding to the highest total alignment

score. If |rref | = m, for each alignment to a performance r
we obtain an alignment path w of length m, with w[1 . . . m]

1 http://www.mpi-inf.mpg.de/~mmueller/

chromatoolbox/

indicating short-time instance indices of the CRP profiles in

r that align to rref [1 . . . m]. Not all time instances 1 . . . m
may have been explicitely covered in the original alignment

path. Assuming linear development for unknown instances,

missing values are estimated through linear interpolation.

2.2 Performance alignment analysis

After calculating all alignment paths following the proce-

dures above, we will have obtained a setW with n−1 align-
ment paths w ∈ W , each of length m. We post-process

these paths to emphasize irregular alignment behavior: if an

alignment subpath w[k . . . l] shows constant alignment steps

(w[k] = w[k + 1] = w[k + 2] = · · · = w[l − 1] = w[l]),
this means that the corresponding CRP feature vector ex-

cerpt in r is a linearly scaled version of rref [k . . . l], and
therefore does not reflect any timing individualism. In or-

der to highlight alignment step slope changes, we compute

discrete second derivatives over the alignment path.

First of all, for each alignment path w, we compute the

discrete first derivative δ through the central difference:

δ[i] =


1
2 (w[i + 1] − w[i − 1]) 1 ≤ i ≤ m

w[1] − w[0] i = 1

w[m] − w[m − 1] i = m.

Due to an initial alignment index jump, a large ‘startup’

derivative is found at the beginning of the path. As we are

only interested in the alignment step development within the

true alignment path (and the beginning of the recording for

the given time sampling rate will contain silence), we set the

derivative values up to this startup point to 0. By repeating

the central difference procedure on the enhanced δ, a second
derivative approximation δ2 ∈ ∆2 is obtained.

We assume that moments in the piece showing the largest

timing deviations among performers (and thus, the highest

degree of individualism) must have given the performers a

reason to do so, and therefore must be of a certain semantic

relevance. A measure is needed to express this individual-

ity of timing at all short-time instances of ∆2. For this, we

proposed to adopt the standard deviation: for each time in-

stance t = 1 . . . m, we compute σ[t], which is the standard

deviation of all alignment second derivatives δ2[t] ∈ ∆2,

acquiring a standard deviation sequence σ of length m.

3. ENTROPY AS INFORMATION MEASURE

The assumption that moments with the largest timing devia-

tions (‘disagreement’) among performers will be of a certain

semantic relevance resembles the notion of entropy in infor-

mation theory, where items with the most uncertain actual

realization are considered to hold the largest amount of in-

formation. Thus, as an alternative to our previous standard
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deviation method, we now propose to calculate the entropy

of ∆2 at each short-time instance. If ∆2 has the possible

values (‘symbols’) d2t,1 . . . d2t,f at time t, then

h[t] = −
f∑

i=1

p(d2t,i) log2 p(d2t,i)

where we approximate p(d2t,i) by the frequency of d
2
t,i in∆2

at time instance t. While the previous standard deviation-

based approach treats the values at each δ2[t] as cardinal

data, the entropy-based approach will treat the values as

nominal data, only measuring diversity.

4. EXPERIMENTAL EVALUATION

We initially conceived our methods with the goal to reveal

implicitly encoded expressive musical information in au-

dio that would go beyond an objective score reading. This

means that no explicit classification is applied and an ob-

jective ground truth is absent. Because of this, in [5], the

results of the standard deviation-based method were largely

discussed in a qualititative way. With our new entropy-

based method, possibilities arise for quantitative compar-

isons between this method and the standard deviation-based

method, which we will discuss in this section, as an addi-

tion to qualitative and musical interpretations of the results

of the entropy-based method.

Our experiments will focus on two aspects: (1) verifying

that σ and h are no random noise sequences and (2) focusing

on the main similarities and dissimilarities between σ and h
from a quantitative and qualitative perspective. While the

work in [5] only focused on a 2048-sample short-time au-

dio analysis window, our current experiments will consider

multiple possible window lengths. While we are not striving

to identify an ‘optimal’ time window length yet (which will

depend on the desired musical unit resolution, e.g. small or-

namental notes vs. harmonies on beats), we consider these

multiple window lengths to verify if the behavior of our

methods is stable enough to not only yield interpretable re-

sults at the earlier studied resolution of 2048 samples.

4.1 Experimental Setup

Following our earlier work, we focus on 5 Chopin mazurkas

that were thoroughly annotated as part of the CHARM Ma-

zurka Project [9]: op. 17 no. 4, op. 24 no. 2, op. 30 no. 2, op.

63 no. 3 and op. 68 no. 3, with 94, 65, 60, 88 and 51 avail-

able recordings, respectively. We follow the procedure as

outlined in Section 2.1, choosing the shortest recording for

which manually annotated beat data is available as the ref-

erence recording, thus minimizing the size of the alignment

paths. In order to interpret the results, we will use man-

ual musical structure analyses by the authors as a reference.

Thanks to the carefully established manual beat annotations

Figure 1. Histogram for δ2 values in ∆2 measured at con-

secutive short-time windows for mazurka op. 30 no. 2, for a

2048-sample window length and with reference main struc-

tural boundary labels (a, b, c, etc.) indicated over the time

dimension.

from the Mazurka dataset, these structure analyses can be

related to the audio as precisely as possible.

We apply our methods to all available recordings in each

of the mazurkas, calculating standard deviations σ and en-

tropies h for the alignment pattern second derivatives in ∆2,

as obtained for 7 different short-time window lengths (from

1024 to 4096 samples, in linearly increasing steps of 512

samples, at a sampling frequency of 22050 Hz and with

50% overlap). A representative example of second deriva-

tive value frequencies over the short-time instances is shown

in Figure 1: the majority of values is zero (’constant align-

ment development’), and frequency peaks for other values

appear to occur in bursts.

4.2 Verification of trends in standard deviations and

entropies

To verify that both the sequences σ and h are no random

noise sequences, we perform two statistical runs tests: one

testing the distribution of values above and under the se-

quence mean, and one testing the distribution of upward and

downward runs. In both cases and for all window lengths,

the tests very strongly reject the null hypothesis that the se-

quences are random. In Figure 2, the runs frequencies for

the test focusing on upward and downward runs are plot-

ted. From this plot, we notice that entropy sequences consis-

tently have less up- and downward runs (and thus ‘smoother

behavior’) than standard deviation sequences, especially for

small window sizes. Furthermore, the relation between the

number of runs and the window size does not appear to be

linear, implying that the choice of a larger short-time win-
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Figure 2. Numbers of up- and downward runs (summed)

for different short-time window lengths. Dashed lines indi-

cate σ sequences, solid lines indicate h sequences. Markers

indicate mazurkas.

dow does not uniformly smooth the results obtained with

a smaller window. Curves for the test focusing on values

above and under the sequence mean are omitted due to space

considerations, but strongly resemble the given plot. When

plotting the resulting sequences over time, the resulting h
curves indeed are less noisy than the σ curves. Figure 3

shows both curves for the opening phrase of mazurka op.

17 no. 4 for a short-time window of 1024 samples. The σ
curve appears to be denser, due to the larger number of up-

and downward runs. Looking at the general development of

the curves, both σ and h appear to show very similar be-

havior, with many co-occurring maxima and minima. As

a quantitative backing for this notion, Table 1 shows Pear-

son’s correlation coefficient between σ and h for all window

lengths considered. From the values in this table, it indeed

becomes clear that σ and h are strongly correlated.

4.3 Standard deviations vs. entropies

As mentioned above, entropy sequences h are strongly cor-

related with standard deviation sequences σ. Thus, as with
the σ sequences, they will be capable of highlighting devel-

opments that musically make sense [5]. Next to the example

in Figure 3, where both the σ and h values increased with

ornamentational variation, we also give an example where

the musical score does not clearly indicate the expressive

development of phrases. In Figure 4, the ‘c’ section of ma-

zurka op. 30 no. 2 is shown, where a simple subphrase is

almost identically repeated 8 times. A performer will not

play this subphrase 8 times in an identical way, and this is

reflected both in σ and h: the major displays of individuality

in recordings can be found in subphrases 1 (first statement

of subphrase), 3 (following traditional binary period struc-

tures, here a new subphrase could be starting, but this is not

the case) and 8 (last statement of subphrase). Furthermore,

Figure 3. σ (top) and h (bottom) sequence for opening

phrase of mazurka op. 17 no. 4 with corresponding score

fragments. 1024-sample window length, 20-point moving

average smoothed trendline indicated with thick line.

for subphrase 4 and 8, the average value of σ and h is higher

than in the other subphrases, and no minima are reached

as large as in the other phrases. This can be explained be-

cause of the altered ornament starting the subphrase, and the

fact that both subphrase 4 and 8 are the final subphrase in a

higher-order phrase hierarchy of 4 + 4 subphrases. From

both Figure 3 and 4, the main difference between σ and h
appears to be that h has a considerably larger range than σ,
and especially tends to amplify positive peaks.

With its less noisy behavior and stronger peak amplifica-

tion, the entropy-based method seems more attractive for

our alignment analyses than the standard deviation-based

method. As a final experiment aimed at gaining more in-

sight into the differences between both methods, we linearly

scale both σ and h to unit range. This results in sequences

σnorm and hnorm. We then test how often hnorm > σnorm

for three cases: (1) all short-time instances, (2) all beat starts

(with the beat timings obtained from the earlier manual an-

notations from the CHARM project) and (3) all subphrase

starts. While these cases consider a decreasing number of

events, the musical importance of the events increases: a

subphrase start should be more informative than a random

instance in time. Results are given in Table 2.

In general, σnorm will have larger values than hnorm.

This matches with the notion that the entropy sequences am-

plify positive peaks: thus, the non-peak values will tend to

skew under the mean entropy value, while standard devia-
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1024 1536 2048 2560 3072 3584 4096

17 no. 4 0.9271 0.9225 0.9184 0.9117 0.9089 0.9022 0.9007
24 no. 2 0.9352 0.9308 0.9245 0.9218 0.9104 0.9105 0.9045
30 no. 2 0.9107 0.9094 0.9138 0.8955 0.8952 0.8911 0.8945
63 no. 3 0.9165 0.9103 0.9113 0.8992 0.8930 0.8877 0.8876
68 no. 3 0.9261 0.9274 0.9302 0.9387 0.9333 0.9291 0.9321

Table 1. Pearson’s correlation coefficient between σ and h sequences for all five mazurkas with different short-time window

lengths (in samples).

1024 1536 2048 2560 3072 3584 4096

17 no. 4 overall 0.2736 0.2595 0.3994 0.3413 0.4303 0.2847 0.6966
17 no. 4 at beat starts 0.4217 0.3460 0.4798 0.3662 0.4571 0.2955 0.7020

17 no. 4 at subphrase starts 0.6462 0.5077 0.6769 0.4769 0.5231 0.4462 0.7385

24 no. 2 overall 0.3645 0.5912 0.3172 0.4754 0.6417 0.5548 0.7307
24 no. 2 at beat starts 0.4903 0.6842 0.3767 0.5097 0.6898 0.5845 0.7895

24 no. 2 at subphrase starts 0.5085 0.7288 0.3559 0.5254 0.7966 0.6271 0.8644

30 no. 2 overall 0.2238 0.2354 0.1944 0.1790 0.3030 0.4177 0.6508
30 no. 2 at beat starts 0.3212 0.3005 0.1606 0.1762 0.2902 0.4301 0.6321

30 no. 2 at subphrase starts 0.4375 0.4375 0.3125 0.3438 0.3750 0.5000 0.8125

63 no. 3 overall 0.4901 0.5869 0.7861 0.6578 0.8038 0.5617 0.5956
63 no. 3 at beat starts 0.6348 0.6565 0.8348 0.6696 0.8261 0.5435 0.5739

63 no. 3 at subphrase starts 0.8684 0.8947 0.9474 0.7895 0.8421 0.5789 0.6053

68 no. 3 overall 0.1574 0.3359 0.1383 0.2698 0.6095 0.4751 0.6628
68 no. 3 at beat starts 0.3039 0.4420 0.1823 0.3094 0.6575 0.5304 0.6906

68 no. 3 at subphrase starts 0.3000 0.5000 0.2333 0.4000 0.6333 0.7000 0.7000

Table 2. Normalized entropies hnorm vs. standard deviations σnorm: fractions of cases in which hnorm > σnorm considered

over all short-time instances, over all beat starts, and over all subphrase starts different short-time window lengths (in samples).

tions are centered around the mean in a more balanced way.

Mazurka op. 63 no. 3 is an exception, but this may have been

caused by the noisiness of the historical reference record-

ing (Niedzielski 1931), which causes clicking and hissing

effects at random moments throughout the piece, thus also

causing irregular alignment behavior at these random mo-

ments. However, in all cases, when only looking at time in-

stances with beat and subphrase starts, the fraction of larger

normalized entropies increases for all mazurkas. Especially

for subphrases in comparison to beat starts, the increase is

considerable. This implies that the entropy sequence values

indeed amplify musically meaningful peaks.

Looking at the differences between beat start and sub-

phrase start fractions, the increases initially may not appear

to be stable or generalizable over different mazurkas. For

subphrase starts, the probability that hnorm > σnorm is

much larger than for beat starts in mazurkas op. 17 no. 4

and op. 63 no. 3 (and to a lesser extent, op. 30 no. 2). On

the other hand, in mazurkas op. 24 no. 2 and op. 68 no. 3,

this is much less the case, with the beat and subphrase start

fractions being much closer to each other.

From a musical perspective, this may not seem as strange

as from a numerical perspective: mazurkas op. 24 no. 2 and

op. 68 no. 3 both are rather ‘straightforward’ pieces, with

many repeating blocks with little thematic development, and

constant ongoing rhythms. Thus, there is not so much flex-

ibility to shape structural boundaries and subphrase starts

with large timing differences. On the other hand, mazurkas

op. 17 no. 4 and op. 63 no. 3 are very dramatical, have

strongly differing thematic blocks, and thus allow for em-

phasizing of new subphrases. While resembling mazurkas

op. 24 no. 2 and op. 68 no. 3 in terms of rhythmical and the-

matic straightforwardness, mazurka op. 30 no. 2 is less rigid

in terms of phrasing and musical movement, and thus will

allow for more timing flexibility, thus also sharing charac-

teristics with the other two mazurkas.

5. CONCLUSION AND RECOMMENDATIONS

In this paper, we proposed an entropy-based method as an

alternative to a standard deviation-based method for study-

ing alignment patterns between multiple audio recordings,

which were considered to contain interesting information

about the recorded music that cannot objectively be inferred

from a score. Our entropy method yielded results that con-

sistently were strongly correlated with the standard devia-

tion results at multiple time resolutions, while being less

noisy and amplifying positive peaks, which both are desir-

able properties for our purposes. It was shown that both the

standard deviation and entropy methods do not depict ran-

dom noise, but can be related to actual musical content.

The development over multiple time resolutions of corre-

lations between standard deviation and entropy sequences,

the frequencies of up- and downward runs, as well as runs
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(a) Score with numbered subphrases

(b) Standard deviation sequence σ

(c) Entropy sequence h

Figure 4. Mazurka op. 30 no. 2, σ and h for ‘c’ section. The

8 repeating subphrases are numbered. 1024-sample window

length, 20-point moving average smoothed trendline.

above and under the sequence mean, yields similar trends

over different mazurkas, implying that our methods are gen-

eralizable. We did not focus yet on further implications of

the choice of short-time window length, which still needs to

be done in future work. Another main future challenge is

the further solidification and backing of the musical inter-

pretations of our results. Finally, we did not yet employ any

noise-filtering or signal enhancement techniques. While the

results obtained for the noisy op. 68 no. 3 Niedzielski refer-

ence recording on runs frequency and correlation trends are

largely consistent with the results for other mazurkas with

clean reference recordings, the reference recording quality

will influence results and this topic should be investigated

more in future work.

Rendering MIDI files as audio and modifying them in

a controlled way may partially overcome the problem of a

missing ground truth and possible noise in real-life refer-

ence recordings. In addition, the interpretation of results can

be strengthened through a combination of our methods with

other MIR techniques dealing with prior knowledge of the

musical content in a more explicit and supervised way. Sup-

ported by our methods, such techniques will not have to be

tediously applied to a full database, but can be limited to one

or more reference recordings. This introduces promising di-

rections for MIR tasks dealing with the real-life abundance

of artistically valuable digital recordings.
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ABSTRACT

Music information retrieval, especially the audio-to-score
alignment problem, often involves a matching problem be-
tween the audio and symbolic representations. We must
cope with uncertainty in the audio signal generated from the
score in a symbolic representation such as the variation in
the timbre or temporal fluctuations. Existing audio-to-score
alignment methods are sometimes vulnerable to the uncer-
tainty in which multiple notes are simultaneously played
with a variety of timbres because these methods rely on
static observation models. For example, a chroma vector
or a fixed harmonic structure template is used under the as-
sumption that musical notes in a chord are all in the same
volume and timbre. This paper presents a particle filter-
based audio-to-score alignment method with a flexible ob-
servation model based on latent harmonic allocation. Our
method adapts to the harmonic structure for the audio-to-
score matching based on the observation of the audio signal
through Bayesian inference. Experimental results with 20
polyphonic songs reveal that our method is effective when
more number of instruments are involved in the ensemble.

1. INTRODUCTION
Music information retrieval tasks require a robust inference
under the uncertainty in musical audio signals. For example,
a polyphonic or multi-instrument aspect encumbers the fun-
damental frequency estimation [10, 15] or instrument iden-
tification [9]. Overcoming the uncertainty in musical audio
signals is a key factor in the machine comprehension of mu-
sical information. The audio-to-score alignment technology
shares this uncertainty problem in that an audio signal per-
formed by human musicians has a wide range of varieties
given a symbolic score due to the musicians’ expressive-
ness. For example, the type of instruments and the temporal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

Audio:
1. various harmonic structures
2. unknown mixture ratio

Mismatch!

Score:
1. fixed harmonic structures
2. equal mixture ratio

Figure 1. The issue: uncertainty in the audio and fixed har-
monic templates from the score

or pitch fluctuations affect the resulting audio signals.
Incremental audio-to-score alignment, also known as score

following, methods are essential to automatic accompani-
ment systems [5], intelligent score viewers [2], and robot
musicians [13] because the alignment synchronizes these
systems with human performances. We need a probabilis-
tic framework for the audio-to-score alignment problem in
order to cope with the uncertainty in the audio signal gener-
ated from the score in a symbolic representation.

Existing methods tend to fail the alignment when mul-
tiple musical notes are played by multiple musical instru-
ments. That is, the audio signal contains various timbres and
the volume ratio of each musical note is unsure. Figure 1
illustrates this issue. The observed pitched audio signal in-
cludes equally-spaced peaks in frequency domain called a
harmonic structure. The observed audio is matched with
harmonic structure templates generated from the score. Mu-
sical notes written in the score is played with arbitrary musi-
cal instruments. The resulting audio harmonic structures can
vary from instrument to instrument whereas the templates of
the score have been set in advance using some heuristics or
a parameter learning [4]. In Figure 1, harmonic structures
of a guitar and a violin is shown in blue and red lines, re-
spectively. Furthermore, the mixture ratio of each note in
the audio is unknown until the observation while the ratio in
the template is fixed, typically equal.

Thus, the variety of the audio signal causes a mismatch
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between the observed harmonic structure and the fixed one
generated from the score. We need a flexible harmonic struc-
ture model to robustly match the audio and score since the
audio signal is almost unknown until we observe it.

Our idea is to employ a Bayesian harmonic structure model
called latent harmonic allocation (LHA) [15]. This model
allows us to form harmonic structure templates reflecting
the observed audio with the prior knowledge written in the
score, e.g., fundamental frequencies of musical notes.

1.1 Related work

Two important aspects reside in modeling audio-to-score
alignment: (1) a temporal model of musical notes and (2)
an observation model of the input audio signal from the
corresponding score. Although improvements are made re-
peatedly for the temporal model, misalignments are often
caused by static and fixed audio observation models. The
audio observation model used in the methods introduced in
this section uses static features such as chroma vectors or
fixed harmonic structure templates based on Gaussian mix-
ture model (GMM). These features are often heuristically
designed and therefore lose robustness against uncertain sit-
uations in which many instruments are involved and the au-
dio is polyphonic.

Most audio-to-score alignment methods employ dynamic
time warping (DTW) [2,6], hidden Markov models (HMM) [4,
12], or particle filters [7, 11, 13]. DTW or HMM-based
methods sometimes fails the alignment since the length of
musical notes is less constrained in the decoding.

The note length corresponds to the length of a state se-
quence in the HMM. Cont’s method [3] uses a hidden semi-
Markov model (HSMM) to control state lengths. The HSMM
restricts the duration of a stay at one state so that the state
length is limited. While the model refrains from delayed
state transitions, this has no restriction on fast transitions.
As a result, the HSMM tends to estimate the audio signal
faster than it is.

Some methods estimate not only the score position but
also the tempo, i.e., the speed of the music for the tempo-
ral accuracy. Raphael’s method includes the tempo of the
music as a state [14] to accurately decode the note lengths.
Otsuka et al. [13] propose a particle filter-based method for
their simultaneous estimation. While Raphael’s method ob-
serves only harmonic structures as pitch information, Ot-
suka et al.’s method observes the periodicity of the onsets to
directly estimate the tempo.

2. AUDIO OBSERVATION MODEL

This Section describes how the audio is generated in terms
of LHA. We focus on harmonic structures to associate an
audio signal with a symbolic score. The LHA model flexibly
fits the shape of harmonic structures given an audio signal
observation using variational Bayes inference.

The harmonic peaks are often modeled as a Gaussian
mixture model (GMM) by regarding each peak as a sin-
gle Gaussian [3, 13, 14]. The black lines in Figure 1 are
the GMM curves. These methods use Kullback-Leibler di-
vergence (KL-div) as a matching function between the au-
dio harmonics and the GMM template harmonics generated
from the score by regarding the harmonic structure as a prob-
ability distribution. The mean value of each Gaussian peak
is determined by a pitch specified in the score.

LHA [15] is a generative model for harmonic structures
of pitched sounds. A graphical model for LHA is depicted
in Figure 3. In the LHA model, the amplitude of audio har-
monics is regarded as a histogram over the frequency bins.

Figures 2 and 3 explain how a mixture of harmonic struc-
tures is generated. Variables in a circle are random variables
while those without a circle are parameters. Double circled
xn means an observed variable. For each segment d, Nd ,
frequencies xn are observed. The audio spectrogram is seg-
mented into d by chords, which are sets of musical notes. To
sample each xn, a LdM-dimensional multinomial latent vari-
able zn is sampled as follows. A harmonic structure GMM l
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is selected with probability πdl , where ∑Ld
l=1 πdl = 1. Among

M Gaussian peaks, m is selected to sample xn with probabil-
ity θlm, where ∑M

m=1 θlm = 1. Finally, xn is sampled from
the Gaussian distribution of which mean and precision are
mµl and Λl , respectively. The definitions of each variable in
LHA in Figure 3 are summarized below:

p(X|Z,µ,Λ) = ∏
dnlm

N (xdn|m×µl ,Λl), (1)

p(Z|π,θ) = ∏
dnlm

(πdlθlm)zdnlm , (2)

p(π) = ∏
d

Dir(πd |α0), p(θ) = ∏
l

Dir(θl |β0),and (3)

p(Λ) = ∏
l

Gam(Λl |a0,b0), (4)

where N (·), Dir(·), Gam(·) denote the density functions of
Gaussian, Dirichlet, and gamma distribution, respectively.
The latent variable zdn = [zdnlm] is LdM-dimensional with
one element being 1 and the other being 0. Variables π and
θ are conjugate priors for Z, and the precision of Gaussian
harmonicsΛ is a conjugate prior for X. Here, α0, β0, a0, and
b0 are hyperparameters for each distribution. α0 = [α0l ]

Ld
l=1

is set as α0l = 1, and β0 = [β0m]Mm=1 is set as β0m = 1 be-
cause the mixture ratio of each musical note and the height
of each harmonic are unknown. A “flat” prior knowledge
about these parameters is preferred to reflect our ignorance.
The hyperparameters of the gamma distribution are empir-
ically set as a0 = 1 and b0 = 2.4 by considering the width
of harmonics determined by the window function of a short-
time Fourier transform (STFT).

The LHA is originally designed for multi-pitch analy-
sis [15], and therefore the fundamental frequency µl is a
random variable. However, in our audio-to-score alignment
framework, µl is treated as a parameter because fundamen-
tal frequencies are given by the score as musical notes. This
is why µl is not in a circle in Figure 3.

In general, too flexible model can cause an over-fitting
problem. LHA is flexible in terms of the mixture ratio π and
harmonic heights θ. To limit the model complexity, we fix
the harmonic heights θ and only consider the mixture ratio
π as in Figure 4. We refer to the former model in Figure 3
as full LHA, and the latter in Figure 4 as mixture LHA.

3. AUDIO-TO-SCORE ALIGNMENT USING
PARTICLE FILTER

This section presents the problem setting and procedures of
our method. The problem is specified as follows:� �

Inputs: incremental audio signal and the correspond-
ing whole score
Outputs: the current score position and tempo
Assumptions: (1) The score includes musical notes
and the approximate tempos of the music. (2) Musical
notes are pairs of their pitch and length, e.g., a quar-
ter note, (3) Approximate tempos are specified as the
range of a tempo, e.g., 90–110 beats per minute (bpm).� �

No prior knowledge about musical instruments is assumed.

3.1 Method overview

Let k be the index of filtering steps and At, f be the ampli-
tude of the input audio signal in the time-frequency domain.
Here, t and f denote the time (sec) and the frequency (Hz),
respectively. Our system is implemented at a sampling rate
of 44100 (Hz), a window length of 2048 (pt), and a hop size
of 441 (pt). Āt, f denotes a quantized integer amplitude given
by Āt, f = bAt, f /∆Ac, where ∆A is the quantization factor,
and b·c is the flooring function. ∆A = 3.0 in our implemen-
tation. This value should be so small that the shape of the
spectrum is preserved after the quantization and that suffi-
cient observations are provided for the Bayesian inference
in the LHA. Let p (beat) be the score position. The score is
divided into frames whose lengths are equal to 1/12 of one
beat, namely, a quarter note1 . Musical notes are denoted by
µp = [µ1

p...µ
Lp
p ]T , where Lp is the number of notes at p, and

µ is the fundamental frequency of the note.
Figure 5 illustrates the procedures. At every ∆T (sec), the

particle filtering [1] proceeds as: (a) move particles in accor-
dance with elapsed ∆T (sec) by drawing particles from the
proposal distribution, (b) calculate the weight of each parti-
cle, (c) report the point estimation of the score position and
beat interval, and resample the particles. Each particle has

1 p is discretized at 1/12 interval in (beat).
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the following information as a hypothesis: the score posi-
tion pi

k, beat interval (sec/beat), i.e., the inverse tempo, bi
k,

and the weight wi
k as a fitness to the model.

In the kth filtering step, the particle filter estimates the
posterior distribution of the score position pk and beat in-
terval bk given the latest audio spectrogram Ak = [Aτ, f ],
where τ ∈ Tk, Tk = {t|k∆T −W < t ≤ k∆T}, and W is
the window length for the audio spectrogram. The poste-
rior distribution is approximated using many particles as in
p(sk|Ak) = ∑I

i=1 wi
kδ (si

k− sk), where I is the number of par-
ticles, and si

k = [pi
k,b

i
k] denotes the state of the ith particle.2

The weight of each particle wi
k is calculated as:

wi
k ∝

p(si
k|si

k−1)p(Ak|si
k)

q(si
k|si

k−1,Ak)
, (5)

where p(si
k|si

k−1) and p(Ak|si
k) in the numerator are the state

transition model and observation model, respectively. New
score position and beat interval values are drawn at each step
from the proposal distribution q(si

k|si
k−1,Ak).

3.2 Drawing particles from the proposal distribution
Particles are drawn from the proposal distribution in Eq. (6).
First, a new beat interval bi

k is drawn, then a new score po-
sition pi

k is drawn depending on the drawn bi
k. The proposal

is designed to draw (1) a beat interval that lies in the tempo
range provided by the score and that matches the intervals
among audio onsets and (2) a score position that matches the
increase of the audio amplitude with the score onset frame.

si
k ∼ q(b, p|si

k−1,Ak)
∝ R(b;Ak)Ψ(b; b̃)×Q(p;b,Ak,si

k−1). (6)
R(b;Ak) and Ψ(b; b̃) denote the normalized cross correla-
tion of the audio signal and the window function that limits
the range of the beat interval, respectively. Q(p;b,Ak,si

k−1)
denotes the onset matching function.Detailed equations are
explained in [13].

The onset matching function Q(p;b,Ak,si
k−1) in Eq. (6)

represents how well the audio and score are aligned in terms
of the onsets. Figure 6 explains the design. The top case in

2 δ (x) = 1 iff x = 0, otherwise δ (x) = 0.

which audio frames with a peak power is aligned with score
onsets results in the larger Q, where as the bottom case Q is
a small value since the onsets are misaligned. The detailed
mathematical expressions are presented in [13].

3.3 Weight calculation
The weight for each particle is calculated with the sampled
value si

k in Eq. (5) by using the state transition model,
p(si

k|si
k−1) = N (pi

k|p̂i
k,σ

2
p)×N (bi

k|bi
k−1,σ

2
b ), (7)

and the observation model,
p(Ak|si

k) ∝ p(Ak|pi
k)×R(bi

k;Ak). (8)
The score position transition conforms to a linear Gaussian
model with the transition p̂i

k = pi
k−1+∆T/bi

k−1 and the vari-
ance σ2

p (beat2). The beat interval transition is a random
walk model with the variance σ2

b (sec2/beat2). The variances
are empirically set as σ2

p = 0.25 and σ2
b = 0.1, respectively.

For the observation of the beat interval, the normalized
cross-correlation of the audio spectrogram, R(bi

k;Ak), is again
used in Eq. (8). The other factor p(Ak|pi

k) is the likeli-
hood corresponding to the pitch information. As explained
in Section 2, the GMM-based harmonic structures are used
to match the audio and score. First, the matching with KL-
div is presented as a baseline where all the GMM parame-
ters, the chord mixture ratio π or harmonic heights θ, and
the Gaussian width λ, are fixed. Then, we explain two types
of LHA-based audio-to-score matchings, the full LHA and
mixture LHA, where the GMM parameters are probability
variables that flexibly adapt to the observed audio harmonic
structure. Full LHA adapts all π, θ, and λ whereas mixture
LHA adapts only π and λ to the audio. Further discussion
of the difference is in Section 4.

The KL-div matching uses a normalized amplitude spec-
trogram Ák while the LHA models use the quantized spec-
trogram Āk. To match the buffered audio, the audio spectro-
gram Ak or Āk is aligned with the score shown as Figure 7.
As the time k∆T is assigned to pi

k with the beat interval bi
k,

the audio frame τ is linearly assigned to the score frame as
given by

p̃(τ) = pi
k − (k∆T − τ)/bi

k. (9)
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3.3.1 Harmonic structure observation based on KL-div
For each score frame p, the GMM template of the harmonic
structure is generated from the musical notes µp as:

Âp, f =
Lp

∑
l=1

M

∑
m=1

CharmπlθmN ( f |gµ l
p,σ2

KL)+Cfloor,(10)

where Lp is the number of notes at p and the number of har-
monic structures M is 10. The ratio of each note is equally
set as πl = 1/Lp. The height of the mth harmonic is set
as θm = 0.2m−1. The variance is set as σ2

KL = 2.4, derived
from the window function used in STFT. Cfloor is a floor-
ing constant to ensure Âp, f > 0 and avoid zero-divides in
Eq. (11). Charm = 0.95 and Cfloor is set such that the har-
monic structure template is normalized as Âp,· = 1. The
subscript · means a summation over the replaced index.

Here, the audio likelihood using KL-div is defined as

log p(Ak|si
k) = − ∑

τ∈Tk

∑
f

Áτ, f log
Áτ, f

Âp̃(τ), f
, (11)

where Áτ, f = Aτ, f /Aτ,· is the normalized amplitude. The
right-hand side of Eq. (11) is a negative KL-div between the
audio harmonic structure and the GMM harmonic template.

3.3.2 LHA-based likelihood calculation
We first explain how LHA is used as the likelihood, then
show the iterations for both full and mixture LHA infer-
ences. The quantized amplitudes Āk are regarded as a his-
togram of amplitudes over frequency bins X illustrated as
gray bars in Figure 2. The rigorous likelihood in Eq. (5) is

p(X|si
k) = ∑

Z

∫∫∫
p(X,Z,π,θ ,Λ|pi

k,µ)dπdθdΛ. (12)

Since this analytical summation over Z is intractable 3 , we
infer the latent variables Z,π,θ, and Λ by variational Bayes
(VB) method under the factorization assumption q(Z,π,θ,Λ)=
q(Z)q(π,θ,Λ). We use the variational lower bound for the
weight calculation as an approximate observation model in-
stead of Eq. (12),

log p(X|si
k)≈ L(q) = EZ,π,θ,Λ

[
log

p(X,Z,π,θ,Λ|pi
k,µ)

q(Z,π,θ ,Λ)

]
, (13)

where EZ,π,θ,Λ[·] denotes an expectation over q(Z,π,θ,Λ).
For the inference of LHA, the audio is segmented by the
chord in the score as shown in Figure 8. This segmentation
d is made on the basis of the alignment by Eq. (9).

The variational lower bound in Eq. (13) is maximized
with the following variational posteriors:

q(Z) = ∏
dnlm

γzdnlm
dnlm , q(π) = ∏

d
Dir(πd |αd),

q(θ) = ∏
l

Dir(θl |βl), q(Λ) = ∏
l

Gam(Λl |al ,bl),

the parameters of which are updated as
γdnlm = ρdnlm/ρdn··, (14)

logρdnlm=ψ(αdl)−ψ(αd·)+ψ(βlm)−ψ(βl·)
+ψ(al)/2−(logbl)/2− (xn−mµl)2al/2bl ,

(15)

3 The integration over π, θ, and Λ is tractable thanks to their conjugacy.

αdl =α0l + γd·l·, βlm = β0m + γ··lm,

al = a0 +
γ··l·
2

, bl = b0+
∑dnm γdnlm(xdn−mµl)2

2
,

(16)

where ψ(·) in Eq. (15) denotes the digamma function. Eqs. (14,15)
and Eqs. (16) are iteratively calculated until the lower bound
in Eq. (13) converges. Note that Eq. (14) is the normaliza-
tion of ρ over indices l and m.

Mixture LHA update: In the update for the mixture LHA
model, the harmonic height parameter is set as θlm = 0.2m−1.
Thus, the update equations are modified as:

logρdnlm=ψ(αdl)−ψ(αd·)+ logθlm

ψ(al)/2−(logbl)/2− (xn−mµl)2al/2bl ,
(17)

αdl =α0l + γd·l·,

al = a0 +
γ··l·
2

, bl = b0+
∑dnm γdnlm(xdn−mµl)2

2
.

(18)

Relationship with the KL-div likelihood: Remember the
negative KL-div is used as the log-likelihood in Eq. (11).
The following equation always holds during the iterations:

L(q)+KL(q||p) = log p(X|si
k) (const wrt. q).

The KL-div is defined between the approximate distribu-
tion q(Z,π,θ,Λ) and the true posterior p(Z,π,θ,Λ|X, pi

k,µ).
Note that maximizing L(q) is equivalent to minimizing KL-
div, namely, maximizing the negative KL-div due to the
equation above. Thus, the LHA-based likelihood is inter-
preted as an extension of Eq. (11) in that the harmonic tem-
plates adapt to the audio observation to minimize the KL-div
and maximize the log-likelihood.

3.4 Point estimation and efficient computing
After the weights of all particles are calculated, the point
estimation is reported as ŝk = ∑I

i=1 wi
ksi

k

/
∑I

i=1 wi
k. Particles

are resampled after the point estimation procedure to elimi-
nate zero-weight particles. The resampling probability is in
proportion to the weight of each particle [1].

4. EXPERIMENTAL RESULTS
This section presents the alignment error of three observa-
tion models; conventional KL-div [13], full LHA, and mix-
ture LHA. Twenty songs from RWC Jazz music database [8]
is used for this experiment. This test set includes various
compositions of musical instruments from solo performance
to big band ensembles. Our system is implemented on Linux
OS and a 2.4 (GHz) processor. Experiments are carried out
with the following parameter settings; the filtering interval
∆T = 0.5 (sec), the window length for the audio processing
W = 1.5 (sec), and the number of particles I = 300.

Figure 9 shows the error percentiles of 20 songs for three
methods. Black, red, and blue bars represent the percentiles
of KL-div, full LHA, and mixture LHA, respectively. The
darkest bars are the 50% percentiles, middle bars are the
75%, and the lightest segments are the 100% percentiles.
The less values indicate the better performance. Songs with
a larger ID tend to involve more instruments. Both of the
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Figure 9. Error percentiles for 20 songs

LHA-based methods outperform the KL-div for 10 songs,
and either full or mixture LHA shows less errors than KL-
div for 3 songs. In particular, LHA-based methods tend to
report less errors when the song consists of a larger number
of instruments (larger ID songs). This is what we expect
from the LHA models.

Two major reasons are given why LHA-based observa-
tion models still accumulate the alignment error. First, LHA
is vulnerable to rest notes where no musical note is speci-
fied. This is because the LHA model penalizes unspecified
harmonic peaks. When the score provides a rest, LHA pe-
nalizes any audio observation. The error caused by these rest
notes is seen in songs 2, 5, 8, and 9, where we have more
chances to have rest notes because the number of musical
instruments is relatively small. The second reason is the
non-harmonic feature of percussions and drums. Because
drum sounds are loud and outstanding in the ensemble, these
sounds interfere the harmonic structures of pitched sounds
assumed by LHA. This case applies in songs 11, 16, and 17
where drums are included in the ensemble.

Here we discuss the difference between the full and mix-
ture LHAs. Since mixture LHA has less variables to in-
fer, we can expect more accurate inference as long as the
fixed parameters θ fit the observation. The fixed θ declines
as the frequency becomes larger. This descending height is
well observed in stringed instruments such as guitar or piano
dominantly used in songs 1-6; whereas wind instruments
such as saxophone or flute or bowed instruments such as vi-
olin show rather different peaks. When these instruments
are dominant in a song, e.g., songs 16 and 17 which are in a
big band style, the full LHA will be the better choice.

5. CONCLUSION AND FUTURE WORKS

The experiment has shown that LHA is especially effec-
tive in a large-ensemble situation where more musical notes
are simultaneously performed. However, LHA-based audio
observation models is disturbed by (1) rest notes and (2)
drum sounds. To make the best use of the LHA model, one
promising solution is to examine the musical score in ad-
vance of the alignment whether the expecting audio signal
is suitable for LHA. The development of this top-level deci-

sion making process will be one of the future works.
Another future work includes an accelerated calculation

of LHA iterations for such real-time applications as auto-
matic accompaniment systems. Current implementation re-
quires approximately 10 seconds to process one-second au-
dio data.
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ABSTRACT

This paper presents a method for describing the characteris-
tics of human musical performance. We consider the prob-
lem of building models that express the ways in which devi-
ations from a strict interpretations of the score occurs in the
performance, and that cluster these deviations automatically.
The clustering process is performed using expressive rep-
resentations unambiguously notated on the musical score,
without any arbitrariness by the human observer. The result
of clustering is obtained as hierarchical tree structures for
each deviational factor that occurred during the operation of
the instrument. This structure represents an approximation
of the performer’s interpretation with information notated
on the score they used during the performance.

This model represents the conditions that generate the
difference in the fluctuation of performance expression and
the amounts of deviational factors directly from the data
of real performance. Through validations of applying the
method to the data measured from real performances, we
show that the use of information regarding expressive repre-
sentation on the musical score enables the efficient estima-
tion of generative-model for the musical performance.

1. INTRODUCTION
The idea of having a computer perform like human musician
arose more than two decades ago. There have been various
proposals for making a computer understand the rich expres-
sion of a performance [2]. Historically, the mainstream ap-
proach to capturing the nuances of performance has changed
from rule-based methods to learning-based methods. One
model that shows the effectiveness of the latter approach
is represented by the generative model. Also, there is an-
other motivation for this kind of research, that is, learning
what makes a performance humanlike; however, there are
few initiatives based on such questions. One approach to

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

analyze performance statistically, by capturing the trends of
the performance in the acoustic features, has already been
attempted [3, 8, 10, 11]. These studies are admirable in that
their verification used a large quantity of expressive perfor-
mance; we also essentially agree that it is desirable to per-
form the verification with such an approach. However, it
is difficult to observe the expressiveness of a performance
from diverse perspectives by these approaches as expres-
siveness consists of various factors. We adopt a MIDI-based
approach to simplify such problems, and consider a variety
of expressive representations notated on the musical score as
the factor that describes how the expressive performance has
been generated. In addition, our method to capture the per-
formance is based on the idea of a generative model. There-
fore, our method has the potential to generate an unseen per-
formance, not merely to analyze an already known one.

In the following sections, we propose a method for the
automatic analysis of the characteristics of a performance
based on various combinations of expressive representations.
Also, we observe what kinds of representation constitute the
human quality of the performance by apply them to the data
measured from the real performance to evaluate the validity
of this method.

2. METHOD
In this section, we propose a method for the automatic clas-
sification of trends of the deviations in performance, so as to
describe the dependencies between score and performance.
On the keyboard instrument, a performer’s key operation,
in terms of timing and intensity, causes deviations from the
score for the purpose of artistic expression. We believe that
the performer’s individuality would occur in the differences
in the trend of deviations. The occurrence tendencies of
these deviations in the performance are not constant, as they
are affected by various factors such as the differences in mu-
sical compositions. To capture the characteristics of indi-
viduals who performed only in terms of deviation from the
average trend in the overall performance is difficult; there-
fore, it is necessary to handle deviations in each key action,
specifically and in general. Using this awareness, we have
been studying a method that regards the trends in the de-
viation as a stochastic model and acquire these trends via
learning and instructions on the score.
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2.1 Context-dependent model

If the performance seems to be personalized, it is considered
that the resultant personality is caused by biases in the trends
of performance. The trend of deviation is observed as a dis-
tribution with some focus, according to deviations for each
note extracted from each note o observed from the measured
performance and the corresponding score (see Figure 1). We
can think of the model as a Gaussian probability density
function (PDF) so as to approximate the behavior of devi-
ations; this model is able to cope with complex behaviors
according to the Gaussian mixture model (GMM) approach.
The PDF N of the observation vector o is defined by

N (om|µm, σm)

=
1√

(2π)DΠD
d=1|σmd|

exp

(
−1

2

D∑
d=1

(od − µmd)2

σmd

)
,

(1)

where o is observed with D deviational factors, od is the
dth dimension for observation vector o, m is the mixture in-
dex of the M Gaussian component densities, µ is the mean
vector, and σ is the diagonal covariance matrix.

However, the cause of the deviating behavior is not con-
sidered in this model. The performance of musical instru-
ments consists of playing the sequences of notes according
to the score. Therefore, it is obvious that the qualities of
each note have some musical significance. As a general ex-
ample, we consider performing two notes with different rep-
resentations in terms of dynamics. In this case, the amount
of deviation between them may be differ not only in the dy-
namics, but also in the timing, because of their expressive
representations. Also, the extent to which the performer de-
viates from the average for the note with the representation
is considered to be under the influence of some individual-
ity. In the past, there were several studies that attempted to
estimate the performers’ characteristics by referring to the
amount of deviation in timing and dynamics [5–7]. How-
ever, it is also necessary to consider what kind of representa-
tion leads to such behavior, using some musical knowledge
that supersedes the mixture in the GMM.

Several factors complicate the process of occurrence. We
make the following considerations to organize this subject:

• The performer obtains information from the musical
score, and then creates his/her own interpretation us-
ing that information, thus introducing deviations into
the performance.

• The trend of deviations occurring is also influenced by
unintentional factors such as the performer’s physical
limitations.

We believe that the latter factor is not necessary, because it is
considered likely based on relatively simple arguments, and
the progress of performance technology is a means to reduce
the interference of factors, such as unintentional representa-
tions. Additionally, factors (such as the former) influence
the occurrence of this deviation, which is considered signif-
icant because it is intended to expand the range of expres-
sion in accordance with technological progress. However,
criteria tend to be abstract and difficult to qualify, even for
the performers themselves. Therefore, we do not directly
address the interpretation of the music itself. Instead, we
associate the trends in the deviation with the expressive rep-
resentations, which affects the performer’s musical interpre-
tation.

All the information used here is in the form of unambigu-
ous values that are available in the score, such as pitch, note
value, dynamics, and so on, because we want to eliminate
any undefined properties throughout the process. There is
also the musical phrase to consider, which has some rela-
tionship that holds among surrounding notes. We introduce
them under the term ”context.” Models in which context is
applied are called ”context-dependent,” because they con-
struct a kind of context that contributes to the interpretation.
The parameters of the model are the same as the model men-
tioned above; however, each model has its own combination
of contexts that is dealt with individually (see Figure 2). The
description of the behavior for each model can be simplified
because it is defined by a number of combinations. There-
fore, each model is trained using a single Gaussian compo-
nent density, as shown in Equation (1) .

2.2 Tree-based clustering

The purpose of introducing context is to associate a per-
former’s interpretation of the musical composition with the
deviations in the performance. A more detailed representa-
tion of the information obtained from the score has to con-
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Figure 3. Example of a decision tree

sider a variety of contexts. However, with increasing use of
contexts, the quantity of combinations of contexts increases
exponentially. This effect is detrimental to model training,
because the training data for each model will be significantly
reduced. On the other hand, fragmented information has lit-
tle meaning by itself. Therefore, it is necessary to classify
a large number of combinations of contexts at a scale that
matches the performer’s significant interpretation. How-
ever, it is beyond human power to decide appropriate cri-
teria for each case of classification. To address these issues,
a method is necessary to reconstruct and decompose models
efficiently, and to capture the varied expressive representa-
tions obtained from the score. We use tree-based cluster-
ing [4] to classify the context-dependent models.

Tree-based clustering divides all possible combinations
of context-dependent model into a countable number of clus-
ters. As a result, a decision tree (a binary tree in which
a question is attached to each node) is obtained. In this
method, each of the questions relates to the contextual fac-
tors for the preceding, current, and succeeding note. One
tree is constructed for each deviational factor so as to cluster
all of the corresponding behaviors of all context-dependent
models. This is done because there are different trends of
behavior for each deviational factor. All context-dependent
models in the decision tree are divided into M nodes by
clusters S1, · · · , SM , such that one model U(S1, · · · , SM )
is defined for each leaf node. For example, the tree shown in
Figure 3 will partition its behaviors into eight subsets with
the same number of leaf nodes. The questions and topology
of the tree are chosen so as to maximize the likelihood of the
training data, given these tied behaviors, by estimating the
parameters of a Gaussian PDF. Once these trees have been
constructed, data with unseen contexts can be classified in
any leaf node by tracing the questions in the tree.

Initially, all the context-dependent models to be clustered
are placed at the root node of the tree. The log likelihood
of the training data is calculated, supposing that all of the
models in that node are tied. Then, this node is divided into
two by finding a question that divides the model in the par-
ent node such that the log likelihood (maximally) increases.

The log likelihood L for node Sm is given by

L(Sm) = −1
2
Γm(K + K log(2π)L log |Σm|), (2)

where Γm is the amount of data for training at node Sm.
This process is then repeated by dividing the node in a way
that creates the maximum increase of log likelihood until
the minimum description length (MDL) criterion [9] is met.
This step is carried out to optimize the number of clusters
without using external control parameters. In order to opti-
mize the size of the tree, we use an algorithm with a prag-
matic cost of computation. Here, let us assume that node
Sm of model U divides into two nodes, Smq+ and Smq−,
by answering question q. Then, let ∆m(q) be the difference
between the description length after division and before di-
vision, that is l(U ′)− l(U). The description length of model
U ′ is represented by the following equation:

I(U ′) =
M∑

m′=1, 6=m

1
2
Γm′ (K + K log(2π) + log |Σm′ |)

+
1
2
Γmq+ (K + K log(2π) + log |Σmq+|)

+
1
2
Γmq− (K + K log(2π) + log |Σmq−|)

+ K (M + 1) log W + C, (3)

where W =
∑M

m=1 Γm, and C is the length of code re-
quired to choose a model (assumed here to be a constant
value). The number of nodes in U ′ is M + 1, Γmq+ is the
occupancy count for node Smq+, and Γmq− is that of node
Smq−. The difference ∆m(q) is given by

∆m(q) = l(U ′) − l(U)

=
1
2
(Γmq+ log |Σmq+| + Γmq− log |Σmq−|

− Γm log |Σm|) + K log
M∑

m=1

Γm. (4)

When dividing models, we first determine the question
q′ that minimizes ∆0q′ and that is used at root node S0.
If ∆0(q′) < 0, node S0 is divided into two nodes, Sq+

and Sq−, and the same procedure is repeated for each of
these two nodes. This process of dividing nodes is car-
ried out until there are no nodes remaining to be divided.
If ∆0(q′) > 0, then no dividing is executed.

3. EXPERIMENTS

In this section, we apply the method mentioned above to
the real-measured performance data to verify its efficacy of
using expressive representations from the musical score as
priori information. This information is applied to the issue
of classifying the trends of the deviational behavior during
the musical performance.
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3.1 Data of real-measured expressive performance

Experiments in this paper use expressive performance data
from a database ( [1] and original data we collected). These
contain information of musical expression on experts’ ex-
pressive piano solo performances of classical Western mu-
sical compositions. The data of performance used in the
experiments are as follows:

• performers
PA V. D. Ashkenazy
PG G. H. Gould
PP M. J. Pires
PR S. T. Richter
PX Five anonymous semi-professional performers

• referred scores
SBI J. S. Bach: ”Two part Inventions BWV 772–

786,” Henle Verlag, pp. 2–31.
SBW J. S. Bach: ”The Well-Tempered Clavier

BWV 846,” Wiener Urtext Edition, pp. 2–3.
SCN F. F. Chopin: ”Nocturne No. 10,”

Paderewski Edition, pp. 54–55.
SM3 W. A. Mozart: ”Sonata K. 331, the First move-

ment,” Wiener Urtext Edition, pp. 18–27.
SM5 W. A. Mozart: ”Sonata K. 545, the First move-

ment,” Henle Verlag, pp. 266–269.

The actual performances also include notes do not corre-
spond to the score. The current form of our method excludes
these notes from the data used to train the model.

3.2 Design of models

The values of deviations and contexts are extracted by com-
paring the performance and the score, as shown in Figure 1
and Figure 2. The five factors in which there could be devi-
ation (shown below) are extracted for each note; therefore,
the dimensionality D = 5 in Equation (1).

• Factors that depend on the note:
onset Timing when striking the key. The amount of

deviation is represented relative to a beat. If the
performed note is struck one half beat faster, the
deviation of onset is −0.5.

offset Timing when releasing the key, represented in
the same way as the deviation of onset.

gate time The quotient of the time taken to depress
the key in the performance divided by its length
on the score. If both are exactly the same, the
deviation of gate time is 1.

dynamics Strength when striking the key, obtained
in the same way as the deviation of gate time.

• Factor that depends on the beat:
tempo Temporal change of BPM (current beat/average).

The contextual factors attached to context-dependent model
are shown below. They are used for question to construct
decision trees. In this experiment, the total number of ques-
tions used amounted to more than two thousands.

• Extracted for {preceding, current, succeeding} notes:
syllable Interval name of the note and the tonic, i.e.,

minor third, perfect fifth, etc.
step One of the twelve note names, from C to B.
accidental Existence and type of accidental.
octave Rough pitch of the note.
chord Whether the note belongs to any chord.
type Note value of the note.
staff Clef and stage on the great staff the note is writ-

ten in.
beam Type of the note’s beams, i.e., begin, continue,

end, etc.
local The note’s position on the beat in the bar, rep-

resented as a percentage.
• Extracted for current note only:

global The note’s position in elapsed time in the mu-
sical composition, represented as a percentage.

voice Voice part of the note, defined by the author of
the database.

notations Noted signs for the note, such as dynam-
ics, intonation, etc.

3.3 Efficacy of tree-based clustering
The tree-based clustering itself is an existing method; how-
ever, the effect of applying this method to a musical per-
formance is unknown. Therefore, it is necessary to deter-
mine whether changes in generative efficiency can be seen
in the bottom-up clustered model without additional infor-
mation. To achieve concrete results, we tried to identify the
performer from the performance data using the models. The
data sets used in this case were SBI and SM3, both of which
were performed by PX. The models were trained with the
data of the compositions, which amounted to approximately
one quarter of the data set. The tests used each datum of the
remaining compositions in the same set; the percentage of
the right choices for the performer by the trained model was
calculated (called the rate of identification). Evaluation of
resistance to the unseen data was also carried out using this
test, as all models were tested with data that is not used to
train the models. We differentiate these methods:
Tree-based clustering The model using the proposed method.
Bottom-up clustering The model trained by GMM with

the same number of mixtures M as the leaves in the
trees generated by tree-based clustering, and using the
same data set that is used to train the models.

The result is shown in Figure 4, and the ratio of accu-
racy to the average of 20 ordinary human listeners for each
method is also indicated in parentheses. This is a severe con-
dition, and the most human listeners cannot tell the differ-
ence. However, proposed method can determine such subtle
difference with high precision, because the ratio of Tree-
based is about 232% for human listeners. Furthermore, the
ratio of Tree-based for Bottom-up is about 111%. There-
fore, it is confirmed that the accuracy can be improved upon
to generate models that can respond to unseen data by using
the clustering with the information from the score.
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Figure 5. Examples of structural and statistical differences in tree-structures for each deviational factor
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3.4 Observation of decision trees
Next, we observe the decision trees obtained from the per-
formance data to verify the kind of questions that divide the
models and the statistical attributes of each model. The set
of training data used here was SCN, performed by PA. Ex-
amples of the portion of the trees near the root are shown in
Figure 5. Each node has the content of the question, each
leaf gives the average deviation, and the number of models
involved in each leaf is indicated by an arrow.

The trees of deviational factors belong to the timing (on-
set, offset, and gate time) have affinities in the kind of ques-
tions. The tree of dynamics also has the sequence of ques-
tions with the same contexts as the factors mentioned above;
however, the kind of question on the root node is not seen.
Although they have certain unique points, they have a simi-
lar structure. On the other hand, the tree of tempo has very
different trends, both in terms of structure and questions.

3.5 Contribution of contextual factors to decision trees
Due to the limitations of the available data, a more efficient
analysis is needed to understand the trends of these fac-
tors. We therefore investigated the frequency of any ques-
tion to find the degree of contribution to the trend of de-
viation caused by each contextual factor. The contribution
C for contextual factor Q in a tree with M leaf nodes is
counted by

CQ =
M∑

m=1

(
Nm

Nall
×RQ

)
, (5)

where Nm is the number of context-dependent models shared
by the mth leaf node, and R is the number of nodes related
to Q in the path from the root node to the mth leaf node. The
training data used here was SBW-by-{PG, and PR}, SCN-
by-{PA, and PP}, and SM5-by-{PG, and PP}. The results
for each composition are shown in Figure 6; we propose that
these results show the priorities of performers’ criterion to
differentiate the behavior in the performance.

The trend of contextual factors that make a large contri-
bution is the same in all compositions (e.g., step, octave,
type, local, and syllable). We consider the essential part of
the trees’ construction to depend upon the selection order
of these factors. On the other hand, the difference between
offset and gate time is small, as mentioned above; however,
these result shows some differences (for example, they are
found in step, octave, and type). There is a possibility to
reveal the diverging points of the deviations with expressive
representations by observing more detailed classifications.
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(b) average of performances for SCN by PA and PP
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(c) average of performances for SM5 by PG and PP

Figure 6. Frequencies of contextual factors for each composition

4. CONCLUSIONS

In this paper, we presented a method for describing the char-
acteristics of human musical performance. The experimen-
tal results of performer identification showed the use of the
expressive representations from the musical score enables
the efficient acquisition of the model of the performance.
The results also showed that the proposed model can cap-
ture the characteristics of the performance from any subtle
differences that cannot be found by most human listeners.
Therefore, the efficacy of using expressive representations
from the musical score to describe the characteristics of the
musical performance was shown. This method can auto-
matically learn the knowledge necessary to describe the tree
structure of the model directly from the data of the perfor-

mance. We believe that the availability of such objective
elements from the proposed model is effective for the anal-
ysis of the performance. In the future, we will make compar-
isons based on more common and more extensive examples,
in addition to attempting to improve the modeling method.
Furthermore, this method can be applied to generate unseen
performances. We are also making efforts in that direction.
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ABSTRACT

We propose a simple, scalable, and objective evaluation pro-
cedure for playlist generation algorithms. Drawing on stan-
dard techniques for statistical natural language processing,
we characterize playlist algorithms as generative models of
strings of songs belonging to some unknown language. To
demonstrate the procedure, we compare several playlist algo-
rithms derived from content, semantics, and meta-data. We
then develop an efficient algorithm to learn an optimal combi-
nation of simple playlist algorithms. Experiments on a large
collection of naturally occurring playlists demonstrate the
efficacy of the evaluation procedure and learning algorithm.

1. INTRODUCTION

Music listeners typically do not listen to a single song in
isolation. Rather, listening sessions tend to persist over a
sequence of songs: a playlist. The increasing quantity of
readily available, digital music content has motivated the
development of algorithms and services to automate search,
recommendation, and discovery in large music databases.
However, playlist generation is fundamental to how users
interact with music delivery services, and is generally distinct
from related topics, such as similarity and semantic search.

Although many automatic playlist generation algorithms
have been proposed over the years, there is currently no
standard evaluation procedure. As a result, it is difficult to
quantitatively compare different algorithms and objectively
determine if any progress is being made.

At present, the predominant approach to playlist algorithm
evaluation is to conduct human opinion surveys, which can
be expensive, time-consuming and difficult to reproduce.
Alternatively, current automated evaluation schemes either
reduce the problem to a (discriminative) information retrieval
setting, or rely on simplifying assumptions that may not hold
in practice.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

In this work, we propose a simple, scalable, and objec-
tive evaluation procedure for playlist algorithms that avoids
the pitfalls of previous approaches. Our approach is guided
by the observation that playlist generation is not (only) an
information retrieval problem, but a language modeling prob-
lem. The proposed method can be applied to a large class of
playlist algorithms, and we provide several examples with
experimental results. Finally, we propose an algorithm to
learn an optimal ensemble algorithm from a collection of
simple playlist generators.

2. A BRIEF HISTORY OF PLAYLIST EVALUATION

Although many algorithms for playlist generation have been
proposed, evaluation procedures have received relatively lit-
tle specific attention. Here, we briefly summarize previously
proposed evaluation strategies, which can broadly be grouped
into three categories: human evaluation, semantic cohesion,
and sequence prediction. This section is not intended as a
comprehensive survey of playlist algorithms, for which we
refer the interested reader to [8, chapter 2].

2.1 Human evaluation

Since the eventual goal of playlist algorithms is to improve
user experience, the ideal method of algorithm evaluation
is to directly measure human response. Numerous studies
have been conducted in which test subjects rate the quality
of playlists generated by one or more algorithms. Pauws
and Eggen [18] asked users to provide a query song with a
particular context-of-use in mind (e.g., lively music), which
was used as a seed to generate a playlist. The user evaluated
the resulting playlist on a scale of 1–10, and how many tracks
in the playlist fit the user’s intended use context. From these
survey responses, the authors were able to derive various
statistics to demonstrate that their proposed algorithm signif-
icantly outperforms randomly generated playlists. Similarly,
Barrington, et al. [1] conducted experiments in which users
were presented with two playlists (generated by obscured,
competing systems) and asked to indicate which one was
(subjectively) better, and why.

While direct human evaluation studies can provide evi-
dence that one algorithm measurably outperforms another,
they also have obvious practical limitations. This can be labo-
rious, difficult to reproduce, and may require large numbers
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of test subjects and example playlists to achieve statistically
meaningful results and overcome the effects of subjectivity.

2.2 Semantic cohesion

The general impracticality of large-scale user studies has
motivated the development of automated evaluation tech-
niques. The most common approaches compute some easily
measurable quantity from each song in a generated playlist
(e.g., artist, album, or genre), which is used to determine
the cohesion of the playlist. Cohesion may be defined by
frequency counts of meta-data co-occurrence (e.g., songs
by the same artist) [13, 14] or entropy of the distribution of
genres within the playlist [7, 12]. In this framework, it is
typically assumed that each song can be mapped to a unique
semantic tag (e.g., blues). This assumption is often unreal-
istic, as songs generally map to multiple tags. Assigning
each song to exactly one semantic description may therefore
discard a great deal of information, and obscure the semantic
content of the playlist. A more general form of semantic
summarization was developed by Fields, et al. [9], and used
to derive a distance measure between latent topic models of
playlists. However, it is not immediately clear how such a
distance metric would facilitate algorithm evaluation.

Issues of semantic ambiguity aside, a more fundamental
flaw lies in the assumption that cohesion accurately charac-
terizes playlist quality. In reality, this assumption is rarely
justified, and evidence suggests that users often prefer highly
diverse playlists [20].

2.3 Sequence prediction

A more direct approach to automatic evaluation arises from
formulating playlist generation as a prediction problem: given
some contextual query (e.g., a user’s preferences, or a partial
observation of songs in a playlist), the algorithm must predict
which song to play next. The algorithm is then evaluated on
the grounds of its prediction, under some notion of correct-
ness. For example, Platt, et al. [19] observe a subset of songs
in an existing playlist (the query), and the algorithm predicts
a ranking of all songs. The quality of the algorithm is then
determined by the position within the predicted ranking of
the remaining, unobserved songs from the playlist. Mail-
let, et al. [15] similarly predict a ranking over songs from a
contextual query — in this case, the preceding song or pair
of songs — and evaluate by comparing the ranking to one
derived from a large collection of existing playlists.

Essentially, both of the above approaches transform playlist
evaluation into an information retrieval (IR) problem: songs
observed to co-occur with the query are relevant, and all
other songs as irrelevant. As noted by Platt, et al. [19], this
notion of relevance may be exceedingly pessimistic in prac-
tice due to sparsity of observations. In even moderately large
music databases (say, on the order of thousands of songs), the
probability of observing any given pair of songs in a playlist

becomes vanishingly small, and therefore, the overwhelming
majority of song predictions are considered incorrect. In
this framework, a prediction may disagree with observed
co-occurrences, but still be equally pleasing to a user of the
system, and therefore be unfairly penalized.

The IR approach — and more generally, any discrimina-
tive learning approach — is only applicable when one can
obtain negative examples, i.e., bad playlists. In reality, nega-
tive examples are difficult to define, let alone obtain, as users
typically only share playlists that they like. 1 This suggests
that discriminative evaluation may not be the most natural fit
for playlist generation.

3. A NATURAL LANGUAGE APPROACH

In contrast to discriminative approaches to playlist evalua-
tion, we advocate the generative perspective when modeling
playlist composition. Rather than attempting to objectively
score playlists as good or bad, which generally depends on
user taste and unobservable contextual factors, we instead
focus on modeling the distribution of naturally occurring
playlists.

Formally, let X = {x1, x2, . . . , xn} denote a library of
songs. We define a playlist as an ordered finite sequence of
elements ofX . Any procedure which constructs such ordered
sequences is a playlist algorithm (or playlister). In general,
we consider randomized algorithms, which can be used to
generate multiple unique playlists from a single query. Each
playlister, be it randomized or deterministic, induces a prob-
ability distribution over song sequences, and may therefore
be treated as a probabilistic generative model.

This leads to our central question: how should generative
models of song sequences be evaluated? Here, we take in-
spiration from the literature of statistical natural language
processing [16], in which statistical models are fit to a sample
of strings in the language (e.g., grammatically valid sentences
in English). A language model determines a probability dis-
tribution P over strings, which can be evaluated objectively
by how well P matches the true distribution P∗. Since P∗
is unknown, this evaluation is approximated by drawing a
sample S ∼ P∗ of naturally occurring strings, and then
computing the likelihood of the sample under the model P.

Returning to the context of playlist generation, in place
of vocabulary words, we have songs; rather than sentences,
we have playlists. The universe of human-generated playlists
therefore constitutes a natural language, and playlisters are
models of the language of playlists. While this observation
is not itself novel — it appears to be folklore among music
researchers — its implications for algorithm evaluation have
not yet been fully realized. We note that recent work by
Zheleva, et al. [21] evaluated playlisters in terms of perplexity

1 A notable exception is the work of Bosteels, et al. [4], in which explicit
negative feedback was inferred from skip behavior of Last.fm users. As
noted by the authors, skip behavior can be notoriously difficult to interpret.
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(exponentiated log-likelihood) of the genre distribution in a
playlist, rather than the song selection itself.

3.1 Evaluation procedure

To evaluate a playlister A, we require the following:

1. a library of n songs X ,
2. a sample of playlists S ⊆ X ∗, 2 and
3. the likelihood PA[s] of any playlist s ∈ X ∗.

While the last requirement may seem like a tall order, we
will demonstrate that for large classes of playlisters, the
computation can be quite simple.

A playlister A can be evaluated by computing the average
log-likelihood of the sample S:

L(S | A) =
1

|S|
∑
s∈S

log PA[s]. (1)

The average log-likelihood, on an absolute scale, is not
directly interpretable — although it approximates the cross-
entropy between PA and the true, unknown distribution
P∗ [16] — but it is useful for performing relative compar-
isons between two playlisters. Given a competing playlister
A′, we can say that A is a better model of the data than A′ if
L(S | A) > L(S | A′).

There is a subtle, but important distinction between the
proposed approach and previous approaches to playlist eval-
uation. Rather than evaluate the perceived quality of a gen-
erated, synthetic playlist, we instead evaluate the algorithm
in terms of how likely it is to produce naturally occurring
playlists.

4. PLAYLIST ALGORITHMS

To demonstrate the proposed evaluation approach, we will
derive playlist probabilities for several generic playlisters.
Although the method is fully general, we restrict attention to
playlisters which satisfy the Markov property:

P [(x0, x1, . . . , xk)] =

P[X = x0]

k∏
i=1

P[Xt+1 = xi | Xt = xi−1]. (2)

We assume that the first song is chosen uniformly at ran-
dom, and therefore contributes a fixed constant log 1/n to the
overall log-likelihood, which may be safely ignored. The
likelihood of an arbitrary playlist under a Markov model
can therefore be decomposed into the product of bigram
likelihoods, so the log-likelihood is proportional to the sum:

log P [(x0, . . . , xk)] ∝
k∑
i=1

log P[Xt+1 = xi | Xt = xi−1].

2 X ∗ denotes the Kleene-∗ operation, and contains all sequences of any
length of elements drawn from X .

Note that this reasoning can be extended to higher order
Markov models — e.g., second order would decompose into
trigrams — but to ease exposition, we focus on first-order
models. For the remainder of this article, we will assume
that S is a collection of bigrams.

4.1 Uniform shuffle

The simplest playlister selects each song uniformly at ran-
dom from X . This can be refined somewhat by disallowing
consecutive repetitions, so that if the current song is xt, then
xt+1 is drawn uniformly at random from X \ {xt}. Since
xt+1 depends only on xt, it satisfies the Markov property,
and the conditional bigram probability is

PU [Xt+1 = x | Xt = xt] =

{
1/n−1 x 6= xt

0 x = xt
. (3)

The uniform shuffle playlister provides an obvious baseline,
and should be included in any comparative evaluation.

4.2 Weighted shuffle

A slight variation on the uniform shuffle is to draw the next
song not from a uniform distribution, but a weighted dis-
tribution derived from a score function F (x) > 0, which
may encode artist popularity, user preference, or any other
song-level property. The resulting bigram probability is

PF [Xt+1 = x | Xt = xt] =

{
F (x)∑

x′ 6=xt
F (x′) x 6= xt

0 x = xt
.

(4)
In general, F may be dynamic and can be used to incorporate
user feedback, thereby facilitating steerability [15]. Dynamic
and interactive evaluation is beyond the scope of this article,
and we focus on static score functions.

4.3 K-Nearest neighbor and random walks

Another simple strategy for playlist generation is to construct
a k-nearest-neighbor (kNN) graph over the song set by using
some previously constructed distance metric (e.g., acoustic,
semantic, or social similarity), and form playlists by a ran-
dom walk process on the graph. If the next song xt+1 is
chosen uniformly at random from the neighbors η(xt) of the
current song xt, then the bigram probability is

PkNN[Xt+1 = x | Xt = xt] =

{
1/k x ∈ η(xt)

0 x /∈ η(xt)
. (5)

One shortcoming of this approach — as well as any deter-
ministic playlister — is that it assigns 0 probability to some
transitions, in this case, those spanning non-adjacent nodes.
Any such transition would be infinitely unlikely under the
model; however, it seems unreasonable to expect that every
observed bigram coincides with an edge in the graph (unless
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the graph is complete). This can be remedied by smoothing
with the uniform distribution (weighted by a constant µ):

P̂kNN = (1− µ)PkNN + µPU µ ∈ (0, 1] . (6)

Since probability distributions are closed under convex com-
binations, Eqn. (6) describes a valid distribution. Equiva-
lently, this models a process which flips a µ-biased coin to
decide whether to jump to an adjacent song in the graph, or a
random song in the library (adjacent or not). This modifica-
tion to the algorithm increases diversity and flexibility, and
ensures that log-likelihood computations remain finite.

4.4 Markov chain mixtures

Any non-trivial playlister requires some tuning of parameters.
For example, to implement kNN, one must select the under-
lying features and similarity metric, the neighborhood size
k, and the smoothing parameter µ. This leads to an obvious
question: can these parameters be optimized automatically?
More generally, if we start with a collection of playlisters
Ai (say, derived from different features [10, 12], values of
k, etc.), is it possible to intelligently integrate them to into a
single playlister?

Eqn. (6) exploits the fact that distributions are closed
under convex combinations to combine two distributions
(uniform and kNN) with fixed proportion µ. This can be
generalized to combine m distributions as follows:

Pµ =

m∑
i=1

µiPi ∀i : µi≥0,

m∑
i=1

µi = 1. (7)

Rather than using a fixed weighting µ = (µ1, µ2, . . . , µm),
we can instead optimize µ by maximizing the likelihood of
a collection of training examples under the mixture model.
This can be accomplished by solving the optimization prob-
lem listed as Algorithm 1. Because the objective function
(log-likelihood) is concave in µ, and the constraints are linear,
this problem can be solved efficiently [5].

After computing the maximum likelihood estimate µ,
playlists can be generated by sampling from the weighted
ensemble distribution Pµ. The distribution described by
Eqn. (7) characterizes the ensemble playlist algorithm listed
as Algorithm 2, which, given the current song xt, simply
selects a playlister Ai at random according to the discrete
distribution characterized by µ and returns a sample from the
selected distribution Pi[X | Xt = xt].

5. EXPERIMENTS

To demonstrate the proposed evaluation approach, we im-
plemented several playlisters on a large song library, us-
ing acoustic-, semantic-, and popularity-based descriptors.
The simple playlisters described here are merely intended to
demonstrate plausible baselines against which more sophisti-
cated algorithms may be compared in future work.

Algorithm 1 Markov chain mixture optimization
Input: Training bigrams

S ′ = {(x1, x
′
1), . . . , (x|S′|, x

′
|S′|)}

Markov chains P1,P2, . . . ,Pm

Output: Combination weights µ1, µ2, . . . , µm

max
µ

1

|S ′|
∑

(x,x′)∈S′
log

(
m∑
i=1

µiPi [Xt+1 = x′ | Xt = x]

)

s. t. ∀i : µi≥0,

m∑
i=1

µi = 1

Algorithm 2 Ensemble playlist generation
Input: Current song xt, playlisters (Ai,Pi), weights µi
Output: Next song xt+1

1: Sample i ∼ DISCRETE(µ) {Choose Ai}
2: return xt+1 ∼ Pi[Xt+1 | Xt = xt] {Run Ai(xt)}

5.1 Song data: Million Song Dataset

Our song data was taken from the Million Song Dataset
(MSD) [3], upon which we constructed models based on
artist terms (tags), familiarity, and audio content.

Tag representations were derived from the vocabulary of
7643 artist terms provided with MSD. Each song is repre-
sented as a binary vector indicating whether each term was
applied to the corresponding artist, and nearest neighbors are
determined by cosine-similarity between tag vectors.

The Echo Nest 3 artist familiarity is used to define a static
score function F over songs, which may be interpreted as a
surrogate for (average) user preference.

The audio content model was developed on the 1% Mil-
lion Song Subset (MSS), and is similar to the model proposed
in [17]. From each MSS song, we extracted the time series
of Echo Nest timbre descriptors (ENTs). This results in a
sample of approximately 8.5 million 12-dimensional ENTs,
which were normalized by z-scoring according to the esti-
mated mean and variance of the sample, randomly permuted,
and then clustered by online k-means to yield 512 acoustic
codewords. Each song was summarized by quantizing each
of its (normalized) ENTs and counting the frequency of each
codeword, resulting in a 512-dimensional histogram vector.
Each codeword histogram was mapped into a probability
product kernel (PPK) space [11] by square-rooting its entries,
which has been demonstrated to be effective on similar audio
representations [17]. Finally, we appended the song’s tempo,
loudness, and key confidence, resulting in a vector vi ∈ R515

for each song xi.
Next, we trained an optimized similarity metric over audio

descriptors. We computed target similarity for each pair of
MSS artists by the Jaccard index between their user sets in

3 http://developer.echonest.com
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a sample of Last.fm 4 collaborative filter data [6, chapter 3].
Tracks by artists with fewer than 30 listeners were discarded.
The remaining artists were partitioned 80/20 into a training
and a validation set, and for each artist, we computed its
top 10 most similar training artists. The distance metric was
subsequently optimized by applying the metric learning to
rank (MLR) algorithm on the training set of 4455 songs,
and tuning parameters C ∈ {105, 106, . . . , 109} and ∆ ∈
{AUC, MRR, MAP, Prec@10} to maximize AUC score on
the validation set of 1110 songs. Finally, the resulting metric
W was factored by PCA (retaining 95% of spectral mass) to
yield a linear projection L ∈ R222×515 which maps each vi
into a Euclidean space in which nearest neighbor is optimized
to retrieve songs by similar artists.

5.2 Playlists: Art of the Mix

Playlist data was taken from the Art of the Mix 5 (AotM)
corpus collected by Berenzweig, et al. [2]. We chose this
corpus primarily for two reasons. First, it is the largest pub-
licly available set that we know of. Second, each playlist
was (ostensibly) generated by a user — not a recommenda-
tion service or commercial radio DJ — so the corpus is an
accurate sample of real playlists that occur in the wild. 6

The AotM data consists of approximately 29K playlists
over 218K unique songs by 48K unique artists, which we
cleaned with a two-step procedure. First, artist names were
resolved to identifiers by the Echo Nest artist search API.
Second, we matched each song’s artist identifier to the MSD
index, and if the artist was found, we matched the title against
all MSD song titles by the artist. A match was accepted if
either title was contained in the other, or the edit distance
was less than half the (AotM) title length. This was found
by informal inspection to yield fewer false matches than a
direct (artist, title) query to the Echo Nest API.

Having resolved songs to MSD identifiers, we then filtered
the playlist set down to bigrams in which both consecutive
songs were contained in MSD. This results in a collection S
of 66250 bigrams over a library X of 26752 unique songs by
5629 unique artists. 7

5.3 Experimental procedure

For each song xi ∈ X , we computed an optimized acoustic
descriptor vi ∈ R222, tag vector wi ∈ {0, 1}7643, and artist
familiarity score F (xi) ∈ [0, 1]. The familiarity score was
used to construct a weighted shuffle Markov chain (Eqn. (4)).
The audio and tag spaces were used to generate kNN Markov

4 http://last.fm
5 http://www.artofthemix.org/
6 One could of course model playlists derived from alternative sources,

but be aware that such playlists may have different characteristics than user-
generated playlists: e.g., terrestrial radio playlists may be constrained by
broadcast regulations or commercial factors.

7 The bigram data and example playlists for each algorithm
can be downloaded from http://www-cse.ucsd.edu/˜bmcfee/
playlists/.
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Figure 1. Average log-likelihood of test bigrams for each
model under comparison. Scores are averaged across ten
random training/test splits.

chains (Eqn. (5)) for k ∈ {24, 25, . . . , 212}. This results in a
collection of 9 audio-based Markov chains, 9 tag-based, and
one familiarity-based. Including the uniform shuffle model,
we have a total m = 20 simple playlisters.

The playlist set S was randomly partitioned 10 times
into 10%-train, 90%-test sets; each split was performed over
the first element of the bigram so that for each song xi, all
bigrams (xi, ·) belong to either the training or test set. On
average, this yields 6670.9 training and 59597.1 test bigrams.

Each simple playlister was evaluated by computing the
average log-likelihood of test bigrams (x, x′) (Eqn. (1)). All
playlisters were smoothed by Eqn. (6) with µ = 0.01.

We then ran Algorithm 1 on the training set, and evaluated
the resulting playlister on the test set. Our implementation
of Algorithm 1 is written in NumPy, 8 and on average, con-
verges to the global optimum in under 20 seconds on standard
hardware. Since the ensemble includes the uniform model,
no additional smoothing is necessary. Finally, for comparison
purposes, we also compared to the unweighted combination
by fixing each µi = 1/m.

5.4 Results

Figure 1 lists the average log-likelihood of each model un-
der comparison. Although the audio- and tag-based models
tend to generate playlists which are acoustically or seman-
tically consistent, 7 they do not accurately model naturally
occurring playlists. As illustrated in Figure 2, the majority
of bigrams disagree with adjacencies in the kNN graphs, so
kNN methods are outperformed by uniform shuffle. While
the features described here do not suffice to model naturally
occurring playlists, a richer feature set including lyrical or
social information may significantly improve performance,
and will be the subject of future research.

For small values of k, the tag playlister is forced to select

8 http://numpy.scipy.org
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Audio Tags Familiarity Uniform
µ 9% 27% 36% 28%

Table 1. Average weight assigned to each model when opti-
mized by Algorithm 1. Audio and Tag weights are aggregated
across all values of k ∈ {24, 25, . . . , 212}.

among songs with highly similar tag vectors. Tag-based
playlisters, therefore, tend to maximize semantic cohesion.
The relatively low performance of the tag playlister indicates
that semantic cohesion does not adequately describe naturally
occurring playlists.

The familiarity model performs slightly better than uni-
form, and significantly better than the audio and tag playlis-
ters. This suggests that popularity and social factors play
significant roles in playlist composition; while not surprising,
this should be taken into account when designing a playlister.

The optimized model produced by Algorithm 2 substan-
tially outperforms all other models, even when only exposed
to an extremely small training set (10%). Note that the un-
weighted combination degrades performance.

To help understand contributions of different components
in the optimized model, we list the average weight assigned
to each model by Algorithm 1 in Table 1, grouped by feature
type. The content-based models receive a significant amount
of weight, suggesting that the models contain some amount
of predictive power. The large weight assigned to the uniform
model may be interpreted as the proportion of information
not modeled by content or familiarity, and thus constitutes
a secondary measure of the (lack of) quality of the other
models in the ensemble.

6. CONCLUSION

We have presented a simple, automatic evaluation procedure
for playlist algorithms. To demonstrate the technique, we
developed a suite of simple baseline playlisters, and evaluated
their performance on naturally occurring playlists.
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ABSTRACT

A considerable number of MIR tasks requires annotations
at the note-level for the purpose of in-depth evaluation. A
common means of obtaining accurately annotated data cor-
pora is to start with a symbolic representation of a piece and
generate corresponding audio data. This study investigates
the effect of audio quality and source on the performance of
two representative MIR algorithms – Onset Detection and
Audio Alignment. Three kinds of audio material are com-
pared: piano pieces generated using a freely available soft-
ware synthesizer with its default instrument patches; a com-
mercial high-quality sample library; and audio recordings
made on a real (computer-controlled) grand piano. Also, the
effect of varying richness of artistic changes in tempo and
dynamics or natural asynchronies is examined. We show
that the algorithms’ performance on the different datasets
varies considerably, but synthesized audio, does not neces-
sarily yield better results.

1. INTRODUCTION

Onset Detection, Automatic Transcription, or Audio Align-
ment are only a small number of examples of MIR tasks that
require ground truth data at the note-level for an in-depth
evaluation. However, such data corpora are rare for several
reasons. Starting from an audio recording, manual anno-
tation is not only highly time consuming but also has cer-
tain limits in terms of accuracy and level of detail. On the
one hand, it is questionable how precisely or consistently
a human annotator can determine note onsets – particularly
“soft” ones. On the other hand, aspects like the loudness of
an individual chord note might not be distinguishable even
for experienced listeners.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.
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Audio Onset Detection X
Real-Time Audio to Score Alignment X
Audio Melody Extraction X
Multiple f0 Estimation and Tracking X X X
Audio Chord Estimation X
Audio Beat Tracking X

Table 1. Overview of MIREX tasks and the respective
sources of test data (manual annotation, synthesized from
MIDI, playback on a Disklavier)

Starting from a symbolic representation implies its own
challenges. To obtain a realistic audio representation, two
aspects have to be taken into account. First, the symbolic
data should describe a human-like performance, i.e. contain
artistic variations in tempo, dynamics, or playing style and
also more subtle ones such as slight arpeggiations or asyn-
chronies.

The second important aspect is the quality of the conver-
sion from the symbolic to the audio domain. One option
is to use computer controlled musical instruments (e.g. a
player piano) preserving the whole acoustic complexity of
the sound source. Problems are the availability of such in-
struments and recording issues. An alternative would be the
usage of (software) synthesizers. Although this method is
relatively common in the literature (see [2, 3, 8] for exam-
ple), it is not clear if and to what extent such data yields
different results in an evaluation process.

Table 1 gives an overview of MIREX [4] tasks which re-
quire note- or at least beat-level annotations for evaluation
purposes. With the exception of one single task, where au-
dio material is generated from a symbolic ground truth rep-
resentation, there is a clear preference towards the usage of
“real” audio recordings and human annotations. However,
it is not clear if this under-representation of evaluation data
generated from a known ground truth is due to a lack of
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such symbolic data and adequate rendering mechanisms, or
if such audio material would indeed adulterate evaluation
results.

This work presents a study on different approaches for
the generation of audio data from symbolic representation
and their influence on evaluation results of two MIR algo-
rithms – Onset Detection and Audio Alignment. To this end,
MIDI data from real piano performances were turned into
audio recordings in three ways: (i) by recording the sound
produced by a computer-controlled piano when playing the
MIDI files; (ii) by synthesizing the data using a commercial
high-quality sample library; and (iii) by using a freely avail-
able sound patch library. Also, since performances of pro-
fessional musicians are rarely available in a symbolic repre-
sentation, the influence of changes in the richness of artistic
variations (i.e. changing tempo, dynamics, pedal pressure)
was studied. The piano was chosen due to the availability
of computer controlled instruments and thus the opportu-
nity to obtain highly accurate audio data other version can
be compared to. Also, piano music is a common means of
note-level evaluation in literature.

2. EVALUATION TASKS

To examine the effect of different sound sources on the per-
formance of MIR algorithms, two sample subfields have
been selected – (i) Onset Detection and (ii) Audio Align-
ment. These two task are representative insofar as they allow
certain conclusions to be drawn about various other MIR
tasks they are either integral parts of (such as Audio Tran-
scription or Cover Version Detection) or share crucial sub-
routines or features (such as Score Following, Structural
Analysis, or Beat Tracking).

2.1 Onset Detection

The chosen algorithm for Onset Detection is the one that
yielded the highest average f-measure in the MIREX 2010 1

algorithm comparison [5].

2.1.1 Features

Features are extracted in the spectral domain. The signal is
therefore transformed using two parallel STFTs with Ham-
ming windows of lengths 1024 (23 ms) and 2048 (46 ms)
respectively. The hop size, however, is 441 samples in both
cases yielding a common time resolution of 10 ms per frame.
According to the human perception of sounds, the (power)
spectrograms are then converted to the Mel-scale using a
filterbank consisting of 40 triangular filters spread equidis-
tantly on the Mel-scale. In a last step, the logarithm is taken
to obtain the final feature values.

1 MIREX 2010 – Onset Detection Results
http://nema.lis.illinois.edu/nema_out/mirex2010/
results/aod/summary.html

In addition to the absolute values, the half-wave rectified
first order difference is calculated as an indicator for new
spectral components.

2.1.2 Algorithm

As most other Onset Detection algorithms, the one used here
works in two steps. In the first one, a detection function
is calculated, representing novelty within the signal. In a
second pass, peaks in the detection function are picked and
classified as onsets.

To obtain the detection function, a bidirectional neural
network with Long Short-Term Memory (LSTM) units is
applied. Its number of input units is 160, corresponding
to the feature values as described above. The actual neu-
ral net consists of six hidden layers – two for each direction
– with 20 LSTM units each and two output units yo and yn

representing the classes ’onset’ and ’no onset’ respectively.
These outputs are normalized such that the range of values
is [0, 1] and the sum of yo and yn is 1.

Training of the network was done iteratively by gradi-
ent descent with error backpropagation until no more im-
provement has been observed for 20 epochs. The training
and validation sets used consist of samples from the dataset
introduced be Bello et al. [1] and the ballroom dataset by
Gouyon et al. [7].

The peak picking on the detection function applies a sim-
ple thresholding approach where a fixed threshold depend-
ing on the median of the detection function is determined
for each piece. Each remaining peak is finally reported as
an onset.

2.2 Audio-to-Score Alignment

Concerning audio alignment, a simple algorithm based on
Dynamic Time Warping (DTW) and Chroma vectors has
been chosen. Although this approach dates back several
years and improvements concerning aspects like robustness
or accuracy have been proposed, it is still used not only
for Audio-to-Score Alignment itself but also for Structural
Analysis, Cover Version Detection or Retrieval Tasks. For
simplicity reasons, the Audio-to-Score Alignment task will
be referred to as Audio Alignment only in the remainder of
this work.

2.2.1 Features

Due to their robustness to timbre, certain recording condi-
tions, and varying degrees of polyphony, chroma vectors are
commonly used for synchronization tasks. They consist of
a 12-dimensional vector for each time frame, where each
element represents the relative energy of a pitch class (i.e.
C, C#, D,. . . ). The extraction from audio signals is done in
the spectral domain based on a mapping of each bin to the
note where the fundamental frequency is closest to the bin’s
center frequency. In a second step, coefficients of all bins
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mapped to notes of the same pitch class are summed up. Fi-
nally, the vector is normalized by linear scaling such that its
maximum is equal to 1.

The (mechanic) score representation is segmented into
time frames such that the number of time frames and the
overlap ratio are the same as for the corresponding audio
data. The energy of a pitch is then set to the fraction of the
window length in which it is played. The octave folding and
normalization is then performed in analogous manner as for
the audio data.

2.2.2 Algorithm

To compute the actual alignment, the approach described
in [10] is used. In a first pass, features are computed on
windows with a length of 4096 samples and an overlap ra-
tio of 50%. Dynamic Time Warping is then performed to
obtain an initial alignment. The resulting time resolution
is relatively low. However, since the Dynamic Time Warp-
ing algorithm is of quadratic complexity in time and also in
space, this is necessary to also process long pieces.

To circumvent this tradeoff, a second pass is performed
at a higher time resolution. Here, the features are calcu-
lated using a window length of 1024 samples and a hop size
of 256 samples. Computational costs are kept low by re-
stricting the search for an optimal alignment to a certain area
around the coarse initial alignment. Here, a radius of±1000
frames has been chosen.

3. EVALUATION DATA

The data set used throughout this study comprises the first
movements of 13 piano sonatas by W. A. Mozart. Those
pieces have been performed by a professional pianist on
a computer monitored grand piano (Bösendorfer SE 290),
yielding an exact ground truth of all performance parame-
ters including timing, dynamics, and pedal pressure. The
data was originally represented in a proprietary, symbolic
format which was then converted into MIDI. As shown in
Table 2, it covers almost 42000 notes and a performance
time of more than 80 minutes.

For the purpose of evaluation, the performance data was
matched to a symbolic score representation. Manual correc-
tion was done, to ensure that playing errors and also short
sections where the pianist did not stick to the score at all are
annotated accordingly.

Audio recordings were then obtained from this perfor-
mance data using three different sources – playback on the
Bösendorfer 290 SE from which the symbolic data origi-
nated, synthesizing using high quality instrument samples
produced by the Vienna Symphonic Library, and rendering
using the free synthesizer Timidity and its default instrument
patches provided by the Freepats project.

3.1 Bösendorfer SE 290

The Bösendorfer SE 290 is the computer controlled grand
piano which was used to obtain the symbolic performance
data. It relies on optical sensors to detect movements of
individual keys and hammers. One such sensor consists
of a phototransistor and a coupled LED about 3 mm apart.
Precision-cut aluminum shutters attached to the keys and
hammers discontinue the corresponding beam of light and
thus trigger a sensor event. The system is set up such that
a key movement is reported as soon as it is minutely de-
pressed. A hammer movement and its velocity, on the other
hand, are detected at the instant a hammer hits the string [9].

The playback mechanism is based on small linear motors
underneath the key bed actuating the keys. They are con-
structed such that the only contact between key and actuator
is during playback mode and no interference occurs while a
pianist is playing the instrument.

In [6] the SE 290 was compared to the Yamaha Disklavier
grand piano – another system commonly used in perfor-
mance research. It has been found that the SE 290 is more
accurate than the Disklavier at monitoring and also at play-
back. Both systems were affected by systematic timing de-
viations (linearly increasing over time) likely to be caused
by inaccuracies of the internal clock-pulse generators. This
flaw aside, the residual mean timing errors in monitoring
mode accounted for 0.2 ms (stddev: 2.1 ms) for Bösendor-
fer’s and for 1.4 ms (stddev: 3.8 ms) for Yamaha’s grand pi-
ano. Considering reproduction accuracy, the Disklavier was
again clearly outperformed by the SE system where timing
deviations rarely exceeded 3 ms.

The recordings on this instrument were made at 44.1 kHz
using a single high-quality microphone near the corpus of
the piano and a DAT recorder.

3.2 Vienna Symphonic Library

The Vienna Symphonic Library 2 (VSL) is a commercial
vendor of high quality instrument samples not only cover-
ing a wide range of musical instruments but also different
playing styles. While synthesizing MIDI data, a special se-
quencer plug-in analyzes the stream of events for repeated
notes and other certain patterns and determines the appropri-
ate articulation or nuance in real-time. An example are pas-
sages played in legato on wind or string instruments, where
not only tones themselves but also real note transitions are
sampled to yield a more natural sound.

The Special Edition – Standard of the sample library con-
tains the Bösendorfer 290 ”Imperial“, which is the same
type of grand piano the SE system, as described above, was
integrated into. This provides the opportunity to compare
the authentic sound of the grand piano to its generated repro-
duction. The objective is to show if and how potential devi-

2 http://vsl.co.at/
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ations influence MIR algorithms and their respective evalu-
ation results.

Since the software is not a sequencer of its own, Garage-
Band 3 was used for synthesizing. Although GarageBand
can not be considered a high-end product, the audio mate-
rial obtained as described above benefits from the plug-in
provided by the VSL.

3.3 Timidity++/Freepats

Timidity++ 4 is a free software synthesizer distributed under
the GNU General Public License and available for a variety
of operating systems. Although it can be configured to work
with any set of instrument samples given in GUS/patch for-
mat, it, by default, uses the voice data provided by the Freep-
ats 5 project. Timidity has been included in this comparison
because, on the one hand, the software as well as the instru-
ment samples are freely available and, on the other hand, it
has been used in recent MIR research (e.g. [2, 3, 8]).

4. DIFFERENT RENDERING METHODS

In a first experiment, the influence of the rendering method
was examined. Therefore, audio signals were obtained from
the three sources as described above – the computer con-
trolled Bösendorfer SE 290 grand piano, the Vienna Sym-
phonic Library, and Timidity using its default sound patches.
The results yielded by the Onset Detection and the Audio-
to-Score Alignment are shown in Table 2. The Onset De-
tection performance is determined analogous to the MIREX
evaluation. The reported onsets are compared to the ground
truth allowing a timing deviation of ±50 ms. The quality of
the result is then given in terms of the f-measure. The accu-
racy of the Audio Alignment is expressed by the percentage
of individual notes for which the onset time in the alignment
deviates by also less than 50 ms from the ground truth.

The evaluation presented here deviates from the one per-
formed at MIREX in one aspect, which is, however, justified
by the nature of the ground truth data. Merged onsets, i.e.
two adjacent onsets are reported as one single onset, are not
penalized here. Since each individual note’s onset time is
known, it occurs that there is more than one onset within a
single or two adjacent audio frames. Such onsets cannot be
distinguished without also transcribing the notes’ pitches.

Concerning the Onset Detection, the performance on the
data synthesized using the Vienna Symphonic Library is the
highest on all individual pieces with only one exception –
k283-1 – where the signal from the SE 290 yields the high-
est f-value. On the other hand, the audio data obtained from
Timidity results in the lowest f-measure for each piece. This

3 http://www.apple.com/de/ilife/garageband/
4 http://timidity.sourceforge.net
5 http://freepats.zenvoid.org

contradicts the possible speculation that lower quality syn-
thesizers (instrument patches) would produce somehow ”ar-
tificial” sounds and in doing so reduce the complexity of the
resulting audio file. Looking at the spectra of two tones –
one played on the SE 290 and one generated by timidity –
reveals that the tone obtained from timidity contains a sig-
nificant proportion of noise in the high frequency bins (see
Figure 1). This phenomenon was observed to be consistent
throughout the whole pitch range and is therefore a likely
explanation for the worse performance of the Onset Detec-
tion on the timidity dataset.

Although the evaluation of the Audio Alignment does
not draw such a clear picture, some of the results are con-
firmed. Again, the performance on the timidity dataset was
significantly lower than the one on the ”real“ audio from
the SE 290. However, the VSL dataset results in the lowest
overall accuracy. Comparing the spectra of tones generated
by the VSL to those played on the SE 290 shows differences
in the relative strengths of individual harmonics. This will
influence the chroma feature and is therefore a likely expla-
nation for the discrepancy in the results.

5. VARYING RICHNESS OF EXPRESSIVE
DETAILS

The symbolic representation used to obtain the audio ma-
terials for the above experiment derives from a real perfor-
mance (on the Boesendorfer SE290) by a skilled concert pi-
anist. It thus contains detailed information about expressive
performance aspects (expressive timing, dynamics nuances,
exact pressure on the pedals). In many controlled MIR ex-
periments, the starting MIDI data will be based on a score
instead of real performances, and will therefore be impover-
ished in the sense that it will not correspond to the kind of
musical material usually encountered in practice.

In order to find out whether the lack (or presence) of ex-
pressive timing etc. significantly impact MIR algorithms,
our MIDI files were deliberately ”cleaned” from such ex-
pressive performance aspects. Specifically, the usage of the
pedals, varying dynamics, and intra-chord timings (i.e. ar-
peggiations and asynchronies) were suppressed by deleting
the according events, setting velocities to a constant, and as-
signing asynchronous chord notes a uniform onset time.

The means of synthesizing was chosen to be timidity for
two reasons. First, we assumed that if a computer controlled
instrument were available, it could be used to obtain the
complete performance information. Second, the VSL soft-
ware and its mechanism to use different samples according
to the musical context would interfere with the experiment.

We found that suppressing the usage of the pedals, chang-
ing dynamics, or both had only negligible influence on the
overall performance. Likely explanations are that the us-
age of pedals plays a relatively minor role when performing
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piece # notes duration Onset Detection Audio-to-Score Alignment
SE 290 VSL timidity SE 290 VSL timidity

k279-1 2803 4:55 96.31 98.00 92.11 90.37 85.52 87.73
k280-1 2491 4:48 98.08 98.80 95.64 85.27 79.37 85.47
k281-1 2648 4:29 95.83 97.83 92.20 88.37 85.08 86.48
k282-1 1907 7:35 97.70 98.87 96.42 76.68 71.93 74.93
k283-1 3304 5:22 97.08 96.53 92.45 93.89 85.05 90.89
k284-1 3700 5:17 94.82 98.58 93.40 92.08 90.35 86.97
k330-1 3160 6:14 97.19 99.32 95.50 95.13 90.03 90.19
k331-1 6123 13:35 98.02 98.50 95.55 73.00 66.62 70.70
k332-1 3470 6:02 94.84 98.26 94.01 87.61 83.52 81.07
k333-1 3774 6:44 96.83 98.31 93.13 93.51 93.19 92.29
k457-1 2993 6:15 95.92 96.80 92.33 88.31 79.45 80.09
k475-1 1284 4:58 96.69 98.29 95.60 61.21 59.04 43.04
k533-1 4339 8:25 95.30 98.11 94.06 92.90 87.14 89.91

all 41994 1:24.39 96.51 98.18 94.00 86.85 81.93 82.99

Table 2. Performance of the example algorithms on the datasets generated using different rendering methods

(a) (b) (c)

Figure 1. Spectra of a C3 as played on the Bösendorfer grand piano (a) and synthesized by the VSL (b) and timidity (c)
calculated applying a Blackman-Harris window of length 8192 starting 50 ms after the note onset

pieces by Mozart. Also, the chroma vectors used for Audio
Alignment are normalized to reduce the influence of vary-
ing loudness and the neural network seems to have learned
a similar concept.

However, the influence of micro timings (i.e. asynchro-
nies) on the Audio Alignment was significant compared to
a version where the onsets of all notes of a chord were set
to same time (see Table 3). This is partly due to the fact
that Audio-to-Score Alignment using Dynamic Time Warp-
ing without post-processing at the note-level is inherently
error prone as soon as asynchronies occur. The algorithm
cannot assign different times to events which are simultane-
ous in the score.

Although we expected the Onset Detection to also ben-
efit substantially from having one simultaneous onset for
a whole chord instead of several onsets of the individual
notes, results disproved this assumption. A further inspec-

tion showed that while chord onsets have been correctly de-
tected, onsets of notes played one at a time were missed.
This is due to a masking effect caused be the exceptionally
high values in the detection function caused by the exact
concurrence of several notes’ onsets.

To get an idea on the actual extent of asynchronies in
a natural performance, the time spreads of chords according
to their degree of polyphony was determined. Table 4 shows
that two notes which are notated concurrently in the score
can be up to half a second apart in the actual performance,
highlighting that natural timings contribute significantly to
the complexity of a musical performance.

6. CONCLUSION

We have presented an extensive comparison of different ap-
proaches to generate audio material from a symbolic repre-
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piece Onset Detection Audio Alignment
full time full time

k279-1 92.11 98.10 87.73 95.33
k280-1 95.64 99.30 85.47 95.19
k281-1 92.20 82.53 86.48 91.66
k282-1 96.42 92.55 74.93 96.89
k283-1 92.45 97.15 90.89 99.64
k284-1 93.40 99.52 86.97 98.57
k330-1 95.50 89.56 90.19 96.52
k331-1 95.55 98.49 70.70 99.11
k332-1 94.01 99.15 81.07 99.17
k333-1 93.13 99.73 92.29 96.88
k457-1 92.33 99.32 80.09 95.07
k475-1 95.60 91.56 43.04 80.58
k533-1 94.06 92.24 89.91 97.29

all 96.51 96.01 82.99 96.61

Table 3. Performance of the example algorithms on the
datasets exhibiting all aspects of expressive variations (full)
and with suppressed micro timings (time)

p # occurrences min avg max stddev
1 15999 - - - -
2 6742 0.000 0.015 0.286 0.017
3 2732 0.000 0.020 0.471 0.023
4 840 0.001 0.035 0.391 0.051
5 130 0.005 0.125 0.529 0.131
6 46 0.005 0.155 0.511 0.121
7 3 0.010 0.014 0.017 0.003
8 1 - 0.009 - -

Table 4. Asynchronies and arpeggiations in [sec] for each
degree of polyphony p

sentation and its influence on the evaluation results of two
representative MIR algorithms. On the one hand, the useful-
ness of synthesized data for evaluation purposes was proven
by the large number of consistencies concerning the ranking
of individual results. On the other hand, however, it became
evident, that synthesized data can have their own specifici-
ties carrying the inherent risk of overfitting.

We have shown that the quality of instrument samples
used for synthesizing has a significant influence on evalu-
ation results. Also, natural timings including asynchronies
and arpeggiations are a crucial aspect to account for in the
ground truth data in order to obtain most meaningful evalua-
tion results. This does not only refer to a algorithms perfor-
mance on different audio data but also to evaluation itself,
where such rich data would allow for criteria more accu-
rate than, for example, the±50 ms tolerance threshold com-
monly used in onset detection.
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ABSTRACT

Organizing music by emotional association is a natural pro-
cess for humans, but the ambiguous nature of emotion
makes it a difficult task for machines. Automatic sys-
tems for music emotion recognition rely on ground truth
data collected from humans, and more effective meth-
ods for collecting such data are being continuously devel-
oped. In previous work, we developed MoodSwings, an
online collaborative game for crowdsourcing dynamic (per-
second) mood ratings from multiple players within the two-
dimensional arousal-valence (A-V) representation of emo-
tion. MoodSwings has proven effective for data collection,
but potential data effects caused by collaborative labeling
have not yet been analyzed. In this work, we compare the
effectiveness of MoodSwings to that of a more traditional
data collection method, where annotation is performed by
single, paid annotators. We implement a simplified labeling
task to run on Amazon’s crowdsourcing engine, Mechanical
Turk (MTurk), and analyze the labels collected with each
method. A statistical comparison shows consistencies be-
tween MoodSwings and MTurk data, and we produce simi-
lar results using each as training data for automatic emotion
production via supervised machine learning. Furthermore
the new dataset collected via MTurk has been made avail-
able to the Music Information Retrieval community.

1. INTRODUCTION

The problem of automated emotion (mood) recognition
within music has recently received increased attention
within the music information retrieval (Music-IR) research
community [1]. The perceptual nature of emotion ne-
cessitates that such systems be trained on ground truth

Permission to make digital or hard copies of all or part of this work for
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c© 2011 International Society for Music Information Retrieval.

data collected from humans, and the Music-IR commu-
nity could benefit from further development and evalua-
tion of methods for collecting such data. In prior work,
we created MoodSwings, an online collaborative game for
collecting per-second labels of music, based on the two-
dimensional arousal-valence (A-V) model of emotion [2,3].
MoodSwings captures emotion changes in synchrony with
music and collects a distribution of multiple players’ labels
for each moment in a song. These quantitative labels are
well suited to computational parameter estimation and su-
pervised machine learning [4–6].

Initial studies of the game’s effectiveness found that an-
notators settle upon their final ratings faster when play-
ing against a partner (as opposed to random AI, which
simulates a partner’s participation when an odd number
of players are online) [7]. However, the effects of col-
laborative annotation on the quality of ratings have yet to
be established. In this work we compare MoodSwings to
a more traditional data collection method via Amazon’s
Mechanical Turk (MTurk), 1 an online crowdsourcing en-
gine. Through the construction of Human Intelligence Tasks
(HITs), MTurk connects researchers with human subjects
from all over the web and provides a means for payment. We
design a traditional A-V labeling task, employing MTurk
workers to label a dataset consisting of 240, 15-second clips
previously annotated via MoodSwings [4]. We examine the
collected labels to comparatively analyze our game versus
traditional data collection.

The monetary incentives of MTurk unavoidably inject
noise into our labels. This becomes an issue for data quality
as it is undesirable to pay for unsatisfactory work. MTurk
allows us to deny workers payment if they do not properly
complete the task, and we develop an outlier detection al-
gorithm to automatically detect such workers. In an attempt
to reduce bias, the system relies on the use of expert an-
notators’ labels as a baseline when trying to validate anno-
tations. It filters out workers who demonstrate unwilling-
ness to correctly perform the task. We compare the “clean”
MTurk dataset to labels from our game statistically, and with

1 http://mturk.com
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respect to automatic mood prediction accuracy. The new
dataset collected via MTurk has been made available to the
Music Information Retrieval community. 2

2. BACKGROUND

The natural language processing (NLP) [8] and machine vi-
sion [9, 10] communities have utilized MTurk extensively,
but machine listening and Music-IR have been slow to adopt
its use. Lee found crowdsourcing music similarity judg-
ments on MTurk to be less time-consuming than collecting
data from experts in the research community [11]. The ex-
periment cost $130.90 and produced 6,732 similarity judge-
ments, less than $0.02 per rating. HITs were rejected if
workers rated songs too quickly or failed to assign high sim-
ilarity to identical songs. While nearly half of all HITs were
rejected, the dataset was obtained an order of magnitude
more quickly than in their previous attempts. Comparing the
datasets yields a Pearson’s correlation coefficient of 0.495,
consistent with previous NLP work involving MTurk [8]. As
the previous data collection was assembled for MIREX, Lee
returned the submitted systems using MTurk data as ground
truth and found no significant alterations to the outcome,
scoring a 5.7% difference on the Friedman test.

Mandel et al. employed MTurk for collecting free form
tags to study relationships between audio tags and content
[12]. The group collected 2,100 unique tags across 925
clips, for a reported cost of approximately $100. To en-
sure data quality, they rejected a HIT if any tag had more
than 25 characters, if less than 5 tags were provided, or
if less than half of tags were contained in a dictionary of
commonly applied tags (Last.fm). All HITs by a particular
worker were rejected if the worker used too small a vocabu-
lary, if they used more than 15% “stop words” (e.g., “music”
or “nice”), or if half of their individual HITs were rejected
for other reasons. The authors then trained a support vec-
tor machine (SVM) classifier for content-based autotagging.
With smoothed labels, the MTurk version increased perfor-
mance to 63.4% versus 63.09% with MajorMiner.

3. DATA COLLECTION METHODS

In previous work we designed MoodSwings, a collaborative
online game that leverages crowdsourcing to collect mood
ratings [2]. The game board is based on the A-V space,
where the valence dimension represents positive versus neg-
ative emotions and arousal represents high versus low en-
ergy [3]. Anonymously-partnered players label song clips
together during each round, scoring points based on the
overlap between their cursors, which encourages consensus.
Bonus points are awarded to a player whose partner moves
towards him/her, encouraging competition and discouraging

2 http://music.ece.drexel.edu/research/emotion/moodswingsturk

players from blindly following their partners to score points.
We recently initiated a redesign effort, investigating game-
play improvements suggested by an analysis of collected la-
bels [7]. However, we have not addressed concerns about
the game structure biasing annotations.

We designed a simplified labeling task, shown in Figure
1, for MTurk. Single workers provide A-V labels for clips
from our dataset, consisting of 240 15-second clips, which
are extended to 30 seconds to give workers additional an-
notation practice [4]. As in MoodSwings, we collect per-
second labels, but no partner is present and no points are
awarded. Workers are given detailed instructions describing
the A-V space. They navigate to a website which hosts the
task and label 11 randomly-chosen clips. The first clip is
a practice round, omitted from our analysis. The third and
ninth are identical, randomly chosen from a set of 10 “verifi-
cation clips,” which are evaluated to identify unsatisfactory
work. Workers are given a 6-digit verification code to en-
ter on the MTurk website as proof of completion which, if
successful, earns workers $0.25 per HIT.

Figure 1. Screenshot of labeling task deployed on MTurk,
depicting the A-V space and a yellow orb as the annota-
tor’s cursor. A sidebar provides additional instructions, e.g.
workers may type “B” if they encounter bugs in the task.

4. FILTERING OF MECHANICAL TURK DATA

As previously discussed, quality control is an important is-
sue with data collection on MTurk. In the labeling task, our
interactions with workers are extremely limited and workers
cannot ask for clarification of instructions during the HIT. It
is difficult to gauge workers’ understanding, and to deter-
mine if they were blindly moving the cursor to earn $0.25
for entering a verification code. Figure 2 shows examples of
“good” and “bad” data collected for two song clips. We ob-
tained annotations from 272 unique workers, an average of 5
HITs each. To determine which of the over 1,000 complete
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Figure 2. “Bad” (top) and “good” (bottom) worker data for
two 30-second song clips. Labels get darker to show the
progression of time. Both “bad” sets of labels indicate lack
of understanding or attention to the task.

labeling sessions are valid, we utilize an automatic filtering
system, which is trained on experts’ annotations of our ver-
ification clips.

4.1 Baseline for Validity: Expert Annotations

We evaluate workers’ verification clip labels to determine if
they completed the task correctly. The 10 verification clips
were handpicked for their obvious mood transitions, e.g.,
from low to high valence. Transitions occur near the middle
of each clip. To provide a baseline for validity, ∼10 Music-
IR researchers labeled the verification clips twice each, dur-
ing two sessions (one week apart). To demonstrate that the
experts’ labels provide a good baseline for validity, we mea-
sure the consistency of their ratings between sessions. Con-
sistent ratings indicate attentiveness and understanding of
the task, which characterize our expectations for correctly
completed MTurk HITs.

The blue line in Figure 3 shows the normalized distances
between the label distributions’ means for each verifica-
tion clip in the two annotation sessions, averaged over time.
(e.g., normalized mean distance between clip one in session
one and clip one in session two). As a baseline, the dashed
line indicates the average distance over all individual clips
from session 1 when they are compared to the combination
of all remaining clips in session 2 (e.g., clip 1 from session
1 compared to the combined labels from session 2 clips 2-
10). For all clips, the normalized mean distances between
sessions 1 and 2 are well below the average, demonstrating
consistent expert annotations over multiple trials.

Figure 3. Distance between labels’ means for each clip in
expert annotation sessions 1 and 2, with error bars indicat-
ing ±1 standard deviation. Dashed line indicates the aver-
age distance between individual clips from session 1 and the
combination of all remaining clips from session 2.

4.2 Automatic Filtering System

We wish to reject data from workers who move about the A-
V space without paying attention or who misunderstand the
meanings of the A-V axes, but avoid rejecting valid ratings
simply because they differ from our own subjective opin-
ions. A one-class SVM for every second of each verification
clip is trained on the expert labels, then used to detect invalid
worker data. The experts’ labels differ enough between indi-
viduals to account for many valid mood ratings, but to avoid
penalizing workers for differences in opinion we only re-
quire that workers’ verification clip labels fall within the de-
cision boundary of the one-class SVM on average.

Figure 4. One-class SVM trained on expert data for one
second of a verification clip. Expert labels (x), support vec-
tors (0), and decision boundary are shown.
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Figure 5. A-V distribution of data shown as a contour map. MoodSwings (left) and MTurk (right).

4.2.1 Novelty Detection and One-Class SVM

As our data is unlabeled, we cannot formulate the identifica-
tion of valid labels as a traditional binary classification prob-
lem. The experts’ labels exemplify how such labels may be
clustered, a “positive class,” but we encounter an unknown
number of “negative classes.” We use outlier (novelty) de-
tection, training a supervised machine learning system on
only positive examples [13]. Our system uses the one-class
SVM implementation from the SVM-KM toolbox. 3 We use
a Gaussian RBF kernel, tuning parameters to include most
training data and exclude outliers. For a HIT to be approved,
both verification clips must lie within our decision boundary
on average. Workers must be approved for at least 60% of
HITs completed, else all of their HITs are rejected. After
automatic filtering, 113 workers had all HITs approved, and
88 had all HITs rejected.

Because emotions cannot be classified by machines with
perfect accuracy, we use human judgments to measure the
effectiveness of our automatic system. Plots of individual
workers’ labels for verification clips were visually exam-
ined by the authors. Annotations were classified “approved”
if they followed a similar trajectory to that of the experts’
labels over time, and “rejected” if they rapidly jumped be-
tween quadrants or moved in the opposite direction of ex-
pert labels. Ambiguous labels, for instance, those that did
not follow a smooth trajectory, but moved towards the same
quadrant as expert data, were labeled “unknown.” Classifi-
cation performance is shown in Table 1.

5. ANALYSIS OF COLLECTED DATA

The system collected 4,064 label sequences after two stages
of filtering: first evaluating verification clip labels, and then
removing labeling sessions of workers who kept the cursor

3 http://asi.insa-rouen.fr/enseignants/∼ arakotom/toolbox/index.html

Manual Annotation Number Accepted Number Rejected

Approved 398 162
Rejected 147 527
Unknown 89 67

Precision Recall F-Measure
0.73 0.71 0.72

Table 1. Classification performance of automatic filtering
system for HITs labeled “Approved,” “Rejected,” and “Un-
known.”

at the origin for too long or consistently provided the same
rating (e.g. consistently labeled all clips as angry through-
out a game). We analyzed only the last half of each 30-
second annotation round so that the first 15-seconds could
give workers time to contemplate the mood of each clip. We
assume that the relatively small number of workers who did
not move after 15 seconds misunderstood the task, and thus
filtered out their data. Table 2 shows statistics of the col-
lected per-clip annotations in the dataset, before and after
filtering.

Unfiltered Verification Stage 2
Metric Dataset Filtering Filtering

Mean 49.79 18.20 16.93
St. Dev. 4.328 2.480 2.690
Max 72 24 23
Min 39 8 7

Table 2. Number of MTurk worker annotations for each clip
before and after filtering.
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Feature/ Average Mean Average KL Average Randomized T-test
Topology Distance Divergence KL Divergence

MFCC 0.143± 0.007 1.501± 0.148 2.801± 0.294 20.68
Chroma 0.181± 0.008 3.555± 0.302 3.897± 0.313 21.08
S. Shape 0.158± 0.007 1.733± 0.172 2.501± 0.246 23.51
S. Contrast 0.141± 0.007 1.486± 0.158 2.821± 0.297 21.17

M.L. Combined 0.130± 0.006 1.308± 0.132 2.928± 0.310 20.52

Table 3. MLR results for short-time (one-second) A-V labels, repeating the experiments of [5].

5.1 Correlation Between Collected Labels

We compute Pearson’s product-moment correlation be-
tween the datasets from MoodSwings and MTurk for each
dimension. Pearson’s correlation between example random
variables X and Y is defined as:

ρ =
cov(X,Y )

σXσY
(1)

To account for discrepancies between the number of an-
notations for each clip, we treat their per-second sample
means as observations. We smooth both sets of labels to
reduce noise between observations, as the mood in each
second of a song clip cannot be assumed to be indepen-
dent from that of previous seconds [6]. The results, 0.712
for Arousal and 0.846 for Valence, show more correla-
tion between the two datasets than Lee’s comparison of
a MTurk-collected dataset to similarly crowdsourced data
[11]. High correlation provides evidence that annotators’
judgments are unaffected by collaborating with a partner
during MoodSwings.

5.2 Overall Distribution Comparison

Figure 5 shows contour maps for the datasets collected with
MoodSwings and MTurk. Both datasets have similar den-
sities in the quadrant centers, though the MTurk dataset has
higher densities along the spaces’ extremities, which could
be attributed to a larger sample. The MTurk dataset also
contains small peaks throughout the distribution, whereas
the MoodSwings set has more consistent clusters. It is diffi-
cult to pinpoint a cause for this difference, but multiple small
peaks in the MTurk distribution may suggest that workers
remain indecisive about their mood ratings throughout the
duration of a clip. In previous work, we showed that it takes
7-8 seconds on average for players to reach 85% of the to-
tal distance from the origin to their final mood labels [7].
By contrast, it took MTurk workers 10-12 seconds to reach
the same distance percentage. Faster convergence towards
a mood decision in the game could imply that collaboration
encourages annotators to re-evaluate their ratings earlier in
the clips, perhaps improving the quality of collected data.

5.3 Performance in Emotion Prediction

To further establish correlation between the datasets, we use
each as ground truth for the time-varying emotion predic-
tion experiments of our previous work [5]. The predic-
tion systems utilize supervised machine learning algorithms
to map A-V labels to content-based audio features, e.g.,
mel-frequency cepstral coefficients (MFCCs), chroma, and
statistical spectrum descriptors (SSDs), including spectral
shape and contrast. Prediction performance for each feature,
as well as combined performance using a multi-layer regres-
sion method for late-feature fusion, using multiple linear re-
gression (MLR) is shown in Table 3. The results are similar:
all features rank in the same order, and in terms of over-
all mean distance there is only slight improvement for the
MTurk dataset. In terms of KL-divergence, the MTurk sys-
tem performs significantly better. However, high KL values
in [5] were later attributed to noisy distribution estimates at
one-second intervals, taken independently from other time
slices [6]. Increased performance on the MTurk set can be
similarly attributed to the larger per-second sample sizes.
Improvements based on the quantity of data collected are
unrelated to the question of whether or not collaborative la-
beling biases the annotators’ judgments.

6. DISCUSSION AND FUTURE WORK

The strong positive correlation between data from
MoodSwings and MTurk provides evidence that collaborat-
ing with a partner does not bias annotators’ mood judgments
any more than participating in a traditional labeling task.
We see similar mood prediction results between the label
sets, although the MTurk set performs better with respect to
KL-divergence. However, we attribute this increased per-
formance to a larger sample size and propose that similar
KL performance could be achieved if we collected a larger
number of labels from MoodSwings. In terms of annotation
quality, some evidence suggests that the game may be a su-
perior data collection tool because it encourages participants
to re-evaluate their ratings earlier in a labeling round. The
set of labels from the MTurk annotation method is available
to the Music-IR community for future research.

The logistics of each method are significant considera-
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tions, particularly the pace of data collection and time spent
on quality control. Monetary incentives can attract anno-
tators very quickly, but researchers must determine how to
separate anonymous paid annotators, e.g. MTurk workers,
with good intentions from those who wish to obtain pay-
ment for as little work as possible. We advise researchers
seeking to crowdsource subjective judgments from paid an-
notators to be wary of the complexity of quality control. Our
one-class SVM system must be periodically retrained to ac-
count for varied mood judgments. As false approvals and re-
jections of mood labels are most accurately detected by hu-
mans, this requires manual labeling, which can be very labor
intensive. Crowdsourcing the verification process may be a
more viable solution [14]. Reliable workers may be identi-
fied through overall approval ratings available from MTurk
and cold verify others’ work in a separate task. However,
paying a third party to verify results introduces further un-
certainty to the filtering process. We prefer to deal with vol-
unteer annotators, who are more likely to produce quality
data without extensive filtering. Unpaid annotators do not
benefit from producing a large quantity of low-quality an-
notations in a short amount of time. Because few people
volunteer for tedious traditional labeling tasks, we hope that
presenting the task as a fun game will attract annotators.

Further mood prediction work necessitates more data col-
lection. In particular, some of our planned work requires an-
notations for a much larger, more varied song set. We have
found the challenges of quality control for crowd-sourced
data collection need to be considered when choosing a col-
lection method. While using MTurk is a viable option, we
plan to concentrate some of our future efforts on improving
MoodSwings. We wish to attract annotators to our game
as quickly as we attracted them with payment on MTurk.
The redesign effort initiated with [7] made considerable
strides towards improving the game. Continuing this effort
by revamping the user interface, deploying the game on mo-
bile platforms (e.g., iOS and Android) or a social network-
ing website like Facebook.com and allowing participants to
choose their own music will provide a more varied and en-
hanced gameplay experience. We hope these planned im-
provements will attract more annotators to our game. Deal-
ing with certain paid annotators’ attempts to earn money for
unsatisfactory work makes a strong case for employing vol-
unteer annotators, who we believe are less likely to “game
the system.”

7. REFERENCES

[1] Y. E. Kim, E. M. Schmidt, R. Migneco, B. G. Morton,
P. Richardson, J. Scott, J. A. Speck, and D. Turnbull,
“Music emotion recognition: A state of the art review,”
in Proc. of the 11th ISMIR Conf., Utrecht, Netherlands,
2010.

[2] Y. E. Kim, E. Schmidt, and L. Emelle, “Moodswings:
A collaborative game for music mood label collection,”
in Proc. of the 9th Intl. Conf. on Music Information Re-
trieval, Philadelphia, PA, September 2008.

[3] R. E. Thayer, The Biopsychology of Mood and Arousal.
Oxford, U.K.: Oxford Univ. Press, 1989.

[4] E. M. Schmidt, D. Turnbull, and Y. E. Kim, “Feature se-
lection for content-based, time-varying musical emotion
regression,” in MIR ’10: Proc. of the Intl. Conf. on Mul-
timedia Information Retrieval, Philadelphia, PA, 2010,
pp. 267–274.

[5] E. M. Schmidt and Y. E. Kim, “Prediction of time-
varying musical mood distributions from audio,” in
Proc. of the 11th ISMIR Conf., Utrecht, Netherlands,
2010.

[6] ——, “Prediction of time-varying musical mood dis-
tributions using Kalman filtering,” in Proceedings of
the Ninth IEEE International Conference on Machine
Learning and Applications, Washington, D.C., Decem-
ber 2010, pp. 655–660.

[7] B. G. Morton, J. A. Speck, E. M. Schmidt, and Y. E.
Kim, “Improving music emotion labeling using human
computation,” in HCOMP 2010: Proc. of the ACM
SIGKDD Workshop on Human Computation, Washing-
ton, D.C., 2010.

[8] R. Snow, B. O’Connor, D. Jurafsky, and A. Ng, “Cheap
and Fast - But is it Good? Evaluating Non-Expert Anno-
tations for Natural Language Tasks,” in Proc. Empirical
Methods in NLP, 2008.

[9] J. Whitehill, P. Ruvolo, T. Wu, J. Bergsma, and J. Movel-
lan, “Whose vote should count more: Optimal inte-
gration of labels from labelers of unknown expertise,”
in Advances in neural information processing systems.
MIT Press, 2009.

[10] A. Sorokin and D. Forsyth, “Utility data annotation with
amazon mechanical turk,” in CVPR Workshops, 2008.

[11] J. H. Lee, “Crowdsourcing music similarity judgments
using mechanical turk,” in Proceedings of the 11th IS-
MIR Conferenceth International Society for Music In-
formation Retrieval Conference, Utrecht, Netherlands,
August 2010, pp. 183–188.

[12] M. I. Mandel, D. Eck, and Y. Bengio, “Learning tags
that vary within a song,” in Proceedings of the 11th IS-
MIR Conferenceth International Society for Music In-
formation Retrieval Conference, Utrecht, Netherlands,
August 2010, pp. 399–404.

[13] L. M. Manevitz and M. Yousef, “One-class svms for
document classification,” in The Journal of Machine
Learning Research, vol. 2, 2002.

[14] I. Sprio, G. Taylor, G. Williams, and C. Bregler, “Hands
by hand: Crowdsourced motion tracking for gesture an-
notation,” in IEEE CVPR Workshop on Advancing Com-
puter Vision with Humans in the Loop, 2010.

554



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

DESIGN AND CREATION OF A LARGE-SCALE DATABASE OF 
STRUCTURAL ANNOTATIONS

Jordan B. L. Smith1, J. Ashley Burgoyne2, Ichiro Fujinaga2,
David De Roure3, and J. Stephen Downie4

1University of Southern California, 2McGill University,
3University of Oxford, 4University of Illinois at Urbana-Champaign

jordans@usc.edu, ashley@music.mcgill.ca, ich@music.mcgill.ca, 
david.deroure@oerc.ox.ac.uk, jdownie@illinois.edu

ABSTRACT

This paper describes the design and creation of an unprece-
dentedly large database of over 2400 structural annotations 
of nearly 1400 musical recordings. The database is in-
tended to be a test set for algorithms that will be used to 
analyze a much larger corpus of hundreds of thousands of 
recordings, as part of the Structural Analysis of Large 
Amounts of Musical Information (SALAMI) project. This 
paper describes the design goals of the database and the 
practical issues that were encountered during its creation. 
In particular, we discuss the selection of the recordings, the 
development of an annotation format and procedure that 
adapts work by Peeters and Deruty [10], and the manage-
ment and execution of the project. We also summarize 
some of the properties of the resulting corpus of annota-
tions, including average inter-annotator agreement.

1.  INTRODUCTION

The Structural Analysis of Large Amounts of Musical In-
formation (SALAMI) project is a musicological endeavour 
whose goal is to produce structural analyses for a very 
large amount of music—over 300,000 recordings. Here 
structure refers to the partitioning of a piece of music into 
sections and the grouping together of similar or repeated 
sections. These sections usually correspond to functionally 
independent sections, such as the “verse” and “chorus” 
sections of a pop song, the “exposition” and “development” 
of a sonata—or, at a shorter timescale, the exposition’s 
“main theme,” “transition,” and “secondary theme” groups.

The recordings in the SALAMI corpus represent an 
enormous range of genres, from klezmer to top-40 pop, and 
a variety of sources, including professional studio record-
ings and audience-recorded live sessions. The SALAMI 
dataset, which will be made freely available, could be of 
great service to music theorists, musicologists, and other 

music researchers, since determining the form of an indi-
vidual piece of music is generally a time-consuming task. 
The SALAMI dataset could facilitate large-scale studies of 
form, which presently are relatively uncommon.

Because of the value of knowing the structure of pieces 
of music, the pursuit of algorithms that produce structural 
descriptions automatically is an active area of research. 
(For a review see [9].) The SALAMI project plans to use a 
selection of these algorithms to analyze its hundreds of 
thousands of recordings. However, before these algorithms 
can be used, it is necessary to validate their performance on 
the vast array of genres represented. This demands the 
creation of a human-annotated ground truth dataset. The 
design and creation of a large database such as the SA-
LAMI test set raises many methodological issues relating 
to the choice of music, annotation format, and procedure. 
This paper explains the issues involved and the decisions 
we made to address them. 

The next section of this work summarizes the content 
and contributions of several existing corpora of structural 
annotations, as well as important recent research on the 
annotation process itself [1, 10]. Section 3 describes the 
creation of the SALAMI test set, including the corpus se-
lection, the annotation format used, and the recommended 
workflow. Some properties of the resulting dataset are pre-
sented and discussed in Section 4.

2.  PRIOR WORK

2.1 Existing collections

SALAMI requires a database that includes a significant 
amount of popular, jazz, classical, and world music.1 How-
ever, most previous collections of annotations only con-
sider popular music.  Three of the largest existing databases 
of annotations are TUTstructure07 [13] (557 annotations), 
compiled at Tempere University of Technology (TUT) and 
containing mainly popular music; annotations for the Beat-

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. 
© 2011 International Society for Music Information Retrieval 

1 These four genre labels should be understood in their broadest sense, so 
that together they encompass all music. Thus “classical” refers to all 
Western art music; “popular” refers to most modern commercial music, 
including The Cure and Autechre; and so forth for “jazz” and “world.”
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les studio catalogue created by Alan Pollack and synchro-
nized independently by two groups [5,  14] (180 annota-
tions); and the AIST Annotation set [4] that accompanies 
the RWC Music Database (285 annotations). The RWC set 
is approximately half popular music, and one quarter each 
jazz and classical, with an additional few world music 
pieces, but for many of the jazz and classical pieces only 
the “chorus” sections are indicated.

2.2 Annotation formats

Nearly all previous corpora of annotations have used the 
same straightforward annotation format. Pieces are seg-
mented into non-overlapping sections, and every section is 
given a single label, such as “intro” or “chorus,” to indicate 
which are similar to or repetitions of one another. The la-
bels also suggest the musical role or function of each sec-
tion.  In some corpora, such as the Beatles annotations [5], 
labels may indicate instrumentation (e.g., “verse_guitar”) 
or variations on a section (e.g., “verse_with_ending”).

2.2.1 Issues with previous formats

As pointed out in Peeters and Deruty [10], this conflation 
of musical similarity, function, and instrumentation is prob-
lematic. For instance, a song’s “outro” may use the same 
music as an earlier “transition,” but labelling them as such 
fails to record their similarity. Contrariwise, a section with 
a single function may be musically heterogenous, as with 
an extended two-part introduction. Peeters and Deruty also 
criticized the large, seemingly unconstrained vocabularies 
used in certain collections of annotations. Consider again 
the Isophonics Beatles annotations [5]: of the 146 unique 
labels, 95 are used just once. Single-use labels may be in-
formative to a human inspecting the annotation, where their 
meaning is understandable in context (e.g., “intro_redux,” 
“verse_(slow)”), but having too many unique labels is less 
useful when the annotations are being used by a machine. 
Another drawback of the standard annotation format is that 
it only describes the structure at a single timescale. One of 
the most important attributes of musical structure is that it 
is perceived hierarchically,  and it would be ideal to capture 
some of this information in an annotation.

2.2.2 An alternative format

Peeters and Deruty proposed an alternative annotation for-
mat intended to resolve these problems. The format uses a 
restricted vocabulary of 19 labels, each of which addresses 
one of three aspects of a piece’s structure: either musical 
similarity, musical role, or instrument role. In their format, 
musical similarity is indicated by labelling every portion of 
a piece as one of five “Constitutive Solid Loops” 
(CSLoops). (If more than five are required,  a sixth CSLoop 
is used, although the format does not imply that all sections 
labelled with this last label are similar.) Function labels are 
optional and are restricted to “intro/outro,” “transition,” 

“chorus,” and “solo.” Instrumentation labels indicate 
whether a primary or supporting melodic voice is present.

Peeters and Deruty’s format also creatively incorporates 
some hierarchical information about the structure. Two 
markers, “V1” and “V2,” divide CSLoops; the first indi-
cates that the musical segments on either side of the marker 
are similar, the second that they are dissimilar.

2.3 Annotation procedures

Unlike pitch and,  to a large extent, beat, the perception of 
structure is a highly subjective phenomenon, and it is 
common for two listeners to disagree on the form of a piece 
of music.  It is therefore challenging to develop an annota-
tion procedure that,  while perhaps not being objective, 
maximizes the repeatability of the results. Note that since a 
structural analysis records a listener’s creative interpreta-
tion as much as her perception, objectivity is arguably an 
impossible goal for annotations.

One approach is to treat the creation of annotations as a 
perceptual experiment, and simply have multiple subjects 
listen to a piece and press a button whenever they perceive 
a structural boundary. Such data were collected by [2], who 
noted that listeners generally agreed on the placement of 
boundaries that they judged most salient. These boundaries 
were used as a type of “ground truth” by the authors to 
evaluate the success of some computational models at es-
timating boundaries.

Bimbot et al. [1] managed to obtain a degree of repeat-
ability by precisely specifying an annotation procedure. 
They defined the musical criteria and similarity judgements 
an annotator should use in order to estimate boundaries. 
(The task of labelling the segments remains future work.) 
They reported that with their procedure, annotations were 
very consistent across annotators and over time. An annota-
tor’s goal is to decompose a piece into “autonomous and 
comparable blocks.” Autonomy means that whether a block 
stands alone or is looped continuously,  the result should be 
musically acceptable. Two blocks may be comparable if 
they have the same duration in beats, are interchangeable, 
or are similar with respect to their temporal organization.

3.  DESCRIPTION OF THE SALAMI TEST SET

We developed a new corpus of annotations using a unique 
annotation format to address the goals of the SALAMI pro-
ject. To ensure that the corpus was useful as an evaluation 
test set for SALAMI, the main design consideration was for 
the corpus to cover as wide a variety of musical genres as 
possible. For the annotations to be musicologically useful, 
the design goals for the annotation format were to have 
musical similarity, function, and lead instrumentation de-
scribed independently, and for the annotations to reflect the 
hierarchical nature of musical structure. Finally, the format 
and the procedure should allow annotations to be produced 
quickly, to minimize cost, but be flexible enough to handle 
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works from a wide range of genres, all while aiming for 
high inter-annotator agreement. With these design consid-
erations in mind, we conducted a survey of previous cor-
pora of annotations and existing annotation techniques. 
Based on this survey and on our own experimentation with 
different approaches, we settled on the corpus, format, and 
procedure outlined in this section.

3.1 Contents of SALAMI test set

The first step in designing the corpus was deciding what to 
put in it. One of SALAMI’s priorities was to provide struc-
tural analyses for as wide a variety of music as possible, to 
match the diversity of music to be analyzed by the algo-
rithms.  In addition to popular music, the SALAMI test set 
should pay equal attention to classical, jazz,  and non-
Western music known colloquially as “world” music. To 
ensure a diversity of recording formats, we also empha-
sized the inclusion of live recordings. The final composi-
tion of the database is shown in Table 1.

A secondary goal of the SALAMI test set was to be able 
to compare our annotations with those of previous data 
sets. We thus duplicated some previous work: our test set 
presently includes 97  and 35 recordings from the RWC 
and Isophonics data sets, respectively. Note that these re-
cordings are all single-keyed (i.e., annotated by a single 
person), whereas most of the SALAMI test-corpus is 
double-keyed (analyzed by two independent annotators). 
Double-keying provides useful information but is more 
expensive. Single-keying some entries seemed to be a rea-
sonable compromise given that other groups had already 
annotated these pieces.

Class Double 
keyed

Single 
keyed

Total Percentage

Classical 159 66 225 16%
Jazz 225 12 237 17%
Popular 205 117 322 23%
World 186 31 217 16%
Live music 273 109 382 28%
Total 1048 335 1383 100%

Table 1. Number of pieces of each class in the SALAMI 
test set.  Single and double keying refers to the number of 
annotators (2 or 1,  respectively) who independently ana-
lyzed each song.

Selecting songs for the corpus by hand would be time-
consuming and would introduce unknown methodological 
bias. However, selecting songs randomly from most 
sources would result in a corpus heavily skewed toward 
popular music. To resolve this,  most of the recordings were 
collected from Codaich [7], a large database with carefully 
curated metadata, including over 50 subgenre labels.  This 
enabled us to enforce good coverage of genres while still 

choosing individual pieces randomly. The remainder of the 
test set was collected randomly from the Live Music Ar-
chive [6]. Unfortunately, metadata for these recordings is 
inconsistent and a distribution by genre could not be en-
forced. The majority appears to be popular and jazz music.

3.2 Annotation format

We developed a new annotation format that takes after the 
format devised by Peeters and Deruty in many important 
ways: we borrow their tripartite distinction between labels 
that indicate musical similarity, function, and instrumenta-
tion,  and like them we also strictly limit the vocabulary of 
function labels. However, we have made several modifica-
tions to suit SALAMI’s unique needs and more musi-
cological focus. The labels in each of the three layers are 
described in the following three sections. An example an-
notation is shown in Figure 1.

Figure 1. Example to illustrate proposed format.

3.2.1 Musical similarity track

The musical similarity track includes two layers at different 
timescales, each identifying which portions of the piece use 
similar musical ideas. The large-scale layer uses uppercase 
letters as labels (“A,” “B,” etc.) and the small-scale layer 
uses lowercase letters (“a,” “b,” etc.). The use of letter la-
bels mimics the familiar music-theoretical approach. Every 
portion of a recording in both large- and small-scale layers 
must be assigned a letter label. The format specification 
allows any number of lowercase or uppercase letters to be 
used (the labels “aa,” “ab,” and so on may be used if the 
alphabet is exhausted). However, for the large-scale layer, 
annotators were instructed to prefer to use five or fewer 
distinct uppercase labels per recording. This preference rule 
does not express an assumption that there are five or fewer 
distinct musical ideas in any recording. Rather, it is in-
tended to guide the annotator toward a certain level of ab-
straction. This direction proved useful when annotating 
works that are less clearly organized into distinct sections, 
such as through-composed pieces. It also helps when anno-
tating works such as sonatas that may be organized into 
sections, but where these sections are not musically ho-
mogenous and may include several distinct musical ideas.

Two additional special labels indicate silence (“silence”) 
and non-music,  such as applause or banter in a live record-
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ing (“Z”). We also allow letter labels to be inflected by the 
prime symbol ( ′  ) to indicate a section that is evidently 
similar to another, but that is judged to be substantially 
varied. Similarity judgements are inherently subjective and 
imprecise, and the prime symbol is a useful way of ac-
knowledging this.  It allows the annotator to faithfully re-
cord his interpretation,  while allowing future users to easily 
adapt the labels according to their needs. For instance, de-
pending on the application, a user may excise the prime 
markers (so that “a” and “a′” are both relabelled as “a”) or 
to treat variations as distinct sections (so that “a′” would be 
reassigned a letter label different from “a”).

3.2.2 Function track

The second track in the annotation format contains the 
music function labels, which all must be drawn from our 
strict vocabulary of 20 labels. Unlike the letter labels, it is 
not mandatory that every portion of a piece receive a func-
tion label. The vocabulary is listed in Table 2, separated 
into various relevant categories.  The instrumental, transi-
tion,  and ending groups are all synonym groups. Note that 
in the ending group, the label “fadeout” is a special label 
that can occur in addition to any other label. For example, 
if the piece fades out over a repetition of the chorus, then 
the last section may be given both labels: “chorus” and 
“fadeout.” Full definitions for each term are specified in 
our Annotator’s Guide, available online [11].

Basic group intro, verse, chorus, bridge
Instrumental instrumental, solo

Transition transition, pre-chorus, pre-verse, 
interlude

Genre-specific head, main theme, (secondary) theme
Form-specific exposition, development, recapitulation

Ending outro, coda, fadeout
Special labels silence, end

Table 2. List of permitted function words in proposed an-
notation format.

Note that some of the labels are genre-specific alterna-
tives to others: for example, the “head” in a jazz song is 
analogous to a “chorus” in a pop song or, sometimes, a 
“main theme” in a classical piece. Also, together,  the terms 
“exposition,” “development,” and “recapitulation” are spe-
cific to sonata form and may in special cases be used to 
annotate a third level of structural relationships at a time-
scale larger than the large-scale similarity labels. However, 
“development” also has wider applicability: it may be used 
to indicate the function of a contrasting middle section, 
which is relevant in many contexts, from various classical 
genres to progressive rock. Additionally, some subsets of 
the vocabulary can function as synonym-groups that can be 
collapsed into a single function label if desired. For exam-

ple, while our Annotator’s Guide defines a relatively subtle 
distinction between “pre-chorus,” “pre-verse,” “interlude,” 
and “transition” sections, they are all synonyms of “transi-
tion.” This approach allows annotators to err on the side of 
precision, while enabling future users of the data to ignore 
distinctions that are unneeded.

3.2.3 Lead instrument track

The final track in the annotation format indicates wherever 
a single instrument or voice takes on a leading, usually 
melodic role. The labels in this track are simply the names 
of the leading instruments, and hence the vocabulary is not 
constrained. Also, unlike the other tracks, lead instrument 
labels may potentially overlap, as in a duet. Note that as 
with the function track, there may be portions of the re-
cording with no lead instrument label, if no instrument ful-
fills a leading role.

Note that in the written format devised for this project, 
the boundaries delineating the small-scale similarity seg-
ments are the only available boundaries when annotating 
the function and lead instrumentation tracks. Again, this 
helps orient annotators to an appropriate level of abstrac-
tion,  and relieves them of too painstakingly indicating the 
instrumentation changes.

3.3 Annotation procedure

The annotators used the software Sonic Visualiser [3] to 
audition and annotate the pieces. Sonic Visualiser’s key-
board commands allow one to insert and label boundaries 
quite quickly. We suggested the following workflow: first, 
listen through the song and mark a boundary whenever a 
structural boundary is perceived. Second, listen to the piece 
again, adjusting boundaries and adding lowercase labels. 
Third, add the uppercase and function labels, and finally 
add the lead instrument labels. While we found this work-
flow to be efficient and straightforward, we did not demand 
that annotators follow this or any other specific workflow.

3.4 Project realization

The annotation format and data collection took place over 
the course of 10 months. First, previous annotation formats 
and databases of annotations were researched. Potential 
annotation formats were devised and tested by the project 
leaders, and a tentative format was set at the end of two 
months. Next,  candidate annotators were trained in the an-
notation format and in the Sonic Visualiser environment. 
Eight successful candidates were hired, all pursuing gradu-
ate studies in either Music Theory or Composition, and 
data collection began the following week. Because the an-
notation format had not been tested on a significant scale 
before work began in earnest, the first six weeks of data 
collection were conceived as an extended trial period. 
Every week or two, annotators were given a new batch of 
assignments in a new genre, beginning with popular, which 
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was expected to be the least problematic, and continuing in 
order with jazz, classical, and world, which were predicted 
to be of increasing difficulty. At the end of the six weeks, 
supervision of the annotators was relaxed and any problems 
addressed on an ad hoc basis. Data collection continued 
over the next 12 weeks, by which point the majority of 
assignments had been completed.

We collected the self-reported time it took to produce 
each annotation in order to assess productivity. The times 
are plotted as a function of the date for the first 1700 anno-
tations in Figure 2. It can be seen that, disregarding a num-
ber of outliers towards the beginning of the project, annota-
tion time decreased modestly, from a mode of 20 minutes 
in the first 100 days, to a mode of 15 minutes in the re-
mainder, enough for 3 full listenings of the average song, 
which was 4:21 long. The average annotation time also 
dropped from 21 to 17 minutes. Earlier analysis showed a 
slight correlation between a song’s length and its annota-
tion time.

3.4.1 Annotation format and procedure revisions

After each new assignment,  we solicited feedback from the 
annotators on what weaknesses or ambiguities in the anno-
tation format and procedure were revealed. Most issues 
were addressed and resolved at regular group meetings, 
where we also planned and agreed on the vocabulary. 
Feedback led to the introduction of new heuristics (e.g., we 
established a preference to have segment boundaries fall on 
downbeats, even in the presence of pickups).  In one case, 
feedback led to a major revision of the format. We origi-
nally used the “V1” and “V2” markers described by [10] to 
implicitly encode musical similarity at a shorter timescale. 
However, annotators found that explicitly describing the 
structure at both timescales was both conceptually simpler 
and quicker. Annotators were satisfied by the switch and 
the subsequent annotations also had more information.

4.  RESULTS

In this section we report certain properties of the collected 
data, including inter-annotator agreement.

The average number of segments per annotation was 
11.3 for the large-scale analyses, with half of the analyses 
having between 8 and 14 segments. These figures were 
38.4 and between 20 and 49 for the small-scale analyses. 
On average,  there were 4.0 unique large-scale labels and 
7.2 unique small-scale labels per annotation.

From the variety of measures used to compare two anno-
tations (defined in [12], among others), we estimated the 
pairwise f-measure, boundary f-measure, and Rand index. 
Boundary f-measure is found by observing the precision 
and recall with which one set of boundaries matches the 
other set. Boundaries match if they lie within some toler-
ance window (0.5 or 3 seconds) of each other. Pairwise f-
measure treats all pairs of frames with the same label in 

one description as a set of similarity relationships that the 
other description retrieves with some precision and recall. 
The Rand index is similar except that it also identifies how 
many pairs of frames with different labels in one descrip-
tion also have different labels in the other. The agreement 
between 974 pairs of annotations is reported in Table 3.

Figure 2. Plot of annotation times over the course of the 
project timeline.

Annotations
compared

PW f Rand 
index

Bound f
(0.5 sec)

Bound f
(3 sec)

1. Large-large 0.76 0.79 0.69 0.77
2. Small-small 0.69 0.81 0.73 0.82

3. Small-large and 
large-small (average)

0.60 0.70 0.38 0.44

4. Best case 0.81 0.87 0.80 0.89

Table 3. Average agreement between 974 pairs of annota-
tions, as estimated by four similarity metrics (pairwise f-
measure, Rand index, and boundary f-measure with two 
thresholds) when comparing: (1) both annotators’  large-
scale annotations; (2) both small-scale annotations; (3) one 
annotator’s large-scale annotation and the other’s small-
scale one. The last row (4) takes the maximum similarity of 
all four possible pairings between the first and second an-
notators’ musical similarity labels.

Each annotation describes musical similarity at two lev-
els of detail, both of which should be considered valid de-
scriptions. To compare two annotations, we may compare 
the large-scale labels only or the small-scale labels only, 
but we may also find the similarity of all pairs (including 
small-to-large and large-to-small) and take the maximum 
similarity to estimate the inter-annotator agreement. This 
will allow us to recognize cases where the annotators have 
focused on different timescales. As seen in Table 3, the 
agreement between large-scale labels (pairwise f = 0.76, 
Rand = 0.79) is comparable to that between small-scale 
labels (pairwise f = 0.69, Rand= 0.81), and the average best 
match found is slightly higher than each (pairwise f = 0.81, 
Rand = 0.87). For comparison, [8] reported a pairwise f of 
0.89 on a test set of 30 songs from the TUT set, and [1] 
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reported a boundary f measure of 0.91 (using a 0.75-second 
threshold) on a test set of 20 songs.

The agreement was not found to depend greatly on the 
genre. This is reasonable since each of the broad genres 
considered here are each very diverse and contain some 
straightforward and some complex pieces. For instance, the 
popular genre includes both straightforward pop music and 
more difficult to annotate progressive rock; likewise, 
though much world music poses a challenge to annotators, 
subgenera such as klezmer and Celtic music can be struc-
turally straightforward.

We replicated annotations for 97 recordings in the RWC 
data set. The RWC annotations distinguish similar and 
identical repetitions of sections by adding letters to func-
tion labels (e.g., “verse A”, “verse B”, etc.).  We created two 
versions of the RWC labels, one retaining and one ignoring 
the additional letter labels. These were compared to the 
large- and small-scale SALAMI annotations, revealing 
modest agreement (see Table 4). Aside from the Rand in-
dex, the results indicate that the large-scale SALAMI 
analyses are more similar to the RWC annotations than the 
small-scale analyses.

5.  CONCLUSION

The SALAMI test set has over 2400 annotations describing 
the formal structure of almost 1400 pieces of music,  from a 
wide variety of genres, including popular, jazz, classical, 
and world music. This set may be used for a variety of fu-
ture studies: for example, on the connection between the 
surface characteristics of music and the perception of musi-
cal form, or between formal styles and musical parameters 
such as artist, genre, and place of origin. The test data and 
the hundreds of thousands of computed structural descrip-
tions will soon be reachable from our website [11].

While the worth of the corpus will ultimately depend on 
the use researchers make of it, the quantity and richness of 
the information in the SALAMI test set should make it 
attractive to musicologists and music information retrieval 
researchers alike.
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ABSTRACT 

Music audio structure segmentation has been a task in the 

Music Information Retrieval Evaluation eXchange 

(MIREX) since 2009. In 2010, five algorithms were eva-

luated against two datasets (297 and 100 songs) with an al-

most exclusive focus on western popular music. A new an-

notated dataset significantly larger in size and with a more 

diverse range of musical styles became available in 2011. 

This new dataset comprises over 1,300 songs spanning pop, 

jazz, classical, and world music styles. The algorithms from 

the 2010 iteration of MIREX are re-evaluated against this 

new dataset. This paper presents a detailed analysis of these 

evaluation results in order to gain a better understanding of 

the current state-of-the-art in automatic structure segmenta-

tion. These expanded analyses focus on the interaction of 

algorithm performance and rankings with datasets, musical 

styles, and annotation level. Because the new dataset con-

tains multiple annotations for each song, we also introduce 

a baseline for expected human performance for this task.   

1. INTRODUCTION 

The structural, or formal, analysis of music is one of the 

most fundamental of analyses performed by musicologists. 

Very simply, the main goal of structural analysis is to seg-

ment music into sections that share similar characteristics, 

and apply labels to these sections. These segmentations 

take forms such as AABB, or ABAC, etc. With further 

analysis, certain descriptors can also be applied to these 

sections, such as verse, chorus, and so on [3]. 

In recent years, there has been increasing interest in de-

veloping methods for performing structural analyses auto-

matically. For a good overview on the state of automatic 

music audio structural segmentation we refer the reader to 

[10]. The growing interest in structural segmentation algo-

rithms is evidenced by the establishment of the structural 

segmentation task of the Music Information Retrieval Eval-

uation eXchange (MIREX) campaign [2]. Evaluations of 

structural segmentation algorithms were performed in 2009 

and 2010. These evaluations were performed over collec-

tions with a strong bias towards western, popular music. 

To perform a novel and potentially more thorough eval-

uation of the performance of structural segmentation algo-

rithms, the set of algorithms submitted to MIREX 2010 in 

July 2010 was re-evaluated in May 2011 using a newly 

constructed dataset. For the purposes of this paper, we are 

calling this new test collection the MIREX 2010 Version 2 

(MRX10V2) dataset. MRX10V2 is much larger in size than 

the datasets used in earlier MIREX evaluations. It also con-

tains a much broader range of music styles. Moreover, the 

MRX10V2 database contains multiple annotations per 

piece. Having multiple annotations per song allows us, for 

the first time, to explore how well algorithms perform this 

task relative to human experts.  

The main motivation for this work stems from an ongo-

ing project called the Structural Analysis of Large Amounts 

of Music Information (SALAMI) [3]. The SALAMI project 

is an endeavor to use music structure algorithms to annotate 

and segment a large corpus of music (on the order of 

300,000 songs). Its main goal is to test the feasibility and 

usefulness of current music information retrieval algorithms 

on a larger scale than has commonly been performed. As a 

pilot to the SALAMI project, the work presented in this pa-

per aims to further our understanding of how current state-

of-the-art algorithms perform at music segmentation. 

The rest of this paper is formatted as follows. Section 2 

gives a description of the dataset used in this mid-cycle 

MIREX evaluation. Section 3 briefly describes the algo-

rithms. Section 4 presents the evaluation results. Section 5 

offers some conclusions and suggests future work.  

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that cop-

ies bear this notice and the full citation on the first page.  
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2. DATASETS: OLD AND NEW 

The evaluation of structure segmentation algorithms on a 

large dataset requires the creation of a suitable ground 

truth. As in virtually all cases of MIREX-style evaluations, 

ground truth creation is carried out by human annotators. 

The use of human annotators brings up two significant 

challenges. First, there is a large labor cost involved in ma-

nually annotating music pieces. Second, and perhaps more 

importantly, is the notion that it is difficult to truly assert 

that any subjective interpretation of something as complex 

as musical form is “truth.” Many considerations must be 

taken into account regarding such annotations. Both [1] 

and [11] lay out methodologies for annotating musical 

structure. In this work, the dataset, and subsequent annota-

tion methodologies described in [14] are used.  

The MIREX 2009 and the MIREX 2010 iterations of the 

MIREX structural segmentation task had an over bias to-

ward popular music. The dataset known as MIREX 2009 

contains 297 popular song annotations donated by Tampere 

University of Technology, Vienna University of Technolo-

gy and Queen Mary, University of London. Music of The 

Beatles makes up a significant proportion of the MIREX 

2009 dataset. The MIREX 2010 dataset consists of an anno-

tated version of the RWC [4] database's popular music col-

lection. Note that the published results to the MIREX 2010 

dataset are evaluated against a ground truth donated by 

members of the QUAERO Project.1 However, these annota-

tions consist of only segment boundary annotations with no 

labeling. Hereafter, results pertaining to the MIREX 2010 

dataset are evaluated against the original, labeled structural 

annotations as distributed with the RWC collection. 

In order to compensate for the popular music bias exhi-

bited by the older datasets, the new MRX10V2 dataset was 

deliberately created to include a much wider variety of 

musical styles. In addition to popular music, the new data-

set contains classical, jazz, live, and world music. Table 1 

presents the distribution of styles across the MRX10V2 da-

taset. While “live” may not truly be considered a musical 

style, live pieces are separated as they raise unique con-

cerns such as applause sections, etc. 

    The “Double-keyed” pieces noted in Table 1 are those 

that have been annotated by two separate individuals. As 

Table 1 shows, the majority of pieces (1048 of 1383) have 

been annotated by two annotators. In addition, each annota-

tion of a piece contains two levels of structural hierarchy. 

There is a fine-grained annotation and a coarse grained an-

notation, with each coarse-grained segment comprising one 

or more fine-grained segments. Therefore, a “fine” annota-

tion may have form abaabacdaba, with equivalent “coarse” 

annotation of AABA where A represents an aba  

                                                           
1 See http://www.quaero.org.  

Table 1. Breakdown of the MRX10V2 structure segmenta-

tion dataset by musical style. 

sequence and B represents a cd sequence. The new dataset 

contains 1,383 pieces which is over 4 times larger than ear-

lier datasets used for evaluation. 

3. ALGORITHMS 

The algorithms used in this off-cycle MIREX evaluation 

are the same as the ones submitted to MIREX 2010. Five 

unique algorithms, including one with two distinct parame-

ter settings (resulting in six overall algorithms), were run 

against the new 1,383 song dataset and evaluated. The algo-

rithms are referred to in this paper using the code names 

assigned to them during MIREX 2010.2   

Each of the algorithms under evaluation is composed of 

a unique combination of extracted features, segmentation 

methods, and labeling/grouping techniques. BV1-2 [13] 

uses beats, Mel Frequency Cepstral Coefficients (MFCCs) 

and chroma vectors as features, segments the song based on 

generalized likelihoods of three different criteria and gath-

ers the segments using agglomerative hierarchical cluster-

ing. GP7 [12] uses MFCC, chroma vectors, spectral flatness 

and valley factors as features, calculates a weighted sum of 

4 different distance matrices that is used to segment the 

signal. The segments are merged using hierarchical agglo-

merative clustering. MHRAF2 [8] uses chroma features and 

employs string matching techniques to identify strong har-

monic redundancies using an iterative detection of major 

repetitions. MND1 [9] uses chroma vectors and calculates a 

similarity matrix using Pearson's correlation coefficient. 

MND1 searches the diagonals for repeated sequences and 

uses a greedy algorithm to decide on the segments. WB1 

[16] uses beat synchronous chromagrams decomposed into 

basis patterns by shift-invariant probabilistic latent compo-

nent analysis as features. Songs are segmented by compu-

ting the path of the basis patterns through a likelihood func-

tion that represents the structure of the song using the Vi-

terbi algorithm.   

                                                           
2 See http://nema/mirex/wiki/2010:MIREX2010 

Style Double-

keyed 

Single-

keyed 

Total Percentage 

Classical 159 66 225 16% 

Jazz 225 12 237 17% 

Popular 205 117 322 23% 

World 186 31 217 16% 

Live 273 109 382 28% 

Total 1048 335 1383 100% 
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On average, the runtimes for the algorithms is approx-

imately two to six minutes per file. Table 2 presents the av-

erage runtimes per-file for each algorithm. We can see that 

most algorithms run roughly real-time. Therefore, any very 

large-scale effort to automatically segment music audio will 

require significant computational resources.  

 

Algorithms Average processing time 

(min. / piece) 

WB1 [16] 2.28 

GP7 [12] 2.64 

BV1 & BV2 [13] 2.94 

MND1 [9] 5.60 

MHRAF2 [8] 6.38 

 

  

4. EVALUATION AND RESULTS 

4.1 Evaluation Methods 

The same evaluation methods and metrics used in previous 

structural segmentation MIREX evaluations were used to 

evaluate the algorithms. The boundary retrieval metrics of 

[15] evaluate how close segment boundaries between algo-

rithm results and ground truth are in time. This metric is 

label-agnostic and simply measures the segmentation of the 

piece and not whether similar sections are similarly labeled. 

The “hit rate” of the boundary retrieval measures if a re-

turned segment boundary is within T seconds of a ground 

truth boundary. The hit rate is measured at two time-

thresholds: T = 0.5 s and T = 3.0 s. The segment boundary 

hit rate measures encompass an F-measure (SBR-F), as well 

as a precision (SBR-P) and recall (SBR-R) measure. In addi-

tion, the median deviation, in seconds, between detected 

and ground truth boundaries is measured. AB-2-RB meas-

ures the median time difference between an annotated 

boundary and the nearest result boundary. Similarly, RB-2-

AB measures the median time difference between a result 

boundary and the nearest annotated boundary. 

Frame-pair clustering, as introduced in [6], divides the 

results and ground truth into short time frames (e.g. 100 

ms). This metric then considers every possible pair of 

frames and their corresponding labels. Denoting the set of 

all frame-pairs that share the same label (i.e., same cluster) 

in the result as PE, and likewise the set of all frame-pairs 

sharing the same label in the ground truth as PA, we can de-

fine the pairwise precision, P, pairwise recall, R, and pair-

wise F-measure, F as 

  
       

    
          

       

    
          

   

   
                                                       

The frame-pair clustering F-measure, precision, and recall 

are to as FPC-F, FPC-P, and FPC-R, respectively. 

The normalized conditional entropies introduced in [7] 

also represent structural annotations as sequences of short 

frames, similar to the frame-pair clustering metrics. Condi-

tional entropies are calculated and normalized to yield a 

measure in [0, 1], the details of which are beyond the scope 

of this paper and can be found in the reference. The norma-

lized conditional entropy measures are a dual measure with  

over-segmentation (NCE-OSS) and under-segmentation 

scores (NCE-USS). Because structure annotation can exist 

at multiple levels of granularity (as it does in the new 

ground truth), the two metrics will indicate if an algorithm 

tended to be too coarse (low under-segmentation score) or 

too fine (low over-segmentation scores). Finally, a random 

clustering index (RCI) measure is also calculated [5]. 

Table 2. Algorithm names, corresponding references, 

and runtimes. 

(a) 

Algorithm 

NCE-

OSS 

NCE-

USS 

FPC-

F 

FPC-

P 

FPC-

R 

RCI SBR-

F@0.5s 

SBR-

P@0.5s 

SBR-

R@0.5s 

SBR-

F@3s 

SBR-

P@3s 

SBR-

R@3s 

AB-2-

RB 

RB-2-

AB 

BV1 0.605 0.441 0.520 0.513 0.669 0.549 0.190 0.151 0.289 0.450 0.361 0.669 1.797 7.554 

BV2 0.454 0.715 0.427 0.678 0.350 0.638 0.189 0.150 0.286 0.449 0.361 0.666 1.812 7.552 

GP7 0.499 0.683 0.485 0.675 0.424 0.654 0.188 0.146 0.306 0.440 0.346 0.695 2.073 6.634 

MHRAF2 0.546 0.591 0.559 0.617 0.583 0.659 0.195 0.218 0.197 0.435 0.485 0.440 7.262 5.338 

MND1 0.624 0.625 0.556 0.649 0.586 0.662 0.291 0.302 0.326 0.470 0.479 0.534 8.565 5.389 

WB1 0.609 0.540 0.546 0.583 0.608 0.630 0.237 0.240 0.272 0.393 0.395 0.446 10.780 3.881 

(b) 

Algorithm 

NCE-

OSS 

NCE-

USS 

FPC-

F 

FPC-

P 

FPC-

R 

RCI SBR-

F@0.5s 

SBR-

P@0.5s 

SBR-

R@0.5s 

SBR-

F@3s 

SBR-

P@3s 

SBR-

R@3s 

AB-2-

RB 

RB-2-

AB 

BV1 0.643 0.323 0.384 0.321 0.680 0.505 0.179 0.236 0.159 0.567 0.744 0.499 2.905 2.007 

BV2 0.521 0.567 0.373 0.452 0.386 0.712 0.177 0.234 0.157 0.565 0.741 0.497 2.937 1.980 

GP7 0.584 0.557 0.432 0.467 0.482 0.720 0.163 0.208 0.153 0.472 0.605 0.436 4.946 2.300 

MHRAF2 0.599 0.442 0.440 0.395 0.615 0.655 0.124 0.276 0.087 0.356 0.776 0.253 11.311 1.885 

MND1 0.666 0.478 0.435 0.426 0.609 0.635 0.200 0.376 0.150 0.415 0.749 0.314 13.944 1.835 

WB1 0.675 0.420 0.442 0.382 0.653 0.632 0.148 0.277 0.112 0.317 0.588 0.239 16.031 1.975 

Table 3. Evaluations against coarse (a) and fine (b) ground truth annotations. 
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5.  RESULTS & DISCUSSION 

The evaluation results of the six algorithms using the new 

MRX10V2 dataset can be seen in Tables 3a (coarse-

grained) and 3b (fine-grained). The figures in the tables 

represent weighted averages over the dataset, where the av-

eraging was carried out as follows. All algorithms were 

evaluated over a single ground truth for the entire annotated 

dataset (~1300 pieces). Those pieces that were double-

keyed were then used as a second ground truth and sepa-

rately evaluated. These two separate evaluations were then 

weighted by the number of pieces in each set and averaged 

to produce the final results.  

We take immediate note that the algorithms tend to per-

form better when evaluated using the coarser of the two 

human annotations (mostly evidenced by the FPC-F meas-

ure and low NCE-USS scores in Table 3b). With regard to 

the FPC-F data, the average performance for all algorithms 

using the coarse-grained ground truth is 0.520 versus 0.423 

for the fine-grained. A Friedman's ANOVA test1  run using 

the FPC-F measure data confirms that there exists a statis-

tically significant difference in performance between the 

coarse and fine result sets (p=0.01). This result is not sur-

prising, as the algorithms are designed for coarse annota-

tion. We will talk about the relative performances of algo-

rithms using only the coarse FPC-F scores later. 

In comparing the MRX10V2 results with the previous 

MIREX datasets, we see that the evaluation results for all 

algorithms seem to be in the same general range. Using 

FPC-F-measure for comparison (as it provides a good bal-

ance between segmentation and labeling accuracy), Table 4 

contains algorithm performances on the new dataset, the 

MIREX 2009 dataset, and the MIREX 2010 dataset. In 

general, average performance seems to be slightly worse on 

the new MRX10V2 dataset. Some algorithms seem to have 

been more strongly affected, with significant performance 

drops (e.g. BV2 and GP7). Some algorithms, however, also 

improved slightly on the MRX10V2 dataset over the 

MIREX 2009 dataset (e.g. MND1 and WB1). The smallest 

dataset, RWC, appears to generate the best performances. A 

Friedman's ANOVA test run against the Table 4 data indi-

cated a statistically significant difference in performance 

among the three datasets (p=0.02). A subsequent Tukey-

Kramer Honestly Significant Difference (TKHSD) test tells 

us that the MIREX 2010 collection results are significantly 

different than the other two collections. The same TKHSD 

also shows that MIREX 2009 and MRX10V2 are not dif-

ferent from each other. We suspect that the MIREX 2010 

results are significantly better than the other two datasets 

                                                           
1 See [2] for an in-depth discussion of the applications of 

Friedman's ANOVA and the Tukey-Kramer Honestly Sig-

nificant Difference (TKHSD) tests used in MIREX. 

because the RWC popular music database which makes up 

the MIREX 2010 set was artificially composed and per-

formed to represent generic popular music and to overcome 

copyright problems. 

 

Table 4. Comparison of algorithms over datasets 

Recall that the earlier MIREX datasets have a strong bias 

toward western popular music. As mentioned in Section 2, 

MRX10V2 dataset was deliberately created to represent a 

wider range of musical styles to evaluate algorithmic per-

formance across different genres. Table 5 presents a break-

down of algorithm performance across musical styles. 

Again, the FPC-F measure is used as a summary measure 

for comparison, and only the coarse annotations are consi-

dered. A Friedman's ANOVA test run against the Table 5 

data indicates that there is no statistically significant differ-

ences in performance across musical styles (p=0.90). This 

is a promising result because it suggests that although, to 

date, most algorithms have been evaluated on popular mu-

sic, they do seem to perform reasonably well on other 

styles. Such a claim is not meant to imply that individual 

algorithms do not perform significantly better on some 

musical styles than others. Rather, when all algorithms are 

looked at as a whole, musical style does not seem to have a 

large effect (i.e., individual idiosyncrasies average out). 

 

Table 5. Results by musical style considering only coarse 

annotations. 

 

 

Algorithm MIREX09 MIREX10 MRX10V2 Ave. 

BV1 0.502 0.520 0.520 0.514 

BV2 0.493 0.531 0.427 0.484 

GP7 0.536 0.592 0.485 0.538 

MHRAF2 0.555 0.600 0.559 0.571 

MND1 0.613 0.625 0.556 0.598 

WB1 0.544 0.602 0.546 0.564 

Ave. 0.541 0.578 0.516 0.545 

Algorithm Live Classical Jazz Popular World Ave. 

BV1 0.504 0.513 0.544 0.519 0.521 0.520 

BV2 0.432 0.426 0.398 0.451 0.439 0.429 

GP7 0.510 0.427 0.475 0.513 0.484 0.482 

MND1 0.532 0.564 0.574 0.574 0.545 0.558 

MHRAF2 0.557 0.590 0.556 0.543 0.555 0.560 

WB1 0.560 0.524 0.547 0.548 0.537 0.543 

Ave. 0.516 0.507 0.516 0.525 0.514 0.515 
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Table 6. Fined-grained vs. coarse-grained FPC-F results. 

5.1 Best Performances: Algorithms vs. Humans 

In order to gain some general idea on how a human might 

perform relative to another human using the standard  

evaluation measures, the ground truths of all double-keyed 

files were compared. We performed the human-to-human 

comparison on both the coarse and fine-grained annotations. 

The double-keyed subset allows us to evaluate the human-

generated annotations in the same manner as the algo-

rithms. The Human results line in Table 6 was generated by 

declaring one human annotation set to be an “algorithm” 

while the other played the role of “ground truth.” The 

algorithms were evaluated on only this subset of the data to 

allow for direct comparison of the results on the 794 

double-keyed pieces that have both fine and coarse 

annotations. 

Table 6 shows that structural annotation by music 

experts seems to be itself somewhat subjective. For 

example the average coarse-grained FPC-F score is 0.721. 

This indicates that some disagreement does exist amongst 

human experts. A higher degree of disagreement exists for 

the fine-grained annotations.  

While algorithmic segmentations seem to perform 

similarly to each other, automatic segmentation has not 

reached human performance. We performed Friedman's 

ANOVA on the coarse-grained FPC-F scores for the 

algorithmic  and  human annotations across 794 tracks. At 

p<0.01, the Friedman's test indicates a statistically 

significant difference in performance among the annotation 

sources. The subsequent TKHSD multiple comparison tests 

show a set of four distinct performance groupings with each 

group being significantly different from the other groups 

(with no significant differences with each grouping). Figure 

1 presents the results of the TKHSD test.  

In the first performance group, we find, by itself, the 

results for the human annotations. These are noticeably 

better than any of the algorithmic results. This is to be 

expected given the relatively few years the community has 

be working on the structural segmentation problem. The 

second grouping (highlighted by an oval in Figure 1) 

consists of MHRAF2, MND1, and WB1. These three 

algorithms are not significantly different. BV1, GP7, and 

BV2 all have statistically significant performance 

differences. These results remind us of two important facts. 

First, the top performing algorithms are not significantly 

different in the MIREX 2010 Version 2 evaluations. We 

need to look at the stronger algorithms as a group to see 

what factors can be merged to build an improved 

segementation system. Second, notwithstanding human 

variations in strucutural annotations, we as a community 

still have a great way to go before our structural 

segmentation algorithms can be said to be acheiving 

human-like performances. 

  

  

Figure 1. Tukey-Kramer HSD comparison plots of 

the human and algorithm mean performance ranks 

across 794 double-keyed tracks 

6. CONCLUSIONS AND FUTURE WORK 

In this paper we reported upon the most extensive 

evaluation of music structure segmentation algorithms to 

date. Our evaluation was performed on a new dataset 

spanning multiple musical styles. Top-ranked techniques 

for the automatic segmentation of music quantitatively 

perform similarly. Musical style does not seem to have an 

adverse affect on general performance, but individual 

algorithms have a nonuniform performances across styles. 

We can also conclude that the state of automatic 

segmentation is relatively immature. Even though we 

assert that structural or formal analysis is in itself a 

subjective endeavor, the comparison of two human 

annotators to one another far outperforms current 

algorithms. In summary, we have no current single 

technique that is clearly better than the others and none 

approach the capabilities of a music expert in this task. 

The evidence that there is still a large room for 

improvement of current segmentation algorithms does not 

preclude them from being useful in their present form. Even 
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BV1 0.392 0.525 

BV2 0.371 0.434 

GP7 0.433 0.485 

MHRAF2 0.448 0.565 

MND1 0.442 0.559 

WB1 0.449 0.552 

Human 0.629 0.721 
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though it is understood that the algorithms have not yet met 

the sort of baseline that most researchers set for themselves 

(i.e., approaching human performance) it is important to 

note that these goals are far from being met in many facets 

of music information retrieval (MIR), be it chord 

estimation, multipitch detection, and so forth. The primary 

goal of the SALAMI project, and much of the future work 

that will stem from the evaluation performed here, is to 

assess just how useful current MIR algorithms can be.  

For future work, we see the need to increase the size of 

our test collections. We would like to gather more 

annotations per song to augment our ability to explore the 

similarities and differences in human segmenting 

perceptions. We would also like to expand the number of 

styles and time periods represented in our test collections. 

Finally, we would like to perform a set of failure analyses 

on those songs that consistently scored poorly in order to 

discern what musical traits might be proving difficult for 

the annotators, both human and algorithmic, to process.  
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ABSTRACT

In the past few years there has been a growing interest in mu-
sic robotics. Robotic instruments that generate sound acous-
tically using actuators have been increasingly developed and
used in performances and compositions over the past 10
years. Although such devices can be very sophisticated me-
chanically, in most cases they are passive devices that di-
rectly respond to control messages from a computer. In the
few cases where more sophisticated control and feedback is
employed it is in the form of simple mappings with little mu-
sical understanding. Several techniques for extracting mu-
sical information have been proposed in the field of music
information retrieval. In most cases the focus has been the
batch processing of large audio collections rather than real
time performance understanding. In this paper we describe
how such techniques can be adapted to deal with some of the
practical problems we have experienced in our own work
with music robotics. Of particular importance is the idea
of self-awareness or proprioception in which the robot(s)
adapt their behavior based on understanding the connection
between their actions and sound generation through listen-
ing. More specifically we describe techniques for solving
the following problems: 1) controller mapping 2) velocity
calibration, and 3) gesture recognition.

1. INTRODUCTION

There is a long history of mechanical devices that generate
acoustic sounds without direct human interaction starting
from mechanical birds in antiquity to sophisticated player
pianos in the early 19th century that could perform arbi-
trary scores written in piano roll notation. Using computers
to control such devices has opened up new possibilities in
terms of flexibility and control while retaining the richness

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

of the acoustic sound associated with actual musical instru-
ments. The terms music robots or music robotic instruments
have been used to describe such devices [6].

We believe these new robotic instruments have a legiti-
mate place with potential to become part of an embedded
conventional musical practice, not just a research curios-
ity. While musical-robotics might seem niche and esoteric
at this point [2], historic innovations such as monophonic
to polyphonic music, electrical amplification of the guitar,
or computers in the recording studio all brought skepticism,
but eventually became mainstay practices.

Although such music robots have been used in perfor-
mance of both composed and improvised music as well as
with or without human performers sharing the stage, they
are essentially passive output devices that receive control
messages and in response actuate sound producing mecha-
nisms. Their control is typically handled by software written
specifically for each piece by the composer/performer.

Musicians through training acquire a body of musical
concepts commonly known as musicianship. Machine mu-
sicianship [9] refers to the technology of implementing mu-
sical process such as segmentation, pattern processing and
interactive improvisation in computer programs. The ma-
jority of existing work in this area has focused on sym-
bolic digital representations of music, typically MIDI. The
growing research body of music information retrieval, espe-
cially audio-based, can provide the necessary audio signal
processing and machine learning techniques to develop ma-
chine musicianship involving audio signals.

The typical architecture of interactive music robots is that
the control software receives symbolic messages based on
what the other performers (robotic or human) are playing
as well as messages from some kind of score for the piece.
It then sends control messages to the robot in order to trig-
ger the actuators generating the acoustic sound. In some
cases the audio output of the other performers is automat-
ically analyzed to generate control messages. For example
audio beat tracking can be used to adapt to the tempo played.

Self listening is a critical part of musicianship as any-
one who has struggled to play music on a stage without a
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Figure 1. The experimental setup for our robotic based
frame drum experiments. In the foreground, three frame
drums are shown with solenoids placed to ensure optimal
striking of the drum surface. In the background of the pic-
ture, the control system is shown.

proper monitor setup has experienced. However this ability
is conspicuously absent in existing music robots. One could
remove the acoustic drum actuated by a solenoid so that no
sound would be produced and the robotic percussionist will
continue “blissfully” playing along.

This work has been motivated by practical problems ex-
perienced in a variety of performances involving percussive
robotic instruments. Figure 1 shows our experimental setup
in which solenoid actuators supplied by Karmetik LLC. 1

are used to excite different types of frame drums.
We show how the ability of a robot to “listen” especially

to its own acoustic audio output is critical in addressing
these problems and describe how we have adapted relevant
music information retrieval techniques for this purpose. More
specifically, we describe how self-listening can be used to
automatically map controls to actuators as well as how it can
be used to provide self-adapting velocity response curves.
Finally, we show how pitch extraction and dynamic time
warping can be used for high-level gesture analysis in both
sensor and acoustic domains.

2. RELATED WORK

An early example of an automated, programmable musi-
cal instrument ensemble was described by al-Jazari (1136-
1206) a Kurdish scholar, inventor, artist, mathematician that
lived during the Islamic Golden Age (the Middle Ages in the
west). Best known for writing the Book of Knowledge of
Ingenious Mechanical Devices in 1206, his automata were
described as fountains on a boat featuring four automatic

1 http://karmetik.com

musicians that floated on a lake to entertain guests at royal
drinking parties. It had a programmable drum machine with
pegs (cams) that bumped into little levers that operated the
percussion. The drummer could be made to play different
rhythms and different drum patterns if the pegs were moved
around, performing more than fifty facial and body actions
during each musical selection. This was achieved through
the innovative use of hydraulic switching. A modern exam-
ple of a robotic musical ensemble is guitarist Pat Metheny’s
Orchestrion which was specifically influenced by the Player
Piano 2 . Metheny cites his grandfather’s player piano as
being the catalyst to his interest in Orchestrions, which is a
machine that plays music and is designed to sound like an
orchestra or band.

A seminal book in this field is “Machine Musicianship”
[9], in which one of the sections describes a comprehensive
system for the composition, creation and performance be-
tween humans and robots. Rowe describes improvisational
and composition systems that combine features of music
feature extraction, musical analysis and interactivity to gen-
erate engaging experiences for the audience. In our work,
the integration of machine musicianship and music robotics
has been used to develop a robotic percussionist that can
improvise with a human performer playing a sitar enhanced
with digital sensors [7].

Another work closely related to ours is the Shimon human-
robot based Jazz improvisation system [3] that uses a ges-
ture based framework that recognizes that musicianship in-
volves not just the production of notes, but also of the in-
tentional and consequential communication between musi-
cians [4].

Our system also uses these same basic building blocks,
but adds the power of machine learning and “propriocep-
tion” to the process, enabling the robot itself to perform
many of the time consuming mapping and calibration pro-
cesses that are often performed by hand in performance situ-
ations. In this context, a mapping refers to the process of de-
termining which controller output activates which solenoid.
In the next section we describe how some practical recurring
problems we have experienced with robots in music perfor-
mance robots have led to the development of signal process-
ing and machine learning techniques informed by music in-
formation retrieval ideas.

3. MOTIVATION

Our team has extensive experience designing music robotic
instruments, implementing control and mapping strategies,
and using them in live and interactive performances with
human musicians, frequently in an improvisatory context.
In addition two of the co-authors are professional musicians
who have regularly performed with robotic instruments. One

2 http://www.patmetheny.com/orchestrioninfo/
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of the most important precursors to any musical performance
is the sound check/rehearsal that takes place before a con-
cert in a particular venue. During this time the musicians
setup their instruments, adjust the sound levels of each in-
strument and negotiate information specific to the perfor-
mance such as positioning, sequencing and cues. A sim-
ilar activity takes place in performance involving robotic
acoustic instruments in which the robots are set up, their
acoustic output is calibrated and adjusted to the particular
venue and mappings between controls and gestures are es-
tablished. This process is frequently tedious and typically
requires extensive manual intervention. To some extent this
paper can be viewed as an attempt to utilize techniques and
ideas from MIR to simplify and automate this process. This
is in contrast to previous work in robotic musicianship that
mostly deals with the actual performance. More specifically
we deal with three problems: automatic mapping, velocity
calibration, and melodic and kinetic gesture recognition.

The experimental setup that we have used consists of a
modular robotic design in which multiple solenoid-based
actuators can be attached to a variety of different drums.
We use audio signal processing and machine learning tech-
niques to have robotic musical instruments that ”listen” to
themselves using a single centrally located microphone.

It is a time consuming and challenging process to setup
robotic instruments in different venues. One issue is that
of mapping, that is, which signal sent from the computer
maps to which robotic instrument. As the number of drums
grows, it becomes more challenging to manage the cables
and connections between the controlling computer and the
robotic instruments. The system we propose performs tim-
bre classification of the incoming audio, automatically map-
ping solenoids correctly in real-time to the note messages
sent to the musically desired drum. For example rather than
sending an arbitrary control message to actuator 40 the con-
trol message is addressed to the bass drum and will be routed
to the correct actuator by simply “listening” to what each
actuator is playing in a sound-check stage. That way actua-
tors can be moved or replaced easily even during the perfor-
mance without changes in the control software. The same
approach is also used to detect broken or malfunctioning
actuators that do not produce sound.

When working with mechanical instruments, there is a
great deal of non-linearity and physical complexity that makes
the situation fundamentally different from working with elec-
tronic sound, which is entirely “virtual” (or at least not phys-
ical) until it comes out of the speakers. The moving parts of
the actuators have momentum, and changes of direction are
not instantaneous. Gravity may also play a part, and there
is friction to be overcome. Frequently actuators are on sep-
arate power supplies which can result in inconsistencies in
the voltage. The compositional process, rehearsal and per-
formance of “The Space Between Us” by by David A. Jaffe,

in which Andrew Schloss was soloist on robotic percussion,
involved hand-calibrating every note of the robotic chimes,
xylophone and glockenspiel. This required 18+23+35 sep-
arate hand calibrations and took valuable rehearsal time. In
this paper we describe a method for velocity calibration, that
is, what voltage should be sent to a solenoid to generate
a desired volume and timbre from an instrument. Due to
the mechanical properties of solenoids and drums, a small
movement in the relative position of these two can lead to a
large change in sound output. The most dramatic of these is
when during performance a drum moves out of place enough
that a voltage that at the start of the performance allowed the
drum to be hit now fails to make the drum sound. Depend-
ing on the musical context, this can be disastrous in a per-
formance context. Good velocity scaling is essential for a
percussion instrument to give a natural graduated response
to subtle changes in gesture, e.g. a slight increase in the
strength (velocity) of a stroke should not result in a sudden
increase in the loudness of sound.

Issues like velocity calibration or control mapping seem
quite pedestrian, or even trivial until one has grappled with
this problem with real instruments. We believe that the abil-
ity of a robotic instrument to perceive at some level its own
functioning is important in making robust, adaptive systems
that do not require regular human intervention to function
properly. We refer to this ability as “proprioception” which
in its original definition refers to the ability of an organism
to perceive its own status.

Finally we also describe some experiments recognizing
melodic and kinetic gestures at different tempi and with vari-
ations in how they are performed. This can be viewed as
an exchange of cues established before the performance es-
pecially in an improvisatory context. This allows higher-
level gestures to be used as cues without requiring exact re-
production from the human performer interacting with the
robotic instrument and enables a more fluid and flexible struc-
turing of performances.

4. EXPERIMENTS

4.1 Drum Classification for Automatic Mapping

We performed an experiment to investigate the performance
of a audio feature extraction and machine learning system
to classify drum sounds to perform automatic mapping. The
audio features used were the well known Mel-Frequency
Cepstral Coefficients (MFCC) calculated with a window size
of 22.3ms. These were then used as input to a Support Vec-
tor Machine (SVM) machine learning system. We collected
a dataset of audio with 4 different frame drums being struck
by the robot with a time of 128ms between strikes, then cal-
culated all the MFCC of this audio, and then found the 8
highest MFCC0 (roughly corresponding to perceptual loud-
ness) and marked these as onsets in the audio. The MFCC
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Peak Percent Peak Percent
offset correct offset correct

0 66.38 4 90.52
1 91.95 5 86.49
2 91.67 6 86.49
3 91.95 7 77.59

Table 1. Classification accuracy of an SVM classifier The
Peak offset is the offset from the time the drum is hit.

feature vectors corresponding to these onsets were used to
train the classifier. A separate test data set was also col-
lected. Percussive sounds can be challenging to classify as
there is not a lot of steady state spectral information. The
results of this experiment gave a classification accuracy of
66.38%, as shown in the first line (Peak offset 0) in Table 1.
We then performed the same experiment but using instead
different offsets from the highest peak in window sizes of
22.3ms. When we classified all frames with the frame im-
mediately after the highest peak, we obtained a classifica-
tion accuracy of 91.95%. We interpret this result to mean
that the resonance after the transient is clearly distinguish-
able for different drums, whereas the transient at the onset is
fairly similar for different drums. This performance quickly
degrades as we move away from the onset.

This performance quickly degrades as we move away
from the onset. These results are for individual 22.3ms frames
so it is easy to get 100% correct identification by voting
across the entire recording which can then be used for the
automatic mapping. When we setup the robotic instrument
we actuate each solenoid in turn, classify the audio and then
set the appropriate mappings so that the control software can
address the actual frame drums rather than the actuators.
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Figure 2. Mapping from calibrated input velocities to out-
put driving velocities for different distances

4.2 Timbre-Adaptive Velocity Calibration

The acoustic response of a drum both in terms of perceived
loudness and timbral quality is non-linear with respect to
linear increases in voltage as well as to the distance of the
solenoid to the vibrating surface. In the past calibration was
performed manually by listening to the output and adjust-
ing the mapping of input velocities to voltage until smooth
changes in loudness and timbre where heard. In this section
we describe how to derive an automatic data-driven map-
ping that is specific to the particular drum.

Our first objective is to achieve a linear increase in loud-
ness with increasing MIDI velocity for a given fixed dis-
tance between beater and drumhead. However, in practice,
the beater may be mounted on a stand and placed next to the
drumhead mounted on a different stand. Thus the distance
between beater and drumhead will vary depending on setup,
and may even change during a performance. Thus a sec-
ond objective is to achieve a similar loudness versus MIDI
velocity (corresponding to voltage) curve over a range of
distances between beater and drumhead.

To achieve these objectives we collected audio for all
velocity values and three distance configuration (near 1cm,
medium 2cm, far 3cm). The loudness and timbre variation
possible is captured by computing MFCC for each strike.
More specifically for each velocity value and a particular
distance we obtain a vector of MFCC values. The frequency
of beating was kept constant at 8 strikes per second for these
measurements. The first MFCC coefficient (MFCC0) at the
time of onset is used to approximate loudness. Plots of
MFCC0 for the distance configurations are shown in 3(a).

In order to capture some of the timbral variation in addi-
tion to the loudness variation we project our MFCC vectors
to a single dimension (the first principal component) using
Principal Component Analysis (PCA) [5]. As can be seen
in 3(c) the PCA0 values follow closely the loudness curve.
This is expected as loudness is the primary characteristic
that changes with increasing velocity. However, there is also
some information about timbre as can be seen by the “near”
plot that has higher variance in PCA0 than in MFCC0.

Our goal is to obtain a mapping (from user input cali-
brated velocity to output driving velocity) such that linear
changes in input (MIDI velocity) will yield approximately
linear changes in the perceived loudness and timbre as ex-
peressed in PCA0. We utilize data from all the three dis-
tance configurations for the PCA computation so that the
timbrespace is shared. That way even though we get sep-
arate calibration mappings for each distance configuration
they have the property that the same calibrated input value
will generate the same output in terms of loudness and tim-
bre independently of distance.

In order to obtain this mapping we quantize the PCA0
values for each distance configuration into 128 bins that cor-
respond to the calibrated input velocities. The generated
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mapping is the wrong way i.e from output driving velocities
to calibrated input velocities and is not an injection (one-to-
one function) so it can not be directly inverted. To invert
the mapping for each calibrated input velocity (or equiva-
lently quantized PCA bin) we take the average of all the
output driving velocities that map to it as the output driving
value. This calibration mapping is shown in Figure 2. Fig-
ures 3(b) and 3(d) show how changing the calibrated input
velocity linearly results in a linearized progression through
the timbrespace (PCA0) and loudness (MFCC0). In these
graphs we show directly the results of this calibration but
it is also possible to fit lines to them. In either case (direct
calculated mapping or line fit) the calibrated output changes
sound more smooth than the original output.

4.3 Gesture recognition using Dynamic Time Warping

Collaborating musicians frequently utilize high-level cues to
communicate with each other especially in improvisations.
For example a jazz ensemble might agree to switch to a dif-
ferent section/rhythm when the saxophone player plays a
particular melodic pattern during soloing. This type com-
munication through high level cues is difficult to achieve
when performing with robotic music instruments. In our
performances we have utilized a variety of less flexible com-
munication strategies including pre-programmed output (the
simplest), direct mapping of sensors on a performer to robotic
actions, and indirect mapping through automatic beat track-
ing. The final experiments described in this paper show how
high-level gesture recognition that is robust to changes in
tempo and pitch contour can be correctly identified and used
as a cue. Our system is flexible and can accept input from
a wide variety of input systems. We show experimental re-
sults with the radiodrum as well as melodic patterns played
on a vibraphone. There has been considerable work done in
the area of using Dynamic Time Warping for gesture recog-
nition, including work done by Akl and Valaee [1] and Liu
et al. [8].

For the first experiment, we used the most recent itera-
tion of the radiodrum system, a new instrument designed by
Bob Boie that dramatically outperforms the original radio-
drum in terms of both data rate and accuracy. We instructed
a professional musician to generate 8 different instances of
5 types of gestures, which were an open stroke roll, a sweep
of the stick through the air, a pinching gesture similar to
the pinch to zoom metaphor on touchscreens, a circle in the
air and a buzz roll. We collected (X, Y, Z) triplets of data
from the sensor at a sample rate of 44100Hz and then down-
sampled this data to 120Hz to allow us to compare gestures
that were on average 1-2 seconds in length while remain-
ing within the memory limits of our computer system. We
empirically determined that this rate captured most of the
information relevant to gesture recognition.

From this data, the similarity matrix of each gesture to

radiodrum Vibraphone
Gestures AP P@1 Gesture AP P@1
roll 0.866 1.0 pattern1 0.914 1.0
sweep 0.980 1.0 pattern2 0.812 0.9
pinch 0.837 1.0 pattern3 0.771 0.9
circle 1.000 1.0 pattern4 0.882 1.0
buzz 0.978 1.0 pattern5 0.616 0.9
MAP 0.931 1.0 MAP 0.799 0.94

Table 2. Average precision for different gestures on the
radiodrum and vibraphone. The Mean Average Precisions
(MAP) are 0.931 and 0.799.

each other gesture is computed. Dynamic Time Warping
[10] is used to compute an alignment score for each pair of
gestures that correspond to how similar they are. For each
query gesture we return a ranked list based on the alignment
score and calculate the average precision for each gesture.
As can be seen from Table 2 gesture identification is quite
reliable in both cases.

5. CONCLUSIONS AND FUTURE WORK

We have shown how techniques from MIR can be adapted
and used to solve practical problems in music robotics. More
specifically we show how audio classification can be used
for automatic mapping, principal component analysis can
be used for velocity/timbre calibration and dynamic time
warping for gesture recognition. This system has not yet
been tried in performance, and we are currently working
with musicians to deploy this system in a live setting. In
the future we plan to extend this work utilizing more sen-
sors including multiple microphones on both the robot and
the performers. To obtain the maximum possible dynamic
range we plan to have multiple actuators placed at different
distances on the same drum so that the ones that are far are
used for loud sounds and the ones that are near are used for
soft sounds. The proposed calibration method will be used
to drive seamlessly both actuators. We would also like to
investigate how MIR techniques can be used to “teach” the
robot to play and recognize rhythmic and melodic patterns.
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Figure 3. Velocity Calibration based on loudness and timbre
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ABSTRACT 

The goal of this study was to examine the possibility of 

training machine learning algorithms to differentiate be-

tween the performance of good notes and bad notes. Four 

trumpet players recorded a total of 239 notes from which 

audio features were extracted. The notes were subjectively 

graded by five brass players. The resulting dataset was used 

to train support vector machines with different groupings of 

ratings. Splitting the data set into two classes (―good‖ and 

―bad‖) at the median rating, the classifier showed an aver-

age success rate of 72% when training and testing using 

cross-validation. Splitting the data into three roughly-equal 

classes (―good,‖ ―medium,‖ and ―bad‖), the classifier cor-

rectly identified the class an average of 54% of the time. 

Even using seven classes, the classifier identified the cor-

rect class 46% of the time, which is better than the result 

expected from chance or from the strategy of picking the 

most populous class (36%). 

1. INTRODUCTION 

1.1 Motivation 

For some musical parameters, such as pitch or loudness, 

there are a well-established links between signal features of 

the audio file and perception [1]. Timbre is more compli-

cated as several factors contribute to its perception [2]. The 

subjective quality of a musician’s performance is more 

complicated still, with assumed contributions from pitch or 

intonation, loudness, timbre and likely other unknown fac-

tors [3].  

The goal of this study is to determine the feasibility for 

computer analysis of performance quality. Given sufficient 

training data, is it possible for a computer to identify good 

and poor quality notes so as to give feedback to student 

musicians or for other pedagogical purposes.? This study 

also serves to create a dataset on which the signal compo-

nents of tone quality may be examined. 

The work was carried out by recording isolated notes 

played on trumpet by players with a range of experience, 

collecting subjective ratings of quality from human sub-

jects, and training a classifier to identify note quality using 

extracted audio features. Because each of the notes were 

rated and analyzed in isolation, (i.e. as a single note without 

accompaniment or directed comparison), the note quality 

judgements in question are not likely to be affected by into-

nation, nor would they be related to other aspects of note 

quality dependent on musical context. 

1.2 Tone Quality 

Timbre is frequently defined as the differences between two 

sounds of the same pitch and loudness. This study was de-

signed to isolate tone quality differences between notes of 

similar pitch, dynamics, and instrument. While numerous 

studies have attempted to determine the components of 

timbre that differentiate instruments and sounds [5-7], few 

studies have examined the auditory differences contributing 

to judgments of performance quality of tones. These  stu-

dies most often use a technique called perceptual scaling to 

identify principal dimensions of timbre which generally 

aligned with the spectral content, the temporal change in 

the spectrum, and the quality of the attack [6,8]. With 

acoustically produced musical tones, however, these factors 

are interdependent and affect the perception of one another.  

The contribution and inseparability of the different 

components of the sound is also found in pedagogical lite-

rature. In his instructional book on the trumpet, Delbert 

Dale says, ―the actual sound of the attack (the moment the 

sound bursts out of the instrument) has a great deal to do 

with the sound of the remainder of the tone—at least to the 

listener‖ [9].   

The few studies that have examined tone quality looked 

at specific aspects of the notes. Madsen and Geringer [4] 

examined preferences for ―good‖ and ―bad‖ tone quality in 

trumpet performance. Though the two tone qualities were 

audibly distinguishable when presented without accompa-

niment, the only difference their published analysis dis-

cussed was the amplitude of the second fundamental. In a 

different study, an equalizer was used to amplify or dampen 

the third through eleventh harmonics of recorded tones to 

be rated in tone quality [10]. For the brass instruments 

notes, a darker tone, caused by dampened harmonics, was 
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judged to have a lower tone quality than the standard or 

brightened conditions. 

The factors other than the amplitudes of the harmonics 

affect tone quality, and an examination of these is war-

ranted. For the trumpet, tone quality is a product of the 

―balance and coordination‖ of embouchure, the oral cavity, 

and the airstream [11]. While ―no two persons have the 

same or even similar tonal ideals‖ [9] and the standard for 

good and bad tone quality varies,  common problems such 

as ―a shrill piercing quality in the upper register, and a 

fuzzy and unclear tone in the lower register‖ [9] have been 

identified. 

The goal of this study is to therefore see if it is possible 

to train a classifier that can use extracted audio features to 

make judgements about note quality consistent with aver-

age human judgements despite such variable and subjective 

criteria. The instructions given to our human participants 

(described later) are therefore intentionally vague to avoid 

biasing or limiting judgements and to avoid prescribing a 

definition of tone quality.   

2. METHODS 

2.1 Recordings 

Recordings of the trumpet tones took place in a room de-

signed for performance recording. The positions of the mi-

crophones, music stand, and player were the same for all 

recordings. Recordings were done using a cartioid micro-

phone (DPA 4011-TL, Alleroed, Denmark) and a two 

channel recorder (Sound Devices 744T, Reedsburg, Wis-

consin) at a bit depth of 24 and a sample rate of 48 kHz. 

The players had a range of experience and education on the 

trumpet. Player 1 is a musician whose primary instrument is 

the trombone and only played trumpet for this study. Player 

2 is a trumpet player with twelve years of private lessons 

and regular ensemble performances at the university level 

both of which, however, ceased two years ago. Player 3 is 

currently an undergraduate music performance major who 

plays regularly with the university orchestra. Player 4 has 

been playing for 14 years with no instruction at the univer-

sity level but with frequent live jazz performances.  

The recorded phrases were three lines consisting of four 

half notes (minims) separated by half rests (minim rests). 

The same valve combination was repeated in the low range 

(A, Bb, B, C), mid range (E, F, F#, G), and high range (E, 

F, F#, G) and the players were instructed on which valves 

to use when a choice existed. Before recording each line, 

the players were given four clicks of a metronome at 60 

bpm.  The three lines were played with instructed dynamic 

levels of piano, then repeated at mezzo-forte and fortissimo.  

With the exception of the trombone player, the musi-

cians all recorded on their own trumpet and mouthpiece as 

well as a control trumpet (Conn Director, Conn-Selmer, 

Elkhart, Indiana) and mouthpiece (Bach 7C, Conn-Selmer). 

That is to say, three players recorded twelve notes at three 

different dynamic levels on two trumpets for a contribution 

of 214 notes. The trombone player, player 1, could not play 

the highest four notes and therefore contributed just eight 

notes at three dynamic levels on one trumpet for a total of 

24 notes. One note from the dataset was excluded due to 

computer error so the total dataset had 239 notes.  

2.2 Labeling 

Individual notes were manually excised from the recordings 

to make discrete stimuli for subjective rating. Five brass 

players (three trumpet players, one trombone player, and 

one French horn player, all undergraduate or graduate mu-

sic students with extensive performance experience) pro-

vided subjective labeling of the quality of the notes on a 

discrete scale from 1 to 7 with 1 labeled as ―worst‖ and 7 

labeled ―best.‖ The raters were instructed to listen to the 

note as many times as they wanted and to make a subjective 

rating of the note using anything they could hear and any 

criteria they deemed important, including their specific 

knowledge of brass instruments and the dynamic level. The 

notes were presented in three blocks (all the piano notes, all 

the mezzo-forte notes, all the fortissimo notes) but were 

randomized within each block.  

Note quality judgements varied greatly per rater, as ex-

pected. While the intersubject ratings correlations averaged 

at r=0.50, some stimuli were rated more consistently than 

others. Dividing the 239 notes on the median standard devi-

ation of 1.14 (on the discrete range of 1 to 7), the intersub-

ject correlations on the more consistent subset of 118 (less 

than or equal to 1.14) averaged to r = 0.79. In contrast, the 

intersubject correlations on the remaining 121 stimuli aver-

aged at r = 0.13, and failed to correlate significantly (i.e., 

with p<0.05) in 6 of 10 pair wise comparisons. Most of the 

bulge in the distribution of rounded average ratings, shown 

in figure 1, is due to these notes of ambiguous quality as 

they average to 4 or 5 with a couple dozen 3s and 6s. In the 

following analysis, all notes were represented only by their 

average rating across the five raters. The distribution of av-

eraged ratings of the dataset is shown in Figure 1. 

2.3 Feature Extraction 

While studies have examined appropriate features for tim-

bre recognition [12], timbre is just a subset of what poten-

tially makes up the quality of a note. The extracted audio 

features were therefore widely selected, using 56 different 

features, of which 6 were multidimensional A complete list 

is given in the appendix. jAudio was used for feature ex-

traction.[13] 
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Figure 1. Histogram of the rounded average ratings from 

all raters and showing the contribution from each player. 

2.4 Learning 

2.4.1 Classifier Choice 

ACE (Autonomous Classification Engine) 2.0, software 

used for testing, training, and running classifiers [14] was 

used throughout the study for these purposes. ACE was 

used to experiment with different classifiers including k-

nearest neighbour, support vector machines (SVMs), sever-

al types of decision trees, and neural networks on a couple 

subsets of the data. .SVMs tended to perform best on these 

subsets.. For this reason and because of the relative inter-

changability of these techniques, SVMs were used through-

out this study. In multi-class situations, however, SVMs do 

not encode an ordering of classes which makes the task 

slightly more difficult in the three and seven-class problems 

discussed below. 

2.4.2 Groupings 

Different groupings of the notes were used to test the accu-

racy of the classifiers, including two, three, and seven 

classes. While the judgments from the five raters were only 

integer values, each note was represented by a single aver-

age rating across all the raters and was therefore often a de-

cimal number. The notes were assigned to classes based on 

this average rating. 

Two-class problems were evaluated for three different 

groupings. The first grouping takes just the extremes of the 

data: the ―good‖ class only has average ratings above 5.5 

and the ―bad‖ class has average ratings below 2.5, exclud-

ing all points in between. The second grouping is more in-

clusive, including all data below 3.5 for ―bad‖ and above 

4.5 for ―good,‖ again excluding data in between. The last 

grouping includes all the data, split at the median rating, 

4.6. The distribution of this labeling is shown in Figure 2. 

Secondly, a grouping of three classes was also eva-

luated, splitting the data approximately into three groups, 

below 4.2, above or equal to 5.2, and the points in between. 

Lastly, rounding the averaged ratings into the nearest 

category produced seven classes of data with labels 1 to 7. 

The distribution of this class is the same as seen in Figure 

1. 

2.4.3 Other tests 

Furthermore, to test the performance of the classifier on 

notes from an unseen player we used a leave-one-player-out 

methodology. To do this, we repeated the above tests using 

three of the players to train and finding the success of clas-

sification on the fourth player. Because of the dominance of 

player 1 in ratings less than 2.5, we tested the seven class 

test with and without player 1 and did not test the two class 

problem using just the extremes of data (points less than 2.5 

and greater than 5.5).  

A classifier was also trained to test the possibility of 

discriminating between performers. To do this, each note 

was labeled only with a performer number, 1 through 4. 

 

 
Figure 2: The distribution of the two classes when using all 

of the data, divided at the medan rating of 4.6. 

3. RESULTS 

For the two class problems, the most extreme data resulted 

in the highest success rate and increasing the inclusion of 

the classes lowered the average success of the five-fold 

cross validation. These results are summarized in Table 1. 

For the three class problem, with a five-fold cross vali-

dation, an SVM correctly identified the class on average 

54.0% of the tones. This result is shown in Table 2.
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"Bad" "Good" Average 
Success Range Number Range Number 

1–2.4 19 5.6–7 47 96.9% 

1–3.4 42 4.6–7 134 87.5% 

1–4.5 105 4.6–7 134 72.0% 

Table 1: Classifier results with two classes and five-fold 

cross validation  

"Bad" "Middle" "Good" Average 
Success Range Number Range Number Range Number 

1–4.1 77 4.2–5.1 86 5.2–7 76 54.0% 

Table 2: Classifier results with three classes and five-fold 

cross validation 

The five-fold cross-validation success of the seven class 

problem is shown in Table 3 and the confusion matrix is 

shown in Table 4. The rows labels represent the true classi-

fications of the instances and the columns labels are the 

classifications assigned by the SVM. For instance, of the 

notes of class 1, eight were correctly identified but one note 

was labeled 3 and two were labeled 4. 

Class 1 2 3 4 5 6 7  Avg. Success 

Number 11 8 23 63 87 43 4 46.03% 

Table 3: Classifier results with seven classes and five-fold 

cross validation 

  1 2 3 4 5 6 7 

1 8   1 2       

2 2     4 2     

3     1 15 6 1   

4       26 35 2   

5       22 56 9   

6       3 21 19   

7         1 3   

Table 4: The confusion matrix for the seven-class problem; 

the correct classes are given in the row labels. 

When using the leave-one-player-out test, the success 

rate decreased. A summary is shown in Table 5. 

For the performer identification task, with five folds, the 

classifier averaged 88.3% success. The confusion matrix is 

shown in Table 6. Again the correct label is the row label. 

For example, player one played 24 notes, of which 21 were 

identified correctly, two were incorrectly labeled as player 

2 and one labeled as player 3. 

Player tested 
  

1 2 3 4 Avg. 
 

23% 66% 84% 67% 60% 2 classes (1–3.5, 4.6–7) 

67% 60% 47% 51% 56% 2 classes (split at 4.6) 

58% 35% 39% 38% 42% 3 classes 

0% 25% 24% 38% 22% 7 classes 

 
26% 25% 39% 30% 7 classes (w/o player 1) 

Table 5: Results for leave-player-out classification. 

 

  1 2 3 4 

1 21 2 1   

2 1 61   10 

3   1 68 3 

4 3 5 2 61 

Table 6: The player identification confusion matrix; the 

correct player identifications are given by the row-labels. 

4. DISCUSSION 

The classifiers show a surprising ability to discriminate be-

tween classes based on the extracted features with two, 

three, and seven classes. Even with seven classes, the clas-

sifier identified the correct class 46% of the time, which is 

better than chance or the success rate expected from pick-

ing the most common class (36%). This shows promise for 

the possibility to train a classifier to give automatic feed-

back on student musicians’ performance. 

There are, however, severe limitations to this data set. 

Because there are only four players in the data set, each 

with a distinct distribution of notes, there may be latent fea-

tures unrelated to performance quality that can help narrow 

the selection of class and improve classifier success. This 

hypothesis is bolstered by the high success in performer 

identification task. For comparison, a 1-note attempt at 

identifying the correct performer out of three possible per-

formers gave at best a 43% success in a previous study 

[15].  

The classifier’s success with the subset of 118 notes 

with rating standard deviation less than or equal to 1.14 was 

not different than the dataset as a whole. This seems to in-

dicate the classifier is not using the same cues or salient 
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features that allowed or encouraged agreement between the 

raters. 

The results for the leave-one-player-out task decreased 

sharply compared to the result using all players and testing 

with cross-validation. This could be because of the distinct 

distribution of each player and/or other distinct features that 

identify one performer compared to another. 

In the seven class identification task, mathematically, 

for a note to be considered of class one (or 7) there had to 

be strong agreement among the raters, as at least 3 of the 

raters had to rate that note as class one. This distinctively 

bad performance of class 1 notes probably led to the rela-

tively high success in identifying them (8 out of 11 correct) 

compared to, for example, class 2 which had no correct 

identifications. As well, because player 1 was not able to 

record the top four notes of the exercise, having a higher 

pitch note skews the rating towards the upper end of rat-

ings. 

Further work is needed to examine the robustness of 

these results with more players and with different recording 

conditions, such as notes of varying duration, or using 

phrases of several notes. 
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6. APPENDIX: FEATURES EXTRACTED 

Beat Sum Overall Average 

Beat Sum Overall Standard Deviation 

Compactness Overall Average 

Compactness Overall Standard Deviation 

Derivative of Partial Based Spectral Centroid Overall Av-

erage 

Derivative of Partial Based Spectral Centroid Overall Stan-

dard Deviation 

Derivative of Root Mean Square Overall Average 

Derivative of Root Mean Square Overall Standard Devia-

tion 

Derivative of Spectral Centroid Overall Average 

Derivative of Spectral Centroid Overall Standard Deviation 

Derivative of Spectral Flux Overall Average 

Derivative of Spectral Flux Overall Standard Deviation 

Derivative of Spectral Rolloff Point Overall Average 

Derivative of Spectral Rolloff Point Overall Standard Devi-

ation 

Derivative of Strongest Frequency Via Zero Crossings 

Overall Average 

Derivative of Strongest Frequency Via Zero Crossings 

Overall Standard Deviation 

Fraction Of Low Energy Windows Overall Average 

Fraction Of Low Energy Windows Overall Standard Devia-

tion 

LPC Overall Average 

LPC Overall Standard Deviation 

Method of Moments Overall Average 

Method of Moments Overall Standard Deviation 

MFCC Overall Average 

MFCC Overall Standard Deviation 

Partial Based Spectral Centroid Overall Average 

Partial Based Spectral Centroid Overall Standard Deviation 

Root Mean Square Overall Average 

Root Mean Square Overall Standard Deviation 

Spectral Centroid Overall Average 

Spectral Centroid Overall Standard Deviation 

Spectral Flux Overall Average 

Spectral Flux Overall Standard Deviation 

Spectral Rolloff Point Overall Average 

Spectral Rolloff Point Overall Standard Deviation 

Spectral Variability Overall Average 

Spectral Variability Overall Standard Deviation 

Standard Deviation of Compactness Overall Average 

Standard Deviation of Compactness Overall Standard Dev-

iation 

Standard Deviation of Partial Based Spectral Centroid 

Overall Average 

Standard Deviation of Partial Based Spectral Centroid 

Overall Standard Deviation 

Standard Deviation of Root Mean Square Overall Average 

Standard Deviation of Root Mean Square Overall Standard 

Deviation 

Standard Deviation of Spectral Centroid Overall Average 

Standard Deviation of Spectral Centroid Overall Standard 

Deviation 

Standard Deviation of Spectral Flux Overall Average 

Standard Deviation of Spectral Flux Overall Standard Dev-

iation 

Standard Deviation of Strongest Frequency Via Zero Cross-

ings Overall Average 

Standard Deviation of Strongest Frequency Via Zero Cross-

ings Overall Standard Deviation 

Standard Deviation of Zero Crossings Overall Average 

Standard Deviation of Zero Crossings Overall Standard 

Deviation 

Strength Of Strongest Beat Overall Average 

Strength Of Strongest Beat Overall Standard Deviation 

Strongest Frequency Via Zero Crossings Overall Average 

Strongest Frequency Via Zero Crossings Overall Standard 

Deviation 

Zero Crossings Overall Average 

Zero Crossings Overall Standard Deviation 
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ELEMENTARY SOURCES: LATENT COMPONENT ANALYSIS FOR MUSIC
COMPOSITION

Spencer S. Topel Michael A. Casey
Bregman Music Audio Research Studio

Dartmouth College

ABSTRACT

Complexity of music audio signals creates an access prob-
lem to specific musical objects or structures within the source
samples. Instead of employing more commonly used au-
dio analysis or production techniques to access features, we
describe extraction of sub-mixtures from real-world audio
using a Probabilistic Latent Component Analysis-based de-
composition tool for music composition. This is highlighted
with the presentation of a prior relevant compositional ap-
proach named Spectral Music along with a discussion of
five compositions extending these principles using methods
more commonly associated with source separation research.

1. INTRODUCTION

Music recordings of all types consist of mixtures; the recorded
sources are transformed via real or virtual acoustic processes
and these are summed to make a stereo or mono track. A
major challenge facing machine analysis of audio is extract-
ing information contained in mixtures for the purpose of
isolating relevant content. Techniques based on indepen-
dent component analysis (ICA), such as independent sub-
space analysis (ISA) [8] and Probabilistic Latent Compo-
nent Analysis (PLCA) [20], provide ways of accessing per-
ceptually motivated musical objects [17], which we describe
here as “sub-mixtures”.

For compositions based upon music audio, either for in-
formation or analysis, accessing latent features expands the
creative possibilities. Specific technical innovations con-
tribute to this perspective: fast Fourier transform (FFT) sig-
nal analysis allowed composers associated withSpectral Mu-
sic to explore spectral profiles for the purpose of generating
material for pieces [10]. PLCA likewise extends the concept
of exploring audio content for music composition by pro-
viding the means necessary to extracting components with

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2011 International Society for Music Information Retrieval.

independent properties, or what we describe here as sub-
mixture content, i.e. distinctive streams of sound objects
grouped by their common frequency-amplitude statistics.

We present a repertoire of works that use such techniques.
Pieces were included based on their relevance to the tech-
niques presented in this paper, and their specific aesthetic
insights or innovations with respect to component manipu-
lation. Preceding this, a discussion of the historically signif-
icant Spectral Musiccomposition movement is presented,
where spectrogram analysis and data-mining generated ma-
terial for new musical works.

2. BACKGROUND

Audio decomposition methods in computer-assisted music
composition have a rich history in musical discourse over
the past twenty years, notably Wishart’s expansion of Pierre
Schaeffer’sMusic Objets[22], and Smalley’s Spectro- mor-
phology [19]. One approach of particular relevance, for-
mally namedMusique Spectrale, uses extracted timbral fea-
tures for the purpose of creating new works, both acoustic
and electro-acoustic in nature. Spectral Music was first in-
troduced by Henry Dufourt in 1979 [10], however by this
time compositions using materials extracted from Fourier
transforms had already been written by the group, most no-
tably Gérard Grisey’s “Partiels Pour 18 Musiciense” [12],
where the composer proposed macro-synthesis of analyzed
sources using combinations of acoustic musical instruments.
In most of these early pieces, there was a transparent and
straightforward process by which the composer derived ma-
terials for new works, outlined in Figure 1.

A wellspring of software development at the Institut de
Recherche et Coordination Acoustique/Musique (IRCAM)
occurred during this time, including the visual programming
environment Max, after Max Matthews, along with many of
the well-known IRCAM package modules including “Music
V” brought to IRCAM by Jean-Claude Risset, who came to
further timbre research, as well asCHANT, developed by
Xavier Rodet, and the transcription tools that now belong
to Open Music. Amongst the composers belonging to the
first-wave of Spectral composition were Gérard Grisey, Tris-
tan Murail, Hugues Dufourt, and British composer Jonathan
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Harvey. Their music influenced a younger cadre of com-
posers, including Magnus Lindberg, Marc-Andre Dalbavie
and Joshua Fineberg.

The purpose of this shift in compositional thought pos-
sesses deeper connections to the EuropeanZeitgeistof the
1960’s and 1970’s. The prevailing school of thought be-
ing “Total Serialism” was the only credible way to be a re-
spected contemporary composer, built upon ideas first pio-
neered by the Second Viennese School, consisting of Arnold
Schoenberg, and his disciples Anton Webern, and Alban
Berg [11]. The Spectralists realized the aesthetics associ-
ated with mainstream Serialism of the time disregarded the
final sounded musical experience. Instead, these techniques
favored abstraction in notation and formalism blinded, to a
certain extent, by the ideas that all 12-tone (half-step rela-
tionships) were equal, and that non-western tuning systems
were not relevant to mainstream Western “art” music.

The Spectralists thus considered observation of sounded
acoustic sources to be the starting point of their work. They
further rejected both ideas that 12-tones were equal. Their
early repertoire emphasized these points, with pieces suchas
“Godwana” [15], that evokes a sense of non-western tuning
by exploring the relationship between a synthetic bell source
and a spectrally analyzed trombone sample and later with
“Désint́egrations” [16] that utilizes the careful blending of
timbres between electronic sounds and acoustic sources.

3. REVEALING LATENT STRUCTURE IN AUDIO

Aside from socio-political currents in their work, the Spec-
tralists’ perspective emphasized uncovering hidden infor-
mation in sound to generate new musical ideas. In the same
way,Latentstructure refers to identifying distinctive or salient
parts of recorded audio that otherwise remain hidden. For
Spectraliststhis meant identifying structural partials that dis-
tinguished one instrument from another playing the same
perceived note (e.g. an ”A” or ”Bb”), as these partials relate
to some organization of harmonic material.

Independent Subspace Analysis extraction techniques of-
fer another way to access structure in audio, since re-synthesized
latent components retain correlated behaviors between fre-
quency and amplitude information in each component. When
PLCA is used on magnitude-only STFT representations, the
extracted components have similar characteristics to the out-
put of phase vocoder methods with an important distinction:
in addition to spectrum and envelope decompositions, com-
ponents are further segmented by statistical independence
of information content or recurrence of embedded acoustic
patterns in the sound.

3.1 Probabilistic Latent Component Analysis

PLCA is a generalization of Non-negative Matrix Factoriza-
tion (NMF) and a multi-variate generalization of Hoffman’s

Audio Data

Fourier-Based Transform (FFT,STFT)

Threshold Salient Frequencies (dB Cutoff)

transcribe or re-synthesize (Open Music)

Figure 1. Spectralist composers used these techniques to
generate novel harmonic material. The first step would be
to perform a Fourier Transform, that either extracted only
frequency information (FFT), or preserved temporal reso-
lution of the frequencies (STFT). Then by using the result-
ing frequency information, the composers built chords with
specific dynamics and orchestration to re-create the spectral
profiles of the source materials.

bi-variate Probabilistic Latent Semantic Analysis (PLSA)
[13] [18] [20]. For the purposes of modeling a time-frequency
distribution such as the magnitude STFT, the PLCA model
has the following form:

P (x) =
∑

z

P (z)P (w|z)P (h|z) (1)

whereP (x) is the2-dimensional distribution of the ran-
dom variablex = wh. z is a latent variable which we inter-
pret to be an additive spectrogram component ofx. These
marginals,w andh, are frequency components and ampli-
tude components, respectively, of independent latent mag-
nitude spectrograms. The marginal distributions themselves
are dependent on a latent variablez. The objective of this
analysis is to find out the underlying structure of a probabil-
ity distribution. This is done by estimatingP (w|z), P (h|z)
andP (z) from an observedP (x) using a version of the
Expectation Maximization (EM) algorithm [9]. Following
[18], the expectation step estimates the contribution of the
latent variablez:

R(x, z) =
P (z)P (w|z)P (h|z)∑

z′ P (z′)P (w|z′)P (h|z′)
(2)

and in a maximization step we re-estimate the marginals us-
ing the above weighting to obtain a new and more accurate
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estimate:

P (z) =

∫
P (x)R(x, z)dx (3)

with

P (w|z) =
∫
P (x)R(x, z)dh

P (z)
(4)

and

P (h|z) =
∫
P (x)R(x, z)dw

P (z)
. (5)

Repeating these steps converges to a solution for the marginals
and the latent variable priors. Figure 3 illustrates the decom-
position of magnitude STFT time-frequency distributions
into probabilistic latent components using this 2-dimensional
marginal decomposition algorithm. By considering the dis-
tributions as signal matrices, the final form of the matrix
factorization using PLCA is:

X = WZH
T. (6)

WhereW is the spectral distribution andH is the tempo-
ral distribution, the product of which produces the spectro-
gram reconstruction matrixX. A prior,Z is introduced that
weights the relative contribution of each component within
the spectrogram reconstruction matrix. For basic procedures
aimed at generating composition material, theZ prior can be
omitted since we do not need to preserve the relative contri-
bution (or loudness) of each component to the original mix-
ture when re-composing with them. With the basic mechan-
ics of Independent Component Analysis methods described,
we now examine applications of these algorithms for music
composition.

4. SOUNDSPLITTER: COMPONENT-WISE
RE-SYNTHESIS

The compositions described below used a Matlab tool called
SoundSplitter. Sounds were loaded from 44.1kHz sample-
rate 16-bit WAV format and analyzed using the short-time
Fourier transform (STFT), yielding a sequence of vectors,
X, with 4096 samples per frame and an overlap of 2048
samples. For each frame, only the first 2049 magnitude
Fourier coefficients were retained to eliminate redundancy
due to the symmetry of the Fourier transform for real-valued
signals. Optionally, the sequence of analysis frames was
divided into segments using fixed-length blocks of STFT
frames, with block-length typically between 1s and 10s in
duration. Each block was analyzed using the PLCA2D al-
gorithm [20] to yield three matrices per block corresponding
to the frequency marginals, amplitude (probability) coeffi-
cients, and time marginals respectively:W,Z andH. The
number of columns in these matrices corresponded to the
number of components,n, requested in the analysis.

Component-wise re-synthesis produced a magnitude spec-
trogram for each marginal component,k, using the re-synthesis

equationXk = WkZk,kH
T
k for component spectrogram

Xk, a column vector for thekth frequency marginal,Wk, an
amplitude scalar from thekth diagonal entry inZ, Zk,k, and
the transposedkth column vector from the time marginals,
H

T
k . The compnent spectra,̂Xk, were re-synthesized by

symmetrically expanding the magnitude spectrum around
the Nyquist frequency and multiplying by the complex ex-
ponenentiated phase argument from the STFT of the source
signalX⋆, such thatX̂k = Xke

jarg(X⋆) for k ∈ {1 . . . n}
where the sum of the marginals forms the identity:X⋆ =
(
∑n

i=1 Xi) e
jarg(X⋆). Thek-th component signal was com-

puted using overlap-add re-synthesis, via the inverse short-
time Fourier transform of̂Xk, with overlap corresponding to
the hop size used in the analysis step and each window mul-
tiplied by a raised cosine window to smooth the transition
between adjacent frames. The component-wise audio sig-
nals were controlled independently by the composers using
digital audio workstation software to yield the compositions
described below.

5. LATENT COMPONENT ANALYSIS FOR MUSIC
COMPOSITION

The PLCA2D algorithm used in the current version of Sound-
Splitter has the attribute of extractingfixedre-occurring pat-
terns in frequency and amplitude. These components retain
a qualitatively higher level of structure of the original au-
dio than non-pattern extraction methods, (e.g. bandpass fil-
tering, spectral frequency decomposition, or phase-vocoder
decomposition). The following section discusses five works
employing these techniques in the order of their first per-
formances. Each work manipulates components differently,
but they share a common trait of using components to artic-
ulate specific and recognizable characteristics of the original
audio samples at specific moments.

5.1 Strange-Charmed (1999), by Michael Casey and
Simon Atkinson

Strange-Charmed [7] used independent subspace analysis
(ISA) of spectrogram data [8] to generate an expanded set
of sound materials from a set of textural and granular source
sounds consisting of Geiger counters, insects, band-pass fil-
tered water sounds, and scraped metallic objects. In con-
trast to PLCA, the JADE algorithm [2] for independent com-
ponent analysis was used which yields components having
both positive and negative values. For time-frequency dis-
tributions with negative values, such as non-rectified filter-
bank outputs, the ISA method is well formed, but it is ineffi-
cient due to the vast quantity of data generated by the filter-
bank. For real-time use the magnitude Fourier transform
was employed, and any negative values in the magnitude
Fourier transform reconstruction had to be truncated to zero
for re-synthesis. A custom real-time synthesizer software
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Figure 2. Components were introduced one at a time, with the misaligned components gradually aligned to bring the het-
erophony of asynchronous components into a state of order, clearly revealing the source as Stravinsky’s iconic Rite of Spring
chord.

Figure 3. Each horizontal row corresponds to an extracted component, where the left-hand side of the figure shows the
transcriptions to music notation, and the right-side showsthe plots of theW andH decompositions per-component. From
top to bottom: 1)A transient-laden component over the relative duration of a whole-note, where the peaks represent loud
articulations and the troughs are equivalent to pianissimo. 2) A clean bell-partial, 3)“wobbling” of the bell-halve settling on the
concrete. 4) Cement “click”, articulated by a near-pitchless pizzicato near the bridge of the instrument.
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package was designed and implemented that used MIDI to
control the balance of amplitudes, and the relative delay, of
each component of each sound independently. The real-
time system, described in detail in [6], was used to shape
the sounds and the output recorded for off-line editing and
layered into the final composition using digital audio work-
station software.

5.2 Stratovinksy (2010), by Paul Osentinsky

The concept behindStratovinksyis the gradual revealing of
an important musical instance. Namely, the iconic, jaggedly
repeating, chord from the “Omens of Spring: Dances of the
Youths and Maidens” movement of Igor Stravinsky’s “Rite
of Spring” [21] [14]. Using SoundSplitter,128 components
were extracted from2 seconds of audio, re-synthesized to
audio and then normalized. The resulting characteristics of
these components were micro-tonal with low-energy levels
distributed across the many extracted components.

The entirety of the data was then imported into Ableton
Live as WAV files, temporally mis-aligned, looped, and dis-
tributed across sixteen virtual channels; see Figure 2. The
layered components gradually came into alignment over the
course of several minutes, with the effect of this process be-
ing equivalent to seeing a blurred object slowly come into
focus.

5.3 Decomposing Autumn (2010), by David Plans Casal

Decomposing Autumn[3] was a live performance utilizing
component-wise decomposition and live improvised recon-
struction ofAutumn in Warsaw, the sixth in Gÿorgy Ligeti’s
2nd book of piano etudes. The latent component analysis
method is coupled with real-time component-wise audio re-
trieval usingSoundSpotter[4] as a foundation for a struc-
tured improvisation. Here, the PLCA2D algorithm was em-
ployed as a decomposition technique to obtain a corpus of
separated sound fragments, which were then queried by a
live improviser performing on a custom-built acoustic gui-
tar. The approach used in this composition effectively bridges
the fields of latent component analysis, music information
retrieval by audio matching, and composition.

5.4 Violine (2011), by Spencer Topel

A work with a similar aim asStratovinksy, at highlighting
and revealing musical structure isVioline, for solo violin and
laptop. The source material for each movement consisted of
a short12 − 90 second audio clip of J.S. Bach’s Chaconne
in d minor from Partita No. 2 for solo violin. Doing so
preserved not only the composed structure explicit in the
J.S. Bach’s notation, but also the timings and articulations
supplied by the performer, (e.g. rolling of chords, chord
voicing, and rubato).

The approach in this composition was two-fold: first to
use SoundSplitter to perform a decomposition to isolated in-
dividual notes or pitch-classes, and then employ SoundSpot-
ter to match a live violin signal directly on audio features an-
alyzed on the extracted component database [5]. The basic
function of SoundSpotter allows for matching between pitch
and timbre characteristics, both of which were utilized in
Violine. Combined together, SoundSplitter and SoundSpot-
ter, the compositional material becomes a combination of
the composers intentions and the performers interpretation,
similar to the pieces discussed in [4].

The component decomposition parameter was again crit-
ical in the pre-composition phase of this piece. An eight
component-wise decomposition proved to be effective at ex-
tracting clear, well-formed sounding components. A musi-
cal score was then written using the analysis provided by the
SoundSplitter decomposition. A recent version of Real-time
SoundSpotter as a VST plug-in, provided an immediate and
interactive way to match sounds of the live violin, resulting
in a near-seamless counterpoint between the extracted com-
ponents and the composition.

5.5 Elementary Sources (2011), by Spencer Topel

Elementary Sourcesexamines SoundSplitting as a means of
decomposing audio into different timbral objects that con-
tribute the identity of the original source. The movement
discussed here, of five movements for string quartet and lap-
top, was written using a single101 second audio recording
of brass bell-halves Case dropped on concrete and recorded
by artist Case Hathaway-Zepeda. SoundSplitter was used to
extract components relating to different events segregated
by timbre, which included cement “clicks”, resulting from
the moment the metal hit the ground, in-harmonic partials
from the metals as the bell-halves rang, and the oscillation,
or wobbling, of the halves as they came to rest on the ce-
ment. Different component extraction parameters were ex-
plored and components were re-synthesized and auditioned.
Through trial and error, eight components were identified
as the yielding the best sounding results. Additional exper-
imentation with component re-synthesis included creating
components that had cross-spectral characteristics with the
three categories described above. Specifically, spectral sig-
natures and time-trajectories from SoundSplitter were re-
combined in different ways to extend the timbral palette
without extracting new audio sources.

A prevailing idea inElementary Sourceswas to acousti-
cally synthesize a specific audio sample, like the bell-halves,
with an entirely different set of sources, such as a string
quartet. This is not unlike Ǵerard Grisey’s ideas for his land-
mark work Partiels, where he describes the concept of us-
ing the orchestra for the purpose of Macro-synthesis, where
each instrument of the orchestra contributes specific time
and frequency behaviors that culminate in an overall syn-
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thesis of a spectral profile, rather than distinctive sections
and instrumental motives [12].

Two methods were explored to determine how best to
have the four acoustic instruments perform the different ex-
tracted components. Firstly, a music notation relating to
each distinctive component was devised to best articulate
the time-frequency behaviors, shown in Figure 3. Secondly,
audio samples were provided for the performers to audition
the sounds for themselves to best determine the execution of
these components. The two methods proved to work better
in combination than in isolation, since the notation provided
a starting-point, and the playback of components were of
high enough quality as to provide additional information for
each performer that could not be captured in the music no-
tation.

With basic elements of the bell-halves translated to the
quartet, it was now possible to use a combination of live-
electronics (e.g. pitch-shifting, reverberation, compression),
and re-synthesized component sample playback to achieve
a fairly close relationship between the sampled sources and
the acoustic instruments. The result was the creation of
an interstitial space between bell samples and their tran-
scriptions, where relationships in the compositional mate-
rials were a subsequent outgrowth of the timbres from the
original bell-halve sources.

6. SUMMARY

A new approach to music composition using Latent Compo-
nent Analysis techniques is described, along with five com-
positions and accompanying examples that demonstrate the
usages of these techniques, which are accessible online [1].
We also show here that Spectralism overlaps with these con-
cepts, since a shared theme in both repertoires is the ap-
plication of computer analysis to uncover latent features in
music audio. Future work will examine how component es-
timation more deeply influences compositional material and
how recent innovations on PLCA and related algorithms can
be used for better extraction of compositionally relevant in-
formation.
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ABSTRACT 

This paper investigates perceptual relationships between 
art in the auditory and visual domains. First, we conduct-
ed a behavioral experiment asking subjects to assess simi-
larity between 10 musical recordings and 10 works of 
abstract art. We found a significant degree of agreement 
across subjects as to which images correspond to which 
audio, even though neither the audio nor the images pos-
sessed semantic content. Secondly, we sought to find the 
relationship between audio and images within a defined 
feature space that correlated with the subjective similarity 
judgments. We trained two regression models using 
leave- one-subject-out and leave-one-audio-out cross-
validation respectively, and exhaustively evaluated each 
model's ability to predict features of subject-ranked simi-
lar images using only a given audio clip's features. A re-
trieval task used the predicted image features to retrieve 
likely related images from the data set. The task was 
evaluated using the ground truth of subjects' actual simi-
larity judgments. Our results show a mean cross-validated 
prediction accuracy of 0.61 with p<0.0001 for the first 
model, and a mean prediction accuracy of 0.51 with  
p<0.03 for the second model. 

1. INTRODUCTION 

Art, in any of its modes, affects us. Whether an acrylic or 
symphonic masterpiece, art has the tendency to attract our 
attention and stir our sentiments, sometimes in ways that 
are quite similar across modalities. An attempt to define 
what a work of art is or to identifying exactly why art 
affects us the way it does are both ambitious and elusive 
questions in the field of aesthetics. Yet, these seem to be 
some of the more progressive objectives of music infor-
mation retrieval. Once we have diluted a sensuous experi-
ence such as listening to a symphony into a concrete 
string of numbers, the source of our pleasure becomes 
slightly more objective (though our experience of it may 
remain quite ineffable). This objectivity has allowed us to 
examine correlations between sets of songs based on mu-
sical features. Perhaps, then, feature extraction could also 
enlighten us to correlations across domains of art. For 
example, what features contribute to the phenomenon of a 

particular painting evoke the same feeling as a particular 
work of music? 
     This study attempts to bridge artistic domains from the 
perspective of feature extraction. If works of art that are 
emotionally ambiguous and culturally unrelated could still 
be considered similar, it is very possible that there is ob-
jectivity in the similarity that lies at the feature level. This 
opens up an entirely new question in terms of cross- mod-
al analysis: which auditory features and which visual fea-
tures are important when considering crossmodal similari-
ties? To simplify the plethora of possibilities, the study 
focuses on a few standard low-level features: course con-
stant-Q spectrograms of the audio and eight band HSV 
histograms of the images. 

2. RELATED WORK 

     Congruency across sensory modalities is a subject 
matter that has been discussed in the field of psychology 
since the seventies [1]. Cross-modal congruencies have 
been empirically shown to exist across the auditory and 
visual domains. This is not to be confused with cross- 
modal confusion, which is what occurs in individuals 
suffering from synesthesia. Typical audio-visual cross- 
modal congruency examples are sounds high in frequen-
cy being associated with objects high in space and ob-
jects small in volume, or vice versa: sounds low in fre-
quency are associated with objects low in space or ob-
jects large in volume. Studies in cross-modal congruen-
cies support the hypothesis that art across different do-
mains may affect us in similar ways. 
     Translations between visual and auditory art have 
been attempted in both directions. These attempts are 
known as music visualization when translating from au-
ditory to visual, and image sonification when translating 
from visual to auditory. Traditional music player soft-
ware generally come suited with some means of visualiz-
ing the music. Researchers have also devised creative 
means of attempting the audio to visual translation, in-
cluding the use of affective photos [2] and self-similarity 
[3]. Mardirossian and Chew also presented a way to visu-
alize music in two dimensions based on the tonal pro-
gressions [4]. The translation in the opposite direction, 
from images to music, has been investigated using the 
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geometric characteristics of images to create a time-based 
sequence that could be translated by musical instruments 
[5]. 
     Although there has never been an explicit attempt to 
classify images with audio data (as in the current study), 
one recent study was able to classify music genre by ana-
lyzing the promotional images of the artist [6]. This study 
used image histograms across three color spaces: RGB, 
HSV, and LAB to cluster image data into classes of mu-
sical genre. All of the above mentioned related worksug-
gests that there are some consistent perceptual relation-
ships between the auditory and visual domains. 

3. BEHAVIORAL STUDY 

3.1 Data Collection 
The first step in finding similarities across modalities was 
to find pairs of images and audio that were thought to be 
similar by a group of subjects. This was done via the be-
havioral experiment described in this section. 
 
3.1.1 Stimuli 
Ten abstract art images by the following artists were cho-
sen for this experiment: Betsy Eby, Gerhard Richter, 
Giles Hayter, Stephanie Willis, Ian Camleod, Madison 
Moore, Anne Kavanagh, Ernie Gerzabek, Paul Pulszartti, 
and Jason Stephen. Figure 1 shows "Blueprint I" by 
Stephanie Willis. All of the images were constructed ei-
ther in the late twentieth century or early twenty-first cen-
tury and all artists are Western, to avoid extreme cultural 
differences. The images were chosen selectively by the 
authors to encapsulate a range of colors and symmetries 
and to avoid any conceptual objects (e.g., figures that 
resemble a tree or a face). All of the image and audio 
stimuli used in this experiment can be viewed at: 
http://alisonmattek.wordpress.com/projects/academic/cros
smodal/. 
     Ten ten-second solo piano clips by the following com-
posers were chosen for this experiment: Handel, Mozart, 
Liszt, Debussy, Hindemith, Barber, Ligeti, Phillip Glass, 
Bill Evans, and David Lanz. This list represents Western 
composers across several centuries. The clips were chosen 
selectively by the author to encapsulate a range of tempos, 
pitches, and performers, but the timbre was kept relatively 
consistent, as all of the clips contained only the piano in 
the instrumentation. 
 

 
Figure 1. “Blueprint I” by Stephanie Willis 
 
predominantly modern works.  In the music selection, had 
solo piano works been chosen from only the twentieth 
century as well, there would have been a bias of chromat-
icism in the harmonic quality of all of the works.  In order 
to achieve more variability in the harmonic structure (that 
is, to include extremely tonal music), we chose music 
from previous eras as well.  However, the cultural era in 
which a work was produced is likely a relevant variable, 
and should be considered in future investigations. 
 
3.1.2 Listening Test 
Subjects between the ages of nineteen and thirty years (N 
= 16, 6 = female, 10 = male) completed a listening test in 
which they rated the similarities between all pairs of 
stimuli. Figure 2 shows the graphic user interface for the 
listening test. Some of the subjects had previous musical 
training (N = 10, 4 = female, 6 = male). The pairs were 
presented in a different random order for each subject. 
The first ten trials of the test were "practice" trials; the 
subjects were told they could adjust their strategy for 
choosing a similarity rating during the practice trials. Af-
ter this, the subjects completed one hundred trials, one for 
every possible pair of the ten audio clips and ten images. 
The subjects rated the similarity between each pair on a 
scale of 1 - 30. 1 - 10 implied "very dissimilar", 11 - 20 
implied "average similarity", and 21 - 30 implied "very 
similar". This 30-point scale was taken from Grey’s 
methodology for multidimensional scaling of musical 
timbre [7]. The subjects’ responses were stored into a ten 
by ten similarity matrix. 
 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page.  
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Figure 2.  Listening Test GUI 
 

3.2 Data 

The results showed correlation across subjects on certain 
pairs of the audio and images. Figure 3 shows the mean, 
z-scored similarity matrix across all subjects. High values 
indicate a pair that was rated as very similar across sub-
jects and low values indicate a pair that was rated as very 
dissimilar across subjects. 

 
Figure 3.  Mean Similarity Matrix for All Subjects 
 
     The data was analyzed with plots, covariance matrices, 
and distance matrices of the z-scored subject responses. 
Figure 4 shows an analysis of the sixth audio clip, which 
was an excerpt from Samuel Barber's Excursion No. 1 for 
solo piano. The plot shows the z- scored subject responses 
to audio 6 when paired with each of the images, as indi-
cated on the x-axis. What stands out on this plot is that the 
similarity ratings decrease when audio 6 is compared to 
image 7, increase when audio 6 is compared to image 8, 
and decrease again when audio 6 is compared to image 9. 
In other words, audio 6 was considered to be very similar 
to image 8, but very dissimilar to image 7 and image 9, 
with much agreement across subjects. 
     From this type of analysis on all of the data, the fol-
lowing pairs of images and audio were thought to be simi-

lar across subjects: audio 1 and audio 8 were similar to 
image 6; audio 2 and audio 10 were similar to image 7; 
audio 3 and audio 7 were similar to image 1, image 4, and 
image 9; audio 4 and audio 5 were similar to image 3; 
audio 6 was similar to image 8; and audio 9 was similar to 
image 10. Images 2 and 5 were not consistently rated as 
similar to any audio examples. Figure 5 shows image 5, 
which was not consistently rated as similar or dissimilar 
to any audio across subjects. 

 
Figure 4.  Analysis of Audio 6 
  

 
Figure 5.  “Composition 114-B” by Ian Comleod was not con-
sistently rated as similar to any of the audio examples. 

4. IMAGE PREDICTION 

Given the subjective cross-modal similarity evaluation, 
we sought to determine whether there were correspond-
ences in common between the underlying audio and im-
age features spaces. To this end, from the 10 audio clips 
we extracted average power with a band rate of two con-
stant- Q bands per octave [9]. From the images we ex-
tracted eight-band HSV histograms. The HSV representa-
tion was chosen over RGB because, like the choice of 
logarithmic frequency spectrum, the HSV color scale cor-
responds more closely with human perception than the 
RGB scale [10]. The HSV values were binned into 3 
groups of 8 scalars forming a 24 dimensional vector. The 
16 audio bands and 24 image values were independently 
dimension reduced using a singular value decomposition 
(SVD) keeping those coefficients corresponding to the 
first 95% of the total variance in each modality. 
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4.1 Multivariate Multiple regression 

To test the predictability of image features given audio 
features for an unseen music clip, we performed a retriev-
al experiment using a cross-validated multivariate multi-
ple regression model [11]. Regression is an optimization 
method that minimizes the response error for a training 
set of predictor/response vector pairs (in our case audio 
features / image features) using a linear model of the 
form: y=WTx+b, with weight matrix, W , predictor varia-
bles, x, biases b, and response variables y. Our models 
consisted of multiple independent variables (audio-feature 
predictors), and multivariate dependent variables (image-
feature responses). Such multivariate multiple regression 
has previously been applied, in a cross-modal context, to 
predicting fMRI images corresponding to concrete nouns; 
where the predictor variables were intermediate vector 
representations of single words and the response variables 
were fMRI image voxels [12]. 
     Figure 6 illustrates the method of predicting image 
features from a regression model trained on audio feature 
/ image feature pairs. Figure 7 shows an example of audio 
features, a weight matrix, and the predicted response, ac-
tual response, and residual images. 

 
Figure 6.  Schematic diagram showing how regression is used 
to predict response variables from predictor variables. In this 
paper, the predictor variables are audio features, and the re-
sponse variables are image features. 

 
Figure 7.  Example of audio features (upper left), trained regres-
sion model weights (upper right), predicted image (lower left), 
and actual image (lower right), for a leave-one-audio-out regres-
sion model. 

4.2 Training 

We trained the regression models using the mvregress 
function from the Statistics Toolbox of the MATLAB 
numerical scientific package. The training data consisted 
of the dimension-reduced features of the audio clips as 
predictor variables and the dimension-reduced image fea-
tures for each subject’s highest-rated image (i.e., the most 
similar image as determined by the similarity judgments) 
as the response variables. We trained two models: Model 
1 was trained using subjects' image response ratings for 
each audio clip, leaving out one subject's data in each run; 
Model 2 was trained using all subjects' image response 
ratings, leaving out one of the audio clips in each run.    

4.3 Ground Truth 

The data from the behavioral study— i.e. per subject 
similarity ratings between each audio clip and each im-
age— yielded per subject 10x10 similarity matrices where 
each row consisted of the image rankings to one audio 
clip with integer values in the range of 1 to 30. Each sub-
ject utilized the scale to a different extent; with some us-
ing the full range and others using only part of the availa-
ble range. To align the different ranges onto a common 
scale, each row was normalized to the range of 0 to 1. The 
individual normalized similarity matrices were then aver-
aged yielding a cross-subject mean similarity matrix. 
From this matrix, a ground truth of relevant images was 
determined individually for each audio clip, but across 
subjects, by selecting all images with an average similari-
ty greater than, or equal to, the mean plus one standard 
deviation of the normalized similarity ratings for that au-
dio clip. This yielded a different number of relevant im-
ages for each audio clip ranging from one to three rele-
vant images. These were used as the target images for 
each audio clip in the retrieval experiments.  Note that for 
Model 1, the ground truth consisted of a mean similarity 
matrix that excluded the held-out subject; i.e. the test sub-
ject's data. 
 
4.4 Prediction 
One of the main utilities of regression is that responses 
can be computed for novel data— such that the response 
variables interpolate between the training data for previ-
ously unseen data. Thus, the trained regression models 
were used to predict the response variables (image feature 
vector) for each test feature vector (held-out audio feature 
vector). A successful interpolation would indicate gener-
ality of the model; specifically, the generalization of the 
subjective cross-modal feature-space mappings, such that 
the model could be used to predict the human subjective 
image response to unseen music audio data. 
 
4.5 Evaluation 
To evaluate the degree of success of the models' predic-
tions, the set of ground truth images per audio clip was 
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used in a retrieval task. The two models performed slight-
ly different retrieval tasks: Model 1 left a different sub-
ject’s predictor/response feature data out per run, for a 
total of 16 subjects. Here the goal was to was to assess the 
degree to which an individual subject's responses affect 
the image prediction result. The model was trained and 
tested repeatedly, omitting a single subject’s data each 
time, on the set of features corresponding to closest audio-
image pairs from the remaining subjects’ similarity 
scores. To test, a response image feature was predicted for 
each audio feature using the regression weights. The co-
sine distance was computed between the predicted image 
feature vector and the set of 10 feature vectors for the 10 
images that the test subject ranked in the behavioral ex-
periment. The distances were sorted such that those imag-
es whose features were most similar to the predicted fea-
tures were ranked more highly in the list of retrieved im-
ages. Precision and recall values were computed by com-
paring each ranked image with the relevant image set 
(ground truth). The recall level was also calculated; i.e. 
the proportion of ground truth images retrieved for each 
position in the retrieved image list. The mean precision 
was calculated by summing over all precision values and 
dividing by the total number of relevant items across all 
trials. Additionally, an f-score was computed using the 
2P.R/(P+R) statistic and the mean f-score computed in a 
similar manner as the mean precision. Empirical p-values 
were computed using the distribution of mean precisions 
for 10,000 trials of randomly ordered image draws versus 
image draws ordered by similarity to the regression mod-
el's predicted images. The resulting probability is inter-
preted as the empirical probability that retrieval using 
randomly permuted image draws performed at least as 
well as retrieval using regression.  
     Model 2 was evaluated to test the generality of the 
model for unseen audio data. For this model, a leave-one-
audio-out cross validation paradigm was used. Here, each 
training iteration omitted the audio / image feature pairs 
corresponding to one of the audio clips for all subjects. 
Testing consisted of predicting response image features 
for each held-out audio feature. As in Model 1, the cosine 
distance between each predicted image feature vector and 
the set of ground-truth images for the held-out audio clip 
yielded a ranked retrieval list of images that was used to 
calculate precision, recall, f-measure, and p-values, as 
discussed above. 
     By leaving one example out for testing, the models 
used 16-fold and 10-fold cross-validation respectively, a 
commonly used statistical technique for estimating the 
generalization power of a given model.  Furthermore, 10-
fold cross-validation has been shown to be one of the best 
methods to use for model selection [13]. 

5. RESULTS 

The results of both image prediction experiments are 
shown in Table 1. We performed a sensitivity analysis by 
systematically selecting subsets of features from the pre-
dictor and response variables used for the regression and 
retrieval. In Table 1, results are shown both for the full 
ensemble and the best performing subsets of audio and 
image features. For the best-performing subset of fea-
tures, 3 audio dimensions were left out and 2 image di-
mensions. The p-values for the average precision were 
p<0.0001 for Model 1 and p<0.03 for Model 2. Figures 8 
and 9 show the precision-recall curves for the two models 
for 1/10th percentile standardized recall levels. 

Model # trials avg. pre-
cision 

avg.              
f-score 

p-value 

1 (full) 160 0.498 0.311 p<0.0001 

2 (full) 18 0.299 0.248 0.867 

1 (subset) 160 0.605 0.366 p<0.0001 

2 (subset) 18 0.511 0.321 0.028 

Table 1.  Cross-validation results for regression model audio-
image feature prediction of 16 human subjects’ image response 
data to music stimuli. The subset model used four of seven audio 
features, and five of seven image features. 

Both versions of Model 1 perform significantly better 
than chance, with the per-subject-validation yielding a 
significance score of p<0.0001 (p=0 for 10,000 trials). 
However, only the feature subset version of Model 2 
performed significantly above chance with p<0.03. The 
difference in performance between the two experiments is 
not wholly surprising. In the first experiment, the 
predictor/response data for a single subject is left out, but 
there are still 15 complete sets of audio-image data on 
which to train the regression model. Figure 8 illustrates 
the degree to which individual subjects’ data influences 
the overall result. The spread of the mean precision across 
individual runs is limited. Hence, we conclude that no one 
subject is contributing significantly more to the result than 
any other.  

Figure 9 illustrates that the spread of results for the 
held-out audio-image data, across all subjects, varies 
significantly. This indicates unequal contributions to the 
model from different audio predictors and their 
corresponding cross- subject image responses. 

6. CONCLUSIONS 

The results of this study show that it is possible to predict 
the relationship between artistic examples from both the 
audio and visual domains using feature extraction. Our 
perceptions of art are complex and multidimensional, 
even within a single domain, so multiple features from 
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each domain are likely contributing to the similarities 
perceived across domains. This makes the investigation of 
cross-modal congruencies within feature spaces particu-
larly challenging. 

 

Figure 8. Retrieval performance for Model 1 showing the mean 
precision of individual runs (dashed lines) and the mean 
precision taken over all runs (solid line). 

 

Figure 9.  Retrieval performance for Model 2 showing the mean 
precision of individual runs (dashed lines) and the mean 
precision taken over all runs (solid line). Here, the model is 
trained on all subjects’ most similar audio-image feature pairs 
for left-in audio.  
     Further research can investigate the correlations be-
tween multiple features of audio and images. The choice 
of features in this study was somewhat arbitrary, but 
seemed like an intuitive place to start.  The techniques 
used here demonstrated the use of low-level features. 
However, the complexity of the problem suggests that 
many more features are contributing to the relationship 
between domains. 
     A primary limitation of the results of this study is a 
possible lack of generalizability due to the small size of 
the data set.  The data set was kept small out of considera-
tion for the behavioral experiment design.  The subjects 
had to give similarity ratings for all possible combinations 
of visual and auditory art, which amounted to 100 trials 
total.  With this amount of stimuli, the behavioral test 
took 30-40 minutes.  Adding more stimuli would cause 

the behavioral test to increase in length exponentially.  
Considering the attention span of subjects is important in 
this regard, because an experiment that was much longer 
could have compromised the integrity of the responses. 
     Research in the area of cross-modal congruencies pro-
vides a step towards understanding the perceptual pro-
cesses related to cross-modal binding. Our minds our con-
stantly receiving input streams from various senses and 
must use them to create the continuous and whole experi-
ence of consciousness. Identifying how modality- specific 
features relate and integrate across domains is a funda-
mental part of the discovery of our constant reality, e plu-
ribus unum. 
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ABSTRACT

We introduce the Million Song Dataset, a freely-available
collection of audio features and metadata for a million con-
temporary popular music tracks. We describe its creation
process, its content, and its possible uses. Attractive fea-
tures of the Million Song Database include the range of ex-
isting resources to which it is linked, and the fact that it is the
largest current research dataset in our field. As an illustra-
tion, we present year prediction as an example application,
a task that has, until now, been difficult to study owing to
the absence of a large set of suitable data. We show positive
results on year prediction, and discuss more generally the
future development of the dataset.

1. INTRODUCTION

“There is no data like more data” said Bob Mercer of IBM
in 1985 [7], highlighting a problem common to many fields
based on statistical analysis. This problem is aggravated in
Music Information Retrieval (MIR) by the delicate ques-
tion of licensing. Smaller datasets have ignored the issue
(e.g. GZTAN [11]) while larger ones have resorted to solu-
tions such as using songs released under Creative Commons
(Magnatagatune [9]).

The Million Song Dataset (MSD) is our attempt to help
researchers by providing a large-scale dataset. The MSD
contains metadata and audio analysis for a million songs that
were legally available to The Echo Nest. The songs are rep-
resentative of recent western commercial music. The main
purposes of the dataset are:

• to encourage research on algorithms that scale to com-
mercial sizes;

• to provide a reference dataset for evaluating research;

Permission to make digital or hard copies of all or part of this work for
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• as a shortcut alternative to creating a large dataset
with The Echo Nest’s API;

• to help new researchers get started in the MIR field.

Some have questioned the ability of conferences like ISMIR
to transfer technologies into the commercial world, with
scalability a common concern. Giving researchers a chance
to apply their algorithms to a dataset of a million songs is a
step in the right direction.

2. THE DATASET

2.1 Why?

The idea for the Million Song Dataset arose a couple of
years ago while discussing ideas for a proposal to the US
National Science Foundation’s GOALI (Grant Opportuni-
ties for Academic Liaison with Industry) program. We wanted
an idea that would not be possible without academic-industrial
collaboration, and that would appeal to the NSF as con-
tributing to scientific progress.

One of the long-standing criticisms of academic music
information research from our colleagues in the commercial
sphere is that the ideas and techniques we develop are sim-
ply not practical for real services, which must offer hundreds
of thousands of tracks at a minimum. But, as academics,
how can we develop scalable algorithms without the large-
scale datasets to try them on? The idea of a “million song
dataset” started as a flippant suggestion of what it would
take to solve this problem. But the idea stuck – not only in
the form of developing a very large, common dataset, but
even in the specific scale of one million tracks.

There are a several possible reasons why the community
does not already have a dataset of this scale:

• We all already have our favorite, personal datasets of
hundreds or thousands of tracks, and to a large extent
we are happy with the results we get from them.

• Collecting the actual music for a dataset of more than
a few hundred CDs (i.e. the kind of thing you can do
by asking all your colleagues to lend you their collec-
tions) becomes something of a challenge.

591



Oral Session 6: Databases and Evaluation

• The well-known antagonistic stance of the recording
industry to the digital sharing of their data seems to
doom any effort to share large music collections.

• It is simply a lot of work to manage all the details for
this amount of data.

On the other hand, there are some obvious advantages to
creating a large dataset:

• A large dataset helps reveal problems with algorithm
scaling that may not be so obvious or pressing when
tested on small sets, but which are critical to real-
world deployment.

• Certain kinds of relatively-rare phenomena or patterns
may not be discernable in small datasets, but may lead
to exciting, novel discoveries from large collections.

• A large dataset can be relatively comprehensive, en-
compassing various more specialized subsets. By hav-
ing all subsets within a single universe, we can have
standardized data fields, features, etc.

• A single, multipurpose, freely-available dataset greatly
promotes direct comparisons and interchange of ideas
and results.

A quick look at other sources in Table 1 confirms that
there have been many attempts at providing larger and more
diverse datasets. The MSD stands out as the largest cur-
rently available for researchers.

dataset # songs / samples audio
RWC 465 Yes
CAL500 502 No
GZTAN genre 1, 000 Yes
USPOP 8, 752 No
Swat10K 10, 870 No
Magnatagatune 25, 863 Yes
OMRAS2 50, 000? No
MusiCLEF 200, 000 Yes
MSD 1, 000, 000 No

Table 1. Size comparison with some other datasets.

2.2 Creation

The core of the dataset comes from The Echo Nest API [5].
This online resource provides metadata and audio analysis
for millions of tracks and powers many music applications
on the web, smart phones, etc. We had unlimited access to
the API and used the python wrapper pyechonest 1 . We cap-

1 http://code.google.com/p/pyechonest/

tured most of the information provided, ranging from tim-
bre analysis on a short time-scale, to global artist similar-
ity. From a practical point of view, it took us 5 threads run-
ning non-stop for 10 days to gather the dataset. All the code
we used is available, which would allow data on additional
tracks to be gathered in the same format. Some additional
information was derived from a local musicbrainz server [2].

2.3 Content

The MSD contains audio features and metadata for a million
contemporary popular music tracks. It contains:

• 280 GB of data

• 1, 000, 000 songs/files

• 44, 745 unique artists

• 7, 643 unique terms (Echo Nest tags)

• 2, 321 unique musicbrainz tags

• 43, 943 artists with at least one term

• 2, 201, 916 asymmetric similarity relationships

• 515, 576 dated tracks starting from 1922

The data is stored using HDF5 format 2 to efficiently
handle the heterogeneous types of information such as au-
dio features in variable array lengths, names as strings, lon-
gitude/latitude, similar artists, etc. Each song is described
by a single file, whose contents are listed in Table 2.

The main acoustic features are pitches, timbre and loud-
ness, as defined by the Echo Nest Analyze API. The API
provides these for every “segment”, which are generally de-
limited by note onsets, or other discontinuities in the sig-
nal. The API also estimates the tatums, beats, bars (usually
groups of 3 or 4 beats) and sections. Figure 1 shows beat-
aligned timbre and pitch vectors, which both consist of 12
elements per segment. Peak loudness is also shown.

0 50 100 150 200 250
timbre

0

6

12
Beat-aligned features for Wolfmother - Cosmonaut (sample)

0 50 100 150 200 250
pitches

0

6

12

0 50 100 150 200 250 300
loudness max

-2

-5

-8

dB

Figure 1. Example of audio features (timbre, pitches and
loudness max) for one song.

2 http://www.hdfgroup.org/HDF5/
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analysis sample rate artist 7digitalid
artist familiarity artist hotttnesss
artist id artist latitude
artist location artist longitude
artist mbid artist mbtags
artist mbtags count artist name
artist playmeid artist terms
artist terms freq artist terms weight
audio md5 bars confidence
bars start beats confidence
beats start danceability
duration end of fade in
energy key
key confidence loudness
mode mode confidence
num songs release
release 7digitalid sections confidence
sections start segments confidence
segments loudness max segments loudness max time
segments loudness start segments pitches
segments start segments timbre
similar artists song hotttnesss
song id start of fade out
tatums confidence tatums start
tempo time signature
time signature confidence title
track 7digitalid track id
year

Table 2. List of the 55 fields provided in each per-song
HDF5 file in the MSD.

The website [1] is a core component of the dataset. It
contains tutorials, code samples 3 , an FAQ, and the pointers
to the actual data, generously hosted by Infochimps 4 .

2.4 Links to other resources

The Echo Nest API can be used alongside the Million Song
Dataset since we provide all The Echo Nest identifiers (track,
song, album, artist) for each track. The API can give up-
dated values for temporally-changing attributes (song hott-
tnesss, artist familiarity, ...) and also provides some data
not included in the MSD, such as links to album cover art,
artist-provided audio urls (where available), etc.

Another very large dataset is the recently-released Ya-
hoo Music Ratings Datasets 5 . Part of this links user ratings
to 97, 954 artists; 15, 780 of these also appear in the MSD.
Fortunately, the overlap constitutes the more popular artists,
and accounts for 91% of the ratings. The combination of the
two datasets is, to our knowledge, the largest benchmark for
evaluating content-based music recommendation.

The Echo Nest has partnered with 7digital 6 to provide
the 7digital identifier for all tracks in the MSD. A free 7dig-

3 https://github.com/tb2332/MSongsDB
4 http://www.infochimps.com/
5 http://webscope.sandbox.yahoo.com/
6 http://www.7digital.com

ital account lets you fetch 30 seconds samples of songs (up
to some cap), which is enough for sanity checks, games, or
user experiments on tagging. It might be feasible to com-
pute some additional audio features on these samples, but
only for a small portion of the dataset.

To support further linking to other sources of data, we
provide as many identifiers as available, including The Echo
Nest identifiers, the musicbrainz artist identifier, the 7digi-
tal and playme 7 identifiers, plus the artist, album and song
names. For instance, one can use MusiXmatch 8 to fetch
lyrics for many of the songs. Their API takes Echo Nest
identifiers, and will also perform searches on artist and song
title. We will return to musiXmatch in the next section.

3. PROPOSED USAGE

A wide range of MIR tasks could be performed or measured
on the MSD. Here, we give a somewhat random sample of
possible uses based on the community’s current interests,
which serves to illustrate the breadth of data available in the
dataset.

3.1 Metadata analysis

The original intention of the dataset was to release a large
volume of audio features for machine learning algorithms.
That said, analyzing metadata from a million song is also
extremely interesting. For instance, one could address ques-
tions like: Are all the “good” artist names already taken?
Do newer bands have to use longer names to be original?
This turns out to be false according to the MSD: The av-
erage length might even be reducing, although some recent
outliers use uncommonly long names. The Figure 2 sum-
marizes this. The least squared regression has parameters:
gradient =−0.022 characters/year and intercept = 55.4 char-
acters (the extrapolated length of a band name at year 0!).

1920 1940 1960 1980 2000 2020
year

0

50

100

150

200

250

ar
tis

t n
am

e 
le

ng
th

Artist name length per year

artist name lengths
least squared regression

Figure 2. Artist name length as a function of year.

3.2 Artist recognition

Recognizing the artist from the audio is a straightforward
task that provides a nice showcase of both audio features
and machine learning. In the MSD, a reasonable target is

7 http://www.playme.com
8 http://www.musixmatch.com
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the 18, 073 artists that have at least 20 songs in the dataset
(in contrast to the 5 artists reported a decade ago in [12]).
We provide two standard training/test splits, the more diffi-
cult of which contains just 15 songs from each artist in the
training set. This prevents the use of artist popularity. Our
benchmark k-NN algorithm has an accuracy of 4% (code
provided), which leaves plenty of room for improvement.

3.3 Automatic music tagging

Automatic tagging [4] has been a core MIR tasks for the last
few years. The Echo Nest provides tags (called “terms”) at
the artist level, and we also retrieved the few terms provided
by musicbrainz. A sample is shown in Table 3. We split all
artists between train and test based on the 300 most popular
terms from The Echo Nest. This makes it the largest avail-
able dataset for tagging evaluation, as compared to Mag-
natagatune [9], Swat10K [10] and the Last.FM corpus in [3].
That said, the MSD currently lacks any tags at the song,
rather than the artist, level. We would welcome the contri-
bution of such tags.

Although less studied, the correlation between tags and
metadata could be of great interest in a commercial sys-
tem. Certain “genre tags”, such as “disco”, usually apply
to songs released in the 70s. There are also correlations be-
tween artist names and genres; you can probably guess the
kind of music the band Disembowelment plays (if you are
not already a fan).

artist EN terms musicbrainz tags
adult contemporary hard rock

Bon Jovi arena rock glam metal
80s american

teen pop pop
Britney Spears soft rock american

female dance

Table 3. Example of tags for two artists, as provided by The
Echo Nest and musicbrainz.

3.4 Recommendation

Music recommendation and music similarity are perhaps
the best-studied areas in MIR. One reason is the potential
commercial value of a working system. So far, content-
based system have fallen short at predicting user ratings
when compared to collaborative filtering methods. One can
argue that ratings are only one facet of recommendation
(since listeners also value novelty and serendipity [6]), but
they are essential to a commercial system.

The Yahoo Music Ratings Datasets, mentioned above,
opens the possibility of a large scale experiment on pre-
dicting ratings based on audio features with a clean ground

Ricky Martin Weezer
Enrique Iglesias Death Cab for Cutie

Christina Aguilera The Smashing Pumpkins
Shakira Foo Fighters

Jennifer Lopez Green Day

Table 4. Some similar artists according to The Echo Nest.

truth. This is unlikely to settle the debate on the merit of
content-based music recommendation once and for all, but
it should support the discussion with better numbers.

3.5 Cover song recognition

Cover song recognition has generated many publications in
the past few years. One motivation behind this task is the
belief that finding covers relies on understanding something
deeper about the structure of a piece. We have partnered
with Second Hand Songs, a community-driven database of
cover songs, to provide the SecondHandSong dataset 9 . It
contains 18, 196 cover songs grouped into 5, 854 works (or
cliques). For comparison, the MIREX 2010 Cover Song
evaluation used 869 queries. Since most of the work on
cover recognition has used variants of the chroma features
which are included in the MSD (pitches), it is now the largest
evaluation set for this task.

3.6 Lyrics

In partnership with musiXmatch (whose API was mentioned
above), we have released the musiXmatch dataset 10 , a col-
lection of lyrics from 237, 662 tracks of the MSD. The lyrics
come in a bag-of-words format and are stemmed, partly for
copyright reasons. Through this dataset, the MSD links au-
dio features, tags, artist similarity, etc., to lyrics. As an
example, mood prediction from lyrics (a recently-popular
topic) could be investigated with this data.

3.7 Limitations

To state the obvious, there are many tasks not suited for the
MSD. Without access to the original audio, the scope for
novel acoustic representations is limited to those that can be
derived from the Echo Nest features. Also, the dataset is
currently lacking album and song-level metadata and tags.
Diversity is another issue: there is little or no world, ethnic,
and classical music.

9 SecondHandSongs dataset, the official list of cover songs within
the Million Song Dataset, available at: http://labrosa.ee.
columbia.edu/millionsong/secondhand

10 musiXmatch dataset, the official lyrics collection for the Million
Song Dataset, available at: http://labrosa.ee.columbia.edu/
millionsong/musixmatch
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Tasks that require very accurate time stamps can be prob-
lematic. Even if you have the audio for a song that appears
in the MSD, there is little guarantee that the features will
have been computed on the same audio track. This is a
common problem when distributing audio features, originat-
ing from the numerous official releases of any given song as
well as the variety of ripping and encoding schemes in use.
We hope to address the problem in two ways. First, if you
upload audio to The Echo Nest API, you will get a time-
accurate audio analysis that can be formatted to match the
rest of the MSD (code provided). Secondly, we plan to pro-
vide a fingerprinter that can be use to resolve and align local
audio with the MSD audio features.

4. YEAR PREDICTION

As shown in the previous section, many tasks can be ad-
dressed using the MSD. We present year prediction as a case
study for two reasons: (1) it has been little studied, and (2)
it has practical applications in music recommendation.

We define year prediction as estimating the year in which
a song was released based on its audio features. (Although
metadata features such as artist name or similar artist tags
would certainly be informative, we leave this for future work).
Listeners often have particular affection for music from cer-
tain periods of their lives (such as high school), thus the
predicted year could be a useful basis for recommendation.
Furthermore, a successful model of the variation in music
audio characteristics through the years could throw light on
the long-term evolution of popular music.

It is hard to find prior work specifically addressing year
prediction. One reasons is surely the lack of a large mu-
sic collection spanning both a wide range of genres (at least
within western pop) and a long period of time. Note, how-
ever, that many music genres are more or less explicitly as-
sociated with specific years, so this problem is clearly re-
lated to genre recognition and automatic tagging [4].

4.1 Data

The “year” information was inferred by matching the MSD
songs against the musicbrainz database, which includes a
year-of-release field. This resulted in values for 515, 576
tracks representing 28, 223 artists. Errors could creep into
this data from two main sources: incorrect matching, and
incorrect information in musicbrainz. Informal inspection
suggests the data is mostly clean; instead, the main issue
is the highly nonuniform distribution of data per year, as
shown in Figure 3. A baseline, uniform prediction at the
mode or mean year would give reasonable accuracy figures
because of the narrow peak in the distribution around 2007.
However, we have enough data to be able to show that even
small improvements in average accuracy are statistically sig-
nificant: With 2, 822 test artists and using a z-test with a

95% confidence level, an improvement of 1.8 years is sig-
nificant. Allowing some independence between the songs
from a single artist reduces that number still more.
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Figure 3. Distribution of MSD tracks for which release year
is available, from 1922 to 2011. An artist’s “year” value is
the average of their songs.

Again, we define and publish a split between train and
test artists so future results can be directly comparable. The
split is among artists and not songs in order to avoid prob-
lems such as the “producer effect”. The features we use are
the average and covariance of the timbre vectors for each
song. No further processing is performed. Using only the
nonredundant values from the covariance matrix gives us a
feature vector of 90 elements per track.

4.2 Methods

Our first benchmark method is k nearest neighbors (k-NN),
which is easy to parallelize and requires only a single pass
over the training set, given enough memory. Prediction can
efficiently performed thanks to libraries such as ANN 11 .
The predicted year of a test item is the average year of the k
nearest training songs.

A more powerful algorithm, specifically designed for large-
scale learning, is Vowpal Wabbit [8] (VW). It performs re-
gression by learning a linear transformation w of the fea-
tures x using gradient descent, so that the predicted value ŷi

for item i is:

ŷi =
∑

j

wjx
i
j

Year values are linearly mapped onto [0, 1] using 1922 as 0
and 2011 as 1. Once the data is cached, VW can do many
passes over the training set in a few minutes. VW has many
parameters; we performed an exhaustive set of experiments
using a range of parameters on a validation set. We report
results using the best parameters from this search according
to the average difference measure. The final model is trained
on the whole training set.

4.3 Evaluation and results

Table 5 presents both average absolute difference and square
root of the average squared difference between the predicted
release year and the actual year.

11 http://www.cs.umd.edu/˜mount/ANN/
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method diff sq. diff
constant pred. 8.13 10.80
1-NN 9.81 13.99
50-NN 7.58 10.20
vw 6.14 8.76

Table 5. Results on year prediction on the test songs.

The benchmark is the “constant prediction” method, where
we always predict the average release year from the training
set (1998.4). With VW 12 we can make a significant im-
provement on this baseline.

5. THE FUTURE OF THE DATASET

Time will tell how useful the MSD proves to be, but here
are our thoughts regarding what will become of this data.
We have assemble a dataset which we designed to be com-
prehensive and detailed enough to support a very wide range
of music information research tasks for at least the near fu-
ture. Our hope is that the Million Song Dataset becomes
the natural choice for researchers wanting to try out ideas
and algorithms on data that is standardized, easily obtained,
and relevant to both academia and industry. If we succeed,
our field can be greatly strengthened through the use of a
common, relevant dataset.

But for this to come true, we need lots of people to use
the data. Naturally, we want our investment in developing
the MSD to have as much positive impact as possible. Al-
though the effort so far has been limited to the authors, we
hope that it will become a true community effort as more
and more researchers start using and supporting the MSD.
Our vision is of many different individuals and groups de-
veloping and contributing additional data, all referenced to
the same underlying dataset. Sharing this augmented data
will further improve its usefulness, while preserving as far
as possible the commonality and comparability of a single
collection.

5.1 Visibility for MIR

The MSD has good potential to enhance the visibility of the
MIR community in the wider research world. There have
been numerous discussions and comments on how our field
seems to take more that it gives back from other areas such
as machine learning and vision. One reason could be the ab-
sence of a well-known common data set that could allow our
results to be reported in conferences not explicitly focused
on music and audio. We hope that the scale of the MSD will
attract the interest of other fields, thus making MIR research

12 The parameters to VW were –passes 100 –loss function squared -l 100
–initial t 100000 –decay learning rate 0.707106781187.

a source of ideas and relevant practice. To that end, subsets
of the dataset will be made available on the UCI Machine
Learning Repository 13 . We consider such dissemination of
MIR data essential to the future health of our field.

6. ACKNOWLEDGEMENTS

This work is supported by NSF grant IIS-0713334 and by a gift
from Google, Inc. Any opinions, findings and conclusions or rec-
ommendations expressed in this material are those of the authors
and do not necessarily reect the views of the sponsors. TBM is
supported in part by a NSERC scholarship.

7. REFERENCES

[1] Million Song Dataset, official website by Thierry
Bertin-Mahieux, available at: http://labrosa.ee.
columbia.edu/millionsong/.

[2] Musicbrainz: a community music metadatabase, Feb. 2011.
MusicBrainz is a project of The MetaBrainz Foundation,
http://metabrainz.org/.

[3] T. Bertin-Mahieux, D. Eck, F. Maillet, and P. Lamere. Autotag-
ger: a model for predicting social tags from acoustic features
on large music databases. Journal of New Music Research, spe-
cial issue: ”From genres to tags: Music Information Retrieval
in the era of folksonomies.”, 37(2), June 2008.

[4] T. Bertin-Mahieux, D. Eck, and M. Mandel. Automatic tag-
ging of audio: The state-of-the-art. In Wenwu Wang, editor,
Machine Audition: Principles, Algorithms and Systems, pages
334–352. IGI Publishing, 2010.

[5] The Echo Nest Analyze, API, http://developer.
echonest.com.

[6] J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl.
Evaluating collaborative filtering recommender systems. ACM
Trans. Inf. Syst., 22(1):5–53, 2004.

[7] F. Jelinek, 2004. http://www.lrec-conf.org/
lrec2004/doc/jelinek.pdf.

[8] J. Langford, L. Li, and A. L. Strehl. Vowpal wabbit (fast online
learning), 2007. http://hunch.net/vw/.

[9] E. Law and L. von Ahn. Input-agreement: a new mechanism
for collecting data using human computation games. In Pro-
ceedings of the 27th international conference on Human fac-
tors in computing systems, pages 1197–1206. ACM, 2009.

[10] D. Tingle, Y.E. Kim, and D. Turnbull. Exploring automatic mu-
sic annotation with acoustically-objective tags. In Proceedings
of the international conference on Multimedia information re-
trieval, pages 55–62. ACM, 2010.

[11] G. Tzanetakis and P. Cook. Musical genre classification of
audio signals. IEEE Trans. on Speech and Audio Processing,
10(5):293–302, 2002.

[12] B. Whitman, G. Flake, and S. Lawrence. Artist detection in
music with minnowmatch. In Neural Networks for Signal Pro-
cessing XI, 2001. Proceedings of the 2001 IEEE Signal Pro-
cessing Society Workshop, pages 559–568. IEEE, 2002.

13 http://archive.ics.uci.edu/ml/

596



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

AUDIO MUSIC SIMILARITY AND RETRIEVAL: 
EVALUATION POWER AND STABILITY 

 
Julián Urbano, Diego Martín, Mónica Marrero and Jorge Morato 

University Carlos III of Madrid 
Department of Computer Science 

{jurbano, dmandres, mmarrero, jmorato}@inf.uc3m.es 
 

ABSTRACT 

In this paper we analyze the reliability of the results in the 
evaluation of Audio Music Similarity and Retrieval systems. 
We focus on the power and stability of the evaluation, that 
is, how often a significant difference is found between sys-
tems and how often these significant differences are incor-
rect. We study the effect of using different effectiveness 
measures with different sets of relevance judgments, for 
varying number of queries and alternative statistical proce-
dures. Different measures are shown to behave similarly 
overall, though some are much more sensitive and stable 
than others. The use of different statistical procedures does 
improve the reliability of the results, and it allows using as 
little as half the number of queries currently used in MIREX 
evaluations while still offering very similar reliability levels. 
We also conclude that experimenters can be very confident 
that if a significant difference is found between two systems, 
the difference is indeed real. 

1. INTRODUCTION 

One of the most important tasks in Music Information Re-
trieval is Audio Music Similarity and Retrieval (AMS). 
Along with Symbolic Melodic Similarity (SMS), AMS is 
one of the traditional tasks evaluated in the annual Music 
Information Retrieval Evaluation eXchange (MIREX) [3], 
and one of the tasks that most closely resemble a real-world 
music retrieval scenario. A music similarity retrieval system 
returns a ranked list of music pieces deemed to be similar to 
a music piece given as a query. In the case of the MIREX 
evaluation of AMS, these music pieces are 30 second audio 
clips of music material. 

As of the writing of this paper, a total of 41 AMS systems 
have been evaluated in 4 editions of MIREX from 2006 to 
2010, and it is again planned for 2011. In these evaluations, 
a set of queries is randomly selected and provided to the 
participating systems, which then return the corresponding 5 
most similar music pieces in a music collection. To evaluate 
the effectiveness of the systems two things are needed: rele-

vance judgments and effectiveness measures. The relevance 
judgments are scores given to each query-candidate pair, 
representing their similarity. Two relevance scales are used 
in MIREX for both the AMS and SMS tasks. The Broad 
scale has three levels: not similar (NS = 0), somewhat simi-
lar (SS = 1) and very similar (VS = 2). The Fine scale uses 
real valued scores between 0.0 (not similar at all) and 10.0 
(identical). As to the effectiveness measures, in AMS the so-
called Sum measure is used, while more complex measures 
were developed for the SMS task [11]. 

The grand results of these evaluations are pairwise com-
parisons between the participating systems, indicating which 
is better and whether the difference is statistically significant 
or not. When drawing such conclusions, two characteristics 
of the evaluation must be kept in mind: power and stability. 
Power refers to how powerful the evaluation is to establish a 
significant difference between any two systems (i.e. it is 
concerned with Type II errors). If A is concluded to perform 
significantly better than B, the evaluation is considered 
powerful. If the difference were not statistically significant, 
no clear conclusion could be drawn from the experiment: A 
and B could actually perform identically (very unlikely), or 
the evaluation conditions might have not been sufficient to 
observe a difference large enough (most likely). Assuming 
two systems A and B are never exactly the same, an option 
to achieve significance is to increase the number of queries, 
though this has obvious limitations in terms of effort and 
cost [16][8]. The difference between practical and statisti-
cally significant differences must be considered if doing so. 

Stability refers to how reliable a result is when claiming a 
statistically significant difference between two systems (i.e. 
it is concerned with Type I errors). If A and B were evaluat-
ed with a set of queries and the result were that A is signifi-
cantly better than B, the expected result with a completely 
different (and independent) query set would therefore be 
that A is again significantly better than B. If it were not, it 
would be an indication that the evaluation is not stable when 
differentiating between systems. These conflicts do appear 
in IR evaluation experiments, and if the query set used is too 
small, the effectiveness measures not appropriate or the sta-
tistical procedures not suitable, they can be frequent [1]; 
even when statistical significance is involved [15]. 

In this paper we analyze the power and stability of the 
AMS evaluation methodology when concluding that a sys-
tem A is significantly better than a system B. We analyze 
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the effect that different relevance judgment sets, effective-
ness measures, query set sizes and statistical procedures 
have on the reliability of the AMS results. For this study we 
decided to use the MIREX 2009 Audio Music Similarity 
and Retrieval data, as it is the largest dataset available to 
date [4]. A total of 15 systems by 9 different research groups 
were evaluated with a total of 100 queries. The top 5 docu-
ments retrieved by each system were evaluated for each 
query using the Broad and Fine scales, and the Sum measure 
was used with these two sets of relevance judgments to as-
sess the effectiveness of the systems. The Friedman test was 
ran with a Tukey’s HSD post-hoc correction procedure to 
look for significant differences. The grand results of the 
evaluation are thus 105 pairwise comparisons between sys-
tems, some of which are statistically significant. 

The rest of the paper is organized as follows. Section 2 
reviews previous work on the analysis of power and stability 
in TREC and related studies on the evaluation of music sim-
ilarity tasks. Next we discuss the effectiveness measures 
considered, and Sections 4 and 5 present the results of the 
power and stability analysis. Section 6 argues and analyzes 
the use of different statistical procedures. Finally, Section 7 
presents a discussion of the results and the paper then fin-
ishes with the conclusions and lines for further work.  

2. RELATED WORK 

The stability of effectiveness measures has been extensively 
studied in the context of the Text REtrieval Conference 
(TREC). Buckley and Voorhees first studied the stability of 
several measures, observing conflicts between 1% and 14% 
of the times, depending on the measure, when comparing 
any two systems [1]. They then studied the sensitivity of 
several measures as a function of the query set size, and they 
concluded that absolute differences larger than 0.05 (about 
25% relative difference) are necessary for sets of 50 queries 
to assure a conflict ratio below 5% [16], confirming the reli-
ability of TREC evaluations for using 50 queries as a mini-
mum. However, none of these studies considered the effect 
of using statistical significance techniques when comparing 
two systems. Sanderson and Zobel somehow filled this gap 
by studying the effect of several statistical procedures on the 
sensitivity, and they concluded that virtually any relative 
difference of 10% or more, coupled with statistical signifi-
cance, will not produce a conflict in other experiments [8]. 
Sakai reviewed most of this work with different data sets 
and with other, more recent measures [7]. With larger query 
sets, Voorhees found that even significant differences could 
still be conflictive [15]. However, the study of post-hoc sta-
tistical procedures was not part of any of these studies. 

Meta-evaluation studies are very rare in Music IR [12], 
and to our knowledge the power and stability issues have 
not yet been studied for MIREX data. Nonetheless, some 
works have addressed similar problems with Music IR eval-
uation experiments concerning the similarity tasks. Typke et 
al. studied alternative forms of relevance judging for the 

SMS task [10], and they came up with a specific effective-
ness measure to be used with them [11]. Urbano et al. then 
showed how to make the evaluation more reliable when 
using those relevance judgments [13]. Jones et al. studied 
the relevance judgments made for the SMS and AMS tasks, 
focusing on the effect of having different people do the 
judgments and with different scales. To reduce the cost of 
judging, the use of crowdsourcing platforms such as Ama-
zon Mechanical Turk has been studied by Urbano et al. for 
the SMS task [14], and by Lee for the AMS task [6]. In this 
paper we focus on the power and stability of the MIREX 
AMS evaluations, employing techniques similar to Buck-
ley’s and Voorhees’, but with some modifications specific 
to the AMS task and the post-hoc analysis used in MIREX. 

3. EFFECTIVENESS MEASURES 

The MIREX AMS evaluation campaigns use just one meas-
ure to assess the effectiveness of the participating systems. 
This is the so-called Sum measure, which is the average 
relevance of the retrieved results. When used with the Broad 
judgments, this measure is often called PSum; and when 
used with the Fine judgments, it is called FINE [3]. 

The Audio community has traditionally been reluctant to 
adopt more complex measures, even some specifically de-
signed for this type of tasks [3]. In this paper we study the 
use of several of these measures in the Audio Music Simi-
larity task, and their impact on the power and stability of the 
evaluation. First, we review the measures considered. 

3.1 Average Gain 

This measure is based on the concept of information gain 
provided by the retrieved documents. This information gain 
is usually represented by the relevance level assigned to the 
document, assuming that the larger the score, the more in-
formation is gained by the user. 

G@k is the Gain of the k-th document retrieved, and 

1
@ @

k

i
CG k G i

=
=∑  is the Cumulated Gain of the first k 

documents retrieved [5]. Thus, the Average Gain of the top-
k documents is calculated as the mean: 
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k

i

CG k
AG k G i

k k =
= = ∑  (1) 

This is the official measure used in the MIREX AMS task. 
We prefer to use this definition based on information gain 
for consistency with the other measures. 

The problem of G, CG and AG is that they do not have a 
fixed upper bound, which causes some problems when aver-
aging the results across queries. Consider a query q1 for 
which there are 7 VS documents and another query q2 with 
2 VS and 5 SS documents. For q1 a perfect system can 
achieve a total CG@5 score of 10, while for q2 the maxi-
mum possible is 7. Apparently, the system performs better 
for q1, when in reality it returns ideal results for both que-
ries. As with other simpler measures such as Precision, this 
lack of fixed upper bound makes them less stable [1][7]. 
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3.2 Normalized Discounted Cumulated Gain 

AG does not consider the rank at which documents appear 
down the results list: a document at rank 3 provides as much 
gain as if it were at ranks 1 or 5. However, a highly relevant 
document is clearly more useful to the user if it appeared 
toward the top of the list. To model this usefulness, the gain 
scores are discounted as they appear later in the results list. 
A logarithm function with base b is used, and so the Dis-
counted Cumulated Gain is defined recursively as: 

 

@

@ @
@( 1)

logb

CG k k b

DCG k G k
DCG k k b

k

<
=  − + ≥


 (2) 

Also, to avoid the lack of fixed upper bound problem, it 
is considered what the ideal ranking of documents would be: 

@ @ . . : @ @( 1)IDCG k DCG k s t i k G i G i= ∀ < ≥ + . Divid-

ing the DCG@k score of the system by the ideal IDCG@k, 
the upper bound is always 1, meaning perfect retrieval: 
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@
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IDCG k
=  (3) 

This measure is called Normalized Discounted Cumulat-
ed Gain [5], which has been shown to be particularly stable 
and sensitive [7][17]. For this study we set the logarithm 
base to the standard b=2. 

3.3 Average Normalized Discounted Cumulated Gain 

The last measure of the information gain family we consider 
here is the Average Normalized Discounted Cumulated 
Gain, which is calculated as the average NDCG score 
throughout the retrieved list: 
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= ∑  (4) 

ANDCG provides more information about the ranking of 
the retrieved documents, as still quite large NDCG scores 
could be achieved just by highly relevant documents to-
wards the end of the list. Like NDCG, this measure has been 
shown to be particularly stable and sensitive [7]. 

3.4 Average Dynamic Recall 

The last measure we consider originated in the context of 
the MIREX 2005 SMS task and the evaluation with rele-
vance judgments in the form of partially ordered lists 
[10][13]: Average Dynamic Recall [11]. ADR was specifi-
cally designed for level-based relevance judgments without 
a scale fixed beforehand, and ever since it is one of the main 
measures used in MIREX SMS with the Broad judgments. 

We also define ADR in terms of information gain. Let 

1,..., nI I I= 〈 〉 be the list of n judged documents ordered by 

descending relevance level (i.e. an ideal ordering), and let 

1,..., kR R R= 〈 〉 be the list of the top k ≤ n retrieved docu-

ments ordered by rank. The set Ai of allowed relevant doc-
uments at rank i is defined as: 
 1{ ,..., } { : @ @ }i i jA I I I j i G j G i= ∪ > ∧ =  (5) 

that is, the union of all previous ideal documents and those 
with lower rank but equal information gain (i.e. same rele-
vance level). The final score is then calculated as: 
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which is the average across ranks of the ratio of documents 
retrieved that are actually in the ideal ranking. This measure 
is widely used by the SMS community, but it has never been 
used in the AMS task, nor has it been analyzed in terms of 
power or stability. In this paper we do so. 

4. EVALUATION POWER 

To assess the effect of different effectiveness measures and 
relevance scales on the power of the evaluation, we compute 
the number of pairwise system comparisons that result sig-
nificant according to the Friedman-Tukey’s HSD (FT) pro-
cedure used in MIREX. We evaluate the original measure, 
AG, as well as NDCG, ANDCG and ADR; both with the 
Broad and Fine set of relevance judgments, for a total of 8 
distinct measures. 

We study the trend for increasing query sets of sizes 5 to 
100, with increments of 5 queries each. To diminish random 
effects when selecting a subset of queries for the 5 to 95 
sizes, we choose 500 random samples in each case. Thus, 
there are 52,500 system pairwise comparisons for each 
measure and query subset size. Also, the queries in MIREX 
were balanced across music genres: the 100 original queries 
were selected from 10 different genres, with 10 queries per 
genre. We also reproduce this balance, using stratified sam-
pling with equal priors when making query subsets. There-
fore, our samples are also balanced across music genres, 
emulating as closely as possible a real MIREX evaluation. 

As Figure 1 shows, 57% of the results were significant 
using AGBroad and 54% using AGFine (horizontal dotted 
lines). We omitted query subset sizes below 40 for clarity: 
the curves follow a somewhat logarithmic trend (see the 
thumbnails for the whole plot). Indeed, it can be seen that 
the increment in significant pairwise comparisons is very 
soft and quite similar for all measures but ADRFine. 

The right figure also shows that for larger query sets 
(A)NDCGFine clearly outperform AGFine, which seems to 
converge. ADRFine performs quite poorly, following a 
somewhat linear trend. This is expected though, as the con-
tribution of each document retrieved is here binary: if a doc-

ument is allowed at rank i it contributes 1
·i k

+  to the score, 

0 otherwise. In the (A)NDCGFine measures the contribution 
is discounted, but it is never binary. This makes ADRFine 
perform significantly worse. Nonetheless, it is important to 
note that ADR was not intended for real valued relevance 
judgments, which make it very difficult for two documents 
to have the same relevance score (right term in Equation 5) 
and thus it requires systems to obtain a nearly ideal ranking. 

Most importantly, it can be seen that the query set size 
could be significantly reduced to lower the cost of the eval-
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uation in terms of relevance judging effort. For example, 
having reduced the query set to 70 queries (70%) only 2 
significant differences would have been missed if using 
AGBroad, none if using AGFine. 

5. EVALUATION STABILITY 

To assess the effect that different effectiveness measures 
and relevance scales have on the stability of the evaluation, 
we need two different query sets, as if we were evaluating 
the systems with two completely different collections. Un-
fortunately, having the same 15 systems with another 100 
completely different queries is not yet feasible. Nonetheless, 
we can use smaller query sets and then observe the trends to 
extrapolate to larger sets. We start with the 5,000 random 
query subsets of sizes 5 to 50 used before. Then, for each of 
these we sample another query subset of the same size, 
again stratified, but also without replacement. That is, for 
each of the 500 trials of each of the 10 query subsets, there 
are two query samples with no common query. Because they 
are disjoint, we can treat them as if coming from two differ-
ent evaluation experiments. Note also that having a total of 
100 queries limits the query subsets to 50 queries at most, as 
the paired subset samples would contain the remaining 50 
queries in each case. 

We re-evaluate the 15 systems for with each pair of query 
samples, and then compare the 105 system pairwise results 
from both samples. We count the number of times there is a 
significant difference with one sample but not with the other 
one, again according to the original Friedman-Tukey’s HSD 
procedure. These would represent stability conflicts across 
two real evaluations. 

As Figure 2 shows, about 4% of the system pairwise 
comparisons are conflicting with the Broad judgments using 
40 queries or more, and as few as 3% with the Fine judg-
ments (dotted horizontal lines). This is consistent with the 
5% significance level set for the statistical procedure (see 
Section 6). Indeed, the curves tend to converge toward the 
end. It is noticeable again that ADR performs significantly 
worse, especially for the Fine judgments, where the increas-
ing conflict rates can be explained by the very low sensitivi-
ty of the measure, as explained before. The other measures 
behave remarkably similarly. 

The peaks for small query subsets are explained by the 
power of the statistical procedures used: with that few que-
ries the tests are not powerful enough to result significant, 
and when they happen to do for one query sample they still 
do not for the other one. This increment in conflicts starts 
decreasing and converges because the tests get more power-
ful with larger samples, so they are able to give significance 
with both query subsets. In fact, for AG with 50 queries all 
conflicts are caused by this lack of significance in one of the 
samples, 99.9% for NDCG and 99.7% for ANDCG; even 
99.7% for ADRFine. Most importantly, there was no case 
whatsoever where the two system pairwise comparisons 
were significant but with opposite sign. As such, one can be 
quite confident about the difference between two systems 
when it comes up significant. 

6. STATISTICAL ANALYSIS 

The usual method to check whether two systems are signifi-
cantly different or not is to run a statistical test such as the 
Wilcoxon test or the t-test. Each of these has an associated 
significance level, which is the maximum allowed probabil-
ity of committing a Type I error. In our case, these errors 
occur when the test says there is a significant difference but 
there actually is none. This significance level uses to be set 
to α=0.05 or α=0.01. That is, a probability of 5% or 1% of 
incorrectly getting significant differences between systems. 

In the case of MIREX 2009 AMS, 105 of these pairwise 
tests would need to be run. Unfortunately, if setting α=0.05 
the probability of committing a Type I error in any of these 
would be 1-(1-α)105=0.995. This is the experiment-wide sig-
nificance level. Thus, almost certainly we would at least 
once be saying that two systems are significantly different 
when they actually are not. In MIREX, the Friedman test is 
run instead, with the Tukey’s HSD post-hoc procedure for 
significance correction [3]. This compares all system pairs 
at once, with the difference that the experiment-wide signif-
icance level remains close to α=0.05. The test is thus much 
less likely to fail in one comparison, at the cost of being 
much more conservative and give fewer significant results 
in the first place [9]. Finally, we also note that while the 
Friedman test is used because it does not assume normality 
of the score distributions, Tukey’s HSD does assume it. 

Figure 2. Evaluation stability (lower is better) with FT, for all 
measures with the Broad (left) and Fine judgments (right). 
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Figure 1. Evaluation power (larger is better) with FT, for all 
measures with the Broad (left) and Fine judgments (right). 

Broad judgments

Query set size

%
 S

ig
ni

fic
an

t 
co

m
pa

ris
on

s

40 45 50 55 60 65 70 75 80 85 90 95 100

46
48

50
52

54
56

58
60

62
64

AG
NDCG
ANDCG
ADR

Fine judgments

Query set size

%
 S

ig
ni

fic
an

t c
om

pa
ris

on
s

40 45 50 55 60 65 70 75 80 85 90 95 100

46
48

50
52

54
56

58
60

62
64

600



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

Tukey’s HSD thus commits fewer Type I errors, but in 
the downside it is less powerful. We should at this point 
consider whether this is what we want. From the point of 
view of the participants, what they are interested in is the 
subexperiment of comparing their system with the other 14, 
and the remaining 91 pairwise system comparisons are ra-
ther uninteresting for them. Therefore, why not perform 
these simple 14 pairwise comparisons? The subexperiment-
wide significance level would be 1-(1-α)14=0.512. Most 
importantly, note that the number of pairwise system com-
parisons grows quadratically in the whole experiment but 
linearly in the subexperiments. As such, for evaluations with 
many more systems the power would decrease drastically if 
using Friedman-Tukey’s HSD. 

6.1 Evaluation Power 

Here we perform the same experiment as in Section 4 and 
with the same query subsets, but instead of using Friedman-
Tukey’s HSD we perform the 105 pairwise system compari-
sons using 1-tailed Wilcoxon tests at the α=0.01 significance 
level (W1). Therefore, the probability of committing a Type 
I error for the complete experiment (in any of the 105 sys-
tem comparisons) is 1-(1-α)105=0.652, but for the subexper-
iments (14 system comparisons in each one) it is dramatical-
ly reduced to 1-(1-α)14=0.131. 

Figure 3 shows as expected that many more significant 
differences are found between systems: as much as 20% 
more (the horizontal dotted lines mark the power achieved 
by the original evaluation). Interestingly, the difference be-
tween AG and (A)NDCG is here more acute, and it gets 
larger as more queries are used. The plots also suggest that 
W1 with about half the queries can achieve the same or bet-
ter power levels as the original evaluation with FT. 

6.2 Evaluation Stability 

As expected, with simple Wilcoxon tests there are many 
more significant differences, but how many of them are ac-
tually caused by mere Type I errors? We have shown that 
the probability of having at least one incorrect result is very 
high, so next we look into stability. 

As Figure 4 shows, the stability levels are very similar. 
AG again converges at about 3.5% of stability conflicts, and 
it does so much earlier than in the original evaluation. Most 

notably, (A)NDCG show here more stability conflicts, con-
verging to about 6%. Note that the peaks observed for small 
subsets are here narrower because the statistical tests are 
more powerful in the first place. Again, ADR performs 
worse, especially for the Fine judgments. 

7. DISCUSSION 

Taking a close look at the power and stability results, one 
may wonder whether it is necessary to use as many as 100 
queries. From a pragmatic point of view, we have argued 
that simple 1-tailed Wilcoxon tests are more useful to the 
MIREX participants than Friedman-Tukey’s HSD. Next, we 
show analytically that they are even more reliable and 
cheaper (see Table 1). 

 50 queries 100 queries 
 Power Conflicts Stable Power Stable 

AGBroad(FT) 52.4% 3.6% 48.8% 57.1% 53.5% 
AGFine(FT) 51.9% 3.2% 48.7% 54.3% 51.1% 

AGBroad(W1) 55.1% 3.7% 51.4% 59.0% 55.4% 
AGFine(W1) 54.3% 3.3% 51.0% 60.0% 56.7% 

Table 1. Power and stability for 50 and 100 query sets when using 
Friedman-Tukey’s HSD (FT) or 1-tailed Wilcoxon tests (W1). 

For instance, with AGFine and 50 queries 51.9% of the 
105 pairwise comparisons are significant according to FT, 
but 3.2% have a stability conflict. Thus, 48.7% of the com-
parisons are both significant and stable. Assuming the ap-
parent convergence of conflicting results, for 100 queries 
there would be 51.1% significant and stable results. But also 
with 100 queries, W1 is even more stable, and with as little 
as 50 queries it is as reliable as FT with the full query set, 
having 51.0% of significant and stable results. (A)NDCG 
show very similar results, with differences of about 2%. 

We note again that very few of these conflicts are caused 
by a change in the sign of the difference between systems, 
and never is it found significant for both query samples. 
Indeed, 97.3% of the conflicts with AG were caused by 
mere lack of statistical power in one of the paired query 
samples, 96.7% with NDCG and 95.9% with ANDCG. 
Again, this indicates that if significance is found, it most 
probably is correct.  

Figure 4. Evaluation stability (lower is better) with W1, for all 
measures with the Broad (left) and Fine judgments (right). 
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Figure 3. Evaluation power (larger is better) with W1, for all 
measures with the Broad (left) and Fine judgments (right). 
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8. CONCLUSIONS AND FUTURE WORK 

We have analyzed the MIREX Audio Music Similarity and 
Retrieval task in terms of power and stability of the evalua-
tions, studying four effectiveness measures (AG, NDCG, 
ANDCG and ADR) with the two traditional sets of rele-
vance judgments employed in MIREX (Broad and Fine). 
About 55% of the pairwise system comparisons come up 
statistically significant with current practices, with all 
measures but ADR behaving very similarly. The increase in 
power follows a logarithmic trend with the number of que-
ries used, so merely using more queries to achieve signifi-
cance does not pay off at some point. As to stability, we 
observed that about 4% of the pairwise system comparisons 
are unstable: with one test collection the difference would 
be significant, but with a different collection it would not. 
However, less than 0.14% of these conflicts had a swap in 
the sign of the difference, and in no case was a sign swap 
coupled with significance in both query samples: at worst, 
they were too small to observe significance in both evalua-
tions. This indicates that if a significant difference is found 
between two systems, experimenters can be very confident 
that the result is indeed correct and general. 

From the pragmatic point of view of a MIREX partici-
pant, we argue that the Friedman-Tukey’s HSD procedure 
used to measure significance is not appropriate. In fact, 
comparing all system pairs with simple 1-tailed Wilcoxon 
tests at the α=0.01 significance level we can obtain even 
more reliability. Most importantly, we have shown that with 
this procedure the query set can be cut in half, and yet the 
reliability of the results would be as good as if using all 100 
queries and Friedman-Tukey’s HSD. This effectively reduc-
es to 50% the effort needed for relevance judging, which is 
especially appealing both for in-house evaluations with little 
resources and for the continuity of MIREX, given its recent 
funding issues [2]. Some of the spare effort could even be 
dedicated to the evaluation of more queries in the SMS task. 

Future work will examine other test collections, used 
both in audio and symbolic similarity retrieval. We believe 
that the similar behavior observed for AG, NDCG and 
ANDCG is due to the small evaluation depth: only the top 5 
results per system are judged for relevance. Using 
(A)NDCG with the standard logarithm base 2, as we did, 
takes advantage of the ranking only beyond the second doc-
ument retrieved. Just the top 5 documents might be too few 
to note the difference, so we also plan to study the effect of 
evaluation depth in power and stability. The effect of the 
number of systems is also subject for further research, as it 
affects not only the statistical procedure but also the evalua-
tion of other systems through the discovery of more relevant 
material. Indeed, we expect to find different patterns when 
evaluating systems by the same research group as opposed 
to systems by different groups. The ultimate goal of looking 
into these factors with more data is to come up with a model 
that allows us to draw some rules of thumb to guide experi-
menters in the tradeoff between reliability and cost. 
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ABSTRACT

This work presents the rationale, tasks and procedures of
MusiCLEF, a novel benchmarking activity that has been de-
veloped along with the Cross-Language Evaluation Forum
(CLEF). The main goal of MusiCLEF is to promote the de-
velopment of new methodologies for music access and re-
trieval on real public music collections, which can combine
content-based information, automatically extracted from mu-
sic files, with contextual information, provided by users via
tags, comments, or reviews. Moreover, MusiCLEF aims at
maintaining a tight connection with real application scenar-
ios, focusing on issues on music access and retrieval that are
faced by professional users. To this end, this year’s evalua-
tion campaign focused on two main tasks: automatic catego-
rization of music to be used as soundtrack of TV shows and
automatic identification of the digitized material of a music
digital library.

1. INTRODUCTION

The increasing availability of digital music accessible by
end users is boosting the development of Music Informa-
tion Retrieval (MIR), a research area devoted to the study
of methodologies for content- and context-based music ac-
cess. As it appears from the scientific production of the last
decades, research on MIR encompasses a wide variety of
different subjects that go beyond pure retrieval: the defini-
tion of novel content descriptors and multidimensional sim-
ilarity measures to generate playlists; the extraction of high
level descriptors – e.g. melody, harmony, rhythm, struc-
ture – from audio; the automatic identification of artist and
genre. As it is well known, the possibility to evaluate the
different research results using a shared dataset has always
played a central role in the development of information re-
trieval methodologies, as it is witnessed by the success of
initiatives such as TREC and CLEF, which focus on textual
documents.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

The same need has been perceived in MIR, motivating the
development of an important evaluation campaign, the Mu-
sic Information Retrieval Evaluation eXchange (MIREX).
MIREX campaigns 1 are organized since 2005 [4] by the In-
ternational Music Information Retrieval Systems Evaluation
Laboratory (IMIRSEL) at the Graduate School of Library
and Information Science, University of Illinois at Urbana-
Champaign. Due to the many limitations posed by the mu-
sic industry, the organizers of the MIREX chose to distribute
only publicly available test collections. Participants are in
charge to create their own collection and after local experi-
mentation submit their software that is run by the organizers.
This approach has two drawbacks, which have already been
debated by the MIR research community: the results of pre-
vious campaigns cannot be easily replicated and the results
depend on the individual training sets and not only on the
submitted algorithms.

A recent relevant initiative, that aims at overcoming the
limitations imposed by not sharing the datasets between re-
searchers, is the Million Songs Dataset (MSD). Thanks to
MSD 2 , researchers can access a number of features from a
very large collection of songs [2]. Unfortunately, the algo-
rithms used to extract these features are not public, limiting
the possibility to carry out research on content description
techniques. Another ongoing initiative related to the eval-
uation of MIR approaches is the Networked Environment
for Music Analysis (NEMA), that aims at providing a web-
based architecture for the integration of music data and an-
alytic/evaluative tools 3 . NEMA builds upon the achieve-
ments of MIREX campaigns regarding the evaluation of MIR
approaches, with the additional goal of providing tools for
resource discovery and sharing.

Within this scenario, MusiCLEF is an additional bench-
marking initiative, that has been proposed in 2011 as part
of the activities of the Cross-Language Evaluation Forum
(CLEF). CLEF focuses on multilingual and multimodal re-
trieval 4 and gathers researchers in different aspect of in-
formation retrieval, ranging from plagiarism and intellectual
property rights to image retrieval.

The goal of MusiCLEF is to promote the development of

1 http://www.music-ir.org/mirex
2 http://labrosa.ee.columbia.edu/millionsong/
3 http://www.music-ir.org/?q=nema/overview
4 http://clef-campaign.org/
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novel methodologies for music access and retrieval, which
can combine content-based information, automatically ex-
tracted from music files, with contextual information, pro-
vided by users through tags, comments, or reviews. The
combination of these two sources of information is still under-
investigated in MIR, although it is well known that content-
based information alone is not able to capture all the relevant
features of a given music piece (for instance, its usage as a
soundtrack or the year of release), while contextual informa-
tion suffers from the typical limitations for new items and
new users (also known as cold start).

Aiming at investigating and promoting research on the
combination of textual and music information, MusiCLEF
has a strong focus on multimodality that, together with mul-
tilingualism, is the main objective of the CLEF evaluation
forum. Moreover, the tasks proposed for MusiCLEF 2011
are motivated by real scenarios, discussed with private and
public bodies involved in music access and dissemination. In
particular, MIR techniques can be exploited for helping mu-
sic professionals to describe music collections and for man-
aging a music digital library of digitized analogue record-
ings. To this end, the organizers of MusiCLEF exploited
the ongoing collaborations with both a company for music
broadcasting services (LaCosa s.r.l.) and a public music li-
brary (University of Alicante’s Fonoteca).

Two tasks are proposed within MusiCLEF 2011, and both
are based on a test collection of thousands of songs in MP3
format. To completely overcome copyright issues, only low-
level descriptors will be distributed to participants. Figure 1
depicts the tasks workflow of MusiCLEF, which is described
in more detail in the following sections.

MusicCLEF not publicMusicCLEF public web site

                      Participant                 participant pc    .         
last.fm

webservice

MP3 
Library

Low level 
features

if(conn
  SELEC
  WHERE
  print
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1.read

<script
 var a=
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 if(xls
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  SELEC
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last.fm data
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4. read results

Results 
evaluation

Campaign
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Results
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last.fm data

4. read

5. produce

2. produce

1. http request

7. publish
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it

Figure 1: Task workflow in MusiCLEF.

It is important to note that, although the audio files can-
not be distributed, the goal of MusiCLEF is to grant the par-
ticipants with complete access to music features of the test
collection. This means that the algorithms used to extract

the music descriptors are public – and in particular are based
on the set of tools provided by the MIRToolbox – but also
that participants can submit their own original algorithm for
feature extraction, that will be run locally. Therefore, Musi-
CLEF goals are to fill the gap between the other important
initiatives in MIR evaluation: researchers can test and com-
pare their approaches using a shared number of tasks, as in
MIREX, while accessing a shared collection of content de-
scriptors, as in MSD.

2. APPLICATION SCENARIOS

As mentioned in the previous section, a major goal of Musi-
CLEF is to maintain a tight connection with real application
scenarios, in order to promote the development of techniques
that can be applied to solve issues in music accessing and re-
trieval that are faced by professional users. The choice of fo-
cusing on professional users is motivated by the fact that they
need to address a number of real-life issues that are usually
not taken into account by music accessing systems aimed at
the general public. At the same time, the evaluation of the
effectiveness of the proposed automatic solution is easier to
assess, because professional users have a clear idea of what
are their information needs.

In the following we present the two professional partners
of MusiCLEF, and we also describe the motivations that in-
duced us to organize the two tasks mentioned in the previous
section.

2.1 LaCosa s.r.l.

LaCosa was founded as a service provider of the major TV
broadcasting – public and private – companies in Italy with
the goal of managing and describing a large music collec-
tion of songs to be used for TV programs, including jingles,
background and incidental music, and music themes for TV
shows. LaCosa has a strong cooperation with RTI, a com-
pany that, apart from buying and storing songs issued by
the major record companies, produces its own music cata-
logue. At present, RTI library contains about 320,000 songs
of pop-rock, jazz, and classical music. Besides playing the
role of music consultant, being one of the biggest private
music repositories in Italy, RTI offers a number of services
to external companies of music consultants, who can browse
remotely the repository. Audio features distributed to the
participants are thus extracted remotely, without download-
ing the audio files.

The typical job of a music consultant is to select a list
of songs that are suitable for a particular application, for in-
stance a TV commercial, the “promo” of a new program,
the background music for a documentary, and so on. The
availability of large online collections, such as Last.fm and
YouTube, is representing an alternative to the services of a
music consultant. For instance, journalists are increasingly
selecting by themselves the music for their news stories, in-
stead of asking to music consultants. The goal of LaCosa is
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then to provide high quality descriptions, that are tailored to
the particular application domain, in order to represent still
a more interesting alternative to free recommendations.

Given these considerations, the requirements of LaCosa
can be summarized as follows: How to improve the acqui-
sition process, extracting the maximum amount of informa-
tion about music recordings from external resources? How
to provide good suggestion about possible usages of music
material, minimizing the amount of manual work?

Because of the interest on the development of automatic
systems for addressing these two requirements, LaCosa de-
cided to provide at its own expenses a number of assessors
to create the ground truth for evaluation. The involvement
of professional users included also the definition of a vocab-
ulary of 167 terms describing music genre (terms are orga-
nized in two levels, genre and subgenre), and of 188 terms
describing the music mood. It is important to note that, in
this case, the concept of mood is related to the usage of a
particular song within a video production. As explained in
more detail in Section 3, only a subset of the mood tags have
been used in the evaluation campaign.

2.2 University of Alicante’s Fonoteca

Some years ago, the local radio broadcast station Radio Al-
icante Cadena Ser transferred its collection of vinyls to the
Library of the University of Alicante. This collection con-
tains approximately 40,000 vinyls of an important cultural
value, containing a wide range of genres. The library de-
cided to digitize the vinyls, sound and covers, to overcome
the preservation problems when allowing library users to ac-
cess the discs and to enable its reproduction embedded in
the library’s Online Public Access Catalog (OPAC) with the
name Fonoteca 5 .

The process was carried out following library cataloguing
techniques to make the inventory of the collection. Vinyls
were catalogued using Universal Decimal Classification, and
classified into subjects based on the Library of Congress sub-
ject headings. Digitized covers and audio were linked to
the corresponding records. The cataloguing data consists of
the album’s title, the name of the discographic company, the
release year, its physic description, several entries for gen-
res classified manually by the cataloguers, and finally notes
about the content. Regarding the sound content, each vinyl
was digitized in two files, one for each side. For 45 rpm
discs each side usually contains only one song, while for 33
rpm LPs, which are more common in the collection, each
side contains several tracks.

Having catalogued and digitized the material, some draw-
backs emerge that strongly limit the browsing capabilities
in the OPAC. The separation of tracks from a continuous
stream could be easily solved in most cases just by finding
silences between tracks. However, this may not be the case
for live recordings or classical music tracks, where the mu-
sic itself contains long rests. A related problem is the correct

5 http://www.ua.es/en/bibliotecas/SIBID/fonoteca

entitling of the tracks. Although some catalogued albums
contain details of the contained tracks, there are many oth-
ers, mainly operas, where the track names are not present.
Another common situation is that of finding two different
recordings of the same work whose tracks have been la-
beled using two different languages or naming schemes, e.g.,
“Symphony No. 9” knowns as “Novena Sinfonı́a” as well as
“Choral Symphony”. Audio fingerprinting techniques can
hardly be applied to solve this task because of disc age, be-
sides the fact that some of the discs may not have been reis-
sued on CD and thus may not have been included in any
audio fingerprint dataset.

Besides these drawbacks, the staff of the library demands
some features that cannot be implemented given the current
structure of the data. For example, given an album, find it
in music sites like Last.fm or Grooveshark. Similarly, find a
given song/track and its different recordings in those music
sites and inside the library regardless of language or naming
schemes. In order to locate music, they want the users to be
able to query the library given metadata not contained in the
catalog, like the lyrics of the songs.

3. CATEGORIZATION OF POP/ROCK MUSIC

The goal of the first task is to exploit both automatically
extracted information about the content and user generated
information about the context to carry out categorization.
The task is based on a real application scenario: songs of
a “commercial music library” need to be categorized ac-
cording to their possible usage in TV and radio broadcasts
or Web streaming (commercials, soundtracks, jingles). Ac-
cording to experts in the field, it is common practice to use
different sources of information to assess the relevance of a
given song to a particular usage. At first candidate songs are
selected depending on the result of Web searches and on the
analysis of user-generated tags. Since these sources of infor-
mation are usually very noisy, experts make the final choice
depending on the actual music content.

In order to simulate this scenario, participants of Musi-
CLEF are provided with three different sources of informa-
tion: content descriptors, user tags, and related Web pages.
Since CLEF campaigns aim at promoting multilingualism,
tags and Web pages are in different languages. It was not
mandatory, at least for MusiCLEF 2011, neither to use all
the different languages nor to exploit all the source of infor-
mation. In general, participants are free to select the descrip-
tors that better fit the approach they want to test. To this end,
the possibility of creating a baseline of individual sources of
information is considered of interest for future MusiCLEF
campaigns.

The dataset made available to participants includes mostly
songs of pop and rock genres, which are the more often used
in TV broadcasts. As mentioned in Section 2.1 a number of
music professionals from LaCosa s.r.l. provided the catego-
rization for the complete dataset of 1355 songs, which has
been divided in a training set of 975 song and test set of the
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remaining 380 songs. Being the first year, the ground truth
is available for a limited number of songs but it is envisaged
that the continuation of MusiCLEF over the years will create
a shared background for evaluation.

The participants were asked to assign to each song in the
test set the correct tags. Results were evaluated against the
ground truth.

3.1 Definition of the Dataset

The task of music categorization can be considered an auto-
tagging task, that is the automatic assignment of relevant de-
scriptive semantic words to a set of songs. In the literature,
several scalable approaches have been proposed for labeling
music with semantics including social tagging, Web mining,
tag propagation from similar songs, and content-based au-
tomatic strategies [3]. Regardless of the approach used, the
output of a tagging system is generally a vector of tag scores,
which measures the strength of the relationships tag-song for
each tag of a semantic vocabulary (i.e. semantic weights).

The dataset built to carry out the auto-tagging evaluation
campaign is composed of 1355 different songs, played by
218 different artists; each song has a duration between 2 and
6 minutes. One of the goals of the task is to have participants
that may exploit, beyond content-based audio features, also
other music descriptors (e.g. social and Web mined tags).
For this reason we built the dataset using only well-known
artists; this allowed us to gather a big amount of Web-based
descriptors (i.e. the “wisdom of the crowd”) for most of the
songs in the dataset. We collected the songs starting from
the “Rolling Stone 500 Greatest Songs of All Time” list 6 ,
which was the cover story of a special issue of Rolling Stone
(no. 963 of December 9 2004 – updated in May 2010). The
song list was chosen based on votes by 172 musicians, crit-
ics, and music-industry professionals, and is almost entirely
composed of English-speaking artists. Table 1 reports the
top 10 positions of this rank list.

Starting from this list, we considered all the different artists
as seeds to query a larger music database for gathering all the
songs associated to every artist, excluding live versions that
are usually of little interest for TV broadcasts. From this
pool we randomly retained at most 8 songs per-artist, in or-
der to fairly uniformly distribute songs between the different
artist. As result, we had 161 artists associated with about 8
songs in the final collection.

Each song in the dataset has been manually annotated by
music professionals from LaCosa. The vocabulary of tags
defined by the experts was initially composed of 355 tags
divided in two categories – genre (167) and usage (288) –
loosely inspired by the Music Genome Project 7 .

After that, all the songs have been tagged by the human
experts with at least one tag for genre and five tags for mood.
At the end, we discarded all the tags that were assigned to

6 http://www.metrolyrics.com/rs/ (as in May 2011)
7 http://www.pandora.com

Rank Title Artist

1 Like a rolling stone Bob Dylan
2 (I can’t get no) Satisfaction Rolling Stones
3 Imagine John Lennon
4 What’s going on Marvin Gaye
5 Respect Aretha Franklin
6 Good Vibrations Beach Boys
7 Johnny B. Goode Chuck Berry
8 Hey Jude Beatles
9 Smells like teen spirit Nirvana

10 What’d I say Ray Charles

Table 1: Top 10 songs of the Rolling Stone 500 Greatest Songs
List (updated 2010).

less than twenty songs; this led to the final released vocabu-
lary of 94 tags.

3.2 Content- and Context-based Descriptors

Songs are also described by audio features. In particular,
we precomputed timbre descriptors (Mel-Frequency Cep-
stral Coefficients) that are directly available to participants.
Feature sets have been computed using the MIRToolbox [7]
algorithms, which are publicly available. Moreover, partici-
pants can request the extraction of additional descriptors. In
order to let participants perform their own feature extraction,
we plan to make available also more general features in fu-
ture years. In particular, we plan to provide the output of
the triangular filterbanks before computing the log and the
cosine transform of MFCCs. The rhythm based descriptors
provided by the MIRToolbox will be precomputed as well.

We also provide social tags gathered from Last.fm as avail-
able on May 2011. For each song of the corpus, we used
the Last.fm audio fingerprint service 8 and public data shar-
ing AudioScrobbler website 9 to associate our music files to
their songs and collect social tags for each song. Therefore,
we release the list of social tags together with their associ-
ated score.

Category Tags

Genre
bossanova, country rock, hymn, orches-
tral pop, slide blues

Mood
alarm, awards, danger, glamour, mili-
tary, scary, trance

Table 2: A sample of the tags proposed to the music professionals
for annotating the songs of the auto-tagging dataset.

8 http://blog.last.fm/2010/07/09/
fingerprint-api-and-app-updated/

9 http://ws.audioscrobbler.com/2.0/
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3.3 Web-mining

Web pages covering music-related topics have been used
successfully as data source for various MIR tasks, in partic-
ular, for information extraction (e.g., band membership [5],
artist recommendation [1], and similarity measurement [6,
8]. The text-based features extracted from such Web pages
are often referred to as cultural or community metadata since
they typically capture the knowledge or opinions of a large
number of people or institutions. They therefore represent a
kind of contextual data.

We first queried Google to retrieve up to 100 URLs for
each artist in the collection. Subsequently, we fetch the Web
content available at these URLs. Since usually the resulting
pages typically contain a lot of unrelated documents, we al-
leviate this issue by adding further keywords to the search
query, with an approach similar to [8]. We crawled various
sets of Web pages in six different languages – English, Ger-
man, Swedish, French, Italian, and Spanish – employing the
following query scheme:
"artist name" (+music|+musik|+musique|+musica)

For MusiCLEF a total of 127,133 pages have been fetched.
The resulting information enables participants who would

like to make use of structural information to derive corre-
sponding features from the raw Web pages. In addition to
these sets of Web pages, we provide precomputed term weight
vectors. Taking into account the findings of a large scale
study on modeling term weight vectors from artist-related
Web pages [6], we first describe each artist as a virtual doc-
ument, which is the concatenation of the HTML documents
retrieved for the artist. We then compute per virtual artist
document the term frequencies (tf ) in absolute numbers.
Further providing the inverse document frequency (idf ) scores
for the Web page set of each language will allow participants
to easily build a simple tf · idf representation or apply more
elaborate information fusion techniques. In summary, for
the term vector representation of the dataset, we offer the
following pieces of information:

• tf weights per virtual document of each artist

• global idf scores for each language

• corresponding lists of terms for each language

The twofold representation of the datasets (Web pages
and generic term weights) leaves much room for various
directions of experimentation. For example, Web structure
mining and structural analysis techniques can be applied to
the Web pages, while the provided term weight representa-
tion will certainly benefit from term selection, length nor-
malization, and experimentation with different formulations
for tf and idf .

4. IDENTIFICATION OF CLASSICAL MUSIC

The task of automatically identifying an audio recording is
a typical MIR task, consisting of the clustering in the same

group recordings of different performances of a composi-
tion. Also in this case, a real-life application scenario has
been considered: loosely labeled digital acquisition of old
analogue recordings of classical music should be automat-
ically annotated with metadata (composer, title, movement,
excerpt). Although systems for automatic music identifica-
tion already give good results, the combination of segmen-
tation and identification of continuous recordings is not well
investigated yet. The participants are provided by a set of
digital acquisitions of vinyls made by the Fonoteca, that has
to be segmented and labeled.

An important aspect addressed by this task is the scalabil-
ity of the approaches. To this end, we encourage participants
to test the performance on the same task with a reference col-
lection of increasing size, up to about 6,700 MP3s. This is
achieved by providing additional information on the record-
ing that can help filtering out part of the dataset. In par-
ticular, the additional information is consistent with the one
founded in the real LP covers – author, performer, short title
– and is the sole information that is reported by the Fonoteca
catalogue. For this task, relevance judgments are provided
automatically using available metadata and listening directly
to the recordings.

Participants are provided with content descriptors of the
complete dataset of 6680 single music files and with 22 ad-
ditional digital acquisitions of 11 LPs (thus a total of 22 LP
sides is available on individual MP3s). There are two differ-
ent goal: to identify the songs belonging to the same group
(for single files) and to match the content of the LP record-
ings with the corresponding songs.

4.1 Definition of the Dataset

Music identification usually focuses on pop music (hence
its common designation as cover song identification). The
reason for that might be attributed to the disproportion in
commercial interests for the pop music market with respect
to other genres. Nonetheless the need for the application of
such technology to other styles is often felt by many music
libraries and archives that, especially in Europe, aim at the
preservation and dissemination of classical music.

The collection that we propose was created starting from
the database of a broadcasting company consisting of about
320,000 music recordings in MP3 format (see Section 2.1).
Our primary aim was to extract from it the largest possible
sub-collection of classical music in order to build a shared
dataset for the classical music identification task. We se-
lected 2,671 such recordings, associated to works that are
represented at least twice in the database. These recordings
form 945 cover sets 10 ; the distribution of the set cardinal-
ities follows a power law, and is represented in Figure 2.
The distribution of the recordings with respect to the works’
authors is depicted in Figure 3. The collection was finally

10 The phrase “cover set” denotes a set of different recordings of the same
underlying piece of music.
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Figure 2: Distribution of cover set cardinalities for the classical music cover identification task.
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Figure 3: Number of files for the most represented authors.

augmented to 6680 pieces by adding recordings of classical
music works by other authors.

4.2 Content-based Descriptors

Songs are described by audio features. In particular, we
precomputed audio descriptors (chroma vectors) that are di-
rectly available to participants. Chroma vectors have been
computed at different temporal and frequency resolutions.
Also in this case, feature sets have been computed using
the MIRToolbox [7] algorithms, which are publicly avail-
able. Moreover, participants can request the extraction of
additional descriptors (which may include also additional
chroma vectors computed with different algorithms). It is
important to note that datasets of any size can be processed
thanks to implicit memory management mechanisms devel-
oped in MIRtoolbox.

5. CONCLUSIONS

This paper introduces MusiCLEF, a new benchmarking ac-
tivity that aims at fostering content- and context-based anal-
ysis techniques to improve music information retrieval tasks,
with a special focus on multimodal approaches. A one-day
MusiCLEF workshop is to be held in 2011 in Amsterdam as

part of the Cross-Language Evaluation Forum (CLEF) con-
ference, where participants can share their approaches and
contribute to the future organization of MusiCLEF.
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ABSTRACT 

The Music Information Retrieval field has acknowledged 
the need for rigorous scientific evaluations for some time 
now. Several efforts were set out to develop and provide the 
necessary infrastructure, technology and methodologies to 
carry out these evaluations, out of which the annual Music 
Information Retrieval Evaluation eXchange emerged. The 
community as a whole has enormously gained from this 
evaluation forum, but very little attention has been paid to 
reliability and correctness issues. From the standpoint of the 
analysis of experimental validity, this paper presents a 
survey of past meta-evaluation work in the context of Text 
Information Retrieval, arguing that the music community 
still needs to address various issues concerning the 
evaluation of music systems and the IR cycle, pointing out 
directions for further research and proposals in this line. 

1. INTRODUCTION 

Information Retrieval (IR) is a highly experimental 
discipline, and IR Evaluation (IRE) experiments are the 
main research tool to scientifically compare IR systems and 
algorithms to advance the state of the art through careful 
examination and interpretation of their results. IRE has been 
used and studied in Text IR for over 50 years now, since the 
Cranfield 2 experiments [18], with successful evaluation 
forums such as TREC, CLEF, NTCIR or INEX. Until 2006, 
these evaluations were not usual at all in Music IR (MIR), 
although there was general concern about specific needs and 
resources for a fruitful beginning of evaluation campaigns in 
the Music domain. 

The “ISMIR 2001 resolution on the need to create 
standardized MIR test collections, tasks, and evaluation 
metrics for MIR research and development” was drafted and 
signed by many members of the community as a 
demonstration of the general concern [20]. A series of three 
workshops then followed between July 2002 and August 
2003, were researches begun this long-needed work for 
evaluation in Music IR [20]. There was some general 
agreement that evaluation frameworks for Music IR would 
need to follow the steps of the Text REtrieval Conference 

(TREC) [53][56], although it was clear too that special care 
was to be taken not to oversimplify the TREC evaluation 
model [19], because Music IR differs greatly from Text IR 
in many aspects that affect evaluations [21]. The general 
outcome of these workshops, and many other meetings, was 
the realization by the Music IR community that these 
evaluations were clearly necessary, and that a lot of effort 
and commitment was needed to establish a periodic 
evaluation forum for Music IR systems. Finally, in 2005 the 
first edition of the Music Information Retrieval Evaluation 
eXchange (MIREX) took place, and ever since it has 
evaluated over a thousand Music IR systems for many 
different tasks on a yearly basis [23]. 

The impact of MIREX has been without doubt beneficial 
for the Music IR community, not only for fostering these 
experiments, but also for studying and establishing specific 
evaluation frameworks for the Music domain. But now that 
it is widely accepted, it seems that the community has 
settled down in the belief that we finally have what we 
wanted. It is our belief though, that while we are on the right 
path, there is still a lot of work to do in Music IR 
Evaluation. These experiments are anything but easy and 
straightforward [54][26], so much that a whole area therein 
is concerned with their reliability and correctness: 
Information Retrieval Meta-Evaluation. The Text IR 
literature has been flooded with meta-evaluation studies for 
the past two decades, showing year after year that IRE has 
its very own issues and proposing different approaches and 
techniques to cope with them. While the MIR community 
has inherited good evaluation practices by adopting TREC-
like frameworks, some are already outdated, and others still 
lack appropriate analyses. We agree that not everything 
from the Text IR community applies to Music IR, but a lot 
of meta-evaluation studies do. In fact, since the inception of 
MIREX in 2005 several landmark studies have taken place 
in the context of TREC, specially focused on large-scale 
evaluation, robustness and reliability, none of which has 
even been considered for Music IR.  

In this paper we approach meta-evaluation from the point 
of view of the analysis of experimental validity of IR 
Evaluation experiments. We show different aspects of IRE 
affected by these validity considerations, and survey the 
Text IR literature outlining how these problems are dealt 
with in evaluation forums such as TREC. Finally, we show 
the current shortcomings in MIR evaluation and propose 
lines for further work, as a starting point for what we hope 
begins a tradition of periodic Music IR Evaluation studies. 
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2. IR EVALUATION 

IR evaluation experiments follow the traditional Cranfield 
paradigm conceived by Cleverdon in the late 50’s [18]. The 
main element needed for these evaluations is a test 
collection, which is made up of three basic pieces: a 
document collection, a set of information needs and the 
relevance judgments telling what documents are relevant to 
these information needs (the ground truth or gold standard). 
These test collections are built in the context of a particular 
task defining the intent of the information needs, and several 
measures are used to rank the systems following different 
criteria, always from the point of view of a user model with 
assumptions and restrictions as to the potential real users of 
the systems being evaluated.  

Although some variations exist, a typical IRE experiment 
goes as follows [54][26]. First, the task is identified and 
well-defined, normally seeking the agreement between 
several researchers. Depending on the task, a document 
collection is either put together or reused from another task, 
and a set of information needs is selected, often given as 
direct input queries. The systems to evaluate return their 
results for the particular query set and document collection, 
and these results are evaluated using several measures that 
attempt to assess how well the systems would have satisfied 
a real user. This assessment employs the relevance 
judgments in the ground truth, made before or after running 
the systems, depending on the task and other factors. 

3. IR META-EVALUATION 

Experimental validity establishes how well an experiment 
meets the well-grounded requirements of the scientific 
method [30][35][36]. That is, whether the results obtained 
do fairly and actually assess what the experimenter 
attempted to measure. Validity of experiments is usually 
assessed from different points of view, depending on what 
aspects of the scientific method are at stake. 
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Construct x x     x 
Content x x x x  x  

Convergent  x   x  x 
Criterion    x x  x 
Internal   x x x x x 

External   x x x x  
Conclusion  x  x x x x 

Table 1. The effect of Experimental Validity on Information 
Retrieval Evaluation experiments. 

Information Retrieval Evaluation experiments, as 
scientific experiments themselves, are also subject to 
validity analysis. Meta-evaluation can be viewed as the 
analysis of this experimental validity, highlighting that the 
evaluation is itself being evaluated. Next, we discuss several 
types of experimental validity and show how they affect IR 
evaluation experiments (see Table 1). 

3.1 Construct Validity 

Construct validity evaluates the extent to which the 
variables of an experiment correspond to the theoretical 
meaning of the concept they purport to measure. For 
example, an experiment to assess the quality of the results 
given by a Web search engine would not have construct 
validity if quality were measured as the number of visits to 
the site, because this actually measures its popularity. Thus, 
an experiment acquires construct validity by thorough 
selection and justification of the variables used. 

In the case of IRE, construct validity is concerned mainly 
with the evaluation measures and the user model considered 
for the particular task [16]. For instance, in a traditional ad 
hoc retrieval task, binary set-based measures such as 
Precision and Recall do not resemble a real user who wants 
not only relevant documents, but highly relevant ones at the 
top of the results list [42]. Instead, rank-based measures 
such as Average Precision, graded relevance judgments 
[52][31], or the combination [29], are more appropriate. 

3.2 Content Validity 

Content validity evaluates the extent to which the 
experimental units reflect and represent the elements of the 
domain under study. For example, an experiment measuring 
the reading comprehension of students would not have 
content validity if only science-fiction stories were 
employed. Thus, an experiment acquires content validity by 
careful selection of the experimental units included. 

In IR evaluation, it is imperative that the task resembles 
as closely as possible the real-world settings it represents, 
and that the systems evaluated fulfill as much as possible the 
needs of the real users. However, evaluating under such 
conditions would introduce a heavy user component very 
difficult to manage and control, so a more system-oriented 
approach is usually followed [54][18]. As such, the actual 
value of the systems in real settings is many times 
overlooked [34], and sometimes it can be questioned [45]. 

Likewise, the documents in the collection must resemble 
as closely as possible the documents that would be found in 
a real-world setting of the task, and have a sufficiently large 
sample so as to be representative of the domain. Also, the 
particular queries used should be carefully selected to 
represent a diverse and wide range of possible use cases, 
while being reasonable for the document collection in use 
[54][12]. Moreover, some queries are more helpful than 
others to differentiate between systems [25][38]. 

3.3 Convergent Validity 

Convergent validity evaluates the extent to which the results 
of an experiment agree with other results, theoretical or 
experimental, they should be related with. For example, the 
results of a study measuring the mathematical skills of 
students should be correlated with other studies on abstract 
thinking. Thus, an experiment acquires convergent validity 
by careful examination and confirmation of the relationship 
between its results and others supposedly related. 
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Ground truth data is a much debated part of IR evaluation 
because of the subjectivity in the very concept of relevance. 
Several studies show that documents are judged differently 
by different people in terms of their relevance to some 
specific information need, even by the same people over 
time. As such, the validity of IRE experiments can be 
questioned because different results are obtained depending 
on the people that make the relevance judgments. Several 
studies have shown that absolute figures do indeed change, 
but the relative differences between systems stand still for 
the most part [51]. For very large-scale experiments though, 
these differences can have a large impact on the results [13]. 

Effectiveness measures are usually categorized as 
precision- or recall-oriented. Therefore, it is expected for 
precision-oriented measures to yield effectiveness scores 
correlated with other precision-oriented measures, and 
likewise with recall-oriented ones. However, this does not 
always happen [39][31], and some measures are even better 
correlated with others than with themselves [57], evidencing 
predictability problems. In general, all these measures 
should be correlated with user satisfaction in the particular 
task [42], so alternatives such as rank-based measures, 
different forms of ground truth data [4] or relevance 
discount functions [29] are usually considered. 

3.4 Criterion Validity 

Criterion validity evaluates the extent to which the results of 
an experiment are correlated with those of other experiments 
already known to be valid. For example, a study to evaluate 
if a new product would have as good sales as an old one 
would lack criterion validity if subjects were just asked 
whether they like the new one, instead of whether they like 
it even more: the context changed in the second case. Thus, 
an experiment acquires criterion validity by careful 
examination and confirmation of the correlation between its 
results and others previously established. 

As real-world systems need to manage more and more 
amounts of information, modern IR evaluation studies have 
focused on practical large-scale methodologies, mainly 
through a technique called pooling [8]. This permits the use 
of large collections while requiring somewhat reasonable 
effort in relevance judging by assuming that documents not 
retrieved by any system are indeed not relevant. More recent 
studies analyze the use of non-experts for relevance judging 
[3], crowdsourcing platforms such as Amazon Mechanical 
Turk [1][17], requiring fewer judgments to give an estimate 
of the absolute effectiveness scores of the systems [59][60], 
selecting what judgments better tell the difference between 
systems [10][11], or even using no relevance judgments at 
all [44]. All these improvements allow for an increase on 
content validity as the effort per query diminishes. The 
results of all these methodologies are usually compared with 
the results of traditional ones, in terms of criterion validity, 
to see whether they are really viable or not. That is, whether 
the results they produce not only require less effort, but also 
agree with those of previous, accepted methodologies. 

3.5 Internal Validity 

Internal validity evaluates the extent to which the 
conclusions of an experiment can be rigorously drawn from 
the experimental design followed, and not from other factors 
unaccounted for. For example, a study on the usability of 
two word processors would not have internal validity if the 
subjects were already familiar with one of the products. 
Thus, an experiment acquires internal validity by careful 
identification and control of possible confounding variables 
and selection of experimental designs. 

In IR evaluation, observed differences between systems 
could be the result of the particular people that do the 
relevance judgments, as their personal notion of relevance 
could be more beneficial for some systems than for others 
[13], let alone if the ground truth data has inconsistencies. 
Likewise, if a pooling method were used, systems more 
alike would reinforce each other, while a system with a 
novel technology would not be able to contribute that much 
to the pool: it is more likely for the former systems to have 
more of their documents included in the pool than for the 
latter [62]. In general, the non-relevancy assumption affects 
both the measures [40] and the overall results [9].  

The particular queries used could also be unfair if some 
systems were not able to fully exploit their characteristics. 
This is of major importance for machine learning tasks 
where systems are first tuned with a training collection: if 
the query characteristics were very different between the 
training and evaluation collections, systems could be 
misguided. On the other hand, if the same collections were 
used from year to year, an increase in performance could be 
just due to overfitting and not to a real improvement [54]. 
Also, some evaluation measures could be unfair to some 
systems if accounting for information they cannot provide. 

3.6 External Validity 

External validity evaluates the extent to which the results of 
an experiment can be generalized to other populations and 
experimental settings. For example, a study on the effects of 
some cancer treatment would not have external validity if 
most patients in the sample were teenage males, as it would 
not be clear what the effect of the drug is in, say, elder 
women. Thus, and experiment acquires external validity by 
careful experimental design and justification of sampling 
and selection methods. 

This is probably the weakest point of IR evaluation [54]. 
As mentioned, it is very important that the document 
collection and query set is representative of the domain 
being studied. On the other hand, having large collections 
means that the completeness of the ground truth is 
compromised: it is just not feasible to judge every query-
document pair [8][62]. As mentioned, the usual solution is 
to pool the first k results of the participating systems and 
judge only those, assuming that all others are not relevant. 
This is an obvious problem because the very test collection 
(documents, queries and ground truth), which is in its own a 
product of the experiment, might not be reusable for 

611



Oral Session 6: Databases and Evaluation

subsequent evaluations of new systems [14][15]. The 
validity of the latter experiments could be compromised. 

Likewise, it is not justified to compare two systems 
evaluated with different test collections, because the results 
in each case are very dependent on the query set, relevance 
judgments, measures, etc. [6][54]. Indeed, it is known that 
different systems can perform very differently when 
evaluated with different collections, especially if machine 
learning techniques are involved. This highlights the lack of 
external validity in IRE experiments, and the importance of 
always interpreting the results in terms of pairwise system 
comparisons rather than absolute performance figures [54]. 
That is, comparisons across collections and claims about the 
state of the art based on a single collection, are not justified. 
Nonetheless, very rough comparisons between two systems 
across collections could be made if reporting the results of 
well-established baseline systems for those collections and 
their relative difference with the systems of interest [2]. 

3.7 Conclusion Validity 

Conclusion validity evaluates the extent to which the 
conclusions drawn from the results of an experiment are 
justified. For example, a study might claim that people has 
better access to the Internet in China than in the U.S. 
because there are more users connected, when in fact the 
percentage of people connected, over the total population, is 
much less. Thus, an experiment acquires content validity by 
careful selection of the measuring instruments and the 
statistical methods used to draw de grand conclusions. 

Two important characteristics of the effectiveness 
measures used in IR Evaluation are their stability and 
sensitivity. The results should be stable under different 
conditions, such as relevance judgments made by different 
people or different sets of queries, so the results do not  vary 
significantly and alter the conclusions as to what systems 
are better [7]. Also, they are desired to discriminate between 
systems if they actually perform differently [55][39], and to 
do so with the minimum effort [41]. Likewise, they are 
desired to not discriminate between systems that actually 
perform very similarly. Note that these performance 
differences must be considered always in the context of the 
task and its underlying user model. 

Given a set of systems and the scores they obtained for 
different queries according to some measure, they are 
usually compared in terms of their mean effectiveness score. 
Not until recently, statistical methods have been 
systematically employed and analyzed to compare systems 
by their score distribution rather than just their mean score 
[43][58]. At this point, it is very important to interpret 
correctly the results and understand the very issues of 
hypothesis testing; and most importantly, distinguish 
between statistical and practical significance: even if one 
system is found to be significantly better than another one, 
the difference might be extremely small to be noticed by 
users. In fact, the tiniest practical difference will turn out 
statistically significant with a sufficient number of queries.  

4. CHALLENGES IN MUSIC IR EVALUATION 

Research in IR follows a cycle that ultimately leads to the 
development of better systems. First, in the Development 
phase researchers build a system for a particular task, and to 
assess how good it is, there is an Evaluation phase. Once the 
experiments are finished, researchers then enter a phase of 
Interpretation of the results, which leads to a phase of 
Learning why the system worked well or bad and under 
what circumstances. Finally, with the new knowledge 
gained researchers get into an Improvement phase to try and 
make their system better, going back over to the Evaluation 
phase. Unfortunately, current evaluation practices in Music 
IR seem to fall short in this cycle. 

Development. The task intent and its underlying user 
model are sometimes unclear or its real-world applicability 
uncertain. For instance, is it realistic that while the queries 
to the Query by Humming task are in audio format, the 
document collection is in symbolic form? Or, in the 
similarity tasks, is it realistic that the queries are actual 
items contained in the collection? Likewise, are 30 second 
clips realistic for all tasks? 

Evaluation. Several tasks, such as Audio Chord Detection 
or Symbolic Melodic Similarity, use document collections 
either too small or biased toward some genre or time period 
[46][48], which jeopardizes the validity of the results. 
Moreover, the lack of standardized and public collections 
results in research groups using their personal, private, often 
undescribed and rarely analyzed collections, which 
precludes other researchers to compare systems or validate 
and replicate results, hindering the overall development of 
the field and often leading to wrong conclusions. In this line, 
the lack of standard evaluation software that all researchers 
can use, thus minimizing the likelihood of bugs and 
incorrect results, should be addressed too, especially with 
new or undocumented measures specific of Music IR. 

Interpretation. Some effectiveness measurers, such as 
Normalized Recall at Group Boundaries, are used without 
description, references or source code, making them 
impossible to interpret or use in private evaluations. Also, 
widely-accepted baseline systems are very rarely included in 
evaluations, and when they are, they use to be implemented 
as random systems, having no useful value as a lower bound 
to which compare new systems. Another point that needs 
discussion is the set of statistical procedures used, or the 
lack thereof. Given the small-scale evaluations usually 
carried out in the Music IR field, it is imperative that 
statistical significance procedures be used, and certainly that 
the ones used are thoroughly selected and analyzed, for 
wrong conclusions can easily be drawn from incorrect 
procedures or incorrect interpretation [50]. 

Learning. When the results of an evaluation experiment 
are calculated and interpreted, the next step would be to 
figure out what happened and for what reasons. But there is 
a great problem here: most of the times the raw musical 
material is not available to experimenters, the actual queries 
used are unknown, and not even their characteristics are 
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published. Researchers cannot analyze the evaluation results 
and improve their systems: if they had very bad results for 
some queries, there is no way of knowing why. They can 
only use their private collections over and over again, 
ultimately leading to overfitting and misleading results. 

Improvement. There is another reason why researchers 
are forced to use their private collections all along: current 
test collections put together in collective evaluation forums 
are hardly reusable. As seen, the incompleteness of ground 
truth data depends largely on the number of participating 
systems, and with the current low participation level, a new 
system would be highly penalized with the collection as is. 
The reusability is of course null if these data were not 
publicly available, as happens with some tasks. As such, 
researchers have no option but to blindly improve their 
systems and wait for another evaluation round, with no way 
of comparing cross-edition results due to the lack of data. 

5. OPPORTUNITIES IN MUSIC IR EVALUATION 

Although not easily, these shortcomings of current 
evaluation practices in Music IR can be overcame. To this 
end, we list several proposals to ease the way through the IR 
research and development cycle. 

Collections. The document collections need to be large, 
move beyond the handful of songs currently being used in 
several tasks; and try to include heterogeneous material in 
terms of genre, time period, artist, etc. This is not hard to 
achieve, but when making such a collection open to other 
researchers, copyright issues immediately arise [21]. A 
possibility is to publish feature vectors and metadata, such 
as in the recent Million Song Dataset [5], although this still 
poses problems if researchers wanted to study a new feature 
or analyze specific items for which their system worked 
better or worse. In any case, these collections should be 
standard and used throughout the community, across tasks if 
possible, for a better comparison and understanding of the 
improvements between systems. 

Raw Data. For a successful execution of the Learning 
and Improvement phases, raw musical material is needed. 
An alternative is to use music free of copyright restrictions, 
such as that provided by services like Jamendo, but the 
possible biases this might introduce are subject for further 
research. In this line, the use of artificial material, such as 
synthesized or error-mutated queries, should be revised [37]. 

Evaluation Model. Having publicly accessible and 
standardized collections would allow for a change in the 
current execution model employed in MIREX. Researchers 
could be in charge of executing their systems and producing 
the runs to submit back to MIREX, relieving them from a 
good deal of workload and bringing researchers reluctant to 
give their algorithms away to third parties. This data-to-
algorithm model is used in the recent MusiCLEF forum 
[32], and in fact it is the only viable way of moving to large 
scale evaluations, not only in terms of data but also in terms 
of wider participation. The current algorithm-to-data model 
is in our view unsustainable in the long run, let alone if 

IMIRSEL finally stops receiving funds [24], and platforms 
like MIREX-DIY under NEMA [61] would still not permit a 
full execution of the IR cycle. 

Organization. The current organization of MIREX rests 
heavily on the IMIRSEL team, who plan, schedule and run a 
good number of tasks each year. We propose a 2nd tier 
organization below, for each particular task, and by leading 
third-party researchers. These organizers would deal with all 
the logistics, planning, evaluation, troubleshooting and so 
on, diminishing the workload of IMIRSEL, which would act 
as a sort of steering meta-organization tier providing the 
necessary resources and general planning. This is the format 
successfully adopted by major Text IR forums like TREC or 
CLEF, which has helped in smoothing the process and 
developing tasks to push the state of the art in each edition. 

Specific Methodologies. Both new methodologies 
[46][48][27][22] and effectiveness measures [47] have been 
proposed for Music IR tasks, needing meta-evaluation 
studies in the near future to keep improving the evaluations. 
Some work has studied the reduction of effort needed to 
evaluate through the use of crowdsourcing platforms 
[49][33], and further studies should follow this line given 
the usual restrictions the Music IR field has as to availability 
of resources. Another line is the study of human effects on 
ground truth data and evaluation results [28]. 

Overview Publications. The organization proposal would 
also benefit the community if by the end of each MIREX 
edition the organizers published an overview paper 
thoroughly detailing the process followed, data, results, and 
discussion to boost the Interpretation and Learning phases. 
Such a publication would be the perfect wrap-up to the 
participant-papers that describe the systems but rarely 
investigate and elaborate on the results. In fact, many of 
these participant-papers are not even drafted.  

Software Standardization. It is not rare to find incorrect 
evaluation results due to software bugs. With the 
development and acceptance of a software package to 
evaluate systems we would gain in reliability within and 
between research groups, speeding up experiments and 
guiding novice researchers. Also, it would further serve as 
documentation of the measures and processes used, for the 
implementation of some details is unknown or subject to 
different interpretations; and it would call for the 
standardization of data formats to speed up the IR cycle.  

Baselines. The establishment of baseline systems to serve 
as a lower bound on effectiveness would help in assessing 
the overall progress in the field. With the standardization of 
formats, public software, public collections of raw music 
material and the supervision of task-specific organizers, the 
inclusion of baselines in these experiments would greatly 
benefit the execution of the IR cycle and the measurement 
of the state of the art. 

Commitment. In general, the current problems of Music 
IR Evaluation need to be acknowledged by researchers. 
Now that we have a well-established evaluation forum like 
MIREX, we need to start questioning the validity of the 
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experiments, with the sole purpose of making them better 
and more striking. Current IR experiments seem to stop at 
the Evaluation phase of the IR cycle, but the next phases are 
often ignored or impossible to engage into. 

6. CONCLUSIONS 

We have presented a survey of the Text IR literature on 
studies tackling the problem of IR Evaluation experiments. 
From the point of view of the analysis of experimental 
validity, this survey shows different aspects of IR 
Evaluation that have been overlooked and need special 
attention in the Music IR domain. From the point of view of 
the IR research and development cycle a researcher follows 
in Music IR, we have also shown that current evaluation 
practices force researchers to stop early in the cycle. 
Evaluation experiments release good amounts of numbers 
and plots, but there is a lack of proper interpretation and 
discussion due in part to the lack of public and standardized 
resources, usually leaving researchers blind to improve their 
systems. In this line, several proposals are made to engage 
researchers in these last phases of the cycle, which should 
ultimately lead to a more rapid development of the field. 

We hope this paper makes the case for MIR Meta-
Evaluation studies and the fact that they are actual MIR 
research, playing a central role in which researchers should 
engage to begin a tradition of evaluation articles in ISMIR. 

REFERENCES 
[1] Alonso et al., Can We Get Rid of TREC assessors? Using Mechanical Turk for 

Relevance Assessment, SIGIR Workshop on the Future of IR Evaluation, 2009. 
[2] Armstrong et al., Improvements that Don’t Add Up: Ad-Hoc Retrieval Results 

since 1998, CIKM, 2009. 
[3] Bailey et al., Relevance Assessment: Are Judges Exchangeable and Does it 

Matter?, SIGIR, 2008. 
[4] Bennett et al., Beyond Binary Relevance: Preferences, Diversity and Set-Level 

Judgments, SIGIR Forum, 2008. 
[5] Bertin-Mahieux et al., The Million Song Dataset, ISMIR, 2011. 
[6] Bodoff et al., Test Theory for Assessing IR Test Collections, SIGIR, 2007. 
[7] Buckley et al., Evaluating Evaluation Measure Stability, SIGIR, 2000. 
[8] Buckley et al., Retrieval Evaluation with Incomplete Information, SIGIR, 2004. 
[9] Buckley et al., Bias and the Limits of Pooling for Large Collections, Journal of 

IR, 2007. 
[10] Carterette et al., Minimal Test Collections for Retrieval Evaluation, SIGIR, 2006. 
[11] Carterette, Robust Test Collections for Retrieval Evaluation, SIGIR, 2007. 
[12] Carterette et al., If I Had a Million Queries, ECIR, 2009. 
[13] Carterette et al., The Effect of Assessor Error on IR System Evaluation, SIGIR, 

2010. 
[14] Carterette et al., Measuring the Reusability of Test Collections, WSDM, 2010. 
[15] Carterette et al., Reusable Test Collections Through Experimental Design, SIGIR, 

2010. 
[16] Carterette, System Effectiveness, User Models, and User Utility: A General 

Framework for Investigation, SIGIR, 2011. 
[17] Carvalho et al., Crowdsourcing for Search Evaluation, SIGIR Forum, 2010. 
[18] Cleverdon, The Significance of the Cranfield Tests on Index Languages, SIGIR, 

1991. 
[19] Downie, Interim Report on Establishing MIR/MDL Evaluation Frameworks: 

Commentary on Consensus Building, ISMIR Panel on Music Information 
Retrieval Evaluation Frameworks, 2002. 

[20] Downie, The MIR/MDL Evaluation Project White Paper Collection, 3rd ed, 2003. 
[21] Downie, The Scientific Evaluation of Music Information Retrieval Systems: 

Foundations and Future, Computer Music Journal, 2004. 
[22] Downie et al., Audio Cover Song Identification: MIREX 2006-2007 Results and 

Analysis, ISMIR, 2008. 
[23] Downie et al., The Music Information Retrieval Evaluation eXchange: Some 

Observations and Insights, in Advances in Music IR, Springer, 2010. 
[24] Downie, MIREX Next Generation, music-ir email list, 2011. Available at: 

http://listes.ircam.fr/wws/info/music-ir. 
[25] Guiver et al., A Few Good Topics: Experiments in Topic Set Reduction for 

Retrieval Evaluation, ACM Trans. Inf. Sys., 2009. 
[26] Harman, Information Retrieval Evaluation, Synthesis Lectures on Information 

Concepts, Retrieval, and Services, 2011. 
[27] Hu et al., The 2007 MIREX Audio Mood Classification Task: Lessons Learned, 

ISMIR, 2008. 
[28] Jones et al., Human Similarity Judgments: Implications for the Design of Formal 

Evaluations, ISMIR, 2007. 
[29] Järvelin et al., Cumulated Gain-Based Evaluation of IR Techniques, ACM Trans. 

Inf. Sys., 2002. 
[30] Katzer et al., Evaluating Information: A Guide for Users of Social Science 

Research, 4th ed., 1998. 
[31] Kekäläinen, Binary and Graded Relevance in IR Evaluations: Comparison of the 

Effects on Ranking of IR Systems, Inf. Proc. Mngt., 2005. 
[32] Lartillot et al., MusiClef: A Benchmark Activity in Multimodal Music 

Information Retrieval, ISMIR, 2011. 
[33] Lee, Crowdsourcing Music Similarity Judgments using Mechanical Turk, 

ISMIR, 2010. 
[34] Marchionini, Exploratory Search: from Finding to Understanding, 

Communications of the ACM, 2006. 
[35] Mitchell et al., Research Design Explained, 7th ed., 2009. 
[36] Montgomery, Design and Analysis of Experiments, 7th ed., 2009. 
[37] Niedermayer et al., On the Importance of ‘Real’ Audio Data for MIR Algorithm 

Evaluation at the Note-Level: A comparative Study, ISMIR, 2011. 
[38] Robertson, On the Contributions of Topics to System Evaluation, ECIR, 2011. 
[39] Sakai, On the Reliability of Information Retrieval Metrics Based on Graded 

Relevance, Inf. Proc. Mngt., 2007. 
[40] Sakai et al., On Information Retrieval Metrics Designed for Evaluation with 

Incomplete Relevance Assessments, Journal of IR, 2008. 
[41] Sanderson et al., Information Retrieval System Evaluation: Effort, Sensitivity, 

and Reliability, SIGIR, 2005. 
[42] Sanderson et al., Do User Preferences and Evaluation Measures Line Up?, 

SIGIR, 2010. 
[43] Smucker et al., A Comparison of Statistical Significance Tests for Information 

Retrieval Evaluation, CIKM, 2007. 
[44] Soboroff et al., Ranking Retrieval Systems Without Relevance Judgments, 

SIGIR, 2001. 
[45] Turpin et al., Why Batch and User Evaluations Do Not Give the Same Results, 

SIGIR, 2001. 
[46] Typke et al., A Ground Truth for Half a Million Musical Incipits, Journal of 

Digital Inf. Mngt., 2005. 
[47] Typke et al., A Measure for Evaluating Retrieval Techniques based on Partially 

Ordered Ground Truth Lists, IEEE Int. Conf. on Multimedia and Expo, 2006. 
[48] Urbano et al., Improving the Generation of Ground Truths based on Partially 

Ordered Lists, ISMIR, 2010. 
[49] Urbano et al., Crowdsourcing Preference Judgments for Evaluation of Music 

Similarity Tasks, SIGIR Workshop Crowdsourcing for Search Evaluation, 2010. 
[50] Urbano et al., Audio Music Similarity and Retrieval: Evaluation Power and 

Stability, ISMIR, 2011. 
[51] Voorhees, Variations in Relevance Judgments and the Measurement of Retrieval 

Effectiveness, Inf. Proc. Mngt., 2000. 
[52] Voorhees, Evaluation by Highly Relevant Documents, SIGIR, 2001. 
[53] Voorhees, Whither Music IR Evaluation Infrastructure: Lessons to be Learned 

from TREC, in [20], 2002. 
[54] Voorhees, The Philosophy of Information Retrieval Evaluation, CLEF, 2002. 
[55] Voorhees et al., The Effect of Topic Set Size on Retrieval Experiment Error, 

SIGIR, 2002. 
[56] Voorhees et al., TREC: Experiment & Evaluation in Information Retrieval, 2005. 
[57] Webber et al., Precision-At-Ten Considered Redundant, SIGIR, 2008. 
[58] Webber et al., Statistical Power in Retrieval Experimentation, CIKM, 2008. 
[59] Yilmaz et al., Estimating Average Precision with Incomplete and Imperfect 

Information, CIKM, 2006. 
[60] Yilmaz et al., A Simple and Efficient Sampling Method for Estimating AP and 

NDCG, SIGIR, 2008. 
[61] Zhu et al., MIREX-DIY under NEMA, ISMIR, 2010. 
[62] Zobel, How Reliable are the Results of Large-Scale Information Retrieval 

Experiments?, SIGIR, 1998. 

614



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

A SEGMENT-BASED FITNESS MEASURE FOR CAPTURING REPETITIVE
STRUCTURES OF MUSIC RECORDINGS
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ABSTRACT

In this paper, we deal with the task of determining the au-
dio segment that best represents a given music recording
(similar to audio thumbnailing). Typically, such a segment
has many (approximate) repetitions covering large parts of
the music recording. As main contribution, we introduce a
novel fitness measure that assigns to each segment a fitness
value that expresses how much and how well the segment
“explains” the repetitive structure of the recording. In com-
bination with enhanced feature representations, we show
that our fitness measure can cope even with strong varia-
tions in tempo, instrumentation, and modulations that may
occur within and across related segments. We demonstrate
the practicability of our approach by means of several chal-
lenging examples including field recordings of folk music
and recordings of classical music.

1. INTRODUCTION

Music structure analysis constitutes a fundamental research
topic within the field of music information retrieval. One
major goal of structure analysis is to divide a music record-
ing into temporal segments corresponding to musical parts
and then to group these segments into musically meaning-
ful categories [10]. Such segments may refer to chorus or
verse sections of a popular piece of music, to stanzas of a
folk song, or to the first theme, the second theme or the
entire exposition of a symphony. Such important musical
parts are often characterized by the property of being re-
peated several times throughout the piece. Therefore, find-
ing the repetitive structure of a music recording is an impor-
tant and well-studied subtask within structure analysis, see,
e. g., [1, 2, 5, 6, 9] and the overview articles [3, 10]. Most of
these approaches work well for music where the repetitions
largely agree. However, in general, “repeating parts” are
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not made or distributed for profit or commercial advantage and that copies
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far from being simple repetitions. Actually, audio segments
that refer to the same musical part may differ significantly in
parameters such as dynamics, instrumentation, articulation,
and tempo not to speak of pronounced musical variations. In
such cases, structure analysis becomes a hard and ill-posed
task with many yet unsolved problems.

In this paper, we address the problem of finding the
most representative and repetitive segment of a given music
recordings, a task often referred to asaudio thumbnailing,
see, e. g., [1]. Here, opposed to most of the previous ap-
proaches we want to admit even strong musical variations.
As our main contribution, we introduce a fitness measure
that assigns to each audio segment a fitness value that simul-
taneously captures two aspects. Firstly, it indicateshow well
the given segment explains other similar segments (“preci-
sions”) and, secondly, it indicateshow muchof the overall
music recordings is covered by all these segments (“recall”).
Furthermore, our fitness measure is normalized and disre-
gards trivial self-explanations (reflexive relations). Asa fur-
ther contribution of this paper, we introduce a compact time-
lag representation that yields a high-level view on the struc-
tural properties for the entire music recording. First exper-
iments shows that our fitness measure, in combination with
enhanced feature representations, can cope with even strong
variations in tempo, instrumentation, and modulations that
occur within and across the segments.

At this point, we want to note that our work has been
inspired by Paulus and Klapuri [9], even though the task
and concepts of this paper are fundamentally different to [9].
The fitness measure introduced in [9] expresses properties of
an entire structure, whereas our fitness measure expresses
properties of asingle segment. In assigning a fitness value
to a given segment, our idea is to simultaneously account for
all its existing relations within the entire recording.

The remainder of this paper is organized as follows. In
Section 2, we give a motivation of our approach, fix some
notation, and quickly review the concept of self-similarity
matrices. In Section 3, as our main contribution, we describe
the technical details on the construction of our fitness mea-
sure. Finally, experimental results and an outlook on future
work can be found in Section 4 and Section 5, respectively.

615



Oral Session 7: Structure Analysis and Mixing

2. MOTIVATION AND NOTATION

In the following, we distinguish between a piece of music
(in an abstract sense) and a particular audio recording (a
concrete performance) of the piece. The termpart is used in
the context of the abstract music domain, whereas the term
segmentis used for the audio domain [10]. Musical parts are
often denoted by the lettersA, B, C, . . . in the order of their
first occurrence. For example, the sequenceA1A2B1A3 de-
scribes themusical formconsisting of three repeatingA-
parts interleaved with oneB-part. Then, for a given music
recording of such a piece, the goal of the structure analysis
problem as tackled in this paper would be to find the seg-
ments within the recording that correspond to theA-parts.

Most repetition-based approaches to audio structure anal-
ysis proceed as follows. In the first step, the music record-
ing is transformed into a sequenceX := (x1, x2, . . . , xN )
of feature vectorsxn ∈ F , 1 ≤ n ≤ N , whereF de-
notes a suitable feature space. In the second step, based on
a similarity measures : F × F → R, one defines aself-
similarity matrix S ∈ RN×N by S(n, m) := s(xn, xm),
1 ≤ n, m ≤ N . In the following, a tuplep = (n, m) ∈ [1 :
N ]2 is called acell of S, and the valueS(n, m) is referred
to as thescoreof the cellp. The crucial observation is that
repeating patterns in the feature sequenceX appear as diag-
onal “stripes” inS [2, 10]. More precisely, these stripes are
paths of cells of high score running in parallel to the main
diagonal. Therefore, in the third step, one extracts all such
paths fromS, where each path encodes the similarity of a
pair of segments. (These two segments are given by the two
projections of the path onto the two axis ofS, see Figure 1.)
In the fourth step, from the given pairwise relations of seg-
ments, one derives entire groups of segments, where each
group comprises all segments of a given type of a musical
part (e. g. all segments corresponding toA-parts). This step
can be thought of forming some kind of transitive closure of
the given path relations [3, 6]. However, this grouping pro-
cess constitutes a main challenge when the extracted paths
are erroneous and incomplete. In [5], a grouping process is
described that balances out inconsistencies in the path rela-
tions by exploiting a constant tempo assumption. However,
when dealing with music of varying tempo, the grouping
process constitutes a challenging research problem.

As one main idea of our approach, we suggest to jointly
perform the third and fourth step thus circumventing the
separate grouping process. We realize this idea by assign-
ing a fitness value to a given segment in such a way that all
related segments simultaneously influence the fitness value.
To express relations between segments, we will introduce
the notion of a path family, see Section 3.1. Intuitively, in-
stead of extracting individual paths, we extract entire groups
of paths, where the consistency within a group is automati-
cally enforced by the construction.
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2.1 Desired Properties

We now motivate some basic properties that serve as a
guideline for the construction of our fitness measure. Let
X = (x1, x2, . . . , xN ) be the feature representation of the
given audio recording. Asegmentα is defined to be a sub-
setα = [s : t] ⊆ [1 : N ] specified by its starting points
and its end pointt (given in terms of feature indices). Let
|α| := t − s + 1 denote the length ofα. In our approach,
we introduce afitness measureϕ that assigns to each seg-
mentα ⊆ [1 : N ] a fitness valueϕ(α) ∈ R. Intuitively, this
fitness value should express to which extent the segmentα
“explains” the repetitive structure ofX . In particular, the
valueϕ(α) should be large in the case that the repetitions of
α cover large portions ofX , otherwise it should be small.

Next, we impose some normalization constraints onϕ.
Note that the segmentα = [1 : N ] explains the entire se-
quenceX perfectly. More generally, each segmentα ex-
plains itself perfectly (this information is encoded by the
main diagonal of a self-similarity matrix). We do not want
such trivial, reflexive self-explanations to be captured byϕ.
Therefore, we require

0 ≤ ϕ(α) ≤ N − |α|
N

. (1)

In particular, one obtainsϕ([1 : N ]) = 0. More generally,
a valueϕ(α) = 0 should mean that the segmentα only ex-
plains itself but no other portions ofX . As an illustrative
example, we consider an “ideal” recording of a piece of mu-
sic having the formA1A2 . . . AK . Let αk be the segment
corresponding toAk, k ∈ [1 : K]. Then our fitness measure
should assume the valueϕ(αk) = K−1

K for each segment
αk, see Figure 1 illustrating the caseK = 3.
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2.2 Self-Similarity Matrices

In general, repeating segments may differ significantly re-
garding tempo, instrumentation and other musical proper-
ties. The degree of the similarity between two repeating seg-
mentsα andα′ crucially depends on the used feature type,
the similarity measure, and the resulting self-similarityma-
trix S. Our fitness measure is generic in the sense that it
can work with general self-similarity matrices that only ful-
fill some basic normalization properties. Actually, we only
require the propertyS(n, m) ≤ 1 for 1 ≤ n, m ≤ N and
S(n, n) = 1 for n ∈ [1 : N ]. Since the construction ofS
is not in the focus of this paper, we only give a quick de-
scription of the type of self-similarity matrix as used in our
experiments. Figure 2 illustrates the following steps. First
of all, we use a variant of chroma-based audio features as de-
scribed in [6, Section 3.3]. Normalizing these features, we
simply use the inner product as similarity measure yielding
a value between0 and1. To enhance structural properties,
we apply temporal smoothing techniques that can deal with
tempo variations, see [6, Section 7.2]. Furthermore, apply-
ing techniques as described in [7], we obtain a transposition-
invariant matrix that can deal with modulation differences
within and across repeating parts. Subsequently, using a
suitable threshold parameterτ > 0 and a penalty param-
eterδ ≤ 0, we post-process the matrix by first setting the
score values of all cells with a score belowτ to the valueδ
and then by linearly scaling the range[τ : 1] to [0 : 1]. Fi-
nally, we setS(n, n) = 1 for n ∈ [1 : N ] (this property may
have been lost by the smoothing step). In the following, we
chooseτ in a relative fashion by keeping25% of the cells
having the highest score and setδ = −2.

3. FITNESS MEASURE

Following the guidelines motivated in Section 2, we now
introduce our novel fitness measure. In assigning a fitness
value to a given segmentα, our idea is to simultaneously
account for all other segments that are related toα. To this
end, in Section 3.1, we introduce the notation of a path fam-
ily that allows for expressing these relations. Then, in Sec-
tion 3.2, we explain how each path family can be assigned
a coverage (“recall”) as well as an average score measure
(“precisions”). The fitness of the segmentα is then deter-
mined by the path family that simultaneously maximizes
coverage and score.

3.1 Path Family

Let X = (x1, x2, . . . , xN ) be a feature sequence andS a
self-similarity matrix as introduced in Section 2.2. Apath
of lengthL is a sequenceπ = (p1, . . . , pL) of cells pℓ =
(nℓ, mℓ) for ℓ ∈ [1 : L] satisfyingpℓ+1 − pℓ ∈ Σ, whereΣ
denotes a set of admissible step sizes. In our setting, we use
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Figure 2. Self similarity matrices for the song “In the year 2525”
by Zager and Evans.(a) Initial self-similarity matrix. (b) Path-
enhanced matrix.(c) Transposition-invariant matrix.(d) Thresh-
olded matrix withδ = −2.

Σ = {(1, 2), (2, 1), (1, 1)}, which constrains the slope of
the admissible paths within the bounds of1/2 and2, see [6,
Chapter 4]. Thescoreµ(π) of a pathπ is defined as

µ(π) =

L∑
ℓ=1

S(nℓ, mℓ) . (2)

Considering the two projections, a pathπ defines two seg-
ments denoted byπ1 := [n1 : nL] andπ2 := [m1 : mL],
see also Figure 1. Vice versa, given two segmentsα andα′,
a pathπ with π1 = α andπ2 = α′ is called analignment
pathbetween the two segments. Given a segmentα and a
self-similarity matrixS, we define apath family overα to
be a setP := {π1, π2, . . . , πK} that consists of pathsπk

and satisfies the following conditions. Firstly,π2
k = α for

all k ∈ [1 : K]. Secondly, the set
{
π1

k | k ∈ [1 : K]
}

con-
sists of pairwise disjoint segments, i. e.,π1

i ∩ π1
j = ∅ for

i, j ∈ [1 : K], i 6= j. Next, extending the definition in (2) in
a straightforward way, thescoreµ(P) of the path familyP
is defined as

µ(P) :=

K∑
k=1

µ(πk). (3)

Finally, thescoreµ(α) of a segmentα is defined to be the
score of a path familyP∗ having maximal score among all
possible path families overα:

P∗ := argmax
P

µ(P) (4)

µ(α) := µ(P∗). (5)

Actually, the valueµ(α) is not yet the fitness value we are
looking for since neither does it fulfill the basic properties
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formulated in Section 2 nor does it capture how much of the
audio material is actually covered.

3.2 Definition of Fitness Measure

We now give a formal definition of our fitness measure,
which has all the desired properties. Actually, at this point,
we only need the assumption that the given self-similarity
matrix S ∈ RN×N has the property thatS(n, m) ≤ 1 for
all cells(n, m) ∈ [1 : N ]2 andS(n, n) = 1 for n ∈ [1 : N ].
We start by defining thenormalized scorēµ(P) of the path
family P overα by

µ̄(P) :=
µ(P)− |α|∑K

k=1 Lk

, (6)

whereLk defines the length of pathπk. Here, the motivation
for subtracting the length|α| of α is that the segmentα triv-
ially explains itself, see Section 2. It is not hard to see that
the scorēµ fulfills the conditions (1). From the assumption
S(n, n) = 1, one obtains̄µ(P) ≥ 0. Furthermore note that,
when usingΣ = {(1, 2), (2, 1), (1, 1)}, one hasLk ≤ |α|
and

∑
k Lk ≤ N . This together withS(n, m) ≤ 1 implies

the propertyµ̄(P) ≤ (N − |α|)/N . Intuitively, the value
µ̄(P) expresses theaverage scoreor precision of the given
path familyP .

Next, we define some kind ofcoverageor recall measure
for P . To this end, letγ(P) := ∪k∈[1:K]π

1
k ⊆ [1 : N ] be the

union of all segments defined by the first projection of the
pathsπk. Then we define thenormalized coveragēγ(P) of
P by

γ̄(P) :=
|γ(P)| − |α|

N
. (7)

As above, the length|α| is subtracted to compensate for triv-
ial coverage. Obviously, one hasγ̄(P) ≤ (N − α)/N .

Inspired by the F-measure that combines precision and
recall, we define thefitnessϕ(P) of the path familyP to be

ϕ(P) := 2 · µ̄(P) · γ̄(P)

γ̄(P) + µ̄(P)
. (8)

In other words, the fitness integrates the normalized score
and coverage into one measure. Finally, thefitnessϕ(α) of
a segmentα is defined to be the fitness value of the score-
maximizing path familyP∗ defined in (4):

ϕ(α) := ϕ(P∗). (9)

Note that the path familyP∗ defines in a natural way a set
of disjoint segments revealing the repetitions ofα within
the sequenceX , see Figure 1. An optimal path familyP∗
for a segmentα can be computed efficiently withO(|α| ×
N) operations using dynamic programming. Actually, the
algorithm, which we do not describe in this paper due to
space limitations, is an extension of classical dynamic time
warping (DTW), see [4, 6].

When computing the fitnessϕ(α) for all possible seg-
mentsα = [s : t] ⊆ [1 : N ], one can obtain a com-
pact fitness representation for the entire music recording.
More precisely, we arrange all fitness values in some time-
lag fitness matrixΦ ∈ RN×N defined byΦ(s, ℓ) := ϕ([s :
s+ ℓ−1]) for the starting points ∈ [1 : N ] and the segment
lengthℓ ∈ [1 : N − s + 1], whereas all other entries ofΦ
are set to zero, see Figure 3c for an example. Note that each
cell (s, ℓ) of the fitness matrixΦ defines an optimal path
family for the segmentα = [s : s + ℓ − 1]. The maximal
entry ofΦ yields the segment with the highest fitness value,
which can be regarded as the most representative segment of
the recording. In this sense, a solution to our thumbnailing
problem is given by

α∗ := argmax
α

ϕ(α), (10)

where the path family associated toα∗ yields the structure
analysis result.

4. EXPERIMENTS

To investigate the behavior of our fitness measure, we have
conducted various experiments using a number of challeng-
ing audio recordings that exhibit strong acoustic deforma-
tions and musical variations. We first discuss some repre-
sentative examples and then report on an experiment con-
ducted on a corpus of field recordings.

We start with the song “In the year 2525” by Za-
ger and Evans, which already served as example in Fig-
ure 2 and Figure 3. This song has the musical form
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Figure 4. S and optimal path familiesP over differentα for an
Ormandy recording of Brahms’ Hungarian Dance No. 5.(a) α =
[67:87] (maximal fitness)(b) α = [130:195]. (c) Fitness matrix.

AB1B2B3B4C1B5B6C2B7EB8F starting with a slow in-
tro (A-part) and continuing with eight repetitions of a cho-
rus section (B-part), which are interleaved by two tran-
sitional C-parts and oneE-part. The first fourB-parts
are rather similar, whereas the partsB5 andB6 are trans-
posed by one andB7 andB8 by two semitones upwards.
Using a transposition-invariant self-similarity matrixS, all
eight repeatingB-parts are revealed by the path structure,
see Figure 2. Figure 3 shows the time-lag fitness matrix
Φ along with optimal path families for two different seg-
ments. The path family of the fitness-maximizing segment
α∗ = [57:72], which is shown in Figure 3a and corresponds
to B3, consists of eight paths. These paths correspond to the
eightB-parts thus yielding the expected and desired result.
Looking at other segments, one can notice that the fitness
measure tries to balance out score and coverage. For ex-
ample, for the long segment shown in Figure 3b, the lower
path accepts even cells of negative score (as long as the ac-
cumulated score of the entire path is positive) for the sake
of coverage. Here recall that, by definition, all paths of the
family are forced to run over the entire segmentα.

Next, we consider a recording by Ormandy of the Hun-
garian Dance No. 5 by Johannes Brahms, see Figure 4. This
piece has the musical formA1A2B1B2CA3B3B4D con-
sisting of three repeatingA-parts, four repeatingB-parts, as
well as aC- and aD-part. As shown by the figure, the path
structure ofS again reflects this musical form. In particular,
the curved paths reveal that theB-parts are played in differ-
ent tempi. The fitness-maximizing segment isα∗ = [67:87]
and corresponds toB2. As shown by Figure 4a, the path
family consists of four paths, which correctly identify all
four B-parts. The segmentα = [130 : 195] shown in Fig-
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Figure 5. S and optimal path familiesP over differentα for a
Pollini recording of Beethoven’s Op. 31, No. 2, first movement
(“Tempest”). (a) α = [11 : 119] (maximal fitness when using the
lower boundλ = 20 seconds.) (b) α = [483 : 487] (maximal
fitness).(c) Fitness matrix.

ure 4b corresponds toA3B3B4. Here note that because our
fitness measure disregards self-explanations, the fitness of α
is well below the one ofα∗.

In our third example, we consider a Pollini recording
of the first movement of Beethoven’s piano sonata Op. 31,
No. 2 (“Tempest”), see Figure 5. Being in the sonata form,
the rough musical form of this movement isA1A2BA3C
with A1 being the exposition,A2 the repetition of the expo-
sition, B the development,A3 the recapitulation, andC a
short coda. Here, even thoughA3 is some kind of repetition
of A1, there are significant musical differences. For exam-
ple, the first theme inA3 is extended by an additional section
not present inA1 and the second theme inA3 is transposed
five semitones upwards (and later transposed seven semi-
tones downwards) relative to the second theme inA1. Here
note that the modulation does not apply to the entireA3-part
but only to the second theme within theA3-part. Never-
theless, using transposition-invariance, our fitness measure
can still identify the relation of the threeA-parts when us-
ing α = [11 : 119], see Figure 5a. Interestingly, this is not
the fitness-maximizing segment, which is actually given by
α∗ = [483 : 487], see Figure 5b. This example indicates a
problem that occurs when the self-similarity matrix contains
a lot of noise, i. e., scattered cells of relatively high score.
Such cells may form numerous path fragments that, as a
whole family, may yield significant average score as well
as coverage values. To circumvent such problems, one may
introduce a lower boundλ for the minimal possible segment
length. For example, using a lower boundλ = 20 seconds,
the fitness-maximizing segment isα = [11:119].
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Finally, we report on an experiment using field record-
ings of the folk song collectionOnder de groene linde
(OGL), which is part of theNederlandse Liederenbank. 1

Each song basically consists of a number of strophes yield-
ing the musical formA1A2 . . . AK . The main challenge is
that the songs are performed by elderly non-professional
singers with serious intonation problems, large tempo
changes, and interruptions—not to speak of poor record-
ing conditions and background noise. In [8], a reference-
based segmentation algorithm, which reverts to an addi-
tional MIDI file used as stanza reference, is described and
tested for47 of these songs. As for evaluation, standard pre-
cision, recall and F-measures are used to measure the accu-
racy of the segmentation boundaries (with a tolerance of±2
seconds). The results of this reference-based method, which
are shown in the last row of Table 1, serve as baseline.

Our approach can be applied for accomplishing the same
segmentation task without reverting to any reference. To
this end, we determine the fitness-maximizing segmentα∗

as in (10) and derive the segmentation from the associ-
ated path family. Using the same evaluation measures as
in [8], our reference-free method yields an F-measure value
of F = 0.821, see Table 1. Assuming some prior knowl-
edge on the minimal length of a stanza, this result can
be improved. For example, using the lower boundλ =
10 seconds one obtainsF = 0.855, see Table 1. This result
is still worse than the results obtained from the reference-
based approach (F = 0.926). Actually, a manual inspec-
tion showed that this degrade was mainly caused by four
particular recordings, where the segmentation derived from
α∗ was “phase-shifted” compared to the ground truth. Em-
ploying a boundary-based evaluation measure resulted in an
F-measure ofF = 0 for these four recordings. Further-
more, we found out that these phase shifts were caused by
the fact that in all of these four recordings the singer com-
pletely failed in the first stanza (omitting and confusing en-
tire verse lines). In a final experiment, we replaced the four
recordings by a slightly shortened version by omitting the
first stanzas, respectively. Repeating the previous experi-
ment on this modified dataset produced an F-measure of
F = 0.920, which is already close to the quality obtained
by baseline method. Overall, these results demonstrates that
our fitness measure can cope even with strong temporal and
spectral variations as occurring in field recordings.

5. CONCLUSIONS

In this paper, we introduced a novel fitness measure that
expresses how representative a given segment is in terms
of repetitiveness. Our experiments showed that the fitness-
maximizing segment often yields a good candidate solution
for the thumbnailing problem, even in the presence of strong

1 www.liederenbank.nl

Strategy P R F
Maximal fitness 0.823 0.8180.821
Maximal fitness (λ = 10) 0.863 0.847 0.855
Maximal fitness (λ = 10, modified dataset) 0.932 0.9090.920
Reference-based method [8] 0.912 0.9400.926

Table 1. Precision, recall, andF-measures for the reference-based
segmentation method [8] and the three reference-free methods de-
scribed in this paper.

acoustic and musical variations across repeating parts. We
also introduced a time-lag fitness matrix that yields a high-
level view on the structural properties for the entire music
recording. For the future, we need to explore in more de-
tail the role of the different parameter settings, including the
role of the self-similarity matrix. We are convinced that our
fitness matrix has great potential for visualizing and search-
ing in hierarchical music structures in novel ways. Finally,
efficiency issues need to be addressed as well as iterative
approaches that allow for deriving the entire musical form.
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ABSTRACT

The capability of the average person to generate digital
music content has rapidly expanded over the past several
decades. While the mechanics of creating a multi-track
recording are relatively straightforward, using the available
tools to create professional quality work requires substantial
training and experience. We address one of the most fun-
damental processes to creating a finished product, namely
determining the relative gain levels of each track to produce
a final, mixed song. By modeling the time-varying mixing
coefficients with a linear dynamical system, we train mod-
els that predict a weight vector for a given instrument using
features extracted from the audio content of all of the tracks.

1. INTRODUCTION

Digital audio production tools have revolutionized the way
we consume, produce and interact with music on a daily ba-
sis. Consumers have the ability to create quality recordings
in a home studio with a relatively limited amount of equip-
ment. Although there exists a myriad of complex software
suites and audio editing environments, they all perform the
same fundamental task of multi-track recording. This pa-
per focuses on one of the most essential steps in music pro-
duction: multi-track mixing. The relative levels between
the various instruments in a song significantly determine the
overall sonic quality of the piece.

In a previous paper we introduced a supervised machine
learning approach for automatically mixing a set of un-
known source tracks into a coherent, well-balanced instru-
ment mixture using a small number of acoustic features [1].
We modeled the mixing coefficients as the hidden states of
a linear dynamical system and used acoustic features ex-
tracted from the audio as the output of the model. After

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

estimating the parameters of the model on the training data,
we predicted the time-varying weights of each instrument
for an unknown song using Kalman filtering [2].

We extend that approach in this paper by reducing the
constraints on the model and generalizing it to a larger num-
ber of instruments. One modification to the system includes
modeling the weights of an individual instrument and their
first and second derivatives instead of jointly estimating the
weights for all of the instrument tracks at once. This re-
moves the restriction that the test song must contain all in-
strument types that the model was trained on.

Additionally, we explore an extended feature set within
this framework and analyze the performance of each indi-
vidual feature as well as combinations of features. The fea-
tures are chosen to contain information about the total en-
ergy of the signal, energy within various frequency bands,
spectral shape and dynamic spectral evolution.

2. BACKGROUND

Much research in the area of automatic audio signal mix-
ing is devoted to applications in the context of a live per-
formance or event. Initial research on the subject was ori-
ented toward broadcast, live panel discussion and similar en-
vironments dealing with the human voice as the primary au-
dio source [3]. These systems analyze the amplitude of the
audio signal and apply adaptive gating and thresholding to
each input signal to create a coherent sound source mixture
of the individual tracks in addition to preventing feedback.

More recent work incorporates perceptual features (e.g,
loudness) into systems designed for live automatic gain con-
trol and cross-adaptive equalization [4, 5]. The implemen-
tation of the former focuses on adapting the fader level of
each channel with the goal of achieving the same average
loudness per channel. The latter is designed for use in live
settings as a tool for inexperienced users or to reduce equip-
ment setup time. The system attempts to dynamically filter
various frequency bands in each channel so that all channels
are heard equally well.

Structured audio is the representation of sound content
with semantic information or algorithmic models [6]. This
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form of encoding allows for much higher data transmission
rates as well as retrieval and manipulation of audio based
on perceptual models. Currently, professional music post-
production is performed by a highly skilled engineer with
years of training. Using structured techniques, a parameter-
ized, generative version of this process that is applicable to
a variety of source audio is feasible.

More recent efforts focus on determining the parame-
ters used in common linear signal processing effects such
as equalization and reverb as well as dynamic level com-
pression [7]. The authors also present a method for deter-
mining static fader values for an entire song for each track
in a multi-track recording session. An interface for assisting
users in creating mix-downs of user generated content from
examples of mixes produced by professional engineers is
presented in [8].

Other related work seeks to equalize an audio input based
on a set of descriptive perceptual terms such as bright or
warm [9]. Rather than attempt to navigate the complex net-
work of sliders and knobs in an audio interface, a user can
specify a high level term that describes the desired sound
quality, and an appropriate equalization curve will be ap-
plied. The system was developed through collecting user
ratings for audio examples and performing linear regres-
sion to find a weighting function for a particular instru-
ment/timbre pair.

3. MODELING FRAMEWORK

The dataset we use in our experiments consists of 48 multi-
track songs from the RockBand R© video game. Each song
contains both mono and stereo tracks for a basic rock instru-
mentation including guitar, bass, drums and vocals. Many
songs may also include keyboards, horns, percussion, back-
ing vocals, strings or other instruments. Often these backing
instruments are contained in one audio track, making model-
ing each instrument separately rather difficult. To facilitate
comparison between the data of each song, we first prepro-
cess the tracks to obtain a set of five instrument tracks –
bass, drums, guitar, vocals and a backup track that contains
all other instruments. A detailed explanation of this process
is given in [1].

3.1 Weight Estimation

Since we do not have the DAW sessions used to create each
song, the actual fader values of the individual tracks are un-
known and must be estimated. To do this, the digital audio
output of the gaming console was recorded and aligned in a
DAW session with the multi-track data of the corresponding
song. The spectrum of a frame of the output mix is assumed
to be a linear combination of the individual input tracks ac-
cording to

α1tU1t + α2tU2t + · · ·+ αktUkt = Vt (1)

Figure 1. System diagram detailing the ‘One Vs. All’
method for mixing coefficient prediction.

where Vt is the spectrum of the mixed track and U{1,...,k}t
represents the spectra of the individual instrument tracks.
We vectorize the spectrogram of each frame and use non-
negative least squares (NNLS) to find the mixing coeffi-
cients. We use NNLS as opposed to unconstrained least
squares estimation because multi-track mixing is an addi-
tive process.

The noise in the weights is reduced through Kalman
smoothing [10]. It is significant to note that while these co-
efficients produce a mix that is perceptually similar to the
original track, they are not the actual ground truth weights.
Audio examples of the original song and the reconstructed
mix using the estimated weights are available online 1 .

3.2 Weight Prediction

We use the weights estimated in Section 3.1 as labels in a
supervised machine learning task. We first briefly outline
the previous work we performed using this framework, then
elaborate on a modified version of the model.

In [1] we treat the α values as the hidden states of a linear
dynamical system and our acoustic features as the output of
the system whose mathematical representation is

αt = Aαt−1 + wt, (2)

yt = Cαt + vt (3)

The dynamics matrix A controls the temporal evolution of
the hidden states and C projects the hidden states into our
observation space (feature domain). The driving and obser-
vation noise sources, wt and vt, respectively are zero mean
Gaussian random variables with covariances Q and R.

1 http://music.ece.drexel.edu/research/AutoMix
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Track All Tracks One Vs. All Best Features

backup 0.0126 0.0110 0.0087
bass 0.0191 0.0163 0.0088
drums 0.1452 0.1283 0.0489
guitar 0.0158 0.0151 0.0115
vocal 0.0188 0.0160 0.0108

Table 1. Results for LOOCV on the database. The MSE
for each track across all songs is shown for the All Tracks
method and the One Versus All approach.The Best Features
column is the result from sequential feature selection.

Our state vector is the weights of each instrument at time
step t

αt = [α1α2 . . . αk]T (4)

and the structure of the output vector is

yt =
[
F

(1)
1 . . . F

(1)
m F

(2)
1 . . . F

(2)
m F

(k)
1 . . . F

(k)
m

]T
(5)

where k indexes the instrument and m is the feature index.
To train the model we estimate A and C through con-

straint generation and least squares, respectively and com-
pute the covariances Q and R from the residuals of A and
C [11]. In this framework, we are constrained in terms of
the number and type of instruments we can use the auto-
matic mixing system for. Since each αk is associated with
a specific instrument, omitting or adding tracks changes the
dimension of the hidden state vector and in turn makes pre-
dicting weights for a set of tracks that are not explicitly in
the form described in (4) and (5) intractable.

3.3 Modified Prediction Scheme

Instead of modeling the time varying mixing coefficients of
all tracks as the hidden states of the LDS, we consider only
one instrument at a time. Our new state vector consists of the
weight for the jth track and its first and second derivatives

αt =
[
αj α̇j α̈j

]T
(6)

The derivatives of the weight vector are used to provide the
model with more information about the dynamic evolution
of the mixing coefficients. Note that only the weights for
one instrument are included in the state vector. By elim-
inating the weight values of the other instruments, we are
training the model to consider only how well the current
instrument ‘sits’ in the mix, not how the weights of all in-
struments evolve together.

The output vector yt is comprised of the feature set for
the instrument we are trying to predict stacked with the av-

Feature Description
RMS energy Root mean square energy

Spectral flux Change in spectral energy

Spectral bandwidth Range of frequencies where most energy lies

Octave-based sub-bands Energy in octave spaced frequency bands

MFCC Mel-Frequency Cepstral Coefficients

Spectral centroid Mean or center of gravity of the spectrum

Spectral peaks Energy around a local sub-band maxima

Spectral valleys Energy around a local sub-band minima

Slope/Intercept Parameters of a line fit to the spectrum of a frame

Table 2. Spectral and time domain features used in mixing
coefficient prediction task.

erage of the features from all other instruments

yt =
[
F

(j)
1 ... F

(j)
m

1
K−1

∑K
k 6=j F

(k)
2 ... 1

K−1

∑K
k 6=j F

(k)
m

]T
(7)

If j = 1, then we are using m features associated with
the first track and averaging the features associated with the
tracks k 6= j, reducing the dimensionality of the feature vec-
tor from km to 2m. Comparing (5) to (7), we observe that in
(7) there is no dependency on which position (k) the features
for a given instrument are located. The only prior knowl-
edge the model requires is the type of the jth instrument for
which we are predicting time-varying weights. As a result,
in this framework there is no limitation on the number or
type of instruments that can be mixed using the system, pro-
vided that there exists training data for the target instrument
j. A system diagram showing the new modeling method is
shown in Figure 1.

To evaluate the efficacy of this modified estimation ap-
proach, we perform the same experiment outlined in [1] and
compare the results of the two methods. Using the 48 songs
in our dataset, we perform leave-one-out cross-validation
(LOOCV), training an LDS on 47 tracks and predicting the
weights for the remaining track. We repeat the process us-
ing each track as a test song only once and average the mean
squared error (MSE) between our estimated ground truth
values and our predictions from the LDS. The results are
shown in Table 1. We refer to the method described in Sec-
tion 3.2 as All Tracks (AT) and the modified approach in this
section as One Versus All (OVA). The OVA results are are
computed using the same feature set {centroid, RMS, slope,
intercept} that was used in the previous experiment [1].

The table shows an average improvement of 11.66% in
terms of MSE for all instrument types in the dataset. The
OVA method provides increased performance in terms of
the MSE of the weight predictions as well as increased flex-
ibility. The new topology enables the system to mix songs
that do not have the same number of tracks as the normal-
ized RockBand dataset we compiled.
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Backup Bass Drums Guitar Vocal

Feature Error Feature Error Feature Error Feature Error Feature Error

Bandwidth 0.0511 Flux 0.0590 Centroid 0.7322 Bandwidth 0.0756 Flux 0.1183
Flux 0.0526 Bandwidth 0.0590 RMS 0.8415 Valley 0.0878 Centroid 0.1240
Sub-Bands 0.0580 Slope 0.0618 Slope 0.8713 Intercept 0.0908 Bandwidth 0.1251
Intercept 0.0587 Intercept 0.0622 Bandwidth 0.8861 Slope 0.0920 Valley 0.1262
Slope 0.0589 RMS 0.0716 Intercept 0.8932 Flux 0.0936 Peak 0.1302
Peak 0.0607 Valley 0.0741 Peak 0.9260 Sub-Bands 0.0974 Intercept 0.1316
RMS 0.0629 Sub-Bands 0.0743 Valley 0.9381 RMS 0.0987 Sub-Bands 0.1317
Centroid 0.0636 Peak 0.0752 Sub-Bands 0.9649 Peak 0.1019 Slope 0.1318
MFCC 0.0659 Centroid 0.0801 MFCC 1.1785 Centroid 0.1095 RMS 0.1320
Valley 0.0680 MFCC 0.0821 Flux 3.5767 MFCC 0.1127 MFCC 0.1373

Table 3. Mean squared error for all features and individual instruments. Features for each instrument are listed in order of best
performance to worst performance. The best combination of features for each instrument is in boldface.

4. FEATURE ANALYSIS

Having shown that the OVA method outperforms the AT
method, we proceed to investigate which features are the
most informative. We explore an extended feature set within
the framework described in the previous section and ana-
lyze the performance of each individual feature as well as
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Figure 2. MSE versus the number of stacked features used
in training an LDS for each track. Note that the scale of each
sub-plot varies. The minimum is indicated for each track.

combinations of features. Table 2 lists the array of spec-
tral and time domain features we selected for our experi-
ment [12–14]. The features are chosen to contain informa-
tion about the total energy of the signal, energy within var-
ious frequency bands, spectral shape and dynamic spectral
evolution. All experiments are performed using LOOCV on
the entire dataset. In the first experiment, we test the per-
formance of each individual feature using the average MSE
over all songs as our error metric. Table 3 shows the results
for each feature for each track type in the dataset. There
is no single feature that appears to be dominant for mixing
coefficient prediction.

Using these results, we employ sequential feature se-
lection to increase the performance of our system [15].
The best performing feature for each instrument in Table
3 is stacked with each remaining feature, and the MSE for
LOOCV is computed for each combination. The best fea-
ture from this result is retained and the process is repeated
until all features have been used. The results of this analy-
sis are depicted in Figure 2. The best performing number of
features for each instrument is indicated with a diamond.
Since some of our features may contain similar informa-
tion, adding additional features eventually becomes redun-
dant and the increase in the size of the parameter space out-
weighs the gain in information.

5. RESULTS

The overall results for using the best performing feature en-
semble are detailed in Table 1. The table shows that the
OVA approach more accurately models the mixing coeffi-
cients and the addition of more features greatly improves the
results. Mean squared error does not provide any intuition
about where each model fails or performs well. Figure 3
shows a comparison between the AT and OVA models. Both
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Figure 3. Comparison of ground truth (black) values with AT (gray) and OVA (orange) models. Left: ‘More Than A Feeling’
by Boston. Right: ‘Hammerhead’ by The Offspring.

models were trained with the feature set used in [1]. There is
relatively small deviation in the bass and guitar predictions
for each method on both songs. The most significant differ-
ence is in the ability of the OVA model to track the vocal
weights as evidenced by the relatively flat predictions from
the AT model contrasted with the OVA model predictions
that follow the contour of the ground truth weights.

In Figure 4 we observe the effect of increasing the num-
ber of features used to train the model. The predictions us-
ing the best feature for each instrument from Table 3 are
shown in gray and the highest performing ensemble of fea-
tures is depicted in orange. Adding features creates the most
improvement in the drum track where the contour and bias
of the predictions closely follows the ground truth for both
songs. Although this is only a small sample of the dataset,
this representation informs us of improvements that can be
made to the system.

6. CONCLUSION

Our automatic multi-track mixing system predicts a set of
weighting coefficients for an instrument given an ensem-
ble of acoustic features extracted from audio content. We

improve upon our previous modeling framework by train-
ing a separate LDS for each instrument rather than model-
ing all weight vectors within a single system. Applying the
One Versus All method of training removes the restrictions
imposed by the All Tracks model and yields better perfor-
mance in predicting the weights for all instruments.

Moreover, we investigate the accuracy of an array of
spectral and time-domain features on predicting the mixing
coefficients. The improved modeling scheme and feature
ensemble chosen through sequential feature selection illus-
trate marked improvement over our previous results. While
this approach to automatic multi-track mixing works well
for our small dataset, in the future we plan to develop a
larger and more varied corpus of songs to explore how ro-
bust the model is.
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Figure 4. Comparison of ground truth (black) values with OVA model using the single best feature (gray) and using the best
combination of features (orange). Left: ‘More Than A Feeling’ by Boston. Right: ‘Hammerhead’ by The Offspring.
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ABSTRACT

We propose a system for accelerating the mixing phase in
a recording production, by making use of audio alignment
techniques to automatically align multiple takes of excerpts
of a music piece against a performance of the whole work.
We extend the approach of our previous work, based on se-
quential Montecarlo inference techniques, that was targeted
at real-time alignment for score/audio following. The pro-
posed approach is capable of producing partial alignments
as well as identifying relevant regions in the partial results
with regards to the reference, for better integration within
a studio mix workflow. The approach is evaluated using
data obtained from two recording sessions of classical music
pieces, and we discuss its effectiveness for reducing manual
work in a production chain.

1. INTRODUCTION

The common practice in productions of studio recordings
consists of several phases. At first the raw audio material
is captured and stored on a support. This material is sub-
sequently combined and edited in order to produce a mix,
which is finalized in the mastering phase for commercial
release. Nowadays, the whole process revolves around a
computer Digital Audio Workstation (DAW).

In the case of instrumental recording, the initial task in-
volves capturing a complete reference run-through of the en-
tire piece, after which additional takes of specific sections
are recorded to allow the mixing engineer to mask perfor-
mance mistakes or reduce eventual environmental noises.
The role of a mixing engineer is to integrate these takes
within the global reference in order to achieve a seamless
final mix [2]. The first step in preparing a mix session con-
sists in arranging the takes with regards to the global ref-
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erence. Figure 1 shows a typical DAW session prepared
out of a reference run-through (the top track) and additional
takes aligned appropriately. Those takes usually require fur-
ther cleanup as they commonly include noise or conversa-
tion that are not useful for the final mix. This means that,
in addition to alignment, the mixing engineer identifies cut-
points for each take that correspond to relevant regions in
the reference. The additional takes are finally blended with
the reference by crossfading short overlapping audio regions
to avoid perceptual discontinuities.

Figure 1. A typical DAW mixing session.

The purpose of this work is to facilitate the process of
mixing by integrating automatic (audio to audio) alignment
techniques into the production chain. Special care is taken to
consider existing practices within the workflow, such as au-
tomatic identification of interest points. In contrast to most
literature on audio alignment, we are concerned with two
essential aspects: the ability to identify a partial alignment
with an unknown starting position and the detection of re-
gions of interest inside the alignment. Moreover our ap-
proach permits to achieve different degrees of accuracy de-
pending on efficiency requirements.

Using audio material collected from two real-life record-
ing sessions, we show that it is possible to optimize the op-
erations of sound engineers by automating time-consuming
tasks. We further discuss how such framework can be inte-
grated pragmatically within common DAW software.
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2. RELATED WORK

At the application level, alignment techniques were already
introduced in the literature in [3]. Alignment of audio to
the symbolic representation of a piece was integrated into
the workflow, permitting the automation of the editing pro-
cess through operations such as pitch and timing correc-
tions. The application of these approaches is precluded in
the present context by the requirement of accessing a sym-
bolic representation of the music. Nonetheless, despite this
limitation, the work provides important insights in the inte-
gration within a DAW setup.

At the technological level, audio alignment has often been
the subject of extensive research; an overview of classical
approaches in literature can be found in [6]. In contrast to
traditional methods, an important aspect of this work is the
consideration of partial results and detection of interest re-
gions. An audio alignment method with similar aims was
introduced in [7], that explicitly deals with the synchroniza-
tion of recordings that have different structural forms.

3. GENERAL ARCHITECTURE

The proposed methodology was devised assuming that a
generic algorithm is available that is capable of aligning
audio sequences without a known starting position. Even
though methods such as HMM or DTW [4] could have been
used for this aim, we chose to exploit our previous work [6]
on sequential Montecarlo inference because of its straight-
forward applicability to the present context, its flexibility
regarding the degree of accuracy given by the availability of
smoothing algorithms and the possibility to trade accuracy
for computational efficiency in an direct way.

In the first phase a rough alignment is produced as in Fig-
ure 2(a); the initial uncertainty in the alignment is due to the
fact that the initial position is not known a priori. In a second
phase we identify a sufficiently long region of the alignment
that can be reasonably approximated by a straight line, as in
Figure 2(b); this region intuitively corresponds to the “cor-
rect” section of the alignment. These two phases solve the
task of placing the takes along the reference (Figure 1).

The remaining steps address the tasks in which a more
accurate alignment is required. In the third phase, the ini-
tial portion of the alignment is corrected, starting from a
position inside the region found in the previous phase and
using a reversed variant of the alignment algorithm (Fig-
ure 2(c)). Finally, a refined alignment is produced by ex-
ploiting a smoothing algorithm for sequential Montecarlo
inference, as shown in Figure 2(d).

4. METHODOLOGY

The four phases described in the previous section are high-
lighted in Figure 2 and described below in detail.
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(a) Initial alignment, using sequential Montecarlo inference.
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(c) Correction of the beginning of the alignment.
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(d) Final alignment obtained using smoothed inference.

Figure 2. Alignment methodology.
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4.1 Initial Alignment

The alignment problem is formulated as the tracking of an
input data stream along a reference, using motion equations.

4.1.1 System State Representation

The system state is modeled as a two-dimensional random
variable x = (s, t), representing the current position in the
reference audio and tempo respectively; s is measured in
seconds and t is the speed ratio of the performances. The
incoming signal processing frontend is based on spectral
features extracted from the FFT analysis of an overlapping,
windowed signal representation, with hop size ∆T . In order
to use sequential Montecarlo methods to estimate the hidden
variable xk = (sk, tk) using observation zk at time frame k,
we assume that the state evolution is Markovian.

4.1.2 Observation Modeling

Let p(zk|xk) denote the likelihood of observing an audio
frame zk of the take given the current position along the ref-
erence performance sk. We consider a simple spectral sim-
ilarity measure, defined as the Kullback-Leibler divergence
between the power spectra at frame k of the take and at time
sk in the reference.

4.1.3 System State Transition Modeling

Let p(xk|xk−1) denote the pdf for the state transition; we
make use of tempo estimation in the previous frame, assum-
ing that it does not change too quickly:

p(xk|xk−1) = N (

[
sk

tk

]
| µk,Σ)

µk =

[
sk−1 + ∆T tk−1

tk−1

]
Σ =

[
σ2

s ∆T 0
0 σ2

t ∆T

]
Intuitively, this corresponds to a performance where tempo
is rather steady but can fluctuate; the parameters σ2

t and σ2
s

control respectively the variability of tempo and the pos-
sibility of local mismatches that do not affect the overall
tempo estimate.

4.1.4 Inference Algorithm

Sequential Montecarlo inference methods work by recur-
sively approximating the current distribution of the system
state using the technique of Sequential Importance Sam-
pling: a random measure {xi

k, w
i
k}

Ns
i=1 is used to charac-

terize the posterior pdf with a set of Ns particles over the
state domain and associated weights, and is updated at each
time step as in Algorithm 1. In particular, q(xk|xk−1, zk) is
the particle sampling function. In our implementation this
corresponds to the transition probability density function; in
this case the algorithm is known as condensation algorithm.

An optional resampling step is used to address the de-
generacy problem, common to particle filtering approaches;
this is discussed in detail in [1,5] and in the next paragraph.

The decoding of position and tempo is carried out by
computing the expected value of the resulting random mea-
sure (which is efficiently computed as E[xk] =

∑Ns

i=1 x
i
kw

i
k).

Algorithm 1: SIS Particle Filter - Update step

for i = 1 . . . Ns do
sample xi

k according to q(xi
k|xi

k−1, zk)

ŵi
k ← wi

k−1

p(zk|xi
k)p(xi

k|x
i
k−1)

q(xi
k|x

i
k−1,zk)

wi
k ←

ŵi
k∑

j ŵj
k

∀i = 1 . . . Ns

Neff ← (
∑Ns

i=1(wi
k)2)−1

if Neff < resampling threshold then
resample x1

k . . . x
Ns

k according to ddf w1
k . . . w

Ns

k

wi
k ← N−1

s ∀i = 1 . . . Ns

4.1.5 Initialization

Initialization plays a central role in the performance of the
algorithm; in a probabilistic context this corresponds to an
appropriate choice of the prior distribution p(x0).

In a real-time setup the player is expected to start the per-
formance at a well known point of the reference; this fact is
exploited in the design of the algorithm by setting an appro-
priately shaped prior distribution, typically a low-variance
one around the beginning.

In the proposed situation however the initial point is not
known (it represents indeed the aim of our interest). To cope
with this, the prior distribution p(x0) is set to be uniform
over the whole duration L of the reference performance; the
algorithm is expected to “converge” to the correct position
after a few iterations. Figure 3 shows the evolution of the
probability distribution for the position of the input at dif-
ferent moments of the alignment.

4.1.6 Degeneracy Issues w.r.t. Realtime Alignment

A relevant parameter of Algorithm 1 is the resampling thresh-
old. The variable Neff , commonly known as effective sam-
ple size, is used to estimate the degree of degeneracy which
affects the random measure; degeneracy is related to the
variance of the weights {wi

k}
Ns
1 , and it is proven to be al-

ways increasing in absence of resampling. In a degenerate
situation most particles have close-to-zero weight, resulting
in most of the computation being spent in updating parti-
cles which are subject to numerical approximation errors.
Resampling is introduced to obviate this issue. Intuitively,
resampling replaces a random measure of the true distribu-
tion with an equivalent one (in the limit of Ns →∞) that is
better suited for the inference algorithm. Since resampling
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Figure 3. Evolution of p(sk|z1 . . . zk).

introduces other problems (in particular, sample impover-
ishment, i.e., a small number of particles is selected multi-
ple times) its usage should be limited, thus producing the
necessity for a threshold on the effective sample size.

In the real-time score following case [6] the mass of the
distribution is always concentrated around a small region
of the domain thus allowing the resampling threshold to be
relatively low. In contrast, in a situation such as the one
depicted in Figure 3, the sparsity of the distribution in the
initial phases of the alignment imposes a much higher re-
sampling threshold, otherwise many relevant hypotheses are
soon lost in the resampling phase and cannot be recovered.

4.2 Identification of the Interest Region

This phase aims at identifying a region of the alignment ob-
tained previously where it is certain that the alignment is
indeed “correct”. As depicted in Figure 2(b), a typical align-
ment can be subdivided into two regions, the first one being
characterized by irregular oscillations (because not enough
data has been observed yet in order to select the most proba-
ble hypothesis with enough confidence) and the second one
resembling a straight line; we will refer to the former as
convergence region and to the latter as interest region.

As can be inferred by observing the plot in Figure 2(b),
the most important characteristic of the interest region is its
slope. From a technical point of view, the slope should be
as constant as possible for the alignment region to be sig-
nificant. From a musical perspective it should be roughly
unitary, implying that the performance tempos of the single
take and the reference are approximately the same. In ad-
dition to that, the duration of the interest region should be
long enough to discard noisy sections of the alignment.

The interest region is identified in the following man-
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Figure 4. Identification of the interest region.

ner: each of many initial candidate regions w1 . . . wW is
iteratively expanded as long as it meets the criteria exposed
above; the longest of the resulting intervals is elected as the
interest region, unless none of them matches the require-
ments, in which case the alignment is identified as incor-
rect. The process described above is depicted in Figure 4
(dashed horizontal lines represent the regions progressively
examined by the algorithm) and formalized in Algorithm 2.

Algorithm 2: Identification of interest region
w1, . . . , wW ← regularly spaced intervals in [0, L]
candidates← ∅ for i = 1 . . .W do

while |wi| < L do
wi ← max(0, wstart

i −∆T),min(L,wend
i +∆T)

ai ← slope of LS-fit line for points in wi

ei ← mean difference with LS-fit line in wi

if ai ∈ [1−∆A, 1 + ∆A] ∩ ei < ∆E then
candidates← candidates ∪ i

else
break

if |candidates| > 0 then
interest region← max

i∈candidates
wi

else
alignment is incorrect

4.3 Correction of the Convergence Region

In order to fix the convergence region of the alignment, we
exploit again the sequential Montecarlo inference method-
ology of 4.1, with some adaptations. The general idea is
to run the algorithm “backwards”, i.e., to align the time-
reversed audio streams, starting from a point in the previous
alignment that is known to be correct.

The starting point B is chosen inside the region of in-
terest. The prior distribution for the backward alignment
is equal to that of the forward alignment at B, however
with the value of the velocity for each particle inverted:
p(x

(b)
B ) = diag(1,−1)p(xB |z0 . . . zB). The audio stream of
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the take is then reversed and processed by Algorithm 1, as in
Figure 2(c). Experimentation shows that a narrow uniform
or gaussian prior centered in (B,−1)T are for practical pur-
poses equivalent to the form of p(x(b)

B ) mentioned above.

4.4 Smoothing Inference

Sequential Montecarlo inference algorithms are typically for
online estimation; this implies that at each instant only the
information about the past is exploited, instead of the whole
observation sequence. In the context of an offline appli-
cation however these real-time constraints can be dropped.
Both the Forward/Backward and Viterbi inference algorithms
can be deduced, respectively estimating the probability dis-
tribution at each instant given the full observation sequence
and the Maximum A Posteriori alignment. The running time
of both algorithms is quadratic in the number of particles,
however this issue can be mitigated by an appropriate choice
of the prior distribution p(x

(fb)
0 ) such as a resampling of

diag(1,−1) p(x
(b)
0 ) with a smaller numer of samples.

5. EVALUATION

An ideal evaluation of the efficacy of the proposed method-
ology in the context discussed in Section 1 should aim at
measuring the amount of work saved in production with re-
spect to the current workflow. A discussion of our current
work in this area is presented in Section 6.

Below we evaluate the efficacy of the proposed approach
regarding the initial phase of laying out the takes as in Fig-
ure 1. The accuracy of the alignment in terms of latency and
average error was evaluated in our previous work [6]; a sim-
ilar analysis could not be performed in this case, due to the
lack of a (manually annotated) reference linking the timings
of each musical event for all takes to the reference record-
ing. Moreover, in this situation the aim is rather to position
correctly the highest number of takes against the reference,
rather than to align them with the highest possible precision.

5.1 Dataset description

We collected the recordings produced in two real-life ses-
sions by different groups of sound engineers, consisting of
approximately 3 hours of audio data. The first one is a
recording session of the second movement of J. Brahms’
sextet op. 18; the second one was produced shortly after the
premiere of P. Manoury’s “Tensio”, for string quartet and
live electronics, in December 2010. Table 1 summarizes
their characteristics.

5.2 Experimental Results

We performed the alignment of each take in the two databases
according to the procedure introduced in Section 4. We se-
lect the center point of the interest region identified in the

dataset n. of rec. duration [s]
ref. takes (avg,std) total

Brahms 20 + ref. 588.8 112.8, 92.0 2844.0
Manoury 49 + ref. 2339.4 113.5, 94.0 7900.4

Table 1. Datasets used for evaluation.

second phase as the alignment reference for the whole take
(we do not performs the optional two last steps).

In all the test we executed, we set the number of particles
Ns to be proportional to the duration of the reference (60
particles per second). Our implementation aligns a minute
of audio in 2.29s for Ns = 105 on a laptop computer with a
2.4 Ghz Intel i5 processor (a single core is used).

5.2.1 Brahms Dataset

For this dataset, a manual placement of all the takes with
respect to the reference recording was performed using a
musical score, in order to evaluate the correctness of the au-
tomatic procedure. Aural inspection of the data showed that
none of the recordings but one presented undesired noises.

All the takes but one were correctly aligned. In the un-
successful case, the length of the recording itself was one
second shorter than the minimum length for an interest re-
gion (15s); using last alignment point as a reference, the
placement of this take also results to be correct.

5.2.2 Manoury Dataset

The dataset contains a complete run-through and 49 sepa-
rate takes. The particularity of this dataset is the presence
of undesired material for the final mix in many of the indi-
vidual takes (such as speech, practice sessions, volume and
calibration tests). Out of 49 takes, 14 contain exclusively
noise and 21 partially. In the former case we consider the
alignment correct if the file is discarded, in the latter we aim
at aligning correctly the interesting portion of the take. This
is in sharp contrast with the “cleanness” of the Brahms set
and presents difficulties that were not foreseen when formu-
lating the alignment procedure.

Contrarily to the Brahms dataset, the evaluation of the
alignment precision was done a posteriori: instead of per-
forming a manual alignment in advance, the results of the
automatic alignment were checked. The reason for this lies
behind the length (approximately 40 minutes) and complex-
ity of the music: even with the score at our disposal, it was
immediately evident that a manual alignment would have
taken a very long time. It is precisely this difficulty that
sound engineers had to face.

Our first experiment aligning this dataset yielded rather
poor results on the 21 files containing noise regions of sig-
nificant length (in some cases up to more than one minute);
since in almost all cases the noisy portion was at the begin-
ning, we decided to directly align the reversed audio streams

631



Oral Session 7: Structure Analysis and Mixing

in the first phase. With this simple adaptation the results are
as follows: of the 35 files containing interesting regions, 26
were correctly aligned; all of the 14 takes that contained ex-
clusively noises were correctly discarded by the algorithm.

The absence of false positives (no noise-only takes were
mistakenly aligned) and the correct positioning of all the
aligned files suggest that the simple algorithm for identifi-
cation of the interest region is robust enough to be applied
to rather short audio segments, yielding the possibility of re-
peating the alignment algorithm multiple times on different
subregions of the audio in order to avoid noisy sections.

6. WORKFLOW ADAPTATION

The audio industry has established over the years common
standards for mixing that are adopted in most professional
studio records worldwide. Integration of new technologies
within existing workflow therefore requires special attention
to existing practices within the community. To this end, we
conducted several interviews with sound engineers.

From an R&D standpoint, an ideal integration would be
a direct implementation of this technology into the graphi-
cal user interface of common DAW softwares to maximize
usability. Such integration would allow novel possibilities,
such as linking two tracks by means of their alignment and
defining the placement of transition points between them
for crossfading, avoiding any destructive editing regarding
the discarded audio regions. Such integration requires di-
rect contact with software houses which are mostly close to
public domain development.

An alternative solution is represented by standalone align-
ment tools, whose outputs should be directly importable into
a commercial DAW. Virtually all the major DAWs and video
post production systems support the Open Media Frame-
work (OMF) and the Advanced Authoring Format (AAF),
respectively owned by Avid Technology, Inc. and by the
Advanced Media Workflow Association (AMWA) 1 . These
are employed as interchange formats to allow interoperabil-
ity between different software. An alignment software, that
we are currently developing, could automatically construct
an initial session using an interchange format that audio en-
gineers can use in their DAW to start the mixing process.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we attempted to address two issues: Intro-
ducing novels tools generalizing audio matching algorithms
to partial alignment with relevant region detection, and their
integration within realistic studio mixing procedure to accel-
erate mixing session preparation for audio engineers. The
first task involves adapting audio alignment techniques to
situations where there is no specific prior knowledge on the

1 http://www.avid.com, http://www.amwa.tv

starting point of the alignment. Such considerations would
allow audio engineers to automatically obtain a global view
of many different individual takes with regards to a refer-
ence run-through recording in a typical recording session, as
well as providing access to relevant parts within each take;
this is a time-consuming task if done manually. We further
discussed how this procedure can realistically be integrated
into common mixing workflows.

Applications of the proposed technology are not limited
to the preparation of the initial mixing session: mid-level in-
formation obtained during the alignment task can in fact be
further integrated in a studio mixing workflow. For exam-
ple, our audio alignment provides useful information about
the tempo of a performance with regards to the reference
that can be employed as an important factor for the mix-
ing engineer. Such integration requires further collaboration
with audio engineers to determine an optimal exploitation of
these informations in the context of existing practices.
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ABSTRACT

Audio chord recognition has attracted much interest in re-
cent years, but a severe lack of reliable training data—both
in terms of quantity and range of sampling—has hindered
progress. Working with a team of trained jazz musicians, we
have collected time-aligned transcriptions of the harmony
in more than a thousand songs selected randomly from the
Billboard “Hot 100” chart in the United States between 1958
and 1991. These transcriptions contain complete information
about upper extensions and alterations as well as information
about meter, phrase, and larger musical structure. We ex-
pect that these transcriptions will enable significant advances
in the quality of training for audio-chord-recognition algo-
rithms, and furthermore, because of an innovative sampling
methodology, the data are usable as they stand for computa-
tional musicology. The paper includes some summary figures
and statistics to help readers understand the scope of the data
as well as information for obtaining the transcriptions for
their own research.

1. WHY CHORDS?

Ever since Alexander Sheh and Dan Ellis’s first foray into rec-
ognizing musical chords directly from audio [11], this chal-
lenging problem has fascinated researchers at ISMIR. From
the beginning, however, the challenges have been more than
just engineering: there has not been nearly enough labelled,
time-aligned data to train reliable recognizers. Sheh and Ellis
worked with just twenty songs. Gradually, more data has be-
come available, most famously Christopher Harte’s transcrip-
tions of the entire output of the Beatles [8], but even the most
recent Music Information Retrieval Evaluation Exchange
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(MIREX) contests 1 have had only 210 songs available [10].
Some researchers have tried to circumvent the problem by
synthesizing audio from MIDI [9], but there has remained a
significant interest in developing a larger, human-annotated
data set of chords from commercial recordings.

Audio chord recognition is not the only use for a larger
data set. The analysis of harmony in popular music has been
drawing more and more attention from music theorists [2, 6].
Due to the limitations on the amount of available data, these
analyses and theories are usually based on a very limited
number of examples and cannot be generalized with statisti-
cal guarantees of accuracy. A large-scale empirical analysis
of harmony in popular music would be an enormous contri-
bution to musicology, but such analysis would require not
only more data, just as audio chord recognition does, but also
a wider range of data. Of the 210 songs in the MIREX data
set, 174 (83 percent) are by the Beatles. While that may be
admirable in terms of musical quality, it makes it impossi-
ble to draw more general conclusions about how harmony
operated in the music of other artists and other periods. We
believe that a single, well-conceived data set can address the
needs of both communities.

We are pleased to announce the release of a new data set
that comprises detailed transcriptions of the chords in more
than one thousand songs selected at random from Billboard
magazine’s “Hot 100” charts. Each transcription represents
the combined opinion of three or more experts in jazz and
popular music, and the chord symbols have been time-aligned
with the musical meter and with commercially available au-
dio recordings. This paper describes the methodology for
selecting songs (section 2), explains the process used to tran-
scribe them (section 3), and presents some basic descriptive
statistics to help readers understand how they might use these
data (section 4). In addition to the contribution of the data set,
we hope that information about how we produced them—a
process that was considerably more involved than we had
originally expected—will benefit other research groups who
are interested in transcribing still more chords themselves.

1 http://www.music-ir.org/mirex/
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2. THE BILLBOARD “HOT 100”

The Billboard “Hot 100” is a weekly compilation of the
most popular music singles in the United States, all genres
included, based on a combination of radio airplay and retail
sales (and more recently, digital downloads). 2 The “Hot 100”
has been published continuously in Billboard magazine since
4 August 1958, replacing earlier charts like “Best Sellers
in Stores,” “Most Played by Jockeys,” and “Most Played in
Jukeboxes.” Although it is far from a perfect representation of
popularity, like any ranking, it is generally regarded to be the
gold standard among charts of popular music in North Amer-
ica [4]. Because it includes all genres, it seemed particularly
well-suited to the goals of training broadly-applicable chord
recognizers and drawing broadly-applicable musicological
conclusions. It has also been the basis for several previous
attempts to draw statistical conclusions about the behavior
of popular singles over time [1, 4, 7].

2.1 Sampling Methodology

The date of the first chart, 4 August 1958, is a natural starting
date for selecting songs, but choosing an end date is less
straightforward. Hip-hop music does not lend itself readily to
harmonic analysis as traditionally understood, and because
hip-hop became more popular in the 1990s and 2000s, a
larger portion of the music on the “Hot 100” chart from these
periods falls out of the scope of the data set. Furthermore,
there have been several changes to the formula for computing
the “Hot 100” over time, including a particularly significant
shift in December 1991, when the data for generating the
charts shifted from being self-reported to being generated
automatically through Nielsen’s BDS and SoundScan sys-
tem. 3 After this date, songs tended to stay on the charts for
so much longer than before that Billboard established lim-
its on how many weeks any given single would be allowed
to remain on the “Hot 100” chart, added a “Recurrent Sin-
gles” chart to capture singles knocked off the chart due to the
new rule, and has averaged songs pre-1991 differently from
those post-1991 when generating historical summaries like
the “50th-Anniversary” charts [3]. We chose to restrict our
sample to charts prior to December 1991 in order to avoid
these problems.

As stated earlier, our goal in constructing this data set
was not only to provide a higher-quality set for audio chord
recognition but also to provide a data set that would be useful
for computational musicology and the analysis of popular
music. As such, it was important to choose a sample of songs
that would allow for general questions about how popular
music and the factors that made it popular evolved through-
out the latter half of the twentieth century. Like most projects,

2 http://www.billboard.com/charts/hot-100
3 http://nielsen.com/us/en/industries/

media-entertainment.html

1. Divide the set of all chart slots into three eras:

(a) 4 August 1958 to 31 December 1969,

(b) 1 January 1970 to 31 December 1979, and

(c) 1 January 1980 to 30 November 1991.

2. Subdivide the chart slots in each era into five sub-
groups corresponding to quintiles on the chart:

(a) ranks 1 to 20,

(b) ranks 21 to 40,

(c) ranks 41 to 60,

(d) ranks 61 to 80, and

(e) ranks 81 to 100.

3. Select a fixed percentage p of possible chart slots
at random from each era-quintile pair.

4. For each selected chart slot:

(a) attempt to acquire the single at the target slot;

(b) if that fails, toss a virtual coin to choose be-
tween either the single directly above or di-
rectly below the target slot on the chart from
the same week;

(c) if that fails, choose the single that was not se-
lected by the coin toss in 4b;

(d) if that fails, toss a virtual coin to choose be-
tween either the single two ranks above or two
ranks below the target single on the chart from
the same week;

(e) if that fails, choose the single that was not se-
lected by the coin flip in 4d; and

(f) if that fails, consider the chart position to be a
missing data point.

Figure 1. Sampling algorithm for the Billboard “Hot 100.”
The algorithm is designed to minimize the distortion from
“convenience sampling” while reducing the expense of col-
lecting an audio collection. We believe that this algorithm
yields a data set that, as cost-effectively as possible, is
valid for drawing conclusions about relative positioning and
changes in the behavior of music on the charts over time.
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Figure 2. Histogram of the highest rank achieved on any
chart among singles in the random sample. Because of the
behavior of popular songs—namely that they tend to stay on
the chart for a long time and rise and fall through different
ranks—our sampling method still weighs the most popular
songs more heavily. We consider this behavior desirable.

however, the budget was limited, and we wanted to make the
best use possible of the recordings we already had available
without unduly biasing the final data set. In consultation with
a professional statistician, we devised the sampling method-
ology detailed in figure 1. The first two steps guarantee that
even the most unfavorable random draw would still provide
some information about time and chart position. The final
step balances the desire to maximize use of recordings on
hand with the need to achieve a sample that is representative
of the underlying charts; it works on the assumption that
singles within two chart positions of each other in any given
week should behave similarly. In limit of an infinite number
of samples drawn in this way, one would expect to retrieve
all recordings on hand weighted proportionally to their be-
havior on the charts. The more recordings of “missing” chart
positions that one acquires later, the more accurately the final
sample will represent the underlying charts.

2.2 Properties of the Sample

Overall, from a sample of 2000 slots, we were able to acquire
audio for 1365 slots (68 percent): 424 of 683 from before
the 1970s, 505 of 664 from the 1970s, and 436 of 653 from
after the 1970s. Because the sample was taken over slots
and not individual singles, some singles, especially popu-
lar singles, appear more than once (and would need to be
weighted accordingly for the most accurate statistics). Of the
1100 unique singles in our sample, performed by 533 unique
artists, the great majority of singles (869) do appear only
once, but 202 appear twice, 24 three times, and 5 four times.
A more interesting artifact of sampling over slots instead of
singles is that even though the original sample was drawn
evenly across all chart ranks, there is still more weight in the
sample toward the most popular songs. Songs tend to remain

# Love Will Keep Us Together
# Captain and Tenille
# 4/4
# key: B

| B | B | B | B |
| B | B | D#:hdim7/b5 | D#:hdim7/b5 | G#:7 | G#:7 |
| E | E | E:min | E:min |
| B | B:aug | B:maj6 | B:7 |
| E E/7 | C#:min7 F#:9(*3,11) . . |
| B | B | B | B |
| B | B | D#:hdim7/b5 | D#:hdim7/b5 | G#:7 | G#:7 |

Figure 3. Prototypical transcription illustrating features of
the transcription format. The format encodes a number of
high-level musicological features such as key, meter, beat,
and phrase. Chord symbols follow the format proposed in [8]
and include as much detail as possible about inversions and
upper extensions.

on the charts for many weeks (10 on average, although this
figure is much greater for the most popular songs and much
less for the least popular), rising and falling through different
ranks. Figure 2 illustrates the distribution of peak ranks in
our sample, which corresponds well to that of the full set of
chart slots during the time period spanned in the sample.

3. THE TRANSCRIPTION PROCESS

Annotating such a large data set was a considerably greater
undertaking than we had expected, ultimately involving a
team of more than two dozen people. We began by devel-
oping a file format for transcriptions that would capture as
much musicologically-relevant information as possible, de-
signed a web site to manage transcriptions, and organized a
series of auditions to identify musicians with sufficient skill
to transcribe reliably and efficiently at a high level of detail.

3.1 The Transcription Format

The transcription format was a plain-text format in order to
facilitate transfer across platforms. The full specification is
available for download with the transcriptions themselves,
but the basic premises are illustrated in figure 3. All non-
musical material is preceded by a comment character (#), and
comments are allowed at the end of any line. The annotators
used them freely. Each transcription begins with a four-line
header containing the title of the song, the name of the artist,
the meter, and the key, and new meter and key lines are added
as necessary to reflect changes throughout the song. Each
transcription is broken with line breaks into phrases, which
are defined loosely as any point where a group might choose
to start playing during a rehearsal. Pipes (|) denote barlines,
and although transcribers were allowed to mark chords using
whatever notation came most naturally to them, all have since
been converted to the format proposed in [8].
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Figure 4. Screenshot of the web site that annotators used
to manage their work. The page contains a list of all assign-
ments as well as information about to whom each single was
assigned and when.

Chords are marked for every beat, with some shorthand
to improve readability. For quadruple meters, which are the
most common, a bar with a single chord symbol is assumed to
have the same chord for all four beats. Bars with two symbols
are assumed to have the chord change on beat 3. For bars
with less than four chords that follow other patterns, periods
are used to denote chords that have not changed. For example,
in the first bar of the fifth line of the transcription in figure
3 contains E on the first two beat and E/D] on the second
two beats, whereas the second bar contains C]min7 on the
first beat only followed by what might be noted as F]11 in
a fake book on the last three beats. Chord changes that are
faster than the beat level are simplified. Notable silences in
the music are marked with the special tag &pause.

3.2 Auditions and the Transcription Process

Over several recruitment periods between April and Decem-
ber 2010, 30 musicians were invited to audition for the project.
With one exception (an undergraduate), these musicians were
either graduate students in music performance or professional
jazz performers (often both). Of those invited to audition, 23
completed the audition and 17 were ultimately hired. We
prepared a detailed description of the file format for those
auditioning, as well as a set of six sample songs with full
transcriptions, in order to help the potential transcribers un-
derstand the format and the level of detail expected. After
studying these materials, all those auditioning transcribed a
set of five test songs that were chosen to be representative of
the more difficult songs one would encounter. We reviewed
these test transcriptions, decided whether the annotator had
sufficient potential to continue, and provided detailed feed-
back on the audition to each transcriber we hired in order to
ensure as much consistency as possible across transcriptions.

After hiring, following the principle of double-keying to
minimize mistakes, two annotators were assigned to each
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Figure 5. Transcribing times for each annotator. Box widths
are scaled proportional to the square root of the number of
transcriptions completed. Points more than 1½ times the
inter-quartile range are plotted as outliers. The majority of
songs took between 8 and 18 minutes to transcribe, although
a few extremely difficult songs took more than an hour.

song. Working with a custom-designed web interface (see
figure 4), the annotators were able to access the audio for
their assignments and, although they were asked to work in-
dependently, to see who their partner annotator was in case of
any difficult questions. Annotators worked at different speeds,
and in order to reward more efficient annotators, we paid per
song with a bonus system to compensate for songs that were
unusually difficult to transcribe. The majority of songs were
transcribed in 8 to 18 minutes (median 12 minutes), but the
most difficult songs could take an hour or more (see figure 5).
Most annotators also reported that regardless of the amount
of time spent, it was difficult to do more than a dozen songs
in a single day: due to the intense concentration necessary, it
was simply too exhausting for them to work more.

After the two assigned annotators for any given song had
completed their transcriptions, a third meta-annotator com-
pared the two versions—inevitably, there were usually dif-
ferences in notation or musical opinion in addition to actual
errors—and combined them into a master transcription. This
combined version was then time-aligned and annotated with
structural information based on musical similarity, functional
information (verse, chorus, etc.), and instrumentation [12].
Factoring in the salaries of all involved, it cost more than $20
per song to arrive at this final file, but we believe that the
richness and accuracy of the data justify the cost.

4. THE DATA SET

There are 414 059 labeled beats in our corpus, spread over
638 distinct chords and 99 chord classes. Each song contains
11.8 unique chords on average, ranging from a minimum of
1 to a maximum of 84; songs from the late 1970s exhibit the
most harmonic variety. Figures 6 and 7 present the relative
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frequencies of the top 50 chords and chord classes from the
new data set. The most noticeable pattern is a sharp falloff

after the seven most popular chords (all major): C, D, G, A,
E, F, and B[. Indeed, a milder falloff begins even after the
four most popular chords. Certainly these chords are a use-
ful set—they are sufficient to play in the five most common
major keys—but such a sharp decline even for minor chords
was unexpected. For chord classes, the falloff is even more
extreme, although this is to be expected. The dominance of
major and minor chords and simple seventh chords is con-
sistent with most approaches to simplifying chords symbols
(see [10], among others). The ordering suggests that with a
data set of this size, it might be reasonable to start training
systems that can also recognize simple 9th and 11th chords.

To our knowledge, there is no other curated corpus of
popular harmony that equals this new data set in terms of
size or scope. It is roughly five times the size of the existing
MIREX set and contains a considerably broader range of
artists, genres, and time periods. Trevor de Clercq and David
Temperley have annotated another impressive data set of
200 songs from Rolling Stone’s “500 Greatest Songs of All
Time,” but their set is not time-aligned with audio [5]. We
are currently working on a corpus analysis to compare our
set to theirs and to explore deeper structures that may be
discoverable with a larger data set.

5. SUMMARY AND CONCLUSION

Seeking to benefit both researchers interested in audio chord
recognition and researchers interested in computational ap-
proaches to studying harmony in popular music, we have
created a database more than four times the size of any exist-
ing database with detailed, curated musicological information
and time-alignment with commercial audio recordings. The
data set benefits from a special sampling methodology that
was designed to maximize its utility both for musicological
and for engineering purposes. Other researchers who wish to
extend this data set or build a similar one of their own should
be warned that the process is labor-intensive, but the statis-
tics in this paper should provide guidelines for planning and
budgeting. We are very excited to start working on the many
questions this database will allow researchers to answer, and
we are proud to make it available to the community at no
cost and with minimally restrictive licensing. 4
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ABSTRACT

The most significant problem faced by Machine Learning-
based chord recognition systems is arguably the lack of high-
quality training examples. In this paper, we address this
problem by leveraging the availability of chord annotations
from guitarist websites. We show that such annotations can
be used as partial supervision of a semi-supervised chord
recognition method—partial since accurate timing informa-
tion is lacking. A particular challenge in the exploitation of
these data is their low quality, potentially even leading to a
performance degradation if used directly. We demonstrate
however that a curriculum learning strategy can be used to
automatically rank annotations according to their potential
for improving the performance. Using this strategy, our
experiments show a modest improvement for a simple ma-
jor/minor chord alphabet, but a highly significant improve-
ment for a much larger chord alphabet.

1. INTRODUCTION

Chords are musical features which compactly describe the
harmonic content of Western music. They have been used to
successfully identify keys [17], cover songs [2] and genres
[1], confirming their use in understanding and analysing mu-
sical harmony, underscoring the importance of systems able
to recognize chords from music audio. An important as-
pect of the chord recognition problem is the limited amount
of high-quality audio annotations on which to train machine
learning systems, currently limited to 218 songs by The Bea-
tles, Queen and Zweieck. 1 The result is that the perfor-
mance of machine learning systems for chord recognition

1 available at http://isophonics.net/
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are starting to stagnate at around 80% in the MIREX evalu-
ation metric for an alphabet of major and minor chords only.

In this paper, we propose a system that complements the
valuable available data with annotations found in large on-
line chord databases. In particular, here we make use of the
chord database e-chords.com 2 , a guitarist website contain-
ing approximately 140,000 partially labelled chord annota-
tions. Exploiting this data is non-trivial though: it does not
contain timing information, and the quality of the annota-
tions is highly variable.

The proof-of-concept that such information can be ex-
ploited in a semi-supervised learning setting has already been
provided in a very small-scale study [15]. Unfortunately, it
turns out that after scaling this up to more data this approach
by itself is insufficiently robust to overcome the quality is-
sues with the online annotations. In the current paper, we
therefore adopt a curriculum learning approach, which at-
tempts to add ‘easy’ data points first and ‘hard’ ones only
later (if at all). To quantify ‘easiness’, we also introduce a
new metric to evaluate chord recognition performance when
no ground truth annotation is available, but an online anno-
tation is. This new metric by itself is a valuable contribu-
tion, as it allows one to evaluate chord recognition systems
on artists other than The Beatles, Queen and Zweieck.

2. PRELIMINARIES

In this section we describe our overall approach to chord
recognition, the audio features we make use of, as well as
the data we were able to extract from e-chords.

2.1 Model Architecture

As a baseline system, we make use of a Hidden Markov
Model (HMM), which has been used extensively and suc-
cessfully for chord recognition [7, 17]. Here, the hidden
chain represents the sequence of chords in a sequence of
time frames the song is segmented in. Assuming that chords
rarely change between beats, we chose our frames to be

2 www.e-chords.com
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Figure 1. The HMM topology of our model, showing the
hidden nodes of the HMM (chords) emitting 12-dimensional
feature vectors (chromagrams).

the time periods between consecutive beats as estimated us-
ing BeatRoot [6]. The observed chain corresponds to 12-
dimensional chromagram feature vectors [6, 12] in the cor-
responding frames. The chromagram represents the distri-
bution of energy across pitch classes of the harmonic content
of the audio. The model is depicted in Fig. 2.1.

2.2 Feature Extraction: the Loudness-Based
Chromagram

There is no single method to compute a chromagram feature
vector, but the most popular ones are based on the Fourier
and constant-Q transforms [4, 9, 11]. In this paper we will
employ a newly proposed variant, called the loudness-based
chromagram [16]. The salient feature of this chromagram
is that it is closer to how humans perceive the strength of
pitches. Similar to existing variants, the loudness chroma
extraction process outputs a matrix C∈ R12×T from a monau-
ral signal x, where T is the length of the feature in number
of frames.

2.3 Ground Truth Extraction

For each song for which a ground truth is available, we con-
structed the chromagram C ∈ R12×T feature vector, where
T is the number of (estimated) beats. This is complemented
with a corresponding chord annotation A ∈ AT extracted
from the ground truth annotations, whereA is a chord alpha-
bet set. The fully annotated songs from The Beatles, Queen
and Zweieck thus make for three sets of training data, de-
noted as {CB,GTB}, {CQ,GTQ} and {CZ,GTZ}.

You know I love you

And I’ll prove my love is true

Want to show how I feel

Hoping that you love me
‘Cos it’s plain to see
That our love is real

C F

C G7

Dm9 G11

Figure 2. Example Untimed Chord Sequence (UCS) for
‘Our love is real’ (Matt McVicar), showing chord labels
above lyrics.

2.4 E-chords extraction

As in [15], we extracted Untimed Chord Sequences (UCSs)
from the chord database e-chords.com. These UCS are re-
ferred to as ‘untimed’ as they only contain (noisy) infor-
mation about the ordering of the chords, with no additional
information on exact timing. From the e-chords website we
were able to scrape over 140,000 such UCSs, but we could
only use those for which we had access to the audio as well.
We combined our personal music collections and found the
overlap with the UCS database to be 2008 tracks. Note that
although it is unfortunate that we were only able to extract
a small proportion of UCSs from the database (2008), this
number is significantly larger than the number of currently
available training examples (218).

We calculated a loudness-based chromagram for each of
these 2008 songs in the echords dataset and refer to the e-
chords chromagram/UCS set as {CEC,UCS}.

3. EXPLOITING UCS’S AS PARTIAL
SUPERVISION DURING TRAINING

The UCSs clearly provide information about the true chords
in an audio file, albeit only partial information. They convey
information on the chords of many songs, but unfortunately
the explicit timings of the sequences are not known. Making
use of unlabelled (or partially labelled) data together with la-
belled data for training is known as Semi-Supervised Learn-
ing (SSL) [5].

3.1 The semi-supervised learning approach

The general approach of exploiting UCSs during training
was introduced in [15], and we briefly summarize it here.
The approach works by initially training the chord recogni-
tion system (the HMM) based on the fully labelled training
data, here called the Core Training Set (CTS).

Subsequently, it attempts to reconstruct the timings of the
UCSs by aligning them to the chromagram feature vectors
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extracted from the corresponding audio. An example UCS
is shown in Figure 2. The first six chords are to be repeated,
although it is hard to infer this automatically without prior
knowledge of the song. Unfortunately, this source of ’struc-
tural noise’ is hard to capture using automatic methods to
scrape UCSs from websites, so we would miss this informa-
tion.

To overcome this, the Jump Alignment (JA) algorithm
(see [15]) can be used. The JA algorithm is able to align
UCSs to audio, while allowing for jumps to the start of other
lines (e.g. to allow a section to be repeated). The probabil-
ities of jumping forward or back in an annotation, as well
as the key transposition and version are all chosen by maxi-
mum likelihood. A different approach to dealing with struc-
tural noise in online annotations has recently been proposed
by the authors of [13], which could be combined with our
alignment method to yield further improvements.

After aligning our UCSs to their audio, they are in the
form of fully labeled training data and can be added to the
CTS. We refer to the resulting set of annotated data as the
Expanded Training Set (ETS). Finally, the chord recogni-
tion system can be retrained based on the ETS. The hope is
that this approach will allow one to train a chord recognition
system to be able to recognize chords in genres that are dif-
ferent from those for which fully annotated chord sequences
are available.

3.2 Evaluation setup in this paper

This approach was introduced and tested on a small scale
in [15], involving only songs for which a ground truth anno-
tation is available. In this paper we test this approach on a
significantly larger scale. In particular, as CTS, we use the
Queen and Zweieck songs:

CTS = {
⋃
{CQ,CZ},

⋃
{GTQ,GTZ}}

The ETS is the union of the CTS and the set of 2008 songs
for which we have the audio and a UCS from e-chords:

ETS = {
⋃

(CQ,CZ,CEC),
⋃

(GTQ,GTZ,AUCS)}

The test set consists of all The Beatles songs and their ground
truth annotations.

The flow-chart of this set-up is shown in Fig. 3, which
also shows the parameters that are inferred at various stages
(the HMM initial and transition probability matrices I and
T, as well as the mean and covariance matrices for the Gaus-
sian output probability densities, µ and Σ). After retraining
based on the ETS, they are referred to as I′, T′, µ′ and Σ′.

As the results in Sec. 5 show, unfortunately in this setting
this basic approach deteriorates performance, rather than
improving it. To resolve this issue, here we propose to addi-
tionally adopt a curriculum learning approach.

Estimate 
Parameters

Jump Alignment

Aligned UCSs

Update 
Parameters

Beatles 
Features

Viterbi 
Decoder

Beatles 
Prediction

Beatles GTs

Performance

Queen Features
Queen GTs

θ= {T, I, μ, Σ}

θ'= {T', I', μ', Σ'}

Zweiek Features
Zweiek GTs

UCS Features

UCSs

Figure 3. The schematic of our experiments. Data are
shown in square boxes, processes in curved. Detailed de-
scriptions of the processes are found in the text.

4. CURRICULUM LEARNING

In this section, we describe an addition to the scheme in
Figure 3 which makes the most of the available data using
curriculum learning. We also outline our new evaluation
method. We begin with some background information on
the subject.

4.1 Background

It has been shown that humans and animals learn more ef-
ficiently when training examples are presented in a mean-
ingful way, rather than in a homogeneous manner [8, 10].
Exploiting this feature of learners is referred to as Shaping
in the animal training community and Curriculum Learning
in the machine learning discipline [3].

The concept of the curriculum paradigm is that starting
with easy examples and slowly generalising leads to more
efficient learning, which can be realised in a machine learn-
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ing setting by carefully selecting training data from a large
set of examples. It was recently hypothesised that curricu-
lum learning offers faster training (in both optimization and
statistical terms) in online training settings, owing to the
way the learner wastes less time with noisy or harder to pre-
dict examples, and that additionally guiding the training into
a desirable parameter space will lead to greater generaliza-
tion [3].

We introduce an additional step into Figure 3 to deal with
curriculum learning in a novel way. Note that up to now we
have not defined what we understand by easy examples, or
equivalently, how to sort the available examples into a series
of increasing difficulty samples. Therefore, after the UCSs
have been aligned to the features, we will attempt to sort the
expansion set by appropriateness for learning. We propose
a new measure for evaluating how accurate the set AUCS
compared to its (unknown) ground truth annotations.

Thus we have the two following assumptions:

1. Introducing ‘easy’ examples into the training set leads
to faster learning.

2. It is possible to estimate which training examples from
a varied set are ‘easiest’.

We will address these assumptions in the following sub-
section.

4.2 Alignment Quality Proxy

When we created the ETS, we were unable to evaluate how
well the UCSs aligned to the loudness-based chromagrams,
since the ground truths are not available for these songs.
However, we were able to estimate the accuracy of the align-
ment in a different way.

To begin with, we noticed that many alignments con-
tained only a few chords and were therefore extremely un-
likely to be accurate chord alignments. We therefore re-
moved all alignments which contained fewer than 5 unique
chords.

After this pruning, we looked into a quantitative estimate
for the alignment quality. An output of the JA algorithm is
the log-likelihood of UCS correctly aligning to the loudness
chroma. For each UCS ∈ AUCS we used the log-likelihood
of the alignment normalised by the length of the alignment
as a proxy for the performance, and stored these in the align-
ment quality proxy vector Paqp:

P i
aqp =

log-likelihood of AUCSi

|AUCSi|
, i = 1 . . . |AUCS|

The results of the Alignment Quality Proxy performances
on our songs are displayed as a histogram in Figure 4. There
is a range from −1.79 (very poor alignment) to 7.03 (excel-
lent alignment), and we notice a skew towards good quality
alignments.
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Figure 4. Histogram of our proposed alignment quality
measure.

We then sorted the ETS with respect to Paqp and seg-
mented the set into bands according to alignment perfor-
mance. In order to investigate the quality of the proposed
alignment performance we ran JA on 173 Beatles songs for
which we had UCSs, with the alignment parameters from
Queen and Zweieck, yielding PB

aqp. We also used these pa-
rameters to make an HMM prediction for each of the 173
songs and measured the performance PB of these predic-
tions against the Beatles ground truth sequences.

Finally, we measured the correlation between the PB
aqp

and PB using Pearson’s linear correlation coefficient, which
gave a correlation of 0.73 with a p-value of 0.4 × 10−30,
indicating a highly significant result at the 5% level (p <
0.05). This result indicates that Paqp is an excellent proxy
for alignment accuracy, i.e. we have answered assumption 2
in Subsection 4.1 in the affirmative.

Satisfied that Paqp offers an approximation of how well
JA aligns UCSs, we decreased the size of the ETS by placing
a threshold on the alignment quality. Mathematically, we al-
lowed the ith chromagram and aligned UCS pair {Ci,AUCSi}
into the training set if

P i
aqp ≥ γ

for γ ∈ R. The value γ = −∞ corresponds to being care-
free with our data - all training examples are included. If
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we wish to be stringent with our data, selecting a large γ
will only allow high-quality alignments into the training set,
although we may suffer from lack of examples in this sce-
nario.

5. EXPERIMENTS

5.1 Simple Chord Prediction

In our first experiment we set the alphabet A to consist of
major and minor chords, along with a ‘No Chord’ symbol.
We refer to this alphabet asminmaj. All chords in the Core
Training Set CTS and Expanded Training Set ETS were
mapped to minor chords if they contained a minor third, oth-
erwise they were mapped to the corresponding major chord.
‘No Chord’ symbols were added to the beginning and end
of each of the Untimed Chord Sequences in UCS to account
for the silences at the beginning and end of the pieces.

To re-iterate, we trained an HMM on the ETS and tested
on all 180 Beatles songs. Performance was measured by
number of correctly identified frames divided by the number
of frames (×100%), averaged over the 180 songs, and are
shown in Table 1.

The results seen in Table 1 seem initially discouraging.
The peak performance of 77.87% obtained using the 1021
best UCSs (in terms of alignment performance) only achieved
an increase of 0.84%. However, upon performing a one-
sided t-test of the performance of the system against the
baseline performances (no expansion set), we obtained a p-
value of 0.0435, indicating significance at the 5% level.

Using additional data in a system which is already per-
forming well is unlikely to offer a large performance in-
crease, since there is not much to be gained. On the con-
trary, when the difficulty of the task increases it is possible
that extra data becomes beneficial. To investigate whether
this is the case, we will increase the complexity of the model
by using a larger library of chords.

5.2 Complex Chord Prediction

The results of subsection 5.1 showed that there is not much
to be gained by using additional data sources on a simple
chord model. To counteract this, we conducted the same
experiments using an unrestricted chord alphabetA = full.
This meant that each unique chord in the Core and Expanded
training sets were considered a unique state of our model,
as well as the transpositions of each of these chords into
each root pitch. This left us with 253 states, one order of
magnitude larger than the major/minor chord alphabet.

As before we then retrained on the Expanded Set and
tested on The Beatles. The results were measured as in Sub-
section 5.1. Figure 5 shows the results as well as the number
of songs in the expansion set for each cut-off.

Figure 5. Performance of our model on The Beatles dataset
with increasing alignment quality threshold quality γ. The
baseline performance (γ = ∞) is shown as a dashed line.
Values of γ for which the performance approaches or ex-
ceeds the baseline is shown in higher resolution steps of 0.2
increments. Randomizations of the same expansion set size
are shown in the dot-and-dashed line.

Immediately from Figure 5 we see that blindly adding all
of the available does not improve recognition. This is due
to the large variety in style and genre seen in the database,
along with the potentially poor alignments which we in-
cluded in the expansion set when γ is small. Upon increas-
ing γ we allowed heuristically better quality alignments into
the training set, and saw a rapid increase in recognition ac-
curacy, which peaks at 58.52%, 3.54% above the baseline
of 54.98%. Although this increase may seem incremental,
we performed a one-sided t-test of the performance of the
system against the baseline at the optimal γ of 5 and found
the p-value to be 1.28 × 10−7, indicating a significant im-
provement at 5% confidence level. This corresponded to an
improvement of 114 of the 180 songs.

To see if curriculum learning genuinely offered improve-
ments over homogeneous learning, we also included aligned
UCSs into the training set in random batches of the same
size as the previous experiment, and repeated 100 times to
account for random variations. The mean and standard devi-
ations over the 100 repeats are shown as the dot-and-dashed
line and bars in Figure 5. We can see that the specific order-
ing of the expansion set in section 4.2 offers substantial im-
provement over randomly selecting the expansion set. This
is good evidence that curriculum learning is the method of
choice for navigating a large set of training examples, and
also demonstrates that assumption 1 in Subsection 4.1 holds.
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Alignment Quality threshold γ -2 -1 0 1 2 3 4 5 ∞
Number of Expansion songs |AUCS| 1027 1027 1021 993 899 705 390 67 0
Performance (%) 77.83 77.83 77.87 77.81 77.77 77.53 76.94 76.79 76.79
p-value of paired t-test 0.0516 0.0516 0.0435 0.0555 0.0561 0.1137 0.4779 0.6906 -

Table 1. Performance of our model on the simple chord alphabet, A = minmaj. γ increases to the right, with the number of
expansion songs this corresponds to underneath. Performances and corresponding p-values between the difference between the
baseline level γ =∞ are shown in the final two rows. Results which are significant at the 5% level are shown in bold.

6. CONCLUSIONS

In this paper we have made three breakthroughs. First of
all, we demonstrated that chord databases can be used to
create new sequences for training chord recognition algo-
rithms. These sequences were shown to significantly im-
prove recognition accuracy on an unseen test set.

Also, we demonstrated a new technique for estimating
the quality of aligned chord sequences, which can be used to
select training examples from a large, noisy training data set.
This estimate allowed us to perform curriculum learning,
which achieved faster learning and improved results.

Finally, we also showed that with more data we are able
to make a more complex chord model, which led to a more
significant improvement in recognition accuracy. In order
to gain the most from these data we plan to further increase
the complexity of the decoding model, by including distinct
features for the bass and treble frequency range [14], includ-
ing a hidden ‘key chain’ to model modulations [18] or using
more complex emission probability models.
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ABSTRACT

This paper presents probabilistic n-gram models for sym-

bolic chord sequences. To overcome the fundamental lim-

itations in conventional models—that the model optimality

is not guaranteed, that the value of n is fixed uniquely, and

that a vocabulary of chord types (e.g., major, minor, · · · ) is

defined in an arbitrary way—we propose a vocabulary-free

infinity-gram model based on Bayesian nonparametrics. It

accepts any combinations of notes as chord types and allows

each chord appearing in a sequence to have an unbounded

and variable-length context. All possibilities of n are taken

into account when calculating the predictive probability of

a next chord given a particular context, and when an unseen

chord type emerges we can avoid out-of-vocabulary error by

adaptively evaluating the 0-gram probability, i.e., the com-

binatorial probability of note components. Our experiments

using Beatles songs showed that the predictive performance

of the proposed model is better than that of the state-of-the-

art models and that we could find stochastically-coherent

chord patterns by sorting variable-length n-grams in a line

according to their generative probabilities.

1. INTRODUCTION

Chord progression analysis is an important task for content-

based music information retrieval (MIR) [1,2]. Because the

chord patterns used in musical pieces are closely related to

the composer styles [3] and musical genres [4], it is useful

to build statistical models of chord patterns from symbolic

chord sequences. In addition, accurate models of chord se-

quences (called language models in analogy with automatic

speech recognition) could improve the accuracy of auto-

matic chord recognition for music audio signals [5, 6].

So far, n-gram models have often been used as language

models of chord sequences [2–6]. An n-gram is a subse-

quence of n chords in a given chord sequence, and n-gram
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Figure 1. A hierarchical nonparametric Bayesian model for

accurately smoothing n-gram probabilities.

models are based on (n−1)-order Markovian assumption be-

cause chords exhibit strong short-term dependency. In other

words, each chord in a given sequence is assumed to de-

pend on its n−1 previous chords called a context. Using

a limited amount of observed data, the goal is to make a

statistical model that can calculate the predictive probability

of a next chord (n-gram probability), given any context of

length n−1. However, the observed n-grams are generally a

limited subset of all kinds of n-grams, and the number of all

kinds of n-grams increases exponentially with increasing n.

Therefore, the naive estimates of the probabilities of unob-

served n-grams are zero. To avoid such overfitting, various

heuristic smoothing methods have been developed [7].

In this paper we focus on three fundamental limitations

of conventional n-gram models: 1) n-gram models based on

heuristic smoothing methods have no solid theoretical foun-

dation, 2) the value of n should be specified uniquely in ad-

vance even though each chord depends on a variable-length

context, 3) A limited set of chord labels (e.g., major, minor,

augmented, diminished, seventh, · · · , and their derivations)

should be defined as a vocabulary in advance. Especially,

the last limitation has not been discussed so far.

To overcome these limitations, we propose a vocabulary-

free infinity-gram model by extending modern nonparamet-

ric Bayesian n-gram models [8–10]. Our model is formu-

lated in a hierarchical Bayesian manner (Figure 1) and has

the following merits: 1) The predictive distribution of a next

chord can be naturally formalized by providing the proba-

bilistic generative model of chord sequences. 2) Each chord

in a sequence is allowed to have an unbounded and variable-

length context. A posterior distribution of the context length
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can be estimated. 3) Any combinations of notes can be ac-

cepted as chord types. A chord vocabulary is incrementally

expanded as needed. These metits enable our model to not

only attain the best performance but also find “stochastically-

coherent” variable-length chord patterns that are not always

simply the ones used most frequently (cf. [11]).

The innovative models of symbolic chord sequences (an

infinity-gram model and its vocabulary-free extension) are

useful for probabilistic modeling of music audio signals. A

typical application is automatic chord recognition, where a

vocabulary of chord labels is given. For example, an infinity-

gram model could be fused with a joint probabilistic model

of keys, chords, and bass notes [12]. Another novel applica-

tion is automatic music transcription, where a vocabulary is

not given. We plan to use a vocabulary-free model as a prior

distribution on a probabilistic acoustic model for multipitch

estimation [13], and jointly optimize the both models. This

means that chords and their progressions (now “chords” are

combinations of notes, not text labels) are self-organized in

an unsupervised manner and are used as a constraint on si-

multaneous and temporal pitch distributions.

The rest of this paper is organized as follows: Section 2

describes the chord notations used in this study. Section 3

introduces related work on nonparametric Bayesian n-gram

models and Section 4 explains our model. Section 5 reports

our experiments and Section 6 concludes this paper.

2. CHORD NOTATIONS

We introduce label-based and component-based notations to

represent chord sequences (Table 1).

2.1 Label-based Notation

The conventional label-based notation is based on intuitive

shorthand labels defined by Harte et al. [14]. There are 17

chord labels with an attached root note, which is one of 12

pitch classes.1 In this paper we do not distinguish C# from

Db because they are in the same pitch class. This is a stan-

dard treatment used in [2, 3]. For example, C major and

Gb diminished seventh chords are respectively represented

as C:maj and F#:dim7. The symbol “N” is used to indicate

“no chord” (e.g., silence or untuned sounds). The resulting

vocabulary size is 205 (17 × 12 + 1).

2.2 Component-based Notation

The component-based notation is based on degrees of note

components (relative displacements against a root note). Each

chord is represented as a combination of a root note and a

12-dimensional binary vector whose elements indicate the

existences of the corresponding degrees. For example, C

major chords are written as C:100010010000 and D major

chords as D:100010010000, not as D:001000100100. Note

that any combinations of notes can be represented even if

1 The pitch classes are defined as 12 different scales within an octave,
i.e., {C, C#, D, D#, E, F, F#, G, G#, A, A#, B}.

Chord type Label Components

Major maj 100010010000
Minor min 100100010000
Diminished dim 100100100000
Augmented aug 100010001000
Major Seventh maj7 100010010001
Minor Seventh min7 100100010010
Seventh 7 100010010010
Dim. Seventh dim7 100100100100
Half Dim. Seventh hdim7 100100100010
Min. (Maj. Seventh) minmaj7 100100010001
Major Sixth maj6 100010010100
Minor Sixth min6 100100010100
Ninth 9 101010010010
Major Ninth maj9 101010010001
Minor Ninth min9 101100010010
Suspended Second sus2 101000010000
Suspended Fourth sus4 100001010000

Table 1. Shorthand labels and pitch-class components

they are not defined in Table 1. For example, C major chords

with an added fourth are written as C:100011010000. Such

information is available in Harte’s chord annotations [14].

With the additional symbol “N”, the resulting vocabulary

size is 49153 (212 × 12 + 1). This is finite because we fo-

cus on note existences in individual pitch classes. Note that

a truly vocabulary-free (infinite-vocabulary) notation can be

defined by focusing on note counts based on musical scores,

i.e., by representing note components of each chord as a 12-

dimensional nonnegative-integer vector.

3. PROBABILISTIC LANGUAGE MODELS

This section introduces related work on n-gram models. We

first identify the purpose of n-gram modeling and then ex-

plain several state-of-the-art models based on the probability

theory of Bayesian nonparametrics.

3.1 Problem Specification

Suppose we have a chord vocabulary W whose size is V
(in this paper, 205 or 49153). Let w ∈ W be a chord and

u ∈ Wn−1, where n can be any positive integer, be a con-

text consisting of a sequence of n−1 chords. We have a

limited amount of observed data X , which is a sequence of

M chords, x1x2 · · ·xM , where xm ∈ W (1 ≤ m ≤ M).
We assume for simplicity that we have only one chord se-

quence. In n-gram modeling, each chord xm is assumed to

depend on the past n−1 chords (context).

Given observed data X , the goal is to estimate Pu(w|X),
i.e., the predictive probability of chord w following context

u. Let cuw be the number of occurrences of chord w fol-

lowing context u in training data X . The naive maximum

likelihood (ML) estimate is given by

P ML
u (w|X) =

cuw

cu·
(1)

where the dot (·) means the sum over that index, i.e., cu· =∑
w′ cuw′ . However, if n-gram uw is not observed in X
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(cuw = 0), its probability is estimated to be zero. This is

called the zero-probability problem.

To solve this problem various smoothing methods have

been proposed. The family of Kneser-Ney (KN) smoothing

is empirically known as one of the most accurate smoothing

techniques [7]. A method called interpolated KN (IKN) es-

timates Pu(w|X) by discounting the actual count cuw by

a fixed amount d|u| depending on the context length |u|
if cuw > 0 (otherwise the count remains 0). Furthermore,

the discounted n-gram probability of chord w is interpo-

lated with the (n−1)-gram probability of chord w. Another

important variant is called modified KN (MKN), where the

amount of discount is allowed to vary according to the value

of cuw. MKN is known to slightly outperform IKN.

3.2 Hierarchical Pitman-Yor Language Model

Teh [8] proposed a nonparametric Bayesian n-gram model

called a hierarchical Pitman-Yor language model (HPYLM).

Interestingly, IKN was proven to be a deterministic approx-

imation of the HPYLM, which can be optimized in a princi-

pled way and performs better than IKN.

3.2.1 Pitman-Yor Process and Hierarchical Formulation
We briefly explain the Pitman-Yor process (PY) [15], which

is a building block of nonparametric Bayesian models. The

PY is a distribution over distributions (e.g., n-gram distribu-

tions) over a sample space (e.g., vocabulary W ). Let d and

θ be positive real numbers and G0 be a distribution over a

sample space. The PY is written as

G ∼ PY(d, θ, G0) (2)

where d is called a discount parameter, θ a strength parame-

ter, and G0 a base measure. G is a random distribution over

the sample space. When the value of θ becomes larger, G is

more likely to be similar to G0.

The HPYLM is formulated by layering PYs in a hierar-

chical Bayesian manner. Suppose we have a unigram distri-

bution Gφ over W , where φ is the empty context and Gφ(w)
is the unigram probability of chord w. A bigram distribution

Gu given the last chord u differs from but is somewhat sim-

ilar to Gφ. Here Gu is assumed to be drawn from a PY with

base measure Gφ as Gu ∼ PY(d1, θ1, Gφ), where d1 and θ1

are discount and strength parameters that are shared among

contexts of length 1. Generally speaking, an n-gram distri-

bution Gu given a context u of length n−1 is drawn from a

PY with base measure Gπ(u) as follows:

Gu ∼ PY(d|u|, θ|u|, Gπ(u)) (3)

where π(u) is a shortened context obtained by removing

the earliest chord from u, and d|u| and θ|u| are discount and

strength parameters depending on the length |u|. Since the

(n−1)-gram distribution Gπ(u) is unknown, a PY prior with

parameters d|π(u)| and θ|π(u)| and base measure Gπ(π(u))

is recursively put on Gπ(u). Finally, the unigram distribu-

tion Gφ is given by Gφ ∼ PY(d0, θ0, G0) where G0 is a

F:maj

C:maj D:min

C:maj

Depth 0

Depth 1

Depth 2

Original customer

Original customer 
who sends a proxy

Proxy customer

Proxy customer 
who sends a proxy

…

…Back-track
the context

Send 
a proxy

Send 
a proxy

φ

…

Figure 2. Hierarchical Pitman-Yor language model.

global base measure (0-gram distribution), which is usually

assumed to be uniform, i.e., G0(w)=1/V .

Consequently, the hierarchical structure of the HPYLM

can be represented as a suffix tree of depth n−1, as shown in

Figure 2 where the case of n=3 is illustrated. Each node is

identified as a context, i.e., descending the tree from the root

node to the target node means back-tracking the context.

3.2.2 Stochastic Process for Data Generation
Once the HPYLM is defined, observed data X is generated

according to a stochastic process called the Chinese restau-

rant franchise (CRF), which can be explained by using a

metaphor in which contexts are likened to restaurants, M
observed variables in X are likened to customers, and V
chord types in W are likened to dishes. Each restaurant is

allowed to have an unbounded number of tables and each ta-

ble is served a dish. Each customer enters a restaurant, sits

at a table, and eats a dish served at that table.

We suppose that x1, · · · , xM are generated sequentially,

and consider how the m-th customer xm behaves, given a

seating arrangement of the past customers {x1, · · · , xm−1}.

The customer xm enters restaurant u=xm−(n−1) · · ·xm−1

of depth n−1. Let tuw be the number of tables serving dish

w in restaurant u. There are tu· tables in total. Let cuwk be

the number of customers sitting at table k and eating dish w
(cuwk = 0 if table k does not serve dish w). The customer

xm then sits (i) at an existing table k (1 ≤ k ≤ tu·) and eats

a dish w served at the table with probability proportional to

cuwk−d|u| or (ii) at a new table k = tu·+1 with probability

proportional to d|u|tu·+θ|u|. In the case (i), the value of xm

is set to w and cuwk is incremented. In the case (ii), to order

a dish served at the new table k, a proxy customer is sent to

the parent restaurant π(u), where he behaves in a recursive

manner. If he eventually eats a dish w in restaurant π(u),
the dish w is also served at the new table k in restaurant u
and the customer xm eats the dish w. Consequently, tuw is

incremented, the value of xm is set to w, and cuwk is incre-

mented. Note that when the proxy customer sits at a new

table in restaurant π(u), a new proxy customer is further

sent to the restaurant π(π(u)). Finally, a proxy customer

may be sent to the root restaurant φ. When he sits at a new

table in the root restaurant φ, a dish served at the new table

is chosen according to the global base measure G0.
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More specifically, given a particular seating arrangement

(denoted by S), a next chord w following context u is gen-

erated according to the following predictive distribution:

P HPY
u (w|S) =

cuw· − d|u|tuw

cu·· + θ|u|
+

d|u|tu· + θ|u|
cu·· + θ|u|

P HPY
π(u)(w|S) (4)

where Eqn. (4) is a recursive definition with respect to con-

text u of any length, e.g., P HPY

π(u)(w|S) is given by substi-

tuting π(u) into u in Eqn. (4). Starting with an empty tree

(cuwk = 0 and tuw = 0), a seating arrangement for X is

obtained by adding M customers one by one. The IKN was

found to be an approximation of the HPYLM (the HPYLM

reduces to the IKN when θ|u| = 0 and tuw = 1).

3.2.3 Predictive Distribution and Bayesian Inference
The goal is to estimate the predictive distribution Pu(w|X)
in a Bayesian manner. Since a true seating arrangement for

X is unknown, the expected value of P HPY
u (w|S) is calcu-

lated under the CRF P (S|X) as follows:

P HPY
u (w|X) =

∑
S

P HPY
u (w|S)P (S|X) (5)

Because this sum is analytically intractable, Gibbs sampling

is used for approximation. More specifically, we get

P HPY
u (w|X) ≈ 1

L

L∑
l=1

P HPY
u (w|Sl) (6)

where L is the number of many i.i.d. seating arrangements

sampled from p(S|X) and l is a sample index.

The Gibbs sampling algorithm is shown in Figure 3. First,

a seating arrangement is initialized by adding all customers

one by one according to the posterior CRF, where each cus-

tomer xm =w sits at an existing or new table serving dish w
with probability given by the first or second term of Eqn. (4).

Then a customer xm is selected randomly and removed from

the tree, from which the related proxy customers and tables

that become empty are also removed. Given a seating ar-

rangement of the other customers, the customer xm is added

to the tree again according to the posterior CRF. By iterat-

ing this operation, L seating arrangements are sampled with

a certain interval. Since the parameters d0, · · · , dn−1 and

θ0, · · · , θn−1 are unknown, beta and gamma prior distribu-

tions are put on them and the values of the parameters are

sampled from posterior distributions (see details in [8]).

3.3 Variable-Order Pitman-Yor Language Model

A problem of the HPYLM is that all M customers are forced

to enter restaurants of fixed depth n−1. To solve the prob-

lem, Mochihashi and Sumita [9] proposed a variable-order

PY language model (VPYLM) that allows each customer to

enter a restaurant of variable depth. Each chord xm is asso-

ciated with a latent variable zm that indicates the value of n
(depth+1). Since a true value of zm is unknown, all possi-

ble values of zm are considered (n is marginalized out) for

making predictions, resulting in the infinity-gram model.

for  m = 1 : M in random order
Add customer        to the tree at depth n-1

m
x

for  i = 1 : ∞
for  m = 1 : M in random order

Remove customer         from the tree
Add customer         to the tree at depth n-1

m
x

m
x

Create an empty tree

Figure 3. Gibbs sampling algorithm for HPYLM.

3.3.1 Stochastic Process for Data Generation
We consider how the value of n-gram length zm is stochas-

tically determined. The customer xm descends the tree by

following a path φ→ xm−1 → xm−2 → · · · , i.e., by back-

tracking the context u. When he arrives at restaurant ui of

depth i (0≤ i≤∞), he stops there with probability ηui
or

passes through with probability 1 − ηui . The probability of

zm = n (1≤n≤∞) is therefore given by

Pu(n|η) = ηun−1

n−2∏
i=0

(1 − ηui
) (7)

Since η (a set of parameters) is unknown, beta prior distribu-

tions with hyperparameters α and β are put on η as follows:

p(η) =
∏

u∈tree

Beta(ηu|α, β) (8)

Given the value of zm, the value of xm is stochastically

determined according to the CRF described in Section 3.2.2.

Note that there are not only proxy customers but also origi-

nal customers in restaurants other than leaf nodes.

More specifically, given a particular seating arrangement

denoted by S, a next chord w following context u is gener-

ated according to the following predictive distribution:

P VPY
u (w|S) =

∑
n

P VPY
u (w|n, S)Pu(n|S) (9)

where P VPY
u (w|n, S) is obtained in the same way as Eqn. (4)

and Pu(n|S)=
∫

Pu(n|η)p(η|S)dη is easily calculated by

using the conjugacy between Eqns. (7) and (8) (see [9]).

3.3.2 Predictive Distribution and Bayesian Inference
The predictive distribution of a next chord w is obtained in

the same way as the HPYLM (Section 3.2.3). The only dif-

ference with respect to Gibbs sampling is that the VPYLM

needs to sample the value of zm from its posterior distribu-

tion before adding customer xm to the tree. When xm =w,

the posterior probability of zm =n is given by

Pu(n|S, w) ∝ Pu(w, n|S) = P VPY
u (w|n, S)Pu(n|S) (10)

3.4 Nested Pitman-Yor Language Model

An essential problem of standard n-gram models is that we

need to define a finite vocabulary even though in the real

world the vocabulary is growing steadily. To solve this prob-

lem in the context of word sequence modeling, Mochihashi

et al. [10] proposed a nested PY language model (NPYLM)

by formulating a global base measure G0 over a countably
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infinite number of variable-length words. Note that the con-

ventional base measure G0(w) = 1/V cannot be used be-

cause G0(w)→ 0 when V →∞. Instead, a spelling model

based on a letter-level VPYLM is given as a global base

measure G0 of a word-level VPYLM. More specifically, each

word is regarded as a sequence of letters, which are assumed

to follow a letter-level CRF. The word length (the number

of letters) is assumed to follow a Poisson distribution. Thus,

the 0-gram probability of any word w, G0(w), is given by

the product of the probabilities of the letters and their num-

ber, resulting in the infinite-vocabulary model.

4. VOCABULARY-FREE INFINITY-GRAM MODEL

For chord sequence modeling we propose a novel vocabulary-

free infinity-gram model similar in spirit to the NPYLM.

4.1 Mathematical Formulation

A critical problem is that we cannot apply the NPYLM to

chord sequence modeling. Because words are temporal se-

quences of letters and chords are simultaneous combinations

of notes, we need a different base measure G0.

To solve this problem, we formulate a probabilistic model

based on the component-based notation (Section 2.2) as a

global base measure G0 of a chord-level VPYLM. The base

measure G0 is based on a conjugate model. In general, a

chord w can be written as w0:w1 · · ·w12, where w0 is a

root note and the other variables take binary values. When

w=N, w0 = N and other variables are not used. We assume

w0 to follow a 13-dimensional discrete distribution and the

others to follow Bernoulli distributions as follows:

G0(w) = p(w|π, τ ) = πw0

12∏
i=1

τwi
i (1 − τi)1−wi (11)

where π = {πC, πC#, · · · , πB, πN} indicates the probabilities

of the respective pitch classes and “N” and τ ={τ1, · · · ,τ12}
indicates the existence probabilities of the respective de-

grees. If w =N , G0(w)=πN. Since the values of π and τ
are unknown, we put prior distributions as follows:

p(π, τ ) = Dir(π|a0)
12∏

i=1

Beta(τi|b0, c0) (12)

where a0, b0, and c0 are hyperparameters (set to 0.5).

4.2 Bayesian Inference

Given a seating arrangement S, the posterior distribution of

π and τ can be easily calculated as follows:

p(π, τ |S) = Dir(π|a0+n)
12∏

i=1

Beta(τi|b0+ni, c0+n̄i) (13)

where nv (v is one of the pitch classes or “N”) is the number

of tables serving dishes with root note v (w0 = v) in the root

restaurant φ, ni is the number of tables serving dishes with

the i-th note (wi = 1) in φ, and n̄i is the number of tables

serving dishes without the i-th note (wi = 0) in φ.

The predictive distribution of a next chord w can be cal-

culated in the same way as the VPYLM (Section 3.3.2). The

Gibbs sampling algorithm of the VPYLM is modified as fol-

lows: When a (proxy) customer sits at a new table (a new

table is added) in the root restaurant φ, the values of nv and

ni or n̄i are incremented according to the components of the

target chord (a dish served at that table). When a table is re-

moved from the root restaurant φ, the values of nv and ni

or n̄i are decremented. The values of π and τ are sampled

from the posterior distribution given by Eqn. (13).

5. EXPERIMENTS

This section reports our comparative experiments.

5.1 Experimental Conditions

We used a standard dataset of chord sequences for 180 Bea-

tles songs collected from 12 albums (13 CDs) [14]. Be-

cause the choice of chords depends on the musical key, we

selected 137 major-scale non-transposition songs and trans-

posed them to C major. The total number of chords was

10,761, where 103 chord types were observed in the label-

based notation (the vocabulary size was 205) and 149 chord

types were observed in the component-based notation (the

vocabulary size was 49153). The entropies of both data were

3.79 [bits] and 3.92 [bits], respectively.

In the first experiment using the label-based notation, the

effectiveness of infinity-gram modeling was evaluated by

comparing six existing methods: Good-Turing (GT), Witten-

Bell (WB), IKN, MKN, HPYLM, and VPYLM, where GT

and WB are classical smoothing methods [7]. In the second

experiment using the component-based notation, the effec-

tiveness of vocabulary-free modeling was evaluated. In ad-

dition to the existing methods, we tested our models that in-

corporate the vocabulary-free base measure G0 into HPYLM

and VPYLM (denoted by prefix “VF-”). To evaluate the pre-

dictive performance, we conducted 10-fold cross validation

and measured perplexity, which indicates the average num-

ber of next-chord candidates (a degree of uncertainty), given

a context. A lower perplexity means better performance.

5.2 Experimental Results

We found in the first experiment that VPYLM yielded the

lowest perplexity (Table 2) and that, as shown in Figure 4,

a posterior distribution over n can be estimated for each

chord. To obtain better predictive performance, it is impor-

tant to marginalize out n (take all possibilities into account)

rather than use a maximum-a-posteriori (MAP) estimate of

n. The training time and memory usage of the VPYLM were

two times shorter and five times smaller than those of the 10-

gram HPYLM because unnecessarily-longer contexts (deep

nodes) do not need to be considered (expanded). We could

discover stochastically-coherent chord patterns (Table 3) by

calculating Pu(w, n|X)=
∑

SPu(w, n|S)P (S|X), which

indicates how likely chord w is to follow context u of length
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n GT WB IKN MKN HPYLM VPYLM

1 16.8 15.6 16.0 15.7 15.8 (±0.03)
2 20.3 14.2 15.2 15.8 14.5 (±0.10) n: posterior sample
3 23.5 15.4 16.0 16.3 16.0 (±0.18) 13.4 (±0.33)
4 25.5 16.8 17.7 15.5 13.9 (±0.25)
5 26.3 17.5 16.2 14.1 13.7 (±0.23) n: MAP estimate
6 27.0 17.8 15.1 13.5 13.6 (±0.23) 12.9 (±0.35)
7 27.3 18.0 14.5 13.3 13.6 (±0.23)
8 27.3 18.0 14.2 13.2 13.6 (±0.22) n: marginalized out
9 27.3 18.0 14.1 13.1 13.5 (±0.23) 11.9 (±0.22)
10 27.3 18.0 14.0 13.1 13.5 (±0.23)

Table 2. Perplexities in label-based notation.

Intro

Verse A

Verse B

Chorus

C:maj 

G:maj 
A:min 
F:maj7 
F:maj6 
C:maj 

G:maj 
F:maj 
C:maj 
C:maj 
A:min 

E:min 
F:maj 
C:maj
C:maj 
G:maj 

F:maj 
C:maj 

C:maj 

G:maj
A:min 
A:min 
F:maj7 
F:maj6 

C:maj 
G:maj 
F:maj 
C:maj 
C:maj 

G:maj 
A:min 
A:min 
F:maj7 
F:maj6 

C:maj 
G:maj 
F:maj 
C:maj 

n =  1  2  3  4  5  6  7  8  9  10 n =  1  2  3  4  5  6  7  8  9  10

Figure 4. Hinton-diagram representation of posterior distri-

butions over n at the beginning of the Beatles’ “Let It Be.”

n− 1. For example, C:7 F:7 C:7 is a typical blues-rock pat-

tern that was popularized by the Beatles. We can see that the

Beatles liked to use chord patterns including (major/minor)

seventh chords, which were not so common at that time.

In the second experiment, VF-VPYLM, the vocabulary-

free infinity-gram model, yielded a perplexity significantly

lower than the other models did (Table 4). The performance

advantage was larger than that in the first experiment. This

proves that our model is robust to the data sparseness (large-

or infinite-vocabulary situation).

6. CONCLUSION

We presented a nonparametric Bayesian n-gram model for

chord sequences that requires neither a vocabulary of chord

types nor a predefinition of n. We showed that it performed

significantly better than the state-of-the-art models.

This study opens up a new research direction. We plan to

let computers acquire the concept of “chords” in an unsuper-

vised manner from a large amount of music scores and, ul-

timately, from a large amount of musical audio signals. We

know that certain combinations of notes can form chords. Is

this learned from experience? How reasonable is a defini-

tion of chords? To explore ways to answer this question we

need to consider an infinite number of note combinations as

chord candidates. Bayesian nonparametrics is a promising

generative approach to such kinds of meta-level problems.

Pu(w, n|X) Stochastically-coherent chord pattern (n ≥ 3)

0.701 n = 3: C:7 F:7 C:7
0.682 n = 3: B:maj F:maj G:maj
0.656 n = 3: A:min C:7 F:maj
0.647 n = 3: F:min G:maj C:maj
0.645 n = 4: F:maj F:maj G:maj C:maj
0.632 n = 3: E:min C:7 F:maj
0.630 n = 3: C:maj7 D:min7 E:min7
0.627 n = 4: B:maj F:maj G:maj C:maj
0.622 n = 3: D:min7 G:sus4 G:maj
0.620 n = 5: D:min G:maj C:maj F:maj C:maj

Table 3. Stochastically-coherent chord patterns.

n GT WB IKN MKN

10 38.3 24.4 18.5 17.5

n HPYLM VF-HPYLM

10 18.0 (±0.29) 16.5 (±0.60)

n VPYLM VF-VPYLM

∞ 15.8 (±0.29) 14.6 (±0.55)

Table 4. Perplexities in component-based notation.
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ABSTRACT

In this paper, we propose a feature smoothing technique for
chord recognition tasks based on repeated patterns within
a song. By only considering repeated segments of a song,
our method can smooth the features without losing chord
boundary information and fine details of the original fea-
ture. While a similar existing technique requires several
hard decisions such as beat quantization and segmentation,
our method uses a simple pragmatic approach based on re-
currence plot to decide which repeated parts to include in the
smoothing process. This approach uses a more formal defi-
nition of the repetition search and allows shorter (“chord-
size”) repeated segments to contribute to the feature im-
provement process. In our experiments, our method out-
performs conventional and popular smoothing techniques (a
moving average filter and a median filter). In particular, it
shows a synergistic effect when used with the Viterbi de-
coder.

1. INTRODUCTION

The majority of state of the art chord recognition systems
are based on frame-wise analysis of chroma features ex-
tracted from an input signal. The chord sequence is deter-
mined by a pattern matching process that measures the fit
between a set of predefined chord models and each frame of
the input chromagram. In order to precisely identify chord
boundaries, the frame rate of the chroma features is typi-
cally faster than the rate of chord changes in music. How-
ever, this makes the chroma features sensitive to local tran-
sients and noise in the signal. A popular choice to cope
with this problem is to pre-process the chromagram using
either a low-pass filter or a median filter prior to the pat-
tern matching process. Both filters blur out transients and

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

noise in the signal by smoothing the features across neigh-
boring frames. Another favored approach is using a Viterbi
decoder that finds the most likely sequence of chords based
on the chord-type probabilities estimated from the pattern
matching process. By reducing the number of chord tran-
sitions using a relatively high self-transition probability (the
probability of remaining in a chord), the Viterbi decoder can
filter out spurious transitions caused by short bursts of noise.

In our previous work [4], we found that the combina-
tion of pre-filtering (either a moving average filter or a me-
dian filter) and post-filtering (the Viterbi decoder) does not
yield a synergistic impact on performance, although many
systems use the combination [2, 6]. This is because the ef-
fects of pre-filtering substantially overlap with those of post-
filtering, i.e. they carry out essentially the same function in
the sense of constraining sudden movements over a short
series of local frames.

In this paper, we propose a feature smoothing technique
based on an important aspect of music, repetition. By aver-
aging repeated chroma patterns within a piece of music, our
method attenuates unsystematic deviations and noise and
reinforces harmonic information of chroma frames. This
method is inspired by the one proposed by Mauch et al. [6].
In their approach, the information about the repetitive struc-
ture of songs is used to enhance chroma features for chord
estimation. They use a conventional frame-by-frame self-
similarity matrix generated from a beat-synchronous chro-
magram. From the matrix, they extract repeated chord pro-
gressions of equal length by examining all diagonal lines.
The beat and bar information estimated from a song play a
crucial role in their greedy algorithm to find repeated sec-
tions. The found segments are merged into larger segment
types (e.g. verse and chorus) without overlapping. Their
new features are then obtained by averaging chroma features
from multiple occurrences of the same segment type.

Unlike Mauch et al., our method decides which repeated
parts to include in the smoothing process by a simple thresh-
olding operation using the technique of recurrence plots. As
our method doesn’t use beat and bar information, it avoid
the errors in the initial feature analysis (e.g. onset detec-

651



Oral Session 8: Chord Analysis

Recurrence Plot

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−0.1

−0.05

0

0.05

0.1

0.15

Audio

Chroma 
Features

Feature 
reconstruction

New Chroma 
Features

Time-delay 
embedding

Weight Matrix

Figure 1. Block diagram of feature smoothing process
based on recurrence plot.

tion or beat tracking), that propagate through the subsequent
processing stages and may hurt overall performance [8]. In
our method, repeated sections are not limited to a few large
units (e.g. chorus or verse), but include smaller units such
as chords. Thus, our method can generate new chroma fea-
tures using relatively many repeated frames collected from
all across the song. As the repeated frames are assumed to
have the same harmonic content, the smoothing only occurs
within the same chords, thus preserving boundary informa-
tion. In our experiments, this smoothing method yields bet-
ter results than the conventional methods in all cases includ-
ing the combination with the Viterbi decoder.

The remainder of this paper is structured as follows. In
Section 2, we provide a detailed description of our method.
In Section 3, we describe the data and evaluation method-
ology used in our experiments. The results and discussions
are provided in Section 4, and our conclusions and direc-
tions for future work are presented in Section 5.

2. APPROACH

The block diagram of our feature smoothing process is shown
in Figure 1. First, the audio signal is segmented and trans-
formed into chroma features. The chroma features are then
projected into phase space using time-delay embedding prior
to calculating the recurrence plot. The weight matrix is de-
rived from the recurrence plot, and combined with the orig-
inal chroma features as a coefficient set in the feature re-
construction process. To measure the performance of our
method on various types of chroma features, we evaluate our
method on conventional chroma features and one of their
most recent variants, CRP features [7]. The following sub-
sections discuss the details of the approach including the
feature set and our methodology for generating and apply-
ing the weight matrix to construct new chroma features.

2.1 Chroma Features

Pitch Class Profile (PCP), or chroma features, represent the
energy of the audio signal present in each of the twelve pitch
classes of the chromatic scale. In this paper, the chroma
features are derived from a slightly modified version of the
constant-Q transform [3] by mapping each frequency bin of
the constant-Q spectrum to a corresponding pitch class. Let
us define the kth bin constant-Q kernel function as:

Kk(m) = ωk(m)e−j2πfkm, m ∈ [0, Nk − 1] (1)

where ωk is a Hamming window of length Nk, which varies
with the center frequency fk so that it has a fixed Q-value.
The center frequency fk is based on the equal tempered
scale such that:

fk = 2k/βfmin (2)

where β is the number of bins per octave, and fmin is the
minimum analysis frequency.

The constant-Q transform Xcq of a segmented audio sig-
nal x(m), m ∈ [0, Nseg − 1] is then calculated as:

Xcq(k) =
1

min(Nseg, Nk)

N−1∑
ν=0

X(ν)K∗
k(ν) (3)

where N > Nk ∀k, X(ν) is the N -point DFT of the signal,
and K∗

k(ν) is the conjugate of the N -point DFT of the kth

kernel function. The signal and kernel functions are padded
with trailing zeros to lengthN prior to applying the DFT. To
prevent underestimation of low frequencies where Nseg <
Nk, the smaller value between Nseg and Nk is used as the
normalization factor. In this paper, we use β = 36, with
the analysis performed between fmin = 27.5 Hz and fmax =
4186 Hz (i.e. corresponding to the MIDI pitches 21 to 108).
The STFT window length Nseg is 8192 (186 ms), and hop
size is 4096 (93 ms) samples at 44100 Hz sample rate.

A 12-bins per octave spectrum P (p), p ∈ [1, Np] is ob-
tained by combining adjacent bins of theXcq(k) using β/12-
wide non-overlapping Gaussian windows. To avoid percus-
sive noise (e.g. bass drums) in low frequencies and to atten-
uate the effect of non-harmonic tones caused by high-order
harmonics in high frequencies, P (p) is windowed with a
Gaussian centered at C4 (MIDI pitch 60). Finally, a chroma
vector C = {cb}, b ∈ [1, 12] can simply be calculated by
folding the spectrum P (p).

2.2 CRP Features

CRP (Chroma DCT-Reduced log Pitch) features, proposed
by Müller et al. [7], are one of the most recent variants of
conventional chroma features. Their derivation is inspired
by Mel-frequency cepstral coefficients (MFCCs) which are
popular in speech and music recognition. First, the spectrum
P (p) is logarithmized using log(P (p)·γ+1) with a suitable
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Figure 2. (a) a similarity matrix (M = 25, τ = 1), (b) a recurrence plot (θ = 50), (c) a weight matrix

compression factor γ > 1 ∈ R, and transformed to the cep-
stral domain using the Discrete Cosine Transform (DCT).
The ξ-lowest coefficients of the resulting cepstrum are then
set to zero. Finally, the cepstrum is transformed back using
the inverse DCT, and the resulting pitch vectors are summa-
rized into the 12-dimensional chroma vectors, CRP. It is
important to note that by removing the DC component from
the cepstrum, a CRP vector contains both positive and neg-
ative values. The feature vectors are then normalized by the
`2-norm. In this paper, we use γ = 1000 and ξ = 25 as
suggested by [7].

The main advantage of using CRP features for chord recog-
nition comes from applying logarithmic compression on the
spectrum P (p). In conventional chroma features, melodies
and bass lines are problematic, because they generate sin-
gle high-energy peaks that dominate the chroma feature dis-
tributions to the detriment of the background harmony of
the frame. The logarithm de-emphasizes the dominant pitch
salience while boosting the background harmonic contents.
In addition, by removing low coefficients from the cepstrum
(i.e. formants, spectral shape), CRP features maximize the
effect of compression and become invariant to changes in
timbre.

2.3 Recurrence Plot and Weight Matrix

The weight matrix is computed using recurrence plot (RP)
theory, which provides a sophisticated way to analyze se-
quential data [5], and have been previously used with chroma
features in other MIR tasks such as cover version identifi-
cation [9], and recently, in structural similarity [1]. A key
feature of recurrence plots is the use of time-delay embed-
ding. Time-delay embedding is a method for transforming
a time series into a multidimensional sequence of lagged
data. In other words, it provides a way to transform frame-
by-frame analysis into n-gram analysis (i.e. subsequence-
by-subsequence).

The nth time-delay embedded chroma vector Č(n) can be
constructed by concatenating all the elements of a chroma
sequence C(n) = {cb(n)}, b ∈ [1, 12] from time n to n +

(M − 1)τ as:

Č(n) =
(
c1(n), c1(n+ τ), . . . , c1(n+ (M − 1)τ), . . .

c12(n), c12(n+ τ), . . . , c12(n+ (M − 1)τ)
)
(4)

Č(n) is then normalized to have unit length. The self-similarity
matrix Si,j is calculated as:

Si,j =

∣∣∣∣∣∣Č(i)− Č(j)
∣∣∣∣∣∣

2
(5)

where i, j ∈ [1, N ], N is the length of the time-delay em-
bedded chroma sequence, and || · || is the Euclidean norm.
The normalization factor (the constant 2 in the denominator)
is the maximum possible distance value between unit length
vectors. Hence, 0 ≤ Si,j ≤ 1, ∀ i, j ∈ [1, N ].

Unlike a conventional frame-by-frame self-similarity ma-
trix (i.e. a special case of Si,j with parameters M = 1 and
τ = 1), the additional embedding process makes the matrix
more robust to short term noise or deviations by evaluating
vectors of sample sequences (i.e. M · τ length sequence)
instead of using only samples. An RP can be obtained from
Si,j with a suitable threshold ε as:

Ri,j = H(ε− Si,j), i, j ∈ [1, N ] (6)

where H is the Heaviside step function. The choice of ε
is important because it is the only criterion to determine
which parts are actually repeated. However, a global thresh-
olding with a fixed threshold is not appropriate in our case,
because the useful range of thresholds can vary greatly be-
tween songs or even within a given song. A better strategy
is to simply match the number of nearest neighbors in the
phase space constructed by Eqn. (4). In this approach, ε(n)
is defined as a threshold to ensure that Ri,n = 1 for the θ
points closest to the nth point of the trajectory. In practice,
we expand this approach to both columns and rows of RP
to include every possible repeated pattern in the smoothing
process as:

Ri,j = H(ε(n)− Si,n) ∨H(ε(n)− Sn,j) (7)
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Figure 3. Reconstruction process: (a) overlapped chroma
segments (white boxes), (b) chroma summation over over-
lapped segments with weight values.

where i, j, n ∈ [1, N ]. Finally, a weight matrix Wi,j can be
calculated using information from Si,j and Ri,j as:

Wi,j = (1− Si,j) ·Ri,j (8)

Hence, the matrix is sparse and has real values indicating
the similarity degrees of repeated sections. Figure 2 shows
examples of a similarity matrix Si,j , a recurrence plot Ri,j
and a weight matrixWi,j whereM = 25, τ = 1 and θ = 50.
In this paper, we fix τ = 1 (i.e. no skipping frames).

2.4 Feature Reconstruction

Each column (or row) ofWi,j contains information about re-
currences of the current event across the whole song. More
specifically, the ith activated component (i.e. non-zero com-
ponents) in the jth column vector indicates that the ith seg-
ment is similar to the jth segment. For example, the first
column of Figure 3(a) shows that the 5th and 8th segments
are similar to the first segment. For M = 3 and N = 10,
Figure 3(a) depicts the temporal validity of chroma vector
M -grams.

To generate the first smoothed chroma vector from the
example in Figure 3(a), the activated weights at i = {1, 5, 8}
of the first column are multiplied with the first frames of the
corresponding segments. Then the results are summed up
in the first smoothed chroma vector (see the left most down
arrow in Figure 3(b)). Similarly, the second frame of the
smoothed chromagram uses the weights on the second col-
umn and the first frames of the corresponding chroma seg-
ments (i.e. i = {2, 6, 9}). However, the overlapping means
that the second frames from the previous segments should
also be considered (see the second column in Figure 3(b)).
More generally, the nth frame of the smoothed chromagram
is computed from the weights in the previous n −M − 1
columns. This process can be described as:

Ĉ(n) =

M−1∑
m=0

∑N
i=1Wi,n−m · C(i)∑N

i=1Wi,n−m
(9)
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Figure 4. Chromagrams: (a) an original chromagram ex-
cerpt from “Let It Be” by The Beatles, (b) a smoothed
chromagram using a moving average filter with λ = 14,
(c) a median filter with λ = 14, and (d) our method with
M = 25, θ = 50.

where the denominator is a normalization factor that adjusts
for the contribution of overlapping chroma segments.

Figure 4(a) shows a chromagram and its smoothed ver-
sions using a moving average filter (Figure 4(b)), a median
filter (Figure 4(c)) and our method (Figure 4(d)). The mov-
ing average filter used in Figure 4(b) is calculated as:

C̄(n) =
1

λ

λ−1∑
d=0

C

(
n+ d−

⌊λ− 1

2

⌋)
(10)

and the median filter used in Figure 4(c) is defined as:

C̃(n) = median
d

C(d),

d ∈ N, n−
⌊λ− 1

2

⌋
≤ d ≤ n+

⌈λ− 1

2

⌉ (11)

where λ is the number of adjacent frames to be processed.
In Figure 4, the chromagram generated by our method is
much cleaner than the original chromagram, while keeping
sharp boundaries between chord segments. Figure 4(b), on
the other hand, shows blurred boundaries, and the median
filter in Figure 4(c) removes both the noise and the fine de-
tail since it can’t distinguish the difference between those
signals.
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Without Viterbi Decoder With Viterbi Decoder
None Mean Median Our method None Mean Median Our method

C 49.93 65.51 (14) 66.22 (14) 69.23 (25, 47) 72.02 71.67 (4) 72.54 (4) 74.81 (25, 10)
CRP 54.26 71.16 (14) 71.05 (14) 72.85 (25, 50) 75.36 75.76 (4) 75.64 (4) 77.91 (25, 15)

Table 1. Average accuracies of the binary template model with no filtering (labeled ‘None’), a moving average filter (labeled
‘Mean’), a median filter, our method, and their combinations with the Viterbi decoder. The optimal parameters are given in
parentheses, (λ) for both a moving average filter and a median filter, and (M , θ) for our method.

3. EVALUATION METHODOLOGY

The experiments are performed on 249 chord annotated songs.
The data set comprises 179 songs 1 from Christopher Harte’s
Beatles dataset, 20 songs from Matthias Mauch’s Queen
dataset and 50 pop songs from the RWC (Real World Com-
puting) database manually annotated by music students at
NYU. The evaluations are performed on 12 major, 12 minor
triads and a no-chord detection task. In the evaluation, audio
frames where the RMS is under -57 dB are assumed to be
no-chords.

For the pattern matching process, binary chord templates
and multivariate Gaussian Mixture Models (GMMs) are used.
The binary chord templates (for 12 major and 12 minor tri-
ads) are manually generated based on basic chord theory. In
a 12-dimensional binary chord template vector, each com-
ponent corresponding to a chord-tone is set to 1, and the
other components are set to 0 (e.g. [1 0 0 0 1 0 0 1 0 0
0 0] for a C Major triad, where the left to right order of
the vector components follows the chromatic scale from C).
The detected chord on one given frame is the one whose
template is closest to the chroma vector of the frame in an
Euclidean sense. The pseudo-probabilities for applying the
Viterbi decoder are calculated by taking the reciprocal of the
Euclidean distances.

The parameters of the multivariate GMMs are estimated
from annotated training data using the EM algorithm. For
training, the data is segmented based on the chord annota-
tions and transposed to the C-based chord. The root-normal-
ized chord collection is used to train C-major and C-minor
models that are then re-transposed to the remaining roots to
define the 22 models. In this paper, we use a mixture of 15
Gaussians with diagonal covariance matrices.

For the Viterbi decoder, the transition penalty ρ is ap-
plied. The transition penalty adjusts the strength of the self-
transition probability relative to transitions between differ-
ent chords [4]. It is applied as follows:

log(âi,j) =

{
log(ai,j)− ρ for i 6= j

log(ai,j) for i = j
(12)

whereA = [ai,j ] is the original transition probability matrix
and Â = [âi,j ] is the modified matrix with penalty ρ. For A,

1 “Revolution 9” from The White Album is removed from the experiment
due to its lack of harmonic content.

None Mean Median Our method
C 73.85 73.52 (3) 74.41 (4) 75.78 (25, 6)
CRP 77.82 77.63 (4) 77.69 (4) 79.61 (25, 9)

Table 2. Average accuracies of GMMs. The optimal param-
eters are given in parentheses, (λ) for both a moving average
filter and a median filter, and (M , θ) for our method.

we use a uniform transition probability matrix in which all
chord transitions have the same probability, hence Ai,j =
1/24, ∀ i, j ∈ [1, 24]

For statistical models (GMMs), each experiment is per-
formed using a 10-fold cross validation on 10 randomly clas-
sified groups; 9 groups contain 25 songs each, and one group
contains 24 songs. For each iteration, one group is selected
as a test set, and the remaining 9 groups are used for train-
ing. The chord recognition rate is calculated as follows:

Accuracy =
total duration of correct chords

total duration of dataset
×100% (13)

4. RESULTS AND DISCUSSION

Table 1 shows the average accuracies of the binary template
model with a moving average filter, a median filter, our method,
and their combinations with the Viterbi decoder. The results
show that CRP yields better results than C in every case.
Also they show that our method outperforms the use of con-
ventional filters regardless of the types of features. Table 2
shows the result of using GMMs with the different combi-
nations of the filters. Similar to the case of the binary tem-
plate model, CRP performs better than C, and our method
maintains its advantages against both a moving average fil-
ter and a median filter. All differences between conventional
methods and our method are significant in paired t-test at
p < 0.01.

One notable difference between our method and the con-
ventional filters is its compatibility with the Viterbi decoder.
As shown in both tables, unlike our method, the moving av-
erage filter has almost no impact on the overall performance
when used in combination with the Viterbi decoder. This is
due to the blurred boundaries caused by the filter, as seen in
Figure 4(b). Figure 5 shows the distributions of deviations
(in frames) between annotated and detected boundaries of
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Figure 5. Distributions of deviations between annotated
and detected boundaries: CRP and binary template model
with the Viterbi decoder: (a) The Viterbi decoder only, pre-
filtering with (b) a moving average filter, (c) a median filter,
and (d) our method. In the graph, the X-axis means the
distance between annotated and detected chord boundaries
in frames, and the Y -axis means the number of boundaries
belonging to the distances.

the combinations of different pre-filtering methods and the
Viterbi decoder. For our goal, a sharp and narrow distribu-
tion is ideal, since it means little deviation from the ground
truth. In the case of Figure 5(d), the number of frames used
to generate a new frame is at least 50 (θ = 50). As shown
in Figure 5(b), although the moving average filter employs a
relatively small number of frames (λ = 14) for smoothing,
it shows larger deviations than our method in Figure 5(d).

Although the median filter is much better at preserving
sharp edges than the moving average filter as shown in Fig-
ure 5(c), the results in Table 1 and Table 2 are not much bet-
ter than those of the moving average filter. In the case of
CRP, the median filter shows about the same performance
as the moving average filter. The median filter is efficient
at removing impulsive noise. However, in whitened fea-
ture space such as CRP, it has little influence on the per-
formance, but rather may lead to appreciable loss in sig-
nal details, because it uses only rank-order information of
the input data within the filter window without consider-
ing its original temporal-order information. These charac-
teristic errors of conventional filters hurt the performance.
In the case of Figure 5(b), the accuracy rate is 72.2%, and
for Figure 5(c), the accuracy rate is 72.7% for CRP fea-
tures (compared to 75.4% for Figure 5(a) and 76.4% for
Figure 5(d)). On the contrary, since our method keeps de-
viations low and also preserves fine details, it maximizes
the benefits of both our method and the Viterbi decoder.

5. CONCLUSION

In this paper, we provided a feature smoothing method based
on repeated patterns. By applying recurrence plot theory,
our method smoothes chroma features using information from
harmonically-related frames from the whole sequence, as
opposed to conventional smoothing where only a few ad-
jacent frames are used. We showed that this method con-
tributes to performance improvement by preserving the ben-
efit of a fast-frame-rate analysis (i.e. sensing precise chord
boundaries) while alleviating its problems (i.e. noise and
transients). This advantage is maintained among different
types of chroma features.

In our experiments, we applied the same parameters (M
and θ) to all songs, despite the risk of over-smoothing. In
the future, we plan to develop adaptive methods for opti-
mally choosing these parameters for each individual track.
We fully expect this adaptation to improve performance be-
yond what is reported in this paper.
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ABSTRACT

Mel-frequency cepstral coefficients (MFCCs) are efficient
audio descriptors providing spectral energy measurements
over short time windows of length 23 ms. These measure-
ments, however, lose non-stationary spectral information such
as transients or time-varying structures. It is shown that this
information can be recovered as spectral co-occurrence co-
efficients. Scattering operators compute these coefficients
with a cascade of wavelet filter banks and modulus recti-
fiers. The signal can be reconstructed from scattering coeffi-
cients by inverting these wavelet modulus operators. An ap-
plication to genre classification shows that second-order co-
occurrence coefficients improve results obtained by MFCC
and Delta-MFCC descriptors. 1

1. INTRODUCTION

Many speech and music classifiers use mel-frequency cep-
stral coefficients (MFCCs), which are cosine transforms of
mel-frequency spectral coefficients (MFSCs). Over a fixed
time interval, MFSCs measure the signal frequency energy
over mel-frequency intervals of constant-Q bandwidth. As
a result, they lose information on signal structures that are
non-stationary on this time interval. To minimize this loss,
short time windows of 23 ms are used in most applications
since at this resolution most signals are locally stationary.
The characterization of audio properties on larger time scales
is then done by aggregating MFSC coefficients in time, with
multiple ad-hoc methods such as Delta-MFCC [5] or MFCC
segments [1]. This paper shows that the non-stationary be-
havior lost by MFSC coefficients is captured by a scatter-
ing transform which computes multiscale co-occurrence co-
efficients. A scattering representation includes MFSC-like
measurements together with higher-order co-occurence co-
efficients that can characterize audio information over much

1 This work is funded by the ANR grant 0126 01.
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longer time intervals, up to several seconds. This yields ef-
ficient representations for audio classification.

Section 2 relates MFSCs and wavelet filter bank coeffi-
cients. It is shown that information lost by spectral energy
measurements can be recovered by a scattering operator in-
troduced in [8]. It computes co-occurrence coefficients by
cascading wavelet filter banks and rectifiers calculated with
modulus operators. A scattering transform has strong sim-
ilarities with auditory physiological models based on cas-
cades of constant-Q filter banks and rectifiers [4, 10]. It is
shown that second-order co-occurrence coefficients carry an
important part of the signal information. Section 3 gives
an application to musical genre classification, which shows
that scattering co-occurence coefficients reduce classifica-
tion errors obtained with MFCCs and Delta-MFCCs. A
MATLAB software is available at http://www.cmap.
polytechnique.fr/scattering/.

2. SCATTERING REPRESENTATION

2.1 From Mel-Frequency Spectra to Wavelets

To understand the information lost by mel-frequency spec-
tral coefficients, we relate them to a wavelet transform. The
Fourier transform of x(t) is written x̂(ω) =

∫
x(u)e−iωudu.

A short-time Fourier transform of x is computed as the Fourier
transform of xt,T (u) = x(u)wT (u− t), where wT is a time
window of size T :

x̂t,T (ω) =

∫
xt,T (u)e−iωudu.

MFSCs are obtained by averaging the spectrogram |x̂t,T (ω)|2
over mel-frequency intervals. These intervals have a con-
stant frequency bandwidth below 1000 Hz and a constant
octave bandwidth above 1000 Hz. The MFSCs can thus be
written

MTx(t, j) =
1

2π

∫
|x̂t,T (ω)|2|ψ̂j(ω)|2dω (1)

where each ψ̂j(ω) covers a mel-frequency interval indexed
by j. Applying Parseval’s theorem yields

MTx(t, j) =

∫
|xt,T ? ψj(u)|2du. (2)
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It results thatMTx(t, j) is the energy of x in a neighborhood
of t of size T and in the mel-frequency interval indexed by
j. It is unable to capture non-stationary structures of dura-
tion shorter than T , which is why T is chosen to be small,
typically 23 ms.

At high frequencies, the filters ψj are constructed by di-
lating a single filter ψ whose octave bandwidth is 1/Q:

ψj(t) = a−jψ(a−jt) with a = 21/Q and j ≤ J. (3)

These filters can thus be interpreted as dilated wavelets. The
filter ψ is normalized so that its support is about 1 s. It is a
complex filter whose transfer function approximately covers
the frequency interval [2Qπ − π, 2Qπ + π]. For j < J ,
the time support of ψj is thus smaller than aJ and it covers
the frequency interval [2Qπa−j − πa−j , 2Qπa−j + πa−j ].
Frequencies below 2πQa−J are covered by P filters ψj (for
J ≤ j < J + P ), having the same frequency bandwidth
as ψJ , which is 2πa−J , and a time support equal to aJ .
Although these low-frequency filters are not dilations of ψ,
for the sake of simplicity we shall still call them wavelets.
The resulting wavelet transform is a filter bank defined by:

WJx(t) =

(
x ? φJ(t)
x ? ψj(t)

)
j<J+P

.

The first filter φJ is a low-pass filter covering the interval
[−πa−J , πa−J ], which is not covered by other wavelet fil-
ters and whose temporal support is about aJ .

Wavelet filters are designed so that for all frequencies ω

1−ε ≤ |φ̂J(ω)|2+1

2

∑
j<J+P

|ψ̂j(ω)|2+|ψ̂j(−ω)|2 ≤ 1 (4)

for a small ε. The squared norm of a signal is written ‖x‖2 =∫
|x(t)|2dt and the norm of its wavelet transform is defined

by:

‖WJx‖2 = ‖x ? φJ‖2 +
∑

j<J+P

‖x ? ψj‖2.

Thus by applying Parseval’s theorem one can verify that the
filter admissibility condition (4) implies that

(1− ε) ‖x‖2 ≤ ‖WJx‖2 ≤ ‖x‖2 .

The wavelet filter bank is thus contractive and if ε = 0, it
is also unitary. This energy equivalence also implies that x
can be recovered from its wavelet transform.

In numerical applications we use Gabor filters ψ(t) =
θ(t)ei2πQt where θ is Gaussian, with Q = 16 and P = 23,
which satisfy (4) for ε = 0.02. The resulting filter bank is
shown in Figure 1.

0 1000 2000 3000 4000 5000 6000
0

1

!

Figure 1. Wavelet filter bank of Gabor filters at sampling
frequency 11025 Hz.

2.2 Scattering Wavelets

An MFSC coefficientMTx(t, j) in (2) gives the squared en-
ergy of wavelet coefficients at the scale aj , over a time inter-
val of size T around t. Let us choose the maximum wavelet
scale to be aJ = T . The square does not play an important
role on the derived MFCC audio descriptors which are cal-
culated with a logarithm. Replacing the squared amplitude
by the amplitude yields similar measurements which can be
computed directly by averaging the wavelet coefficient am-
plitudes of x:

|x ? ψj | ? φJ(t). (5)

This measures the signal amplitude in the frequency interval
covered by ψj , averaged over a neighborhood of t of dura-
tion T = aJ . The larger T , the more information is lost by
this averaging.

To recover the information lost by averaging, observe
that |x ?ψj1 | ? φJ can be written as the low-frequency com-
ponent of the wavelet transform of |x ? ψj1 |:

WJ |x ? ψj1 |(t) =

(
|x ? ψj1 | ? φJ(t)
|x ? ψj1 | ? ψj2(t)

)
j2<J+P

.

Since the wavelet transform is invertible, the information
lost by the convolution with φJ is recovered by the wavelet
coefficients |x ? ψj1 | ? ψj2(t). Averaged measurements are
obtained with a low-pass filtering of the modulus of these
complex wavelet coefficients:

||x ? ψj1 | ? ψj2 | ? φJ(t). (6)

These provide co-occurrence information at the scales aj1
and aj2 . Such coefficients are called scattering coefficients
because they compute the interferences of the signal x with
two successive wavelets ψj1 and ψj2 . They measure the am-
plitude of time variations of |x ? ψj1(t)| in the frequency
intervals covered by the wavelets ψj2 . Figure 2 shows first-
order scattering coefficients of a musical recording sampled
at 11025 Hz, calculated with T = 800 ms. Co-occurrence
coefficients ||x ? ψj1 | ? ψj2 | ? φJ(t) are shown in Figure 2,
for a fixed scale aj1 .

Averaging ||x ? ψj1 | ? ψj2 | by φJ in (6) again entails
a loss of high frequencies, which can be recovered by a
new wavelet transform. The same procedure is thus iterated,
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Figure 2. Top: log[|x ? ψj1 | ? φJ(t)] as a function of time
t and of ω1 = 2πQa−j1 for T = aJ = 800 ms. Middle:
graph of |x?ψj1 | for ω1 = 855 Hz. Bottom: log[| |x?ψj1 |?
ψj2 | ? φJ(t)] as a function of t and of ω2 = 2πQa−j2 for
|x ? ψj1 | shown above.

defining a cascade of filter banks and modulus operators il-
lustrated in Figure 3.

Let UJ be the wavelet modulus operator which computes
the modulus of complex wavelet coefficients while keeping
the phase of x ? φJ :

UJx(t) =

(
x ? φJ(t)
|x ? ψj(t)|

)
j<J+P

. (7)

A scattering transform first computes UJx and outputs the
low-frequency signal x?φJ . At the next layer, each |x?ψj1 |
is retransformed by UJ , which outputs |x ? ψj1 | ? φJ and
computes ||x?ψj1 |?ψj2 |. These coefficients are themselves
again transformed by UJ , which outputs ||x?ψj1 |?ψj2 |?φJ
and computes third-order wavelet signals, which are further
subdecomposed by UJ , and so on.

Applying this transformation m times and discarding the
coefficients not filtered by φJ yields a scattering vector of
size m+ 1 at time t:

SJx(t) =


x ? φJ(t)

|x ? ψj1 | ? φJ(t)
||x ? ψj1 | ? ψj2 | ? φJ(t)

...
| | · · · |x ? ψj1 | · · · | ? ψjm | ? φJ(t)


j1,j2,...<J+P

This scattering transform is a cascade of modulated fil-
ter banks and non-linear rectifications, as in the auditory
physiological models studied in [4, 10]. It has an architec-
ture similar to convolutional networks used in computer vi-
sion [6] and to convolutional deep belief networks used in

x

x ! φJ

|x ! ψj1 | ! φJ ∀j1

| |x ! ψj1 | ! ψj2 | ! φJ ∀j1, j2

|x ! ψj1 |
UJ

UJ

| |x ! ψj1 | ! ψj2 |
UJ

| |x ! ψj1 | · · · ! ψjm
|

| |x ! ψj1 | · · · ! ψjm
| ! φJ ∀j1...jm

UJ

· · · · · ·

Figure 3. A scattering operator is a cascade of wavelet mod-
ulus operators UJ . It outputs convolutions with φJ shown
in boxes.

audio classification [7]. However, a scattering gathers out-
puts from all layers as opposed the last one. Indeed, the
energy of coefficients of order q decays to zero when q in-
creases.

The squared norm of this scattering signal is the sum of
the squared norms of its components:

‖SJx‖2 =
∑
q

∑
j1,...,jq<J+P

‖ | |x ? ψj1 | · · · ? ψjq | ? φJ‖2.

Since WJ and the modulus are both contractive operators,
the wavelet modulus operator UJ is also contractive. Be-
cause SJ is calculated with a cascade of UJ , it remains con-
tractive, and thus for any signals x and y

‖SJx− SJy‖ ≤ ‖x− y‖ .

The wavelet transform is unitary if the wavelet filters satisfy
the admissibility condition (4) with ε = 0. For wavelets
satisfying this and additional criteria, it is proved in [8] that
the energy of all scattering coefficients of order q decays to
zero as q increases. It results that the whole signal energy
is carried by a scattering vector consisting of co-occurrence
coefficients of all orders from q = 0 to q =∞:

‖SJx‖ = ‖x‖ .

Table 1 gives the average value of ‖SJx‖/‖x‖ over all
audio signals x in the GTZAN dataset, sampled at 11025 Hz,
as a function of m and T . For m = 0, SJx(t) = f ? φJ(t).
Observe that for T ≤ 6 s, first- and second-order coefficients
carry more than 98% of the energy.

2.3 Second-Order Scattering Decomposition and
Reconstruction

In the following, the scattering transform is computed for
m = 2 because first- and second-order scattering coeffi-
cients carry most of the signal energy in the interesting range
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T m = 0 m = 1 m = 2 m = 3

23 ms 23.7% 98.9% 99.6% 99.6%
93 ms 1.9% 97.7% 99.4% 99.4%
370 ms 1.2% 92.7% 99.3% 99.4%
1.5 s 1.0% 82.0% 98.9% 99.3%
5.9 s 0.99% 73.0% 98.1% 99.1%
22 s 0.97% 67.5% 96.5% 99.0%

Table 1. Averaged ratio ‖SJx‖/‖x‖ on the GTZAN dataset,
as a function of the maximum scattering order m and of
T = aJ .

of window sizes T . The signals |f ? ψj1 | ? φJ(t) and ||x ?
ψj1 |?ψj2 |?φJ(t) are uniformly sampled at intervals T = aJ

because the frequency bandwidth of φ̂J is 2πa−J . A sam-
pled second-order scattering vector is thus defined by:

SJx(na
J) =

(
|x ? ψj1 | ? φJ(naJ)

||x ? ψj1 | ? ψj2 | ? φJ(naJ)

)
j1,j2<J+P

.

(8)
We now show that if j2 < j1 +logaQ/2 then ||x?ψj1 |?

ψj2 | ? φJ(t) ≈ 0, so second-order coefficients need only be
calculated for j2 ≥ j1 + logaQ/2. Indeed, since ψ(t) =
θ(t)ei2πQt, it results that

|x?ψj1(t)| = |xj1 ?θj1(t)|with xj1(t) = x(t)e−i2πQa
−j1 t .

The Fourier transform of |x ? ψj1(t)| is thus approximately
located in the low-frequency interval covered by θ̂j1 where
θj(t) = a−jθ(a−jt). One can verify that if j2 < j1 +

logaQ/2 then the supports of ψ̂j2 and θ̂j1 barely overlap,
which implies that ||x ? ψj1 | ? ψj2 | ? φJ(t) ≈ 0. Non-zero
scattering coefficients (8) are computed with the following
algorithm.

Algorithm 1 Second-order scattering calculations
for j1 < J + P − 1 do

Compute ||f ? ψj1(aj1n)| ∀n
Output ||f ? ψj1 | ? φJ(aJn) ∀n
for j2 = j1 + loga(Q/2) to J + P − 1 do

Compute and output ||f ? ψj1 | ? ψj2 | ? φJ(aJn) ∀n
end for

end for

An audio frame of duration T = aJ containing N sam-
ples yields aboutQ log2(N/Q) andQ2/2 log2

2(N/Q
2) first-

order and second-order scattering coefficients, respectively.
If N = 8192, there are 150 first-order coefficients and 5500
second-order coefficients, approximately. Using FFTs, these
coefficients are computed withO(N log(N/Q)) operations.

Since the scattering transform is computed by iterating
the wavelet modulus operator UJ , its inversion is reduced to

inverting UJ . The wavelet transform WJ is invertible with a
stable inverse but UJ loses the complex phase of wavelet
coefficients. Inverting UJ then amounts to retrieving the
complex phase from the modulus information. A surpris-
ing new result [12] proves that for appropriate wavelets, the
operator UJ is invertible and that its inverse is continuous,
which is a weak stability result. This inversion is made pos-
sible because of the redundancy of wavelet signals x?ψj(t),
which can be exploited with a reproducing kernel projector.
Numerical reconstructions are computed with an alternating
projection algorithm, which alternates between a projector
on the modulus constraint and the wavelet transform repro-
ducing kernel projector [12]. However, this algorithm does
not compute the exact inverse of UJ because it is a non-
convex optimisation which can be trapped in local minima.

Even though UJ is invertible, x cannot be recovered ex-
actly from SJx calculated at a finite order m because all
scattering coefficients of order larger than m are set to 0.
For T ≤ 100 ms most of the audio signal energy is con-
centrated in first-order coefficients according to Table 1 and
the reconstruction from these first-order coefficients (which
correspond to MFSCs) is indeed of good audio quality. As T
increases, reconstructions from first-order coefficients pro-
gressively lose more information on transient structures and
lose all melodic structures for T ≥ 3 s. Second-order coef-
ficients recover this transient information and fully restores
melodic structures when T = 3 s. Reconstruction examples
are available at http://www.cmap.polytechnique.
fr/scattering/audio/.

2.4 Cosine Log-Scattering

MFCC coefficients are computed as a cosine transform of
the logarithm of MFSC coefficients. Indeed, many musi-
cal and voiced sounds can be approximated by an excita-
tion e(t) filtered by resonator corresponding to a filter h(t):
x(t) = e ? h(t) [2]. MFCCs separate h from e with a log-
arithm and a discrete cosine transform (DCT). The same
property applies to scattering coefficients, which are there-
fore retransformed with a logarithm and a DCT.

The impulse response h(t) is typically very short so ĥ(ω)
is a regular function of ω. Supposing that ĥ(ω) is nearly
constant over the frequency support of ψ̂j1 , one can verify
that

x ? ψj1(t) ≈ ĥ(2πQa−j1) · e ? ψj1(t). (9)

It results that

log |x ? ψj1 | ? φJ(t) ≈ log |ĥ(2πQa−j1)| (10)

+ log [|e ? ψj1(t)| ? φJ(t)] .

Since |ĥ(ω)| is a regular function of ω, log |ĥ(2πQa−j1)| is
also a regular function of j1 whereas this is typically false
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Figure 4. Variances, in decreasing order, of log-scattering
coefficients in different bases for q = 1 and q = 2 computed
on GTZAN for T = 1.5 s. Solid curve: Variance of log-
scattering coefficients. Dashed curve: Variance of a PCA
basis computed on log-scattering coefficients. Dotted curve:
Variance of cosine log-scattering coefficients.

for |e ? ψj1(t)|. Both components can thus be partially sep-
arated with a DCT along j1, which carries the information
depending on h over to low-frequency DCT coefficients.

Similarly, (9) implies

||x?ψj1 |?ψj2 |?φJ(t) ≈ |ĥ(2πQa−j1)|·|e?ψj1 |?ψj2 |?φJ(t),

and hence

log [||x ? ψj1 | ? ψj2 | ? φJ(t)] ≈ log |ĥ(2πQa−j1)|
+ log [|e ? ψj1 | ? ψj2 | ? φJ(t)] .

These coefficients are transformed with a DCT along j2 and
then along j1, yielding a representation parametrized by k2

and k1 respectively. The first term, depending only on j1,
only contributes to the zero DCT coefficient (k2 = 0) along
j2. The second DCT along j1 separates the remaining low-
frequency components along j1 from high-frequency ones.

Figure 4 indicates that the DCTs efficiently decorrelate
log-scattering coefficients and concentrate the energy over
fewer coefficients. Variances were calculated for q = 1 and
q = 2 on part of the GTZAN dataset in three bases: standard
log-scattering (solid), a PCA basis computed on another part
of the dataset (dashes), and the DCT basis (dotted). The
PCA basis decorrelates the log-scattering coefficients and
since the variances in the DCT basis closely follow those in
PCA basis, the DCT basis decorrelates them as well.

For classification, the final representation using cosine
log-scattering (CLS) coefficients is obtained by keeping only
the low-frequency DCT coefficients as with MFCCs. For
q = 1, the first a1 coefficients are retained. When q = 2,
a square defined by k1 < a1 and k2 < a2 is selected. This
adds a2 bands of information on the non-stationary part cor-
responding to the coefficients in q = 1. In addition, for

k1 < b1, where b1 � a1 (capturing the spectral outline),
b2 � a2 bands are included instead of a2 to better model
the time-varying aspects of the spectral shape (e.g. the fil-
ter h mentioned). For the numerical results presented in this
paper, we have a1 = 100, b1 = 10, a2 = 2 and b2 = 10
(chosen so that classification errors do not differ from the
uncompacted representation for relevant scales). The size
of the representation is then at most 100 coefficients for
m = 1 and 380 coefficients for m = 2. For m = 1, this
is larger than the standard MFCC vector of 20 coefficients
when T = 23 ms since the compacitification is optimized
for all scales and smaller scales need less coefficients.

3. CLASSIFICATION

Music and speech classification algorithms are often based
on MFCCs computed over 23 ms time windows. To capture
longer-range structures, these MFCCs are either aggregated
in segments [1] that cover longer time intervals or are com-
plemented with other features such as Delta-MFCCs [5].
Sophisticated GMM, HMM, AdaBoost, sparse coding clas-
sifiers have been developed on such feature vectors to op-
timize audio classification. The next section studies classi-
fications results obtained with simple classifiers to concen-
trate on the properties of feature vectors as opposed to a
specific classifier.

3.1 Musical Genre Classification

The performance of MFCC and log-scattering vectors are
compared for musical genre classification, on the GTZAN
genre database [11]. This database includes 10 genres, each
containing 100 clips of 30 seconds each.

Delta-MFCC coefficients [5] are defined as the differ-
ence between MFCC coefficients of two consecutive au-
dio frames and thus cover a time interval of twice the size.
These complement the ordinary MFCCs, providing infor-
mation on the temporal audio dynamics over longer time
intervals. The classification performances of feature vectors
are evaluated with an SVM classifier computed with a Gaus-
sian kernel k(x1, x2) = exp(−γ‖x1 − x2‖2) or an affine
space classifier.

Each audio track is decomposed in frames of duration
T which are represented using MFCCs, Delta-MFCCs, or
cosine log-scattering. A multi-class SVM is implemented
over the audio frames with a 1vs1 approach which trains
an SVM to discriminate each pair of classes. To classify
a whole track, each frame is classified using the SVM and
the class with the largest number of frames in the track is
selected. The Gaussian kernel parameter γ and the SVM
slack variable C are optimized with a cross-validation on a
subset of the training set.

Due to the large number of training examples available
for small window sizes, training an SVM in these circum-
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T/classifier 0.023 s/PCA 0.19 s/PCA 1.5 s/SVM
MFCC 46 36 28

Delta-MFCC 37 33 26
CLS, m = 1 46 36 28
CLS, m = 2 34 23 18

Table 2. Error rates (in percent) on GTZAN using five-fold
cross-validation for different window sizes (T) and features.

stances is infeasible. Therefore, we also compare the per-
formance of the features using an affine space classifier [3]
which uses a PCA to create an affine space approximation
for each class and then assigns a given track to the class
whose affine space model best approximates the feature vec-
tor.

The results of five-fold cross-validation on the GTZAN
dataset are shown in Table 2. As expected, the error rates
for MFCC and first-order CLS are close since they mea-
sure similar quantities. Second-order CLS vectors achieve
significantly higher accuracy since they recover lost non-
stationary structure of the signal. Delta-MFCC perform bet-
ter than regular MFCCs, but are outperformed by CLS vec-
tors which provide richer representations. With increasing
T , the error decreases as larger-scale musical information is
encoded, yielding the lowest error of 18% for T = 1.5 s
with an SVM. At larger time scales, however, classifica-
tion suffers since even second-order CLS vectors are un-
able to accurately represent the signal, as seen during recon-
struction. Incorporating third-order scattering coefficients
(m = 3) marginally improves the classification results while
greatly increasing the computational load.

State-of-the-art results on GTZAN are obtained with clas-
sifiers better adapted than SVMs. These classifiers can also
be applied to CLS vectors to improve classification results.
With MFCCs on 23 ms and other local features, an Ad-
aBoost classifier yields an error of 17% in [1]. The cascade
filter bank of cortical representations in [10], which is simi-
lar to a scattering representation, yields an error of 7.6% [9]
with a sparse coding classifier.

4. CONCLUSION

Scattering representations are shown to provide complemen-
tary co-occurence information which refines MFCC descrip-
tors. We demonstrated that second-order scattering coeffi-
cients can bring an important improvement over MFCCs for
classification. The ability to characterize non-stationary sig-
nal structures opens the possibility to discriminate more so-
phisticated phenomena such as transients, time-varying fil-
ters and rhythms with co-occurrence scattering coefficients,
which is not possible with MFCCs. It opens a wide range of
applications for music and speech signal processing.
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(1)TELECOM ParisTech, CNRS-LTCI (2)Ircam, CNRS-STMS
37, rue Dareau 1, place Igor Stravinsky

75014 Paris, France 75004 Paris, France
remi.foucard@telecom-paristech.fr

ABSTRACT

Short-term and long-term descriptors constitute comple-
mentary pieces of information in the analysis of audio sig-
nals. However, because they are extracted over different
time horizons, it is difficult to exploit them concurrently in
a fully effective manner. In this paper we propose a novel
temporal fusion method that leverages the effectiveness of
a given set of features by efficiently combining multi-scale
versions of them. This fusion is achieved using a boost-
ing technique exploiting trees as weak classifiers, which has
the advantage of performing an embedded feature selection.
We apply our algorithm to two standard classification tasks,
namely musical instrument recognition and multi-tag clas-
sification. Our experiments indicate that the multi-scale ap-
proach is able to select different features at different scales
and significantly outperforms the mono-scale systems in
terms of classification performance.

1. INTRODUCTION

Automatic classification of audio signals is one of the main
research areas in the field of music information retrieval.
This task consists in assigning audio signals to one or more
categories (classes), according to a chosen criterion, which
can be the musical instrument played, the speaker gender,
the corresponding musical genre, etc. Classification can
be very useful for many applications scenarios, such as
database annotation, stream segmentation, and smart orga-
nization and search of large libraries.

Most audio classification systems represent the signal by
splitting it into fixed-duration frames, from which several
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features are computed to be used by a learner. Given such
training examples, the learner will then build a rule for deter-
mining the relevant class of any previously unseen example,
only by considering its features. However, using frames of
the same length limits the duration of the observable phe-
nomena. While describing signal characteristics at different
scales has become frequent in image processing [15], few
audio-related studies use several temporal horizons for de-
scribing the signal.

The purpose of the present work is to setup a classifi-
cation scheme that leverages the discrimination power of
the features considered, by extracting them at different time
scales and using a boosting technique to combine them effi-
ciently. To precisely demonstrate the advantage brought by
the use of different scales, we keep the same representation
at every scale (i.e. compute the same features at different
scales), but our system is flexible enough to handle different
types of descriptions through varying scales.

In the remainder of this paper, we first briefly review au-
dio classification algorithms and related temporal integra-
tion techniques in Section 2. Then we describe our multi-
scale classification method (Section 3), and in Section 4, we
present our experiments and results.

2. RELATED WORK

Audio classification makes use of machine learning to build
rules for predicting the relevant class of a previously un-
known audio excerpt. A good overview of the music clas-
sification problems and most common techniques can be
found in [5].

First, the signal is described by a set of features. Among
the most common, we can name: Fourier transform coeffi-
cients, mel-frequency cepstral coefficients (MFCC), delta-
MFCC, chromagrams or zero-crossing rates [17]. Most of
the time, several features are computed from a single frame,
then they are concatenated into one high-dimensional fea-
ture vector.

In order to map the obtained description to class labels,
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various classifiers have been considered in previous works.
The two most used ones are probably Gaussian mixture
models (GMM) [16] and Support vector machines (SVM)
[11]. Alternatively, several recent works have made use of
boosting, a meta-classifier training several complementary
versions of other learners [3, 4].

Most systems choose to represent the signal using fixed-
length frames. However, the concepts behind each class
may be conveyed by signal properties that have heteroge-
neous temporal dynamics. Therefore, potentially useful de-
scriptors may need to be built at various time scales. Hence,
a problem occurs when one tries to fuse such descriptions,
because simple concatenation of the features (as done in
most works) is infeasible.

Early integration [9] can be used to solve this problem,
simply by integrating the features computed over shorter
frames, over the duration of the longest analysis window.
This synchronization of all descriptors allows for their con-
catenation, but the temporal precision of the shorter-term
features is reduced. Therefore, potentially useful high-
frequency content lost due to the integration low-pass fil-
tering effect.

In [2], the authors fuse MFCC, along with chroma, web
documents analysis and Last.fm tags 1 , by means of kernel
fusion. The boosting algorithm can also be used for classi-
fier fusion [18]. In [1], fusion by boosting is applied to audio
data, but all representations are done at the same scale: one
vector per song. We can also cite [12], where the authors
discriminate speech/nonspeech segments with features built
using a constant-Q filterbank. In this kind of transform, the
filters do not usually have the same temporal support. How-
ever, once the feature vector is built, no information is kept
about the temporal support.

Furthermore, studies pointed out that representing the
signal on different scales, and jointly considering all scales
during the whole learning process, may lead to a more com-
plete analysis of the signal than using a single temporal hori-
zon [14]. Indeed, short-term features can precisely capture
short events and quick changes in the signal. On the other
hand, long-term features are able to represent larger phe-
nomena, but with a poor temporal resolution. Using features
built over several scales should then allow for describing
jointly more diverse aspects of the signal.

3. PROPOSED METHOD

We propose a novel boosting scheme to achieve multi-scale
information fusion at a decision level. The boosting al-
gorithm trains a weak classifier several times, putting the
emphasis on different examples among iterations. As men-

1 Last.fm is an online music listening service, where any user can asso-
ciate any tag to a song. These tags can be automatically retrieved through
an API.

tioned in Section 2, boosting has already been adapted for
classifier fusion. This fusion can be achieved by simply con-
sidering several weak classifiers in parallel, and selecting,
at each iteration, the best performing one. This constitutes
a convenient framework for heterogeneous classifier fusion
because it does not make any assumption on the nature of
the weak classifiers. It considers only their decisions on the
training examples.

3.1 Multi-scale representation

In this work, we evaluate the merit of a multi-scale feature
representation compared to the classical mono-scale repre-
sentation. In order to clearly identify the usefulness of the
multi-scale approach compared to the mono-scale one, the
same set of features is used at every scale. Further details
on the features used are given in Section 4.

The multi-scale feature representation is built as follows.
First, the sequence of descriptors is computed at the finer
scale, and then the other ones are obtained by temporal in-
tegration, which allows for fast feature computation. We
integrate feature vectors by temporal averaging.

3.2 Boosting trees

For every scale s, our weak learner Hs is a CART 2 classi-
fication tree [7] using Ls-sample length frames. Trees are
convenient, as they can be trained fast, and have proven ef-
ficient when boosted [3]. Furthermore, they present the ad-
vantage of performing feature selection during their train-
ing.

Decision trees are built from a root containing all training
examples. At each node, the data is split in two (or possibly
more) children nodes, only using a threshold on a particular
bin of the feature vector. The bin and threshold values are
chosen so that the two children nodes are the “purest” pos-
sible (i.e. the probabilities of the two classes are the furthest
possible from 0.5). Here, we use binary trees, with the Gini
impurity measure. The depth is fixed in advance, and we
separately experiment depths 1 (which is also referred to as
a stump) and 2.

3.3 Decision ranges

At each boosting iteration, the boosting algorithm chooses
the weak classifier with the lowest weighted error rate. Mak-
ing a fair comparison between the classifiers implies that the
decisions, for each of them, must be taken on the same au-
dio segments. Because the frames of the different classifiers
do not describe the same portions of signal, we have to set
the length on which the decisions are taken, for all scales.

For this purpose we introduce decision ranges. These
ranges represent the portions of signal on which the deci-
sions of the weak classifiers are taken. Figure 1 shows how

2 Classification And Regression Tree.
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a decision range i, in gray, includes the feature frames from
the different scales. Each xni,s is a description vector, where
s is the temporal scale level, n is the index of the frame
within the decision range, and i represents the surrounding
decision frame. We consider a frame to belong to range i
if its center is included in the temporal bounds of i. In the
following, we will denote by xi the set of all frames from
all scales, that belong to range i.

Time

Feature scale s

. . .

. . .

. . .

. . .

Decision range i

x1
i,S

x1
i,1 xN1

i,1
. . .

xn
i,s

Figure 1. A decision range (in gray), covering a different
number of frames on different scales.

Figure 1 also shows that a decision range cannot be
shorter than the frames at the largest scale. Otherwise,
the largest scale could be favored because it uses a greater
amount of signal. On the contrary, decision ranges longer
than Lmax would decrease the number of training examples.
This is why each range spans exactly Lmax samples.

3.4 Core algorithm

The whole learning procedure is detailed in Algorithm 1.
We start from the examples xni,s, with class labels yi. The

labels neither depend on s nor n, but only on the current
song which comprises segment i, as we are assuming class
labels always span the whole song duration. Thus, although
final decisions may be taken at a song-level, they are ob-
tained by combining intermediate decisions taken on seg-
ments of a song, referred to as decision ranges, based on a
corresponding set of feature-vector instances xni,s.

Each of these decision ranges gets an associated weight,
representing the relative focus of the algorithm during the
current iteration. In the beginning, all weights are equal for
ranges belonging to the same class.

At each iteration r, the weights wr,i are normalized so
they sum to 1, before the weak classifiers hr,s (the CART
trees) are trained. These trainings must take into account
the weights of the examples. For each scale, the decision on
range i is a majority vote on all frames belonging to i. Us-
ing these decisions, we can compute an error rate for every
scale. The scale ŝr with the lowest error rate is then selected
for the final strong decision, with weight αr. After that, the

Algorithm 1 Adaboost for multi-scale classifier fusion.
Input: Annotated examples from all scales (xni,s, yi),

1 ≤ i ≤ I, 1 ≤ s ≤ S, 1 ≤ n ≤ Ns
Input: Weak learnersHs
w1,i ←− 1

2m ,
1
2l , resp. for yi = 0, 1, where m and l

are the number of negative and positive examples, respec-
tively

for r = 1, . . . , R do
wr,i ←− wr,iPI

j=1 wr,j
// Normalize the weights

Train classifiers hr,s with the models Hs and weights
wr,i

// Decisions of hr,s on the observation ranges i

dr,s,i =

{
1 if 1

Ns

∑Ns

n=1 hr,s(x
n
i,s) > 0.5

0 otherwise
,

// Compute weighted error rate
εr,s ←−

∑
i wr,i |dr,s,i − yi|

// Best scale
ŝr ←− argmins εr,s
εr ←− εr,ŝr

hr ←−
∑
n hr,ŝr

// Coefficient associated with hr
αr ←− log 1

βr
, where βr = εr

1−εr,

// Update the example weights
for all ranges i do

// test whether dr,ŝr,i = yi
if xi well classified then
wr+1,i ←− wr,i βr

else
wr+1,i ←− wr,i

end if
end for

end for

Output: H(x) =
∑
r αrhr(x)
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weights of the correctly classified examples are decreased,
thus reducing their importance for future iterations.

The final output H(x) is used during the testing phase as
follows. When tagging a range i, one decision is taken for
each component r by applying hr to the observations from
corresponding scale (xni,ŝr

). Then, H(xi) is a weighted sum
of the hr(xi), as stated at the end of Algorithm 1. Finally,
the global decision for a whole song a is a standard late
integration over all decision ranges within a. It is done by
taking the thresholded mean of the H(xi):

Da =

{
1 if meani∈aH(xi) > t
0 otherwise

(1)

4. EXPERIMENTS

To show the usefulness of our multi-scale system compared
to mono-scale systems, we perform experiments on two
datasets, corresponding to two usual tasks is audio classi-
fication. We first validate our method on a musical instru-
ment recognition database. Then, we test our system perfor-
mance for multi-tag classification on the now well-known
CAL500 [16]. The two experiments are done with different
sets of features and different scale choices.

4.1 Musical instrument recognition

The task of instrument recognition presents the advantages
of being well defined and strongly related to the audio con-
tent. This is why we run the first experiment on a database
containing a set of solo real-music performances, featuring
six instruments: Piano, Guitar, Bassoon, Oboe, Cello and
Violin. The database contains 73 files (31 for training, 42
for testing), totalling 449 minutes of music. For each instru-
ment, we have between 28 and 39 minutes of performance
in the training set, and between 22 and 64 minutes in the test
set.

From this data, we extract a selection of 30 feature coeffi-
cients obtained by applying Inertia Ratio Maximisation [13]
to an initial set of cepstral, spectral, perceptual and temporal
features used in a previous work [10].

We extract these descriptors at four distinct scales. The
shortest one (S1) has an analysis window of L1 = 320 ms,
which is approximately the duration of an eighth note at
90 BPM. The other scales (S2, S3 and S4) have windows
of lengths 2L1, 4L1 and 8L1. The frames do not overlap.

On this data, we trained our systems with 500 boosting
iterations, using trees of depth 1.

Each example is annotated with one of the six instru-
ments. We decompose this multiclass problem into six
distinct bi-class problems, following the one-versus-all ap-
proach. During the test phase, all decisions are integrated
to the largest scale 8L1 = 2.6 s, and the most probable in-
strument is chosen. For the mono-scale systems with scales

shorter than 8L1, the late integration is done by summing
the classifier output on the frames within the considered de-
cision range.

With these predictions on the test set, we calculate the
recognition rate as:

R = meani 1H(xi)=yi
(2)

4.2 Multi-tag classification using CAL500

For this experiment, we use the CAL500 database [16],
a database containing 500 pop songs, annotated by non-
experts through a survey. Each song has been annotated by
at least three people. We keep the 61 tags used in [2]. These
tags describe different properties of the whole songs, such
as: mood, genre, instrument, etc.

Tests are conducted using 10-fold cross-validation, with
450 songs used for training, and 50 songs for testing. The
test sets are not overlapping between the different folds. For
complexity reduction, we only use 30s of each song: ex-
tracted between instants 30 s and 60 s.

The features we use for describing each frame of signal
are: the 15 psychoacoustic-related features recommended
in [19] (loudness, tonal dissonance, . . . ), completed by the
common first 13 MFCC (dropping the energy), chroma,
zero-crossing rate, and spectral spread, skewness and kur-
tosis.

We have chosen five different scales: frames covering 2,
3.3, 5.5, 9 and 15 s of signal, with 50% overlap. A prelim-
inary experiment indicated that, for this kind of data, scales
under 2 s were less useful. And we also considered that
15 s was long enough to capture a wide range of long-term
phenomena. The other scales are chosen to have a constant
logarithmic spacing between each consecutive values.

We examine the performance on the test set, with 100
boosting iterations, using the same two evaluation measures
as in [2]. These ranking metrics measure the ability of a soft
prediction system to output higher scores for relevant doc-
uments compared to irrelevant ones. Soft predictions are
non-binary scores, representing the amount of confidence
the predictor has in the positive association of a considered
tag to a given song. We can obtain soft outputs from our
system, simply by averaging instead of thresholding the fi-
nal decision:

D̃a = meani∈aH(xi) (3)

This framework will make performance evaluation indepen-
dent from the detection threshold t, that we choose for Equa-
tion 1.

From these decisions, we compute the Mean Average
Precision (MAP) and Area under the ROC 3 curve (AUC).
For a precise description of their calculation, see [8].

3 Receiver Operating Characteristic.
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Scale Recognition rate (in %)
S1 59.8
S2 53.0
S3 62.9
S4 44.2

Multi-Scale 64.5

Table 1. Performance of the different systems on the instru-
ment recognition database.

Scale Tree depth MAP AUC

Scale 1
1 0.432 0.641
2 0.449 0.653

Scale 2
1 0.442 0.652
2 0.454 0.660

Scale 3
1 0.448 0.658
2 0.451 0.662

Scale 4
1 0.456 0.667
2 0.458 0.667

Scale 5
1 0.457 0.664
2 0.451 0.661

Multi-Scale
1 0.466 0.671
2 0.458 0.665

Table 2. Performance of the different systems on CAL500.

4.3 Results and discussion

The recognition rates yielded by the different systems on the
instrument database are presented in Table 1. It is found that
the multi-scale system has the best recognition rate. The
difference between multi-scale and scale 3 systems is sig-
nificant, according to a McNemar test [6], which yielded a
p-value of 0.003. This means that the difference is statisti-
cally significant with a 99.7% confidence level.

The features selected by the trees along the boosting iter-
ations differ greatly from one instrument to another, but the
most selected scales are the shortest and the longest ones
(S1 and S4). Surprisingly, these two scales do not corre-
spond to the best performing mono-scale systems. This may
be due to the fact that S1 gives the most temporally precise
description, while S4 is good at taking decisions on a 2.6 s
decision range, since it has the same length. Most of all,
this indicates that the information brought by the whole set
of scales is structurally different from just one scale.

A closer look at the detailed results, on a per-instrument
basis, also revealed that the multiscale system is not the best
performing one for all instruments. However, its perfor-
mance is less variable among instruments. This shows that
the multi-scale approach performs best, as it is more flexi-
ble, and can focus on the most appropriate representation.

The results for the multi-tag task on CAL500 are pre-
sented in Table 2. The best MAP and AUC are given by

the multi-scale system using trees of depth 1. The statisti-
cal significance of the difference between this system and
the best performing mono-scale one has been verified by a
cross-validated paired t test [6]. This test indicated a signif-
icance of more than 99%.

Depth 1 trees yield better results for the multi-scale sys-
tems, but the choice of depth seems to have variable effects
among mono-scale systems.

For comparison, in [2], the authors obtain a MAP and
AUC of 0.54 and 0.73, respectively, on the same data and
tags. But their system uses content-based and context-based
information, whereas the one presented in this paper only
relies on the audio content. However, the focus of this study
is intentionally set on the methodological validation of the
algorithm proposed, rather than achieving the best possi-
ble performance. Though, it shall be noticed that the abil-
ity of our new algorithm to handle data drawn on different
scales makes it applicable to descriptors of different seman-
tic levels, especially semantic information that may be valid
at a smaller scale than the entire song (type of instrument,
tempo, etc.). This very kind of data fusion will be explored
in future works.

5. CONCLUSION

We proposed a new multi-scale fusion system for classifi-
cation that is designed to be convenient for fusing hetero-
geneous features, both in terms of content description and
scale. Fusion is done thanks to an adapted boosting algo-
rithm using decision trees.

In this study, we focused on validating the ability of the
proposed system to conveniently fuse features expressed at
different scales. We experimented two classification tasks
and the results show that the multi-scale system is the best
one. Future work will study the ability of the system to fuse
features that are describing different aspects of the musical
pieces of interest, both in terms of content and scale.
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ABSTRACT

Recently the ‘Million Song Dataset’, containing audio fea-
tures and metadata for one million songs, was made avail-
able. In this paper, we build a convolutional network that is
then trained to perform artist recognition, genre recognition
and key detection. The network is tailored to summarize the
audio features over musically significant timescales. It is
infeasible to train the network on all available data in a su-
pervised fashion, so we use unsupervised pretraining to be
able to harness the entire dataset: we train a convolutional
deep belief network on all data, and then use the learnt pa-
rameters to initialize a convolutional multilayer perceptron
with the same architecture. The MLP is then trained on a
labeled subset of the data for each task. We also train the
same MLP with randomly initialized weights. We find that
our convolutional approach improves accuracy for the genre
recognition and artist recognition tasks. Unsupervised pre-
training improves convergence speed in all cases. For artist
recognition it improves accuracy as well.

1. INTRODUCTION

Recently, the Laboratory for the Recognition and Organiza-
tion of Speech and Audio (LabROSA) 1 of Columbia Uni-
versity released a large dataset of music consisting of audio
features and metadata for one million songs, aptly named
the ‘Million Song Dataset’ [4].

Because the dataset is almost completely labeled, it lends
itself well for developing and testing classification methods.
In this paper, we attempt to classify songs according to their
genre, artist and key. To this end, we design a convolutional
network that summarizes the input features over musically
significant timescales.

1 http://labrosa.ee.columbia.edu/

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

Developing techniques that can harness the entire dataset
is quite a challenge. We use the majority of the data in an
unsupervised learning phase, where the network learns to
model the audio features. Due to its size, the dataset is very
suitable for unsupervised learning. This is followed by a
supervised training phase, where only a small task-specific
subset of the dataset is used to train a discriminative model
using the same network. We have investigated the gains that
can be achieved by using a convolutional architecture, and
the additional gains that unsupervised pretraining can offer.

This paper is structured as follows: the layout of the
dataset is detailed in Section 2. An introduction to convo-
lutional deep belief networks (DBNs) follows in Section 3.
Section 4 describes the classification tasks that were used to
evaluate the model. Section 5 provides an overview of our
approach, and Section 6 describes our experimental setup.
Results are given in Section 7.

2. DATASET

2.1 The Million Song Dataset

The Million Song Dataset is a collection of all the infor-
mation that is available through The Echo Nest API 2 for
one million popular songs. This means that a lot of the
data was automatically derived from musical audio signals,
which should be taken into account when it is used for learn-
ing. Metadata available includes artist and album informa-
tion and the year of the performance. Musical information
derived directly from the audio signal includes the key, the
mode and the time signature. Next to this, some other de-
rived features like “energy” and “danceability” and user-
assigned tags are also available.

The audio features in the dataset were obtained by first
dividing each song into so-called segments. Segment bound-
aries roughly correspond to onsets of notes or other musical
events. For each segment, a feature vector consisting of 12
timbre and 12 chroma components was computed, as well
as the maximal loudness within the segment.

The chroma features describe the pitch content of the mu-
sic. Each of the 12 components corresponds to a pitch class

2 http://the.echonest.com/
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(ranging from C to B). Their values indicate the relative
presence of the pitches, with the most prominent one al-
ways having a value of 1. All components lie within the
interval [0, 1]. The timbre features are the coefficients of 12
basis functions which capture certain timbral characteristics
like brightness, flatness and attack. They are unbounded and
roughly centered around 0.

Unfortunately, the automated methods used to build the
dataset lead to the presence of a relatively large number of
duplicate tracks. When the dataset is divided into a train and
a test set in a naive fashion, some examples might occur in
both subsets, which is undesirable. Luckily, the authors of
the dataset have published an extensive list of known dupli-
cates. Using this list, over 78,000 tracks were removed.

2.2 Beat-aligned Features

Although the segmentation that was performed to compute
the audio features has its merits, we are more interested in
beat-aligned features such as those used in [3]. The beat
is the basic unit of time in music. Chord progressions and
changes in musical texture tend to occur on the beat, and
seeing as it is one of our goals to encode these characteristics
in higher level features, it makes sense to use beat-aligned
features as a starting point.

The features from the dataset can be converted to beat-
aligned features using the rhythm information that is also
supplied. The segments are mapped to beats, and then the
feature vectors for all segments corresponding to the same
beat are averaged.

3. CONVOLUTIONAL DEEP BELIEF NETWORKS

3.1 Deep Learning

A fairly recent trend in machine learning is the use of deep
architectures, with many layers of processing [1]. Tradition-
ally, such architectures were not very popular because they
were very difficult to train. In 2006, Hinton demonstrated
a fast training method for deep belief networks (DBNs), a
particular type of deep models [11]. This led to a surge in
popularity of these models, establishing deep learning as a
new area of research.

The popularity of deep architectures can be attributed at
least partially to their biological plausibility; humans typi-
cally use hierarchies and abstractions to organize their thoughts
and evidence of hierarchical structures has been found in the
brain (e.g. in the visual cortex [1]).

Deep belief networks are probabilistic generative mod-
els, which are obtained by stacking multiple restricted Boltz-
mann machines (RBMs) on top of eachother.

3.2 Restricted Boltzmann Machines

A restricted Boltzmann machine is a probabilistic model
consisting of a set of visible units and a set of hidden units
which form a bipartite graph; there are no connections be-
tween pairs of visible units or pairs of hidden units, but ev-
ery visible unit is connected to every hidden unit. They are a
kind of undirected graphical model. A schematic represen-
tation is shown in Figure 1.

The visible units of an RBM correspond to the input vari-
ables of the data that is to be modelled. In image processing,
each visible unit typically represents one pixel. The hidden
units capture correlations between visible units and can be
seen as feature detectors. The model learns the underlying
distribution of the data by representing it in terms of features
that are derived from the data itself.

Each connection has a particular weight, and each of the
units can also have a bias. These trainable parameters can be
learnt from data. Unfortunately, maximum likelihood learn-
ing is intractable in RBMs. Instead, the contrastive diver-
gence learning rule, which is an approximation to maximum
likelihood learning, can be used [9].

Figure 1. Schematic representation of an RBM, with the
visible units at the bottom and the hidden units at the top.
Note how there are no lateral connections between two vis-
ible or two hidden units.

RBMs typically consist of binary units, which can be on
or off. This makes sense for the hidden units, which are
feature detectors, but it is not always the best choice for the
visible units. It is also possible to construct an RBM for
continuous data, with Gaussian visible units.

3.3 Deep Belief Networks

A deep belief network (DBN) consists of multiple RBMs
stacked on top of eachother, with the hidden units of RBM i
being used as visible units of RBM i + 1. The bottom RBM
learns a shallow model of the data. The next one then learns
to model the hidden units of the first, and so on: higher-level
features are extracted from lower-level features. Each RBM
is trained separately; learning would be considerably harder
if all layers would be trained jointly using backpropagation.

Top-level features learnt by DBNs can be used to train
discriminative models. In this fashion, they have been ap-
plied succesfully to image processing problems like hand-
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writing recognition [11] and object recognition [12], but
also to classification of audio signals [14], and even music
classification [8]. For a detailed technical overview of deep
learning, RBMs and DBNs, see [1].

3.4 Convolutional Networks

A convolutional networks is a type of network model with
constrained weights. There are two kinds of constraints:

• locality: each unit in layer i is only connected to a group
of units in layer i− 1 that is local;

• translation invariance: each unit in layer i is replicated
such that every local group of units in layer i − 1 is con-
nected to a unit in layer i with the same weight configu-
ration (weight sharing). A set of units in layer i with the
same weight configuration is called a feature map.

This configuration is visualized in Figure 2.
In layered network models, we typically wish for higher

layers to represent higher levels of abstraction. Weight con-
straints in convolutional networks would make it hard for
neurons in higher layers to learn high-level abstractions; they
only see a small local portion of the input, whereas high-
level abstractions usually involve long-range dependencies.
To increase the scope of higher layer neurons, convolutional
layers are alternated with max-pooling layers.

Max-pooling is a downsampling operation: units in layer
i are grouped into small non-overlapping blocks. Each block
is aggregated into a single unit in layer i + 1, with as its
activation the maximal activation over all units in the block.
This operation reduces the dimensionality of the data by a
factor equal to the size of the blocks. This layout is also
shown in Figure 2.

It’s clear that inserting max-pooling layers between con-
volutional layers increases the scope of higher layer neu-
rons. Furthermore, it also makes the model invariant to
some small displacements of the input data, increasing its
robustness.

layer i + 1

layer i

layer i− 1

Figure 2. A max-pooling layer (i + 1) stacked on top of a
convolutional layer (i). Note that layer i− 1 and layer i are
not fully connected. The connections are drawn in different
styles to indicate which weights are shared.

Convolutional networks are typically used for image pro-
cessing, where stronger correlations between nearby pix-

els and the translation invariance of image features are ex-
ploited to significantly reduce the number of parameters.
Audio signals have similar characteristics, although the lo-
cality is temporal rather than spatial.

Deep belief networks can be made convolutional by ap-
plying the described weight constraints in the RBM layers,
and inserting max-pooling layers between the RBM layers.
Convolutional deep belief networks have been have been
used for object recognition [13, 16], and to extract features
from audio signals, for speech recognition as well as for mu-
sic classification [14].

3.5 Supervised Finetuning

As mentioned earlier, we can use top-level DBN features
as input for a classification method; common choices are
support vector machines or logistic regression. We can train
a logistic regression classifier by gradient descent, using the
DBN to preprocess the input data.

It is also possible to convert a DBN into a convolutional
multilayer perceptron (MLP). We can simply reuse the weights
of the interconnections and the biases of the hidden units.
We then stack a logistic regression layer on top of this MLP
and train the whole model jointly using gradient descent.
This approach is called supervised finetuning: the DBN weights
that were initially learnt to model the data are now finetuned
for a specific discriminative task using backpropagation.

4. TASKS

We performed several classification tasks on music tracks:
artist recognition, genre recognition and key detection. La-
beled datasets for each of the tasks were extracted from the
Million Song Dataset. Three (partially overlapping) subsets
were selected:

• artist recognition: the 50 artists with the most tracks in
the dataset were identified, and 100 tracks of each artist
were selected (5000 tracks in total);

• genre recognition: 20 common genres were selected man-
ually using tags 3 that are included in the dataset: folk,
punk, metal, jazz, country, blues, classical, rnb, new wave,
world, soul, latin, dance, reggae, techno, funk, rap, hip
hop, rock and pop. For each genre, 250 tracks were se-
lected (5000 tracks in total);

• key detection: the key information in the dataset was au-
tomatically annotated, so it may be unreliable. To avoid
problems with incorrect labels, we selected 250 tracks
with a high key confidence for each of the 12 possible
keys (3000 tracks in total).

The subsets were then divided into balanced train, evalu-
ation and test sets according to a 80% / 10% / 10% split.

3 The dataset provides different kinds of tags. We used the MusicBrainz
tags because these are the most reliable [4].

671



Poster Session 6

5. APPROACH

We built a convolutional network, designed to aggregate the
features from the dataset on musically significant timescales.
Properties that are typical for certain genres, artists or keys,
should become apparent at this level. We used the same net-
work to tackle all three classification tasks.

The network was first trained as a DBN on the entire Mil-
lion Song Dataset 4 . We then trained and evaluated the net-
work as an MLP with backpropagation, for each of the clas-
sification tasks. We used the Theano Python library to im-
plement all experiments, so they could be GPU-accelerated
easily [2].

5.1 Network Layout

The input of the network consists of beat-aligned chroma
and timbre features for a given track, so there are 24 input
dimensions in total. The maximal loudness component was
not used, as the timbre features already include a loudness
component. Note that tracks vary considerably in length, but
the convolutional nature of the network allows us to cope
easily with variable-length input.

First, we separated the chroma and timbre features into
two input layers (layers 0a and 0b). Then, separate convo-
lutional layers were stacked onto both input layers (layers
1a and 1b). These layers learn features with a width of 8
beats. It was observed that most of the tracks in the dataset
have a 4/4 time signature (which is also true for contempo-
rary music in general). This means that there are 4 beats in
a bar. The width of the features was chosen to be two bars,
seeing as this is the timescale on which chord progressions
and changes in musical texture are most likely to occur. We
used 100 feature maps for each layer.

By using separate layers, the network does not learn cor-
relations between chroma and timbre features at this level.
This allows it to focus on learning correlations between tim-
bre components and between chroma components separately;
such correlations are likely to be easier to discover. A simi-
lar approach was used in [15] to learn features over multiple
modalities.

The output of the convolutional layers was then max-
pooled in the time dimension with a pool size of 4 (layers 2a
and 2b). Once again, we made use of the observation that
most of the tracks in the dataset have a 4/4 time signature,
with 4 beats per bar; the output of the max-pooling layer is
invariant to all displacements of less than one bar (up to 3
beats).

The max-pooled outputs of both layers were then con-
catenated, yielding 200 features with a granularity of ap-
proximately 1 bar. We stacked another convolutional layer
with 100 feature maps on top of this, which learns features

4 Excluding known duplicates and tracks used for validation and testing
for any of the tasks.

with a width of 8 bars (layer 3). This width was selected
because musical themes are often contained within a length
of 8 bars. Correlations between timbre and chroma compo-
nents can now be discovered as well.

Finally, another max-pooling layer with a pool size of 4
was added (layer 4). The features obtained from this layer
have a granularity of 4 bars and a scope of roughly 8 bars.
To perform the classification tasks, a fifth layer perform-
ing logistic regression was added. To classify a track, each
timestep of the layer 4 is classified separately, and the result-
ing posterior distributions over the class labels are averaged.
The most probable class is then selected. The layout of the
network is shown in Figure 3.

beats

bars

themes

5: logistic regression

4: max-pooling

3: convolution

2a: max-pooling

1a: convolution

0a: chroma features

2b: max-pooling

1b: convolution

0b: timbre features12 12

100 100

100 100

100

100

Figure 3. The network layout. The number of dimensions
or feature maps for each layer is indicated on the side. The
layers have also been grouped according to the timescale on
which they operate.

5.2 Unsupervised Pretraining

It would be impossible to train the network in a supervised
fashion with the entire Million Song Dataset. This is this
computationally infeasible, and on top of that the provided
labels are not perfect; some are missing, others are incorrect
or have a very low confidence.

As mentioned before, we pretrained the network using
timbre and chroma features for all tracks in the dataset. We
used the beat-aligned chroma features directly as inputs to
the network; the timbre features were first normalized per
track to have zero mean and unit variance.

To train the RBM in layer 1b (timbre), we use Gaussian
visible units, which allow for the continuous input data to
be modeled. For layer 1a (chroma), we used binary units.
Technically, this is not possible because the chroma features
are continuous values that lie between 0 and 1. However,
we can interpret these values as probabilities and sample
from them, yielding binary input data. In practice, we do
not perform this sampling explicitly, but we use the mean
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field approximation (see Section 5.2.2). Learning is much
more stable for binary units than for Gaussian units, so be-
ing able to use binary units is a significant advantage.

We used single step constrastive divergence (CD-1) ev-
erywhere. A learning rate of 0.005 was used to train the
RBMs with binary visible units; a learning rate of 0.0001
was used for the RBM with Gaussian visible units. We per-
formed only a single run through the entire dataset; perform-
ing multiple epochs turned out to be unnecessary (and would
require too much computation time).

5.2.1 Sparsity

We modified the hidden unit activations according to [7] to
encourage them to be sparse. Convolutional RBMs are over-
complete models, so adding a sparsity penalty term ensures
that the learnt feature representations are useful [14]. In ad-
dition, sparse activations are essential for max-pooling to
work properly [5, 17].

We used a sparsity target of 0.05 for layers 1a and 1b,
and a target of 0.1 for layer 3. A relative sparsity cost of 0.1
was used in all cases.

5.2.2 Mean Field Approximation

Where possible, we eliminated sampling steps by using the
mean field approximation. This eliminates sampling noise
and often positively affects convergence. We used this for
the chroma inputs and in the contrastive divergence algo-
rithm, except when updating the hidden states, as recom-
mended in [10]. Interpreting continuous input values that
are constrained to a finite interval as input probabilities to
train an RBM is common practice [9].

6. EXPERIMENTS

We trained the network as a convolutional MLP for each of
the classification tasks described in Section 4: first with ran-
dom initialization of the weights, and then using the weights
learnt by the DBN (supervised finetuning), yielding six ex-
periments. We tried learning rates of 0.05, 0.005 and 0.0005
and trained for 30 epochs. To initialize the random weights,
we sampled them from a Gaussian distribution with a mean
and variance corresponding to those of the weights learnt by
the DBN. This ensures that the results are comparable.

We also trained a naive Bayes classifier and a logistic re-
gression classifier that operate on windows of features from
the dataset, resulting in six more experiments. We chose a
window size of 32 beats (8 bars), which is comparable to
the timescale on which the convolutional network operates.
For the logistic regression classifier, we tried learning rates
of 0.005, 0.0005, 5 · 10−5, 5 · 10−6 and 5 · 10−7 and also
trained for 30 epochs. Both the chroma features and the tim-
bre features were normalized to have a zero mean and a unit
variance in this case.

For each of the twelve experiments, we determined the
optimal parameters using the validation sets, and then com-
puted the classification accuracies on the test sets using these
parameters. The results can be found in Table 1.

7. RESULTS

The first thing to notice is that the key detection task seems
to be fairly simple. The achieved accuracies are much higher
than for the other tasks, and even the simplest technique per-
forms quite well. Windowed logistic regression performs
best. There are multiple possible explanations for this:

• the property we are trying to determine is quite ‘low-
level’. The key of a track is in a very close relationship
with the chroma features and how they evolve through
time. Relating the genre or the artist to these features is
much more difficult;

• to construct the dataset for this task, we selected tracks
with a high key confidence. This implies that the al-
gorithm used to annotate key information in the Million
Song Dataset could identify the key of these tracks with
relative ease. It would make sense that the same is true
for our models. Unfortunately, there is no way to verify
this, except by constructing a manually labeled dataset.

For the other tasks, the convolutional network has a defi-
nite edge over the other approaches: the classification accu-
racies increase significantly.

The gains obtained with pretraining on the other hand
seem to be much more modest; this is only advantageous for
the artist recognition task, which is quite difficult because it
is a 50-way classification problem. The utility of pretraining
for this task could stem from the fact that the number of
tracks per class available for training (80) is much lower
compared to the other tasks (200). Indeed, it has been shown
that gains from unsupervised pretraining are maximal when
the amount of available labeled training data is limited [6].
This data scarcity is inherent to the task at hand - few artists
have a discography with more than 100 tracks.

The optimal learning rate for key detection with the con-
volutional network differs depending on whether pretrain-
ing is used or not. This is because the training for this task
without pretraining did not converge after 30 epochs using
a learning rate of 0.005. This indicates that convergence
is faster when pretraining is used. To investigate this, we
also compared classification accuracies obtained after only
20 training epochs, which can be found in the bottom half
of Table 1. We now observe that pretraining is beneficial for
all tasks. This confirms that it improves convergence speed.

8. CONCLUSION AND FUTURE WORK

We have trained a convolutional network on beat-aligned
timbre and chroma features obtained from music audio data

673



Poster Session 6

genre recognition artist recognition key detection
naive Bayes 10.02% 6.80% 73.74%

30 epochs
windowed logistic regression 25.90% (5 · 10−6) 32.13% (5 · 10−5) 86.53% (5 · 10−5)
conv. MLP without pretraining 29.52% (0.005) 34.34% (0.05) 83.84% (0.05)
conv. MLP with pretraining 29.12% (0.005) 35.74% (0.05) 83.84% (0.005)

20 epochs
conv. MLP without pretraining 24.90% (0.05) 33.94% (0.05) 83.84% (0.05)
conv. MLP with pretraining 27.31% (0.005) 35.54% (0.05) 84.51% (0.005)

Table 1. Test accuracies and corresponding learning rates for each of the classification tasks, with and without pretraining.

to perform a number of classification tasks. The convolu-
tional nature of the network allowed us to summarize these
features over musically significant timescales, leading to an
increase in accuracy. We used unsupervised pretraining with
a very large dataset, which improved convergence speed and,
for the artist recognition task, classification accuracy. It is
clear that the ability to harness a large amount of unlabeled
data is advantageous for tasks where the amount of available
training data is limited.

In future work, we would like to refine a couple of as-
pects about the architecture of the network, such as the way
the input features are modeled in the lower layers: other
types of visible units might be more suitable. We will also
investigate different ways to encourage the RBMs to learn
interesting features, besides the sparsity penalty term that
we used for these experiments.
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ABSTRACT

Algorithms that can understand and interpret characteristics
of music, and organise them for and recommend them to
their users can be of great assistance in handling the ever
growing size of both private and commercial collections.

Music is an inherently multi-modal type of data, and the
lyrics associated with the music are as essential to the recep-
tion and the message of a song as is the audio. In this paper,
we present advanced methods on how the lyrics domain of
music can be combined with the acoustic domain. We eval-
uate our approach by means of a common task in music in-
formation retrieval, musical genre classification. Advancing
over previous work that showed improvements with simple
feature fusion, we apply the more sophisticated approach of
result (or late) fusion. We achieve results superior to the best
choice of a single algorithm on a single feature set.

1. INTRODUCTION AND RELATED WORK

Music incorporates multiple types of content: the audio it-
self, song lyrics, album covers, social and cultural data, and
music videos. All those modalities contribute to the percep-
tion of a song, and an artist in general. However, often a
strong focus is put on the audio content only, disregarding
many other opportunities and exploitable modalities. Even
though music perception itself is based on sonic characteris-
tics to a large extent, and acoustic content makes it possible
to differentiate between acoustic styles, a great share of the
overall perception of a song can be only explained when
considering other modalities. Often, consumers relate to a
song for the topic of its lyrics. Some categories of songs,
such as ‘love songs’ or ‘Christmas’ songs, are almost ex-
clusively defined by their textual domain; many traditional
‘Christmas’ songs were interpreted by modern artists and

Permission to make digital or hard copies of all or part of this work for
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c© 2011 International Society for Music Information Retrieval.

heavily influenced by their style: ‘Punk Rock’ variations are
recorded as well as ‘Hip-Hop’ or ‘Rap’ versions.

These examples show that there is a whole level of se-
mantics inherent in song lyrics that can not be detected solely
by audio based techniques. We thus assume that a song’s
text content can help in better understanding its perception,
and evaluate a new approach for combining descriptors ex-
tracted from the audio domain of music with descriptors de-
rived from the textual content of lyrics. Our approach is
based on the assumption that a diversity of music descrip-
tors and a diversity of machine learning algorithms are able
to make further improvements.

Music information retrieval (MIR) is concerned with ad-
equately accessing (digital) audio. Important research di-
rections include similarity retrieval, musical genre classi-
fication, or music analysis and knowledge representation.
A comprehensive overviews of the research field is given
in [11]. The prevalent technique of music for MIR purposes
is to analyse the audio signal. Popular feature sets include
MFCCs, Chroma, or the MPEG-7 audio descriptors.

Previous studies reported about a glass ceiling being reached
using timbral audio features for music classification [1]. Wev-
eral research teams have been working on analysing textual
information, predominantly in the form of song lyrics and an
abstract vector representation of the term information con-
tained in other text documents. A semantic and structural
analysis of song lyrics is conducted in [8]. An evaluation of
artist similarity via song lyrics is given in [7], suggesting a
combination of approaches might lead to better results.

In this paper, we employ feature sets derived from the
lyrics content, capturing rhyme structures, part-of-speech of
the employed words, and style, such as diversification of the
words used, sentence complexity, and punctuation. These
feature sets were introduced in [10], and applied to genre
classification. This approach has further been extended to a
bigger test collection and a combination of lyrics and audio
features in [9], reporting results superior to single feature
sets. The combination based on simple feature fusion (early
fusion), i.e. concatenating all feature subspaces is however
simplistic. Here, we rather apply late fusion, combining
classifier outcomes rather than features. We create a two-
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Figure 1. Overview of the Cartesian Ensemble System,
combining feature sets with a set of classification schemes

dimensional ensemble system, a Cartesian classifier, com-
bining different feature subspaces from different domains,
and different classification algorithms.

This paper is structured as follows. We describe the en-
semble approach in Section 2. We then evaluate and analyse
its results on two corpora in Section 3. Finally, we conclude,
and give a short outlook on future research in Section 4.

2. CARTESIAN ENSEMBLE

A schematic overview of the ensemble system, building on
a system introduced in [5], is given in Figure 1. The system
is called Cartesian ensemble, as the set of models it uses
as base classifiers is composed as the Cartesian product of
D feature subspaces/sets by C classification schemes. A
model is built for each combination of a training classifica-
tion scheme ci on a feature subspace dj , yielding a total of
D×C base models as the ensemble. A classification scheme
is a specific classification algorithm and parameters used.

The goal of the ensemble approach is two-fold. First,
it is aimed at obtaining a sufficiently diverse ensemble of
models, which will guarantee, up to a certain degree, an
improvement of the ensemble accuracy over the best single
model trained. Choosing this best single model a priori is a
difficult task, and previous results have shown that there is
no combination of algorithm (and parameters) and features
which would yield the best result for each dataset and task.
Thus, the second goal of the approach is to abstract from the
selection of a such a particular classifier and feature set to
use for a particular problem. When a previously unknown
piece of music is presented to the ensemble system, the se-
lected models each produce a prediction for a specific cat-
egory. To obtain a final result, these individual predictions
are then combined to produce a single category prediction
outcome. For this step, a number of different decision com-
bination (or label fusion) rules, can be used. The Cartesian
ensemble system is built on the open-source WEKA toolkit,
and uses classification algorithms available therein.

Pareto-optimal Classifier Selection: Model diversity is
a key design factor for building effective classifier ensem-

bles [4]. The system employs a strategy for selecting the
best set of models, based on finding the Pareto-optimal set of
models by rating them in pairs, according to two measures.
The first one is the inter-rater agreement diversity measure
κ, defined on the coincidence matrix M of the two models.
The entry mr,s is the proportion of the dataset that model hi

labels as Lr and model hj labels as Ls. The second measure
is the pair average error, computed by

eij = 1− αi + αj

2
(1)

where αi and αj are the estimated accuracy of the two
models. The Pareto-optimal set contains all non-dominated
pairs, i.e. pairs for which there is no other pair that is better
than on both criteria. For more details, pleas see [4].

Vote Combination Rules: The system provides weighted
and unweighted vote combination rules. The unweighted
rules employed are described e.g. in [2]. They comprise
simple majority voting (MAJ), which favours the class pre-
dicted by most votes, and rules that combine the individual
results by the average (AVG), median (MED) or maximum
(MAX) of the posterior probability P (Lk|xi) of instance x
to belong to category Lk, as provided by model hi.

The weighted rules multiply model decisions by weights
and select the label Lk that gets the maximum score. Model
weights are based on the estimated accuracyαi of the trained
models. The authority ai of each model hi is established
as a function of αi, normalized, and used as its weight ωi.
The Simple Weighted Vote (SWV) computes weights as a
simple weighted vote. The more complicated weight func-
tions for the Rescaled Simple Weighted Vote (RSWV), Best-
Worst Weighted Vote (BWWV) and Quadratic Best-Worst
Weighted Vote (QBWWV) are depicted in Figure 2. There,
eB is the lowest estimated number of errors made by any
model in the ensemble on a given validation dataset, and
eW is the highest estimated number of errors made by any of
those classifiers. Weighted Majority Vote (WMV) is a theo-
retically optimal weighted vote rule described in [4], where
model weights are set proportionally to log(αi/(1− αi)).

Inner/Outer Cross Validation: To estimate how the re-
sults from a classifier will generalize on independent data,
the classification model is tested on labelled data which was
not used for training the model, and measures such as ac-
curacy are recorded. To reduce the variability, often a tech-
nique called cross-validation is employed: nmultiple rounds
of partitioning the data in a training and test set are per-
formed, and the recorded measures are averaged over all
the rounds. For weighted combination rules, we need to
estimate the accuracy of individual ensemble models (αi)
to obtain their authorities (ai). To avoid using test data of
the ensemble for single model accuracy estimation, an in-
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Figure 2. Model weight computation

ner cross-validation relying on ensemble training data only
is performed. The predicted accuracy of this inner cross-
validation is then taken as the authority of the model.

3. EVALUATION

In this section, we first present the feature subspaces and
datasets employed in our evaluation, followed by a detailed
analysis of the classification results.

3.1 Audio Feature Subspaces

The audio descriptors are extracted from a spectral repre-
sentation of an audio signal, partitioned into segments of 6
sec. Features are extracted segment-wise, and then aggre-
gated for a piece of music computing the median (RP, RH)
or mean (SSD) from features of multiple segments. For de-
tails on the computation, please refer to the literature for
details [6]. The feature extraction for a Rhythm Pattern
is composed of two stages. First, the specific loudness sen-
sation on 24 critical frequency bands is computed through
a Short Time FFT, grouping the resulting frequency bands
to the Bark scale, and successive transformation into the
Decibel, Phon and Sone scales. This results in a psycho-
acoustically modified Sonogram representation that reflects
human loudness sensation. Then, a discrete Fourier trans-
form is applied, resulting in a spectrum of loudness ampli-
tude modulation per modulation frequency for each critical
band. A Rhythm Histogram (RH) aggregates the modu-
lation amplitude values of the critical bands computed in
a Rhythm Pattern and is a descriptor for general rhythmic
characteristics in a piece of audio [6]. The first part of the
algorithm for computation of a Statistical Spectrum De-
scriptor (SSD), the computation of specific loudness sen-
sation, is equal to the Rhythm Pattern algorithm. Subse-
quently at set of statistical valuesare calculated for each indi-
vidual critical band. SSDs describe fluctuations on the crit-
ical bands and capture additional timbral information very
well [6].

3.2 Lyrics Feature Subspace

The following feature subspaces are all based on song lyrics,
and analyse the content, and rhyme and style of them. For
more details on features please refer to [10] [9]. To account
for different document lengths, where applicable, values are

normalised by the number of words or lines of the lyrics
document.

3.2.1 Topic Features

For analysing the topical content of the lyrics, we rely on
classical bag-of-words indexing, which uses a set of words
to represent each document. Let the number of documents
in a collection be denoted byN , each single document by d,
and a term or token by t. Accordingly, the term frequency
tf(t, d) is the number of occurrences of term t in document
d and the document frequency df(t) the number of docu-
ments term t appears in. We then apply weights to the terms,
according to their importance or significance for the docu-
ment, using the popular model of term frequency times in-
verse document frequency.This results in vectors of weight
values for each document d in the collection, i.e. each lyrics
document. We do not perform stemming in this setup, ear-
lier experiments showed only negligible differences for stemmed
and non-stemmed features (the rationale behind using non-
stemmed terms is the occurrence of slang language in some
genres).

3.2.2 Rhyme and Style Features

Rhyme denotes the consonance or similar sound of two or
more syllables or whole words. The motivation for this
set of features was that different genres of music should
exhibit different styles of lyrics and rhymes. ‘Hip-Hop’
or ‘Rap’ music, for instance, makes heavy use of rhymes,
which (along with a dominant bass) leads to their character-
istic sound. To identify such patterns we extract several de-
scriptors from the phoneme transcription of the song lyrics.
We then distinguish two elements of subsequent lines in a
song text: AA and AB. The former represents two rhyming
lines, while the latter denotes non-rhyming. Based on these,
we extract a set of rhyme patterns, such as a sequence of two
(or more) rhyming lines (‘Couplet’), alternating rhymes, or
sequences of rhymes with a nested sequence (‘Enclosing
rhyme’), and count their frequency. Subsequently, we com-
pute the percentage of rhyming blocks, and define the unique
rhyme words as the fraction of unique terms used to build
rhymes, describing whether rhymes are frequently formed
using the same word pairs.

Part-of-speech (POS) tagging is a lexical categorisation
or grammatical tagging of words. Different POS categories
are e.g. nouns, verbs, articles or adjectives. We presume that
different genres will differ also in the category of words they
are using; thus, we extract several POS descriptors from the
lyrics. We count the numbers of: nouns, verbs, pronouns,
relational pronouns (such as ‘that’ or ‘which’), prepositions,
adverbs, articles, modals, and adjectives.

Text documents can also be described by simple statisti-
cal style measures based on word or character frequencies.
Measures such as the average length of words or the ratio
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of unique words in the vocabulary might give an indication
of the complexity of the texts, and are expected to vary over
different genres. Further, the usage of punctuation marks
such as exclamation or question marks may be specific for
some genres, and some genres might make increased use
of apostrophes when omitting the correct spelling of word
endings. Other features describe the words per line and the
unique number of words per line, the ratio of the number
of unique words and the total number of words, and the av-
erage number of characters per word. A particular feature
is words-per-minute, which is computed analogously to the
well-known beats-per-minute (BPM) value.

3.3 Datasets

Music information retrieval research in general suffers from
a lack of standardised benchmark collections – being mainly
attributable to copyright issues. Nonetheless, some collec-
tions have been used frequently in the literature, such as the
two collections provided for the ‘rhythm’ and ‘genre’ re-
trieval tasks held in conjunction with the ISMIR conference
2004, or the collection presented in [12].

However, for the first two collections, hardly any lyrics
are available as they are either instrumental songs or free
music for which lyrics were not published. For the latter, no
meta-data such as song titles is available, making automatic
fetching of lyrics impossible. The collection used in [3] con-
sists of only 260 pieces and was not initially used for genre
classification. Further, it was compiled from only about 20
different artists – we specifically wanted to avoid uninten-
tionally classifying artists rather than genres.

Therefore, we constructed two different test collections
of differing size as a random sample from a private collec-
tion [9]. The first database consists of 600 songs, aimed
at having a high number of different artists, with songs from
different albums to prevent biased results by too many songs
from the same artist/album. It thus comprises songs from
159 different artists and 241 different albums. They are or-
ganised in ten genres of 60 songs each (cf. left part of Ta-
ble 1). To confirm the findings from the smaller test col-
lection, we created a larger, more diversified database of
medium- to large-scale, consisting of 3,010 songs.The num-
bers of songs per genre range from 179 in ‘Folk’ to 381
in ‘Hip-Hop’. Detailed figures about this collection can be
taken from the right part of Table 1. To be able to better re-
late and match the results obtained for the smaller collection,
we only selected songs belonging to the same ten genres.

We then automatically fetched lyrics from popular lyrics
portals on the Internet. In case the primary portal didn’t pro-
vide any lyrics, the other portals were used until all lyrics
were available. No checking of the quality of the texts with
respect to content or structure was performed; thus, the lyrics
can be considered a representative data source a simple au-
tomated system could retrieve.

Table 1. Composition of the test collections; the left and
right columns show the number of artists, albums and songs
for the small and large collection, respectively

Genre Artists Albums Songs
Country 6 9 13 23 60 227
Folk 5 11 7 16 60 179
Grunge 8 9 14 17 60 181
Hip-Hop 15 21 18 34 60 381
Metal 22 25 37 46 60 371
Pop 24 26 37 53 60 371
Punk Rock 32 30 38 68 60 374
R&B 14 18 19 31 60 373
Reggae 12 16 24 36 60 181
Slow Rock 21 23 35 47 60 372
Total 159 188 241 370 600 3010

3.4 Genre Classification Results

The following tables give the classification accuracies in per
cent. For statistical significant testing, we used a paired t-
test (α=0.05, micro-averaged accuracy); in the tables, im-
provement or degradation over datasets (column-wise) is in-
dicated by (+) or (−), respectively.

Table 2 shows the classification results of the single clas-
sifiers on single feature sets on the small dataset. It can
be noted that the SSD features are the best performing sin-
gle feature set, and the SVM the best classifier; here, the
linear kernel performed better than the quadratic. This com-
bination of feature set and classification scheme thus serves
as the primary base-line to compare the Cartesian ensem-
ble results to. The results of the SSD features clearly out-
perform the other audio feature sets (RH omitted, cf. [9]),
by 10% points and more. k-NN is the second-best clas-
sification algorithm, achieving 52.17% accuracy with a k
of 1 on SSD features, outperforming both Random Forests
and Naı̈ve Bayes. Regarding the lyrics features, the text
statistics features perform best from the rhyme and style
features, achieving 30% accuracy. The text statistics fea-
tures are slightly outperformed by the bag-of-words features
when using the linear SVM, and significantly on Naı̈ve Bayes,
while they perform significantly worse on k-NN, Random
Forests and the quadratic SVM.

Further, Table 2 also gives the set of best-performing
combinations of concatenating the single feature sets (early
fusion). They are assumed as a secondary baseline for the
ensemble. Compared to the single feature sets, when com-
bining SSD and lyrics style statistics features, we could sig-
nificantly improve the result, by almost 7% points. We can
also observe that the improvement is not of statistical signif-
icance for the other classification schemes. It is also inter-
esting to note that combining with the bag-of-words features
does improve the results over the SSD baseline when using
the SVM with the linear kernel, but not to the extent as when
combining with the rhyme and style features, even though
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Table 2. Results of the single classification on the small datasets
Feature set NB 1-NN 5-NN 10-NN SVMLin SVMPol RF
Rhyme 15.67 12.83 13.33 14.17 13.17 11.17 15.67
POS 19.67 14.50 18.00 18.50 20.33 20.17 17.83
TextStat 21.50 20.50 22.00 24.33 30.00 28.17 25.50
BOW243 23.67 17.67 21.33 19.83 28.33 27.33 21.67
BOW725 27.67 12.67 14.67 12.17 31.00 26.33 22.67
BOW1302 30.00 13.83 11.67 12.83 32.17 23.17 23.50
BOW4695 31.17 10.33 10.67 10.50 31.17 12.83 23.33
RP 38.67 33.17 32.67 29.83 49.17 46.33 32.67
SSD (audio baseline) 45.50 52.17 50.17 51.50 59.00 58.67 48.67
SSD/Stat (comb. baseline) 47.17 55.33 53.00 52.33 65.83 + 61.33 45.00
SSD/Stat/Rhyme 47.33 54.17 52.67 54.00 63.50 62.17 48.67
SSD/Stat/POS 46.67 51.50 50.33 52.67 64.00 + 60.50 50.67
SSD/Stat/POS/Rhyme 47.17 52.17 50.67 53.50 64.00 + 60.33 48.00
BOW893/SSD 35.67 - 41.50 - 44.33 - 34.83 - 62.17 60.83 41.33
BOW893/SSD/POS/Rhyme/TextStat 39.33 - 45.83 46.67 36.33 - 64.00 63.83 44.83

Table 3. Ensemble classification results
Small Database Large Database

Rule All subspaces SSD-only All subspaces SSD-only
RSWV 63.67 + 59.00 73.65 + 69.33
BWWV 63.67 + 59.33 74.08 + 69.69
QBWWV 63.17 60.17 73.94 + 70.62

the bag-of-words features alone performed better. There is
no increase on performance on any of the other classification
schemes; in contrary, on Naı̈ve Bayes and k-NN, the results
are statistically significant worse. The rhyme and style fea-
tures may thus be seen as more complimentary to the audio
features.

Table 3 finally presents the results of a number of se-
lected combination rules. These rules have been selected, as
they showed to be the most performing rules over a series of
experiments. We can see from that results that we are able
to improve on the SSD audio baseline by up to 4.5% point.
The rules RSWV, BWWV, and QBWWV thereby show al-
most the same accuracy. While the Cartesian ensemble ap-
proach failed to beat the best result of feature fusion, namely
the linear SVM classifier on combined SSD and text statis-
tics features, we obtained a better result than this very same
concatenation approach achieved when using the SVM with
a quadratic kernel. It has to be noted that finding this best
feature fusion result requires testing a number of different
feature combinations, as well as testing a lot of different
algorithms. This is a time-consuming and labour-intensive
task, as well as it is computationally expensive.

The results on the large dataset given in Table 4, in-
cluding bag-of-words feature sets with different number of
features selected by simple document frequency threshold-
ing. SSD was again clearly the best audio feature set, clearly
outperforming the RP features by more than 14% on the best
SSD classifier than on the best RP classifier (SVM quadratic
and SVM linear, respectively). However, it is worth to note
that on this dataset, the quadratic SVM kernel on SSD per-
formed with 69.43% significantly better than the linear one
with 66.37%, which was the best kernel on the small database.

We can further note that text statistics are again the best fea-
ture of the rhyme and style features, reaching almost 30%
points with SVMs. The bag-of-words features, however,
yield much better results than that, with 42.47% when us-
ing the linear SVM kernel and 8270 content terms. We can
achieve almost 40% accuracy also with the Naı̈ve Bayes al-
gorithm, while Random Forests and k-NN predict much less
correctly classified instances.

Regarding the results with early fusion, while we could
significantly improve the linear Kernel on SSD features by
concatenating them with the lyrics features, the improve-
ments for the quadratic kernel are a bit less. It is also inter-
esting to note that the better combination is with the rhyme
and style features yields better results than adding the bag-
of-words, even though the bag-of-words alone had more
than 12% points better accuracy results. When using our
novel result (late) fusion approach, results for which are
shown in Table 3, we can achieve classification accuracies
which are in absolute numbers up to 5% points better than
with the best concatenation approach, which is statistically
significantly better. In numbers, the improvement is from
69.43% as the best result with SSD features to 74.08% as
the best ensemble result. It can be noted that the best com-
bination rules RSWV, BWWV, and QBWWV all show al-
most the same accuracy, thus relying on any of those seems
feasible.

As a further baseline to the ensembles of multiple fea-
tures, an ensemble of the above mentioned classification
schemes on SSD features only is given in Table 3. This base-
line is to test whether the improvements reported above are
achieved due to the use of different schemes, or only when
also using different feature sets. As the ensemble on SSD-
only features improves just 0.5% point over the best single
results, while the performance is 3 to 4% point better than
that baseline when using all feature sets, it can be concluded
that the gain in accuracy is largely due to the Cartesian en-
semble of both feature subspaces and algorithms.
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Table 4. Results of the single classification on the large datasets
Feature set NB 1-NN 5-NN 10-NN SVMLin SVMPol RF
Rhyme 16.62 16.92 16.58 18.11 16.08 15.65 19.91
POS 23.53 20.94 21.64 22.60 23.66 24.53 24.59
TextStat 17.91 23.40 25.09 25.86 28.38 25.49 34.30
BOW248 28.71 21.34 15.85 13.53 36.52 36.36 31.24
BOW1456 37.19 15.89 12.53 15.42 40.18 39.12 29.98
BOW4262 38.65 15.32 12.30 13.03 41.08 34.16 28.98
BOW8270 39.38 15.25 12.40 13.06 42.47 29.38 30.34
RP 34.73 41.57 40.68 40.88 55.90 51.11 37.35
SSD (audio baseline) 42.11 62.58 62.21 62.78 66.37 69.43 55.07
SSD/Stat (comb. baseline) 43.87 63.88 63.01 62.12 68.60 + 69.99 57.06
SSD/Stat/POS 44.50 + 62.51 63.18 62.48 68.86 + 69.46 55.90
SSD/Stat/POS/Rhyme 44.80 + 62.74 62.41 61.78 67.83 69.69 57.63 +
SSD/BOW4262 42.24 31.67− 31.18− 30.94− 66.97 66.57− 47.02−
SSD/POS/Rhyme/BOW4262 41.54 50.22− 55.67− 58.63− 67.46 68.50 53.24−

4. CONCLUSIONS

We presented an approach for multi-modal classification of
music. Contrary to earlier work on fusion of feature sub-
spaces, the approach is built on classifier ensemble tech-
niques, i.e. fusion of the labels assigned by each single clas-
sifier. We evaluated the method by musical genre classifi-
cation on two different datasets. We achieved better results
than when using the single feature sets alone, and for the
larger dataset also better results than with the best concate-
nation approach. These improvements are up to 6% points
above the baseline, and statistically significant.

We observed that the combination of the best performing
feature set and classification algorithm can vary on different
datasets; even the choice of a different kernel for the SVM
classifier yielded very different results on the small and large
dataset. Using the ensemble approach, we can release the
user from having to make this choice explicitly, or from us-
ing computationally expensive approaches like model selec-
tion. We have concluded from our experiments that a num-
ber of combination rules is promising, and the QBWWV
method seems to show the overall best results.
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ABSTRACT

In this work we present a system to automatically learn fea-
tures from audio in an unsupervised manner. Our method
first learns an overcomplete dictionary which can be used to
sparsely decompose log-scaled spectrograms. It then trains
an efficient encoder which quickly maps new inputs to ap-
proximations of their sparse representations using the learned
dictionary. This avoids expensive iterative procedures usu-
ally required to infer sparse codes. We then use these sparse
codes as inputs for a linear Support Vector Machine (SVM).
Our system achieves 83.4% accuracy in predicting genres
on the GTZAN dataset, which is competitive with current
state-of-the-art approaches. Furthermore, the use of a sim-
ple linear classifier combined with a fast feature extraction
system allows our approach to scale well to large datasets.

1. INTRODUCTION

Over the past several years much research has been devoted
to designing feature extraction systems to address the many
challenging problems in music information retrieval (MIR).
Considerable progress has been made using task-dependent
features that rely on hand-crafted signal processing tech-
niques (see [13] and [26] for reviews). An alternative ap-
proach is to use features that are instead learned automat-
ically. This has the advantage of generalizing well to new
tasks, particularly if the features are learned in an unsuper-
vised manner.

Several systems to automatically learn useful features from
data have been proposed over the years. Recently, Restricted
Boltzmann Machines (RBMs), Deep Belief Networks (DBNs)
and sparse coding (SC) algorithms have enjoyed a good deal
of attention in the computer vision community. These have
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led to solid and state-of-the-art results on several object recog-
nition benchmarks [8, 15, 23, 30].

Some of these methods have also began receiving inter-
est as means to automatically learn features from audio data.
The authors of [22] explored the use of sparse coding using
learned dictionaries in the time domain, for the purposes of
genre recognition. Convolutional DBNs were used in [16]
to learn features from speech and music spectrograms in an
unsupervised manner. Using a similar method, but with su-
pervised fine-tuning, the authors in [12] were able to achieve
84.3% accuracy on the Tzanetakis genre dataset, which is
one of the best reported results to date.

Despite their theoretical appeal, systems to automatically
learn features also bring a specific set of challenges. One
drawback of DBNs noted by the authors of [12] were their
long training times, as well as the large number of hyper-
parameters to tune. Furthermore, several authors using sparse
coding algorithms have found that once the dictionary is
learned, inferring sparse representations of new inputs can
be slow, as it usually relies on some kind of iterative proce-
dure [14, 22, 30]. This in turn can limit the real-time appli-
cations or scalability of the system.

In this paper, we investigate a sparse coding method called
Predictive Sparse Decomposition (PSD) [11, 14, 15] that at-
tempts to automatically learn useful features from audio data,
while addressing some of these drawbacks. Like many sparse
coding algorithms, it involves learning a dictionary from a
corpus of unlabeled data, such that new inputs can be rep-
resented as sparse linear combinations of the dictionary’s
elements. It differs in that it also trains an encoder that ef-
ficiently maps new inputs to approximations of their opti-
mal sparse representations using the learned dictionary. As
a result, once the dictionary is learned inferring the sparse
representations of new inputs is very efficient, making the
system scalable and suitable for real-time applications.

2. THE ALGORITHM

2.1 Sparse Coding Algorithms

The main idea behind sparse coding is to express signals
x ∈ Rn as sparse linear combinations of basis functions
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chosen out of an overcomplete set. Letting B ∈ Rn×m
(n < m) denote the matrix consisting of basis functions
bj ∈ Rn as columns with weights z = (z1, ..., zm), this
relationship can be written as:

x =

m∑
j

zjbj = Bz (1)

where most of the zi’s are zero. Overcomplete sparse
representations tend to be good features for classification
systems, as they provide a succinct representation of the sig-
nal, are robust to noise, and are more likely to be linearly
separable due to their high dimensionality.

Directly inferring the optimal sparse representation z of
a signal x given a dictionary B requires a combinatorial
search, intractable in high dimensional spaces. Therefore,
various alternatives have been proposed. Matching Pursuit
methods [21] offer a greedy approximation to the solution.
Another popular approach, called Basis Pursuit [7], involves
minimizing the loss function:

Ld(x, z,B) =
1

2
||x−Bz||22 + λ||z||1 (2)

with respect to z. Here λ is a hyper-parameter setting the
tradeoff between accurate approximation of the signal and
sparsity of the solution. It has been shown that the solu-
tion to (2) is the same as the optimal solution, provided it
is sparse enough [10]. A number of works have focused on
efficiently solving this problem [1, 7, 17, 20], however they
still rely on a computationally expensive iterative procedure
which limits the system’s scalability and real-time applica-
tions.

2.2 Learning Dictionaries

In classical sparse coding, the dictionary is composed of
known functions such as sinusoids, gammatones, wavelets
or Gabors. One can also learn dictionaries that are adaptive
to the type of data at hand. This is done by first initializing
the basis functions to random unit vectors, and then iterating
the following procedure:

1. Get a sample signal x from the training set

2. Calculate its optimal sparse code z∗ by minimizing
(2) with respect to z. Simple optimization methods
such as gradient descent can be used, or more sophis-
ticated approaches such as [1, 7, 20].

3. Keeping z∗ fixed, update B with one step of stochas-
tic gradient descent: B ← B − ν ∂Ld

∂B , where Ld is
the loss function in (2). The columns of B are then
rescaled to unit norm, to avoid trivial minimizations
of the loss function where the code coefficients go to
zero while the bases are scaled up.
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Figure 1. Shrinkage function with θ = 1

There is evidence that sparse coding could be a strategy
employed by the brain in the early stages of visual and audi-
tory processing. The authors in [24] found that basis func-
tions learned on natural images using the above procedure
resembled the receptive fields in the visual cortex. In an
analogous experiment [28], basis functions learned on nat-
ural sounds were found to be highly similar to gammatone
functions, which have been used to model the action of the
basilar membrane in the inner ear.

2.3 Predictive Sparse Decomposition

In order to avoid the iterative procedure typically required
to infer sparse codes, several works have focused on de-
veloping nonlinear, trainable encoders which can quickly
map inputs to approximations of their optimal sparse codes
[11, 14, 15]. The encoder’s architecture is denoted z =
fe(x,U), where x is an input signal, z is an approxima-
tion of its sparse code, and U collectively designates all the
trainable parameters of the encoder. Training the encoder
is performed by minimizing the encoder loss Le(x,U), de-
fined as the squared error between the predicted code z and
the optimal sparse code z∗ obtained by minimizing (2), for
every input signal x in the training set:

Le(x,U) =
1

2
||z∗ − fe(x,U)||2 (3)

Specifically, the encoder is trained by iterating the fol-
lowing process:

1. Get a sample signal x from the training set and com-
pute its optimal sparse code z∗ as described in the pre-
vious section.

2. Keeping z∗ fixed, update U with one step of stochas-
tic gradient descent: U ← U − ν ∂Le

∂U , where Le is
the loss function in (3).

In this paper, we adopt a simple encoder architecture
given by:

fe(x,W,b) = hθ(Wx + b) (4)

where W is a filter matrix, b is a vector of trainable bi-
ases and hθ is the shrinkage function given by hθ(x)i =
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sgn(xi)(|xi| − θi)+ (Figure 1). The shrinkage function sets
any code components below a certain threshold θ to zero,
which helps ensure that the predicted code will be sparse.
Training the encoder is done by iterating the above process,
with U = {W,b, θ}. Note that once the encoder is trained,
inferring sparse codes is very efficient, as it essentially re-
quires a single matrix-vector multiplication.

3. LEARNING AUDIO FEATURES

In this section we describe the features learned on music
data using PSD.

3.1 Dataset

We used the GTZAN dataset first introduced in [29], which
has since been used in several works as a benchmark for
the genre recognition task [2, 3, 6, 12, 18, 25]. The dataset
consists of 1000 30-second audio clips, each belonging to
one of 10 genres: blues, classical, country, disco, hiphop,
jazz, metal, pop, reggae and rock. The classes are balanced
so that there are 100 clips from each genre. All clips are
sampled at 22050 Hz.

3.2 Preprocessing

To begin with, we divided each clip into short frames of
1024 samples each, corresponding to 46.4ms of audio. There
was a 50% overlap between consecutive frames. We then
applied a Constant-Q transform (CQT) to each frame, with
96 filters spanning four octaves from C2 to C6 at quarter-
tone resolution. For this we used the toolbox provided by
the authors of [27]. An important property of the CQT is
that the center frequencies of the filters are logarithmically
spaced, so that consecutive notes in the musical scale are
linearly spaced. We then applied subtractive and divisive
local contrast normalization (LCN) as described in [15],
which consisted of two stages. First, from each point in the
CQT spectrogram we subtracted the average of its neigh-
borhood along both the time and frequency axes, weighted
by a Gaussian window. Each point was then divided by the
standard deviation of the new neighborhood, again weighted
by a Gaussian window. This enforces competition between
neighboring points in the spectrogram, so that low-energy
signals are amplified while high-energy ones are muted. The
entire process can be seen as a simple form of automatic
gain control.

3.3 Features Learned on Frames

We then learned dictionaries on all frames in the dataset, us-
ing the process described in 2.2. The dictionary size was
set to 512, so as to get overcomplete representations. Once
the dictionary was learned, we trained the encoder to pre-
dict sparse representations using the process in 2.3. In both

Figure 2. A random subset of the 512 basis functions
learned on full CQT frames. The horizontal axis represents
log-frequency and ranges from 67 Hz to 1046 Hz.

cases, we used the Fast Iterative Shrinkage-Thresholding al-
gorithm (FISTA) [1] to compute optimal sparse codes. Some
of the learned basis functions are displayed in Figure 2. One
can see single notes and what appear to be series of linearly
spaced notes, which could correspond to chords, harmonics
or harmonies. Note that some of the basis functions appear
to be inverted, since the code coefficients can be negative.
A number of the learned basis functions also seem to have
little recognizable structure.

3.4 Features Learned on Octaves

We also tried learning separate dictionaries on each of the
four octaves, in order to capture local frequency patterns.
To this end we divided each frame into four octaves, each
consisting of 24 channels, and learned dictionaries of size
128 on each one. We then trained four separate encoders
to predict the sparse representations for each of the four oc-
taves. Some of the learned basis functions are shown in Fig-
ure 3. Interestingly, we find that a number of basis functions
correspond to known chords or intervals: minor thirds, per-
fect fifths, sevenths, major triads, etc. A number of basis
functions also appear to be similar versions of each other
shifted across frequency. Other functions have their en-
ergy spread out across frequency, which could correspond
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(a)

(b)

(c)

(d)

(e)

(f)

Figure 3. Some of the functions learned on individual oc-
taves. The horizontal axis represents log-frequency. Recall
that each octave consists of 24 channels a quarter tone apart.
Channel numbers corresponding to peaks are indicated. a)
A minor third (two notes 3 semitones apart) b) A perfect
fourth (two notes 5 semitones apart) c) A perfect fifth (two
notes 7 semitones apart) d) A quartal chord (each note is 5
semitones apart) e) A major triad f) A percussive sound.

to sounds caused by percussive instruments.

3.5 Feature Extraction

Once the dictionaries were learned and the encoders trained
to accurately predict sparse codes, we ran all inputs through
their respective encoders to obtain their sparse representa-
tions using the learned dictionaries. In the case of dictio-
naries learned on individual octaves, for each frame we con-
catenated the sparse representations of each of its four oc-
taves, all of length 128, into a single vector of size 512. Ex-
tracting sparse features for the entire dataset, which contains
over 8 hours of audio, took less than 3 minutes, which shows
that this feature extraction system is scalable to industrial-
size music databases.

4. CLASSIFICATION USING LEARNED FEATURES

We now describe the results of using our learned features
as inputs for genre classification. We used a linear Support
Vector Machine (SVM) as a classifier, using the LIBSVM
library [5]. Linear SVMs are fast to train and scale well to
large datasets, which is an important consideration in MIR.

4.1 Aggregated Features

Several authors have found that aggregating frame-level fea-
tures over longer time windows substantially improves clas-
sification performance [2, 3, 12]. Adopting a similar ap-
proach, we computed aggregate features for each song by
summing up sparse codes over 5-second time windows over-
lapping by half. We applied absolute value rectification to
the codes beforehand to prevent components of different
sign from canceling each other out. Since each sparse code
records which dictionary elements are present in a given
CQT frame, these aggregate feature vectors can be thought
of as histograms recording the number of occurrences of
each dictionary element in the time window.

4.2 Classification

To produce predictions for each song, we voted over all ag-
gregate feature vectors in the song and chose the genre with
the highest number of votes. Following standard practice,
classification performance was measured by 10-fold cross-
validation. For each fold, 100 songs were randomly selected
to serve as a test set, with the remaining 900 serving as train-
ing data. This procedure was repeated 10 times, and the re-
sults averaged to produce a final classification accuracy.

Our classification results, along with several other results
from the literature, are shown in Figure 4. We see that PSD
features learned on individual octaves perform significantly
better than those learned on entire frames. 1 Furthermore,

1 In an effort to capture chords which might be split among two of the
octaves, we also tried dividing the frequency range into 7 octaves, overlap-
ping by half, and similarly learning features on each one. However, this did
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Classifier Features Acc. (%)
CSC Many features [6] 92.7
SRC Auditory cortical feat. [25] 92
RBF-SVM Learned using DBN [12] 84.3
Linear SVM Learned using PSD on octaves 83.4± 3.1
AdaBoost Many features [2] 83
Linear SVM Learned using PSD on frames 79.4± 2.8
SVM Daubechies Wavelets [19] 78.5
Log. Reg. Spectral Covariance [3] 77
LDA MFCC + other [18] 71
Linear SVM Auditory cortical feat. [25] 70
GMM MFCC + other [29] 61

Figure 4. Genre recognition accuracy of various algorithms
on the GTZAN dataset. Our results with standard deviations
are marked in bold.

our approach outperforms many existing systems which use
hand-crafted features. The two systems that significantly
outperform our own rely on sophisticated classifiers based
on sparse representations (SRC) or compressive sampling
(CSC). The fact that our method is still able to reach compet-
itive performance while using a simple classifier indicates
that the features learned were able to capture useful proper-
ties of the audio that distinguish between genres. One possi-
ble interpretation is that some of the basis functions depicted
in Figure 3 represent chords specific to certain genres. For
example, perfect fifths (e.g. power chords) are very com-
mon in rock, blues and country, but rare in jazz, whereas
quartal chords, which are common in jazz and classical, are
seldom found in rock or blues.

4.3 Discussion

Our results show that automatic feature learning is a viable
alternative to using hand-crafted features. Our approach per-
formed better than most systems that pair signal processing
feature extractors with standard classifiers such as SVMs,
Nearest Neighbors or Gaussian Mixture Models. Another
positive point is that our feature extraction system is very
fast, and the use of a simple linear SVM makes this method
viable on any size dataset. Furthermore, the fact that the fea-
tures are learned in an unsupervised manner means that they
are not limited to a particular task, and could be used for
other MIR tasks such as chord recognition or autotagging.

We also found that features learned on octaves performed
better than features learned on entire frames. This could be
due to the fact that in the second case we are learning four
times as many parameters as in the first, which could lead
to overfitting. Another possibility is that features learned on
octaves tend to capture relationships between fundamental
notes, whereas features learned on entire frames also seem

not yield an increase in accuracy.

to capture patterns between fundamentals and their harmon-
ics, which could be less useful for distinguishing between
genres.

One aspect that needs mentioning is that since we per-
formed the unsupervised feature learning on the entire dataset
(which includes the training and test sets without labels for
each of the cross-validation folds), our system is technically
akin to “transductive learning”. Under this paradigm, test
samples are known in advance, and the system is simply
asked to produce labels for them. We subsequently con-
ducted a single experiment in which features were learned
on the training set only, and obtained an accuracy of 80%.
Though less than our overall accuracy, this result is still
within the range observed during the 10 different cross-validation
experiments, which went from 77% to 87%. The seemingly
large deviation in accuracy is likely due to the variation of
class distributions between folds.

There are a number of directions in which we would like
to extend this work. A first step would be to apply our sys-
tem to different MIR tasks, such as autotagging. Further-
more, the small size of the GTZAN dataset does not ex-
ploit the system’s ability to leverage large amounts of data
in a tractable amount of time. For this, the Million Song
Dataset [4] would be ideal.

A limitation of our system is that it ignores temporal de-
pendencies between frames. A possible remedy would be
to learn features on time-frequency patches instead. Pre-
liminary experiments we conducted in this direction did not
yield improved results, as many ’learned’ basis functions
resembled noise. This requires further investigation. We
could also try training a second layer of feature extractors
on top of the first, since a number of works have demon-
strated that using multiple layers can improve classification
performance [12, 15, 16].

5. CONCLUSION

In this paper, we have investigated the ability for PSD to
automatically learn useful features from constant-Q spec-
trograms. We found that the features learned capture infor-
mation about which chords are being played in a particular
frame. Furthermore, these learned features can perform at
least as well as hand-crafted features for the task of genre
recognition. Finally, the system we proposed is fast and uses
a simple linear classifier which scales well to large datasets.

In future work, we will apply this method to larger datasets,
as well as a wider range of MIR tasks. We will also exper-
iment with different ways of capturing temporal dependen-
cies between frames. Finally, we will investigate using hi-
erarchical systems of feature extractors to learn higher-level
features.
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UMR 8506, CNRS-SUPELEC-Univ Paris-Sud
91172 Gif-sur-Yvette Cedex

helene.papadopoulos@lss.supelec.fr
matthieu.kowalski@lss.supelec.fr

ABSTRACT

This paper investigates the use of musical priors for
sparse expansion of audio signals of music on overcom-
plete dictionaries taken from the union of two orthonor-
mal bases. More specifically, chord information is used to
build a structured model that takes into account dependen-
cies between coefficients of the decomposition. Evaluation
on various music signals shows that our approach provides
results whose quality measured by the signal-to-noise ratio
corresponds to state-of-the-art approaches, and shows that
our model is relevant to represent audio signals of Western
tonal music and opens new perspectives.

1. INTRODUCTION

We propose in this paper a new approach for structured
sparsedecomposition of a music signal in an overcomplete
time-frequency dictionary. Starting from existing methods
that are based on physical signal properties, we propose to
incorporate musical priors in order to built signal represen-
tations that are more suitable to music. For this, we take
advantage of the recent works that have been done on chord
estimation in the context of music content processing.

The problem of representing an audio signal using a
time-frequency dictionary has been given a lot of atten-
tion these last few years. The specificity of music audio
signals is that, very often, several types of components are
superimposed, as for instance tonal components (the par-
tials of the notes) and transients (the attacks of the notes).
These various components may have significantly differ-
ent behaviors. For instance fast varying transient require
short analysis window whereas low varying tonals require
long windows. Thus, they cannot be represented within the
same basis. This is whyhybrid models allowing a simul-
taneous representation of different components have been
proposed [4,12,17,22].
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Among the various existing transforms, the modified
discrete cosine transform (MDCT) [15] is a standard choice
for the bases [6,14]. Following these approaches, we con-
sider in this work a dictionary built as the union of two
MDCT bases with different time-frequency resolutions. The
narrow band basis - with long time resolution - is used to
estimate the tonal parts of the signal, and the wide band
basis - with short time resolution - is used to estimate the
transient parts. Such a dictionary is chosen overcomplete,
and thus the expansion of the signal with respect to the
dictionary is not unique.Sparsitymay be used as a selec-
tion criterion for finding the expansion coefficients, in the
sense that only a few coefficients of the decomposition of
the signal on the bases are significantly nonzero. The sig-
nal can thus be well approximated by a limited number of
coefficients. This problem is often referred to assparse
regression.

A common approach to find a sparse expansion of sig-
nals in overcomplete dictionaries consists of minimizing
the ℓ1 norm of the expansion, and is known asbasis pur-
suit [1], or LASSO [21]. Various methods have been also
proposed: they include variational approaches [13], prob-
abilistic approaches [14], greedy methods, such as match-
ing pursuit algorithms [2,16], or Bayesian formulations as
for instance EM-based algorithms [9]. In the framework of
Bayesian variable selection, MCMC (Markov chain Monte
Carlo) type approaches that consider a dictionary constructed
as the union of two orthonormal bases have been proposed
[5, 7]. One of the main advantages of the MCMC tech-
niques is their robustness because they scan the whole of
the posterior distribution and thus are unlikely to fall into
local minima. However, this is done at the expanse of high
computational cost.

In order to fully exploit the dual nature of audio music
signals mentioned above, some approaches consider de-
pendencies between significant coefficients. In the time-
frequency plane, the partials of the notes will generate hor-
izontal lines localized in frequency, whereas the attacks of
the notes and the percussive sounds will generate vertical
lines localized in time. Ideally, this structure should be re-
flected in the signal decomposition. This is why we are in-
terested in finding a signal approximation that is not only
sparse, but also structured. Previous approaches that use
unstructured priors, such as Bernoulli models have shown
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that they generate isolated coefficients with high ampli-
tude in both bases [7, 14]. These components do not have
any musical meaning and are usually perceived as “musi-
cal artifacts” or “musical noise” in the reconstructed sig-
nal. Considering dependencies between atoms coefficients
and using structured priors allows reducing the number of
such undesirable components. Various approaches have
been proposed for introducing dependencies between co-
efficients in the time-frequency domain. Structures can
be modeled directly in the coefficients themselves, such as
in [13]. However, dependencies are often introduced in the
time-frequency indices, rather than directly in the coeffi-
cients themselves. Among existing approaches, frequency
persistency properties of the transient layer can be modeled
using structured Bernouilli models [14]; persistency along
the frequency axis is favored using Markov models [17];
in [8], structural constraints on the coefficients that rely
on physical properties of the signal are imposed for both
layers, using two types of Markov chains. It results in a
“horizontal structure” for the tonal layer and a “vertical
structure” for the transient layer. Up to now, additional
structure constraints that have been added rely on physi-
cal properties of the signal. The originality of our work is
that we propose to incorporate priors that are based on mu-
sical information. Relying on the model presented in [8]
within a Bayesian framework, we build a structured model
for sparse signal decomposition that incorporates musical
priors for tonal layer modeling. Our model is particularly
well adapted to the tonal structure of signals and fits the
intrinsic nature of Western tonal music.

Sparse representations of signals have recently proved
to be useful for a wide range of applications in signal pro-
cessing, such as denoising [6], coding and compression [3,
20] or source separation [7]. Here, we focus on the task of
denoising an excerpt of musical audio. Our approach pro-
vides results whose quality in term of signal-to-noise ratio
(SNR) corresponds to state-of-the-art approaches, while
better reflecting the nature of music audio signal.

The structure of the paper is as follows. First, in Section
2, we present our model for sparse signal decomposition
on hybrid dictionaries that incorporates musical priors; our
main contribution is described in part 2.3. We briefly ad-
dress the problem of parameters estimation in Section 3. In
Section 4, we present and discuss the results of our model.
Conclusions and perspectives for future works are given in
Section 5.

2. SIGNAL MODEL

This section introduces first the mathematical model used
to represent the audio signal, and then defines the priors
chosen in a Bayesian context. Particularly, the new musical
prior based on thechromagramis exposed in section 2.3.

2.1 Model

In this part, we describe our model for signal decompo-
sition with sparse constraint on ahybrid dictionary of ele-
mentary waveforms oratoms. The dictionary is constructed

as the union of two orthonormal bases with different time-
frequency resolution that account respectively for the tonal
and the transient parts of the signal. We rely on the model
proposed in [8] and we consider a tree-layer signal model
of the form:signal = tonals + transients + residual.

Let V = {vn, n = 1, . . . , N} and U = {um, m =
1, . . . , N} be two MDCT bases ofRN with respectively
long frameℓton to achieve good frequency resolution for
tonals and short frameℓtran to achieve good time resolu-
tion for transients. The MDCT is a bijective linear trans-
form and we notenton = N

ℓton
andntran = N

ℓtran
the num-

ber of frames for each basis (see Fig. 2). Here,n andm
are time-frequency indexes and will be denoted in the fol-
lowing n = (q, ν) ∈ [1, ℓton] × [1, nton] or n = (q, ν) ∈
[1, ℓtran]× [1, ntran].

We denoteD = V ∪U the dictionary made as the union
of these two bases.D is overcomplete inRN , and any
x ∈ R

N admits infinitely many expansions in the form:

x =
X

n∈I

αnvn +
X

m∈I

βmum + r (1)

whereI = {1, . . . , N}, αn andβm are the expansion co-
efficients andr represents the noise term.

We are interested in sparse signals, i.e. signals that may
be written as:

x =
X

λ∈Λ

αλvλ +
X

δ∈∆

βδuδ + r (2)

whereΛ and ∆ are small subsets of the index setI =
{1, . . . , N} that account for the significant coefficients. In
what follows, they will be referred to assignificance maps.

We introduce two indicator random variablesγton,n and
γtran,m corresponding to the significance mapsΛ and∆:

γton,n =



1 if n ∈ Λ
0 otherwise γtran,m =



1 if m ∈ ∆
0 otherwise (3)

We can therefore rewrite Eq. (2) as:

x =
X

n∈I

γton,nαnvn +
X

m∈I

γtran,mβmum + r (4)

2.2 Coefficient Priors

We assume that, conditional upon the significance mapsΛ
and∆ , the coefficientsαn andβm are independent zero-
mean normal random variables:

p(αn|γton,n, σton,n) = (1− γton,n)δ0(αn) + (5)

γton,nN (αn|0, σ2
ton,n)

p(βm|γtran,m, σtran,m) = (1− γtran,m)δ0(βm) +

γtran,mN (βm|0, σ2
tran,m)

whereδ0 is the Dirac delta function and the variancesσton,n

andσtran,m are given a conjugate inverted-Gamma prior.
Sparsity is enforced whenγn = 0 (resp.γm = 0). In this
case, the coefficientsαn (resp.βm) are set to0.
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2.3 Indicator Variable Priors

The significance mapsΛ and∆ are given structured priors.
The one corresponding to the tonal basis encodes musical
information while the one corresponding to the transient
basis is based on physical properties of the signal. Both of
them are “vertical” structures.

2.3.1 Model for Tonals

For the significance map corresponding to the tonals, we
propose to model dependencies between indicator variables
using musical information. Let us assume that we know
the score corresponding to the musical excerpt and that,
for each frameq ∈ {1, . . . , nton}, we know which notes
the signal is composed of.

Here, we want to work directly on audio. However, the
symbolic transcription (the score) of a piece of music is
not always available, especially in musics such as jazz mu-
sic where there is a large part devoted to improvisation. In
addition, algorithms that extract a transcription from an au-
dio signal, such as multi-f0 estimation algorithms [24], are
still limited and costly. However, numbers of recent works
have shown that it is possible to accurately extract robust
mid-level representation of the music, such as the chord
progression [18].

We propose to give a musical prior to the indicator vari-
ables using musical information obtained from the chord
progression. The output of a chord estimation algorithm
consists in a progression of chords chosen among a given
chord lexicon. Each chord may be characterized by the
semitone pitch classes or chroma that correspond to the
notes it is composed of. Since their introduction in 1999,
Pitch Class Profiles[10] or chroma-based representations
[23] have become common features for estimating chords.
They are traditionally 12-dimensional vectors, with each
dimension corresponding to the intensity associated with
one of the 12 semitone pitch classes (chroma) of the West-
ern tonal music scale, regardless of octave. The succession
of chroma vectors over time is known aschromagram.

In general, the chord lexicon does not distinguish be-
tween any possible combination of simultaneous notes but
is typically reduced to a set of chords of 3 or 4 notes. The
number of notes composing the chords will be denoted by
Nc in the following. Here, we limit our chord lexicon to
the24 major and minor triads (Nc = 3). The method we
propose could be extended to larger dictionaries.

The chord progression does not provide an exact tran-
scription of the music. For instance, passing notes are
in general ignored, missing notes in the harmony may be
added. Moreover, the chords are estimated regardless of
octave. However, experiments show that the provided mu-
sical information is sufficient enough to build musically
meaningful priors.

Given a fixed frame indexq, let {pc
k}k=1,...,Nc

denote
the semitone pitch-classes (chroma) corresponding to the
estimated chordcq. Let also{pMDCT

ν }ν=1,...,ℓton denote
the semitone pitch classes corresponding to each MDCT
bin.

Assuming a perfect tuning ofA = 440Hz, a MDCT bin
of frequencyfν is converted to a chromapMDCT

ν by the
following equation:

pMDCT
ν = (12 log2

fν

440
+ 69) (mod12) 1 (6)

The indicator variables{γton,(q,ν)}ν=1,...,ℓton are given
the following membership probabilities:

PΛ{γton,(q,ν) = 1} (7)

=

{
pton if ∃k ∈ [1, Nc] | p

MDCT
ν = pc

k

1− pton otherwise

where0 ≤ pton ≤ 1. The significance maps correspond-
ing to the tonal layer should reflect the tonal content of the
audio signal. In practice, the valuepton will be close to
1 (in our experiments,pton = 0.9) so that atoms corre-
sponding to the notes that are played are given high prior.
The significant map for the tonal layer corresponding to
theGlockenspielaudio signals of our test-set is illustrated
in Fig. 1. A set of atoms is selected at each frame accord-
ing to the notes of the (chord) transcription, regardless of
octave. For instance all atoms{B1, B2, . . .} correspond-
ing to the semitone B are selected when the first B note
of theGlockenspielis sounded. The significance maps are
given structures of “tubes” that have a musical meaning.
Note that we provide here a “vertical structure” for tonals.

Structured significance map without harmonics
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Figure 1. Structured significance map for theGlockenspiel
using musical information. Left: only notes composing
the chords are considered. Right: higher harmonics are
considered. The transcription is indicated in the bottom.

Two additional components may be added to improve
the model.
• First, the instruments may have been tuned according to
a reference pitch different from the standardA4 = 440Hz.
In this case it is necessary to estimate the tuning of the
track and Eq. (8) becomes:

pMDCT
ν = (12 log2

fν

Aest

+ 69) (mod12) (8)

whereAest denotes the estimated tuning, here obtained
with the method proposed in [19].

1 a (modb) denotes the mathematical operatormodulo, the remainder
whena is divided byb
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• Secondly, higher harmonics may be considered in the
model. Each note produces a set of harmonics that results
in a mixture of non-zero values in the chroma vector corre-
sponding to the chord. For instance a C note will produce
the set of harmonics{C−C−G−C−E−G− . . .}. They
can be considered in the significance maps, as illustrated in
the right part of Fig. 1. Here we take into account the first
6 harmonics of the notes2 .

2.3.2 Model for Transients

Following [8], persistency in frequency of the time-frequency
coefficients corresponding to transient layer is modeled giv-
ing a vertical prior structure to the indicator variables in
the second basis. Given a frame indexq, the sequence
{γtran,(q,ν)}ν=1,...,ℓtran

is modeled by a two-state first-
order Markov chain with probabilitiesPtran,00 andPtran,11,
assumed equal for all frames, and with learned initial prob-
ability πtran. The model is illustrated in Fig. 2.

Figure 2. Vertical model for transients. Adapted from [8].

2.4 Residual

The residual signalr is modeled as a Gaussian white noise,
with varianceσ2, which is given an inverted-Gamma con-
jugate prior.

3. MCMC INFERENCE

Following [8], the posterior distribution of the set of pa-
rameters and hyperparameters of the model, denoted byθ,
is sampled from using a Gibbs sampler [11], which is a
standard Markov Chain Monte Carlo (MCMC) technique
that simply requires to iteratively sample from the poste-
rior distributions of each parameter upon datax and the
remaining parameters.

The Minimum Mean Square Estimates (MMSE) of the
parametersθ can then be computed from the Gibbs sam-
ples{θ(1), θ(2), . . . , θ(K)} of the posterior distributionp(θ|x):

θ̂MMSE =
∫

θp(θ|x)dθ (9)

≈ 1
K

∑K
k=1 θ(k) (10)

2 We limit the number of considered harmonics to 6 because manyof
the higher harmonics, which are theoretically whole numbermultiples of
the fundamental frequency, are far from any note of the Western chro-
matic scale. This is especially true for the 7th and the 11th harmonics.

The MAP estimate can be computed by thresholding the
values of the MMSE. In [8], all the values of the MMSE
lower that0.5 are threshold to0 and all the values greater
than0.5 are threshold to1.

We do not detail here the expression for the update steps
of the parameters, details can be found in [8]. Time-domain
source estimates are reconstructed by inverse transform of
the estimated coefficients (inverse MDCT in our case). The
denoised estimation is constructed byx̂ = αV + βU .

4. RESULTS AND DISCUSSION

The aim of this section is to analyze the performances of
the proposed approach for the task of audio denoising. For
the sake of simplicity, we first focus in details on a mono-
phonic signal, theGlockenspiel. We also provide addi-
tional numerical results and examples on short extracts of
polyphonic music. The impact of the various parameters
(tuning, harmonics, and priors settings) is also studied.

4.1 Experimental Setup

In this article, we present results assuming that the tran-
scription is known (notes for the monophonic signal, chords
for the polyphonic signals). The 5 musical excerpts of
various music styles are described in Table 1. Our ap-
proach that incorporates musical priors for modeling the
tonal layer is compared with the one presented in [8].

Table 1. Sound excerpts used for evaluation of the model.
SR: sampling rate.

Name SR (Hz) Duration
Glockenspiel 44100 2s
Misery (Beatles) 11025 11s
Love Me Do (Beatles) 11025 5s
Beethoven String quartet Op.127 - 1 11025 11s
Mozart Piano Sonata KV310 - 1 11025 11s

Parameters: The length of the two MDCT bases are
set to1024 samples for the tonal layer and128 samples
for the transient layer, at a sampling rate of44100Hz, and
respectively to256 and32 samples at a sampling rate of
11025Hz3 . The MMSE and MAP estimates of the param-
eters are computed by averaging the last100 samples of
the Gibbs sampler, run for500 iterations.

Evaluation Measures: Artificial noisy signals are cre-
ated by adding Gaussian white noise to the clean signal
with various input SNRs. The case without additional noise
WN (without noise) corresponds to a separation into two
layerstransient + tonal. Partials are expected to be recov-
ered in the tonal layer while attacks or percussive sounds
will be recovered in the transient layer. The results in terms
of output SNR are summarized in Table 2 and provide an
objective evaluation measure. However, although widely
used for assessing algorithm performances, the SNR is not
a completely relevant measure of distortion for audio sig-
nals. Subjective evaluation by listening to the signals is
also required. The audio excerpts are available at:http:

3 As underlined in [8,14], better results are obtained using avery short
window length for the transients (≈ 3ms). The two window lengths must
be significantly different enough to discriminate between tonals and tran-
sients
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Table 2. Resulting values of output SNRs (dB) for various
input SNRs and without additional Gaussian noise (WN ).

Proposed approach [8] approach
SNR WN 0 10 20 WN 0 10 20
Glockenspiel 71.2 14.1 21.3 28.5 70.2 15.7 22.5 29.2

Misery 42.3 7.0 13.0 20.9 44.4 7.3 13.3 21.1

Love Me Do 28.6 6.8 12.5 19.3 29.6 6.9 12.7 19.4

Beethoven 54.5 8.5 13.6 21.6 54.6 8.9 14.0 21.9

Mozart 62.6 9.3 15.4 23.4 60.9 9.8 15.9 23.9

Computational Performances: The algorithms are im-
plemented in MATLAB and performed on a MacBook Pro
Intel Core 2 Duo clocked at2.4GHz with2GB RAM. The
computation time of the proposed method is similar to the
one obtained with [8],≈ 447 s for processing theGlock-
enspielsignal. The use of MCMC schemes generates high
computational costs.

4.2 Results and Discussion

Concerning the quality of denoising, the results provided in
Table 2 show that our model provides results that are com-
parable to state-of-the-art algorithms in terms of SNR: the
difference between the presented method and the [8] are in
general lower than1 dB. However, noticeable differences
may be perceived while listening to the sound files.

The main interest of the proposed model lies in the mod-
eling of the tonal layer. Fig. 3 shows significance maps of
the selected atoms (MAP estimates) for theGlockenspiel
signal, in theWN case. As can be seen, the use of musi-
cal priors yields to a structure that better reflects the music
content of the signal compared to the approach that uses
physical priors. The resolution of the tonal significance
map is sharper. The partials of the notes clearly appear
as thin horizontal lines and the beginning of the notes is
very clear. One can also see that our method using musical
priors provides sparser estimates of the significance map.

It should be noticed that, especially under low-input
SNRs conditions, one may perceive some artifacts in the
reconstructed signal with the method we propose. They are
probably due to the fact that some high frequencies are cap-
tured by the transient basis rather than by the tonal basis.
Future works should concentrate on modeling structured
priors for the transient layer that are more adapted to the
one proposed here for the tonal layer. However, in spite of
these artifacts, one can find by listening to the signals that
the sound of the reconstructed signals relying on musical
priors is often “richer” than the one obtained with the ap-
proach used in [8]. Fig. 4 shows the significance maps of
the selected atoms (MMSE estimates) for theMozart sig-
nal, in the caseSNRin = 10dB. Again, the partials of the
notes are better discriminated using musical priors, espe-
cially in low frequencies.

Indicator Variable Prior Set-up: The valuepton in
Eq. (7) has an effect on the above-mentioned artifacts pro-
duced by our model in low-input SNRs conditions. For
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Figure 3. Significance maps of the tonal and transient
bases (MAP estimates) for theGlockenspielexcerpt, case
WN . Top: approach [8]. Bottom: proposed approach.

instance, settingpton to 0.99 instead of0.9 in the case
of theGlockenspielsignal allows reducing the artifacts for
SNRin = 10dB. However, our experiments show that in-
dicator variables corresponding to atoms that do not be-
long to the chord must not be set to0. Settingpton to 1
results in reconstructed signals of very “poor” sound, as it
can be assessed by listening tests. Output SNRs are also
degraded. Settingpton < 1 allows taking into account im-
perfections of the chromagram given as input of the hybrid
model (temporal imperfections due to windowing, discrep-
ancy between the ideal model and reality,etc.).

Impact of Tuning: Integrating tuning information in
the model does not lead to improvement in terms of output
SNR values, but yields to estimated significance maps that
are more coherent with our model. Indeed, the “tubes”
depend on the tuning and thus, in case of ”bad” tuning, the
atoms are selected within the correct frequency regions.

Impact of Harmonics: We did not find any improve-
ment when adding harmonics in our model. This may be
partially explained by the fact that, in the polyphonic case,
the contribution of a large part of the first 6 higher harmon-
ics of a note is already taken into account in the signifi-
cance map by the other notes. For instance, let us consider
C major chord (C-E-G). The C note generates harmonics E
and G. E and G are thus both actual played notes and har-
monics. Their contribution is already partially taken into
account in the significance map in the case of the model
“without harmonics” .
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Figure 4. Significance maps of each basis (MMSE esti-
mates) for theMozartexcerpt, caseSNRin = 10dB. Top:
approach [8]. Bottom: proposed approach.

5. CONCLUSION AND FUTURE WORKS

In this article, we have presented a method for sparse de-
composition of audio signals of music on overcomplete
dictionaries made as union of two MDCT bases. We rely
on previous works that consider dependencies between sig-
nificant coefficients of the expansion. The originality of
our approach is that we incorporate musical priors in the
model. Our approach provides results whose quality cor-
responds to state-of-the-art approaches for the denoising
task, and which show that our model that is adequate to
fairly represent audio signals of music. The main contri-
bution of the article is to show that the musical prior based
on musical knowledge performs as well as more sophisti-
cate prior as HMM and appears to be more “natural”. The
significance map corresponding to the tonal layer is coher-
ent with the intrinsic content of music audio.

Future work will concentrate on fully integrating in the
model chord estimation in an interactive fashion. The chro-
magram could be updated with the other parameters during
MCMC inference in order to possibly improve the chord
estimation. The prior we propose has a great potential of
improvement in the future (for example, by using a time
segmentation, a larger chord lexicon etc.)

As far as we know, the introduction of musical priors in
hybrid models for spare decomposition is novel. The use
of mid-level representation of audio - such as the chroma-
gram, as proposed in this paper - or scores, if available,
could be extended to many applications such as denoising,

source separation, compression, coding and many others.
Usually, only physical and mathematical criteria are taken
into account. We believe that the use of musical informa-
tion opens new interesting perspectives.
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ABSTRACT

We consider music classification problems. A typical ma-
chine learning approach is to use support vector machines
with some kernels. This approach, however, does not seem
to be successful enough for classifying music data in our
experiments. In this paper, we follow an alternative ap-
proach. We employ a (dis)similarity-based learning frame-
work proposed by Wang et al. This (dis)similarity-based ap-
proach has a theoretical guarantee that one can obtain accu-
rate classifiers using (dis)similarity measures under a natu-
ral assumption. We demonstrate the effectiveness of our ap-
proach in computational experiments using Japanese MIDI
data.

1. INTRODUCTION

Music classification is an important problem in information
retrieval from music data. There are a lot of researches to
tackle the problem (see, e.g., [1,3,4,10,11,14,18]), as highly
accurate music classifiers are useful for music search and
feature extraction.

One of typical approaches to classify music is to rep-
resent each music data as a feature vector, which is then
classified by standard machine learning methods. On the
other hand, finding good features for music classification is
a non-trivial task. For example, performance worm [15],
performance alphabet [16], and other approaches includ-
ing [1,10,11,18].

Another popular approach in Machine Learning is to use
support vector machines (SVMs) with kernels [7–9,12,19].
One way to improve accuracy of music classification is to
design a good kernel for music data. This approach, how-
ever, does not seem to be very successful so far. As we
will show later, well known string kernels such asn-gram
kernels [12] and mismatch kernels [8] for texts do not ob-
tain satisfactory results for music classification in our ex-
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periments. Further, to design a kernel, the function to be
designed needs to be positive semidefinite, which is a limita-
tion when we try to exploit the structure of music to improve
classification accuracy.

In this paper, we follow an alternative approach. We em-
ploy a (dis)similarity-based learning framework proposed
by Wang et al. [20]. This (dis)similarity-based approach has
a theoretical guarantee that one can obtain accurate classi-
fiers using (dis)similarity measures under a natural assump-
tion. In addition, the advantage of this approach is able to
useany (dis)similarity measures which do not have to be
positive semidefinite andanydata.

Further, we combine this (dis)similarity-based learning
approach with1-norm soft margin optimization formula-
tion [5,22]. An advantage of the formulation is that it is use-
ful for feature selection because of the sparse nature of the
underlying solution. In other words, the formulation help
us to find “relevant” instances (i.e., music data) to classify
music. Such relevant instances might contain representative
features of the class. Therefore, it might be useful to extract
good features.

For simplicity, throughout the paper, we deal with clas-
sification problems of symbolic music data such as MIDI
files only. Thus we do not consider audio signal data and we
assume (dis)similarity functions over texts. Note that our
framework using (dis)similarity functions does not depend
on the data format. We can deal with audio signal data as
well if we employ (dis)similarity functions over signals.

We demonstrate the effectiveness of our approach in com-
putational experiments using Japanese music data. Our ap-
proach, combined with non-positive semidefinite (dis)similarity
measures such as edit distance, shows better performance
than SVMs with string kernels.

2. LEARNING FRAMEWORK USING
DISSIMILARITY FUNCTION

In this section, we review a learning framework using dis-
similarity function proposed by Wang et al. [20]. LetX be
the instance space. We assume that a dissimilarity function
d(x, x′) is a function fromX × X to R+. A pair (x, y) of
instancex ∈ X and labely ∈ {−1, 1} is called anexample.
For instance,X might be some set of MIDI data and then
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an example is a pair of a MIDI file and positive or negative
label. The learner is given a setS of examples, where each
example is drawn randomly and independently from an un-
known distributionP overX×{−1, +1}. Then, the learner
is supposed to output a hypothesish(x) : X → {−1, 1}.
The goal of the learner is to minimize the error of the hy-
pothesish w. r. t. the distributionP , i.e., the probability
thath misclassifies the label of a randomly drawn example
(x, y) according toP , Pr

(x,y)∼P
(h(x) 6= y). In particular, we

assume that a hypothesis is constructed using a dissimilarity
functiond. Also, we will use the notation thatsgn[a] = 1 if
a > 0 and−1 otherwise.

Then we show a definition of “good” dissimilarity func-
tion.

Definition 1 (Strong (ε, η)-goodness, Wang et al. [20])
A dissimilarity functiond(x, x′) is said to be strongly (ε,η)-
good, if at least1−ε probability mass of examplesz satisfy:

Pr
z′,z′′∼P

(d(x, x′) < d(x, x′′)|y′ = y, y′′ = −y) ≥ 1/2+η/2

(1)
where the probability is over random examplesz′ = (x′, y′)
andz′′ = (x′′, y′′).

Roughly speaking, this definition says that for the most of
random examplesz = (x, y) and random positive and nega-
tive examples, the instancex is likely to be closer to the in-
stance with the same label. Then, under the natural assump-
tion that the given dissimilarity functiond is (ε, η)-good, we
can construct an accurate classifier based ond, as is shown
in the following theorem.

Theorem 1 (Wang et al. [20]) If d is a strongly(ε, η)-good
dissimilarity function, then with probability at least1 − δ
over the choice ofm = (4/η2) ln(1/δ) pairs of examples
(z′, z′′) with labelsy′ = 1, y′′ = −1, i = 1, 2, ..., m, the
following classifierF (x) = sgn[f(x)] where

f(x) =
1
m

n∑
i=1

sgn[d(x, x′′i )− d(x, x′i)]

has an error rate of no more thanε + δ. That is

Pr
z∼P

(F (x) 6= y) = Pr
z∼P

(yf(x) ≤ 0) ≤ ε + δ.

This theorem says that an unweighted voting classifier con-
sisting of sufficiently many randomly drawn examples is ac-
curate enough with high probability. We should note that
the existence of a(ε, η)-good dissimilarity function might
be too restrictive in some cases. For such cases, Wang et al.
also proposed more relaxed definitions of good dissimilarity
functions. Under such relaxed definitions, it can be shown
that there exists a weighted combination

f(x) =
m∑

i=1

wihi(x),

where eachwi ≥ 0,
∑

i wi = 1, hi(x) = sgn[d(x′′i , x) −
d(x′i, x)] andx′′i andx′i are positive and negative instances,
such thatsgn[f(x)] is accurate enough (see [20] for the de-
tails).

3. OUR FORMULATION

In this section, we consider how to find an accurate weighted
combination of base classifiers consisting of a pair of posi-
tive and negative instances. To do so, we employ the1-norm
soft margin optimization, which is a standard formulation
of classification problems in Machine Learning (see,e.g, [5,
21]). Simply put, the problem is to find a linear combi-
nation of base classifiers (or a hyperplane over the space
defined by base classifiers) which has large margin with re-
spect to examples, where the margin of a linear combination
w with respect to an examplez is a distance betweenw and
z. In fact, the large margin generalization theory (e.g., [17])
guarantees that a weighted combination of base classifier
is likely to have higher accuracy when it has larger margin
w.r.t. examples. Further, an additional advantage of1-norm
soft margin optimization is that the resulting linear combi-
nation of base classifiers is likely to be sparse since we reg-
ularize1-norm of the weight vector. This property is useful
for feature selection tasks.

3.1 The1-norm soft margin formulation

Suppose that we are given a setS = {(x1, y1), . . . , (xm, ym)},
where each(xi, yi) is an example inX × {−1, +1}. Here,
following the dissimilarity-based approach in the previous
section, we assume the set of hypotheses,H = {h(x) =
sgn[d(xi, x) − d(xj , x)] | xi andxj are positive and neg-
ative instances inS, respectively}. For simplicity of the
notation, we denoteH asH = {h1, . . . , hn}, wheren is
the number of pairs of positive and negative examples inS.
Then, the1-norm soft margin optimization problem is for-
mulated as follows (e.g. [5,21]):

max
ρ,b∈R,w∈Rn,ξ∈Rm

ρ− 1
ν

m∑
i=1

ξi (2)

sub.to

yi(
∑

j

wjhj(xi) + b) ≥ ρ− ξi(i = 1, . . . , m),

w ≥ 0,
n∑

j=1

wj = 1

ξ ≥ 0.

Here the termyi(
∑

j wjhj(xi)+b) represents the margin
of the hyperplane(w, b) w.r.t. an example(xi, yi) when the
1-norm of w is constrained to be1. It is known that the
margin is measured as∞-norm distance between(w, b) and
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(xi, yi) [13]. The parameterρ means the minimum margin.
Note that if the margin is positive w.r.t. all the examples,
the examples are linearly-separable. For the case when the
data is inseparable, we allow each example to violate the
minimum marginρ by the amount ofξi. So, the problem
is to maximize the minimum marginρ while minimizing
the sum of losses defined asξi. The parameterν ∈ [1,m]
controls the tradeoff between maximization of the margin
and minimization of losses.

By using Lagrangian duality (e.g. [2]), the dual problem
is given as follows:

min
γ,d

γ (3)

sub.to
Edged(hj) =

∑
i

diyihj(xi) ≤ γ(j = 1, . . . , n),

d ≤ 1
ν
1,

d ≥ 0,
m∑

i=1

di = 1

d · y = 0.

The dual problem is about finding a distributiond over
examples satisfying linear constraints. In particular, since
yihj(xi) = 1 if and only if hj(xi) = yi, Edged(hj) can
be viewed as a weighted accuracy of the hypothesis ofhj

w.r.t. the distributiond. So, in other words, a solutiond∗

of the dual problem is the most “difficult” distribution w.r.t.
hypotheses inH. Note that, since the both problems (2) and
(3) are linear programs, these problems are equivalent. That
is, if we solve one problem, we can obtain a solution of the
other problem as well.

We solve the dual problem (3) using LPBoost [5], which
is shown in Algorithm 1. LPBoost chooses a hypothesis
h ∈ H and solve a sub-problem of the dual problem (3) it-
eratively until some termination condition is satisfied. It is
known that after sufficient number of iterations, output by
LPBoost converges to a solution of the problem (3). More
precisely, the following statement holds for any given preci-
sion parameterλ > 0.

Theorem 2 (Demiriz et al. [5]) LPBoost outputs a final hy-
pothesis such that the corresponding solution(γT , dT ) sat-
isfiesγT ≤ γ∗ + λ, where(γ∗,d∗) is an optimal solution of
the dual problem (3).

4. COMPUTATIONAL EXPERIMENT

In this section, we show preliminary experimental results.
The task we consider is classification problems over a data
set of Japanese songs.

Algorithm 1 LPBoost(S,λ)

(1) Letd1 be the uniform distribution overS.

(2) Fort = 1, . . . ,

(a) Choose a hypothesish(t) ∈ H whose edge w.r.t.
dt is more thanγt + λ.

(b) If such a hypothesis does not exist inH, letT =
t− 1 and break.

(c) Solve the soft margin optimization prob-
lem (3) w.r.t. the restricted hypothesis set
{h(1), . . . , h(t)}. Let (γt+1, dt+1) be a solution.

(γt+1, dt+1) = arg min
γ,d

γ

sub. to∑
i

diyjh
(j)(xi) ≤ γ (j = 1, . . . , t)

d ≤ 1
ν
1.

(3) Outputf(x) =
∑T

t=1 wth
(t)(x), where eachwt (t =

1, . . . , T ) is a Lagrange dual of the soft margin opti-
mization problem (3).

4.1 Data set

Our data set of Japanese songs consists of119 pop songs
(JPOP) and119 Enka songs, where Enka is a genre of Japanese
songs whose style is rather close to traditional folklore songs.
We convert MIDI format into string data according to the
method specified in Kadota et al. [6].

For the original data in the MIDI format, we specify a
particular channel which corresponds to principal melody,
and extract a single sequence consisting of notes and rests,
where a note is a pair of pitch and duration values and a rest
has only a duration value. We choose the highest pitch if
more than one pitch is “NOTE ON” at an instant. In addi-
tion we quantize the obtained data so that all the duration
values are multiples of the MIDI delta time correspinding to
the sixteenth note. Then we convert the quantized note/rest
sequences into string data of three types (see Figure 1):

Pitch string We divide each note (rest) into sixteenth notes
(rests) to produce a string consisting of pitches and
rests. For simplicity, we ignore an octave difference,
and therefore the number of possible pitches is twelve.
The alphabet size is thus 13.

Rhythm string Similarly, we divide each note (rest) into
sixteenth notes (rests) and produce a string consisting
of four symbols:N (beginning fragment of a note),
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Classifier SVM our method
(dis)similarity measure n-gram kernel mismatch kernel n-gram kernel mismatch kernel edit distance LCS
Pitch Nontransposed 61.34 65.55 70.16 73.52 86.12 79.42

Transposed 61.34 65.55 70.16 73.52 86.12 79.42
Rhythm 86.97 86.97 88.67 89.90 87.79 92.87
Note Nontransposed 66.39 71.01 76.46 79.81 87.38 85.33

Transposed 66.39 71.01 76.46 79.81 87.38 85.33

Table 1. Classification accuracy (%)

!! !! !! "! "! #! $! $! $!

%! &! '! (! %! %! &! &! &!

!"#$%!

&%'#%(!
)! *! '! (! +! ,! -! -! -!)*#+!

)! )! '! '! +! ,! ,! ,! ,!

Figure 1. How to extract string data from note/rest se-
quence.

n (non-beginning fragment of a note),R (beginning
fragment of a rest) andr (non-beginning fragment of
a rest).

Note string Composition of pitch and rhythm strings. That
is, from pitch stringa1 . . . am and rhythm stringb1 . . .
bm for a same note/rest sequence, we composed the
string(a1, b1) . . . (am, bm). The alphabet size is 26.

For pitch strings and note strings, we have an option to
transpose them into C major (C minor).

4.2 Classification algorithms

The algorithms we examined are SVMs with string kernels
and LPBoost with the (dis)similarity-based learning frame-
work (our method). For SVMs, we usedn-gram kernels [9]
with n = 1, . . . , 10 and mismatch kernels [8] with parame-
tersn = 2, . . . , 20 andk = 1, . . . , n− 1. For other settings,
We used default parameters of LIBSVM for SVMs.

For our method, we used two (dis)similarity measures:
the length of Longest Common Subsequence (LCS) and the
edit distance, in addition to the string kernels used for SVMs.
For the parameterν, we setν = cm, wherem is the given
sample size andc = 0.05, 0.1, 0.15, 0.2, 0.25.0.3. As de-
scribed in Section 3, we used base classifiersh(x) = sgn[
d(xi, x)−d(xj , x)] associated with pairs of positive instance

xi and negative instancexj . In total, we used119 ∗ 119 =
14161 base classifiers.

We evaluated SVMs and our method by performing5-
fold cross validation. The results are summarized in Table 1,
where the accuracies of respective methods are shown with
best parameters.

4.3 Result

As is shown in Table 1, our method shows better perfor-
mance than SVMs with all kernels. For pitch string and note
string, the best value was obtained by our method with the
edit distance. For rhythm string, the best value was gained
by our method with LCS. For pitch string and note string,
transposition in the note did not affect the classification ac-
curacy in our experiments.

Our methods with the edit distance and with LCS have
better results than those with then-gram and the mismatch
kernels. This might be because the edit distance and LCS
capture characteristics of JPOP and Enka better. Over all of
the (dis)similarity measures and kernels we used, the best
classification results were obtained on rhythm string. This
might be because JPOP has rather high tempo while Enka
has slow tempo.

Finally, we investigate which base classifiers

h(x) = sgn[d(xi, x)− d(xj , x)],

associated with pairs of JPOPxi and Enkaxj , contribute an
accurate classification.

In the case of our method with the edit distance on rhythm
strings, among all possible 14,161 pairs, at most 66 pairs
have a non-zero weight in the final weighted combination
for all the parametersc. So, the obtained weighted combi-
nation is quite sparse.

We observe that the resulting final weighted combination
is sparser when we employ (dis)similarity measures.

For rhythm string, we choosec = 0.3 and c = 0.15
which give the best classification results for LCS and the
edit distance, respectively. We arrange all the pairs in de-
creasing order of their weights, and the top 10 pairs are dis-
played in Tables 2 and 3.
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c JPOP Title ENKA Title Weight Total of weight
0.3 Secret Heaven Norennohana 0.430940 0.43094

Secret Heaven Aiha Kirameite 0.146408 0.577349
In My Room Akashiabanka 0.140884 0.718233
Kimiga Suki Amagigoe 0.135359 0.853591
Raven Nyonin Kouya 0.116022 0.969613
Raven Okuhidabojou 0.024862 0.994475
Kimiga Suki Unga 0.005525 1

Table 2. Top 10 pairs with large weight in the final weighted combination for the edit distance.

c JPOP Title ENKA Title Weight Total of weight
0.15 Tsukiyo no koibitotachi Ohsakawan 0.208197 0.208197

Amenimo Makezu Kaettekoiyo 0.127717 0.335914
Totsuzen Otokogi 0.059798 0.395712
Only You Matsuri 0.054587 0.450299
Totsuzen Shiroi Yuki 0.050715 0.501013
FINAL DISTANCE Yukimoete 0.050270 0.551284
Tsukiyo no koibitotachi Hashi 0.046641 0.597925
Goodbye Yesterday Yoshida Shoin 0.044228 0.642153
Secret Heaven Kokoha Minatomachi 0.039791 0.681944
FINAL DISTANCE Ettou Tsubame 0.037098 0.719042

Table 3. Top 10 pairs with large weight in the final weighted combination for LCS.

In the case of the edit distance, only the top 3 pairs oc-
cupy more than 70% of total weight, and the top 5 pairs
occupy more than 90% of total weight. We omitted the last
three pairs in the top 10 list of Table 2 since their weights
are less than10−17. So, only at most5 pairs of JPOP and
Enka contribute the final classification significantly. Simi-
larly, in the case of LCS, the top 10 pairs have about 70%
of total weight. These songs in the top lists might be “repre-
sentatives” of JPOP or Enka, from which we might be able
to extract good feature representations.

5. CONCLUSION

In this paper we addressed the music classification problem.
We employed the (dis)similarity-based learning framework
proposed by Wang et al. [20]. Computational experiments
show that our method combined with string kernels such as
then-gram and the mismatch kernels outperform SVM with
them. One advantage of our approach is that it can be used
combined withany (dis)similarity measure, which do not
have to be positive semidefinite. In fact, our method with
LCS and the edit distance show better classification accu-
racy than with the string kernels. Among the three types
of string data we examined, the rhythm string seems most
suited for genre classification in our experiments. Songs in
the pairs with large weight in the resulting weighted com-
bination might be representatives of respective music gen-

res. We challenge classification problem with data set of
238 songs, however, the data set is too low to be general-
ity of this approach. We need to experiment bigger amounts
of data, and we measure classification accuracy of not only
symbolic data but also audio data. Future work is not only
music genre classification but also automatic extraction of
features of music genres or composers.
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ABSTRACT

Musical genre classification has been paramount in the last
years, mainly in large multimedia datasets, in which new
songs and genres can be added at every moment by any-
one. In this context, we have seen the growing of musical
recommendation systems, which can improve the benefits
for several applications, such as social networks and col-
lective musical libraries. In this work, we have introduced
a recent machine learning technique named Optimum-Path
Forest (OPF) for musical genre classification, which has
been demonstrated to be similar to the state-of-the-art pat-
tern recognition techniques, but much faster for some appli-
cations. Experiments in two public datasets were conducted
against Support Vector Machines and a Bayesian classifier
to show the validity of our work. In addition, we have exe-
cuted an experiment using very recent hybrid feature selec-
tion techniques based on OPF to speed up feature extraction
process.

1. INTRODUCTION

Recently, advances in technology have supported the stor-
age of large amount of data. Therefore, fast information
retrieval became a hot challenge. One of the most interest-
ing applications concerns with social network users, which
have looked forward to meet people that share common
preferences, and also to discover new good music. Thus,
an important task in this context is the music classification
into different genres aiming a better organization of music
datasets, for further recommendation.

Tzanetakis and Cook [22] proposed a work to deal with
the problem of musical genre classification using three sets
of features representing timbral texture, rhythmic and pitch
contents, together withK-Nearest Neighbors and Gaussian

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2011 International Society for Music Information Retrieval.

Mixture Models. Lambrou et al. [11] applied statistical fea-
tures in temporal domain and three different wavelet trans-
forms for the same task, and Soltau et al. [21] proposed a
new architecture called ETM-NN (Explicit Time Modeling
with Neural Networks), which employs statistical analysis
of a temporal structure.

Xu et al. [24] applied Support Vector Machines (SVMs)
to perform a hierarchical classification of different musical
genres, and Dellandrea et al. [6] compared SVMs with Neu-
ral Networks in the same context. Chan and Vasconcelos [2]
proposed a Dynamic Texture Model (DTM) for automatic
music segmentation, and Coviello et al. [4] introduced DTM
in the context of music tagging. McKay and Fujinaga [13]
proposed a novel hybrid system to handle automatic classi-
fication of musical genres composed by a Feedfoward Neu-
ral Network andK-Nearest Neighbors algorithm together
with Genetic Algorithms (GA) for feature selection. Finally,
Deepa et al. [5] used a brute force method for feature opti-
mization using different feature vectors with SVMs. The
idea is to combine the best ones at the final of the process.

In order to combine efficiency for training and effective-
ness in the classification task, a novel framework that re-
duces the pattern recognition problem to an optimum path
forest computation (OPF) in the feature space induced by
a graph was presented in its unsupervised [20] and super-
vised versions [14]. The OPF-based classifiers do not in-
terpret the classification task as a hyperplanes optimization
problem, but as a combinatorial optimum-path computation
from some key samples (prototypes) to the remaining nodes.
Each prototype becomes a root from its optimum-path tree
and each node is classified according to its strongly con-
nected prototype, that defines a discrete optimal partition
(influence region) of the feature space. The OPF frame-
work has some advantages with respect to the aforemen-
tioned classifiers: (i) it is free of parameters (supervised
version), (ii) does not assume any shape/separability of the
feature space and (iii) it runs training phase faster.

In this paper, we propose to introduce the supervised
OPF in the context of musical genre classification. As far as
we know, we are the first to apply OPF for this task. In re-
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gard to feature selection in the context of musical genre clas-
sification, it is not usual to find many works on that. There-
fore, we would like to shed light over that another main
contribution of this paper is to introduce three recently de-
veloped feature selection techniques aiming to improve mu-
sical genre classification: HS-OPF (Harmony Search with
OPF) [18], PSO-OPF (Particle Swarm Optimization with
OPF) [17] and GSA-OPF (Gravitational Search Algorithm
with OPF) [15]. The experiments are conducted in two
rounds: (i) in the former, OPF is compared with SVMs and a
Bayesian classifier, and (ii) in the second round we present
a comparison between HS-OPF, PSO-OPF and GSA-OPF
for feature selection in the context of musical genre classifi-
cation. The remainder of the paper is organized as follows.
The OPF theory is presented in Section 2. The experimental
results are discussed in Section 3. Finally, conclusions are
stated in Section 4.

2. SUPERVISED OPTIMUM-PATH FOREST

The OPF classifier works by modeling the problem of pat-
tern recognition as a graph partition in a given feature space.
The nodes are represented by the feature vectors and the
edges connect all pairs of them, defining a full connected-
ness graph. This kind of representation is straightforward,
given that the graph does not need to be explicitly repre-
sented, allowing us to save memory. The partition of the
graph is carried out by a competition process between some
key samples (prototypes), which offer optimum paths to the
remaining nodes of the graph. Each prototype sample de-
fines its optimum-path tree (OPT), and the collection of all
OPTs defines an optimum-path forest, which gives the name
to the classifier [14].

The OPF can be seen as a generalization of the well known
Dijkstra’s algorithm to compute optimum paths from a source
node to the remaining ones [7]. The main difference relies
on the fact that OPF uses a set of source nodes (prototypes)
with any path-cost function. In case of Dijkstra’s algorithm,
a function that summed the arc-weights along a path was ap-
plied. For OPF, we used a function that gives the maximum
arc-weight along a path, as explained before. Next section
states OPF theory.

2.1 Background Theory

Let Z = Z1 ∪ Z2 be a dataset labeled with a functionλ,
in which Z1 and Z2 are, respectively, a training and test
sets such thatZ1 is used to train a given classifier andZ2

is used to assess its accuracy. LetS ⊆ Z1 a set of prototype
samples. Essentially, the OPF classifier creates a discrete
optimal partition of the feature space such that any sample
s ∈ Z2 can be classified according to this partition. This
partition is an optimum path forest (OPF) computed inℜn

by the image foresting transform (IFT) algorithm [8].

The OPF algorithm may be used with anysmoothpath-
cost function which can group samples with similar proper-
ties [8]. Particularly, we used the path-cost functionfmax,
which is computed as follows:

fmax(〈s〉) =

{
0 if s ∈ S,
+∞ otherwise

fmax(π · 〈s, t〉) = max{fmax(π), d(s, t)}, (1)

in whichd(s, t)means the distance between sampless andt,
and a pathπ is defined as a sequence of adjacent samples. In
such a way, we have thatfmax(π) computes the maximum
distance between adjacent samples inπ, whenπ is not a
trivial path.

The OPF algorithm assigns one optimum pathP ∗(s) from
S to every samples ∈ Z1, forming an optimum path for-
estP (a function with no cycles which assigns to eachs ∈
Z1\S its predecessorP (s) in P ∗(s) or a markernil when
s ∈ S. Let R(s) ∈ S be the root ofP ∗(s) which can be
reached fromP (s). The OPF algorithm computes for each
s ∈ Z1, the costC(s) of P ∗(s), the labelL(s) = λ(R(s)),
and the predecessorP (s).

The OPF classifier is composed of two distinct phases:
(i) training and (ii) classification. The former step con-
sists, essentially, in finding the prototypes and computing
the optimum-path forest, which is the union of all OPTs
rooted at each prototype. After that, we take a sample from
the test sample, connect it to all samples of the optimum-
path forest generated in the training phase and we evaluate
which node offered the optimum path to it. Notice that this
test sample is not permanently added to the training set, i.e.,
it is used only once. The next sections describe in details
this procedure.

2.1.1 Training

We say thatS∗ is an optimum set of prototypes when the
OPF algorithm minimizes the classification errors for every
s ∈ Z1. S∗ can be found by exploiting the theoretical rela-
tion between minimum-spanning tree (MST) and optimum-
path tree forfmax [1]. The training essentially consists in
findingS∗ and an OPF classifier rooted atS∗.

By computing an MST in the complete graph(Z1, A), we
obtain a connected acyclic graph whose nodes are all sam-
ples ofZ1 and the arcs are undirected and weighted by the
distancesd between adjacent samples. The spanning tree is
optimum in the sense that the sum of its arc weights is mini-
mum as compared to any other spanning tree in the complete
graph. In the MST, every pair of samples is connected by a
single path which is optimum according tofmax. That is,
the minimum-spanning tree contains one optimum-path tree
for any selected root node. The optimum prototypes are the
closest elements of the MST with different labels inZ1 (i.e.,
elements that fall in the frontier of the classes). Algorithm 1
implements the training procedure for OPF.

700



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

Algorithm 1 – OPF TRAINING ALGORITHM

INPUT: A λ-labeled training setZ1 and the pair(v, d) for
feature vector and distance computations.

OUTPUT: Optimum-path forestP1, cost mapC1, label map
L1, and ordered setZ′

1.
AUXILIARY : Priority queueQ, setS of prototypes, and cost

variablecst.

1. SetZ′
1 ← ∅ and compute by MST the prototype setS ⊂ Z1.

2. For eachs ∈ Z1\S, setC1(s)← +∞.
3. For eachs ∈ S, do
4. C1(s)← 0, P1(s)← nil, L1(s)← λ(s), inserts in Q.
5. WhileQ is not empty, do
6. Remove fromQ a samples such thatC1(s) is minimum.
7. Inserts in Z′

1.
8. For eacht ∈ Z1 such thatC1(t) > C1(s), do
9. Computecst← max{C1(s), d(s, t)}.
10. If cst < C1(t), then
11. If C1(t) 6= +∞, then removet fromQ.
12. P1(t)← s, L1(t)← L1(s), C1(t)← cst.
13. Insertt in Q.
14. Return a classifier[P1, C1, L1, Z

′
1].

The time complexity for training isθ(|Z1|2), due to the
main (Lines 5-13) and inner loops (Lines 8-13) inAlgo-
rithm 1, which runθ(|Z1|) times each.

2.1.2 Classification

For any samplet ∈ Z2, we consider all arcs connectingt
with sampless ∈ Z1, as thought were part of the training
graph. Considering all possible paths fromS∗ to t, we find
the optimum pathP ∗(t) from S∗ and labelt with the class
λ(R(t)) of its most strongly connected prototypeR(t) ∈
S∗. This path can be identified incrementally by evaluating
the optimum costC(t) as

C(t) = min{max{C(s), d(s, t)}}, ∀s ∈ Z1. (2)

Let the nodes∗ ∈ Z1 be the one that satisfies Equation 2
(i.e., the predecessorP (t) in the optimum pathP ∗(t)). Given
thatL(s∗) = λ(R(t)), the classification simply assignsL(s∗)
as the class oft. An error occurs whenL(s∗) 6= λ(t). Al-
gorithm 2 implements this procedure.

Algorithm 2 – OPF CLASSIFICATION ALGORITHM

INPUT: Classifier[P1, C1, L1, Z
′
1], evaluation setZ2 (or

test setZ3), and the pair(v, d) for feature vector
and distance computations.

OUTPUT: Label L2 and predecessorP2 maps defined for
Z2.

AUXILIARY : Cost variablestmp andmincost.

1. For eacht ∈ Z2, do
2. i← 1, mincost← max{C1(ki), d(ki, t)}.

3. L2(t)← L1(ki) andP2(t)← ki.
4. Whilei < |Z′

1| andmincost > C1(ki+1), do
5. Computetmp← max{C1(ki+1, d(ki+1, t)}.
6. If tmp < mincost, then
7. mincost← tmp.
8. L2(t)← L(ki+1) andP2(t)← ki+1.
9. i← i + 1.
10. Return[L2, P2].

In Algorithm 2, the main loop (Lines1− 9) performs the
classification of all nodes inZ2. The inner loop (Lines4−9)
visits each nodeki+1 ∈ Z ′

1, i = 1, 2, . . . , |Z ′
1| − 1 until an

optimum pathπki+1
· 〈ki+1, t〉 is found.

2.2 Accuracy Computation

The accuracies are measured by taking into account that the
classes may have different sizes inZ2. If there are two
classes, for example, with very different sizes and a classi-
fier always assigns the label of the largest class, its accuracy
will fall drastically due to the high error rate on the smallest
class.

Let NZ2(i), i = 1, 2, . . . , c, be the number of samples in
Z2 from each classi. We define

ei,1 =
FP (i)

|Z2| − |NZ2(i)|
and ei,2 =

FN(i)

|NZ2(i)|
, i = 1, . . . , c

(3)
whereFP (i) andFN(i) are the false positives and false
negatives, respectively. That is,FP (i) is the number of
samples from other classes that were classified as being from
the classi in Z2, andFN(i) is the number of samples from
classi that were incorrectly classified as being from other
classes inZ2.

The errorsei,1 andei,2 are used to define

E(i) = ei,1 + ei,2, (4)

whereE(i) is the partial sum error of classi. Finally, the
accuracy is written as

Acc =
2c−∑c

i=1 E(i)

2c
= 1−

∑c

i=1 E(i)

2c
. (5)

3. EXPERIMENTAL RESULTS

In this section, we described the experiments concern-
ing automatic music genre classification using two public
datasets: (i) GTZAN Genre Collection [22] and (ii) Mag-
natagatune [12]. Table 1 displays the description of the
datasets. It is important to notice that we have used a subset
of GTZAN dataset.

In regard to music description, for GTZAN dataset we
have employed the Marsyas [23] software to extract Mel-
Frequency Cepstral Coefficients (MFCC) over sequential
windows with size≈ 23ms each. We analyzed 30s of each
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Dataset # Samples # Features # Labels

GTZAN 999 33618 10
Magnatagatune 11493 74 15

Table 1. Description of the datasets used in the experiments.

music, obtaining 1293 windows with 26 cepstral coefficients
each. Finally, with respect to Magnatagatune dataset, we
have used timbre features already extracted and available
with that dataset to compose our feature vector with 74 char-
acteristics.

We have conducted two round of experiments: (i) in the
former (Section 3.1) we address the robustness of super-
vised classifiers for musical genre classification, and (ii)
in the latter (Section 3.2) we assess the effectiveness of
OPF after a feature selection procedure over the original
datasets. Notice that the feature selection algorithms are
hybrid methodologies based on OPF and three optimiza-
tion techniques: Harmony Search (HS) [9], Gravitational
Search Algorithm (GSA) [19] and Particle Swarm Opti-
mization [10].

The main idea of such algorithms is to use the accuracy
over an evaluating set as the fitness function to guide the op-
timization process. Thus, the feature selection algorithmis
designed over training and evaluating sets in order to find
suitable subsets of features that lead to good recognition
rates over the unseen test set. These hybrid algorithms em-
ploy the OPF as the basis classifier [15, 17, 18], since it is
very fast and robust, as one can see in the next sections.

3.1 Musical Genre Classification Through Supervised
Classification

In this section, we described the experiments conducted to
assess the robustness of OPF in the context of musical genre
classification. In regard to classifiers, we have compared
OPF against SVMs with Radial Basis Function (SVM-RBF)
and Bayesian classifier (Bayes). For OPF we adopted the
LibOPF [16], and with respect to SVM-RBF we employed
SVMTorch [3]. Finally, for Bayesian classifier we used our
implementation.

We employed the traditional holdout method with 50%
for training and the remaining 50% to compose the test set.
The experiments were executed over 10 running with ran-
domly generated training and test sets in order to compute
the mean accuracy and training and test times (seconds).
Notice that all parameters used in this experiment were em-
pirically chosen, based on our experience. Table 2 displays
the recognition rates.

One can see that OPF, Bayes and SVM-RBF achieved
similar results for both datasets if one considers the stan-
dard deviation. However, in GTZAN dataset OPF was 2.92
and 6.23 times faster than SVMTorch for training and clas-

Dataset Classifier Acc Tr [s] Ts [s]

GTZAN OPF 98.61±0.75 9.19 4.40
GTZAN Bayes 98.54±0.82 1.71 94.31
GTZAN SVM-RBF 98.72±0.09 26.98 27.23

Magnatagatune OPF 62.34±0.82 3.55 3.73
Magnatagatune Bayes 61.58±0.81 2.33 46.53
Magnatagatune SVM-RBF 63.15±0.03 162.59 35.04

Table 2. Mean accuracy, training (Tr) and testing (Ts) times
in seconds.

sification, respectively. In regard to Magnatagatune dataset,
OPF was 45.80 and 9.39 times faster than SVM-RBF for
training and classification, respectively.

Although Bayes has been the fastest classifier for train-
ing, if one considers the whole execution time, i. e., training
and classification, OPF has been the fastest approach.

3.2 Feature selection

In regard to feature selection, we have evaluated three algo-
rithms: PSO-OPF [17], HS-OPF [18] and GSA-OPF [15].
For that, we have used 30% to compose the training set,
20% to the evaluating one and the remaining 50% for the
test set. Table 3 displays the parameters used to tune the
algorithms. The number of iterations for convergence has
been set to10 for all approaches. The same occurs with
the number of initial solutions, i.e., number of particles for
PSO-OPF, number of harmonies for HS-OPF and number
of masses for GSA-OPF, which has been set to100. Notice
that these values were empirically chosen in order to avoid
meta-optimization.

Table 3. PSO-OPF, HS-OPF and GSA-OPF parameters.
PSO-OPF HS-OPF GSA-OPF

c1 = 1.4, c2 = 0.6 HMCR = 0.7 ǫ = 0.7, G0 = 10
w = 0.7 k = 100

Table 4 displays the results. One can see that all tech-
niques have obtained the same results for both datasets. The
difference relies on the execution time, in which PSO-OPF
and HS-OPF have been executed in a similar period of time,
being up to2 times faster than GSA-OPF. We can see that
PSO-OPF has selected16772 out33618 features for GTZAN
dataset, which means about100 % of reduction in the num-
ber of features. In case of Magnatagatune, PSO-OPF has
also allowed100 % of reduction. It is important to shed
light over that this reduction can provide a faster feature ex-
traction procedure, with the compromise of similar and good
recognition rates as in the original datasets, i.e., without fea-
ture selection.
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Dataset Technique Acc Time [s] # features

GTZAN PSO-OPF 98.78 300.8540 16772
GTZAN GSA-OPF 98.78 603.2372 16776
GTZAN HS-OPF 98.78 305.5086 16776

Magnatagatune PSO-OPF 62.57 242.3991 37
Magnatagatune GSA-OPF 62.57 475.2318 44
Magnatagatune HS-OPF 62.57 244.5305 38

Table 4. Accuracy, time elapsed in seconds and number of
selected features.

4. CONCLUSIONS

In this paper, we have addressed the problem of musical
genre classification by means of OPF classifier, which has
never been applied to this context up to date.

Experiments have been conducted in two rounds: in the
former we have compared OPF with SVMs and Bayesian
classifier in two public datasets (GTZAN and Magnatagatune),
and in the latter we have applied recent OPF-based feature
selection techniques in order to speed up the feature extrac-
tion process, and also to select the most important subset of
features that lead to high recognition rates over an evaluat-
ing set.

In regard to the first round of experiments, all classifiers
have obtained close and good recognition rates, being OPF
faster for training and classification. It is important to high-
light that this skill is very interesting in the context of very
large multimedia datasets. We would like to stress the im-
portance of user-friendly musical recommendation systems,
in which training and classification phases need to be con-
ducted in a feasible manner. In this context, OPF can be suit-
able for real-time retraining systems, in which new musical
genres and songs can be added at any time to the dataset.

In addition, we have conducted an experiment to select
the most representative features using algorithms recently
developed, which have never been applied to this context to
date. We have employed PSO-OPF, HS-OPF and GSA-OPF
over GTZAN and Magnatagatune datasets, and the results
seemed to be interesting, since one can reduce the number of
features of both datasets without compromising the recogni-
tion rates. For future works, we intend to employ unsuper-
vised OPF to the same task, as well as to use evolutionary-
based feature selection algorithms.
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ABSTRACT

To automatically annotate songs with descriptive keywords,
a variety of content-based auto-tagging strategies have been
proposed in recent years. Different approaches may capture
different aspects of a song’s musical content, such as tim-
bre, temporal dynamics, rhythmic qualities, etc. As a result,
some auto-taggers may be better suited to model the acous-
tic characteristics commonly associated with one set of tags,
while being less predictive for other tags. This paper pro-
poses decision-fusion, a principled approach to combining
the predictions of a diverse collection of content-based auto-
taggers that focus on various aspects of the musical signal.
By modeling the correlations between tag predictions of dif-
ferent auto-taggers, decision-fusion leverages the benefits of
each of the original auto-taggers, and achieves superior an-
notation and retrieval performance.

1. INTRODUCTION

The recent age of music proliferation has raised the need
for automatic algorithms to efficiently search and discover
music. Many successful recommendation systems rely on
textual metadata provided by expert musicologists or social
services in the form of semantic tags – keywords or short
phrases that capture relevant characteristics of music pieces,
ranging from genre and instrumentation, to mood and usage.
By bridging the gap between music and human semantics,
tags allow semantic retrieval based on transparent textual
descriptions, or query-by-example recommendation based
on semantic similarity (as opposed to acoustic similarity) to
a query song.

Meta-data-based methods work well in practice, provided
that enough annotations are available. However, the cold
start problem and the prohibitive cost of manual labour limit
their applicability to large-scale applications. Therefore, the
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not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

deployment of modern music recommendation systems can
benefit from the development of auto-taggers, i.e., machine-
learning algorithms that automatically analyze and index mu-
sic with semantic tags, which can then be used to improve
the search experience and speed up the discovery of desired
content.

1.1 Previous work

Most auto-taggers are based on music content analysis and
are trained from a database of annotated songs (e.g., see [8,
10, 12, 20]). After extracting a set of acoustic features from
each training song, a series of statistical models are esti-
mated, each of which capturing the characteristic acoustic
patterns in the songs that are associated with one of the tags
from a given vocabulary. When analyzing a new song, the
auto-tagger processes the time series of acoustic features of
the song and outputs a vector of tag-affinities. The affinity-
vector can then be transformed into a semantic multinomial
(SMN), i.e., a probability distribution characterizing the rel-
evance of each tag to a song. A song is then annotated
by selecting the top-ranking tags in its SMN, or the SMN
itself can be used as a high-level descriptor, e.g., for re-
trieving songs based on semantic similarity. A number of
discriminative (e.g., see [3, 8, 9, 12, 18, 23]) and generative
(e.g., see [10, 17, 20, 21]) machine learning algorithms have
been proposed to model predictive acoustic patterns in au-
dio content based on a bag-of-features (BoF) representation,
which treats audio features independently and ignores their
temporal order. Recently, Coviello et al. [6] proposed to
leverage dynamic texture mixture (DTM) models for auto-
tagging purposes. More precisely, DTM-based auto-taggers
model audio fragments (i.e., time series of audio features
extracted from a few seconds of musical signal) as the out-
put of linear dynamical systems. This approach explicitly
captures temporal structures in the musical signal, whereas
a BoF representation discards such dynamics.

At a higher level of abstraction, contextual approaches
have focused on modeling the semantic context that drives
the correlation between different tags (e.g., a song tagged
with “drums” is more likely to also be tagged with “electric
guitar” than “violin”). While content-based models oper-
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ate on low-level acoustic features to predict semantic multi-
nomials, contextual models are designed to capture mean-
ingful tag correlations in these SMNs, to reinforce accu-
rate tag predictions while suppressing spurious ones. So,
a contextual model naturally complements a content-based
model, which usually treats tags independently. Combin-
ing them has been shown to improve performance. State-
of-the-art solutions are based on discriminative approaches
(e.g., support vector machines [14], boosting [1], ordinal re-
gression [24]) as well as generative models (e.g., Dirichlet
mixture models (DMM) [13]).

1.2 Original contribution

The main contribution of this paper is to propose decision-
fusion, which uses semantic context modeling to simultane-
ously leverage the benefits of different content-based auto-
taggers. Using two or more content-based auto-taggers that
emphasize diverse aspects of the musical signal (e.g., only
timbre vs. temporal dynamics), we collect alternative opin-
ions on each song-tag association. We expect that, besides
modeling the context between tags predicted from the same
auto-tagger, context modeling can capture the correlations
that arise between tag predictions based on different auto-
taggers, leading to a more sophisticated system.

This offers a solution to the problem of selecting or com-
bining alternative annotation models that previous work has
pointed out. Coviello et al. [6], for example, noted that
even though their DTM-based auto-tagger generally outper-
formed a BoF approach based on Gaussian mixture models
(GMM), the improvements were most significant on tags
with clear temporal characteristics; for some tags, in fact,
the GMM-based model was still favorable (i.e., tags where
“timbre says it all”).

Experimental results show that decision-fusion leads to
improved annotation and retrieval performance compared
to i) each individual auto-tagger, ii) each individual auto-
tagger in tandem with a contextual model (the “traditional”
context-based approach) and iii) various other approaches
to combining multiple content-based auto-taggers, such as
fixed-combination rules and the regression-based combina-
tion algorithms proposed by Tomasik et al. [19]. We note
that the focus of the latter was slightly different from our
work, since it investigates the combination of tags predicted
from different information sources (i.e., content-based auto-
tags, social tags, collaborative-filtering-based tags), rather
than from different content-based auto-taggers only. In ad-
dition, as semantic context modeling is naturally comple-
mentary to any content-based auto-tagger, we corroborate
the intuition that there is a benefit in combining DTM-based
temporal modeling and semantic context modeling, which
has not been shown before.

The remainder of this paper is organized as follows. A
brief review of the automatic music tagging problem and the

models used in this work are presented in Section 2. Sec-
tion 3 discusses decision-fusion. Lastly, the experimental
setup and results are reported in Sections 4 and 5, respec-
tively.

2. AUTOMATIC MUSIC TAGGING

The automatic task of music tagging is widely tackled as
a supervised multi-class labeling problem [2], where each
class corresponds to a tag wi of a semantic vocabulary V
(e.g., “rock”, “drum”, “tender”, “mellow”). The music con-
tent of a song is represented as a time series of low-level
acoustic features Y = {y1, . . . ,yT }, where each feature
is extracted from a short snippet of the audio signal and
T depends on the length of the song. The semantic con-
tent with respect to V is represented as an annotation vector
c = (c1, . . . , c|V|), where ci > 0 only if there is a posi-
tive association between a song and the tag wi. The goal
of an auto-tagging system is to infer the relevant semantic
annotations of unseen songs.

At this aim, a set of statistical models is trained to capture
the patterns in the audio feature space associated with each
tag in V , from a database D = {(Yd, cd)}|D|d=1 of annotated
songs. Based on the learned tag models, the auto-tagger can
process the acoustic features extracted from a novel song
Y and produce a vector of tag-affinities, which is mapped
into a semantic multinomial π = (π1, ..., π|V |) lying on a
semantic space (i.e.,

∑
i πi = 1 with πi ≥ 0), where πi =

P (wi|Y) represents the probability that the ith tag applies
to song Y .

In order to leverage high level relationships that arise in
the tag predictions of content-based auto-taggers, contex-
tual approaches additionally introduce a second modeling
layer to capture meaningful tag correlations in the SMNs.
In particular, a content-based auto-tagger is used to produce
a SMN πd for each song Yd in D, while a second layer of
statistical models is trained onto {(πd, cd)}|D|d=1, to capture
which patterns in the SMNs are predictive for each tag. For
a novel song Y , the contextual tag models can therefore be
used to refine the semantic multinomial π produced by the
content-based auto-tagger.

Music annotation involves finding the tags that best de-
scribe a song; this is achieved by selecting the subset of tags
that peak in its semantic multinomial. Retrieval given a one-
tag query, requires ranking all songs in a database based on
their relevance to the query, e.g., the corresponding entry in
the semantic multinomials [20].

In the following we review a variety of content-based
auto-tagging strategies, where low-level acoustic content is
represented either as a bag-of-features (Sections 2.1.1 and
2.1.2) or as a time series of features (Section 2.1.3). Ad-
ditionally, Section 2.2 introduces a contextual approach for
modeling tag correlations as well.
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2.1 Content modeling

Content-based auto-taggers have been designed to model
the acoustic content associated with tags and represented as
a bag-of-features using both generative and discriminative
models, as in Sections 2.1.1 and 2.1.2, respectively; con-
versely, the use of time series of audio features for music
tagging has been considered in the generative approach of
Section 2.1.3 only.

2.1.1 The Gaussian mixture model (GMM)

Turnbull et al. [20], proposed to capture the most prominent
acoustic textures associated to each tag wi in V with a prob-
ability distribution p(y|wi) over the space of audio features
y, which is a Gaussian mixture model (GMM):

p(y|wi) =
R∑
r=1

awir N (y|µwir ,Σ
wi
r ) , (1)

whereR is the number of mixture components,N (·|µ,Σ) a
multivariate Gaussian distribution with mean µ and covari-
ance matrix Σ, and awir the mixing weights. The parame-
ters {awir ,µwir ,Σ

wi
r }Rr=1 of each tag model p(y|wi) are es-

timated from the bag-of-features extracted from the songs
in D that are positively associated with wi, using the hierar-
chical expectation-maximization (EM) algorithm [22].

Given the audio content of a new song Y = {y1, ...,yT },
the relevance of each tag wi is computed using the Bayes
rule:

πi = P (wi|Y) =
p(Y|wi)P (wi)

p(Y)
, (2)

where P (wi) is the tag prior (assumed to be uniform) and
p(Y) the song prior, i.e., p(Y) =

∑|V|
j=1 p(Y|wj)P (wj).

The likelihood term in (2) is computed as the geometric av-
erage of the individual sequence likelihoods, i.e., p(Y|wi) =∏T
t=1 p(yt|wi)

1
T .

2.1.2 Boosting (BST)

The boosting approach proposed by Eck et al. [8] is a super-
vised discriminative algorithm that learns a binary classifier
for each tag wi in the vocabulary V , from both the posi-
tive and the negative training examples for that tag. More
specifically, it constructs a strong classifier which combines
a set of simpler classifiers, called weak learners, in an itera-
tive way. As weak learners, according to [1], we use single
stumps (i.e., binary thresholding on one low-level acoustic
feature).

A novel song Y is classified by each of the binary clas-
sifiers and Platt scaling is applied to produce a probability
estimate πi = P (wi|Y) for each tag wi. We will refer to
this approach as BST.

2.1.3 Temporal modeling (DTM)

Coviello et al. [6] proposed a novel auto-tagger built upon
the DTM model, which explicitly captures both the timbral
and the temporal structures of music that are most predic-
tive for each tag. Specifically, the dynamic texture (DT)
model [7] treats an audio fragment y1:τ as output of a linear
dynamical system. The model consists of a double embed-
ded stochastic process, in which a lower dimensional Gauss-
Markov process xt encodes the dynamics (evolution) of the
acoustic component yt over time

Each tag distribution is modeled with a dynamic texture
mixture (DTM) [4] probability density over sequences of
audio feature vectors:

p(y1:τ |wi) =

R∑
r=1

a(wi)
r p(y1:τ |Θ(wi)

r ) , (3)

where R is the number of mixtures and Θ
(wi)
r is the rth

DT component. The parameters {a(wi)
r ,Θ

(wi)
r }Rr=1 are es-

timated based on the audio fragments extracted from the
songs inD positively associated with the tagwi, using an ef-
ficient hierarchical EM algorithm for DTM (HEM-DTM) [5].

Given the audio fragments extracted from a new song
Y = {y1

1:τ , . . . , y
F
1:τ}, where F depends on the length of

the song, the relevance of tag wi is computed using Bayes’
rule (2), with the likelihood computed as the geometric aver-
age of the individual sequence likelihoods smoothed by the
sequence length τ , i.e., p(Y|wi) =

∏F
t=1 p(y

t
1:τ |wi)

1
Fτ .

2.2 Context modeling (DMM)

As mentioned in Section 1.1, different approaches have been
proposed to model contextual relationships in SMNs; in this
work, we use the DMM [13]. The DMM is a generative
model that assumes the SMNs π of the songs positively as-
sociated to a tag wi are distributed accordingly to a mixture
of Dirichlet distributions over the semantic space defined by
V:

p(π|wi; Ωw) =

R∑
r=1

βwiDir(π|αwir ) , (4)

where R is the number of mixtures, βwik are the mixing
weights, and Dir(·|α) is a Dirichelet distribution of param-
eters α = (α1, ..., α|V|). The parameters of the DMM for
each tag wi in V are estimated from the semantic multino-
mials extracted from the songs in D positively associated
with the tag, via the generalized EM algorithm [16].

Hence, given a new song described by the SMN
π = (π1, ..., π|V|), the relevance of a tag wi is computed
using Bayes’ rule to get the tag posterior probabilities in the
context space:

θi = P (wi|π) =
p(π|wi)P (wi)

p(π)
. (5)
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All the tag posterior probabilities form the contextual multi-
nomial distribution of the song, i.e., θ = (θ1, . . . , θ|V|),
which can then be used for semantic annotation and retrieval.

3. DECISION-FUSION

Each content-based auto-tagger generally emphasizes par-
ticular aspects of the musical signal. Despite some auto-
taggers could be preferred over others based on average per-
formances (Table 1, part (a)), the spread in performances
registered on specific tags (e.g., see Figure 1) makes unclear
if any auto-tagger may be the best. This leaves open the
problem of choosing the most appropriate method for each
tag, or, indeed, the one of combining different auto-taggers.

In this paper we argue that semantic context modeling
can also be used as a strategy to combine different content-
based auto-taggers, which we name decision-fusion. Indeed,
by modeling the patterns that arise from the tag predictions
generated by different content-based auto-taggers, decision-
fusion combines all the different opinions into a single pre-
diction and leverages the benefits of each of the acoustic
characteristics emphasized by the original auto-taggers.

Formally, let us assume a group A of different content-
based auto-tagging algorithms is available. For each song
d in the database D, semantic multinomials πad for a =
1, . . . , |A| are computed (i.e., one for each auto-tagger in
A) and pooled together into the aggregated semantic multi-
nomial:

πAd = (π1
d, . . . ,π

|A|
d ) , (6)

which is intended to be normalized to sum to 1. In practice,
it is as we are now working with a new semantic vocabulary
VA = V1 × · · · × V |A| of size |A| · |V|, where each tag
is replicated |A| times, one for each auto-tagger. Decision-
fusion consists in training a set of semantic context models,
i.e., p(πA|wi) for wi = 1, . . . , |V|, over the aggregated se-
mantic multinomials {(πAd , cd)}

|D|
d=1 to capture both intra-

and inter-auto-taggers tag correlations. Note that traditional
context modeling acts on the SMNs of a single auto-tagger,
thus capturing only intra-auto-tagger correlations.

Decision-fusion can be implemented through a variety of
context-modeling algorithms. In particular, in this work we
tested the DMM presented in Section 2.2. Therefore, the ag-
gregated SMNs πA of songs positively associated with tag
wi are assumed to be distributed accordingly to a mixture of
Dirichlet distributions over the semantic space VA:

p(πA|wi) =

R∑
r=1

βwiDir(πA|αwir ) , (7)

where α = (α1, ..., α|A|·|V|).
An unseen songY is first processed by each of the content-

based auto-taggers available to produce the semantic multi-
nomialsπa for a = 1, . . . , |A|, which are then aggregated in

πA. Finally, Bayes’ rule as in Equation 5 is applied to com-
pute the posteriors θAi = p(wi|πA) for each tag wi, and to
form a decision-fusing multinomial θA = (θA1 , . . . , θ

A
|V|).

4. EXPERIMENTAL SETUP

4.1 Dataset

In our experiments, we used the CAL500 dataset [20], which
consists of 502 popular Western songs by as many different
artists. The CAL500 dataset provides binary annotations,
which are 1 when a tag applies to the song and 0 otherwise,
based on the opinions of human annotators. To accurately fit
the experimental models, we restrict ourselves to the subset
of 97 tags that have at least 30 songs positively associated
with them (11 genre, 14 instrument, 25 acoustic quality, 6
vocal characteristics, 35 emotion and 6 usage tags).

4.2 Audio features

The acoustic content of each song in the collection is repre-
sented by computing a time series of 34-bin Mel-frequency
spectral features [15], extracted over half-overlapping win-
dows of 92 ms of audio signal. For the auto-tagger based on
the DTM, Mel-frequency spectral features are grouped into
fragments of approximately 6 s. (with 80% overlap), which
corresponds to τ = 125 consecutive feature vectors. For the
auto-tagger based on the GMM, the Mel-frequency spectral
features are decorrelated using the DCT, and the resulting
first 13 Mel-frequency cepstral coefficients are augmented
with first and second derivatives (MFCC-deltas). Lastly, for
the auto-tagger based on boosting, first and second order
statistics of the MFCC deltas are computed every 5 s., in
order to reduce the computational burden [8] .

4.3 Evaluation

In our experiments, we consider the models reviewed in Sec-
tion 2.1, which are the content-based auto-taggers referred
as GMM, BST, and DTM, and the semantic context mod-
eling based on the DMM. We obtained the authors’ code
to run each algorithm. We study model combination via
decision-fusion using the DMM and investigate all the pos-
sible combinations among the content-based auto-taggers
considered. For instance, when combining all the three auto-
taggers (i.e., when A = {GMM,BST,DTM}) Equation 7
acts on the aggregated semantic multinomials defined as:

πAd = (πGMM
d , πBST

d , πDTM
d ) . (8)

To investigate the advantages of model combination via
decision-fusion, we compared its performances to a variety
of combination techniques, such as fixed-combination rules
[11] and trained-combiners based on regression [19], all of
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which are applied on the outputs of the different content-
based auto-taggers (i.e., GMM, BST, DTM). We tested dif-
ferent fixed-combination rules (i.e., sum, product, arithmetic
average, minimum and maximum rule) in preliminary ex-
periments, with the sum rule (

∑
rule) being the best. So,

for example, when
∑

rule combines GMM, BST and DTM
summing the corresponding SMNs, the final semantic multi-
nomial of each song s is:

πSUM
s = πGMM

s + πBST
s + πDTM

s , (9)

which is intended to be normalized to 1.
Additionally, we implemented the trained-combiner based

on linear regression (LinReg), which Tomasik et. al [19]
showed to outperform alternative regression techniques. In
particular, we use LinReg to learn, on a tag-by-tag bases,
the optimal coefficients to combining different auto-taggers
to predict a ground truth of annotated songs. We refer the
reader to Section 3.3 of [19] for more details on this strategy.

Annotation and retrieval performances are measured fol-
lowing [20]. Test set songs are annotated with the 10 most
likely tags in their SMNs, and annotation accuracy is re-
ported by computing precision, recall and F-score for each
tag. Retrieval performance are evaluated with respect to
each one-tag query in our vocabulary; we report mean av-
erage precision (MAP), area under the receiver operating
characteristic curve (AROC) and top-10 precision (P10). All
metrics are averaged over all tags and are intended to be re-
sult of 5 fold cross validation, where each song appeared in
the test set exactly once.

5. RESULTS

Annotation and retrieval results are presented in Table 1.
Results for (a) individual auto-taggers are in the first block
of the table, results for (b) standard contextual approaches
are in the second block, and results for (c) content-based
auto-tagger combination are in the last four blocks.

First, we notice that for each combination of the content-
based auto-taggers considered, decision-fusion outperforms
all the other combination techniques, except in recall, where
LinReg is generally the best one. Second, differently from∑

rule and LinReg, decision-fusion always improves with
respect to the original content-based auto-taggers combined.

Decision-fusion performs better by capturing the corre-
lations that arise between tag predictions based on differ-
ent auto-taggers and, consequently, by indirectly leveraging
various aspects of the musical signal emphasized by each
of those auto-taggers. Indeed, decision-fusion of BoF auto-
taggers with the DTM has major benefits, as it takes advan-
tage of predictions that are based on different fundamentals,
i.e., timbre and temporal dynamics vs. only timbre. On the
other hand, decision-fusion of GMM and BST, which both

retrieval annotation
Model MAP AROC P10 P R F-score

GMM 0.417 0.686 0.425 0.374 0.205 0.213
BST 0.432 0.701 0.453 0.334 0.144 0.170
DTM 0.446 0.708 0.460 0.446 0.217 0.264

(a) content-based auto-taggers

GMM 0.447 0.711 0.465 0.436 0.238 0.253
BST 0.457 0.711 0.476 0.424 0.201 0.241
DTM 0.464 0.723 0.480 0.461 0.236 0.275

(b) context-modeling with DMM

two BoF modelsA = (GMM, BST)∑
rule 0.440 0.709 0.463 0.369 0.153 0.185

LinReg [19] 0.444 0.708 0.459 0.371 0.239 0.226
context fusion 0.460 0.719 0.475 0.425 0.224 0.255

a BoF and a time-series modelA = (BST, DTM)∑
rule 0.454 0.721 0.475 0.385 0.156 0.189

LinReg [19] 0.445 0.711 0.457 0.388 0.237 0.228
context fusion 0.475 0.729 0.495 0.434 0.221 0.265

a BoF and a time-series modelA = (GMM, DTM)∑
rule 0.461 0.726 0.474 0.445 0.229 0.267

LinReg [19] 0.456 0.722 0.460 0.360 0.248 0.222
context fusion 0.470 0.730 0.487 0.484 0.230 0.291

two BoF and a time-series modelA = (GMM, BST, DTM)∑
rule 0.457 0.725 0.478 0.39 0.163 0.202

LinReg [19] 0.452 0.715 0.465 0.384 0.242 0.232
context fusion 0.475 0.731 0.496 0.456 0.217 0.270

(c) auto-tagger combination

Table 1. Annotation and retrieval for the different models
on the CAL500 dataset. The best results for each scenario
are indicated in bold.

model only the timbre, does not achieve comparable im-
provements over the corresponding standard context-models.
In addition, the combination of all three auto-taggers with
decision-fusion leads to the best retrieval performance; yet
the modest improvements over the combination of BST and
DTM in retrieval are compensated by improvements in pre-
cision and F-score over the same method.

Figure 1 depicts the MAP score achieved by a subset of
tags, for the content-based auto-taggers (i.e., GMM, BST,
DTM) and for decision-fusion using GMM, BST and DTM.
Even if DTM could be preferred over both GMM and BST
based on the average performances reported in Table 1, the
fluctuation in performance on specific tags shown in Fig-
ure 1 suggests that each content-based auto-tagger may be
better suited for a subset of the tags than the others. How-
ever, leveraging a rich contextual information that benefits
from various acoustic characteristics of the musical signal,
decision-fusion using GMM, BST and DTM performs best
on the majority of all the tags reported.

Finally, part (b) of Table 1 also reports that standard con-
text modeling always improves over the individual perfor-
mance of the original content-based auto-taggers. While
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Figure 1. Retrieval performance (MAP) for a subset of the
CAL500 vocabulary for GMM, BST, DTM, and decision-
fusion of GMM, BST and DTM. Among the content-based
auto-tagger, each one appears to be best on a subset of tags.
However, decision-fusion is superior on the majority of tags.

Miotto et al. [13] already showed this for the BoF models
(i.e., GMM and BST), we have demonstrated that it holds
true for the DTM as well.

6. CONCLUSION

In this paper we have proposed decision-fusion as a strat-
egy for combining different content-based auto-taggers. It
uses semantic context modeling to simultaneously leverage
the benefits of different content-based auto-taggers. Experi-
mental results demonstrate especially that it achieves better
annotation and retrieval performance than individual auto-
taggers and various other techniques to combining multiple
content-based auto-taggers.
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ABSTRACT

In this paper, we present a set of simple and efficient regu-
larized logistic regression algorithms to predict tags of mu-
sic. We first vector-quantize the delta MFCC features us-
ing k-means and construct “bag-of-words” representation
for each song. We then learn the parameters of these logis-
tic regression algorithms from the “bag-of-words” vectors
and ground truth labels in the training set. At test time, the
prediction confidence by the linear classifiers can be used
to rank the songs for music annotation and retrieval tasks.
Thanks to the convex property of the objective functions, we
adopt an efficient and scalable generalized gradient method
to learn the parameters, with global optimum guaranteed.
And we show that these efficient algorithms achieve state-
of-the-art performance in annotation and retrieval tasks eval-
uated on CAL-500.

1. INTRODUCTION

Automatic tagging of music is a popular topic in recent years,
with applications in music information retrieval, description
of music, etc. The task is to associate a song with a few rel-
evant labels (or tags), e.g. pop, male vocal and happy. We
want to predict confidence values that accurately estimate
the strength of the association between the labels and audio
contents. Given a song, these confidence values can be used
to rank the tags by relevance, and this is the music anno-
tation task. In the music retrieval task, we rank the songs
according to their relevance to a specific query tag.

The challenge mainly lies in two parts. One is how to
represent a song or a song segment that best summarizes
its content. The most popular audio feature is the Mel-
Frequency Cepstral Coefficient (MFCC) that only describes

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2011 International Society for Music Information Retrieval.

a 23ms time window. While these very short “frames” can-
not be used directly as features for songs, they make up
the building blocks for more advanced features. [7] sum-
marized the frame-level features over a segment by means
and covariances and other features were combined by Ad-
aBoost. Spectral covariances over a segment were also pro-
posed and achieved better results than means and covari-
ances of MFCC [6]. Other methods tried to estimate the
probability distribution of the MFCC feature space and use
this as song-level features [1, 3]. At the same time, time se-
ries model [5] attempted to incorporate the temporal infor-
mation but the complex structures in music are difficult to
capture because of the rich patterns of multiple time scales.

The other difficulty is the multitude of the labels. The
large number of tags and relatively few tags per song result
in severe label imbalance, presenting a challenging prob-
lem for most discriminative methods such SVM and Ad-
aBoost [7, 13]. These methods tend to score high in classi-
fication by predicting most new test songs as negative sam-
ples. However, we found, with empirical evaluation, that
logistic regression appears to be more robust in such situa-
tions in that it tries to maximize the conditional probability
rather than to minimize the classification error directly.

Currently, most state-of-the-art methods are probabilis-
tic models. Gaussian Mixture Models (GMM) [3] approxi-
mate the probability distribution of features conditionedon
each tag with a mixture of Gaussian distributions. Then the
Bayesian rule is applied to calculate the posterior probabil-
ity of a tag given a new song. One shortcoming of the gen-
erative model is that it does not fully utilize the label infor-
mation compared with discriminative methods. Recently, a
more “discriminative-flavored” probabilistic model, Code-
word Bernoulli Average (CBA) [1], was proposed and it
achieved state-of-the-art performance on annotation and re-
trieval tasks. Although CBA is efficient and effective, the
EM algorithm used in estimating its parameters only con-
verges to a local optimum and as a result the learnt parame-
ters will depend on different initializations.

We propose to use regularized logistic regression to ad-
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dress the music tagging problem. First, song-level statistics
are summarized in the “bag-of-words” of quantized delta
MFCC features. Then, we apply logistic regression to learn
the correlations of tags and music content by exploiting the
label information. Different regularization terms are incor-
porated in logistic regression to reduce overfitting and im-
prove generalization. Our approach enjoys the benefit of
convex optimization with global optimum guarantee. Also,
by using first-order methods, the proposed model can be
learnt in a short time and it scales linearly to large dataset.
Moreover, experiments demonstrate that our regularized lo-
gistic regression can achieve state-of-the-art performance in
CAL-500 dataset [2].

2. SONG-LEVEL FEATURE REPRESENTATION

We choose a simple “bag-of-words” representation, the same
as in [1,11] and many other image classification algorithms
[10], as our song-level feature. This simple representation
facilitates efficient and scalable prediction of music tagsfor
a large set of data.

Our primary features are the 39 dimension delta MFCC
features over 23ms time-window. Each delta MFCC feature
is concatenated from one MFCC feature, its first derivative
and its second derivative. As a preprocessing step, we first
normalize all the delta MFCC features to have zero mean
and unit variance in each dimension. We then apply k-
means to learnK cluster centroids as “audio dictionary”
D = [d1,d2, · · · ,dK ] ∈ Rp×K in thep dimensional fea-
ture space, wherep = 39. The centroids act as “representa-
tives” of typical audio frames.

Let {vi,1,vi,2, · · · ,vi,Ni
} denote the set of delta MFCC

vectors for songi. We count the number of feature vectors
for songi that are nearest to dictionary itemdj in Euclidean
distance

ni,j =

∣∣∣∣{k : j = arg min
t

‖vi,k − dt‖2
2

}∣∣∣∣ . (1)

The countsni,j can be considered as a discrete approx-
imation to the probability distribution on the feature space.
Compared with the parametric model [3], our non-parametric
representation is more flexible and easier to implement.

We then normalize the counts to cancel out the effect
of varying song lengths. The frequency of thej-th “audio
word” in thei-th song is calculated as

ri,j =
ni,j∑K

k=1 ni,k

. (2)

Finally, the i-th song is represented asx(i) whosej-th
element isx(i)

j = ri,j .
The most time consuming part of song-level feature rep-

resentation is k-means clustering. However, this is done off-
line and can be speeded up by using a subset of samples or

using hierarchical clustering. When a new song arrives, we
just need to assign each of its delta MFCC features to one of
the centroids and construct the histogram, whose time com-
plexity is linear in the number of delta MFCC features.

3. LOGISTIC REGRESSION WITH
REGULARIZATION

Given the “bag-of-words” representation of each song, we
train a linear classifier to predict the labels. We choose lo-
gistic regression because its loss function is less sensitive
to noise and label imbalance compared with others, such as
hinge loss in SVM or exponential loss in AdaBoost.

3.1 Multi-label Logistic Regression

In the automatic music tagging problem, there arem la-
bels/tags, and we want to learn a vector-valued prediction
function f(x) = [f1(x), f2(x), · · · , fm(x)]

T
: X 7→ Y,

where the input spaceX is theK dimensional vector space
of “bag-of-words” and the label spaceY is {1,−1}m. Here,
we are interested in the family of linear classifiers andf(x)
can be written as

f(x) = sgn(Bx + c), (3)

whereB = [b1,b2, · · · ,bm]T ∈ Rm×K is the coefficient
matrix for the prediction function andc ∈ Rm is the bias
vector. Note that rowl, bT

l , is the classifier coefficients for
thel-th label.

With logistic regression model, the conditional likelihood
Pr(yl|x;bl, cl) is give by

Pr (yl|x;B, c) =
1

1 + exp
(
−yl

(
bT

l x + cl

)) . (4)

And the learning of optimal parameters(B∗, c∗) based on a
training datasetD = {(x(i),y(i)|i = 1, 2, · · · , n)} can be
performed by minimizing the negative log likelihood plus a
regularization termR(B),

(B∗, c∗) = arg min
B,c

− 1

n

n∑
i=1

m∑
l=1

log Pr
(
y
(i)
l |x(i);B, c

)
+ λR(B),

(5)
whereλ is a weighting parameter for the regularization.

To predict the labels of a new sonĝx, we compute the
conditional likelihoodPr (yl|x̂;B∗, c∗) with Eq. 4, which
shows the confidence of the labelyl.

3.2 Different Regularizations

Regularization plays an important role in incorporating prior
information and reducing model complexity to avoid over-
fitting. Adopting different regularization terms will leadto
models with different interpretations and performance.
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A common choice is thel2 term that contains model com-
plexity, i.e.

R(B) = ‖B‖2
2 =

K∑
j=1

m∑
i=1

B2
ij . (6)

Recently, sparsity inducing norms are very popular and
have wide applications in machine learning and music in-
formation retrieval [8, 14]. So, we also considerl1 norm
regularization that encourages sparsity of model parameters.
Technically, the regularizer is

R(B) = ‖B‖1 =
K∑

j=1

m∑
i=1

|Bij |. (7)

4. FIRST-ORDER OPTIMIZATION METHOD

We adopt efficient first-order methods to learn the parame-
ters. Thanks to convexity, the convergence of our algorithm
to a global minimum is guaranteed.

4.1 Gradient Descent for l2

Since the original objective function withl2 regularization
is smooth, we can update the parameter by gradient descent

Bt+1 = Bt − η (∇Ln(Bt) + 2λBt) , (8)

ct+1 = ct − η∇Ln(ct), (9)

where∇Ln(·) is the derivative of the loss function andη is
the step size.

4.2 Generalized Gradient Descent for l1

Due to the non-smoothness ofl1 norm, at iteration stept,
we updateB by

Bt+1 = arg min
Z

〈∇Ln(Bt),Z−Bt〉

+
1

2η
‖Z−Bt‖2 + λ‖Z‖1, (10)

whereη > 0 and1/η is set larger than the Lipschitz constant
of ∇Ln [9]. Here we omitc because it is not in thel1 norm
and can be solved by standard gradient descent (Eq. 9).

The above procedure is the generalized gradient descent
scheme because whenλ = 0, it is easy to see Eq. 10 reduces
to Bt+1 = Bt − η∇Ln(Bt).

DenoteBt+1 = [b∗
1,b

∗
2, · · · ,b∗

p], Bt = [b1,b2, · · · ,bp]
and∇Ln(Bt) = [h1,h2, · · · ,hp] and Eq. 10 can be solved
by p separate sub-problems. According to [9], each sub-
problem is solved by

b∗
j = Tλη (bj − ηhj) , (11)

whereTα(·) is the soft thresholding operator. And it is de-
fined by

Tα(x)i = (|xi| − α)+ sgn(xi), (12)

where(x)+ = x if x > 0 and(x)+ = 0 otherwise.
The detailed procedure of generalized gradient descent is

illustrated in Alg. 1.

Algorithm 1 Generalized Gradient Descent Algorithm

Input: Training setD = {(x(i),y(i)|i = 1, 2, · · · , n)}
Output: Model parametersB∗ ∈ Rm×p, c∗ ∈ Rm

Initialize t = 0,η,B0,c0

Repeat until convergence:

1. Compute the partial gradient∇BLn(Bt, ct).

2. Forj = 1 to p

2.1 Calculatew = bj − ηhj .

2.2 Calculate thej-th column ofBt+1 by Tλη(w).

3. Compute the partial gradient∇cLn(Bt, ct).

4. Updatect+1 = ct − η∇cLn(Bt, ct).

5. EXPERIMENTS ON ANNOTATION AND
RETRIEVAL

We evaluated our three versions of logistic regression on two
tasks: music annotation and retrieval. Compared with bi-
nary classification tasks, these two tasks are more closely
related with real scenarios.

The music data comes from CAL-500 Dataset [2]. There
are 500 Western polyphonic songs and the annotations were
collected from more than three human subjects per song.
When training the classifier, we only use the binary anno-
tations with{0, 1} (transformed to{−1, 1} for learning) to
indicate whether the tag is relevant to the song.

We are more interested in predicting more “useful” tags
rather than very obscure ones. Following the same setting
in [4, 5], we only evaluate on the 78 tags that have at least
50 examples and 97 top popular tags.

5.1 Annotation and Retrieval

Using similar experimental setting as in [4, 5], we used 5-
fold cross validation. In each round, we first learned our
model parametersB∗, c∗ with the 400-song training set and
predicted confidence ratings on the remaining 100-song test
set. The conditional probability (confidence rating) of a tag
being assigned to a song was then calculated using Eq. 4.
To compensate for non-uniform label prior, we adopted the
same heuristic used in [1] by introducing a “diversity factor”
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Model Precision Recall F-score P3 P5 P10 MAP AROC

CBA 0.361 0.212 0.267 0.463 0.458 0.440 0.425 0.691
GMM 0.405 0.202 0.269 0.456 0.455 0.441 0.433 0.698
Context-SVM 0.380 0.230 0.286 0.512 0.487 0.449 0.434 0.687
DirMix 0.441 0.232 0.303 0.519 0.501 0.470 0.443 0.697

LogRegr 0.396 0.196 0.262 0.407 0.428 0.424 0.404 0.671
l1 LogRegr 0.416 0.202 0.272 0.414 0.413 0.417 0.411 0.673
l2 LogRegr 0.446 0.227 0.301 0.515 0.512 0.485 0.459 0.719

Table 1. Experimental results for top 97 popular tags. The results of Codeword Bernoulli Average (CBA), Gaussian Mixture
Models (GMM), Context-SVM and Dirichlet Mixture (DirMix) are reported in [4]. Our results are non-regularized (LogRegr),
l1 regularized (l1 LogRegr) andl2 regularized (l2 LogRegr) logistic regressions, respectively.

Model P R F-score AROC MAP P10

CBA 0.41 0.24 0.29 0.69 0.47 0.49
HEM-GMM 0.49 0.23 0.26 0.66 0.45 0.47
HEM-DTM 0.47 0.25 0.30 0.69 0.48 0.53

LogRegr 0.44 0.23 0.30 0.67 0.45 0.48
l1 LogRegr 0.46 0.23 0.31 0.68 0.46 0.49
l2 LogRegr 0.48 0.26 0.34 0.72 0.50 0.54

Table 2. Experimental results for top 78 popular tags. The
results of Codeword Bernoulli Average (CBA), hierarchical
EM Gaussian Mixture Models (HEM-GMM) and hierarchi-
cal EM Dynamic Texture Model (HEM-DTM) are reported
in [5]. Our results are non-regularized (LogRegr),l1 regu-
larized (l1 LogRegr) andl2 regularized (l2 LogRegr) logistic
regressions, respectively.

d = 1.25. For each predicted confidence rating, we sub-
tractedd times the mean confidence for that tag. We then
assigned each song with the top 10 most confident tags.

Annotation was evaluated by mean precision and recall
over the tags. Given the 10 annotations per song in the test
set, we calculated precision and recall for each tag and then
averaged across all considered tags. The final result was
averaged over 5 rounds of cross validation. In addition, F-
score, the harmonic mean of precision and recall, was com-
puted to summarize the two aspects of precision and recall.

For retrieval, we first ranked the songs in the descend-
ing order according to confidence ratings for a specific tag.
Better retrieval result corresponds to cases that more rele-
vant songs appear at the top of the ranking list. Then, we
calculated precision at every position down the ranking list
via dividing the number of true positives found so far by
the total number of songs so far. Evaluation was conducted
through averaged precision andprecision at k (k = 3, 5, 10)
as in [4]. Averaged precision was computed by taking the
average of all the positions down the ranking list where new
true positives were found. Precision atk wask-th precision

that we calculated on the ranking list.

5.2 Experiment Results and Dicussions

5.2.1 Comparison with State-of-the-art

We compare our results with state-of-the-art performance on
the CAL-500 dataset. For the 97 tags setting, we compare
with CBA [1], GMM [3], Context-SVM [12] and Dirich-
let Mixtures (DirMix) [4]. Their results were originally re-
ported in [4] and are copied in Table 1 for more convenient
comparison. For the 78 tags setting, CBA, HEM-GMM (the
same as GMM) and HEM-DTM [5] were compared. Their
original results reported in [5] and copied in Table 2.

The results of our three variants of logistic regression un-
der the 97 tags setting are also reported in Table 1. All our
methods were based onK = 2000 dictionary size “bag-
of-words” representation, with the cluster centroids trained
on a random subset of 100,000 samples from all the delta
MFCC features provided in the dataset. Non-regularized lo-
gistic regression was equivalent to settingλ = 0. The pa-
rameterλ in the two regularized algorithms were set to the
optimum. Forl1 logistic regression, it was set to 0.001 and
for l2 logistic regression, it was set to 0.01.

From Table 1, we can see that non-regularized logistic
regression performed the worst but still had reasonable re-
sults.l1 regularization improved the performance by 0.01 or
0.02 for some measures.l2 regularization introduced greater
improvement over thel1 regularized variant, achieving best
performance in retrieval even than the state-of-the-art. And
it was comparable with the Dirichlet Mixture model in anno-
tation task. Note that the Dirichlet Mixture model exploited
the label correlations explicitly while our method incorpo-
rated no such schemes to utilize context information.

For the 78 tags case illustrated in Table 2, the simple lo-
gistic regression performed better than CBA in the annota-
tion task. l1 regularization consistently improved the per-
formance by 0.01 for most measures. Again,l2 regular-
ized logistic regression outperformed other approaches in
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all measures except for precision. However, by comparing
the F-score which summarizes the overall annotation score,
all three variants performed better than or on par with the
state-of-the-art. Considering the fact that HEM-DTM bene-
fited from information over the 23ms time window, our al-
gorithms’ performance are even more encouraging.

The performance of non-regularized logistic regression
was limited because of the overfitting effect.l1 regulariza-
tion slightly improved the situation by constraining the com-
plexity of the parameters. However, it appears that the “bag-
of-words” representation does not have the hidden sparse
structure whichl1 norm regularization can help reveal. Rather,
the classifier coefficients should be dense to fully take into
account all the details in the distribution. Thel2 norm was
thus suitable for such situation where it constrained the model
complexity in general and produced non-zero coefficients.

5.2.2 Effect of Changing Dictionary Size K

We also explored the effect of different dictionary sizesK.
In the experiments, we ranl2 regularized logistic regression
with λ set to 0.01 and under differentK (10, 20, 50, 100,
200, 500, 800, 1000, 2000 and 5000). Fig. 1 illustrates the
performance on the two tag number settings for annotation
and retrieval tasks.

From Fig. 1, we can see that asK increases, the algo-
rithm benefits from more accurate approximation to the dis-
tribution and achieves better performance. The biggest im-
provement occurs from 10 to 100 dictionary sizes. It ap-
pears that whenK increases over this range, the major struc-
ture in the distribution has been captured by the “bag-of-
words” representation. As we go on to model the finer scales
with even largerK, the performance continues to climb up
until it gradually levels off whenK exceeds 2000. From
K = 2000 to K = 5000, the improvement is less than 0.01
for retrieval while the computational cost is multiplied by
2.5 times. Therefore, we chooseK = 2000 as our optimal
dictionary size in the CAL-500 dataset.

5.2.3 Effect of Different Regularization Parameter λ

The regularization parameterλ affects the performance by
balancing the loss function and the regularization. Smaller
λ leads to more focus on the empirical error while largerλ
places more priority on keeping the model complexity low.

We variedλ from 10−5 to 10 with equal stepsize in loga-
rithm scale forl2 regularized logistic regression underK =
2000. The effect is demonstrated in Fig. 2. Forl2 regular-
ized logistic regression, the optimalλ is 0.01. And we can
see that the algorithm is relatively robust to the parameter
change from10−4 to 10−1. Note that since the values in the
original normalized “bag-of-words” representation are too
small, making them badly scaled compared with the bias,
we multiply the “bag-of-words” by 100 and the parameterλ
is reported after such preprocessing.

10 20 50 100 200 500 800 1000 2000 5000
0.35

0.4

0.45

0.5

Dictionary Size K

P
re
c
is
io
n

 

 

97 tags

78 tags

10 20 50 100 200 500 800 1000 2000 5000
0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

Dictionary Size K

A
R
O
C

 

 

97 tags

78 tags

10 20 50 100 200 500 800 1000 2000 5000
0.18

0.2

0.22

0.24

0.26

0.27

Dictionary Size K

R
e
c
a
ll

 

 

97 tags

78 tags

10 20 50 100 200 500 800 1000 2000 5000
0.4

0.42

0.44

0.46

0.48

0.5

0.52

Dictionary Size K

M
A
P

 

 

97 tags

78 tags

(a) (b)

(c) (d)

Figure 1. Effect of varying dictionary sizeK. The perfor-
mance is evaluated onl2 LogRegr with optimal parameter
setting. (a) Annotation performance: precision; (b) Annota-
tion performance: recall; (c) Retrieval performance: mean
averaged precision; (d) Retrieval performance: area under
the receiver operating characteristic curve.

6. CONCLUSIONS

We proposed to use regularized logistic regression algorithms
to automatically tag music. Our approach enjoys convex for-
mulations and can be solved efficiently by first-order meth-
ods. The convergence of our algorithm is guaranteed and it
is scalable to large dataset. Empirical evaluation for music
annotation and retrieval on the CAL-500 dataset has shown
that l2 regularized version with “bag-of-words” representa-
tion of quantized delta MFCC features achieves state-of-the-
art performance.

Currently, no label correlations are considered in our frame-
work and learning is done independently for each label. In
future work, we are interested in modeling such correla-
tions by using structure inducing norms for regularization.
Also, instead of k-means clustering, dictionary learning ap-
proaches are promising in that more adaptive “audio words”
can be learnt from data.

7. REFERENCES

[1] M. Hoffman, D. Blei and P. Cook: “Easy as CBA: A
Simple Probabilistic Model for Tagging Music,”Pro-
ceedings of the 10th International Conference on Music
Information Retrieval (ISMIR), 2009.

[2] D. Turnbull, L. Barrington, D. Torres and G. Lanckriet:
“Towards Musical Query-by-Semantic Description us-

715



Poster Session 6

10
-4

10
-2

10
0

0.05

0.15

0.25

0.35

0.45

0.5

Parameter

A
n
n
o
ta
ti
o
n
 P
e
rf
o
rm
a
n
c
e

 

 

Precision

Recall

10
-4

10
-2

10
0

0

0.1

0.2

0.3

0.4

0.45

Parameter

A
n
n
o
ta
ti
o
n
 P
e
rf
o
rm
a
n
c
e

 

 

Precision

Recall

10
-4

10
-2

10
0

0.3

0.4

0.5

0.6

0.7

0.75

Parameter

R
e
tr
ie
v
a
l 
P
e
rf
o
rm
a
n
c
e

 

 

MAP

AROC

10
-4

10
-2

10
0

0.25

0.35

0.45

0.55

0.65

Parameter

R
e
tr
ie
v
a
l 
P
e
rf
o
rm
a
n
c
e

 

 

MAP

AROC

(a) (c) (d)(b)

Figure 2. Effect of varying regularizaiton parameterλ. The performance is evaluated onl2 LogRegr withK = 2000. (a)
Annnotation performance for 78 tags setting; (b) Retrievalperformance for 78 tags setting; (c) Annnotation performance for 97
tags setting; (d) Retrieval performance for 97 tags setting.

ing the CAL500 Data Set,”ACM Special Interest Group
on Information Retrieval Conference (SIGIR ’07), 2007.

[3] D. Turnbull, L. Barrington, D. Torres and G. Lanck-
riet: “Semantic Annotation and Retrieval of Music and
Sound Effects,”IEEE Transactions on Audio, Speech,
and Language Processing, 2008.

[4] R. Miotto, L. Barrington and G. Lanckriet: “Improving
Auto-Tagging by Modeling Semantic Co-Occurrences,”
Proceedings of the 11th International Conference on
Music Information Retrieval, 2010.

[5] E. Coviello, A. Chan, L. Barrington and G. Lanckriet:
“Automatic Music Tagging With Time Series Models,”
Proceedings of the 11th International Conference on
Music Information Retrieval, 2010.

[6] J. Bergstra, M. Mandel and D. Eck: “Scalable genre and
tag prediction with spectral covariance,”Proceedings of
the 11th International Conference on Music Information
Retrieval, 2010.

[7] J. Bergstra, N. Casagrande, D. Erhan, D. Eck, and B.
Kegl: “Aggregate features and AdaBoost for music clas-
sification,”Machine Learning, 2006.

[8] Y. Panagakis, C. Kotropoulos and G. Arce.: “Mu-
sic genre classification using locality preserving non-
negative tensor factorization and sparse representa-
tions,”Proceedings of the 10th International Conference
on Music Information Retrieval (ISMIR), 2009.

[9] A. Beck and M. Teboulle: “A Fast Iterative Shrinkage-
Thresholding Algorithm for Linear Inverse Problems,”
SIAM Journal on Imaging Sciences, 2009.

[10] G. Csurka, C. Dance, L.X. Fan, J. Willamowski and C.
Bray: “Visual categorization with bags of keypoints,”
Proc. of ECCV International Workshop on Statistical
Learning in Computer Vision, 2004.

[11] M. Hoffman, D. Blei, and P. Cook: “Content-based
musical similarity computation using the hierarchical
Dirichlet process,”In Proc. International Conference on
Music Information Retrieval, 2008.

[12] S.R. Ness, A. Theocharis, G. Tzanetakis and L.G. Mar-
tins: “Improving automatic music tag annotation using
stacked generalization of probabilistic SVM outputs,”In
Proceedings of ACM Multimedia, 2009.

[13] D. Turnbull and C. Elkan: “Fast recognition of musi-
cal genres using RBF networks,”IEEE Transactions on
Knowledge and Data Engineering, 2005.

[14] K. Koh, S.J. Kim and S. Boyd: “An Interior-Point
Method for Large-Scalel1-Regularized Logistic Regres-
sion,” Journal of Machine Learning Research, 2007.

716



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

AN EMPIRICAL STUDY OF MULTI-LABEL CLASSIFIERS FOR MUSIC TAG
ANNOTATION

Chris Sanden
Mathematics and Computer Science

University of Lethbridge
Lethbridge, AB Canada

sanden@cs.uleth.ca

John Z. Zhang
Mathematics and Computer Science

University of Lethbridge
Lethbridge, AB Canada
zhang@cs.uleth.ca

ABSTRACT

In this paper we study the problem of automatic music tag
annotation. Treating tag annotation as a computational clas-
sification process, we attempt to explore the relationship be-
tween acoustic features and music tags. Toward this end, we
conduct a series of empirical experiments to evaluate a set of
multi-label classifiers and demonstrate which ones are more
suitable for music tag annotation. Furthermore, we discuss
various factors in the classification process, such as feature
sets, frame sizes, etc. Experiments on two publicly available
datasets show that the Calibrated Label Ranking (CLR) al-
gorithm outperforms the other classifiers for a selection of
evaluation measures.

1. INTRODUCTION

For the past decade, digital music collections have been grow-
ing enormously in volume, due to advances in technologies,
such as storage capacity, network transmission, data com-
pression, information retrieval, etc. The rapid rise in music
downloading has created a major shift in the music indus-
try away from physical media formats to electronic distri-
butions. Large on-line music providers now offer millions
of music catalogs. At present, these catalogs are commonly
classified and accessed through textual meta-data, such as
genre, style, mood, artist, etc. This classification scheme
is referred to as music tag annotation and relies on human
experts as well as amateurs to annotate the music [18].

While this meta-data is rich and descriptive, it is difficult
to maintain and in many cases is not comprehensive, due
to the ambiguity and subjectivity that is introduced in the
annotation process [7]. Moreover, annotation by human ex-
perts is an involved process, in terms of financial and labor

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

costs [4]. Therefore, manual annotation is insufficient and
ineffective when facing large volumes of music. In Music
Information Retrieval (MIR), automatic music tag annota-
tion is an emerging area that aims to help automate the anno-
tation process. The task of music tag annotation can be de-
fined as follows [6]. Given a set of tags T = {t1, t2, ..., tA}
and a set of music pieces M = {m1, m2, ...,mR}, pre-
dict for each music piece mj ∈ M a tag annotation vector
A = (a1, a2, ..., aA), where ai > 0 if tag ti has been as-
sociated with the piece, and ai = 0, otherwise. These ai

describe the strength of the semantic associations between
tags and the music piece and are typically referred to as se-
mantic weights. Although these weights can be valuable in
some applications, we focus on the binary association where
a tag is either relevant to a music piece or not, i.e., its weight
is mapped to {0,1} and can be interpreted as a class label. It
is easy to see that a music piece can have multiple tags and
therefore music tag annotation can be modeled as a multi-
label classification process [6].

In our work, we study the problem of automatic mu-
sic tag annotation by attempting to learn a relationship be-
tween acoustic features and music tags. We conduct a se-
ries of experiments on a set of multi-label classifiers which
have shown promising results in other application domains
including document classification, video annotation, func-
tional genomics, etc. We demonstrate which classifiers are
more suitable for music tag annotation using a set of eval-
uation measures. While some of these classifiers have been
used for multi-label classification of music into emotions [13]
and genres [9], we believe that it would be beneficial to ex-
plore their application in music tag annotation.

2. RELATED WORK

Automatic music tag annotation is an important problem in
MIR with numerous applications, including music search,
recommendation, organization, etc. It has received consid-
erable attention as of recently and many related techniques
have been proposed. One of the most important contribu-
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tions to the problem is the work of Turnbull et al. [16], who
propose, along with a dataset called CAL500, one of the first
tag annotation systems based on a generative probabilistic
model. This dataset has become a de facto benchmark for
evaluating the performance of music tag annotation systems.

Hoffman et al. [5] present another probabilistic model,
referred to as the Codeword Bernoulli Average, which at-
tempts to predict the probability that a tag applies to a music
piece. It is claimed that this model outperforms the one from
Turnbull et al. [16] on the CAL500 dataset. In addition,
Bertin-Mahieux et al. [2] propose Autotagger, a model that
uses advanced ensemble learning schemes to combine the
discriminative power of different classifiers. Ness et al. [6]
describe how stacked generalization of the probabilistic out-
puts of a Support Vector Machine (SVM) can be used to im-
prove the performance of automatic tag annotation.

More recently, Shen et al. [11] propose a framework called
MMTagger that combines advanced feature extraction tech-
niques and high-level semantic concept modeling for mu-
sic tag annotation. The proposed framework uses a mul-
tilayer architecture that gathers multiple Gaussian mixture
models and SVMs. In addition, Zhao et al. [21] introduce a
large-scale music tag recommender using Explicit Multiple
Attributes based on tag semantic similarity and music con-
tent. Experiment results in the work show that the proposed
recommender is more effective than existing ones and is at
least as effective as other SVM-based approaches.

3. MULTI-LABEL CLASSIFICATION

Different from traditional single-label classification where
each object belongs to only one class, multi-label classifica-
tion deals with the problem where an object may belong to
one or multiple classes simultaneously, i.e., objects are as-
sociated with a set of labels Y ⊆ L, where L (|L| > 1) is a
set of disjoint class labels [14].

In our work, we evaluate the following multi-label classi-
fiers for tag annotation. Random k-Labelsets (RAkEL), Cal-
ibrated Label Ranking (CLR), Multi-label k-Nearest Neigh-
bor (MLkNN), Backpropagation for Multi-Label Learning
(BPMLL), Hierarchy of Multi-label Classifiers (HOMER),
Instance Based Logistic Regression (IBLR), and an adapta-
tion of kNN using Binary Relevance (BRkNN). Moreover,
we use a Decision Tree (DT) and Support Vector Machine
(SVM) as base-level learning algorithms for CLR, RAkEL,
and HOMER. A total of 10 multi-label classifiers are eval-
uated. For the sake of space and due to the nature of our
work, we will not digress into the details of these classifiers.
The interested reader is referred to [3, 12, 14, 15, 19].

In order to evaluate the performance of multi-label clas-
sifiers, a variety of evaluation measures are typically em-
ployed. However, as automatic music tag classification is
relatively new in MIR, the evaluation measures used vary

significantly. Furthermore, different classifiers may perform
better under different evaluation measures. Therefore, it is
desirable that multiple and contrasting evaluation measures
are used in any multi-label classification experiment. We
make use of the following measures which are commonly
used in the multi-label classification literature: Hamming
Loss (HL), Average Precision (AP), Coverage (CO), Rank-
ing Loss (RL), One-Error (OE), Macro F-Measure (F1), Macro
Precision (Precision), and Macro Recall (Recall). The inter-
ested reader is referred to [14, 20] for details on them.

4. EXPERIMENT SETUP

In our experiments, the Mulan 1 open source library for multi-
label learning is used to train and evaluate each of the 10
classifiers using default parameters, e.g., the number of neigh-
bors is set to 10 for MLkNN and IBLR, a linear kernel is
used to train the SVM.

4.1 Dataset Selection

Our experiments are conducted on two publicly available
datasets. The Computer Audition Lab 500 dataset (CAL500)
[16] is a collection of 500 Western songs recorded by 500
different artists. Each song is manually annotated with a
subset of 174 tags, which are distributed across 6 attributes:
Mood, Genre, Instrument, Song, Usage, and Vocal. All tags
are manually generated under controlled experimental con-
ditions and are therefore believed to be of high quality. For
our experiments, we use the “hard” annotations provided
with the CAL500 dataset which gives a binary value for all
songs and tags indicating whether a tag applies to a song.

Magnatagatune is a collection of approximately 21,000
clips of music, each annotated with a combination of 188
different tags. The annotations are collected through an on-
line game, referred to as “TagATune”, developed to collect
tags for music and sound clips. Each clip, 29 seconds in
length, is an excerpt of music provided by Magnatune.com
and FreeSound.org. All of the tags in the collection have
been verified, i.e. a tag is associated with a clip only if it is
generated independently by more than two players. More-
over, only those tags that are associated with more than 50
clips are included in the collection. As discussed by Seyer-
lehner et al. [10], Magnatagatune is rather difficult to handle
due to its size and skewed tag distribution and and has not
been used as widely as CAL500.

4.2 Feature Sets and Extraction

Prior to classification, the music pieces must be parameter-
ized based on a set of features and their changes over time.
However, it is widely known that there is no accepted cri-
teria as which features are best for music classification [1].

1 http://mulan.sourceforge.net.
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Therefore, we experiment with three different feature sets,
to be described below, which are commonly used for music
classification. The Marsyas 2 audio processing framework
is used for the computation of the features.

The Spectral feature set, denoted FSs, consists of spectral
features, including Spectral Flatness Measure, Spectral Cen-
troid, Spectral Crest Factor, Spectral Rolloff and Spectral
Flux.

The Timbral feature set, denoted FSt, consists of a combi-
nation of spectral, temporal and cepstral features. The fol-
lowing features are included: Zero Crossing Rate, Spectral
Centroid, Spectral Rolloff, Spectral Flux, MFCC, Chroma.

The Beat feature set, denoted FSb, extends FSt by includ-
ing rhythmic features that are derived by extracting periodic
changes from a beat histogram.

Following a general practice in MIR [8], we model the
audio signal as the statistical distribution of audio features
computed on individual, short segments. This process yields
a large number of feature vectors. Therefore, the feature
vectors are then aggregated together using statistical meth-
ods. Although more elaborate representations have been
proposed in the literature, the simplicity of using a single
vector for classification is appealing [6]. Frame-level fea-
tures in our experiment are compressed into a single set of
song-level features by computing the mean and standard de-
viation across the feature vectors [6]. Furthermore, we in-
vestigate the effects of frame size on multi-label classifica-
tion. For each <feature set, classifier> pair, we examine the
classification performance as we adjust the frame size, fr,
represented as the number of samples collected during a cer-
tain time period, where fr ∈ {256, 512, 1024, 2048, 4096}
with a 50% frame overlap [8].

5. RESULTS AND DISCUSSIONS

In this section, we present the results from our experiments.
Following the practices used in [2,5,16], 10-fold cross vali-
dation is employed during the evaluation process.

5.1 CAL500

In the first set of experiments, we evaluate the multi-label
classifiers using the CAL500 dataset. We find that for all
feature sets, the Calibrated Label Ranking classifier using
a Support Vector Machine, CLRSVM, outperforms the other
classifiers when fr ∈ {1024, 2048, 4096}. Furthermore, we
observe that CLRDT, BPMLL, MLkNN and BRkNN
also perform well over all of the frame sizes and feature
sets.

2 http://marsyas.sness.net.

When we analyze the performance of each classifier over
the individual frame sizes, we find it difficult to select one
that performs well for all of the classifiers. More specif-
ically, we observe that the performance of each classifiers
is not significantly affected by the variation in frame size.
Despite this, we find that CLRSVM performs the best when
fr = 4096. Table 1 shows a comparison of 5 classifiers,
evaluated by HL, for the three feature sets when fr = 4096;
the value following ± gives the standard deviation.

Note that in the following tables, (↓) indicates better per-
formance when the number is smaller while (↑) indicates
better performance when the number is bigger.

FSs FSt FSb

CLRSVM 0.125±0.004 0.127±0.004 0.128±0.004
BPMLL 0.211±0.009 0.218±0.008 0.217±0.010
BRkNN 0.130±0.004 0.134±0.003 0.136±0.004
RAkELDT 0.152±0.003 0.153±0.004 0.156±0.004
MLkNN 0.129±0.004 0.133±0.003 0.135±0.003

Table 1. Hamming Loss (↓) of the classifiers for the three
feature sets, FSs, FSt, and FSb, when fr = 4096.

From the table we can see that HL of each classifier is
better when FSs is used. This is also observed for the other
evaluation measures. Table 2 presents the performance of
CLRSVM for each of the feature sets as evaluated by HL, OE,
CO, and AP; the best result for each measure is shown in
bold face. We find that CLRSVM performs the best, for a ma-
jority of the evaluation measures, when FSs is used. While
spectral features have shown promising results in various
MIR classification tasks, the inclusion of rhythmic features
has been shown to increase classification performance [17].
Further investigation into this result would be desirable.

HL ↓ OE ↓ CO ↓ AP ↑
FSs 0.125±0.004 0.102±0.037 116.7±2.814 0.586±0.016
FSt 0.127±0.004 0.094±0.047 119.7±3.659 0.576±0.014
FSb 0.128±0.004 0.088±0.035 121.6±4.018 0.567±0.013

Table 2. Classification performance (mean±std) of
CLRSVM on CAL500 for each feature set where fr = 4096.

When we analyze HL of CLRSVM for each of the feature
sets over all of the frame sizes, we find it interesting that
both FSs and FSt demonstrate good performance when
fr ∈ {1024, 2048, 4096} while FSb tends to perform bet-
ter when fr ∈ {256, 512, 1024}. This result is discussed
further in Section 5.3.

Table 3 reports the experiment results of the top 5 multi-
label classifier using FSs and fr = 4096 on CAL500. To
make a clearer view of the relative performance between
each classifier, a partial order “�” can be defined on the
set of all classifiers for each evaluation measure, where A1
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HL ↓ OE ↓ CO ↓ RL ↓ AP ↑ F1 ↑ Precision ↑ Recall ↑
CLRSVM 0.125±0.004 0.102±0.037 116.736±2.814 0.140±0.006 0.586±0.016 0.497±0.027 0.642±0.059 0.124±0.009
CLRDT 0.126±0.003 0.106±0.024 117.417±2.970 0.143±0.005 0.578±0.014 0.445±0.027 0.611±0.039 0.124±0.013
BPMLL 0.211±0.009 0.130±0.051 119.878±3.880 0.144±0.007 0.570±0.016 0.479±0.016 0.294±0.039 0.469±0.026
BRkNN 0.130±0.004 0.184±0.054 143.503±2.834 0.189±0.008 0.534±0.016 0.429±0.017 0.543±0.043 0.131±0.011
MLkNN 0.129±0.004 0.132±0.054 126.082±2.994 0.159±0.005 0.550±0.011 0.476±0.014 0.587±0.047 0.118±0.010

Table 3. Classification performance (mean±std) on CAL500 for FSs where fr = 4096.

� A2 means that the performance of classifier A1 is statis-
tically better than that of classifier A2 on the specified mea-
sure. Following the practice used by Zhang and Zhou [20],
a two-tailed paired t-test at 5% significance level is used to
perform the comparison.

Note that the partial order “�” only measures the rela-
tive performance between two classifiers A1 and A2 for a
single evaluation measure. It is possible that A1 performs
better than A2 in terms of some measure but worse than A2
in terms of other ones. In this case, it is hard to judge which
classifier is superior. Therefore, in order to give an overall
performance assessment of a classifier, a score is assigned
to it which takes into account its relative performance with
other classifiers on all evaluation measures. For each mea-
sure, for each possible pair of classifiers A1 and A2, if A1
� A2 holds, then A1 is rewarded by a positive score +1 and
A2 is penalized by a negative score -1. Based on the accu-
mulated score of each classifier on all evaluation measures,
a total order “>” is defined on the set of all classifiers [20].
Table 4 presents an example of this process; the accumu-
lated score for each classifier is shown in parentheses.

Multi-label Classifier
A1-BPMLL; A2-CLRDT; A3-CLRSVM; A4-MLkNN

Hamming Loss A2 � A1, A3 � A1, A3 � A4, A4 � A1
Coverage A1 � A4, A2 � A4, A3 � A4
Ranking Loss A1 � A4, A2 � A4, A3 � A4
Average Precision A1 � A4, A2 � A4, A3 � A1, A3 � A4
Total Order A3(6) >A2(4) >A1(-1) >A4(-9)

Table 4. Relative performance between four multi-label
classification algorithms on the CAL500 dataset.

The total order of all 10 multi-label classifiers on CAL500
is as follows: CLRSVM (42) > CLRDT (31) > BPMLL
(25) > MLkNN (20) > BRkNN (-1) > RAkELSVM (-7)
> HOMERSVM (-9) > RAkELDT (-13) > HOMERDT (-
35) > IBLR (-53). It can be seen that CLRSVM outperforms
all the other classifiers on the CAL500 dataset. Furthermore,
CLRDT, BPMLL, MLkNN , and BRkNN demonstrate
good performance and outperform the remaining classifiers.

5.2 Magnatagatune

For the second set of experiments we evaluate the classifiers
using the Magnatagatune dataset. We find that for all fea-

ture sets, CLRSVM outperforms all the other classifiers when
fr ∈ {1024, 2048, 4096}. Furthermore, we observe that
CLRDT, BPMLL, MLkNN , and BRkNN , offer com-
parable performance over all of the frame sizes and feature
sets.

FSs FSt FSb

CLRSVM 0.022±0.002 0.021±0.002 0.021±0.001
BPMLL 0.073±0.003 0.074±0.002 0.022±0.002
BRkNN 0.021±0.002 0.021±0.002 0.022±0.002
RAkELDT 0.023±0.002 0.023±0.001 0.023±0.001
MLkNN 0.021±0.002 0.021±0.002 0.022±0.002

Table 5. Hamming Loss (↓) of the classifiers for the three
feature sets, FSs, FSt, and FSb, when fr = 2048.

Once again, it is difficult to select a frame size that works
well for all of the classifiers. We observe that each classifier
performs differently, for each feature set, over the differ-
ent frame sizes. In spite of this, CLRSVM performs the best
when fr = 2048. Table 5 shows a comparison of 5 multi-
label classifiers, as evaluated by HL, for the three feature
sets when fr = 2048. From the table, we find that HL is bet-
ter for a majority of the classifiers when FSt is used. It can
be seen that HL of CLRSVM and BPMLL is better when
FSb is used. If we extend our analysis to include additional
evaluation measures, we find that, on average, performance
improves with the use of FSt for a majority of classifiers.
Table 6 presents the performance of CLRSVM for each fea-
ture set.

HL ↓ OE ↓ CO ↓ AP ↑
FSs 0.022±0.002 0.423±0.028 40.6±4.709 0.479±0.017
FSt 0.021±0.002 0.403±0.050 38.9±4.687 0.505±0.027
FSb 0.021±0.002 0.413±0.037 40.7±5.031 0.495±0.024

Table 6. Classification performance (mean±std) of
CLRSVM on Magnatagatune for each feature set where fr =
2048.

Table 7 presents the experiment results of the top 5 multi-
label classifiers using FSt and fr = 2048 on Magnata-
gatune. We note that, for a majority of the evaluation mea-
sures, the performance of each classifier is better on Mag-
natagatune than on CAL500. We will discuss more on this
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HL ↓ OE ↓ CO ↓ RL ↓ AP ↑ F1 ↑ Precision ↑ Recall ↑
CLRSVM 0.021±0.002 0.403±0.050 38.915±4.687 0.076±0.009 0.505±0.027 0.350±0.029 0.738±0.088 0.018±0.002
CLRDT 0.021±0.002 0.471±0.041 42.321±5.461 0.085±0.009 0.459±0.019 0.330±0.023 0.573±0.073 0.029±0.003
BPMLL 0.074±0.004 0.690±0.037 42.081±4.725 0.088±0.012 0.360±0.015 0.282±0.015 0.118±0.041 0.268±0.030
BRkNN 0.021±0.001 0.451±0.043 76.343±6.978 0.166±0.018 0.448±0.022 0.376±0.026 0.591±0.063 0.045±0.005
MLkNN 0.021±0.002 0.443±0.040 51.168±5.082 0.102±0.010 0.468±0.024 0.390±0.041 0.612±0.068 0.045±0.008

Table 7. Classification performance (mean±std) on Magnatagatune for FSt where fr = 2048.

in the following section.
Similarly as the CAL500 dataset, the partial order “�”

and the total order “>” are also defined on the set of all
classifiers. The total ordering for all 10 multi-label classi-
fiers on Magnatagatune is as follows (the accumulated score
for each classifier is shown in parentheses): CLRSVM (37) >
MLkNN (28) > CLRDT (24) > BRkNN (22) > BPMLL
(-1) > RAkELDT (-7) > HOMERSVM (-11) > RAkELSVM

(-21) > IBLR (-31) > HOMERDT (-40). It can be seen
that CLRSVM outperforms all of the multi-label classifica-
tion algorithms on the Magnatagatune dataset. Furthermore,
MLkNN , CLRDT, BRkNN , and BPMLL perform well
for a selection of evaluation measures.

5.3 Discussions

Base Classifier: From our experiments presented above, we
observe that using a SVM as the base-level learning algo-
rithm for CLR, RAkEL, and HOMER offers improve-
ments over using a decision tree. This result is observed for
both of the datasets. Table 8 reports the experimental results
of CLR, RAkEL, and HOMER on the CAL500 dataset
using a SVM and DT as base classifiers. It would be inter-
esting to explore alternative base-level learning algorithms
for music tag annotation.

HL ↓ OE ↓ AP ↑
CLRDT 0.126±0.003 0.106±0.024 0.578±0.014
CLRSVM 0.125±0.004 0.102±0.037 0.586±0.016
HOMERDT 0.196±0.007 0.808±0.061 0.355±0.020
HOMERSVM 0.159±0.004 0.581±0.051 0.427±0.015
RAkELDT 0.151±0.003 0.283±0.045 0.473±0.010
RAkELSVM 0.125±0.004 0.239±0.048 0.424±0.013

Table 8. Classification performance (mean±std) of CLR,
RAkEL, and HOMER on CAL500 using a SVM and DT
as base classifiers.

Feature Set: We find it interesting that, on average, classi-
fication using FSs and FSt tends to demonstrate good per-
formance when fr ∈ {1024, 2048, 4096} while using FSb

results in better performance when fr ∈ {256, 512, 1024}.
This might be explained by the notion that the smaller frame
captures better rhythmic information over the entire music
piece. Furthermore, a large frame may be more likely to

capture the long-term nature of the music, including melodic,
and harmonic composition, which could lead to improved
classification accuracy. While we find small improvements
in classification performance using different frame sizes, we
observe large differences in performance between the best
feature set and worst feature set for a selection of evalua-
tion measures and classifiers. For example, the performance
of BPMLL on Magnatagatune, as evaluated by AP, varies
from 0.04% using FSb to 37% using FSt. In addition, we
find that the best classification performance is achieved on
CAL500 and Magnatagatune using FSs and FSt, respec-
tively. However, it is important to note that there is no ac-
cepted criteria as which features are best for music classi-
fication [1]. Therefore, our observation in the experiments
reported in this work may not be conclusive.

Datasets: For a majority of the evaluation measures, it can
be seen that the classifiers perform better on Magnatagatune,
compared to CAL500. For example, CLRSVM achieves a
Hamming Loss of 0.0211 on the former and 0.1247 on the
latter. One possible explanation for this observation is that
the average number of tags for each instance in Magnata-
gatune is less than CAL500, i.e., each music piece in Mag-
natagatune is annotated with approximately 3 tags while each
music piece in CAL500 is annotated with approximately
26 tags. We also observe that classification performance
varies for each dataset depending on individual feature sets.
For instance, classification using FSs performs the best on
CAL500 while using FSt demonstrates the best performance
on Magnatagatune; we note that using FSs shows the worst
classification performance on Magnatagatune. This leads
us to believing that the spectral features used in our exper-
iment tend to give rise to better performance over longer
pieces of music while using timbral features performs bet-
ter on shorter music. Whether this is true in general needs
further investigation.

6. CONCLUSION

In this paper we present our initial attempts on automatic
music tag annotation. In our work, we conduct a series of
experiments, on a set of multi-label classifiers, exploring
the effects of different feature sets and frame sizes on tag
annotation. The results offer insight into which classifiers
and features are more suitable for this task. We find that
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the Calibrated Label Ranking (CLR) classifier consistently
performs well for a selection of evaluation measures when
using spectral and timbral features.

Further investigation is needed into the selection of clas-
sifier parameters. Recall that each classifier is trained using
default parameters. It would be interesting to explore the in-
fluence of these parameters on tag annotation performance.
In addition, it would be interesting and beneficial to com-
pare our results to existing results in the literature based on
a set of common measures.
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ABSTRACT

We present a content-based auto-tagger that leverages a
rich dictionary of musical codewords, where each codeword
is a generative model that captures timbral and temporal
characteristics of music. This leads to a higher-level, con-
cise “Bag of Systems” (BoS) representation of the charac-
teristics of a musical piece. Once songs are represented as a
BoS histogram over codewords, traditional algorithms for
text document retrieval can be leveraged for music auto-
tagging. Compared to estimating a single generative model
to directly capture the musical characteristics of songs as-
sociated with a tag, the BoS approach offers the flexibility
to combine different classes of generative models at vari-
ous time resolutions through the selection of the BoS code-
words. Experiments show that this enriches the audio repre-
sentation and leads to superior auto-tagging performance.

1. INTRODUCTION

Given a vast and constantly growing collection of online
songs, music search and recommendation systems increas-
ingly rely on automated algorithms to analyze and index
music content. In this work, we investigate a novel ap-
proach for automated content-based tagging of music with
semantically meaningful tags (e.g., genres, emotions, instru-
ments, usages, etc.). Most previously proposed auto-taggers
rely either on discriminative algorithms [2, 7, 11–13], or on
generative probabilistic models, including Gaussian mixture
models (GMMs) [19, 20], hidden Markov models (HMMs)
[13, 15], hierarchical Dirichlet processes (HDPs) [9], code-
word Bernoulli average models (CBA) [10], and dynamic
texture mixture models (DTMs) [5].

Most generative approaches first propose a general prob-
abilistic model — the base model — that can adequately

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

capture the typical characteristics of musical audio signals.
Then, for each tag in a given vocabulary, an instance of this
base model is fine-tuned to directly model the audio pat-
terns that are specific and typical for songs associated with
that tag. For example, Turnbull et. al. [19] propose Gaus-
sian mixture models (GMMs) over a “bag of features” (BoF)
representation, where each acoustic feature represents the
timbre of a short snippet of audio. Coviello et. al. [5]
use dynamic texture mixture models (DTMs) over a “bag
of fragments” representation, where each fragment is a se-
quence of acoustic features extracted from a few seconds of
audio. DTMs capture information about the temporal dy-
namics (e.g. rhythm, beat, tempo) of an audio fragment, as
well as instantaneous timbral content.

Such direct generative approaches may suffer from two
inherent limitations. First, their flexibility is determined by
the choice of the base model. Since different base models
may capture complementary characteristics of a musical sig-
nal, selecting a single base model may restrict the modeling
power a priori. For example, Coviello et al. [5] reported that
DTMs are particularly suitable to model tags with signifi-
cant temporal characteristics, while GMMs are favorable for
some tags for which “timbre says it all”. Moreover, speci-
fying a base model implies setting its time scale parameters.
This limits direct generative approaches to detecting musi-
cal characteristics (timbre, temporal dynamics, etc.) at one
fixed time resolution, for each tag in the vocabulary. This is
suboptimal, since the acoustic patterns that characterize dif-
ferent tags may occur at different time resolutions. Second,
estimating tag models may require tuning a large number of
parameters, depending on the complexity of the base model.
For tags with relatively few observations (i.e., songs associ-
ated with the tag), this may be prone to overfitting.

To address these limitations, we propose to use genera-
tive models to indirectly represent tag-specific musical char-
acteristics, by leveraging them to extract a high-level song
representation. In particular, we propose to model a song
using a “bag of systems” (BoS) representation for music.
The BoS representation is analogous to the “bag of words”
(BoW) framework employed in text retrieval [1], which rep-
resents documents by a histogram of word counts from a
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given dictionary. In the BoS approach, each word is a gen-
erative model with fixed parameters. Given a rich dictio-
nary of such “musical codewords”, a song is represented
by “counting” the of occurrences of each codeword in the
song — by assigning song segments to the codeword with
largest likelihood. Finally, BoS histograms can be modeled
by appealing to standard text mining methods (e.g., logis-
tic regression, topic models, etc.), to obtain tag-level mod-
els for automatic annotation and retrieval. A BoS approach
has been used for the classification of videos [4, 14], and a
similar idea has inspired the anchor modeling for speaker
identification [16].

By leveraging the complementary modeling power of var-
ious classes of generative models, the BoS approach is more
flexible than direct generative approaches. In this work, we
demonstrate how combining Gaussian and dynamic texture
codewords with different time resolutions enriches the rep-
resentation of a song’s acoustic content and improves per-
formance. A second advantage of the BoS approach is that
it decouples modeling music from modeling tags. This al-
lows us to leverage sophisticated generative models for the
former, while avoiding overfitting by resorting to relatively
simpler BoW models for the latter. More precisely, in a first
step, a dictionary of sophisticated codewords may be esti-
mated from any large collection of representative audio data,
which need not be annotated. This allows to learn a general,
rich BoS representation of music robustly. Next, tag mod-
els are estimated to capture the typical codeword patterns in
the BoS histograms of songs associated with each tag. As
each tag model already leverages the descriptive power of a
sophisticated codebook representation, relatively simple tag
models (with fewer tunable parameters) may be estimated
reliably, even from small sets of tag-specific training songs.

In summary, we present a new approach to auto-tagging
that constructs a rich dictionary of musically meaningful
words and represents each song as a histogram over these
words. This simple, compact representation of the musical
content of a song is computationally efficient once learned
and expected to be more robust than a single low-level audio
representation. It can benefit from the modeling capabilities
of several classes of generative models, and exploit infor-
mation at multiple time scales.

2. THE BAG OF SYSTEMS REPRESENTATION OF
MUSIC

Analogous to the BoW representation of text documents, the
BoS approach represents songs with respect to a codebook,
in which generative models are used in lieu of words. These
generative models compactly characterize typical audio fea-
tures, musical dynamics or other acoustic patterns in songs.

We discuss codebook generation in Section 2.1, the gen-
erative models used as codewords in Section 2.2, and the

representation of songs using the codebook in Section 2.3.

2.1 Codebook generation

To build a codebook, we first choose M classes of base
models (each with a certain allocation of time scale param-
eters). From each model we derive a set of representative
codewords, i.e., instances of that model class that capture
meaningful musical patterns. We do this first by defining a
representative collection of songs, i.e., a codebook set, Xc,
and then modeling each song in Xc as a mixture ofKs mod-
els from each model class. After parameter estimation, the
mixture components provide us with characteristic instances
of that model class and become codewords. Finally, we ag-
gregate all codewords to form the BoS codebook, V , which
contains |V| = MKs|Xc| codewords.

Each codeword in the BoS codebook can be seen as char-
acterizing a prototypical audio pattern or texture, and code-
words from different classes of generative models capture
different types of musical information. If the codebook set,
Xc, is sufficiently diverse, the estimated codebook will be
rich enough to represent songs well.

2.2 The codewords

To obtain a diverse codebook, we consider Gaussian mod-
els (to characterize timbre) and dynamic texture (DT) mod-
els [6] (to capture temporal dynamics) at various time res-
olutions. First, a time resolution is chosen by representing
songs as a sequence of feature vectors, Y = {y1, . . . , yT },
extracted from half-overlapping time windows of length η.
The sampling rate and the length η of the windows deter-
mines the time resolution of the generative models. Second,
a generative model (Gaussian or DT) is chosen, and mixture
models are estimated for all songs in the codebook set, Xc.

2.2.1 Gaussian codewords

To learn Gaussian codewords, we fit a Gaussian mixture
model (GMM) to each song inXc, to capture the most promi-
nent audio textures it exhibits. More specifically, for each
song in Xc, we treat the sequence of its feature vectors, Y ,
as an unordered bag of features, and use the EM algorithm
to estimate the parameters of a GMM from these features.
Finally, each mixture component is considered as a code-
word, characterized by parameters Θi = {µi,Σi}, where
µi and Σi are the mean and covariance of the ith mixture
component of the GMM, respectively.

2.2.2 Dynamic Texture codewords

Dynamic texture (DT) codewords are learned by modeling
each song in Xc as a mixture of DTs, and considering each
individual DT as a codeword.

DTs explicitly model the temporal dynamics of audio by
modeling ordered sequences of audio features rather than in-
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dividual features. From the sequence of feature vectors ex-
tracted from a song, Y , we sample subsequences, i.e., frag-
ments, y1:τ , of length τ every ν seconds. We then repre-
sent the song by an unordered bag of these audio fragments,
Y = {y1

1:τ , . . . , y
T
1:τ}.

A DT treats an audio fragment y1:τ as the output of a
linear dynamical system (LDS):

xt = Axt−1 + vt, (1)

yt = Cxt + wt + ȳ, (2)

where the random variable yt ∈ Rm encodes the timbral
content (audio feature vector) at time t, and a lower dimen-
sional hidden variable xt ∈ Rn encodes the dynamics of the
observations over time. The model is specified by param-
eters Θ = {A,Q,C,R, µ, S, ȳ}, where the state transition
matrix A ∈ Rn×n encodes the evolution of the hidden state
xt over time, vt ∼ N (0, Q) is the driving noise process, the
observation matrix C ∈ Rm×n encodes the basis functions
for representing the observations yn, ȳ is the mean of the
observation vectors, and wt ∼ N (0, R) is the observation
noise. The initial condition is distributed as x1 ∼ N (µ, S).

We model a song by a dynamic texture mixture (DTM)
that summarizes the dominant temporal dynamics, where an
assignment variable z ∈ {1, 2, ...,Ks} selects which of Ks

DTs is generating an audio fragment. For a given a song,
the DTM parameters are estimated via the EM algorithm [3]
and, once again each mixture component Θi is a codeword.

2.3 Representing songs with the codebook

Once a codebook is available, a song is represented by a
codebook multinomial (CBM) b ∈ R|V| that reports how
often each codeword appears in that song, where b[i] is the
weight of codeword i in the song.

To build the CBM for a given song, we count the number
of occurrences of each codeword in the song by computing
its likelihood at various points in the song (e.g., every ν sec-
onds) and comparing it to the likelihood of other codewords
derived from the same base model class (since likelihoods
are only comparable between similar models with the same
time resolution). To compute the likelihood of a given code-
word at a certain point in the song, we extract a fragment of
audio information yt depending on the time scale and model
class of the codeword in question. I.e., for GMM code-
words, yt is a single audio feature vector, extracted from
a window of width η, while for DTM codewords, yt is a se-
quence of τ such feature vectors. We count an occurrence of
the codeword under attention if it has the highest likelihood
of all the codewords in that class.

We construct the histogram b for song Y by counting the
frequency with which each codeword Θi ∈ V is chosen to

represent a fragment:

b[i] =
1

M |Ym|
∑
yt∈Ym

1[Θi = argmax
Θ∈Vm

P (yt|Θ)] (3)

where Vm ⊆ V is the subset of codewords derived from the
model class m which codeword Θi is derived. Normalizing
by the number of fragments |Ym| (according to class m) in
the song and the number of model classesM leads to a valid
multinomial distribution.

We find that the codeword assignment procedure out-
lined above tends to assign only a few different codewords
to each song. In order to diversify the CBMs, we general-
ize equation 3 to support the assignment of multiple code-
words at each point in the song. Hence, for a threshold
k ∈ {1, 2, . . . , |Vm|}, we assign the k most likely code-
words (again comparing only within a model class) to each
fragment. The softened histogram is then constructed as:

b[i] =
1

M |Ym|
∑
yt∈Ym

1

k
1[Θi = argmax

Θ∈Vm

kP (yt|Θ)] (4)

where the additional normalization factor of 1/k ensures
that b is still a valid multinomial for k > 1.

3. MUSIC ANNOTATION AND RETRIEVAL USING
THE BAG-OF-SYSTEMS REPRESENTATION

Once a BoS codebook V has been generated and songs are
represented by codebook histograms (i.e., CBMs), a content-
based auto-tagger may be obtained based on this represen-
tation — by modeling the characteristic codeword patterns
in the CBMs of songs associated with each tag in a given
vocabulary. In this section, we formulate annotation and
retrieval as a multiclass multi-label classification of CBMs
and discuss the algorithms used to learn tag models.

3.1 Annotation and retrieval with BoS histograms

Formally, assume we are given a training dataset Xt, i.e., a
collection of songs annotated with semantic tags from a vo-
cabulary T . Each song s in Xt is associated with a CBM
bs which describes the song’s acoustic content with respect
to the BoS codebook V . The song s is also associated with
an annotation vector cs = (c1, . . . , c|T |) which express the
song’s semantic content with respect to T , where ci = 1
if s has been annotated with tag wi ∈ T , and ci = 0 oth-
erwise. A dataset is a collection of CBM-annotation pairs
Xt = {(bs, cs)}|Xt|

s=1.
Given a training set Xt, standard-text mining algorithms

are used to learn tag-level models to capture which patterns
in the CBMs are predictive for each tag in T . Given the
CBM representation of a novel song, b, we can then resort to
the previously trained tag-models to compute how relevant

725



Poster Session 6

each tag in T is to the song. In this work, we consider algo-
rithms that have a probabilistic interpretation, for which it is
natural to define probabilities p(wi|b), for i = 1, . . . , |T |,
which we rescale and aggregate to form a semantic multino-
mial (SMN) p = (p1, . . . , p|T |), where pi ∝ p(wi|b) and∑|T |
i=1 pi = 1. Hence we define the relevance of a tag to the

song as the corresponding entry in the SMN.
Annotation involves selecting the most representative tags

for a new song, and hence reduces to selecting the tags with
highest entries in p. Retrieval consists of rank ordering a set
of songs S = {s1, s2 . . . sR} according to their relevance
to a query. When the query is a single tag wi from T , we
define the relevance of a song to the tag by p(wi|b), and
therefore we rank the songs in the database based on the ith

entry in their SMN.

3.2 Learning tag-models from CBMs

The CBM representation of songs is amenable to a variety of
annotation and retrieval algorithms. In this work, we investi-
gate one generative algorithm, Codeword Bernoulli Average
modeling (CBA), and one discriminative algorithm, multi-
class kernel logistic regression (LR).

3.2.1 Codeword Bernoulli Average

The CBA model proposed by Hoffman et. al. [10] is a gener-
ative process that models the conditional probability of a tag
word appearing in a song. Hoffman et al. define CBA based
on a vector quantized codebook representation of songs. For
our work, we adapt the CBA model to use a BoS codebook.

For each song, CBA defines a collection of binary ran-
dom variables yw ∈ {0, 1}, which determine whether or not
tag w applies to the song. These variables are generated in
two steps. First, given the song’s CBM b, a codeword zw is
chosen according to the CBM, i.e., zw ∼ Multinomial(b1, . . . ,
b|V|). Then a value for yw is chosen from a Bernoulli distri-
bution with parameter βkw,

p(yw = 1|zw, β) = βzww (5)

p(yw = 0|zw, β) = 1− βzww. (6)

We use the author’s code [10] to fit the CBA model. To
build the SMN of a novel song we compute the posterior
probabilities p(ywi

= 1|b, β) = pi under the estimated
CBA model, and normalize p = (p1, . . . , p|V|).

3.2.2 Multiclass Logistic Regression

Logistic regression defines a linear classifier with a prob-
abilistic interpretation by fitting a logistic function to all
CBMs associated to each tag:

P (wi|b, βi) ∝ expβTi b (7)

Kernel logistic regression finds a linear classifier after ap-
plying a non-linear transformation to the data, ϕ : Rd →

Rdϕ . The feature mapping ϕ is indirectly defined via a ker-
nel function K(a,b) = 〈ϕ(a), ϕ(b)〉, where a and b are
CBMs.

In our experiments we use the histogram intersection ker-
nel [17], which is defined by the kernel function: K(a,b) =∑
jmin(aj , bj). In our implementation we use the software

package Liblinear [8] and learn an L2-regularized logistic
regression model for each tag using the “one-vs-the rest”
approach. As with CBA, we collect the posterior probabili-
ties p(wi|b) and normalize to build the SMN.

4. EXPERIMENTAL SETUP

4.1 Music Datasets

The CAL500 [19] dataset consists of 502 Western popular
songs from 502 different artists. Each song-tag association
has been evaluated by at least 3 humans, using a vocabulary
of 149 tags. CAL500 provides binary annotations, i.e., ci =
1 when a tag i applies to the song and 0 when the tag does
not apply. We restrict our experiments to the 97 tags with
at least 30 example songs and use 5-fold cross-validation,
where each song appears in the test set exactly once.

The CAL10k dataset [18] is a collection of over ten thou-
sand songs from 4,597 different artists, weakly labeled from
a vocabulary of over 500 tags. The song-tag associations are
mined from Pandora’s website. We restrict our experiments
to the 55 tags in common with CAL500.

4.2 Codebook parameters

For our experiments, we build codebooks using three classes
of generative models: one class of GMMs and two classes
of DTMs at different time resolutions. To learn DTM code-
words, we use feature vectors consisting of 34 Mel-frequency
bins. The feature vectors used to learn GMM codewords are
Mel-frequency cepstral coefficients appended with first and
second derivatives (MFCC-delta). Window and fragment
length for each class of codewords are specified in Table 1.

Model Class Window length (η) Fragment length Fragment step (ν)

BoS-DTM1 12 ms 726 ms 145 ms
BoS-DTM2 93 ms 5.8 s 1.16 s
BoS-GMM1 46 ms 46 ms 23 ms

Table 1. Time resolutions of model classes

4.3 Experiments

Our first experiment is cross-validation on CAL500, using
the training set Xt as the codebook set Xc and re-training
the codebook for each split. We learn Ks = 4 codewords of
each model class per song. We build 5 codebooks: one for
each of the 3 classes of codewords, one combining the two
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classes of DTM codewords (BoS-DTM1,2) and one combin-
ing all three classes of codewords (BoS-DTM1,2-GMM1).
These results are discussed in Section 5.1.

A second experiment investigates using a codebook set
Xc that is disjoint from any of the training sets Xt. By
sampling Xc as a subset of the CAL10k dataset, we illus-
trate how a codebook may be learned from any collection
of songs (whether annotated or not). Training and testing
of tag models is still performed as five-fold cross-validation
on CAL500. We perform one experiment with |Xc| = 400,
Ks = 4, to obtain a codebook of the same size as those
learned on the CAL500 training set. Another experiment
uses |Xc| = 4, 597, for which one song was chosen from
each artist in CAL10k, and Ks = 2. The results are dis-
cussed in Section 5.2.

Finally, we conduct an experiment learning codebooks
and training tag models on the CAL10k dataset and testing
these models on CAL500, in order to determine how well
the BoS approach adapts to training on a separate, weakly
labeled dataset. We use the same codebook learned from
one song from each artist in CAL10k as above, with |Xc| =
4, 597, and Ks = 2 codewords per song for each model
class. Now our training set Xt is the entire CAL10k dataset.
We train tag models with the settings (regularization of LR,
etc.) found through cross-validation on CAL500, in order
to avoid overfitting, and test these models on the CAL500
songs. These results are discussed in Section 5.3.

4.4 Annotation and retrieval

We annotate each test song CBM with 10 tags, as described
in Section 3. Annotation performance is measured using
mean per-tag precision, recall and F-score. Retrieval per-
formance is measured using area under the receiver oper-
ating characteristic curve (AROC), mean average precision
(MAP), and precision at 10 (P10) [19].

5. EXPERIMENTAL RESULTS

5.1 Results on CAL500

Results on the CAL500 dataset are shown in Table 2. In gen-
eral, we achieve the best results with the softened histogram
CBM representation (see Section 2.3), using a threshold of
k = 10 for CBA and k = 5 for LR. For comparison we also
show results using the hierarchical EM algorithm (HEM) to
directly build GMM tag models (HEM-GMM) [19] and to
directly build DTM tag models (HEM-DTM) [5]. These ap-
proaches are state of the art auto-tagging algorithms that use
the same generative models we use to build BoS codebooks,
in a more traditional framework. The HEM-GMM experi-
ments use GMM tag models consisting of 4 mixture com-
ponents, with the same audio features as the BoS-GMM1

experiments. The HEM-DTM experiments use DTM tag

Annotation Retrieval
Precision Recall F-Score AROC MAP P10

HEM-GMM 0.374 0.205 0.213 0.686 0.417 0.425
HEM-DTM 0.446 0.217 0.264 0.708 0.446 0.460

BoS-DTM1
CBA 0.369 0.251 0.237 0.722 0.465 0.482

LR 0.416 0.257 0.270 0.730 0.471 0.483

BoS-DTM2
CBA 0.382 0.241 0.233 0.717 0.457 0.471

LR 0.404 0.251 0.260 0.725 0.466 0.480

BoS-GMM1
CBA 0.359 0.243 0.227 0.714 0.450 0.463

LR 0.396 0.251 0.257 0.724 0.464 0.479

BoS-DTM1,2
CBA 0.375 0.254 0.240 0.729 0.473 0.495

LR 0.413 0.264 0.274 0.738 0.480 0.496

BoS–DTM1,2-GMM1
CBA 0.378 0.262 0.248 0.738 0.482 0.505

LR 0.434 0.272 0.281 0.748 0.493 0.508

Table 2. BoS codebook performance on CAL500, com-
pared to Gaussian tag modeling (HEM-GMM) and DTM
tag modeling (HEM-DTM).

Figure 1. Retrieval performance of the BoS approach with
LR, relative to HEM-DTM, as a function of the maximum
cardinality of tag-specific training examples.

models consisting of 16 mixture components with the same
features and time scale parameters as the BoS-DTM2 exper-
iments. The BoS approach outperforms the direct tag mod-
eling approach for all metrics except precision, where HEM-
DTM is still best. Additionally, the greatest improvements
are seen with codebooks that combine the richest variety of
codewords. These codebooks capture the most information
from the audio features, which leads to more descriptive tag
models and increases the quality of the tag estimation.

Since the classification algorithms we use to model tags
have fewer parameters than direct tag modeling approaches,
the BoS approach is more robust for tags with fewer exam-
ple songs. We demonstrate this in Figure 1, which plots the
improvement in MAP over HEM-DTM as a function of the
tag’s training set cardinality. The BoS approach shows the
greatest improvement for tags with few training examples.

5.2 Results learning codebook from unlabeled songs

Table 3 shows results using BoS codebooks learned from
unlabeled songs. These results are roughly equivalent to us-
ing codebooks learned from CAL500, and in fact outper-
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Annotation Retrieval
|Xc| Precision Recall F-score AROC MAP P10

CAL500 400 CBA 0.378 0.262 0.248 0.738 0.482 0.505
LR 0.434 0.272 0.281 0.748 0.493 0.508

CAL10k
400 CBA 0.355 0.263 0.244 0.741 0.484 0.505

LR 0.429 0.269 0.277 0.749 0.492 0.498
4,597 CBA 0.377 0.263 0.249 0.744 0.489 0.505

LR 0.434 0.273 0.282 0.751 0.497 0.517

Table 3. Results using codebooks learned from unlabeled
data (CAL10k), compared with codebooks from CAL500,
with codewords from model classes BoS-DTM1,2-GMM1,
where |Xc| is the cardinality of the codebook training set.

Annotation Retrieval
Precision Recall F-Score AROC MAP P10

HEM-GMM 0.297 0.404 0.264 0.714 0.350 0.315
HEM-DTM 0.289 0.391 0.259 0.702 0.354 0.314

BoS-DTM1,2-GMM1
CBA 0.310 0.495 0.295 0.756 0.414 0.361

LR 0.336 0.493 0.319 0.757 0.414 0.353

Table 4. Summary of results training on CAL10k.

form the CAL500 codebooks with a larger codebook set.
This shows that a dictionary of musically meaningful code-
words may be estimated from any large collection of songs,
which need not be labeled, and that a performance gain can
be achieved by adding unlabeled songs to the codebook set.

5.3 Results training on CAL10k

Results training codebooks and tag models on the CAL10k
dataset, in Table 4, show that the BoS approach still outper-
forms the direct tag modeling approaches when trained on a
separate dataset. We also see that the generative CBA model
catches up to the discriminative LR model in some perfor-
mance metrics, which is expected, since generative models
tend to be more robust on weakly labeled datasets.

6. CONCLUSION

We have presented a semantic auto-tagger that leverages a
rich “bag of systems” representation of music. The latter
can be learned from any representative set of songs, which
need not be annotated, and allows to integrate the descrip-
tive quality of various generative models of musical content,
with different time resolutions. This approach improves per-
formance over directly modeling tags with a single type of
generative model. It also proves significantly more robust
for tags with few training examples.
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ABSTRACT

This paper analyzes some of the challenges in performing
automatic annotation and ranking of music audio, and pro-
poses a few improvements. First, we motivate the use of
principal component analysis on the mel-scaled spectrum.
Secondly, we present an analysis of the impact of the selec-
tion of pooling functions for summarization of the features
over time. We show that combining several pooling func-
tions improves the performance of the system. Finally, we
introduce the idea of multiscale learning. By incorporating
these ideas in our model, we obtained state-of-the-art per-
formance on the Magnatagatune dataset.

1. INTRODUCTION

In this paper, we consider the tasks of automatic annotation
and ranking of music audio. Automatic annotation consists
of assigning relevant word descriptors, or tags, to a given
music audio clip. Ranking, on the other hand, consists of
finding an audio clip that best corresponds to a given tag,
or set of tags. These descriptors are able to represent a wide
range of semantic concepts such as genre, mood, instrumen-
tation, etc. Thus, a set of tags provides a high-level descrip-
tion of an audio clip. This information is useful for tasks like
music recommendation, playlist generation and measuring
music similarity.

In order to solve automatic annotation and ranking, we
need to build a system that can extract relevant features from
music audio and infer abstract concepts from these features.
Many content-based music recommendation systems follow
the same recipe with minor variations (see [5] for a review).
First, some features are extracted from the audio. Then,
these features are summarized over time. Finally, a classifi-
cation model is trained over the summarized features to ob-
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tain tag affinities. We describe several previous approaches
that follow these steps and have been applied to the Mag-
natune dataset [13] in Section 3.1. We then present an ap-
proach that deviates somewhat from the standard recipe by
integrating learning steps before and after the temporal sum-
marization.

This paper has three main contributions. First, we de-
scribe a simple adaptive preprocessing procedure of the mu-
sic audio that incorporates only little prior knowledge on
the nature of music audio. We show that the features ob-
tained through this adaptive preprocessing give competitive
results when using a relatively simple classifier. Secondly,
we study the impact of the selection and mixing of pool-
ing functions for summarization of the features over time.
We introduce the idea of using min-pooling in conjunction
with other functions. We show that combining several pool-
ing functions improves the performance of the system. Fi-
nally, we incorporate the idea of multiscale learning. In or-
der to do this, we integrate feature learning, time summa-
rization and classification in one deep learning step. Using
this method, we obtain state-of-the-art performance on the
Magnatagatune dataset.

The paper is divided as follows. First, we motivate our
experiments in Section 2. Then, we expose our experimen-
tal setup in Section 3. We present and discuss our results in
Section 4. Finally, we conclude in Section 5.

2. MOTIVATION

2.1 Choosing the right features

Choosing the right features is crucial for music classifica-
tion. Many automatic annotation systems use features such
as MFCCs [8,12] because they have shown their worth in the
speech recognition domain. However, music audio is very
different from speech audio in many ways. So, MFCCs,
which have been engineered for speech analysis might not
be the optimal feature to use for music audio analysis.

Alternatives have been proposed to replace MFCCs. Re-
cent work have shown that better classification performance
can be achieved by using mel-scaled energy bands of the
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spectrum [4]. Octave-based spectral contrast features [11]
have been shown to also outperform MFCCs for genre clas-
sification. Thus, finding optimal features for audio classifi-
cation is still an open problem.

In section 3.3, we present a relatively simple audio pre-
processing based on spectral energy bands and principal com-
ponent analysis (PCA).

2.2 Summarization of the features over time

Another important aspect of any automatic tagging system
working on music audio is the question of the summariza-
tion of features over time, potentially allowing one to map a
variable-length sequence into a fixed-size vector of features
that can be fed to a classifier. The objective of summariza-
tion is to transform a joint feature representation into a more
useful one that preserves important information while dis-
carding noise, redundancy or irrelevant information. Sum-
marizing features either in space (e.g. in visual recognition),
or in time (e.g. in audio analysis) yields representations that
are compact, invariant to shifts in space or time and robust
to clutter.

One of the most straightforward ways to summarize fea-
tures is feature pooling. Pooling consists in extracting sim-
ple statistics such as the mean or maximum of the features
over an excerpt of a given time length. The choice of the
pooling function has a great impact on the performance of
the system. In [7], feature pooling in the domain of visual
recognition is analyzed. The authors come to the conclu-
sion that, depending on the data and features, neither max-
pooling or mean-pooling might be optimal, but something
in between might be. This underlines the importance of a
thorough analysis of pooling functions for the specific task
of music audio classification.

The choice of the temporal scale at which the pooling is
applied also has a great impact on a system’s performance.
If we choose a time-scale that is too long, we discard too
much information in the process, and the performance of
the system suffers. If we choose a time-scale that is too
small, the representation becomes less compact and looses
the temporal shift invariance. It is possible to use onset
detection to determine an optimized aggregation window
length [20]. However, this method relies on onset detection
methods which are not always reliable in all types of music.

2.3 Feature Learning and Deep Learning

It has been argued that features extracted by task-specific
signal processing might be replaced by features learned over
simpler low-level features, i.e., for object recognition [2,
15]. For instance, features learned with a Deep Belief Net-
work over spectral amplitudes has been shown to outper-
form MFCCs for genre recognition and automatic annota-
tion [10, 16].

Feature learning consists in exploiting the structure of the
data distribution to construct a new representation of the in-
put. This representation can be considered as a set of la-
tent variables within a probabilistic model of the input. The
transformation can be learned via unsupervised or super-
vised learning. Feature learning allows one to build systems
relying less on prior knowledge and more on data, which
grants more flexibility to adapt to a given task.

Deep learning algorithms attempt to discover multiple
levels of features or multiple levels of representation. Sev-
eral theoretical results and arguments [1] suggest that shal-
low architectures (with 1 or 2 levels, as in SVMs with a
fixed kernel, for example) may be less efficient at represent-
ing functions that can otherwise be represented compactly
by a deep architecture. The advantage of a deep architecture
is that concepts or features at one level can be represented
by combining features at lower levels, and these low-level
features can be re-used in exponentially many ways as one
considers deep architectures.

Convolutional Neural Networks (CNN) [15] were the first
deep models to be applied successfully to real-world prob-
lems such as character recognition. CNNs present a hier-
archical structure. Inserting a feature pooling layer between
convolutional layers allows different layers of the network to
work at different time scales and introduces more and more
translation invariance (as well as robustness to other kinds
of local distortions) as one moves up the hierarchy of the
architecture. Hierarchical network structures such as CNNs
seem ideal for representing music audio, since music also
tends to present this hierarchical structure in time and dif-
ferent features of the music may be more salient at different
time scales. Thus, in Section 3.5.2, we propose a hierachical
model strongly inspired by CNNs.

3. EXPERIMENTAL SETUP

3.1 Magnatagatune Dataset

The Magnatagatune dataset consists of 29-second clips with
annotations that were collected using an online game called
TagATune. This dataset was used in the MIREX 2009 con-
test on audio tag classification [14]. In our experiments, we
used the same set of tags and the same train/test split as in
the contest. The training, valid and test set were composed
of 14660, 1629 and 6499 clips respectively. The clips were
annotated with a set of 160 tags, each clip being associated
with between 1 and 30 tags.

We describe here the systems used by the four best con-
testants: Marsyas [19], Mandel [17], Manzagol [18] and
Zhi [9]. All submissions use MFCCs as features, except
for Mandel, which instead uses a cepstral transform that is
closely related to MFCCs. Mandel also computes a set of
temporal features. In addition, Marsyas includes a set of
spectral features: spectral centroid, rolloff and flux. Zhi
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uses Gaussian Mixture Models to obtain a song-level rep-
resentation and uses a semantic multiclass labeling model.
Manzagol summarizes the features with vector quantization
(VQ) and applies an algorithm called PAMIR (passive-aggressive
model for image retrieval). Mandel trains balanced SVMs
for each tag. Finally, Marsyas uses running means and stan-
dard deviations of the features as input to a two-stage SVM
classifier.

3.2 Performance evaluation

To evaluate the performance of our model, we compute the
Area Under the ROC Curve (AUC). The ROC curve of a
classifier is defined by the ratio of true positives over the
positive outputs in function of the ratio of false positives
over the negative outputs. The AUC gives the probability
that, given one random positive and one random negative
example, the classifier will rank the positive one higher than
the negative one. Since the AUC is defined for a binary
classification, and our task requires multi-label classifica-
tion, there are two ways we can compute the AUC. By com-
puting the average of the AUC for each tag (AUC-tag), we
obtain a global measure of how good a classifier is at rank-
ing clips given a tag (e.g. Which clip is more ’Reggae’?).
Alternatively, we can compute the average of the AUC for
each clip (AUC-clip) to obtain a measure of how good clas-
sifier is at ranking tags for a given clip (e.g. Is this clip more
’sad’ or ’metal’ ?).

Another measure which is closely related to the AUC is
the precision at k where k is an integer. Given an ordered list
of tags for a clip, it is defined by the ratio of true positives
in the top k positions.

3.3 Audio Preprocessing

Our audio preprocessing involves three steps: discrete Fourier
transform (DFT), mel-compression and principal component
analysis whitening (PCA).

Firstly, to transform the audio in the spectral domain, we
compute DFTs over windows of 1024 samples on audio at
22.1 KHz (i.e. roughly 46ms) with a frame step of 512 sam-
ples. Then, we run the spectral amplitudes through a set of
128 mel-scaled triangular filters to obtain a set of spectral
energy bands. We compute the principal components of a
random sub-sample of the training set and throw away only
the components with very low variance (low eigenvalues),
yielding 120 components in total. In order to obtain fea-
tures with unitary variance, we multiply each component by
the inverse square of its eigenvalue, a transformation known
as PCA whitening. We will refer to the preprocessed audio
features as Principal Mel-Spectrum Components (PMSC).

3.4 Pooling functions

In our experiments, we used a set of pooling functions and
some of their combinations. The functions we used are:
mean, variance (var), maximum (max), minimum (min), and
3rd and 4th centered moments. The ith centered moment is
defined by: 1

n

∑n
i=1(x−x̄)i. By this definition, the variance

corresponds to the second centered moment.

3.5 Models

We used two different models in our experiments. The first
one, described in Section 3.5.1, is a rather conventional sys-
tem that applies feature extraction, pooling and classifica-
tion in three separate steps. The second one, described in
Section 3.5.2, applies learning both before and after the tem-
poral pooling. The models are illustrated in Figure 1.

3.5.1 Pooled Features Classifier (PFC)

The first model we evaluate applies a given set of pooling
functions to the PMSC features, and sends the pooled fea-
tures to a classifier. Each pooling window is considered as a
training example for the classifier, and we average the pre-
dictions of the classifier over all the windows of a given clip
to obtain the final classification. The classifier is a single
hidden layer neural network, also known as multi-layer per-
ceptron (MLP). We used a hidden layer of 1000 units, sig-
moid activation, L2 weight decay and cross-entropy cost.
We chose to use the MLP as a classifier for three main rea-
sons. First, the hidden layer of the MLP should allow the
model to learn dependencies between tags. Second, the MLP
training time scales well (sub-linearly) with the size of the
training set. Third, neural networks such as the MLP allows
great flexibility in the structure of the network. This will al-
low us to extend the model to a multiscale structure, as we
will see in section 3.5.2. We will refer to this model as the
Pooled Features Classifier (PFC) model.

3.5.2 Multi-Time-Scale Learning model (MTSL)

The second model is structurally similar to the first one, ex-
cept for the fact that we add a hidden layer between the in-
put features and the pooling function. Thus the pooling is
now applied on the activation of this new hidden layer. In
this manner, the model is able to learn a representation of
the features to be pooled. The weights connecting the input
to the first layer are shared across all frames. We keep the
same MLP structure as in the PFC model on top of the pool-
ing. As for the PFC model, learning is purely supervised.
During training, the error is back-propagated from the MLP,
through the pooling functions, down to the first hidden layer.
Thus, it is required to choose pooling functions for which a
gradient can be defined, which is the case for all the func-
tions described in section 3.4.
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Figure 1. Comparison of the PFC and the MTSL model. Upward
arrows represent the flow of feed-forward information. Downward
arrows illustrate the flow of the error back-propagation. U , V and
W are weight matrices to be learned.

In this model, while the first layer is learning on frames
at a time scale of about 46ms, the second layer works at the
scale of the pooling window. Since this model learns on
different time scales, we will refer to it as the Multi-Time-
Scale Learning (MTSL) model.

4. RESULTS AND DISCUSSION

We ran a few experiments to understand how much each
piece of the puzzle contributes to the performance of the
system. First, we evaluated how much the PCA step in
the preprocessing improves the input representation. Then,
we tested the performance of the system vs. the length of
the pooling window. Afterwards, we compared different
pooling functions and combined them for maximum per-
formance. Finally, by adding a hidden layer to our model
before the pooling, we trained a multiscale learning model.

In most experiments, we present the AUC-tag as our per-
formance measure. Since it was the most stable valid mea-
sure during training, we chose it as our early-stopping cri-
terion. However, the AUC-clip and precision at k tend to
follow the same trend as the AUC-tag (i.e. good ranking
models also give good annotations).

4.1 PCA

We measure the effect of the PCA on the mel-spectrum.
We applied the PFC model on the features with and with-
out PCA as well as MFCCs for comparison. Results are
shown in Table 1. We can see that the mel-spectrum fea-
tures perform better than MFCCs, and that adding the PCA
step further improves performance, as well as greatly reduc-
ing training time.

It has been shown in [4] that using the full covariance
matrix of spectral energy bands improves classification per-
formance. The PCA whitening uncorrelates the spectral fea-

valid AUC-tag mean time
MFCC(20) 0.77 +/- 0.04 5.9h

Mel-spectrum(128) 0.853 +/- 0.008 5.2h
PMSC(120) 0.876 +/- 0.004 1.5h

Table 1. Mean performance (higher is better) and mean train-
ing time of different features on the PFC model. In parantheses is
indicated the dimensionality of the input

1 2 4 8 16
Pooling Window Length (s)

0.81

0.82

0.83

0.84

0.85

0.86

0.87

v
a
lid

 A
U

C
-t

a
g
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Figure 2. Performance w.r.t. length of pooling window.

tures, and thus encapsulate most information in the diagonal
of the covariance matrix. In consequence, relevant informa-
tion flows better through the pooling functions, which gives
better pooled features and allows faster and more efficient
training.

4.2 Finding the optimal pooling window

In order to find the best pooling time scale for our task, we
trained a set of PFC models using different pooling win-
dows. The results on the validation set is shown in Figure 2.
We see that the performance reaches a plateau when the
pooling window is around 2.3 seconds. The models illus-
trated in the figure used a combination of mean, variance
and maximum pooling, but the same tendency was obtained
with other pooling functions and combinations.

4.3 Pooling functions

We compared the performance of different pooling func-
tions and some of their combinations on the PFC model. For
each type of pooling we trained 10 models with the same
distribution of hyper-parameters. The results are illustrated
in Figure 3. The label all moments refer to the com-
bination of mean, variance and 3rd and 4th centered mo-
ments. We see that the max and min functions perform well
by themselves. The third and fourth centered moments give
poor results. Even when combined with other pooling func-
tions, they hinder performance. Combining mean, variance,
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Figure 3. Performance of different combinations of pooling func-
tions for the PFC model
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Figure 4. Performance of different combinations of pooling func-
tions for the MTSL model

maximum and minimum gave the best performance.

4.4 Multiscale learning

We trained sets of MTSL models with different pooling func-
tions combinations. For this experiment, we fixed the pool-
ing window at about 2.3 seconds, following the results from
Section 4.2. The results for different sets of pooling func-
tions is given in Figure 4. We see that, once again, com-
bining pooling functions gives better classification perfor-
mance. In particular, all the models that combined mean
and max pooling tend to perform better than others. Also,
variance pooling seems to perform worse than other pool-
ing functions. It helps when combined with the mean, but it
does not give any significant improvement when combined
with max and min pooling.

One might think that models combining pooling func-
tions would require more time to train. However, there was
no significant difference in training time for the different

pooling combinations, except for var and mean_var that
required more time. This can be explained by the fact that,
even though the number of pooled features is greater, the
combination of pooling functions allows the error informa-
tion to flow better to the first layer, thus facilitating learning.

We used between 100 and 200 units in the first layer for
the experiments presented in Figure 4. Using more units
further improves performance, but requires more computing
time. The best MTSL models used around 350 units.

4.5 Comparative test performance

We compare the results of our models to those of the MIREX
2009 contest 1 . In Table 2, we report the test performance
of models that performed best on the validation dataset. We
see that, even without multiscale learning, PMSC features
with the PFC model outperform the best results from the
competition. Applying multiscale learning gives an addi-
tional boost to the performance.

5. CONCLUSION

In this paper we have proposed a few improvements for au-
tomatic annotation and ranking systems:

• We introduced the PMSC features and demonstrated
their performance.

• We demonstrated how combining pooling functions
helps learning.

• We proposed the MTSL model, adding multiscale struc-
ture in a deep architecture, and it obtains state-of-the-
art performance.

We have demonstrated step-by-step the positive impact
of each of these elements. These conclusions were demon-
strated on the task of automatic music annotation and rank-
ing, but may be transferable to other MIR task.

The MTSL model we proposed presents a relatively sim-
ple hierarchical structure. There are many ways that we
could still improve it further. For instance, using a deeper
model with more time scales and smaller pooling windows
might allow to learn a better representation of the music
audio. Also, applying unsupervised training would proba-
bly improve the performance, especially for deeper models.
Furthermore, the use of larger convolutional filters instead
of our frame-by-frame hidden-layer could allow a richer rep-
resentation of time dynamics. Another possible improve-
ment would be to also use the time derivatives of the latent
features as features to be pooled.

It would also be interesting to apply our model to a larger
dataset such as the Million Song Dataset [6] to test how well
it scales to much larger music databases.

1 http://www.music-ir.org/mirex/wiki/2009:Audio_
Tag_Classification_Tagatune_Results
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Measure Manzagol Zhi Mandel Marsyas Mel-spec+PFC PMSC+PFC PSMC+MTSL
Average AUC-Tag 0.750 0.673 0.821 0.831 0.820 0.845 0.861
Average AUC-Clip 0.810 0.748 0.886 0.933 0.930 0.938 0.943

Precision at 3 0.255 0.224 0.323 0.440 0.430 0.449 0.467
Precision at 6 0.194 0.192 0.245 0.314 0.305 0.320 0.327
Precision at 9 0.159 0.168 0.197 0.244 0.240 0.249 0.255
Precision at 12 0.136 0.146 0.167 0.201 0.198 0.205 0.211
Precision at 15 0.119 0.127 0.145 0.172 0.170 0.175 0.181

Table 2. Performance of different models for the TagATune audio classification task. On the left are the results from the MIREX 2009
contest. On the right are our results.
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ABSTRACT 

This paper introduces methods used for Music Mood Clas-

sification to assist in the automated tagging of television 

programme theme tunes for the first time. The methods 

employed use a knowledge driven approach with tailored 

parameters extractable from the Matlab MIR Toolbox [1]. 

Four new features were developed, three based on tonality 

and one on tempo, to enable a degree of quantified tagging, 

using support vector machines, employing various kernels, 

optimised along six mood axes. Using a “nearest 

neighbour” method of optimisation, a success rate in the 

range of 80-94% was achieved in being able to classify mu-

sical audio on a five point mood scale. 

1. INTRODUCTION 

The BBC contains a vast archive of material estimated to be 

over a million hours, most of which has not been seen since 

it was first broadcast. The corporation is in the process of 

digitizing this archive, but very little is known about the 

programme‟s content. Consequently, various investigations 

are being carried out into the automatic classification of 

content and generation of metadata in order to enable 

searching and browsing of the archive when it is eventually 

published. However, because of the nature of the archive, 

the user may not necessarily know what is available. There-

fore, researchers are investigating whether the user can 

browse the archive according to the mood of the pro-

gramme they wish to see. One aspect of this is to attempt to 

determine the mood of the music contained within the pro-

gramme and together with other audio and image recogni-

tion techniques [2], to tag a programme based on this. 

Theme music is used to set the scene of a programme, so 

one would expect a happy, light tune to accompany an en-

tertainment programme, and a dark, heavy tune for a seri-

ous, factual programme
 
[3].  

 

The field of Music Information Retrieval (MIR) is a well-

established area of research with many methods and tech-

niques for extracting audio features widely reported [4]. 

Consequently, the tools used in this paper are not in them-

selves novel, but the way in which they have been applied 

in this work is. In addition, this is arguably the first attempt 

to classify theme music, which is typically shorter than 

other pieces, using mood. The most common method for 

Mood-based Music Information Retrieval (M-MIR) classi-

fication in the literature thus far, has been to extract audio 

characteristics from music which are standalone values 

taken as an average over the entire piece or clip
6
. Certain 

audio characteristics can be very useful. For example, the 

mood heaviness  scales roughly with the root mean square 

energy. To classify other, more complex moods, further 

such audio characteristics are added and processed with a 

support vector machine (SVM) classifier
 
[5]. An SVM 

works as a binary classifier by taking a set of input data and 

predicts, for each given input, which of two possible classes 

the input is a member of. The justification of this approach 

is based on the supposition that the computer has the ability 

to cope with high-dimensionality and to determine trends to 

crudely mimic human perception. However, this method of 

approach does not take into account the inherent structure, 

order and progression of music. Characteristics extracted 

are often carried over from previous work into speech rec-

ognition and include Mel Frequency Cepstral Coefficients, 

entropy and flatness [6]. Such features are very useful but 

improved performance could be achieved by using common 

musical features such as tonality, dynamic range or tempo 

[7]. All but the most abstract music has a set of harmony 

and progression rules which are generally followed and are 

not always taken into account in determining the audio 

characteristics and features used in M-MIR literature to 

date.  

 

This work details exploratory work with small datasets 

which will form the basis of more extensive investigations. 

It covers two new techniques for establishing features of 

variables which bear a greater resemblance to the tools used 

in musical composition, offering a better way for classify-

ing the emotion of music. This includes a method for de-

termining the overall tonality of the music, weighted tonal-
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ity together with two new features of how these change dur-

ing a piece and a more reliable tempo extractor. This work 

makes use of the Matlab MIR Toolbox but uses the output 

from the characteristics extractors to classify musical fea-

tures in new ways. It differs from existing work in that it 

uses a knowledge-driven approach to quantify how extreme 

a mood is (e.g. is it quite happy or very happy?) and be-

cause it is examining theme music. 

2. EXPERIMENTS 

Upon starting this work it was clear that an adequate data-

set for the aims of the project which described the mood of 

various theme tunes did not exist. Therefore, in order to 

gather sufficient ground truth data to train an SVM, a pub-

lic engagement project entitled “Musical Moods” [8] was 

undertaken to obtain a dataset (in which the theoretical 

background, statistical data and reasoning for the dataset 

and the dataset itself can be found). This took the form of a 

survey in which 144 television theme tunes were rated by 

the general public on five point scales along the following 

emotional axes: happy-sad, light-heavy, dramatic-calm, 

masculine-feminine, playful-serious, relaxing-exciting. The 

axes were chosen to correlate with the semantic from Os-

good‟s dimensional space; a three dimensional space in-

corporating Evaluation, Potency and Activity (EPA) [9].    

Whilst the Musical Moods dataset was being gathered, it 

was necessary to use a development dataset upon which to 

experiment. Initial investigations attempted to find trends 

in features extracted using the MIR Toolbox [1] and the 

tracks tagged with mood-based adjectives in the Magnata-

gatune dataset [10]. Though only a small proportion of the 

dataset contained binary, rather than quantitative mood 

tags (i.e. happy-sad as opposed to very happy, quite sad), 

the Magnatagatune dataset was nevertheless considered 

useful for classification development and initially used to 

train single SVMs using a combination of the feature ex-

traction tools available in MIR Toolbox. 

Certain tools in the MIR Toolbox such as mirrms, which 

finds the root mean square of the energy of the track, mir-

lowenergy, which finds the percentage of the track time in 

which the audio is below a certain energy value and 

mircentroid, which finds the „centre of gravity‟ in the fre-

quency spectrum, were found to be very useful features to 

be incorporated into classification of some mood scales. 

Other tools were found to produce very useful results, but 

which needed to be enhanced and modified so that the ex-

tracted data could be converted into a useful, single num-

ber such as for the tools mentioned above in order to be 

used for classification. 

2.1 Tonality 

The first of these was mirkeystrength. There are 12 possi-

ble basic major chords and twelve possible minor chords in 

music. The function calculates and assigns a probability to 

each of the possible 24 chords at a sample rate that can be 

controlled with the function. For this investigation, half 

second intervals were used. The function calls another 

MIR toolbox function, mirchromagram [11], which calcu-

lates the energy distribution for each note in the diatonic 

scale. The pitches are then concatenated into one octave 

and normalized. Next, mirkeystrength cross-correlates the 

chromagram with the chromagram one would expect for 

each of the 24 chords and assigns a probability to each 

chord, where a probability of +1 for the tested chord would 

indicate a definite match whilst -1 would indicate a definite 

mismatch.  

Figure 1. A graphical representation of the possible chords 

used in Last of the Summer Wine with time. Major chords 

are denoted with capital M, minor chords with a small m. 

The red colours denote a high degree of matching. Conse-

quently, this piece is predominately in C major, though C 

minor gives quite a strong match also. 

The reduction of a piece of music to major or minor chords 

is an oversimplification to a certain extent. Whilst major 

and minor chords are the basic construct of a piece of 

Western-style music, other chord types such as dominant 

sevenths, diminished sevenths, extended, other added tone 

and dissonant chords are used to great effect in music to 

elicit different emotions. However, by their nature, they are 

more complex and hence difficult to detect and can often 

be confused with major and minor chords. Consequently, 

when such chords are present, one would expect the key 

clarity to diminish. This can be seen in figure 1, which is 

the mirkeystrength chromagram for the theme tune of the 

BBC television programme Last of the Summer Wine. At 

around the 3 second mark (indicated by the black box) an 

added tone chord of C, D, F and A is played. The software 

understandably struggles to differentiate between D minor, 

A minor and F major chords as a consequence, with no as-
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signed probability particularly high and no red in the figure 

at this point. 

Nevertheless, mirkeystrength is an excellent tool because 

of the probabilities it associates with each chord. The abil-

ity to calculate tonality was thought to be of significant use 

because of it was perceived to have a correlation with 

mood axes such as happy-sad. Three features based on to-

nality were developed. 

2.1.1 Weighted tonality 

Data taken from mirkeystrength was used to find a mean-

ingful feature for tonality which would have a correlation 

with the happy-sad axis and the Magnatagatune dataset. 

Bearing figure 1 in mind, it was clear that the feature 

needed to be weighted in some way. Indeed, without 

weighting, the correlation found between the happy-sad 

axis and the dataset was found to be poor. Consequently, 

the feature developed was named weighted tonality, W, and 

is defined as: 

  (1) 

Where: 

Kmax  =  peak tonality probability amplitude whether ma-

jor or minor, 

Kmaj  =  peak major tonality probability amplitude, 

Kmin  =  peak minor tonality probability amplitude, 

n = the number of time intervals used to classify the sam-

ple of music, 

summed over all n and divided by n. Minor keys will there-

fore be of negative W. 

This feature gives a much clearer representation of the 

overall tonality of the music under consideration because it 

emphasises certainty where it exists and minimizes uncer-

tain contributions. This feature was combined with two 

other inputs, mirrms and mircentroid, to train an SVM on 

99 tracks labelled with binary tags on the happy-sad axis. 

82% of a further 194 tracks were then correctly classified, 

which is comparable with other success rates
6
 and was 

considered to be a solid basis for the full investigation
13

. 

2.1.2 Weighted tonality differential 

As well as the overall nature of the tonality in the music, it 

is also useful to know the frequency with which tonality 

changes. After taking time to study the sample set, it was 

found that moods such as exciting and dramatic tended to 

exhibit a more frequent change of tonality and dominant 

chord. Consequently, two features relating to the change in 

the in dominant chord were made. The first was a weighted 

tonality differential, which detects the rate at which the to-

nality changes during the course of the music. 

It does this by finding the transitions and multiplying the 

transition with the sum of the certainties associated with 

the chords before and after the transition │Kmaj - 

Kmin│j+│Kmaj - Kmin│j+1 (where j corresponds to the cer-

tainty before and j+1 to the certainty after). It will only do 

this at transition locations. Where there is not a transition, 

the differential will be 0. This is then averaged over the 

number of time intervals, n. Again, because this weights 

the transitions with a certainty that the tonality change has 

happened, it gives greater emphasis to clearer transitions, 

thus filtering out transitions which may not have occurred. 

2.1.3 Weighted chord differential 

The second feature determined was a weighted chord dif-

ferential, which detected the rate at which the dominant 

chord changed in the piece; the chord may change but this 

does not necessarily mean a change in tonality (for in-

stance the chord can change from an A major to an E major 

chord).  

It searches for the dominant chord, Kmax and detects Kmax 

transitions. The transition is weighted with a chord transi-

tion certainty, which is calculated by looking at the change 

in certainty of the two keys in question before and after the 

transition. Let us define Ki as the maximum certainty chord 

before the transition and Ki+1 as the probability of this 

chord after the transition. Likewise Li is defined as the cer-

tainty of the new chord before the transition and Li+1 as the 

certainty after it. The transition is weighted by the factor 

(Ki – Li) + (Li+1 – Ki+1). Again, where a transition does not 

occur, the differential will be 0. This feature is averaged 

over all time intervals, n. 

Because these features weight the transitions with a cer-

tainty that the chord change has happened, it gives greater 

emphasis to clearer transitions, thus filtering out uncertain 

transitions.  

2.1.4 Testing of tonality features 

The Magnatagatune dataset contained few tags on the re-

laxing-exciting axis. 150 production music clips tagged 

with exciting and relaxing in the BBC Archive by expert 

archivists were used as a ground truth dataset instead of 

Magnatagatune and although the dataset contained the oc-

casional contentious tag, combining the differential fea-

tures with weighted tonality, mirrms and mirlowenergy in-

creased successful classification (by ~10%) and resulted in 

the correct classification of 37 out of 50 tracks on the re-
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laxing-exciting axis (with the 100 remaining tracks used 

for training) which is comparable with other success rates 

[4] and was considered to be a solid basis for the full inves-

tigation. 

2.2 Tempo 

The final feature developed previous attempts to determine 

the tempo of music. The extraction of tempo is desirable 

because it correlates with mood scales such as exciting-

relaxing. The field of beat extraction is a well-developed 

one, with a number of beat extractors competently able to 

extract the key beats at the last ISMIR conference. How-

ever, this is distinct from tempo, which is more subtle fea-

ture of the fundamental frequency and pace of the music. 

Beat extractors such as beatroot [13] and existing tempo 

extractors such as mirtempo often overestimate the tempo 

because they count the half or third beat (depending on the 

nature of the music), especially in pieces where instru-

ments with high frequency transients such as percussion 

exist. Consequently, whilst being able to detect pieces of 

music with high tempo is relatively straightforward, pieces 

with low tempo are often labelled with twice or three times 

the actual value.  

 

Figure 2. The filtered waveform of the BBC television 

theme tune  Eastenders. Green waveforms (bands 3, 6, 8 & 

9) indicate the bands in which an autocorrelation of onsets 

returns the musically correct tempo, red waveforms (bands 

4,5,7 & 10) indicate where the function returns double the 

tempo. Blue (bands 1 &2)  waveforms give neither. 

Figure 2 illustrates a theme tune filtered into ten, roughly 

logarithmically equal frequency bands which roughly cor-

respond to octaves using mirfilterbank. As can be seen, 

when this is done, the beat is clearly visible in certain 

bands, but the band in which they occur is not necessarily 

the same each time.  

Tempo calculations were carried out on the filtered wave-

forms in figure 2 using mirtempo. The function mirtempo 

calculates the tempo by picking the highest peak in the 

autocorrelation function of onset detection. The green 

bands (3,6,8 & 9) indicate where the tempo was correctly 

identified, the red (4,5,7 & 10) where a tempo twice that of 

the correct tempo was calculated. Note that in no instance 

has a tempo half that of the correct tempo been found and 

that the correct beat can be clearly identified in the green 

waveforms. 

The solution is to apply the mirtempo function to each of 

the ten filtered waveforms. The modal tempo is found and 

grouped into clusters. The standard deviation of the beats 

per minute inside each cluster is also noted to give a meas-

ure of how precise the extracted tempo is. It is therefore 

possible to return an unspecified tempo should this value 

go above a certain threshold.  

When the data is clustered, the largest cluster (or mode) is 

found. The software then searches for a tempo within 15% 

of half the value of the mode. If this exists, the slower 

tempo is chosen as the correct tempo. The software then 

searches for a tempo within 15% of a third of the value of 

the mode. Again, if this exists, this slower tempo is chosen 

as the correct tempo. If neither a half nor a third tempo is 

found, the mean value of the modal cluster is chosen as the 

tempo.  

In all cases tested so far, this has correctly identified the 

tempi of forty pieces of theme music. This is probably be-

cause the nature of the way in which the tempo is deter-

mined using the mirtempo function means that the tempo is 

always going to be over-estimated rather than underesti-

mated and because tempo is a feature of the fundamental 

beat and pace of the music. Other extractors, such as 

mirtempo alone and beatroot only achieved success rates 

of 60-70% on the same theme music. The tempo extractor 

in this paper does not work quite as well for pieces with 

unusual time signatures such as 5/4 or 7/4, but these are not 

commonly used in theme tunes. 

The features developed above complemented existing sim-

pler features. Therefore, for each of the 144 theme tunes in 

the Musical Moods dataset, the following seven audio fea-

tures were extracted: mirrms, mirlowenergy, mircentroid, 

weighted tonality, weighted tonality differential, weighted 

chord differential and tempo.  

A mean score for each mood scale for each track in the Mu-

sical Moods data was calculated from the subjective testing 

and then normalized so that the lowest score was 0.5 and 
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the highest score 5.49. The means were then rounded to the 

nearest integer, giving a score 1-5. This aligns the data with 

the original scale with each number referenced to a tag (e.g. 

on the happy-sad scale, 1 would be associated with very 

happy whilst 4 would be associated with quite sad). Each 

integer was separated by an SVM classifier and trained as 

indicated in table 1.  

 

Logic score 0 1 

SVM1 1 2-5 

SVM2 1,2 3-5 

SVM 3 1-3 4,5 

SVM 4 1-4 5 

Table 1. A summary of how each SVM separated the mean 

mood scores.  

To recover the mood score the classifications are summed 

together and one added as in equation 2:  

14321  CCCC                                    (2) 

Where:  

C1 =  the classification of SVM1, 

C2 =  the classification of SVM2, 

C3 =  the classification of SVM3, 

C4 =  the classification of SVM4, 

   =  is the mood classification score. 

Taking the example above, four classifications from each 

of the four SVMs of 1 1 1 0 would mean 3×1+1 = 4. Occa-

sionally one would obtain a spurious result such as 1010. 

The same equation is applied in this instance and the track 

would therefore classify as a 3. 

The dataset was randomly split into two, the first 94 tracks 

were used to train the SVMs, the final 50 to test the SVMs. 

The program optimized the classifier by choosing from 

five possible SVM kernels: linear, quadratic, cubic, Gaus-

sian radial basis functions and multi-layer perception using 

the bioinformatics toolbox in Matlab for all of the possible 

255 combinations of the 7 audio features.   

Three methods for determining the best combination of 

features and SVM kernel were found. A, is the percentage 

of time that the classifier correctly identifies the correct 

mood score. B, is the average classification success rate for 

all four SVMs, C, is the percentage of time the classifier 

correctly identifies the correct score or classifies with the 

nearest integer (i.e. if the correct mood score of a track is 3 

and the SVMs classify it as 2, 3 or 4, this would still count 

as a positive result towards C whereas a classification of 1 

or 5 would not).  

3. RESULTS 

The aim of this section is to determine whether mood can 

be quantified for television theme tunes. The results for the 

above three methods are shown in table 2. 

 

Mood Scale A B C 

Dramatic-calm 40% 85% 94% 

Happy-sad 44% 84% 88% 

Light-heavy 30% 79% 82% 

Masculine-feminine 32% 80% 84% 

Playful-serious 48% 81% 80% 

Relaxing-exciting 36% 82% 88% 

Table 2. The results obtained for each optimized feature. 

The testing and training sets were then swapped and the 

same calculations carried out. On all mood axes A, B & C 

varied by an average of 2% with a close match in the audio 

features chosen. The use of weighted tonality, the differen-

tials and the tempo extractor increase the successful classi-

fication percentages B & C by an average of ~20%. Table 

3 uses the  data in table 2 and gives the root mean square 

error with respect to a baseline in which each track is 

tagged with a score of 3 for each mood. All except the 

light-heavy scale show a marked improvement on the base-

line. Much of the dataset results contained scores of 2, 3 or 

4, and in general table 3 indicates the feasibility of quanti-

fying the data by these methods. 

 

Mood Scale baseline A B C 

Dramatic-calm 1.16 0.96 0.99 0.93 

Happy-sad 1.44 1.20 1.11 1.11 

Light-heavy 1.15 1.19 1.64 1.64 

Masculine-feminine 1.15 1.06 1.08 1.07 

Playful-serious 1.47 1.22 1.33 1.11 

Relaxing-exciting 1.29 1.05 1.09 1.00 

Table 3. The root mean square error for A, B & C with a 

baseline of mood score 3. 

The results in table 2 show that measure A gave the worst 

results, which is not entirely unexpected given the subtlety 

between the classifications. B has a higher success rate 

than A because it is a measure of how well the SVMs in 

table 1 are working which does not necessarily translate 

into an exact classification.  The best success rates are 

achieved for the measure C, but this measure has the wid-

est tolerance. However, what C does is to classify the audio 

so that most tracks are labelled with the correct tag or the 

one next to it. So, for instance, audio which is tagged as 

quite sad could actually be tagged as very sad or neither 

happy nor sad. Figure 3 illustrates how the distribution of 
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scores changes upon classification of 50 BBC television 

theme tunes on the dramatic-calm scale. Classifications of 

1 or 5 decrease whilst classifications in the middle in-

crease. Whilst the ground truth data is quite flat, classifica-

tion optimised for B and C compresses the distribution into 

a large peak in the middle. This indicates that the algo-

rithms for optimising the SVMs do not adequately account 

for extremes in mood (which could be explained by the 

dataset being too small, whereby the number of extreme 

mood samples is small). Optimising for A shows a better 

match in distribution in this example but this method 

shows great variation between the different mood axes and 

results in classifications that are more often wrong than 

correct. 

 

Figure 3. The distribution of mood scores having opti-

mised for A (correct score), B (average SVM success per-

centage) and C (correct score or nearest integer).  

4. CONCLUSION & FUTURE WORK 

This is a promising first step towards a scaled classification 

of television theme music mood. The use of weighted to-

nality enabled a correct classification of 171 out of 194 

tracks (82%) using a further 99 tracks which were labelled 

with binary tags on the happy-sad axis. The use of 

weighted tonality differentials resulted in the correct classi-

fication of 37 out of 50 tracks on the relaxing-exciting axis 

(with the 100 remaining tracks used for training). The en-

hanced tempo extractor correctly identified 40/40 tempi of 

theme music. The use of the above combined increased the 

successful classification percentages B & C by an average 

of ~20% to accuracies of up to 94% for some mood scales. 

Improvements need to be able to classify extremes of emo-

tion. The work covered in this paper does not cover how 

the extracted audio features coincide with each other tem-

porally. For instance, a sudden, very loud minor chord may 

invoke a more complex mood than the time-averaged 

moods determined here. Measures of dynamic progression 

cross-correlated with tonality, spectral centroid and tempo 

are a possible means to enable a better classification of 

more complex and stronger emotions over shorter time-

scales and should be the focus of future work. 

5. REFERENCES 

[1] O. Lartillot, P. Toiviainen, “A Matlab Toolbox for 

Musical Feature Extraction from Audio”, Proceedings 

of the International Conference on Digital Audio Ef-

fects, Bordeaux, 2007. 

[2] S. Davies, D. Bland, and R. Grafton, "A Framework 

for Automatic Mood Classification of TV 

Programmes," Proceedings of the 5th International 

Conference on Semantic and Digital Media 

Technologies, Saarbrucken, Germany, 2010. 

[3] K. Negus and J. Street. “Introduction to Music and 

Television,” Special Issue, Popular Music, No. 21, pp 

245-248. 

[4] Y.E. Kim et al. “Music Emotion Recognition: A State 

of the Art Review,” Proc. 11
th

 Intl. Soc. for Music. Inf. 

Retrieval Conf., pp. 255-66, 2010. 

[5] I. Steinwart, A. Christmann, “Support Vector Ma-

chines,” Springer, 2008. 

[6] M. Xu et al. M Xu, LY Duan, J Cai, LT Chia, C Xu. 

“Advances in Multimedia Information Processing,” 

PCM, Springer, 2004,  

[7] Anon., “Rudiments and Theory of Music,” Associated 

Board of the Royal Schools of Music, 1958. 

[8] S. Davies, T.J. Cox, P. Allen, "Musical Moods: A 

Mass Participation Experiment for Affective Classifi-

cation of Music," Proc. 12
th

 Intl. Soc. for Music. Inf. 

Retrieval Conf., (accepted), 2011. 

[9] C. E. Osgood, G. Suci, P. Tannenbaum, “The 

measurement of meaning,” University of Illinois Press, 

Urbana, USA, 1957. 

[10] E. Law, K. West, M. Mandel, M. Bay, S. Downie, 

“Evaluation of algorithms using games: the case of 

music tagging,” Proc. 11
th

 Intl. Soc. for Music. Inf. Re-

trieval Conf., pp. 387-392, 2009. 

[11] O. Lartillot, P. Toiviainen, T. Eerola, ” Studies in 

Classification, Data Analysis, and Knowledge Organi-

zation,” Springer-Verlag, 2008. 

[12] M. Mann, “Processing audio data for producing meta-

data,” UK  Pat. App. P/66699.GB01/IML/kz, 2011 

[13] S. Dixon “Evaluation of the Audio Beat Tracking 

System BeatRoot,” Journal of New Music Research, 

Vol. 36, No. 1, pp. 39-50, 2007. 

740



12th International Society for Music Information Retrieval Conference (ISMIR 2011)
  

 

MUSICAL MOODS: A MASS PARTICIPATION EXPERIMENT 

FOR AFFECTIVE CLASSIFICATION OF MUSIC 

Sam Davies, Penelope Allen, Mark Mann Trevor Cox 

BBC Research 

& Development 
{firstname.surname}@bbc.co.uk 

University of Salford 
t.j.cox@salford.ac.uk 

ABSTRACT 

In this paper we present our mass participation experiment, 

Musical Moods. This experiment placed 144 theme tunes 

online, taken from TV and radio programmes from the last 

60 years of the British Broadcasting Corporations (BBC) 

output.  Members of the public were then invited to audition 

then rate these according to a set of semantic differentials 

based on the affective categories of evaluation, potency and 

activity.  Participants were also asked to rate their familiar-

ity of the theme tune and how much they liked the theme 

tune.  A final question asked participants to identify the 

genre of the TV programme with which they associated the 

tune.  The purpose of this is to aid in the affective classifi-

cation of large-scale TV archives, such as those possessed 

by the BBC.  We find correlations between evaluation and 

potency, potency and activity but none between activity and 

evaluation but no clear correlation between affect and 

genre.  This paper presents our key findings from an analy-

sis of the results along with our plans for further analysis.  

The initial results from this experiment are based on an 

analyses of over 51,000 answers from over 13,000 partici-

pants.   

1. INTRODUCTION 

Music is an inherent part of nearly all broadcast pro-

grammes (TV and radio) and is often used to heighten the 

affective content of a scene or programme.  Programme 

making teams have access to vast ‘production music’ librar-

ies, which provide detail of not only the music tracks title 

and composer, but also keywords about the music which 

describes it’s mood. This production music is used as back-

ing music within a programme; providing an accompani-

ment to a scene.  The British Broadcasting Corporation 

(BBC) provide internal access to a service called ‘Desktop 

Jukebox’ a production music library which contains over 

38,000 production tracks along with a range of affective de-

scriptors such as ‘confident’, ‘bright’ or ‘sensitive’.  This is 

an invaluable tool for helping programme producers to 

choose the right music as an accompaniment to a particular 

scene. Yet music is not just used as a background in pro-

ductions.  Most programmes also contain a theme tune – a 

piece of music designed to be recognizable and identifiable 

to introduce the programme.  Generally especially commis-

sioned, these pieces of music convey some idea of the affec-

tive content of the upcoming programme – a precursor to 

set the tone.  For example, in preparation for the coverage 

of the 2010 UK General Election coverage, the BBC 

briefed the composer Blair-Oliphant that he should com-

pose music that was “serious, important and classy” to re-

flect the fact that “this is likely to be a fairly historic elec-

tion”[1]. 

In this paper we present our mass participation ex-

periment Musical Moods that explored the link between 

theme tune and affect.  Members of the public were asked 

to listen to theme tunes spanning 60 years of the BBCs out-

put from 1950  and across 10 different genres, and rate each 

one on an affective differential scale.  In the experiment, 

144 theme tunes from 135 different programmes were made 

available as some long running programmes had multiple 

theme tunes.  The breakdown of programmes, theme tunes 

and responses by genre is shown in table 1.  

Each participant listened to a maximum of five 

theme tunes, chosen at random per experiment.  After one 

month of the experiment being live, 13,183 participants had 

auditioned and ranked 51, 374 themes.   

 The aim of this experiment is to help develop 

automatic systems to classify the BBC archive using affec-

tive metadata.  Currently all BBC programmes that are 

likely to be reused (either through re-broadcast or as clips) 

have manually created metadata, contents of which range 

from brief synopses to detailed shot listings.  This results in 

London Classification (LonClass) database entry.  Lon-

Class, a Universal Decimal Classification extension devel-

oped by the BBC, is designed specifically to give factual 

information about a programme such as genre, shot type or 

recording location. Some programmes also have more in-

depth analyses consisting of a full transcription and shot 

listing.  However, this is a time and resource expensive 

process; a detailed analysis of a 30 minute programme can 

take a professional archivist 8 to 9 hours. 

The purpose of this manually generated metadata 

is to allow for professional reuse. Frame accurate metadata 

is designed to allow users such as producers, and research-

ers to find stock shots such as landscapes or people, key in-

terviews or other clips. However as the BBC open up their 
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archives, this level of detail or type of metadata may not be 

best suited for non-professional users: viewers.  

 

Genre Number of 

Programmes 

(percentage 

of total) 

Number of 

theme 

tunes  

(percentage 

of total) 

Number of 

results  

(percentage 

of total) 

Children’s 16 (11.8%) 19 (13.2%) 6836  

(13.3 %) 

Comedy 33 (24.4%) 33 (23.0%) 11786  

(22.9%) 

Drama 38 (28.1 %) 40 (27.8%) 14204 

(27.6%) 

Entertainment 21 (15.6%) 22 (12.3%) 7867 

(15.3%) 

Factual 7  (5.2%) 8 ( 5.6%) 2769 

(5.4%) 

Lifestyle 8 (5.9%) 8 (5.6%) 2882 

(5.6%) 

News 7 (5.2%) 8 (5.6%) 2912 

(5.7%) 

Soaps 3 (2.2%) 3 (2.1%) 1047 

(2.0%) 

Sports 2 (1.5%) 3(2.1%) 1071 

(2.1%) 

Table 1. Breakdown of theme tunes, genres and results re-

ceived.   

BBC Information and Archives (BBC I&A), the 

section of the BBC that archive programmes and create as-

sociated metadata, periodically release digitised collections 

of programmes online to the UK viewing public [2]. These 

collections are grouped by theme and have semantic meta-

data; programme title, original transmission date, contribu-

tors and a brief synopsis; metadata similar to that in Lon-

Class.  This allows a user to accurately find what factual 

information is contained within a programme.  This method 

of indexing may not be suitable when a viewer is looking 

for a programme for entertainment, not information.  Thus, 

some form of semantic or affective metadata is required. 

 BBC Research and Development (R&D) are cur-

rently investigating automatic classification techniques [3].  

These aim to create semantic and affective metadata from 

an archived programme through an analysis of the available 

audio and video or a programme.  Current analysis tech-

niques focus on non-music audio – speech and sound ef-

fects.  The purpose of collecting metadata about theme 

tunes is to extend this to begin investigating how well music 

can aid automatic classification.  Theme tunes are used to 

identify a programme; making it recognizable to the audi-

ence and setting up affective expectations.   By affectively 

analysing the theme tune, we hope to be able to aid in an 

affective analysis of an entire programme.  

 In this paper we present our work as follows.  We 

present an overview of the experiment and our methodology 

is given in section two and an initial analysis of our results 

in section three.  We discuss these results in section four 

and conclude and present our plans for the future in section 

five. 

2. METHODOLOGY 

Musical Moods was an online experiment, accessible from 

the URL www.musicalmoods.org.uk.  The experiment was 

launched as part of the British Science Association’s Na-

tional Science and Engineering Week, a yearly event in the 

UK with the aim of promoting participation in and the un-

derstanding of science in the UK.  The experiment was also 

featured on the BBC television show, Bang Goes The The-

ory, a weekly science show with an average audience of 

around 2.5 million.  

One of the key factors in this experiment was ease 

of use for participants.  As such, each participant on hearing 

a clip of a theme tune was asked to rate a theme tune on one 

of the possible six semantic differentials.  The clip was 15-

20 seconds long, with the participants able to re-audition 

the theme tune if required.  These clips were edited to en-

sure they contained the main musical themes of the theme 

tune, and did not contain any lyrics which alluded to the TV 

shows content.  Participants were played five randomly 

chosen theme tunes in each experiment.  Participants could 

take part in the experiment as many times as possible and 

no record was made of how many times a participant took 

part.  Upon hearing a clip, the participants were asked to 

rate each semantic differential on a discrete scale of one to 

five, with each scale extreme labelled with an opposing pair 

of adjectives.   

2.1 Semantic Differentials 

One of the key issues found with previous music and affect 

research is the lack of a standard definition for semantic 

scales.  Hevner was one of the first to attempt to define a 

taxonomy for music and affect [4].  This creates eight 

groups of adjectives arranged diametrically on a circle.  

Another approach is to use a valence/arousal space similar 

to that defined in [5].  The semantic differentials in this ex-

periment were based upon Osgood’s dimensional space; a 

three dimensional space incorporating Evaluation, Potency 

and Activity (EPA) [6].   Each of these allow mappings be-

tween different adjectives that have similar affective mean-

ing allowing for affective unification of them.  Evaluation 

relates to positive or negative feelings like happy or sad and 

accounts for around 50% of affective meaning.  Potency 

relates to size or power, such as heavy or light and activity 

relates to amount of action. Potency and activity count for 

approximately the other 50% of semantic meaning, although 
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there are 4 more minor categories. The affective adjectives 

used in this experiment were taken from mapping adjectives 

in [4] to the affective space in [6].  The semantic differen-

tials were happy/sad, playful/serious for evaluation, mascu-

line/feminine and heavy/light for potency and dra-

matic/relaxing, exciting/calm for activity.  A score of one to 

five was used for these, with five relating to a maximum 

value of happy, playful, masculine, heavy, dramatic and ex-

citing and one relating to a maximum score for the opposing 

adjectives although this numbering was not shown to the 

user.  The adjective scales used for each EPA differential 

were found to correlate to each other, as is shown in table1.  

Here, a Pearson Correlation matrix shows the correlations 

between the different semantic differentials.  Ideally there 

would be high correlation between semantic differentials in 

the same affective vector space (i.e. dramatic correlating 

highly with exciting .  Whilst this is true for evaluation and 

activity, there is a weaker correlation for potency (heavy 

and masculine), with masculine correlating more with dra-

matic then heavy.   

 

 Dramatic Happy Heavy Masculine Playful Exciting 

Dramatic 1 -0.061 0.697 0.673 -0.350 0.812 

Happy -0.061 1 -0.669 -0.060 0.902 0.404 

Heavy 0.697 -0.669 1 0.620 -0.836 0.297 

Masculine 0.674 -0.060 0.610 1 -0.261 0.574 

Playful -0.346 0.902 -0.836 -0.261 1 0.127 

Exciting 0.812 0.404 0.297 0.574 0.127 1 

 

Table 2. Pearson Correlation  for Affective Results 

2.2 Genre Identification 

Participants were then asked to identify with which genre 

they associated the music clip.  The options for genres were 

taken from an amended list to that on the BBC iPlayer ser-

vice, an online programme catch-up facility available in the 

UK [7].  These were Children’s, Comedy, Drama, Enter-

tainment, Factual, Lifestyle, Soaps, News and Sport.  The 

purpose of this was to look at the link between theme tune 

and genre – looking to identify if genres were readily identi-

fiable from theme tunes and also if there was any link be-

tween the affective score and perceived genre. 

2.3 Liked or Familiar 

Participants were also asked either if they liked a theme 

tune, on a scale of ‘Yes’, ‘No’ and ‘No Opinion’ or how 

familiar they were with a theme tune, on a scale of ‘Very’,  

‘Not Very’ and ‘Sort of’.  A very familiar or liked tune 

scored one and a unfamiliar or not very liked tune scoring 

1.  The purpose of asking these was to ascertain if there was 

any link between familiarity and liking a theme tune, with 

the affective score given.  This was not done to rank theme 

tunes by popularity or find out which were the best known 

theme tunes. 

3. RESULTS 

After over 51,000 results had been gathered a preliminary 

analysis was performed.  Results were calculated by collat-

ing all the scores for each of the 144 programmes.  The av-

erage and standard deviation for each answer was then cal-

culated.  To calculate the EPA values, each semantic differ-

ential for each of evaluation, potency and activity was com-

bined, with equal weighting.  The average and standard de-

viation of each of these was then calculated. 

3.1 Participation 

Of the 13,183 participants who took part in the experiment,  

54% of participants identified themselves as female and 

46% male.  Age band results are shown in table 3. 

 

Age Band  Percentage 

< 16 44% 

16 – 24 18% 

25-39 18% 

40-54 14% 

55-69 5% 

 > 70 2% 

Table 3. Age band breakdown of participants 

3.2 Affective Scores 

These results looked at how different theme tunes were 

classified according to the semantic differentials of evalua-

tion, potency and activity.  These are shown in figures 2, 3 

and 4 respectively.   

Figure 2 shows the average evaluation score 

against the average potency.  Here, it can be quite clearly 

seen that across all theme tune genres there is a slight nega-

tive correlation of -0.2 between the potency of a theme tune 

and the evaluation (shown as a line), meaning tunes classi-

fied as happy are also broadly classified as light.  Also, 

whilst genres do spread over the range of the scale, there is 

a tendency for theme tunes associated with children’s (‘+’) 

and comedy (‘o’) programmes to rate higher on evaluation 

and for those associated with dramatic (‘*’) programmes to 

rate higher on the potency scale. 

 

In Figure 3, the average potency against the average activity 

is shown for each programme.  A positive correlation  of 

0.6 is shown between activity and potency meaning theme 

tunes perceived as heavier are also perceived as more excit-

ing.  Also, whilst clustering is less visible than figure 2, 

there is some, with theme tunes associated with drama (‘*’) 

tending to rate higher on potency and activity (i.e. more 

dramatic and heavy) with theme tunes accompanying chil-

dren’s and comedy programmes (‘+’ and ‘o’ respectively) 

tending to be less so (i.e. slightly calmer and lighter), 
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though children’s programming does tend towards being 

more exciting. 

 

 

Figure 2. Potency and evaluation average classifications 

 

 

Figure 3. Activity and potency average classifications 

Figure 4 shows no real correlation overall, but does show 

some clearer grouping.  One of the most interesting group-

ings shown is that for theme tunes accompanying news and 

current affairs programmes (circled on figure 4).  These can 

be seen to cluster around the centre scale for evaluation, but 

with a marked increase in activity meaning that they are 

classified as being neither happy nor sad but more dramatic. 

 

 

Figure 4. Activity and evaluation average classifications 

3.2.1 Standard Deviation 

In all instances, it was found that the standard deviation was 

significantly lower at the extremes of each semantic scale.  

This is shown in figure 5. 

 

 

Figure 5. Standard deviation for semantic differentials 

3.3 Genre, liking and familiarity 

These looked at the results from the familiarity, how much 

participants liked a theme tune and genre identification 

questions. 

Unsurprisingly, when participants were more fa-

miliar with the theme tune, they were generally able to iden-

tify the accompanying programmes genre.  The results for 

correctly identified programmes are shown in figure 6. 

 

 

Figure 6. Genre classifications. 

 

An interesting result from this genre classification is that 

participants did not seem to be able to correctly identify 

which genre a theme tune accompanied with only soaps be-

ing correctly identified more than 50% of the time.  Partici-

pants also had most trouble identifying lifestyle pro-

grammes where only 35% of participants who stated they 

knew the theme tune being correct and 22% of those who 

stated they knew the theme tune incorrectly choosing enter-

tainment.  A further error was in factual genre identification 
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where 23% of participants who did not know the theme tune 

identified the programme as factual and 24% as drama. 

As can be seen from figure 7, theme tunes which 

were more familiar to people were also rated as being more 

liked, with one key exception, the theme tune to the pro-

gramme the Weakest Link, where the theme tune is less fa-

miliar to participants, but liked.  Familiarity and a value for 

liking was found to have a correlation coefficient of 0.69.  

However, familiarity was not seen to have a marked differ-

ence on  the affective scores, with only a 7% difference 

noted between the scores of familiar and unfamiliar theme 

tunes. 

 

 

Figure 7.Familiarity against Likedness for Programme 

averages 

All results and music will be available for download from 

www.musicalmoods.org . 

4. DISCUSSION 

From the results analysed so far some clear trends are visi-

ble.  As figure 2 shows, there is a negative correlation be-

tween potency and evaluation.  This suggests that tunes 

classified as happy or playful were also classified as light or 

feminine.  When the genres of the programmes associated 

with the theme tunes is taken into account, this shows that 

these are generally genres which one would imagine as be-

ing happy or light – mainly children’s, comedy and lifestyle 

programmes.  This genre generally includes day-time TV 

programmes about home improvements or gardening and so 

again this is expected.  However, no large scale affective 

analysis of the programmes has so far been conducted and 

so no strong link can as yet be drawn.  At the other end of 

the scale, where theme tunes are classified as being heavier 

and sadder, mainly dramas are found.  This would fit in 

with our understanding of drama programmes themselves – 

that they generally feature ‘heavier’ and less happy story-

lines.  A brief analysis of the programmes by the authors 

whose theme tunes were found to have the lowest evalua-

tion and highest potency scores found the overall affect of 

the programmes (the detective shows Silent Witness and 

Ashes to Ashes) found they also fitted into the same affec-

tive space. Conversely the two programmes which were 

found to have the highest evaluation scores and the lowest 

potency scores were found to be both children’s TV pro-

grammes; Blue Peter, a children’s magazine programme 

and the Teletubbies, a show aimed at pre-school children.  

From the authors analysis of these programmes, it can be 

seen that programmes such as these which have theme tunes 

which score at extremes of the affective scales themselves 

would score highly at these extremes too. 

In figure 3 a clear correlation between activity and po-

tency is visible, meaning that theme tunes classified as be-

ing more dramatic and exciting (activity) are also classified 

as being heavier and more masculine (potency).  However 

in this case much less grouping is observed.  Whereas in 

figure 2 it was possible to see groupings in the genres chil-

dren’s and comedy and then a further group for dramatic 

programmes, here both children’s, comedy and drama are 

spread along the scales.  Theme tunes to the genres comedy 

and drama have classifications at both extremes of the scale.  

This is unsurprising when considering the affective nature 

of programmes.  Genre’s such as comedy and drama rely far 

more on affect for their programme substance than fact 

based programmes such as factual or news which rely more 

on their informative content.  From this, it follows that the 

theme tunes to children’s, comedy and drama programmes 

should have more affective spread.  The correlation be-

tween activity and potency allows follows the findings in 

[6], which found that there was a high degree interchange-

ability between them.  

Looking at the results shown in figure 4 there is no 

correlation shown between activity (dramatic or calm) and 

evaluation (playful or serious) shown in TV theme tunes.  

Therefore no link was found between theme tunes being 

happy or playful, and how dramatic or exciting they were 

found to be.  However it is possible to see groupings of the 

genres of the programmes associated with the theme tunes 

more clearly.  For example, children’s, comedy and lifestyle 

and entertainment all tend to group towards the higher end 

of the evaluation scale.  Conversely, theme tunes associated 

with drama tend towards the lower end of the evaluation 

scale, indicating a more sad or serious classification.  One 

interesting cluster is that of theme tunes associated with 

programmes of the genre news, circled on figure 4.  These 

cluster around the centre of the evaluation axis, suggesting 

that in terms of happy or sad they are neutral.  However, 

these have the largest standard deviation (with an average 

of 1.2) so it could be that with classifying these types of 

theme tunes participants had the most trouble. 

What is most interesting in looking at the genres asso-

ciated with the theme tunes is that whilst some clear group-

ing occurs, individual genres spread out over semantic dif-

ferential scales.  From this, it is possible to conclude that 

using these affective values are not an accurate method for 

classifying genre i.e. children’s programmes do not all clas-
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sify as happy.  This is further backed up by looking at the 

results shown in figure 6.  Here, it can be seen that, in gen-

eral, participants were not that accurate in associating gen-

res and theme tunes.  Even when participants stated they 

were very familiar with the theme tune, the highest percent-

age of correct genre identification was only 57% (for 

soaps). The lowest score was for factual at 29% and the av-

erage correct identification rate was only 44%.  When the 

results for those who were not familiar with the theme tune 

are taken into account, correct identification falls even fur-

ther with the most correct classifications being for the News 

genre, with 54% correct classifications and the lowest for 

Factual with 23%.  The average was 37%.  This again sug-

gests that the genre of a programme and its associated 

theme tunes affective value do not show a strong link.  This 

would have important implications in the design of any 

classification and recommendation system that looks to use 

genre and affect as a basis. 

One of the problems with this could be the choice of 

genres that were made available.  These were based on 

those offered by the BBC iPlayer service.  These are very 

broad categories, with some ambiguity as to which genres 

some programmes belong too (for example between pro-

grammes in the  entertainment and lifestyle genre) and with 

many programmes placed in multiple categories (for exam-

ple children’s news programmes).  Further research is re-

quired to identify what genre classification system best 

maps to affect. 

In looking at figure 6, it is clear that there is a positive 

correlation between the average value for liking a tune and 

familiarity with it.  This suggests that the more familiar 

theme tunes were also more liked by participants.  Whilst 

this in itself does not give any insight into how either liking 

a theme tune or being familiar with one has an effect on 

how participants affectively perceive a theme tune, it does 

suggest that when evaluating retrieval systems for pro-

gramme archives, this correlation should be noted. One in-

teresting outlier in this set is the theme tune to the enter-

tainment programme The Weakest Link – a quiz show where 

the familiarity is slightly below average but the tune has a 

high value for being liked.  Further analysis is required to 

determine possible causes for this. 

5. CONCLUSION AND FURTHER WORK 

In this paper we have presented our experiment Musical 

Moods and our first analysis of the results.  We have found 

that whilst some the genres of the TV programmes with 

which theme tunes are associated show some grouping on 

the affective scales, there is no real link between a pro-

grammes genre and the perceived affective value of its 

theme tune.  We have also found that theme tune alone is 

not an accurate indication of programme genre.  A further 

finding is there is strong correlation between familiarity and 

liking a theme tune. 

Further work is also designed to musically analyse the 

theme tunes and correlate these with the experiment results.  

It is planned to perform a full musical analysis on each track 

used – looking at features including key, harmonic progres-

sion, instrumentation and orchestration.  These would then 

be analysed against the affective scores for the theme tunes.  

This would then be used as a ground truth dataset, looking 

to use automated musical analysis and machine learning 

techniques to identify the affective content of other pro-

gramme theme tunes.   

Another area of work is to affectively analyse the pro-

gramme themselves, and look at any correlation between 

the affective classification of the video and audio content 

with the theme tune.  This is planned through more large 

scale user evaluations. 

We are also looking to get more participants to in-

crease the validity of our results. 
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ABSTRACT

Emotional content is a major component in music. It has
long been a research topic of interest to discover the acous-
tic patterns in the music that carry that emotional informa-
tion, and enable performers to communicate emotional mes-
sages to listeners. Previous works looked in the audio signal
for local cues, most of which assume monophonic music,
and their statistics over time. Here, we used generic au-
dio features, that can be calculated for any audio signal,
and focused on the progression of these features through
time, investigating how informative the dynamics of the au-
dio is for emotional content. Our data is comprised of pi-
ano and vocal improvisations of musically trained perform-
ers, instructed to convey 4 categorical emotions. We ap-
plied Dynamic Texture Mixture (DTM), that models both
the instantaneous sound qualities and their dynamics, and
demonstrated the strength of the model. We further showed
that once taking the dynamics into account even highly re-
duced versions of the generic audio features carry a substan-
tial amount of information about the emotional content. Fi-
nally, we demonstrate how interpreting the parameters of the
trained models can yield interesting cognitive suggestions.

1. INTRODUCTION

There is a general agreement that music (especially instru-
mental music) lacks clear semantic information but conveys
rich emotional content. As a form of non semantic commu-
nication, musical performers are able to convey emotional
messages through the sound and listeners are able to in-
terpret the sound and figure out the emotional intention of
the performer. What are the patterns in the musical sig-
nal itself that enable this communication? The properties
of the musical content that are responsible for carrying this

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

emotional information have long been the subject of inter-
est and research. In previous computational research that
analyzed emotions expressed in music performance, some
works looked for local acoustic cues, such as notes per sec-
ond, articulation degree, etc., that are present in the sound
and may play a significant role in conveying the emotional
message [1,2]. Statistics of these cues over time were calcu-
lated and were usually used to train a discriminative model.
Calculations of these local cues from raw audio data usually
rely on intermediate signal processing algorithms to detect
note onsets and other events, and these intermediate calcu-
lations may introduce assumptions, errors and bias. In ad-
dition, such cues are often defined for monophonic music,
and are sometimes even designed for specific instruments.
While such analysis methods may be very useful for musical
training and acquiring performance skills of conveying emo-
tions, they tend to be very specific. Other works avoid this
problem by using generic audio features, such as MFCCs or
other spectral features. Such generic audio features are de-
fined in a more straight forward way than sophisticated local
cues, and don’t require intermediate signal processing cal-
culations. Although these features may not describe certain
perceptual properties that the local cues try to capture, pre-
sumably they will be more robust. In addition, generic audio
features don’t assume anything on the signal, and can be ap-
plied to any audio signal, even if it contains polyphonic mu-
sic and even multiple instruments. Such audio content will
be a serious obstacle for the local cues approach. Several
systems that participated in the MIREX evaluation apply
the same audio features for different Music Information Re-
trieval (MIR) tasks [3, 4]. In those systems running average
and standard deviations of time varying audio features were
taken, but same as in the local cues approach, the complete
dynamics of the audio wasn’t used. Such methods disregard
the order of time points and assumes they’re independent.

In the presented work, we suggest an approach that ad-
dresses both the issues of specificity and dynamics. We
apply generic audio features (Mel frequency spectrum) to
overcome the specificity problem. The dynamics issue is re-
solved by using Dynamic Texture Mixture (DTM) [5]. DTM
was designed to model both the instantaneous properties of
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happy sad angry fearful total
piano 8 7 7 6 28
vocal 12 12 12 12 48
total 20 19 19 18 76

Table 1. Distribution of the recordings over emotions and
instrument.

a time series signal, and their dynamics. This model en-
ables us to capture important information that resides in the
course of change of the audio through time, which is missed
when assuming independence among time points.

Similar dynamic systems were used by Schmidt and Kim
[6] to model the time-varying distribution of emotional state
(in 1 sec intervals). Here we regard each musical instance
(improvisation of about 30 seconds) as conveying a single
emotional message (described simply by an emotional ad-
jective), and we apply the dynamic system on the lower level
of the time-varying audio features themselves.

DTMs and Gaussian Mixture Models (GMMs) have been
applied to music information retrieval systems, including se-
mantic tags of emotional categories annotated by listeners as
being relevant for popular songs [7, 8], but not yet applied
to audio recordings specifically created to convey emotional
content. The data in the presented work has recordings of
improvisations by musically trained performers instructed
to convey specific emotions.

2. METHODS

2.1 Data

Our data set is comprised of 76 audio recordings of musi-
cally trained performers (2 pianists and 2 vocalists, 1 fe-
male and 1 male in each category). For each recording the
performer was instructed to improvise a short musical seg-
ment that will convey to listeners in a clear manner a single
emotion, one from the set of {happy, sad, angry, fearful}.
These emotional instructions were used as the ground truth
labels for the recordings (3 judges verified that the appropri-
ate emotions are expressed. Future analyses will also regard
ratings from a larger group of listeners as labels). These
improvisations clearly rely, in part, on well entrenched cul-
tural musical norms and even clichés. Thus we obtained a
relatively wide variety of acoustic manifestations for each
emotional category, which presumably capture the various
strategies and aspects of how these specific emotions can be
conveyed in Western music. The distribution of recordings
over emotions and instrument is detailed in Table 1. The
median duration for a recording was 24 seconds.

2.2 Audio features

Mel spectrum features were collected: for each time frame
Discrete Fourier Transform was calculated and the energy
of the frequency components was integrated in overlapping
frequency bins, in a Mel scale, and the 10log10 of the bins’
energies were saved. Similarly to [7] we used 34 Mel fre-
quency bins (partitioning the band from 20Hz to the Nyquist
frequency, 11kHz, to 34 Mel-scaled bins), and used half
overlapping time frames of 2048 samples (after re-sampling
the audio data to 22,050Hz, this results in a feature vector
every 46msec).

2.3 Modeling the dynamics

In order to model the dynamics of acoustic properties of
the music, we applied the Dynamic Texture Mixture (DTM)
model. DTM was previously used to model dynamic tex-
tures of video [5] and of audio [7]. A Dynamic Texture
(DT) is a generative model for a time sequence of observed
features (e.g. the acoustic features collected for each short
time frame), that assumes that the observed feature vector
y(t) was generated as a linear transformation (plus additive
Gaussian noise) over an internal state - a hidden vector vari-
able x(t) (possibly in a much smaller dimension than the
observed feature vector). It also assumes the dynamics of
the hidden variable is a Linear Dynamic System, driven by
additive Gaussian zero-mean noise: the state of the hidden
variable at any time point x(t) depends only on its state in
the previous time point x(t− 1), and the dependency is lin-
ear. {

xt = Axt−1 + vt

yt = Cxt + wt
(1)

Where vt and wt are both random normal variables (drawn
independently for each t). A DTM is a mixture of DTs,
each having a different relative weight. The DTM models
the generation of an audio instance (a song) as follows: for
each segment of the song first select a DT out of the mixture
(according to the weights of the DTs), and then generate the
observed acoustic features of the segment from the selected
DT.

Since this is a generative model, we can calculate the
likelihood of a song (or of a collection of songs) given a
DTM. This facilitates the ranking of songs according to their
likelihood of being generated by a given DTM or the rank-
ing of different DTMs according to the likelihood of a song
of being generated by them. The parameters of a DTM can
be learned from training data, using an iterative Expectation
Maximization algorithm tailored for learning DTMs (EM-
DTM) [5].

For each of the 4 emotions (happy, sad, angry and fear-
ful), sequences of 125 consecutive feature vectors were col-
lected (in order to get many feature sequences to train on,
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we used overlapping sequences, with hop of 15 feature vec-
tors from sequence to sequence) from all the recordings in
the training set that were associated with the emotion, and
a DTM to represent that emotion was trained over these se-
quences. Since each feature vector represented a time frame
of about 46msec, the resulting sequences represented seg-
ments of about 5.7 seconds. The median number of se-
quences collected for a recording was 26. We used DTMs
with 4 components (4 DTs), and with dimension of 7 for
the hidden variable x (unless the observed features were in
a lower dimension).

2.4 Performance evaluation

In order to evaluate the success of the acoustic features to
represent the required information regarding the emotional
content, and the success of the model to capture the relevant
acoustic patterns for the emotional content, we used infor-
mation retrieval framework and performance measures: Af-
ter training 4 emotion DTMs on the training set, a test set
with unseen recordings was analyzed. For each recording
the 4 emotions were ranked according to the likelihood of
that recording given the 4 emotion DTMs, and annotation
of 1 emotion (the one with highest likelihood) was given to
the recording. For each emotion, the test recordings were
ranked according to their likelihood given the DTM of the
emotion, as a retrieval task. Comparing the machine’s anno-
tation and retrieval to the ground truth emotion labels of the
test recording, 3 annotation measures and 2 retrieval mea-
sures were calculated, in a similar manner to [7]: preci-
sion (portion of the ground truth labeled instances out of the
machine-annotated instances), recall (portion of the machine-
annotated instances out of the ground truth labeled instances),
f-measure (balance measure between precision and recall),
mean average precision -MAP (average precision over dif-
ferent thresholds of ”how many of the top-ranked instances
to retrieve”) and area under ROC curve -AROC (area under
the tradeoff curve of true-positive rate vs. false-positive rate
for the retrieval task, area of 0.5 being chance and area of 1
being maximum possible). Each of the 5 measures was cal-
culated for each emotion, and then averaged over emotions.

To estimate these measures over general unseen data, 10-
fold cross validation scheme was used. For each partition,
4 emotion-DTMs were trained over 9/10 of the recordings,
and the 5 measures were calculated over the remaining 1/10
of the recordings. In each partition control performance
measures (chance level) were approximated by repeatedly
(400 times) generating random uniform values (instead of
the likelihood values actually calculated with the trained
models) and feeding them to the annotation-retrieval sys-
tem, for the test set. Mean and standard deviation over repe-
titions were collected as reference for assessment of quality
of the actual performance scores. Approximated p-values
were then calculated to each of the 5 measures, as the prob-

precision recall F MAP AROC
score 0.6446 0.6500 0.6000 0.8099 0.8692
chance 0.25 0.25 0.22 0.44 0.50
p-val 0.09 0.04 0.06 0.02 0.02

Table 2. Annotation and retrieval results for basic features.

ability of getting a higher score under the null hypothesis,
meaning with random values (assuming a normal distribu-
tion with the mean and standard deviation that we collected
for the random values). Finally we averaged over the 10
folds the 5 performance measures, as well as 5 chance level
scores and 5 p-values for our scores. The partition to 10
folds was semi random, making sure each fold contained in-
stances from all 4 emotional categories, and all experiments
were done using the same partitioning to 10 folds, in order
for the comparison to be consistent.

3. EXPERIMENTS AND RESULTS

3.1 Experiment 1 - basic

The system was applied to the basic features as described
above. The results of the cross validation are presented in
Table 2. In the basic experiment, the results demonstrate
that the DTM model manages to capture the important acous-
tic patterns for the communication of emotion.

3.2 Experiment 2 - power dynamics

In order to investigate the role of the power dynamics, two
complementary manipulations over the features were per-
formed:

Ex2.1: flattening the power. For each recording, all
the Mel spectra vectors were normalized to have the same
constant total power, but within each vector, the original ra-
tios among the frequency bins were preserved. This ma-
nipulation filters out the power dynamics (in time scales
larger than 46msec), and keeps all the rest of the information
stored in the original features (melody, timbre, etc.).

Ex2.2: keeping only the power dynamics. For each
recording and for each time point, instead of keeping 34 co-
efficients, only 1 coefficient is kept - the total power of the
time frame (in log scale). This manipulation preserves only
the power dynamics, and filters out the rest of the sound
properties. Since the observed features in every time frame
were then only 1 dimensional, the dimension of the hidden
variable x was also reduced to 1, resulting in a linear dy-
namic system that is almost degenerate (since the transition
matrix A is simply a scalar), and relies more on the driving
noise.

Ex2.3: not modeling dynamics. As control, using the
same features as in Ex2.2 we applied a GMM model that
assumes independent time frames, to see if we can still cap-
ture the remained relevant information about the emotions,
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precision recall F MAP AROC
Ex2.1 score 0.6134 0.6375 0.5775 0.7627 0.8429

p-val 0.07 0.04 0.05 0.04 0.02
Ex2.2 score 0.4287 0.4625 0.3801 0.5935 0.6879

p-val 0.19 0.14 0.18 0.16 0.14
Ex2.3 score 0.2931 0.3125 0.2638 0.5536 0.6454

p-val 0.44 0.4 0.42 0.29 0.25

Table 3. Results for power manipulations.

while disregarding the dynamics. The only dependency left
among time frames was the 1st and 2nd time derivatives
(delta and acceleration) of the feature vector (of the power
scalar, in this experiment) that were augmented, so the fea-
ture vector here was 3 dimensional (for time t: power(t),
delta(t) = power(t+1)−power(t) and acceleration(t) =
delta(t + 1) − delta(t)). For training we used the hierar-
chical EM algorithm for GMM (HEM-GMM), as described
in [8]. We used 4 components (4 Gaussians) for each model
(each GMM), and restricted to diagonal covariance matri-
ces.

Results are presented in Table 3 (the reference chance
levels, which appear in Table 2, are the same in all exper-
iments). Ex2.1 demonstrates that most of the information
about the conveyed emotion is retained even without the
gross dynamics of the power (keeping in mind that some
finer power dynamics can be expressed inside each time
frame, in the lower frequency bins). Although this may
suggest that the gross power dynamics doesn’t carry much
information about the emotions, Ex2.2 shows the contrary:
after reducing the features to only the power dynamics, the
scores remain fairly high (although, as expected for a 1 di-
mensional time function, some decrease in performance is
evident). The results show that the power dynamics does
carry useful information about the emotional content. The
control done in Ex2.3 shows that GMM got very poor scores
for the 3 annotation performance measures, and relatively
poorer results than DTM (Ex2.2) for all measures. It is quite
expected that when reducing the features to only the power,
treating the time frames as independent will yield insuffi-
cient information about the emotions. The gap between the
results of Ex2.2 and Ex2.3 shows the added value of taking
into account the dynamics of the acoustical properties (when
even 1st and 2nd time derivatives are not enough).

3.3 Experiment 3 - avoiding frequency correlations

When acoustical instruments (or human voice) are playing,
the harmonic structure has correlations between the funda-
mental frequencies and their higher harmonics, resulting in
correlation between the dynamics of different frequency bins,
and suggesting redundancy when all these frequency bins
are specified. The DTM model deals with this redundancy
by trying to find a lower representation in the hidden state
x that generates the observed vectors (by linear transforma-

precision recall F MAP AROC
Ex3.1 score 0.5288 0.5667 0.4847 0.7331 0.7969

p-val 0.23 0.13 0.19 0.13 0.1
Ex3.2 score 0.4701 0.4375 0.3648 0.6213 0.6546

p-val 0.14 0.16 0.21 0.16 0.21
Ex3.3 score 0.1718 0.175 0.1339 0.4354 0.5425

p-val 0.67 0.65 0.69 0.51 0.4

Table 4. Results for keeping part of the spectrum.

tion with the observation matrix C - the principal compo-
nents of the observed features) [7]. We wanted to reduce the
observed features prior to summarizing the whole spectrum
and, in a way, to overlook the correlations among frequen-
cies. For this purpose we examined limiting our view to only
part of the spectrum. We focused on two opposite extremes
of the spectrum captured by the original features:

Ex3.1: 6400Hz-11025Hz (Nyquist frequency). Keep-
ing only the last 6 frequency bins of each time frame. Such
frequency band is likely to contain resonating frequencies to
the fundamental frequencies of the melody being played (or
voiced). When calculating mean over all time frames in all
instances in the data set, these 6 bins carry only 0.036 of the
power (not log power) of the spectrum.

Ex3.2: 0Hz-275Hz. Keeping only the first 3 frequency
bins of each time frame. For part of the time frames this
frequency band may be below the present fundamental fre-
quency of the tones being played. These 3 bins carry (in
average) 0.25 of the power of the spectrum. For both Ex3.1
and Ex3.2 we used dimension of 3 for the hidden variable x.
These extreme bands probably behave differently for piano
and for vocal and interesting insights can later be raised by
performing similar experiments separately for instruments.

Ex3.3: not modeling dynamics. Similar to the control
done in Ex2.3, we applied the GMM model to the features
used in Ex3.2, plus 1st and 2nd time derivatives.

Results are presented in Table 4. Ex3 demonstrates that
in both extremes of the spectrum, there are small frequency
bands that still carry a fair amount of information about the
conveyed emotions (performance is still relatively far from
chance level). The control in Ex3.3 that, again, shows poor
results with the GMM (performance being about chance level
or worse), affirms that the remained relevant information
lies mostly in the dynamics.

3.4 Experiment 4 - melodic structure

Next we aimed to examine the affect of the melodic dynam-
ics on the conveyed emotions. Since it is neither simple
nor accurate to determine the notes that were played, espe-
cially for polyphonic music (such as our piano recordings),
we chose to define a more accurate property that hopefully
will be more robust: the dynamics of the strongest frequency
bin. We cannot claim to describe the perceived melody
(or the played notes) with this property (since pitch percep-
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precision recall F MAP AROC
score 0.4322 0.4375 0.3852 0.58 0.6863
p-val 0.23 0.2 0.21 0.2 0.16

Table 5. Results for keeping only strongest frequency bin.

tion or production is more complex than just the strongest
frequency present, and since the piano music has multiple
tones played simultaneously). However this property is eas-
ily computed and can be used as a surrogate marker for
the melodic progression. For this experiment, in each time
frame only the strongest bin remained active and the power
of all the other frequency bins was nullified. Furthermore, to
get rid of the power dynamics, the power of all time frames
was set to be constant, so the only remaining information
was the identity of the activated bin in each time frame. The
dimension of the hidden variable x was set to 1. Results are
shown in Table 5. Although the features were reduced to a
large extent, a predictive ability is still present.

3.5 Interpreting the trained models

After validating that DTMs can capture important acous-
tic patterns for emotional content, we wanted to understand
the differences between different trained emotion models
that enabled the system to discriminate. Using a genera-
tive model is suitable to describe the process of production:
the performers that want to convey some emotion and apply
an appropriate generative strategy to create their resulting
sound. In order to get insight about the different generative
strategies, one needs to compare the learned parameters of
the trained models. For this purpose we retrained 4 emotion
DTMs over the entire data set, for our different experiments.

The main component that describes the dynamics of the
system in a DT is the transition matrix A. If the system
were a deterministic linear dynamic system, without the ad-
ditive noise, this transition matrix would tell both the des-
tination of the state of the system x and the way it will
take to get there. The eigenvectors of A describe the dif-
ferent modes of the system - different patterns of activating
the observed features. The eigenvalues of A (complex num-
bers) indicate the course of progress of the different modes
(patterns) of the system: while having an eigenvalue with
magnitude larger than 1 results in the state of the system di-
verging, having an eigenvalue with magnitude of 1 results
in the state converging to either a stable state or stable limit
cycle determined by the eigenvector of that value, and hav-
ing all eigenvalues with magnitudes smaller than 1 results
in a system that strives to converge to the zero vector state
(if there is no additive noise to reactivate the modes). The
magnitude of an eigenvalue indicates the intensity or stabil-
ity of this mode (how slowly this mode will decay or how
much anti-mode noise needs to be added to this mode in or-
der to silence it). The angle of the eigenvalue indicates the

Figure 1. Eigenvalues for using the basic features (Ex1).
Each different shape represents 20 eigenvalues of transition
matrices from DTs of a different emotion DTM (5 largest
eigenvalues from 4 DTs per emotion-DTM). happy - circle,
sad - star, angry - triangle, fearful - square.

normalized frequency of the mode - if an eigenvalue has a
large angle its mode will oscillate and modulate its pattern
in a fast period, returning to the original modulation pattern
(only with smaller magnitude) after only few time frames.
The maximal normalized frequency will be π, making the
mode change to its exact negative in each consecutive time
frame. We examined the eigenvalues of the different DTs
of the different emotion DTMs, and presented their magni-
tudes (intensity) and angles (frequency).

In both conditions presented in Figure 1 and Figure 2 there
is a clear concentration of the eigenvalues of the sad model
(marked with star) with relatively high intensities and low
frequencies (in absolute value). This can be interpreted as
a general strategy (either conscious or subliminal) of the
performers to convey sadness using stable and slowly mod-
ulated acoustic patterns. On the opposite, the happy and
angry models (marked by circle and triangle, respectively)
include many modes with smaller intensities and higher fre-
quencies, suggesting strategies that include fast repetitions
of acoustic patterns (high frequencies) and easy switching
from one dominating pattern to another (the low magnitudes
mean that little noise is sufficient to shake off these modes
and activate different modes).

Such conclusions should be taken with a grain of salt. We
should remember the system also has additive noise. In ad-
dition, in order to adequately generalize these results, much
larger data sets, with many performers, should be used. How-
ever, such analyses may help to focus future research on
certain aspects of production of music for emotional com-
munication.
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Figure 2. Eigenvalues for keeping only higher frequency
band (6 kHz-11 kHz. Ex3.2).

4. DISCUSSION

Investigating the dynamics of generic acoustic features in
musical audio can reveal important components of the mu-
sic, and specifically for emotional content. Generic acoustic
features can be informative for various melodic, harmonic,
rhythmic and instrumental content of music, and here we
demonstrated their successful usage for both monophonic
and polyphonic music. We have shown that even highly
reduced audio features, such as the power, can still retain
much of the emotional message, when taking into account
the time progression of the property. Interestingly, comple-
mentary manipulations to reduce the audio features (”flat-
tening the power” vs. ”keeping only the power dynamics”)
both kept a discriminative ability, suggesting that the in-
formation about the emotional intention carried by separate
components of the sound is not simply additive, but rather
having redundancy. One should remember, though, that it
might require few dimensions of features to discriminate 4
emotions, but possibly require more detailed features, when
discriminating more emotions and emotional subtleties.

Future research using similar methods should be applied
over more general musical data, with multiple instruments,
to find general dynamic patterns that convey different emo-
tions. It may be interesting to investigate the critical time
resolutions that show dynamics that is relevant for emo-
tional content (perhaps taking sequences of more than 125
time frames will reveal slower informative patterns). Exper-
iments with larger data will enable investigating differences
in strategies, in informative frequency bands, redundancy
patterns and other aspects, among different emotions. An-
other interesting direction is to use trained generative mod-
els to synthesize new audio instances. This is not a simple

challenge, but even if the resulting sounds will not be intel-
ligible or natural sounding, they may still have an effect of
conveying emotions, and concordance between the emotion
of the generated audio and that of the generating model will
be another convincing argument that the model captures im-
portant acoustic patterns for emotional communication.
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ABSTRACT

Music can induce different emotions in people. We propose
a system that can identify music segments which induce spe-
cific emotions from the listener. The work involves building
a knowledge base with mappings between affective states
(happiness, sadness, etc.) and music features (rhythm, chord
progression, etc.). Building this knowledge base requires
background knowledge from music and emotions psychol-
ogy. Psychophysiological responses of a user, particularly,
the blood volume pulse, are taken while he listens to music.
These signals are analyzed and mapped to various musical
features of the songs he listened to. A motif discovery al-
gorithm used in data mining is adapted to analyze signals
of physiological data. Motif discovery finds patterns in the
data that indicate points of interest in the music. The differ-
ent motifs are stored in a library of patterns and used to iden-
tify other songs that have similar musical content. Results
show that motifs selected have similar chord progressions.
Some of which include frequently used chords in western
pop music.

1. INTRODUCTION

Music has become a ubiquitous form of entertainment. Peo-
ple listen to music in various situations: while travelling,
doing sports, studying, or relaxing. Music structure and fea-
tures can be used to select music appropriate to the emo-
tional interest of its listeners. This has been researched in
various fields like music and emotion psychology, music in-
formation retrieval, and more recently affective computing.

Automatically detecting the emotion or mood content of
music is still in its early stages. Some of the work involve
manually annotating songs with emotion tags by individual
human annotators [16], social tagging [13], and even using
games to make the task more interesting for annotators [10].

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2011 International Society for Music Information Retrieval.

Human assessment of music emotion or mood is based
from what is heard. As such, a lot of work is devoted to un-
derstanding how various music features and music structure
play a role in inducing emotion. A detailed review of these
works can be found in [4,8,11].

The work of Livingstone, et al. [11] also demonstrates
that by changing specific music elements, the emotion per-
ceived by the listener also changes. A similar research is
also done in [14] but instead of relying on verbal reports of
feelings, emotion data is derived from analyzing change in
activity in the autonomic nervous system.

Another approach to identifying emotion is using psy-
chophysiological data. Researchers observed that changes
in musical features lead to a change in physchophysiologi-
cal response. For example, change in tempo lead to changes
in respiration rate [3,7]. Krumhansl [9] also noted increases
in heart rate variability during sad, fearful and happy music.
The use of physiological response also reflect an unbiased,
objective emotional response to music listening as compared
to self-reporting of emotions.

In this paper, we propose an approach for identifying
music features that affect emotion. We identify patterns in
psychophysiological data using a motif discovery algorithm
and analyze the music elements used at the time the patterns
were discovered.

We begin by defining some concepts and notations im-
portant for understanding the approach used. In section 3
and 4, we describe the framework used for the research. In
section 5, we describe details of data collection and imple-
mentation of the algorithms presented. Next, results of our
experiments are discussed together with observations made.
Final section includes the conclusion and future work.

2. TIME SERIES MOTIFS

For clarity, first we define concepts and terminology needed
to understand our work. These definitions are taken from
[2]. The physiological signals are a continuous stream of
real-valued data measured at a constant sampling rate. In
data mining, this can be considered atime series. A time
seriesT is defined as an ordered set of real-valued variables.

A motif is described as a pair of subsequences from the
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Figure 1. Architectural framework

time series that are found to be similar. Asubsequence C is
a sampling of lengthn of contiguous positions inT .

Similarity between two subsequences is measured using
a distance metricD(Ci, Ck). It is possible to find many
motifs in one time series, the most significant of these is
referred to as1-motif. To ensure that the1-motif does not
share elements with other motifs, a rangeR is defined such
thatD(Ci, Ck) > 2R, for all 1 ≤ i < k.

3. ARCHITECTURAL FRAMEWORK

The proposed framework of our system is shown in Figure 1.
Our approach requires collecting psychophysiological data
from a subject while he listens to music. We consider an-
alyzing data from : blood volume pulse (BVP), respiration
(RR), and skin conductance (SC). These are then passed on
to a motif discovery module that attempts to discover pat-
terns in the time series data. Details of this module are dis-
cussed in the next section.

A music feature extraction module is also included to de-
termine various information from the music (i.e., beat oc-
currences, tempo, chords used, etc.). These are used by the
motif discovery module to annotate discovered motifs.

Each motif is analyzed and annotated with music features
that were present when the signal occurred. A library of
different motifs is built and the data contained within is used
by a music recommendation system that will generate a play
list of songs that have similar music features. Intuitively, we
expect that the subject will enjoy listening to music similar
to that he has experienced.

This paper discusses the work done upto the motif dis-
covery module using BVP data. The music recommendation
system is currently being developed and will be described in
future publications.

4. MOTIF DISCOVERY

The process of motif discovery is illustrated in Figure 2.
This algorithm is adapted from the work in [2] where they
used a projection algorithm by Buhler and Tompa [15]. The

Figure 2. Data flow diagram for motif discovery

objective of the algorithm is to find signals that are very sim-
ilar to each other. Physiological signals that keep on recur-
ring would indicate that music passages heard at these points
are interesting to the listener (i.e., it makes him relaxed,or
he enjoys the music segment).

The motif discovery algorithm can be separated into 3
main parts: data preparation, conversion of the data to sym-
bolic form using the Symbolic Aggregate ApproXimation
(SAX) representation, and motif discovery using the pro-
jection algorithm. Each part is described in the following
subsections.

4.1 Data preparation

Prior to motif discovery, the physiological data undergoes
offset and amplitude scaling transformations using (1) and
(2), respectively [1,6,17,18].

Qoffset = Q−
∑n

i=1 qi
n

, (1)

whereQ is defined as a time series withn length and
Qoffset is the time series after offset transformation.

Qscaled =
Qoffset

σ
, (2)

whereσ is the standard deviation of the data andQscaled is
the time series after amplitude scaling transformation.

In order to reduce further problems when comparing dif-
ferent subsequences, all data is normalized to the range [0,1]
using (3).

Q =
Q−min(Q)

max(Q)−min(Q)
(3)

4.2 SAX representation

The Symbolic Aggregate ApproXimation (SAX) represen-
tation is used to convert any time series into a string of sym-
bols. By using SAX, powerful algorithms on string pat-
tern analysis developed in other fields can be used. The
first step is to convert the time seriesC of length n to a
w-dimensional space by a vector̄C = c̄1, ..., c̄w. The ith
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H
H
H
H
H

βi

a
3 4 5 6

β1 −0.43 −0.67 −0.84 −0.97
β2 0.43 0 −0.25 −0.43
β3 0.67 0.25 0
β4 0.84 0.43
β5 0.97

Table 1. A lookup table containing breakpoints that divides
a Gaussian distribution in an arbitrary number (from 3 to 6)
of equiprobable regions

Figure 3. The physiological signal (thin smooth line) is dis-
cretized by first obtaining a PAA approximation and then
using predetermined breakpoints to map the PAA coeffi-
cients into symbols (bold letters). In the example above,
with n = 190, w = 12 anda = 4, the time series is mapped
to the wordacdddcbbacdd

element ofC̄ is calculated by the equation:

c̄i =
w

n

n

w
i∑

j= n

w
(i−1)+1

cj (4)

Using this equation, the time series is divided intow
equal sized frames. The average values of data in each
frame is calculated and a dimensionality-reduced represen-
tation known as the Piecewise Aggregate Approximation
(PAA) [5] is produced.

After transforming the time series into PAA represen-
tation, another transformation is applied to obtain the dis-
crete representation. Assuming that the subsequences have
a Gaussian distribution, we determine “breakpoints” that
will produce equal-sized areas under the Gaussian curve.
A breakpoint is a sorted list of numbersB = β1, ...βa−1

such that the area under aN(0, 1) Gaussian curve fromβi

to βi+1 = 1/a (β0 andβa are defined as -∞ and∞, respec-
tively). a refers to the alphabet size used for SAX.

The breakpoints are stored in a look-up table similar to
Table 1. Using the breakpoints, the time series can be dis-
cretized by going through each PAA coefficients. All coeffi-
cients below the smallest breakpoint are mapped to the sym-
bol “a”, all coefficients greater than or equal to the smallest
breakpoint and less than the second smallest breakpoint are
mapped to the symbol “b”, etc. Figure 3 illustrates the idea.

The concatenation of symbols of the subsequence that is

a b c d
a 0 0 0.67 1.34
b 0 0 0 0.67
c 0.67 0 0 0
d 1.34 0.67 0 0

Table 2. A lookup table for MINDIST function. This table
is for a SAX representation havinga = 4. The distance can
be obtained by matching the row and column. For example
dist(a,b)= 0 anddist(a,c)= 0.67

formed is defined as aword. Each PAA approximation is
mapped to a symbol using Equation (5).ai denotes theith

element of the alphabet, i.e.a1 = a, a2 = b, etc.

ĉi = ai iff βj−1 ≤ c̄i < βj (5)

The distance between two words can be measured by us-
ing aMINDIST function that returns the minimum distance
between the original time series of the two words:

MINDIST (Q̂, M̂) ≡
√

n

w

√√√√ w∑
i=1

(dist(q̂i, m̂i))2 (6)

This function resembles the original Euclidean distance
(7) used for comparing the distance between two time se-
riesQ andM . The functionMINDIST uses a subfunction
dist(), which can be implemented using a table lookup as il-
lustrated in Table 2. The value in cell (r, c) for any lookup
table can be calculated by the expression in (8).

D(Q, M) ≡

√√√√ n∑
i=1

(qi −mi)2 (7)

cellr,c =

{
0, if |r − c| ≤ 1

βmax(r,c)−1 − βmin(r,c), otherwise
(8)

4.3 Projection algorithm

The motif discovery algorithm proceeds by extracting sub-
sequences from the SAX representation. Each subsequence
of lengthw is placed into a matrix̂S. Once the matrix has
been constructed, we proceed to random projection. We ran-
domly selectw2 columns ofŜ to act as a mask. For example,
givenw = 4, columns{1,3} can be chosen to act as mask.
Afterwards, allwords in theŜ matrix are hashed into buck-
ets based only on their values in the1st and3rd columns. If
two words corresponding to subsequencesi andj are hashed
to the same bucket, we increase the count of cell(i, j) in a
collision matrix.

This hashing process is repeatedk times, with new, ran-
domly chosen masks every iteration. Once completed, the
highest value stored in the collision matrix correspond to
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the candidate motif. For example, if the largest value in the
collision matrix is at cell(2, 43) thenC2 andC43 are the
subsequences of the candidate motif. We confirm this by
comparing the original time series data and using Euclidean
distance to compute the distance.

At this point, it is possible to find other members of the
motif. To find other members, we consider the other values
of the collision matrix at(i, 2) and (i, 43). Once all the
matching subsequences withinR of C2 andC43 have been
found, results are reported to the user.

5. METHODOLOGY

5.1 Data Collection

For this research, we concentrate on analysing data from one
subject (a 22-year male graduate student). The songs he lis-
tened to are part of the music dataset described in [12]. The
collection includes 301 songs from various artists as well as
annotations for song key, chords, beat and metric position,
and segmentation (i.e. intro, verse, chorus, etc.). Songs for
the experiments were selected based on three constraints.
First, the song should not have any key and tempo changes.
Second, the song should have complete chord and beat an-
notations. Last, the song is in a major key. Using this cri-
teria, 83 songs were selected which include 77 songs from
The Beatles, four Queen songs, and two Carole King songs.

Our subject listened to songs via audio-technica closed
headphones (ATH-T400) connected to a computer in a con-
trolled experiment room. Using the BioGraph Infinity Sys-
tem1 , the BVP was recorded. The sensor is attached to the
subject as shown in the experiment setup in Figure 4.

Several sessions were needed for the subject to listen to
all the songs without making him feel stressed. Each session
took approximately 20 minutes, which allowed the subject
to listen to seven to nine songs per session. One week was
needed to complete the data collection. Sessions were held
at the same time of the day throughout the week.

Before each session ended, the subject also self-reported
the mood he had while listening to the songs. A scale of one
to five was used to describe how happy and how exciting the
song made him feel.

Although 83 songs were used for the data collection, only
data from 64 songs are included for analysis for this exper-
iment. Only songs that made the subject happy (i.e. songs
rated three and above) and have a tempo between 76 – 168
beats per minute (bpm) are included. The tempo and key
information of the music data set is shown in Table 3.

1 About BioGraph Infinity System. Thought Technology Ltd. 14 May
2011. http://www.thoughttechnology.com

Figure 4. Data collection setup: BVP sensor worn on right
index finger while listening to music via closed headphones

Key
Tempo

Total
Andante Moderato Allegro

C 1 1 3 5
D 1 1 7 9
E 3 3 8 14
F 2 1 2 5
F] 0 0 1 1
G 5 2 3 10
A[ 1 0 0 1
A 5 4 5 14
B[ 1 0 1 2
B 1 1 1 3

Total 20 13 31 64

Andante : 76–108bpm Allegro : 120-168bpm
Moderato : 108–120bpm

Table 3. Summary of music included for motif discovery

5.2 Music feature extraction

Since the isophonics dataset already includes chord, beat,
key and segment annotations for the different songs, only a
simple text parser to read the different file annotations was
needed. These annotations were manually done by music
experts and students [12].

For the motif discovery, the physiological data is mapped
to the chord information to determine what chord is being
heard at that instance. The music features and the motif
subsequences are stored in a file for cross-reference after
motif discovery.

5.3 Motif discovery

All the 64 physiological readings were analyzed using three
sets of parameters. Each set has varying sizes for motif
length (n) and word size (w). However, all sets used an
alphabet size ofa = 4 and a rangeR = 1.0. The parame-
ters used for each set are shown in Table 4. The motif length
values were set as such to vary the chord progression length
that was associated to a motif. The word size was adjusted
to maintain a compression ratio ofnw = 8.
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Set No. n w Sequence length

1 1024 128 8 seconds
2 768 96 6 seconds
3 512 64 4 seconds

Table 4. Parameters used for the different sets

Figure 5. (top) The BVP signal of subject listening to
Please Mister Postman from the Beatles has a motif of
length 512 found as subsequenceC518 andC2264. (bottom)
By overlaying the two motifs, we see the similarity of the
two signals to each other.

6. RESULTS

Using the motif discovery algorithm, the most significant
motif (1-motif ) were obtained from the dataset. Figure 5
illustrates an example of a motif discovered.

We observe that the motif length is inversely proportional
to the number of motifs found. Using set number 1 (n =
1024), for example, only the songWith A Little Help From
My Friends was identified to have a motif (see Figure 6).
Analyzing the music features of the1-motif pair show that
these have similar chord progressions :C764 has the chord
progression F] - B - E - B - F]m, andC1618 has B - F]m - B -
E - D - A. This suggests that using the chord progression will
produce a similar physiological response. This phenomena
can also be observed in most motif pairs taken from other
physiological data. Table 5 shows the amount of motifs that
were discovered to have similar chord progressions.

From the results of the motif discovery, on average, a mo-
tif length that will give four to six seconds of chord progres-
sion is desirable. The complexity of the chord progression
will depend on the length of motif. Since the exact length of
the motif is not known, an algorithm that does not use motif
length as a parameter should be used instead.

Other chord progressions identified by motif discovery
using parameter set 3 are found in Table 6. The chord pro-
gressions I-IV, I-IV-V and I-IV-V-I from the songPlease
Please Me are mapped to the1-motif for that song. These
chords sound similar and possibly invoke the same emo-
tional response for that song. Some motifs will have similar

Figure 6. The motif discovered for the songWith A Little
Help From My Friends with n = 1024 occurring at subse-
quenceC764 andC1618.

Set No. motif count
motifs with similar
chord progressions

1 1 (1/64 = 1.5%) 1 (1/1 = 100.0%)
2 25 (25/64 = 39.0%) 17 (17/25 = 68.0%)
3 61 (61/64 = 95.3%) 39 (39/61 = 63.9%)

Table 5. Number of motifs discovered for each parameter
set and statistics for motifs with similar chord progressions

chord progressions but not in all cases. There are also mo-
tifs that have different chord progressions mapped to it, i.e.
chords found inGood Day Sunshine.

Using motif discovery, we are able to discover chord pro-
gressions that are commonly used in western pop music.
Given enough data, the library of motif could be used to
identify the most frequently used chord progressions that
invoke an emotional response by clustering similar psycho-
physiological motifs. This can be used in composing or rec-
ommending music with a desired emotion or mood.

7. CONCLUSION AND FUTURE WORK

In this work, psychophysiological readings from a subject
listening to music was collected. A motif discovery algo-
rithm was used to discover motifs from the BVP data. We
observe that parts of music where the motif occur, have sim-
ilar chord progressions and possibly other music features as
well. By improving the algorithms used in this work, a li-
brary of different motifs can be built.

Future work includes additional analysis on the motifs to
include other music features. Improving the motif discovery
algorithm to dynamically identify motif length is also de-
sired in order to have a more accurate account of the chord
progressions that are important. Another round of data col-
lection will also be done using a different set of participants.
Analysis of other physiological data, (i.e. respiration rate
and skin conductance) is also planned. A music recommen-
dation system is also being designed that will use the infor-
mation from motifs to generate a play list of songs that have
similar emotion content.
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Song Key Chord progression

Act Naturally G G-D-G I-V-I
G-D I-V

Dizzy Miss Lizzy A D-A IV-I
A-D I-IV
E-D-A V-IV-I

For You Blue D D-A-D I-V-I
D-A I-V
D-A-G7 I-V-IV

Good Day Sunshine A B7-E7-A ii-V-I
F]-B-F] vi-ii-vi

Please Please Me E E-A I-IV
E-A-B I-IV-V
E-A-B-E I-IV-V-I

With A Little Help E B-E-B V-I-V
From My Friends F]m-B-E ii-V-I

Yesterday F B[/7-Gm-C-F IV-ii-V-I
Gm-C-F-F7 ii-V-I-I

Table 6. Subset of results using parameter set 3
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ABSTRACT

Music Mood Classification is frequently turned into ‘Mu-
sic Mood Regression’ by using a continuous dimensional
model rather than discrete mood classes. In this paper we
report on automatic analysis of performances in a mood
space spanned by arousal and valence on the 2.6 k songs
NTWICM corpus of popular UK chart music in full real-
ism, i. e., by automatic web-based retrieval of lyrics and di-
verse acoustic features without pre-selection of prototypical
cases. We discuss optimal modeling of the gold standard
by introducing the evaluator weighted estimator principle,
group-wise feature relevance, ‘tuning’ of the regressor, and
compare early and late fusion strategies. In the result, cor-
relation coefficients of .736 (valence) and .601 (arousal) are
reached on previously unseen test data.

1. INTRODUCTION

Music mood analysis, i. e., automatic determination of the
perceived mood in recorded music, has been an active field
of research in the last decade. For instance, it can en-
able browsing through music collections for music with a
specific mood, or to automatically select music best suited
to a person’s current mood as determined manually or au-
tomatically. In this study, we describe music mood by
Russell’s circumplex model of affect consisting of a two-
dimensional space of valence (pleasure–displeasure) and
degree of arousal which allows to identify emotional tags,
such as the ones used for the MIREX music mood evalua-
tions [9], as points in the ‘mood space’, avoiding the am-
biguity of categorical taxonomies [21]. Note that in re-
cent research, e. g. [11], new models have been proposed
specifically for music emotion, which go beyond the tra-
ditional emotion models by including non-utilitaristic or

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

eclectic emotions. However, the valence / arousal model
is an emerging standard for describing human emotions in
automatic analysis [4]. Thus, from an application point of
view, it is, e. g., useful for matching human emotions and
music mood, such as for automatic music suggestion [16].
For automatic music mood recognition, a great variety of
features have been proposed, comprising low-level acous-
tic, such as spectral, cepstral, or chromagram features [18],
higher-level audio features such as rhythm [14], as well as
textual features derived from the lyrics [12]. Early (feature-
level) and late (classifier-level) fusion techniques for the
acoustic and textual modalities have been compared in [8].

A first major contribution of this study is to investigate
regression in the continuous arousal / valence space by sin-
gle modalities (spectrum, rhythm, lyrics, etc.), and by early
as well as late fusion. To briefly relate our work to recent
performance studies on music mood regression: In [18] re-
gression in a purely acoustic feature space has been inves-
tigated; [10] evaluates automatic feature selection and clas-
sifiers, but not various feature groups individually; [2] com-
pares prediction of dimensional and categorical annotation
and highlights the relevance of single features without re-
porting their actual performance. In summary, the majority
of research still deals with classification [8, 12, 14, 19], to
refer to a few recent studies. Besides, to deal with relia-
bility issues of human music mood annotation [9], we in-
troduce the evaluator weighted estimator (EWE) [3] to the
Music Information Retrieval domain and evaluate its influ-
ence on regression performance. The EWE has been pro-
posed as a weighted decision taking into account reliabili-
ties of individual annotators for emotion recognition from
speech [3]. Furthermore, we extend late fusion approaches
such as [8] by considering the regression performance of
single modalities on the development set for determination
of fusion weights, in analogy to the EWE used for reaching
a robust ground truth estimate.

We evaluate our system on the “Now That’s What I Call
Music!” (NTWICM) database introduced in [19], contain-
ing 2 648 songs annotated by four listeners on 5-point scales
for perceived arousal and valence on song level. In con-
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trast to some earlier work on music mood recognition such
as [2], no instance pre-selection has been performed in or-
der to simulate real-life conditions where an automatic sys-
tem has to deal with non-prototypical instances, in particu-
lar those characterized by low emotional intensity [10]. Our
evaluation measure is the correlation coefficient between the
regression output and the estimated continuous ground truth.

The remainder of this contribution briefly describes the
evaluation database (Section 2), with a particular focus on
annotation reliability, and the acoustic and linguistic fea-
tures used for automatic regression (Section 3). Results of
extensive regression runs are given in Section 4 before con-
cluding in Section 5.

2. NTWICM DATABASE

2.1 Data Set

For building the NTWICM music database the compilation
“Now That’s What I Call Music!” (U. K. series, volumes
1–69) is selected. It contains 2 648 titles — roughly a week
of total play time — and covers the time span from 1983
to 2010. Likewise it represents very well most music styles
which are popular today; that ranges from Pop and Rock
music over Rap, R&B to electronic dance music as Techno
or House. The stereo sound files are MPEG-1 Audio Layer
3 (MP3) encoded using a sampling rate of 44.1 kHz and a
variable bit rate of at least 128 kBit/s as found in many typ-
ical use-cases of an automatic mood classification system.

For 1 937 of 2 648 songs in the database (cf. Sec-
tion 2.3, Table 2) lyrics can automatically be collected
from two on-line databases: In a first run lyricsDB,
(http://lyrics.mirkforce.net/) is applied, which delivers lyrics
for 1 779 songs, then LyricWiki, (http://www.lyricwiki.org/)
is searched for all remaining songs, which delivers lyrics for
158 additional songs. The only manual post-processing car-
ried out was normalization of transcription inconsistencies,
e. g., markers for chorus lines, among the databases.

2.2 Annotation and Reliability

Songs were annotated as a whole, i. e., without selection of
characteristic song parts, to stick to real world use cases –
such as music suggestion – as closely as possible. Respect-
ing that mood perception is generally judged as highly sub-
jective [9], we decided for four labellers. While mood may
well change within a song, as change of more and less lively
passages or change from sad to a positive resolution, anno-
tation in such detail is particularly time-intensive. Yet, we
are assuming the addressed music type – mainstream pop-
ular and by that usually commercially oriented – music to
be less affected by such variation as, for example, found in
longer arrangements of classical music. In fact, this can be
very practical and sufficient in many application scenarios,

age, g ρ CC CC-LORO
Val Aro Val Aro Val Aro

A 34, m .828 .749 .827 .763 .678 .456
B 23, m .267 .623 .304 .640 -.012 .366
C 26, m .797 .633 .800 .656 .651 .442
D 32, f .797 .717 .819 .733 .640 .474

Table 1: NTWICM Database: Raters A–D by age and
g(ender), and reliability of val(ence) and aro(usal) annota-
tion by Spearman’s ρ and correlation coefficient (CC) with
mean (A–D), as well as CC in leave-one-rater-out (LORO)
analysis.

as for automatically suggestion that fits a listener’s mood.
Details on the chosen raters (three male, one female, aged
between 23 and 34 years; average: 29 years) and their pro-
fessional and private relation to music are provided in Ta-
ble 1. As can be seen, they were picked to form a well-
balanced set spanning from rather ‘naive’ assessors without
instrument knowledge and professional relation to ‘expert’
assessors including a club disc jockey (D. J.). The latter can
thus be expected to have a good relationship to music mood,
and its perception by the audiences. Further, young raters
prove a good choice, as they were very well familiar with
all the songs of the chosen database. They were asked to
make a forced decision according to the two dimensions in
the mood plane assigning values in -2, -1, 0, 1, 2 for arousal
and valence, respectively. They were further instructed to
annotate according to the perceived mood, that is, the ‘rep-
resented’ mood, not to the induced, that is, ‘felt’ one, which
could have resulted in too high labelling ambiguity. The an-
notation procedure is described in detail in [19], and the an-
notation along with the employed annotation tool are made
publicly available 1 .

In this study, we aim at music mood assessment in the
continous domain as determined by the four raters. Thus,
a consensus has to be derived from the individual labellings
for valence and arousal. A continuous quantity as needed for
regression is obtained as follows. As a first step, we calcu-
lated the agreement (reliability) of rater k ∈ {A,B,C,D}
with respect to the arithmetic mean label l(d)

n for each in-
stance n, d ∈ {valence, arousal},

l
(d)
n =

1

4

∑
k

l
(d)
n,k (1)

where l(d)
n,k ∈ {−2,−1, 0, 1, 2} is the label assigned by rater

k to instance n. As a measure of reliability for each k,
we computed the correlation coefficient CCk between (l

(d)
n,k)

and (l
(d)
n ). Results are shown in Table 1, where we also pro-

1 http://openaudio.eu/NTWICM-Mood-Annotation.
arff
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vide the values for Spearman’s rho (ρ) for reference: No-
table differences between CC and ρ can mainly be seen for
the valence annotation by rater B.

Evidently, the reliability in terms of CCk differs among
the raters – especially for valence, where it ranges from .828
(rater A, club D. J.) down to .267 (rater B). Hence, as a ro-
bust estimate of the desired ground truth mood of each in-
stance n, we additionally considered the EWE [3], denoted
by l(d)

n , in further analyses:

l(d)
n =

1∑
k CCk

∑
k

CCkl
(d)
n,k. (2)

We hypothesize that the EWE provides a robust ground truth
estimate especially for the NTWICM database with only
four annotators, where a single ‘unreliable’ annotator does
not simply ‘average out’. Note that we refrain from report-
ing the agreement of the raters with the EWE, as in the EWE
information about their reliability is already integrated. Fur-
thermore, the CC of raters with the mean of all raters is ar-
guably a slight overestimate of the true reliability, since the
rating to be evaluated is included in the ground truth esti-
mate. Thus, we additionally performed a ‘leave-one-rater-
out’ (LORO) reliability analysis. Thereby for each rater
k the CC is calculated between (l

(d)
n,k) and the EWE of all

raters except k. It turns out that human agreement is con-
siderably lower when measured in a LORO fashion – partly,
this can be attributed to the fact that in the LORO analysis,
each ground truth estimate is made up from only three raters.
Again, rater A exhibits the highest reliability whereas rater
B is ranked last, both for valence and arousal (cf. Table 1).

2.3 Partitioning

We partitioned the 2 648 songs into training, development,
and test partitions through a transparent definition that al-
lows easy reproducibility and is not optimized in any re-
spect: Training and development are obtained by selecting
all songs from odd years, whereby development is assigned
by choosing every second odd year. By that, test is defined
using every even year. The distributions of instances per
partition are displayed in Table 2, together with the number
of instances for which lyrics are missing – it can be seen that
their proportion is roughly equal for all partitions.

Once development was used for optimization of classi-
fier parameters, the training and development sets are united
for training. Note that this partitioning resembles roughly
50 % / 50 % of overall training / test in order to favor statisti-
cally meaningful findings.

3. FEATURES

A summary of the feature groups discussed in this study is
given in Table 3. They can be roughly categorized into fea-
tures derived from the lyrics (Sections 3.1, 3.2), the song

Set # songs # lyrics
Train 690 515 (75 %)
Devel 686 509 (74 %)
Train+Devel 1 376 1 024 (74 %)
Test 1 272 913 (72 %)
Sum 2 648 1 937 (73 %)

Table 2: Partitioning of the NTWICM Database, and avail-
ability of lyrics.

meta-information (Section 3.3), and finally the audio itself
(Sections 3.5, 3.4, 3.6). A detailed explanation of the fea-
tures is given in [19].

3.1 Emotional Concepts

Semantic features are extracted from the lyrics by the Con-
ceptNet [13] text processing toolkit, which makes use of a
large semantic database automatically generated from sen-
tences in the Open Mind Common Sense Project 2 . The
software is capable of estimating the most likely emotional
affect in a raw text input, which has already been shown
quite effective for valence prediction in movie reviews [20].

The underlying algorithm starts from a subset of con-
cepts that are manually classified into one of six emo-
tional categories (happy, sad, angry, fearful, disgusted, sur-
prised), and calculates the emotion of unclassified concepts
extracted from the song’s lyrics by finding and weighting
paths which lead to those classified concepts. The algo-
rithm yields six discrete features indicating a ranking of
the moods from highest to lowest dominance in the lyrics,
and six continuous-valued features contain the correspond-
ing probability estimates.

3.2 Linguistic Features: From Lyrics to Vectors

Linguistic features are obtained from the lyrics by text pro-
cessing methods proven efficient for sentiment detection
[20]. The raw text is first split into words while remov-
ing all punctuation. In order to recognize different flex-
ions of the same word (e. g. loved, loving, loves should be
counted as love) the conjugated word has to be reduced to
its word stem. This is done using the Porter stemming algo-
rithm [15].

Word occurences are converted to a vector (Bag-of-
Words, BoW) representation where each component repre-
sents a word stem that occurs at least 10 times. For each
song, the relative frequency of the stem is computed, i. e.,
the number of occurences is normalized by the total num-
ber of words in the song’s lyrics. The dimensionality of the
resulting feature set is 393.

2 http://openmind.media.mit.edu/
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3.3 Metadata

Additional information about the music is sparse in this
work because of the large size of the music collection used:
Besides the year of release only the artist and title informa-
tion is available for each song. While the date is directly
used as a numeric attribute, the artist and title fields are pro-
cessed in a similar way as the lyrics (cf. previous section):
Only the binary information about the occurrence of a word
stem is retained. While the artist word list looks very spe-
cific to the collection of artists in the database, the title word
list seems to have more general relevance with words like
“love”, “feel” or “sweet”. In total, the size of the metadata
feature set is 152.

3.4 Chords

For chord extraction from the raw audio data a fully auto-
matic algorithm as presented by Harte and Sandler [6] is
used. Its basic idea is to map signal energy in frequency
sub-bands to their corresponding pitch class which leads to
a chromagram or pitch class profile. Each possible chord
type corresponds to specific pattern of tones. By comparing
the chromagram with predefined chord templates, an esti-
mate of the chord type (e. g., major, minor, diminished) can
be made. We recognize the nine chord types defined in [19]
along with the chord base tone (e. g. C, F, G]). Each chord
type has a distinct sound which makes it possible to asso-
ciate it with a set of moods [1]: For instance, major chords
often correspond to happiness, minor ones to a more melan-
cholic mood, while diminished chords are frequently linked
to fear or suspense. For each chord name and chord type, the
relative frequency per song is computed and augmented by
the total number of recognized chords (22 features in total).

3.5 Rhythm

The 87 rhythm features rely on a method presented in [17].
It uses a bank of comb filters with different resonant fre-
quencies covering a range from 60 to 180 bpm. The output
of each filter corresponds to the signal energy belonging to a
certain tempo, devliering robust tempo estimates for a wide
range of music. Further processing of the filter output de-
termines the base meter of a song, i. e., how many beats are
in each measure and what note value one beat has. The im-
plementation used can recognize whether a song has duple
(e. g., 2/4, 4/4) or triple (e. g., 3/4, 6/8) meter. A detailed
description of the rhythm features is found in [19].

3.6 Spectral

Spectral features are straightforward and derived from the
Discrete Fourier Transform (DFT) of the songs, which is
mixed down to a monophonic signal. Then, the centre of

Group Description #
Cho rds rel. chord freq.; # distinct chords 22
Con cepts ConceptNet’s mood from lyrics 12
Lyr ics Bag-of-Words (BoW) from lyrics 393
Met a BoW from artist, title; song date 153
Rhy thm Tatum vec. (57); meter vec. (19); 87

tatum cand.; tempo + meter estim.;
tatum max, mean, ratio,
slope, peak dist.

Spec tral DFT centre of gravity, moments 2–4; 24
octave band energies

All Union of the above 691
NoLyr ics All \ ( Lyr ∪ Con ) 286

Table 3: Song-level feature groups and corresponding fea-
ture set sizes (#).

gravity, and the second to fourth moment (i. e., standard de-
viation, skewness, and kurtosis) of the spectrum are com-
puted. Finally, band energies and energy densities for the
following seven octave based frequency intervals are added:
0 Hz–200 Hz, 200 Hz–400 Hz, 400 Hz–800 Hz, 800 Hz–
1.6 kHz, 1.6 kHz–3.2 kHz, 3.2 kHz–6.4 kHz and 6.4 kHz–
12.8 kHz, which yields a total of 24 spectral features.

4. EXPERIMENTS AND RESULTS

4.1 Setup

In our regression experiments we used ensembles of un-
pruned REPTrees with a maximum depth of 25 trained on
random feature sub-spaces [7]. For straightforward repro-
ducibility, we relied on the open-source implementation in
the Weka toolkit [5].

We tuned the ensemble size (number of trees and sub-
space size) on the development set for each combina-
tion of feature set and target (valence/arousal mean/EWE)
to reflect varying sizes and complexities of the fea-
ture sets. The number of trees was chosen from
{10, 20, 50, 100, 200, 500, 1 000, 2 000} and the sub-space
size from {.01, .02, .05, .1, .2, .5}. Results of the parame-
ter tuning for selected feature groups can be seen in Fig-
ures 1 (a)–(b). As expected due to different sizes of the fea-
ture space, optimal parameters vary considerably. Interest-
ingly, the best result for the Met feature set is obtained with
1 000 trees consisting of only 1–2 features, corresponding
to a sub-space size of 1 %. Note that for the smallest fea-
ture set (Con), the number of possible trees is bounded by(
12
6

)
= 924, so a larger number of trees will result in dupli-

cates by the pigeon hole principle.
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Figure 1: Tuning of ensemble size on CC with valence
EWE on development set for All (a) and Rhy (b) feature
groups.

CC Valence Arousal
mean EWE mean EWE

Train vs. Devel .652 .680 .600 .593
Train+Devel vs. Test .701 .736 .613 .601

Table 4: Early fusion (All feature set): CC of regression
on continuous valence and arousal (mean / EWE of anno-
tators) by random sub-space learning with unpruned REP-
Trees. Ensemble size tuned on development set (20 % sub-
space, 500 trees, 2 000 for mean valence).

Valence Arousal
#t×sss CC #t×sss CC

Dev Test Dev Test
Cho 2k×.2 .331 .409 2k×.5 .299 .380
Con 500×.5 .047 .027 50×.2 .079 .081
Lyr 100×.1 .249 .266 200×.2 .244 .312
Met 1k×.01 .209 .241 500×.05 .212 .193
Rhy 100×.2 .589 .620 2k×.2 .520 .541
Spe 2k×.2 .518 .565 500×.2 .452 .418
NoL 2k×.2 .678 .735 1k×.2 .594 .602

Table 5: Single feature groups: CC of regression on contin-
uous valence and arousal (EWE of annotators) by random
sub-space learning with unpruned REPTrees. Number of
trees (#t) and sub-space size (sss) optimized on development
partition.

CC Valence Arousal
ALL NOL ALL NOL

Train vs. Devel .693 .690 .599 .593
Train+Devel vs. Test .725 .720 .598 .588

Table 6: Late fusion of modalities: CC of regression on
continuous valence and arousal (EWE of annotators). REP-
Tree ensembles for each modality parameterized as in Table
5. Fusion weights corresponding to CC on development set.

4.2 Results and Discussion

With the full feature set, CCs of .680 and .736 are obtained
for valence on the development and test sets, respectively
(cf. Table 4)—this corresponds to R2 statistics of .462 resp.
.542. In that case, regression on the EWE is considerably
more robust than regression on the mean (absolute CC gains
of .028 and .035 on development and test), which is proba-
bly due to the different reliabilities of the annotators. In con-
trast, for arousal, where annotator reliability is more consis-
tent, the CC with the EWE is even slightly lower (by .007
and 0.012 absolute on development and test). In other terms,
R2 statistics of up to .36 (development) and .376 (test set)
are obtained. For the sake of clarity, we will exclusively
report on CC with the EWE in the following discussion.

Analysis of single feature groups (Table 5) reveals that
spectral and rhythm features contribute most to the regres-
sion performance (CCs of .620 and .565 with the valence
EWE on test). Chords (CC of .409) are in the mid-range
while lyrics, meta information and concepts lag behind (CCs
of .266, .241, .027). The same ranking of feature groups is
obtained when considering the CC with the arousal EWE.
We conclude that the feature groups that enable robust re-
gression can be obtained directly from the audio (chords,
spectral and rhythm information), and thus in full realism—
though lyrics likely contribute to the annotation since the
annotators were not explicitly told to ignore lyrics and all of
them are experienced English speakers. In fact, the CC on
the test set by the NoLyrics feature set (.735) is only slightly
lower than that with the full feature set (.736).

The noticeable differences between the reliability of dif-
ferent modalities motivate a late fusion technique where the
fused prediction is a weighted sum of the predictions of uni-
modal regressors. Thereby weights correspond to the indi-
vidual regressors’ CC on the development set, analogously
to the EWE (Eqn. 2). Results obtained by this technique
are shown in Table 6. On the development set, early fusion
(cf. Table 4) is clearly outperformed for both recognition of
valence (CC of .693 vs. .680) and arousal (CC of .599 vs.
.593). However, this effect is almost reversed on the test
set, where a CC of .725 as opposed to .735 (early fusion)
is obtained for valence; results are similar for arousal. The
latter result cannot be fully explained by overfitting fusion
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weights on the development set, as there is no considerable
mismatch between the reliabilities on the development com-
pared with the test set.

5. CONCLUSIONS

We analyzed regression of music mood in contiuous dimen-
sional space. Particular emphasis was laid on realism in
the sense of automatically retrieving textual lyric informa-
tion automatically from the web and by chosing a music
database that is well defined in its own: 69 consecutive dou-
ble CDs without pre-selection of high annotator agreement
cases. As expected, the observed performances are clearly
below the ones reported in studies on prototypical exam-
ples such as [2], yet in line with other studies on real-life
data sets [10, 21]. To establish a reliable gold standard,
i. e., ground truth, we proposed the usage of the evaluator
weighted estimator. The best individual feature group were
rhythm features based on comb-filter banks. In future work
we will address unsupervised and semi-supervised learning
for music mood analysis to exploit the huge quantities of
popular music available on the internet.

6. REFERENCES

[1] W. Chase. How Music REALLY Works! Roedy Black
Publishing, Vancouver, Canada, 2nd edition, 2006.

[2] T. Eerola, O. Lartillot, and P. Toiviainen. Prediction of
multidimensional emotional ratings in music from audio
using multivariate regression models. In Proc. of ISMIR,
pages 621–626, Kobe, Japan, 2009.

[3] M. Grimm and K. Kroschel. Evaluation of natural emo-
tions using self assessment manikins. In Proc. of ASRU,
pages 381–385, 2005.

[4] H. Gunes, B. Schuller, M. Pantic, and R. Cowie. Emo-
tion Representation, Analysis and Synthesis in Contin-
uous Space: A Survey. In Proc. International Work-
shop on Emotion Synthesis, rePresentation, and Anal-
ysis in Continuous spacE (EmoSPACE), Santa Barbara,
CA, 2011. IEEE.

[5] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and I. H. Witten. The WEKA data mining soft-
ware: An update. SIGKDD Explorations Newsletter,
11(1):10–18, 2009.

[6] C. A. Harte and M. Sandler. Automatic chord identifica-
tion using a quantised chromagram. In Proc. of the 118th
Convention of the AES, May 2005.

[7] T. K. Ho. The Random Subspace Method for Construct-
ing Decision Forests. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20:832–844, 1998.

[8] X. Hu and J. S. Downie. Improving mood classifica-
tion in music digital libraries by combining lyrics and
audio. In Proc. Joint Conference on Digital Libraries

(JCDL), pages 159–168, Gold Coast, Queensland, Aus-
tralia, 2010.

[9] X. Hu, J. S. Downie, C. Laurier, M. Bay, and A. F.
Ehmann. The 2007 MIREX Audio Mood Classification
Task: Lessons Learned. In Proc. ISMIR, pages 462–467,
Philadelphia, USA, 2008.

[10] A. Huq, J. P. Bello, and R. Rowe. Automated Music
Emotion Recognition: A Systematic Evaluation. Jour-
nal of New Music Research, 39(3):227–244, 2010.

[11] P. N. Juslin and J. A. Sloboda, editors. Handbook of mu-
sic and emotion: Theory, research, applications. Oxford
University Press, New York, 2010.

[12] C. Laurier, J. Grivolla, and P. Herrera. Multimodal music
mood classification using audio and lyrics. In Proc. In-
ternational Conference on Machine Learning and Appli-
cations, pages 688–693, Washington, DC, USA, 2008.

[13] H. Liu and P. Singh. ConceptNet — a practical com-
monsense reasoning tool-kit. BT Technology Journal,
22(4):211–226, 2004.

[14] L. Lu, D. Liu, and H.-J. Zhang. Automatic mood detec-
tion and tracking of music audio signals. IEEE Trans-
actions on Audio, Speech and Language Processing,
14(1):5–18, 2006.

[15] M. F. Porter. An algorithm for suffix stripping. Program,
3(14):130–137, October 1980.

[16] S. Rho, B.-J. Han, and E. Hwang. SVR-based mu-
sic mood classification and context-based music recom-
mendation. In Proc. ACM Multimedia, pages 713–716,
Beijing, China, 2009.

[17] E. D. Scheirer. Tempo and beat analysis of acoustic mu-
sical signals. Journal of the Acoustic Society of America,
103(1):588–601, January 1998.

[18] E. M. Schmidt, D. Turnbull, and Y. E. Kim. Feature se-
lection for content-based, time-varying musical emotion
regression. In Proc. of MIR, pages 267–274, Philadel-
phia, Pennsylvania, USA, 2010.

[19] B. Schuller, J. Dorfner, and G. Rigoll. Determination
of non-prototypical valence and arousal in popular mu-
sic: Features and performances. EURASIP Journal on
Audio, Speech, and Music Processing, Special Issue on
Scalable Audio-Content Analysis, 2010(ID 735854):19
pages, 2010.

[20] B. Schuller and T. Knaup. Learning and Knowledge-
based Sentiment Analysis in Movie Review Key Ex-
cerpts. In Toward Autonomous, Adaptive, and Context-
Aware Multimodal Interfaces: Theoretical and Practical
Issues, volume 6456 of LNCS, pages 448–472. Springer,
Heidelberg, 2010.

[21] Y.-H. Yang, Y.-C. Lin, Y.-F. Su, and H.H. Chen. A re-
gression approach to music emotion recognition. IEEE
Transactions on Audio, Speech and Language Process-
ing, 16(2):448–457, 2008.

764



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

MUSIC EMOTION CLASSIFICATION OF CHINESE SONGS
BASED ON LYRICS USING TF*IDF AND RHYME

Xing Wang, Xiaoou Chen, Deshun Yang, Yuqian Wu
Institute of Computer Science and Technology, Peking University

{wangxing,chenxiaoou,yangdeshun,wuyuqian}@icst.pku.edu.cn

ABSTRACT

This paper presents the outcomes of research into an auto-
matic classification system based on the lingual part of mu-
sic. Two novel kinds of short features are extracted from
lyrics using tf*idf and rhyme. Meta-learning algorithm is
adapted to combine these two sets of features. Results show
that our features promote the accuracy of classification and
meta-learning algorithm is effective in fusing the two fea-
tures.

1. INTRODUCTION

Music itself is an expression of emotion. Music emotion
plays an important role in music information retrieval and
recommendation system. Because of the explosive growth
of music libraries, traditional emotion annotation carried out
only by experts can no longer satisfies the needs. Thus, auto-
matic recognition of emotions becomes the key to the prob-
lem. Though having received increasing attention, it is still
at the early stage. [5]

Many methods have been applied to automatic classifi-
cation of songs’ emotions. Traditionally, features such as
MFCC and chord are extracted from audio content to build
emotion classifiers. Natural language texts are the abstrac-
tion of the human cognition, emotion included. Endowed
with emotion, lyrics are quite effective in predicting music
emotion [2]. As the Internet booms, music related web doc-
uments and social tags [13] also provide valuable resources.
With the complementarities of features extracted from dif-
ferent modalities,more and more work [6] focus on multi-
modal classification.

Here we focus on the emotion classification of music
based on lyrics only. As it is pointed out in [5], lyrics based
approaches are particularly difficult because feature extrac-
tion and schemes for emotional labeling of lyrics are non-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

trivial, especially when considering the complexities involved
with disambiguating affect from text. In spite of those dif-
ficulties, the linguistic aspects of songs contains lots of e-
motion information. Firstly, some lexical items in lyrics are
highly relevant to certain emotion. Secondly, the pronun-
ciation of words must conform with the emotion, just as in
spoken language, loudness and pitch play an important role
in identifying the speakers’ emotion [4].

In this work, we propose two sets of low dimensional fea-
tures based on lyrics. We extend the work of Zaanen [11] to
get the first set of features based on tf*idf while the other is
proposed based on rhymes [1]. Then classifier combination
approach is adopted to fuse these two sets of features.

The rest of this paper is organized as follows. We first
present related work(Section 2). Then we will describe the
taxonomy of emotion(Section 3), features devised for emo-
tion classification(Section 4) and classifier combination ap-
proach(Section 5). Experimental results and analyses are
presented in Section 6. Section 7 concludes the paper.

2. RELATED WORK

Relatively few research focuses on the use of lyrics as the
sole feature for emotion classification. Traditional methods
such as the Vector Space Model(VSM) [3] are commonly
used in text categorization,but shortcomings exist. Vector
space often has very high dimensionality and is noisy, re-
sulting in huge computational cost and low accuracy. We
have to turn to features selection techniques.

Recently, more information is integrated into the features,
as in Semantic Vector Space Model(SVSM) [14] and Fuzzy
Clustering Method(FCM) [15]. In SVSM, all kinds of emo-
tion units are extracted from Lyrics. Emotion unit is com-
posed of an emotional word and the qualifier and negative
related to it. The count of emotion unit of each type is used
as the feature. FCM analyses the emotion of each sentence
based on emotion dictionary ANCW. Then a fuzzy cluster-
ing method is implemented to choose the main emotion of a
song. Both of them use additional dictionaries and depend
too much on the syntactic analysis.However these resources
are not mature.

Without the use of additional resources, Zaanen proposes

765



Poster Session 6

a new approach to tf*idf feature [11]. He uses tf*idf to mea-
sure the correlation between a term and an emotion. Lyrics
are transformed to a feature vector, and each dimension of
the vector represents the correlation between the lyrics and
an emotion. Beside, as far as we know, there’s no work fo-
cusing on the rhyme of lyrics for classification of emotion.

In this study, we focus on simple and low dimensional
features. The simple means that syntactic analysis and addi-
tional dictionary which are not mature are not needed; low
dimensionality means the features can be processed fast e-
nough in practice. Two sets of features are proposed, one
based on the work of Zaanen’s and the other based on the
rhyme of lyrics. Then we go on to find a way to combine
those features.

The methods to fuse these two sets of features can be
divided into two categories:features level fusion and clas-
sifiers level fusion. In the features level fusion, a new set
of feature is generated by operations such as concatenating
and features selection. A machine learning algorithm is then
used to construct a classifier. In the classifiers level fusion,
one classifier is built on each set of features. The final result
is obtained by fusing the output of each classifier.

Classifier combination is an effective way to improve the
performance [10]. The methods to fuse classifiers generated
from different sets of features can be categorized into either
base-learning or meta-learning. Meta-learning studies how
to choose the right bias dynamically, as opposed to base-
learning where the bias is fixed priori, or user parameterized
[12].

Combinations with fixed structures are base-learning meth-
ods. For example, sum of scores holds the assumption that
the label with the biggest sum of score is true label. On
the other hand, Combinations which are trained using avail-
able training samples are meta-learning methods. Boosting
and stacked generalization are examples of meta-learning
methods. Boosting algorithm is originally designed for im-
proving the accuracy of classifiers based on one set of fea-
tures, which does not fit our needs. Stack generalization
uses the outputs of basic classifiers as the inputs of the meta-
classifier to predict the final result.

3. TAXONOMY

We adopt Thayer’s arousal-valence emotion plane [9] as our
emotion taxonomy. In this taxonomy, emotion is described
by two dimensions:arousal(from calm to excited) and va-
lence(from angry to happy). These two dimensions are most
important and universal in expressing emotion [8]. As shown
in figure 1, four emotion classes happy, angry, sad, and re-
laxing are defined according to the four quadrants of the e-
motion plane.

Figure 1. Thayer’s AV model

4. FEATURES

Zaanen proposed a new feature space based on tf*idf [11].The
feature vector is short and the method is robust. By tak-
ing the part of speech(POS) into consideration, we improve
the emotion expressive ability of Zaanen’s model. Further
more, we make use of rhyme related cues of lyrics which
are highly related to expression of emotion.

4.1 pos tf*idf

Some abbreviations are clarified here: POS is part of speech,
tf is term frequency and idf is inverse document frequency.
In this section, I will describe Zaanen’s work first ,and then
method for incorporating POS information will be shown.

First, Zaanen merges the lyrics in the training set belong-
ing to emotion ej into a single document docj . In this way,
document set D has been produced, with each document in
the set corresponding to one emotion class. As shown in
equation 1, for a term ti ,tfj(ti) represents the importance
of a ti in the expression of emotion ej . idf(ti) represents
the ability of a word in distinguishing different emotion as
shown in equation 2.

tfj(ti) =
ni,j∑
k nk,j

(1)

where ni,j is the count of term ti in docj .

idf(ti) =
|D|

|{docj : ti ∈ docj}|
(2)

Then lyrics lrcl is represented by feature vector fvl as
shown in equation 3. This feature vector is then used for
training classifier and making prediction.

fvl = (f1, ..., fc)
T (3)

where c is the number of categories and each dimension
of the vector is calculated by equation 4.

fj =
∑

{k|wk∈lrcl}

tfj(wk) ∗ idf(wk) (4)
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We know that words of different POS are different in the
ability to express emotion. For example, verbs and adjec-
tives are more emotional than articles. In the following of
this section, I will describe the method for incorporating
POS information.

Based on Zaanen’s feature model, we introduce a new
feature model which incorporates POS information in lyric-
s. Instead of combining lyrics belonging to an emotion in-
to one document, we combine them into several documents
with each document corresponding to one POS. For each
POS, we get four documents corresponding to the emotion
taxonomy just like Zaanen’s. We get a feature vector of four
components for each POS as shown in equation 5. Then we
concatenate them to form the final feature vector as shown
in equation 6.

fvl,POS = (f1,POS , ..., fc,POS)T (5)

fvl = (f1,verb, ..., fc,verb, ..., f1,noun, ..., fc,noun)T (6)

4.2 rhyme

A rhyme is a repetition of similar sounds in two or more
words and is most often used in poems and lyrics. Most
Chinese poems obey tail rhyme and lyrics of Chinese songs
also obey tail rhyme to some extent.

Rhyme is highly relevant to the emotion expression [1].
Broad sounds such as [a] usually express happiness and ex-
citement while fine sounds such as [i] are related to gentle
and sorrow. Broad sounds and fine sounds can be distin-
guished by the level of obstruction in the vocal tract. Be-
sides the difference between the broad and the fine, intona-
tion also weighs a lot for the expression of emotion. Man-
darin has four tones:rises, falls, dips and stays.

There is a system of rhyme in old Chinese songs. It
consists of 19 main categories in terms of the broadness
and fineness, meanwhile, each main category is divided into
three sub-categories by the tones. Then there are totally 57
rhyme categories.

We propose a rhyme frequency(rf) feature based on the
rhyme system mentioned above as shown in equation 7.

rfv(lrcj) = (rf1,j , ..., rf57,j)
T (7)

where

rfi,j =
ni,j∑
k nk,j

(8)

This metric measures the importance of rhyme ri in lyric-
s lrcj , with ni,j denoting the number of occurrences of the
tail rhyme ri in lrcj , divided by number of all tail rhyme
occurrences in lrcj .

5. COMBINATION APPROACH

We fusion these two sets of features on the features level
and classifiers level. For the classifiers level fusion, both
base-learning combination method and meta-learning com-
bination method are tried.

5.1 Feature Level Fusion

For lyrics lrcl, we simply concatenate POS tf*idf feature
vector and rhyme feature vector to create a new feature vec-
tor as shown in equation 9. Then a machine learning algo-
rithm such as SMO is applied to train a classifier and make
prediction.

fv′l = (f1,verb, ..., fc,verb, ..., rf1,l, ..., rf57,l)
T (9)

5.2 Classifier Level Fusion

We use the POS tf*idf feature and rhyme feature as de-
scribed above for song emotion classification. For each of
the two kinds of features, a classification learning algorithm
is selected based on experimental results. SMO is chosen
for the POS tf*idf feature and Naive Bayes for the rhyme
feature.

The combination framework is shown in figure 2. For
each instance, basic classifiers output the confidence for each
class label. Then combination classifier output the final class
label based on the outputs of basic classifiers. The base-
learning method and the meta-learning method differ in the
implementation of combination classifier.

An instance

POS tf*idf
SMO

Rhyme
NB

cfSMO,1

...
cfNB,1

...

Combination
Classifier

class
label

Figure 2. Combination Framework

5.2.1 Base-learning methods

For base-learning methods, combination classifier is sim-
ple. Combination classifier may choose the class label with
the largest confidence value. Besides,a weighted average of
confidence value for each class label can be calculated by e-
quation 10, then the class label with the largest cfi is chosen
as the final label. In our study, the latter method is used as
the baseline and the parameter setting is w1 = w2 = 0.5.

cfi = w1 ∗ cfSMO,i + w2 ∗ cfNB,i (10)

where

w1 + w2 = 1 (11)
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Class +V,+A +V,-A -V,-A -V,+A
# of lyrics 274 5 52 169

Table 1. Distribution of data set

5.2.2 Meta-learning methods

For meta-learning methods, combination classifier is obtained
by learning from training set. We use stack generalization
as the meta-learning algorithm. The training data of meta-
learning is obtained by the following procedure.

Given a training set T : {lrci, ci}mi=1 for basic classifi-
er, SMO learner and NB learner are applied to training set
TSMO and TNB to hypothesis hSMO and hNB .

TSMO : {(FPOS,i, ci)}mi=1 (12)

TNB : {(FRhyme,i, ci)}mi=1 (13)

FPOS,i and FRhyme,i are feature vectors of lyrics lrci.
The training data for combination classifier is built on an-

other training set T ′ : {lrc′i, c′i}ni=1 to prevent over-fitting.
The generated training set for combination classifier is shown
in equation 14.

Tcombiantion = {(hSMO(lrc′i), hNB(lrc′i), c
′
i)} (14)

The generation of training set for combination classifier
is done via k-fold cross validation. The whole training set
is split into k folds. Each time, k-1 folds are used as train-
ing set T for basic learner and the remaining one is used as
training set T ′ to build training data for combination classi-
fier. Results of each fold are merged into the final training
set for combination classifier.

C4.5 is chosen as the learning algorithm for the combi-
nation classifier as it is similar with the arbitration process
of human.

6. EXPERIMENTS AND RESULTS

6.1 Experiment Settings

6.1.1 Data set

The data set we use is the same as that used by Hu [15]. It
is made up of 500 Chinese pop songs,and the emotions of
the songs are labeled through a subjective test conducted by
8 participants. The lyrics of the songs are downloaded from
the web by a web crawler.

The distribution of the songs over the four emotion class-
es is shown in Table 1. Although the number of songs in
class ’+V-A’ is small, it conforms to the distribution in real-
ity.

Method Baseline POS tf*idf Fuzzy Clustering
F-measure(av.) 0.3886 0.5942 0.547

Table 2. A comparison of word oriented methods

region
Zaanen POS

rhyme
# of

tf*idf tf*idf song
+V,+A 0.7074 0.762 0.438 274
+V,-A 0 0 0 5
-V,-A 0 0 0.22 52
-V,+A 0 0.514 0.353 169

av. 0.3886 0.594 0.382 500

Table 3. Results of single classifier

6.1.2 Machine learning algorithm

SMO, Naive Bayes, and J48 classification library in WEKA
[7] are used to train classifiers.

6.1.3 Measurement

We choose f-measure as our metric.In each of the experi-
ments, f-measure is computed using 5 fold cross-validation.
For the tf*idf feature is computed on the training set, the
tf*idf values are recomputed for each experiment.

6.2 POS tf*idf

The result of the POS tf*idf feature is shown in table 2. We
choose Zaanen’s method as our baseline. In contrast with
the baseline, our method which incorporates POS gets a per-
formance increase of 53%. The POS tf*idf model even out-
balance Fuzzy Clustering method of Hu [15].

6.3 Combination Approach

In this part, we will describe the results of combination meth-
ods.

The results of single classifier are shown in table 3. Though
the result using rhyme as feature is much smaller than that
of POS tf*idf, it is similar with result of Zaanen’s tf*idf.
Rhyme frequency is an effective feature.

region
Features Level Classifiers Level # of
concatenation base meta song

learning learning
+V,+A 0.728 0.581 0.774 274
+V,-A 0 0 0 5
-V,-A 0.09 0.261 0.049 52
-V,+A 0.489 0.451 0.547 169

av. 0.58 0.509 0.615 500

Table 4. Combination methods Analysis
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The combination of the two get a better result, though
there is a big difference between the two classifiers. F-
measures increases in all regions indicating the effectiveness
of the meta-learning algorithm. Rhyme classifier has poor
performance on the whole, but it is better at dealing with
instances in ’-V,-A’ region. And those misclassified by the
rhyme classifier are corrected by the POS tf*idf classifier.

As mentioned in section 5, fusion on features level and
classifiers level are tried. By comparing POS tf*idf column
in table 3 and concatenation column in table 4, we find that
fusion on features level fails to improve the result. For dif-
ferent features have different meanings, it’s not appropriate
to concatenate them simply.

For fusion on the classifiers level, we try both base-learning
and meta-learning for classifier combination. We use weight-
ed average method for base-learning and stack generaliza-
tion for meta-learning. From table 4, we find that the meta-
learning outperforms the base-learning by 0.1, which proves
the effectiveness of meta-learning in the task of classifier
combination. Besides, the base-learning even lowers the f-
measure compared to single classifier based on POS tf*idf.
Simple strategies could not guarantee the effectiveness of
combination.

7. CONCLUSION AND FUTURE WORK

In this paper, we present three main contributions. Firstly,
we get a great performance improvement in classification of
music emotion by extending the work of Zaanen. Secondly,
we propose to use rhyme cues in music emotion classifica-
tion to complement traditional word based features. Final-
ly,a meta-learning algorithm is used to combine classifiers
based on different features.

There are more to be explored with lyrics. New features
such as the tone changes and the mental images can be ex-
tracted from lyrics. Combining audio content,we can turn to
the field of multi-modal music emotion classification.
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ABSTRACT 

Recent studies by researchers, governmental agencies, and 
safety organizations have recognized a deficiency in the 
performance of medically related audible alarms [1–4]. In 
the clinical setting, care providers can suffer from alarm 
fatigue, a condition in which audible alarms in an operating 
room are perceived as a nuisance. In this study, we explore 
the auditory features associated with current audible alarms 
using tools from the music information retrieval communi-
ty, and then we examine how those auditory features corre-
late to listeners’ perception of urgency. The results show 
that aperiodic changes in the auditory spectrum over time 
are the most salient contributor to the perception of urgen-
cy in sound. These results could inform the development of 
a novel standard regarding the composition of medical au-
dible alarms. 

1. INTRODUCTION 

The need to reevaluate audible medical alarms has been 
identified by several organizations, including The Joint 
Commission (www.jointcommission.org, the accreditation 
and certification organization of U.S. hospitals), the U.S. 
Food and Drug Administration (www.fda.gov), the Anes-
thesia Patient Safety Foundation (www.apsf.org), and the 
American Society of Anesthesiologists (www.asahq.org). 
Serious errors associated with audible medical alarm per-
ception have also received much recent press [1–4]. Previ-
ous attempts have been made by the International Electro-
technical Commission (IEC) to standardize these alarms by 
providing normative and informative guidelines [5]. These 
recommendations stipulated that alarms should consist of a 
series of pulsed tones, each forming a three-note melody.  

Under IEC guidelines, melodies are reserved for one of 
several sentinel events for two levels of priority: caution-
ary and emergency. Emergency status, which is meant to 

Permission to make digital or hard copies of all or part of this work for 
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engender a greater sense of urgency in the listener, is dif-
ferentiated from cautionary status by simply lengthening 
and repeating the melodies and increasing the tempo. 
However, several previous studies have suggested that the-
se IEC alarms are ineffective at conveying the appropriate 
level of urgency and are difficult to learn [6–8]. Worse yet, 
these alarms are often perceived as a nuisance in the in-
traoperative environment, often leading to physicians’ 
manual silencing of audible alarms, which presents a po-
tentially serious patient safety issue [9]. 

In this study, we sought to observe the acoustic features of 
audible alarms currently used in intraoperative environ-
ments. Because alarm sounds vary by equipment manufac-
turer, the current IEC-recommended alarms were used [5]. 
As mentioned, IEC alarms are differentiated by various 
short melodies. For example, a cardiovascular event is rep-
resented by a major triad in first inversion and ventilation 
by a major triad in second inversion. (For a complete list of 
examples, see Table 1.) In addition to the IEC alarms, an 
experimental alarm set that incorporates additional audito-
ry features besides melody and tempo was synthesized and 
used in this study for comparison. 

 
Event Melody Description 
General 1 − 1 − 1 Ostinato 
Oxygenation 8 − 7 − 6 Falling pitch 
Ventilation 1 − 6 − 4 NBC chime 
Cardiovascular 1 − 3 − 5 Kumbaya 
Temperature 1 − 2 − 3 Major scale 
Drug Infusion 8 − 2 − 5 Quartal 
Perfusion 1 − 4# − 1 Tritone 
Power 8 − 1 − 1 Octave 

Table 1. IEC alarms by source with melodic and descrip-
tive annotations. 
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The first objective of this study was to observe the primary 
salient auditory features of the IEC alarm set and to com-
pare it to those of the experimental set. The researchers 
hypothesized that features would differ significantly be-
tween the two sets because the IEC group uses only two 
auditory dimensions (melody and tempo), and the experi-
mental group employs additional dimensions. The second 
objective was to investigate the acoustical correlates of ur-
gency perception, thereby laying a foundation for a more 
robust and comprehensive audible medical alarm protocol. 

In this paper, we first present our experimental methods, 
followed by results and a discussion of the results. We 
conclude with a description of ongoing and future work. 

2. METHODS 

2.1 Stimuli 

Two sets of alarm sounds were used: IEC alarms and ex-
perimental alarms. The experimental alarm set was synthe-
sized by applying various audio effects to a pure-tone car-
rier; we devised this second set of sounds in order to intro-
duce additional auditory dimensions. These additional au-
ditory effects included amplitude modulation, waveshap-
ing, frequency modulation, phase randomization, and other 
basic sound synthesis and processing techniques. We con-
structed a listening test in which alarm sounds were pre-
sented to users in a random order; while listening to the 
alarms, users completed a simple questionnaire. Stimuli 
were presented once to the subject as 16-bit, 44.1-kHz 
WAV files and presented over two loudspeakers in a mu-
sic-rehearsal space. 

Section 2.1 summary: IEC/ISO alarms were used as the 
control set and newly developed alarms as the experi-
mental set.  These were played to subjects who completed a 
questionnaire about the alarm sounds. 

2.2 Subjective Experimental Protocol 

A total of 21 undergraduate and graduate students in our 
music technology program were enrolled. Subjects were 
presented with eight IEC alarms and seven experimental 
alarms total.  Each IEC alarm was presented at both the 
cautionary and emergency levels, and each experimental 
alarm was presented at nine levels of auditory effect 
strength (20% to 100%, in steps of 10%). As an example of 
effect strength, consider amplitude modulation, in which 
the effect strength is determined by the modulation depth. 
These sounds can be found online at 
http://mue.music.miami.edu/soundSurvey. Subjects were 
asked to perceptually rate the alarms on a nine-point Likert 
scale [10] according to their perceived sense of urgency, 
anxiety, attention, and severity. These terms were prede-

fined for subjects according to the definitions given in Ta-
ble 2.  

 

Table 2. Definitions of emotional descriptors used in the 
Likert questionnaire. 

Section 2.2 summary: Music students were asked to rate 
the IEC and experimental alarm sets on a Likert scale 
based on their perceived sense of urgency, anxiety, atten-
tion, and severity. 

 

2.3 Data Analysis 

Subject responses were first tested for normality by apply-
ing a Lilliefors test. If the responses were tagged as being 
significantly different from normal distribution, then those 
responses were normalized using a power transformation 
to reduce intra-subject variability [11]. A power transform 
is rank-preserving but stabilizes the variance to make the 
distribution more Gaussian. This was useful for comparing 
responses across subjects. Next, inter-subject statistics 
were calculated to tag those responses that fell outside of 
±3 standard deviations from the inter-subject mean. These 
outliers were removed from further analysis. Finally, to 
deal with missing responses, the intra-subject mean was 
used in place of an empty element for statistical computa-
tions.  

Section 2.3 summary: Subjects’ emotional response ratings 
were normalized, then outliers were removed, and finally 
blank responses were filled in. 

2.4 Auditory Feature Selection 

Auditory feature selection consisted of three primary phas-
es: automatic feature extraction, automatic feature selec-
tion, and informed feature parsing. Automatic feature ex-
traction was conducted using MIRToolbox [12]. Each 
alarm was segmented using one-second frames, and we 
computed 25 common audio features for each frame. These 
features describe the dynamics, rhythm, spectral, timbral, 
and tonal characteristics of each frame. In order to make 
direct comparisons between features, the inter-frame statis-
tics for each feature were analyzed instead of the feature 

Descriptor Definition 
Urgency A sense of requiring immediate action 
Anxiety A sense of apprehension due to uncer-

tainty or doubt 
Attention A sense of drawing your focus or ob-

servation 
Severity A sense of harshness or intensity 
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vectors themselves. These statistics included mean, stand-
ard deviation, slope, and periodicity.  

After obtaining the feature statistics, automatic feature se-
lection was performed. Features were parsed and included 
for consideration only if the following criteria were met: 
features were significant at p<0.05, features and urgency 
ratings had a correlation coefficient ρ>0.25, and linear re-
gression of the features against the urgency ratings pro-
duced a square correlation coefficient of R2>0.25. These 
minimum criteria ensured that the selected auditory fea-
tures would be at least moderately and reproducibly corre-
lated to the four perceptual dimensions of urgency, anxiety, 
attention, and severity. Features were then sorted using a 
statistical mapping between the subjects’ emotional ratings 
and the two sets of alarm sounds using methods developed 
by Lartillot, et al. [13]. 

Section 2.4 summary: Several auditory features were com-
puted for each alarm sound. Next, these features for each 
alarm were compared to how that alarm was rated by the 
subjects on average. Features were removed if they were 
not significantly correlated to one of the emotional scales. 
The remaining features were ranked in order of correla-
tion. 

3. RESULTS 

3.1 Subject Responses 
In our initial analysis of subject responses, we performed a 
squared multiple correlation to test for collinearity among 
the descriptor dimensions. The results showed that urgency 
was collinear (!! = 0.95) with all of the other descriptors. 
As a result, the other descriptions (anxiety, attention, and 
severity) were removed from further analysis. 

Next, scale validity was confirmed by testing for inter-
subject correlation (ρ) and Cronbach’s α. In general, ρ in-
dicates the degree of linear dependence across subjects and 
varies from –1 (anti-correlated) to +1 (perfect positive cor-
relation), while α measures the internal consistency or 
agreement of a psychometric test score across a population, 
and it varies from 0 (inconsistent responses) to 1 (perfect 
consistency). A high degree of internal consistency be-
tween subject responses was found, both in ρ (0.39) as well 
as α (0.92). 

Section 3.1 summary: The test methodology was validated 
by exhibiting consistent subject responses. ‘Urgency’ was 
highly collinear with the remaining emotional scales, so 
the others were removed from further analysis.  

3.2 Independent Analysis of Alarm Sets  

After the combined subjective data were shown to exhibit 
internal consistency, we proceeded to analyze the features 

computed within the IEC and experimental alarm sets. The 
mirmap command from MIRToolbox was used to discov-
er which of approximately 300 standard audio features (in-
cluding statistics on feature vectors) showed strongly posi-
tive or negative correlation to the mean urgency rating. 
Additionally, only features exhibiting statistical signifi-
cance and sufficient independence (rxy>0.6) were selected. 
On the IEC alarm set, the only feature that correlated 
strongly to urgency was the magnitude of the spectral cen-
troid periodicity (ρ=0.9). For the IEC alarm set, the cardi-
ovascular alarm at the emergency level exhibited the 
strongest perceptual urgency and the highest rhythmic at-
tack slope. 

Analysis of the experimental data set yielded a more robust 
and descriptive set of correlated features. Five features ex-
hibited strong correlation to mean urgency rating: standard 
deviation and mean of the rhythmic attack slope (i.e., var-
iation in the “transientness” over time), entropy of the “ma-
jorness”/“minorness,” variation of the tonal centroid, and 
the mean spectral roughness. These correlations are illus-
trated in Figure 1. 

Section 3.2 summary: IEC alarms exhibited one auditory 
feature correlated with urgency, and the experimental 
alarms exhibited five (as shown in Figure 1). 

 

 

Figure 1. The five most significantly correlated features 
relating to perceived urgency in the experimental alarm 

set. 

 

3.3 Post-Hoc Analysis of the Combined Alarm Set 

Data from the listening tests of each alarm set were then 
combined and analyzed together instead of separately to 
seek additional insights. We performed automatic feature 
selection by statistically mapping the combined set of fea-
tures to the combined set of perceived urgency ratings. We 
found eleven features that met the criteria of ρ>0.25 and 
p<0.05. Next, R2 values were computed by determining 
how linearly the feature correlated to urgency. However, 
after removing those features with poor R2 values, only 
three features remained, as shown in Figure 2: periodic en-
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tropy of spectral flatness (ρ=–0.56*, R2=0.45), standard 
deviation of tonal chromagram centroid (ρ=–0.49*, 
R2=0.32), and standard deviation of spectral irregularity 
(ρ=–0.36*, R2=0.31). Curiously, the three most correlated 
features in the combined data set were different than those 
reported by the analysis of each alarm set individually. 
However, of these, the standard deviation of spectral irreg-
ularity ranked sixth in the IEC alarm set and fourth in the 
experimental alarm set. 

Section 3.3 summary: When the IEC and experimental 
alarm sets and responses were combined, it was found that 
three features correlated linearly with perceived urgency.  
These three features were all related to the change of spec-
tral characteristics over time.  

 

 

Figure 2. Linear regression of auditory features against 
perceived urgency. 

 

3.4 Multivariable Linear Regression 

Perceptual urgency responses were used to sort the alarms 
from lowest perceived urgency to highest perceived urgen-
cy. The same sorting order was used for each of the three 
selected auditory features that were highly correlated to 
perceived urgency. Next, linear regression was calculated 
from these two data sets to produce a line of best fit (Fig-
ure 2) for each feature. 

We performed multivariable linear regression to compute 
the vector of weighting coefficients, W, that best fits the 
equation 

! =! ∙ !  (1) 

Here, u represents the mean inter-subject urgency rating 
vector, where u[0] is the collective mean rating of the first 
alarm, and so on for every alarm sound.  The vector f con-
tains the three auditory features described in §3.3, whereby 
f T = {SFE, SIS, TCS}, and SFE is the spectral flatness en-
tropy, SIS is the spectral irregularity standard deviation, 
and TCS is the tonal chromagram centroid standard devia-
tion.  

Performing a least-squares regression results in the follow-
ing weighting coefficients yields 

 ! = {7.5,−2.8,−0.4}.  (2) 

Together, SFE and SIS account for 80% of the predicted 
urgency. These two features were plotted against perceived 
urgency in a 3D scatter plot, along with a mesh of predict-
ed urgency, in Figure 3.  

Section 3.4 summary: An equation for predicting perceived 
urgency was formulated based on the three most correlated 
features selected from a set of hundreds of features.  The 
weighting coefficients for those features, W, was deter-
mined. 

 

 

Figure 3. Perceived urgency (•) and predicted urgency () 
are shown. Urgency can be predicted based on the auditory 
features of inter-frame spectral irregularity standard devia-

tion and inter-frame spectral flatness entropy. 

 

4. DISCUSSION AND FUTURE WORK 

Our hypothesis that an experimental alarm set could be 
constructed that utilized more auditory dimensions was 
validated by independent objective and subjective analysis 
of the IEC alarm set and a new, experimental alarm set. 
The IEC set exhibited only one statistically significant fea-
ture that correlated to user perception of urgency, whereas 
the experimental data set exhibited five. This indicates that 
a broader set of features can be considered when construct-
ing audible alarms, thereby providing a larger number of 
“handles” to manipulate when constructing new alarms.  
This could be a useful tool in addressing the alarm prob-
lem, as it has been suggested that more heterogeneity 
among alarms could improve identification of alarms [14]. 
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Combined analyses of both data sets indicate that changes 
in an alarm’s spectral features over time are the largest 
contributor to perceived urgency. In each case (periodic 
entropy of spectral flatness, standard deviation of tonal 
chromagram centroid, and standard deviation of spectral 
irregularity), the feature represents an inter-frame statistic. 
Furthermore, in each case, the feature is anti-correlated to 
urgency, indicating that fluctuating spectral content is a 
key to determining perceived urgency.  

There are a large number of audible alarms present in the 
clinical arena, and many of these are false alarms.  This 
large number of false alarms leads to clinicians routinely 
ignoring them by suffering from alarm fatigue (a concept 
similar to listener fatigue) [15].  It has been suggested that 
improving the encoding of alarm information and reducing 
the number of false alarms could help reduce alarm fatigue 
[16].  This study provides the framework for establishing 
new audible alarms that do properly convey urgency, thus 
augmenting the transfer of information to the clinician. 

This study ties together concepts from music information 
retrieval, such as auditory feature selection, with auditory 
displays commonly found in a clinical setting. Leveraging 
these findings, we are currently working on a comprehen-
sive syntax for operating room alarms that is able to con-
vey multiple usable dimensions of data in addition to ur-
gency. This might be done, for example, by mapping one 
auditory feature to urgency and another feature to indicate 
the alarm recipient (e.g., anesthesiologist, surgeon, nurse). 
Ultimately, we hope this work will lead to a robust alarm 
protocol that will minimize alarm fatigue in the operating 
room, thereby increasing patient safety. 
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ABSTRACT

Human emotion responses to music are dynamic processes
that evolve naturally over time in synchrony with the music.
It is because of this dynamic nature that systems which seek
to predict emotion in music must necessarily analyze such
processes on short-time intervals, modeling not just the rela-
tionships between acoustic data and emotion parameters, but
how those relationships evolve over time. In this work we
seek to model such relationships using a conditional random
field (CRF), a powerful graphical model which is trained
to predict the conditional probability p(y|x) for a sequence
of labels y given a sequence of features x. Treating our
features as deterministic, we retain the rich local subtleties
present in the data, which is especially applicable to content-
based audio analysis, given the abundance of data in these
problems. We train our graphical model on the emotional re-
sponses of individual annotators in an 11×11 quantized rep-
resentation of the arousal-valence (A-V) space. Our model
is fully connected, and can produce estimates of the con-
ditional probability for each A-V bin, allowing us to eas-
ily model complex emotion-space distributions (e.g. multi-
modal) as an A-V heatmap.

1. INTRODUCTION

The development of content-based systems for the predic-
tion of emotion (mood) in music continues to be a topic of
increasing attention in the Music-IR community, but thus
far most approaches apply only a singular rating to a song
or clip [1]. Such generalizations belie the time-varying na-
ture of music and make emotion-based recommendation dif-
ficult, as it is very common for emotion to vary temporally
throughout a song. In this work, we investigate the applica-
tion of conditional random fields (CRFs) to the modeling of

Permission to make digital or hard copies of all or part of this work for
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time-varying musical emotion. CRFs are powerful graphi-
cal models which are trained to predict the conditional prob-
ability p(y|x) for a sequence of labels y given a sequence
of features x. Treating our features as deterministic, we re-
tain the rich local subtleties present in the data, which is
especially promising in content-based audio analysis where
there is no shortage of rich data. Furthermore, the system
provides a model of both the relationships between acous-
tic data and emotion space parameters and also how those
relationships evolve over time.

Human judgements are necessary for deriving emotion
labels and associations, but perceptions of the emotional
content of a given song or musical excerpt are bound to vary
and reflect some degree of disagreement between listeners.
Following from our previous work, we model human emo-
tion responses to music in the arousal-valence (A-V) repre-
sentation of emotion [2–4], where valence indicates positive
vs. negative emotions and arousal reflects emotional inten-
sity [5]. In our prior approaches, we modeled our emotion
space distribution as a single two-dimensional Gaussian dis-
tribution, and trained multivariate regression systems to pre-
dict the parameters of the distribution directly from acoustic
features [3, 4]. Using that representation, we found model-
ing the dynamics of the continuous parameter space to be a
very challenging problem. We considered a Kalman filter-
ing approach, but while this technique provided smooth es-
timates over time, the limited model complexity was unable
to cover a wide variance in emotion space dynamics [4].

In applying CRFs to the problem of predicting emotion
in music, instead of modeling the ambiguity of emotion a-
priori and representing the distribution of our emotion space
parameters as the ground truth, we present the training algo-
rithm with the individual user label sequences, thus allow-
ing the model to learn the range of emotion responses to a
given piece. In our application of the CRF we must also as-
sign emotion space meanings to the states of the model, and
in doing so we discretize each label in our sequences to an
11×11 grid. While this is a significant simplification, our
findings indicate that it provides sufficient granularity. Fur-
thermore, our trained models are fully connected, and can
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be used to model complex distributions in emotion as an A-
V heatmap. These heatmaps can model arbitrary modes and
distributions, in contrast to our previous approach, which
constructed uni-modal Gaussian A-V predictions.

2. BACKGROUND

The general approach to implementing automatic mood de-
tection from audio has been to use supervised machine
learning to train statistical models based on acoustic fea-
tures [1]. Chan et al. recently investigated modeling emo-
tion as a distribution [6]. Their approach investigated mod-
eling the ground truth as a Gaussian distribution as well as a
heatmap and used support vector regression for the distribu-
tion prediction. However, their corpus was limited to only
60 songs, and the work only focused on applying a singular
rating to an entire clip.

Conditional random fields have only just begun to gain
attention as a tool for content-based audio prediction. Re-
cently, Joder et al. successfully applied them to the task
of audio-to-score matching, detecting more than 95% of the
note onset locations to within 100 ms [7].

3. GROUND TRUTH DATA COLLECTION

In prior work, we developed an online collaborative annota-
tion activity based on the two-dimensional A-V model [8].
In the activity, participants used a graphical interface to in-
dicate a dynamic position within the A-V space to anno-
tate 30-second music clips. Each subject provided a check
against the other, reducing the probability of nonsense la-
bels. The song clips used were drawn from the “uspop2002”
database. 1 Using initial game data, we constructed a cor-
pus of 240 15-second music clips, which were selected to
approximate an even distribution across the four primary
quadrants of the A-V space.

In more recent work we have developed a Mechanical
Turk (MTurk) activity to collect annotations on the same
dataset [9]. The purpose of the MTurk activity was to pro-
vide a dataset collected through more traditional means to
assess the effectiveness of the game to determine any biases
induced though collaborative labeling. Overall, the datasets
were shown to be highly correlated, with arousal r=0.712,
and a valence r=0.846. This new dataset has been made
available to the research community, 2 and is well anno-
tated, containing 16.93± 2.690 ratings per song and 4, 064
label sequences. In this work we demonstrate the applica-
tion of this densely annotated corpus for training our condi-
tional random fields.

1 http://labrosa.ee.columbia.edu/projects/musicsim/uspop2002.html
2 http://music.ece.drexel.edu/research/emotion/moodswingsturk

3.1 Statistical Analysis

In applying relational learning methods to data, we gain the
ability to model statistical dependencies from one observa-
tion to the next. To verify that our data collection exhibits
such dependencies, we compute the correlation coefficients
of our label sequences from one frame to the next and from
the first frame of each sequence to the last. In these cases,
we treat the individual discretized user labels as variables,
and each second as observations of those variables. Statis-
tics of the squared correlation coefficients (r2) are provided
for the full dataset in Table 1.

Dimension r2 Frame-Frame r2 First-Last Frame

Arousal 0.944± 0.093 0.507± 0.242
Valence 0.951± 0.097 0.524± 0.235

Table 1. Statistics of ground truth squared correlation co-
efficient (r2) from one second to the next and from the first
second to the last.

Overall, the dataset shows high correlation from one
frame to the next, and lower correlation between the first
frame and last frame. In other words, the current emotion
is highly dependent upon the emotion of the prior second,
and on average each sequence exhibits a significant change
in emotion from beginning to end. As a result, the dataset is
a good match for graphical modeling techniques.

4. ACOUSTIC FEATURE COLLECTION

In previous work we have found there to be no single domi-
nant feature, but rather many that play a role (e.g., loudness,
timbre, harmony) in determining the emotional content of
music [2,3]. Since our experiments focus on the tracking of
emotion over time, we chose to focus solely on time-varying
features. Our collection (Table 2) consists of the two high-
est performing features in prior work, Spectral Contrast and
MFCCs [2, 3], as well as the Echo Nest Timbre (ENT) fea-
tures.

Feature Description

Spectral Contrast
[10]

Rough representation of the harmonic
content in the frequency domain.

Mel-frequency
cepstral coefficients
(MFCCs) [11]

Low-dimensional representation of
the spectrum warped according to the
mel-scale. 20 dimensions used.

Echo Nest Timbre
features (ENTs) 3

Proprietary 12-dimensional beat-
synchronous timbre feature

Table 2. Acoustic feature collection for music emotion pre-
diction.

3 http://developer.echonest.com
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ENTs have been receiving significant attention lately due
to the release of the million song dataset, 4 and we therefore
investigate their utility in musical emotion prediction.

5. CONDITIONAL RANDOM FIELDS

In this section we give a brief overview of conditional ran-
dom fields (CRFs), mainly focused on practical considera-
tions in implementation. The interested reader is directed
to [12, 13] for further details.

5.1 Overview

Traditional approaches for graphical modeling (e.g. hid-
den Markov models) seek to represent the joint probability
p(x,y) between sets of features x and labels y. But in forc-
ing our features into a generative model p(x) we discard
the rich local subtleties present in the data. Furthermore, in
developing models for audio classification tasks, our acous-
tic features are naturally deterministic. With CRFs, as with
logistic regression, we seek to model the conditional proba-
bility p(y|x).

CRFs are trained on sequences, and in the process of
learning them we present the classification system with the
individual user ratings (as opposed to statistics of all users)
recorded in the MTurk task. Using a fully connected model,
we are able to learn a set of transition probabilities from
each class to all others. This means that at each stage in a
testing sequence we can display the transition probabilities
in the form of a heatmap as shown in Figure 1.

Arousal Arousal

Va
le
nc
e

Figure 1. Heatmap visualization of CRF transition proba-
bilities. Actual discretization is 11×11.

5.2 Feature Functions

CRFs require the specification of feature functions, which
are used to specify the degree of compatibility between the
features x and labels y. These functions are defined over
all examples, and for a single example are non-zero only
for the labeled class. We train our CRFs using CRF++, 5

a highly efficient general purpose CRF toolkit written in

4 http://labrosa.ee.columbia.edu/millionsong/
5 http://crfpp.sourceforge.net/

C++. CRF++ allows the definition of both unigram and
bigram features, where unigram features are related to the
prediction of a single observation in a sequence (first order
Markov) and bigram features are related to the prediction
of pairs of observations (second order Markov). Unigram
features generate a total of L×N distinct features, where
L is the number of output classes and N is the number of
unique features. Bigram features generate L×L×N distinct
features.

6. EXPERIMENTS AND RESULTS

In the following experiments, we investigate the use of con-
ditional random fields for the prediction of musical emo-
tion. As a baseline for comparing performance of the CRF
in modeling the time-dependencies of our data, we addi-
tionally provide the performance for the CRF when trained
on independent observations as opposed to sequences. Fur-
thermore, to provide a baseline for comparison to our prior
work [3, 4], we provide the prediction accuracy of multiple
linear regression (MLR). To compute the heatmap represen-
tations for MLR, we first predict the mean and covariance
of an emotion-space Gaussian density using multivariate re-
gression, and then integrate the probability density function
under each square of our heatmap.

In all experiments, to avoid the well-known “album-
effect,” we ensure that any songs which were recorded on
the same album are either placed entirely in the training
or testing set. Additionally, each experiment is subject to
5 cross-validations, varying the distribution of training and
testing data sets which are split 70%/30%, respectively.

6.1 Acoustic Feature Representation

All features are initially computed using short-time analysis
windows at a much higher rate than our 1-second emotion
label windows. In order to reduce their frame rate to that
of the labels, spectral contrast and MFCCs are simply re-
windowed via averaging from their original analysis rate (∼
23 msec). The ENTs are re-windowed following their non-
linear analysis frame start times to take into account their
beat-synchronous nature.

Additionally, conditional random fields are highly op-
timized to operate on binary features, and given the high
dimensionality of our data, we found it necessary to con-
vert our features to such a representation. In doing so, each
feature dimension is quantized using 10 equal energy bins,
which for the 14-dimensional case of spectral contrast yields
140 binary features. In early experiments, we investigated
the use of higher discretization levels as well as combining
representations from multiple discretization levels (e.g. 5,
10, 20), but overall found 10 levels to offer the best perfor-
mance.
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6.2 Training Sequence Label Jittering

In discretizing our original label sequences to the 11× 11
grid representation, our CRF models are trained on vector-
ized version of that space by assigning 121 classes. As a
result, the neighbor-relationship of the heatmap grid-cells is
lost in the vector-wise representation, and we therefore in-
vestigate how to improve the models ability to learn such
relationships.

In order to ensure that the CRF learns the spatial rela-
tionships of each class, we train it on additional “jittered”
versions of each label sequence. This has two benefits: it
increases the overall size of our dataset, and it helps the
model to learn the spatial relationships between the differ-
ent classes. In applying our jitter we increase the size of our
dataset by a factor of 10, creating 9 additional sequences for
each sequence in our dataset. Each jittered sequence is cre-
ated by adding a small amount of zero mean Gaussian noise,
biasing the whole sequence by a single point. In initial ex-
periments we modified the number of jittered sequences at
multiple levels between 0 and 50, but found 10 to offer the
best performance.

6.3 CRF Parameterization

As previously discussed, the training of CRFs requires the
selection of feature functions. In our experiments, we elect
to use three different types of features: a simple unigram
node feature for each acoustic feature dimension, a unigram
edge feature that models the change in each feature dimen-
sion between nodes, and a simple bigram (second order) fea-
ture that models the joint probability of the next two states
for arbitrary input. The total number of binary CRF features
for a selected training set is described in Table 3.

Additionally, in the case of the CRF trained on indepen-
dent observations, we remove all but node features, so as
to avoid an artificial decrease in performance. When pre-
senting the training algorithm with independent examples
instead of sequences, feature functions that encode time de-
pendencies that cannot be modeled lead to large decreases
in performance.

The training of graphical models such as CRFs tends to
have a very high computational cost. We ran our experi-
ments on Amazon’s Elastic Compute Cloud (EC2) 6 using
High-CPU Extra Large Instances (c1.xlarge) which provide
access to a 64-bit platform with 8 virtual cores. Shown in
Table 3 is the computation time for each feature domain the
CRF was trained on as well as the number of binary features
created using the specified feature functions.

6 http://aws.amazon.com/ec2/

Feature # CRF Features Compute Time (hrs)

Contrast 210, 782 11.49± 1.245
MFCC 300, 927 11.81± 1.515
ENT 185, 009 12.04± 0.461

Table 3. Computing time analysis for CRF training on each
cross-validation set.

6.4 Evaluating CRF Performance

We begin our analysis by attempting to predict a singular
A-V point at each second in our sequences. These predic-
tions are taken as the means of the CRF heatmaps, which we
compare to the means of the MLR Gaussian distributions. In
the second stage of analysis we investigate the accuracy of
the CRF heatmaps, which we compare to MLR Gaussian
heatmaps.

6.4.1 A-V Mean Prediction

We compute the heatmap mean as the sum of the weighted
A-V coordinate values of each bin center. For each two-
dimensional heatmap we compute,

µa =
∑

ya,yv

P (ya, yv |x) ya,

µv =
∑

ya,yv

P (ya, yv |x) yv. (1)

where ya and yv are the arousal and valence coordinates of
each bin center. The mean values for the ground truth distri-
bution are computed directly in the continuous A-V space.
These results are available in the third column of Table 4.
Overall we see the best performance (minimum mean `2 er-
ror) of 0.122 using the CRF with MFCCs, which is signif-
icantly improved over the best result with MLR, which is
spectral contrast at 0.140.

6.4.2 Heatmap Prediction Evaluation

As previously stated, because the CRF is a fully connected
model, we can use the transition probabilities to construct an
A-V heatmap. But the ground truth heatmap must be esti-
mated empirically as a two dimensional histogram, which is
a difficult task. In traditional generative estimation the goal
is to fit a probabilistic model to data, and derive a smooth
function, even with a small dataset. But with histograms, a
small amount of data can lead to sparse, blocky estimates,
and a massive amount of data is needed to achieve the true
smooth distribution.

As a result of this we have chosen the earth mover’s dis-
tance (EMD) [14] to be our primary metric for comparing
these histograms, which can be thought of as the minimum
cost of transforming one heatmap into the other. Using this
metric we can take into account the weight of adjacent bins,
which overall provides a more accurate comparison of the
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Acoustic Prediction A-V Mean Heatmap Earth Heatmap Error Heatmap Error Heatmap Error
Feature Method `2 Error Mover’s Distance Unsmoothed (×10−2) Smoothed G.T. (×10−2) Smoothed (×10−2)

Contrast CRF 0.130± 0.007 0.180± 0.007 1.300± 0.007 0.539± 0.002 0.342± 0.0142
MFCC CRF 0.122± 0.004 0.173± 0.004 1.300± 0.000 0.541± 0.010 0.326± 0.008
ENT CRF 0.130± 0.004 0.179± 0.003 1.300± 0.009 0.510± 0.010 0.337± 0.009

Contrast CRF-I 0.138± 0.006 0.188± 0.005 1.323± 0.007 0.452± 0.012 0.355± 0.011
MFCC CRF-I 0.135± 0.004 0.186± 0.003 1.319± 0.006 0.459± 0.007 0.350± 0.008
ENT CRF-I 0.144± 0.005 0.194± 0.004 1.331± 0.005 0.446± 0.007 0.367± 0.009

Contrast MLR 0.140± 0.005 0.213± 0.009 1.082± 0.010 0.580± 0.018 0.460± 0.018
MFCC MLR 0.141± 0.005 0.208± 0.008 1.076± 0.009 0.570± 0.021 0.448± 0.021
ENT MLR 0.153± 0.005 0.204± 0.007 1.068± 0.009 0.560± 0.018 0.440± 0.018

Table 4. Emotion prediction results for conditional random fields (CRF) trained on sequence examples as well as independent
examples (CRF-I). Multiple linear regression (MLR) provided as baseline.

two heatmaps. These results are in the fourth column of Ta-
ble 4, where we find the CRF to be the best performer with
an EMD of 0.173, which is significantly better than the CRF
trained on independent samples at 0.186 and MLR at 0.213.

But we also investigate the absolute pixel error between
the predicted and ground truth heatmaps. These results are
shown in the fifth column of Table 4, and we find that MLR
appears to be performing slightly better than the CRF. This
result is not surprising given the sparsity that our ground
truth heatmaps exhibit, which is to be expected with 121
histogram bins computed from an average of 16.93 rat-
ings. The MLR method which predicts Gaussian distribu-
tions guarantees a smooth distribution, which will produce a
lower pixel error if the ground truth is sparse or blocky than
the CRF which takes arbitrary shapes. But it can be easily
demonstrated that the CRF is more accurate by applying a
simple smoothing function to the ground truth.

To smooth out the blocking artifacts from sparsity we ap-
ply a simple 2-d Gaussian filter. This process applies a light
smoothing without altering the mean of the data. These re-
sults are shown in the sixth column of Table 4. Here the
CRF performs slightly better, and the performance similar-
ity is most likely because the CRF is producing rough edges
compared to the smooth MLR predictions that are computed
from the Gaussian PDF. An interesting result is that the in-
dependently learned CRFs perform the best here. This is
most likely because they produce more uniform transition
probabilities due to their training method.

To compensate for blocking artifacts in the CRF predic-
tions, we apply a smoothing filter to them as well. Initial
experiments showed applying the same filter to the MLR
heatmaps improved performance there too, so to keep our
analysis consistent we apply the filter them as well. We
examine the differences in heatmaps using mean absolute
error, and these results are shown in the seventh column of
Table 4. In these results we see again that the CRF is per-
forming significantly better than MLR.

6.4.3 Visualizing the Results

Shown in Figure 2 are the CRF heatmap predictions for
eight seconds of the song “Something About You,” by
Boston. The colormap of these heatmaps assigns red to ar-
eas of high density, blue to low, and uses the color spec-
trum to assign colors in between. This clip was selected be-
cause of the large change in emotion that occurs at second
29, where the song transitions from a low-energy, negative-
emotion introduction into a high-energy, positive-emotion
hard-rock verse. The system tracks the transition very accu-
rately, showing a brief amount of uncertainty at second 30
in terms of positive or negative emotion, and finally settles
on positive emotion at second 31. Prediction videos using
the system are also available online. 7

7. DISCUSSION AND FUTURE WORK

We have demonstrated conditional random fields to be a
powerful tool for modeling time-varying musical emotion.
The CRF approach is shown to be superior to MLR both
at predicting single A-V mean values as well as full emo-
tion space heatmaps. Overall, the best performing feature
for CRF prediction is MFCCs, which differs from our MLR
method, where spectral contrast performs best. This perhaps
indicates that there is more information to be gained out of
MFCCs when modeling the temporal evolution of emotion.

Using the earth mover’s distance we are able to better
analyze the similarity between heatmaps by also taking into
account adjacent bin densities. While the MLR method ap-
pears to perform slightly higher when the ground truth dis-
tributions are not smoothed, this is a result of blocking ar-
tifacts in the ground truth. The the Gaussian density is a
smooth function, which is much more likely to be similar
to a sparse ground truth distribution than the CRF predic-
tions, which take on arbitrary shapes and are not necessarily

7 http://music.ece.drexel.edu/research/emotion
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Emotion Space Heatmap Prediction
Boston: Something About You, 25-32 secs 

Figure 2. Emotion space heatmap prediction using conditional random fields. Shown is the predicted emotion from the
beginning of the song “Something About You,” by Boston. These figures demonstrate the system tracking the emotion through
the low-energy, negative-emotion introduction, and through the transition at second 29 into a high-energy, positive emotion
rock verse. In these figures, red indicates the highest density and blue is the lowest.

as smooth. Overall, the ground truth representation could
significantly benefit from more data.

In a future approach, the CRF performance could be im-
proved by developing a model which can encapsulate the
A-V spatial relationships between CRF nodes, which could
potentially produce smoother estimates without any need for
label jittering. In such a model, we could also limit the con-
nections between local heatmap pixels, thus allowing us the
ability to tradeoff model complexity for the flexibility of our
emotion space distribution flexibility.
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ABSTRACT

Understanding the mood of music holds great potential for
recommendation and genre identification problems. Unfortu-
nately, hand-annotating music with mood tags is usually an
expensive, time-consuming and subjective process, to such
an extent that automatic mood recognition methods are re-
quired. In this paper we present a new unsupervised learn-
ing approach for mood recognition, based on the lyrics and
the audio of a song. Our system thus eliminates the need for
ground truth mood annotations, even for training the system.

We hypothesize that lyrics and audio are both partially de-
termined by the mood, and that there are no other strong com-
mon effects affecting these aspects of music. Based on this as-
sumption, mood can be detected by performing a multi-modal
analysis, identifying what lyrics and audio have in common.
We demonstrate the effectiveness of this using Canonical Cor-
relation Analysis, and confirm our hypothesis in a subsequent
analysis of the results.

1. INTRODUCTION

Detecting the mood evoked by a musical piece is a task which
is relatively easy for human listeners to perform. The ability
to automate this process would be of use for music search, re-
trieval and recommendation, and for these reasons automatic
techniques that recognize emotion in music have been an ac-
tive topic of research in the past few years (e.g. [5, 8, 10, 17]).

The most common method of quantifying a mood state is
by associating it with a point in a 2-dimensional space with
valence (attractiveness/aversiveness) and arousal (energy) as
dimensions, a concept first proposed by Russell [14]. High
valence values correspond to positive moods such as ‘pleased’
or ‘satisfied’, with negative examples being emotions such
as ‘frustrated’ or ‘miserable’. Arousal can range from neg-
ative values (‘sleepy’) to positive (‘excited’). This domain
is known as the valence-arousal space (see Figure 1). Thus,
automatic methods for mood recognition would map a song
onto a point in this 2-dimensional space. However, also other
ways of quantifying mood have been considered (e.g. [13]).

Permission to make digital or hard copies of all or part of this work for per-

sonal or classroom use is granted without fee provided that copies are not

made or distributed for profit or commercial advantage and that copies bear

this notice and the full citation on the first page.
c© 2010 International Society for Music Information Retrieval.
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Figure 1. The 2−dimensional valence-arousal space, show-
ing a range of emotions on a attractiveness/energy scale.

A major problem with evaluating (and—for machine learn-
ing methods— training) such algorithms is that high-quality
ground truth mood annotations are hard to come by. Ideally
these would be obtained by questioning a range of people on
which emotions (and to which degree) they experience when
listening to a range of songs in many styles. Such studies
are expensive and time-consuming and clearly do not scale
to the quantity of music required to tackle realistic research
problems. A further confounding factor is that the emotion or
mood associated with a song is a subjective and often personal
feature.

1.1 Contributions

In this paper, we conduct a bi-modal analysis of music, simul-
taneously studying the audio and the lyrics of songs. Our goal
is to extract factors that simultaneously underly aspects of the
audio and the lyrics of popular music, at least statistically. In
other words, we ask the question: “What do the audio and the
lyrics of songs have in common?”

Our hypothesis is that answering this question is likely
to resolve the problems faced in developing and assessing
the quality of mood recognition systems, both those that are
based on audio and those based on lyrics (or both). Indeed, we
assume that the intended mood of a song will inspire the song-
writer to use certain timbres, harmony, and rhythmic features,
in turn affecting the choice of lyrics as well. A further hypoth-
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esis is that factors unrelated to mood typically do not simulta-
neously influence the audio and the lyrics. If these hypotheses
hold, uncovering what lyrics and audio share is equivalent to
uncovering the mood of a song.

As a partial verification our hypotheses, below we first
describe an exploratory analysis investigating if audio fea-
tures correlate with valence and arousal, as predicted by a
naive mood recognition algorithm based on lyrical informa-
tion only.

The main result in this paper is the application of Canoni-
cal Correlation Analysis (CCA) [6] between paired represen-
tations of a song’s audio and its lyrics. This is an unsupervised
learning method that is independent of human experiments,
able to extract common factors affecting both modes under
study. We illustrate results which intuitively seem to coincide
remarkably well with a notions of valence, and with another
notion that is different but seems related to arousal.

1.2 Related work

Previous work in the area of multi-mode (text and audio) mood
recognition has been focused on combining lyrics and audio
into combined features for classification [7, 8]. This however
still depends on the availability of good quality mood anno-
tations for a large number of songs. Most strongly related to
our current work is the investigation of correlations between
social (non-lyrical) tags and audio [16]. Note that it is far less
obvious that lyrics contain information about mood than in
social tags. However, lyrics are easy to obtain, less subject
to spamming, and objective. Thus, our work combines the
benefits of the two types of prior work.

During the final stages of our study, the MusiXmatch lyrics
database that is paired with the Million Song dataset was re-
leased [4]. Our study here is conducted on lyrics gathered by
ourselves, the size of which is smaller but of similar order of
magnitude as the MusiXmatch database. The approach pre-
sented in the current paper can directly be used as a blueprint
for future research into the relationship between lyrics and
audio based on this larger set of data.

1.3 Outline

The remainder of this paper is organised as follows. In Sec-
tion 2 we outline our general approach and hypotheses. In
Section 3 we describe the set of audio and lyric features used
in this paper. A simple experiment is conducted in Section
4 exploring correlations between lyrics and audio. Section 5
contains our main result on CCA analysis and we conclude
our findings in Section 6.

2. MOOD: THE SYNERGY OF LYRICS & AUDIO?

Since 2007, the Music Information Retrieval Evaluation eX-
change (MIREX) has run a task on audio mood classification.
The task is to ‘tag’ audio clips with an emotional label. Here,
the ground truth is provided by users of the musical radio
site www.last.fm. There are generally three approaches to
tackling mood classification in these tasks and we summarise
them here to highlight the interplay between text and audio.

2.1 Classification based on Audio Features

The most common method for classification is based on har-
monic and spectral features of the audio [8]. Commonly used
features include low level indicators such as spectral centroid,
rolloff, flux, slope, skewness and kurtosis [3], harmonic fea-
tures such as MFCCs [12] and those based on Short Time
Fourier Transforms [15]. In many cases Support Vector Ma-
chines are used to discriminate between features and have
proved to be successful in this setting [9].

2.2 Classification based on Lyrical Features

Other approaches are based on lyrical content only. Bag-Of-
Words (BOW) representations have recently been successful
in identifying mood, as well as higher-order statistics such as
combinations of unigrams, bigrams and trigrams [5].

2.3 Classification using both Audio and Lyrics

More complex approaches simultaneously exploit lyrical and
audio features. Such approaches generally achieve higher
classification accuracy than those methods presented in Sub-
sections 2.1 and 2.2 (see for example [11, 17]).

A recent analysis by Hu et. al. [8] showed that lyrical fea-
tures typically outperform audio when used as a classifier, al-
though they note that in their study audio was more useful
in determining emotions in the 3rd quadrant of the valence-
arousal space in Figure 1 (i.e. ‘sad’, ‘depressed’ etc.).

2.4 Framework

In this paper, we will search for correlations between a set of
features from audio and from the lyrics, under the assumption
that the causal factor of any such correlations is the mood, i.e.
that emotion is the unique facet that lyrics and audio share. Of
course, such patterns may be subtle and they will be present
only ‘on average’, such that they cannot be reliably detected
on small samples. For this reason, we study such patterns on
a large scale, allowing even subtle correlations to emerge as
statistically significant.

Informally speaking, if xa ∈ Rda is a da-dimensional
audio-based feature vector for a given song, and xl ∈ Rdl

is a dl-dimensional lyrical feature vector for the same compo-
sition, we seek real-valued functions fa and fl such that for
many songs and to a good approximation:

fa(xa) ≈ fl(xl). (1)

A core assumption is that if such functions fa and fl can
be found, they must be capturing some notion of mood of an
audio piece. Due to variability in style, genre, instrumenta-
tion and potential use of irony (i.e. different mood exhibited
by the lyrics and the audio), we do not expect to find this ap-
proximate equality to be very strong, or to be valid for many
songs, but the size of the data used (see below) should never-
theless allow us to find statistically significant relation.

Our strategy differs from previous ones in that it does not
need a training set of songs with ground truth mood anno-
tations. Rather than supervising the learning process using
ground truth labels, we simultaneously train two mood recog-
nizers, one based on lyrics and one on audio, which supervise
each other’s learning.
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3. THE DATA: SONG CORPUS AND FEATURES

Below we describe the feature representations of the lyrics
and audio modes of songs we used in this paper, as well as
the corpus of songs used.

3.1 Lyrics feature representation

We used the Term Frequency-Inverse Document Frequency
(TF-IDF) measure to represent the lyrics in a song. The TF-
IDF representation of a document is a reweighted version of
a BOW account, accounting for how rare a word is with re-
spect to a document and the overall collection. Consider the
ith word in the jth lyric. Then the term frequency is the num-
ber of times word i appears in document j, normalised by the
document’s length:

TFi,j =
|word i appears in lyric j|

|lyric j|

The inverse document frequency is a measure of the gen-
eral importance of the word in the lyric database:

IDFi = log
total number of lyrics
|lyrics containing word i|

The TF-IDF for word i in lyric j is then the product

TFIDFi,j = TFi,j × IDFi

3.2 Audio Feature Extraction

We used the Echonest API 1 to extract features from our au-
dio and thus obtained 65 spectral, percussive, harmonic and
structural features, which are summarised in Table 1.

Field Feature
1 Tempo
2 Tempo Confidence

3-7 Time Signature
8 Time Signature Confidence
9 Mode
10 Mode Confidence
11 Number of Sections
12 Energy
13 Danceability

14-25 Mean Chroma Pitches
26-37 Standard Deviation Chroma Pitches
38-49 Timbre Mean
50-61 Timbre Standard Deviations

62 Loudness Start Mean
63 Loudness Start Standard Deviations
64 Loudness Max Mean
65 Loudness Max Standard Deviations

Table 1. Audio features extracted from Echonest.

Note that some of these features (e.g. the Mean Chroma
Pitches) are unlikely to be relevant for mood recognition. Still,
we have included them in our experiments to validate our ap-
proach.

1 http://developer.echonest.com/docs/v4/
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Figure 2. Valence and arousal for the ANEW database.

3.3 The song corpus

Using a simple web-scraper, we obtained lyrics from the pop-
ular lyrical database website www.lyricsmode.com, which
contains over 800,000 song entries. We also obtained audio
features using the Echonest API and found the intersection of
these two datasets to be 119, 664 lyric/audio pairs. We are not
aware of any other lyrical/audio combined studies carried out
on this scale.

4. EXPLORING MOOD, AUDIO, AND LYRICS
RELATIONS

In a first exploratory study, we build a simple mood recog-
nition system based on lyrics, and we verify which (if any)
audio features are correlated with this mood estimate. This
is to confirm our basic hypothesis that on average both lyrics
and audio reflect the mood of a song. To this end we im-
plemented a simple method for estimating mood from lyrics
based on the valence/arousal space described in Sec. 1.

4.1 Valence/Arousal Estimation

One method of analysing emotive content of lyrics is to mea-
sure the average valence or arousal over a song, picking out
particular words from a dictionary where the valence/arousal
scores are known. We chose the Affective Norms for En-
glish Words (ANEW) as our dictionary, which contains rat-
ings of 1030 words on pleasure, arousal and dominance col-
lected by psycholinguistic experiments [2]. The words within
were chosen to cover a wide range of the valence-arousal
space [10] and we show their means (taken over participants)
in Fig. 2.

Let li = (w1, w2 . . . wni) be the ith lyric, comprised of ni

words and let L = {l1, l2, . . . lm} be the complete collection
of lyrics. We then estimate the valence vi and arousal ai of
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lyric i via

vi =
1

ni

ni∑
j=1

V (wni), ai =
1

ni

ni∑
j=1

A(wni), i = 1 . . .m.

V and A are functions that return the mean valence/arousal if
word wni is in the ANEW dictionary and zero otherwise.

This is obviously a crude mood recognition system. Note
however that our goal here is to use a simple and transparent
system, only to verify our hypothesis that audio and lyrics
share a common cause.

4.2 Correlations between audio features and mood
estimates based on lyrics

Given our simple mood recognition system based on lyrics,
we computed Pearson’s correlation coefficient between each
of the audio features and our valence/arousal estimate based
on lyrics. We found many of the correlations to be extremely
statistically significant, but below 0.2 in absolute value. For
illustration, in Table 2 we show the audio features that are
correlated with p-value numerically equal to 0, and from those
only the 5 highest correlations by absolute value.

Audio Feature Lyrical Feature Correlation
12 Valence −0.1943
62 Valence −0.1939
38 Valence −0.1897
64 Valence −0.1818
61 Valence 0.1739

57 Arousal −0.0591
59 Arousal −0.0553
39 Arousal 0.0511
17 Arousal 0.0462
24 Arousal 0.0434

Table 2. Top correlations with valence and arousal with p-
value numerically 0 (audio feature indices refer to Table 1).

The strongest relationship is valence against energy, with
a correlation of −0.1943. This suggests than an increase in
‘lyrical positiveness’ corresponds to a decrease in energy, and
is perhaps caused by love ballads, which typically will contain
many positive words (‘love’,‘heart’ etc.) along with gentle
audio. Several other audio features strongly correlated with
valence are loudness (62,64).

The correlations with arousal are more difficult to inter-
pret. The top three correlations relate to timbre, and seem
plausible. The features 17 and 24 are mean chroma values
over the song, and their apparent significance to mood seems
counter-intuitive. However, the magnitude of the correlations
is very small when compared to the valence correlations, and
we suspect that these correlations are due to artefacts (e.g.,
mean chroma values may not be independent of certain loud-
ness features). Unfortunately, this is hard to verify, as the
exact mechanism of how they are computed is unknown to us
(they were obtained through the echonest API).

The overall conclusion that can be drawn is that a correla-
tion between valence/arousal is present and significant, which
confirms our hypothesis that, to some extent, mood is indeed

simultaneously related to both lyrics and audio. However, the
correlations are not very strong. We suggest two possible
explanations for this. Firstly, the mood recognition method
based on lyrics is simple and imperfect. More crucially, prob-
ably none of the audio features by themselves relate strongly
to mood—probably that a combination of them is more rele-
vant (in different combinations for valence and arousal) than
each of the features individually.

In the next Section, we will demonstrate a method that is
immune to both these problems. We will simultaneously learn
linear combinations of the features in the lyrics and audio rep-
resentations, so as to maximize the correlation between the
resulting linear combinations. In this way, we avoid our de-
pendency on an initial method for mood recognition based on
lyrics such as the one introduced in Sec. 4.1. Furthermore, by
considering linear combinations of features, we expect to find
much stronger and more meaningful relations.

5. CANONICAL CORRELATION ANALYSIS

We will first discuss the theory of CCA before presenting our
findings (see e.g. [1] for a more in depth treatment).

5.1 Background

CCA is a technique that can be used to find information that
is consistent in two datasets by revealing linear correlations
between them, and is particularly useful in high-dimensional
datasets such as ours.

Given two datasets X ∈ Rn×dx and Y ∈ Rn×dy , the ob-
jective of CCA is to find weightings wx ∈ Rdx and wy ∈ Rdy

that maximise the correlation between the projections of X
and Y , Xwx and Xwy . Thinking of these projections as di-
rections through the data spaces, CCA looks for a projection
which will minimise the angle ∠ between Xwx and Xwy .
Mathematically, this optimization problem is written:

{w∗x, w∗y} = argmin
wx,wy

∠(Xwx, Y wy),

= argmax
wx,wy

cos(∠(Xwx, Y wy)),

= argmax
wx,wy

(Xwx)′(Y wy)√
(Xwx)′(Xwx)

√
(Y wy)′(Y wy)

,

= argmax
wx,wy

w′xX
′Y wy√

w′xX
′Xwx

√
w′yY

′Y wy

.

It is known that this optimization problem can be solved
by solving the following generalized eigenvalue problem (see
e.g. [1] for a derivation):(

0 X ′Y
Y ′X 0

)(
wx

wy

)
= λ

(
X ′X 0

0 Y ′Y

)(
wx

wy

)
. (2)

The eigenvalue λ in Eq. (2) is equal to the achieved corre-
lation between the projections of X and Y on their respective
weight vectors wx and wy . Thus, the eigenvector correspond-
ing to the largest eigenvalue is of greatest interest, with suc-
cessive ones of decreasing importance. An additional prop-
erty of CCA is that projections on successive components are
independent, such that each of the eigenvectors capture un-
correlated information.
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5.2 Experiments

In our setting, the data X and Y refer to audio and lyrical
features. For lyrical features independent of mood, we used
the TF-IDF measure described in Subsection 3.1.

To prevent overfitting of the method we performed 100-
fold cross validation. I.e., we split the set of 119, 664 songs
into 100 disjoint subsets and apply CCA on the union of 99
of them, after which we compute the correlation between the
projections of the remaining subset on the obtained weight
vectors as a validation. This is repeated 100 times, leaving
out each of the 100 subsets in turn. The mean training and
testing correlations over the folds are shown in Figure 3.
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Figure 3. Training/Testing (upper/lower bars) correlations of
the CCA components, with Error bars of 1 standard deviation.

It can be seen that training and test correlations are quite
close, especially in the first two components (suggesting the
data is not significantly overfitted). Correlations on the train-
ing set are likely to always be higher than on the test set, but
it appears not significantly so, as the error bars on the test set
overlap those for the training data in these cases.

Confident that the CCA algorithm was not overfitting the
training data, we proceeded to train the weights on all of the
training data, and tested on the complete set. The first com-
ponent is shown in detail in Table 3.

Inspecting Table 3, the first component seems to closely
correspond to valence—even though this was not imposed by
the algorithm. Low weights are associated with strongly neg-
ative emotions/words, which would lie in the 4th quadrant of
the valence-arousal space (see Fig. 1). In contrast, the words
with high weights appear to correspond to positive moods (1st

quadrant), although there are some outliers in the 3rd and 4th

columns. In the audio domain the features most negatively
weighted in the CCA components were all related to Timbre,
the most positive to Loudness.

To verify that the first component relates to valence, we

Lowest Highest
Word Lyrical Weight Word Lyrical Weight
Death -0.075996 Love 0.1248
Dead -0.064387 Baby 0.049397
Hate -0.054789 Heart 0.047417
Pain -0.047474 Hay 0.029812
Evil -0.04673 Home 0.028472
Life -0.042257 Lonely 0.027777

Stench -0.040415 Good 0.027413
Hell -0.038346 Blue 0.026954
War -0.037502 Sin 0.026194

Destroy -0.036671 Loved 0.026123
Feature Audio Weight Feature Audio Weight

38 -0.61774 64 0.3919
50 -0.22214 62 0.28949
42 -0.15033 65 0.19222

Table 3. First component of the CCA analysis, which ap-
pears to relate to valence. The 10 most negatively and posi-
tively weighted words and 3 most weighted audio features are
shown, along with their associated weights.

correlated the weights which resulted from the CCA output
to the valences from the ANEW database. The resulting cor-
relation was −0.3519, with a p−value numerically equal to
0. This is an important result, as it shows we have success-
fully reconstructed words which carry the meaning of ‘posi-
tive/negative’ emotions without the need for expensive human
interventions. It shows that valence is the aspect of mood
most dominantly affecting both lyrics and audio.

Lowest Highest
Word Lyrical Weight Word Lyrical Weight
Heart -0.024301 Baby 0.02641
Love -0.019733 Man 0.021014
Lost -0.018202 Hit 0.020528

World -0.015552 Money 0.020241
Moment -0.015103 Rock 0.019736

Fall -0.015003 Party 0.018319
Lonely -0.014069 Girl 0.017076
Dream -0.013675 Mad 0.015997
Hope -0.013444 Kick 0.015813
Sun -0.012514 Fat 0.012571

Feature Audio Weight Feature Audio Weight
38 -0.77382 64 0.49949
12 -0.10808 62 0.26838
43 -0.080392 5 0.092167

Table 4. Second component of the CCA analysis, which we
postulate relates to arousal.

The second component is shown in Table 4, and is more
difficult to interpret, although there seems to be a relation with
arousal. Words in the first column (‘dream’, ‘heart’) are gen-
erally calming and restful, whilst those in the third column
are more energetic (‘kick’,‘party’). Audio features with sig-
nificant weight relate to Timbre/Energy and Loudness.
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5.3 Discussion

It is remarkable that our CCA analysis automatically detects
aspects of mood that appear to align with Russell’s model for
human perception of emotion [14], without any dependence
on human trials or mood annotations. We should point out
that further components (not shown here due to space con-
straints) are harder to interpret in terms of aspects of mood we
are aware of. However, given the encouraging results for the
dominant components we believe they are likely to be helpful
in a multi-dimensional characterization of mood in audio and
in lyrics. As such they may be helpful in applications such as
music classification and recommendation in particular.

Interestingly, our approach also opens up possibilities of
detecting more high-level properties in music, such as irony
and sarcasm. The ability to recognize strongly correlated as-
pects of mood from both audio and lyrics also allows us to
identify songs where there is a discrepancy or tension between
the mood in the audio and the mood in the lyrics, violating the
global pattern of correlation.

6. CONCLUSIONS

In this paper we investigated the correlation between audio
and lyrics, demonstrating that there exist weak but highly sig-
nificant correlations between lyrical and audio features. Fol-
lowing this, we used Canonical Component Analysis to un-
cover strong correlations between linear combinations of lyri-
cal and audio features which, at least in part, appear to corre-
spond to known aspects of mood and valence and arousal.

In further work we intend to rerun our experiments includ-
ing also the MusiXmatch dataset [4]. Furthermore, we intend
to use more features such as images, video, social tags and
n−gram features in the lyrical domain.
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ABSTRACT 

The relationship between mood and creativity has been 
widely studied in psychology, however, no conclusion is 
reached in terms of which mood triggers high creativity, 
positive or negative. This paper provides new insights to 
this on-going argument by examining the relationship be-
tween lyrics creativity and music mood. We use three com-
putational measures to gauge lyrics creativity: Type-to-
Token Ratio, word norms fraction, and WordNet similarity. 
We then test three hypotheses regarding differences in lyr-
ics creativity between music with different moods on 2715 
U.S. rock songs. The three measures led to consistent find-
ings that lyrics of negative and sad songs demonstrate high-
er linguistic creativity than those of positive and happy 
songs. Our findings support previous studies in psycholin-
guistics that people write more creatively when the text 
conveys sad or negative sentiment, and contradict previous 
research that positive mood triggers more unusual word as-
sociations. The result also indicates that different measures 
capture different aspects of lyrics creativity.  

1. INTRODUCTION 

Music is a product of human’s creativity, and yet few stu-
dies have been done to analyze musical creativity using 
computational methods [2]. In the meantime, progress has 
been made in the area of literature and language creativity 
(i.e., linguistic creativity). In this study, we borrow the 
measures of linguistic creativity to examine lyrics, the tex-
tual part inherently integrated in many music pieces, aiming 
to provide an alternative approach to music creativity re-
search that is complementary to modeling music composi-
tion and music audio. This study is expected to provide new 
insights to the relationship between mood and creativity in 

general in that the argument on whether positive or nega-
tive mood trigger higher creativity remains inconclusive in 
psychology research [4].  

In Western English dictionaries, creativity is defined as 
“…the ability to transcend traditional ideas, rules, patterns, 
relationships, or the like, and to create meaningful new 
ideas, forms, methods, interpretations” [18]. Based on this 
definition, when measuring creativity, a central task is to 
identify new or unusual patterns. In this study, we apply 
three linguistic measures to gauging lyrics creativity signi-
fied by vocabulary richness and unusual word associations. 

This research is expected to contribute to research on 
creativity in music, psychology and linguistics. Besides, 
mood has been identified as a new metadata type or facet of 
music in recent years. Findings in this study will help ana-
lyzing music mood from a new angle, lyrics creativity.  

2. RELATED WORK 

To date creativity in lyrics has rarely been studied. Howev-
er, research in the following related areas has inspired and 
informed this research.  

2.1 Lyrics and Music Mood Classification 

Lyrics have been used in predicting music mood, either 
standalone (e.g., [6] [8]) or being combined with music au-
dio (e.g., [9], [10], [20]). These studies identified lyric fea-
tures that were effective in mood classification such as 
higher-order bag-of-words features (e.g., trigrams and bi-
grams) [6], psycholinguistic and stylistic features [8] [9]. 
In terms of the relationship between lyrics and music mood, 
Hu and Downie [10] found lyrics were less effective for 
classifying negative and passive categories, while Schuller 
et al. [20] revealed lyrics were more helpful on the classifi-
cation of valence (positive and negative feelings). These 
studies are insightful but none of them examined the aspect 
of creativity. Although mood classification is not the focus 
of this study, findings on the relationship between mood 
and lyrics creativity suggest adding lyrics creativity fea-
tures may help improve mood prediction accuracy. 

 

Permission to make digital or hard copies of all or part of this work for 

personal or classroom use is granted without fee provided that copies are 

not made or distributed for profit or commercial advantage and that cop-

ies bear this notice and the full citation on the first page.  

© 2011 International Society for Music Information Retrieval  

789



Oral Session 9: Emotion and Mood  
 

2.2 Linguistic Creativity  

In the text domain, creativity is a new topic compared to 
other aspects of text analytics such as sentiment analysis 
and topic detection. There have been several workshops on 
linguistic creativity which focused on “unusual” language 
phenomena, such as metaphor and plot. As one of the few 
studies on metrics and tools for measuring linguistic crea-
tivity, [21] proposed a set of creativity measures which in-
spired this study. The measures will be described in details 
in Section 4.  

2.3 Mood and Creativity  

Mood and creativity, as two inherent traits of human nature, 
have long been studied in psychology, sociology and cul-
tural studies (e.g., [1]), however, research on the relation-
ship between mood and creativity has been inconclusive. 
Some studies support that positive mood increases cogni-
tive flexibility and thus enhances creativity [12]. For ex-
ample, Isen et al. [13] found that human subjects gave 
more unusual word associations under positive-affect con-
ditions, which suggested positive relationship between pos-
itive mood and creativity. At the same time, other studies 
support that negative moods may promote artistic creativi-
ty and that positive moods restrain it [4][15]. Consequently, 
a context-dependent view is increasingly accepted recently 
[5].  

3. HYPOTHESES 

In this research we focus on the relationship between mood 
and linguistic creativity in lyrics. We test three hypotheses 
to investigate the relationship between mood and creativity. 
The mood categories studied in this paper are listed in Sec-
tion 5.1, Table 1. 

Hypothesis 1 (H1): Lyrics in sad mood category are 
more creative than those in happy mood categories. 

Hypothesis 2 (H2): Lyrics in negative mood category are 
more creative than those in sad mood categories. 

Hypothesis 3 (H3): Lyrics in active mood category are 
more creative than those in passive mood categories.  

H3 is based on the connection between creativity and ac-
tive brain activities. High creativity is more likely to be ob-
served in lyrics with intense emotion than in calm ones.  

4. LYRICS CREATIVITY MEASURES 

Measuring creativity is difficult because the evaluation 
could be subjective to some extent. To obtain robust result 
we adopt multiple measures to gauge lyrics creativity. We 
can draw strong conclusion if all measures led to consistent 
results. The first measure that we adopt is Type-to-Token 

Ratio, which has long been used to measure vocabulary 
richness in creative writing [14]. However, we have also 
been cautioned that Type-to-Token Ratio may not be relia-
ble for texts shorter than 350 words [7]. This is particularly 
relevant to this study because the average length of lyrics is 
about 200 words.  

The other measures used in this study are inspired by the 
work of Zhu and colleagues [21]. As one of the few papers 
applying computational measures to predicting linguistic 
creativity, [21] proposed 13 linguistic measures and built a 
linear regression model to detect measures with more pre-
diction power. Two of the most salient measures in [21] are 
adopted in this study to measure lyrics creativity. Both of 
them are psycho-linguistic measures.  

4.1 Type-to-Token Ratio 

Type-to-Token Ratio is defined as the number of unique 
terms in a piece of text divided by the number of total terms. 
It is often used to measure the vocabulary richness of text. 
Specifically, this measure (denoted as r thereafter) is de-
fined as:  

nxCr uniq /)(=                                                   (1) 

where 
uniqC  denotes number of unique words in a piece of 

lyrics and n is the total number of words in it. In calculating 
this measure, we removed function words (also called 
stopwords) in the lyrics because they do not carry indepen-
dent meanings and thus do not add to vocabulary richness. 
As vocabulary richness is related to creativity, a lyric with 
higher value of r is regarded as more creative.  

4.2 Word Norms Fraction 

This measure is to capture how “usual” a text is. In cogni-
tive psychology experiments, word norms, which represent 
associations between words, were collected by asking hu-
man subjects to freely recall associative words (responses) 
when they see the cue words (stimuli). Therefore, lyrics 
with high occurrences of word norms should indicate high 
“usualness” and thus low creativity since creativity often 
corresponds to unusual patterns. 

Several existing word norms thesauri have been built by 
different researchers in different countries. Because we are 
going to analyze U.S. rock lyrics, we choose a thesaurus 
developed in U.S. to prevent cultural impact on word asso-
ciations. Specifically, we use the Free Association Norms 
built by researchers in University of South Florida [16]. 
This word norms dataset contains 72,176 pairs of asso-
ciated words. 

Using the Free Association Norms, word norms fraction 
(denoted as f thereafter) is calculated as:  

nyxCf norm /),(=                                             (2) 
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Where ),( yxCnorm
is the count of word pairs that appear 

in the Free Association Norms, and n represents number of 
words in the text. 

As lyrics are written in lines and, like a sentence, a lyric 
line can be regarded as a relatively independent unit, we 
calculate the f measure for each lyric line and use the aver-
age across all lines as a song’s creativity score. A song with 
lower value of f measure is regarded as more creative than a 
song with higher value of f measure. 

4.3 WordNet Similarity 

WordNet [3] is an English lexicon with marked linguistic 
relationships among word senses including hyponyms, 
hypernyms, holonym, entailment, etc. With hyponyms and 
hypernyms, WordNet can be seen as a hierarchy of word 
concepts and from which similarities between concepts can 
be calculated. There are quite a few similarity measures de-
fined to leverage WordNet. Following [21], we also used 
path similarity in this study but we adopted a different 
software implementation, namely the Word::Similarity 
module in CPAN [17]. Path similarity between two con-
cepts is calculated by counting the nodes between them in 
the WordNet concept hierarchy. The similarity score be-
longs to the interval of (0, 1]. If two word senses are in the 
same synset, meaning the two are synonyms in WordNet, 
the similarity score would be 1. The more nodes on the path 
connecting two word senses, the smaller the similarity 
would be. If two word senses do not have a path in between, 
then the similarity score is -1. 

Just as word norms fraction, we take one lyric line as the 
unit to calculate the WordNet similarity (denoted as s the-
reafter). Stopwords are removed and all pairs of remaining 
words in a lyric line are considered: 

n

yxS
s path∑=

),(                                  (3) 

where ),( yxS path
denote one word pair in a lyric line and n 

represents number of words in the line. The score of a piece 
of lyrics is the average of scores across all lines. 

One noteworthy issue is that WordNet is organized by 
word senses instead of words. Because of the doubts sur-
rounding the effectiveness of Word Sense Disambiguation 
(WSD), we did not conduct WSD and instead adopted a 
simplified approach that uses the highest similarity between 
all senses of two words. 

Since s measures the similarity among words, a lyric 
with lower s value would be regarded as more creative than 
one with higher s value.  

5. EXPERIMENT AND RESULTS 

To test our hypotheses, we conducted an experiment to cal-
culate and compare the aforementioned measures on a data-
set of lyrics with mood labels. 

5.1 The Dataset 

This study adopts the Mood Tag Dataset1 (MTD) used in 
the Audio Tag Classification task in the Music Information 
Retrieval Evaluation eXchange (MIREX) 2010. This data-
set include 3,469 songs in 18 mood categories that cover 
positive, negative, active and passive moods. In the MTD, 
each song is labeled one or more mood categories accord-
ing to the social tags applied to it [11]. It is noteworthy that 
more than 90% of the songs in the MTD are in the genre of 
rock and more than 95% of them are U. S. songs. Therefore, 
findings of this study are limited to U. S. rock lyrics that are 
written in English.  

For the experiment, we constructed our dataset by com-
bining mood categories in the MTD into the categories re-
quired by the hypotheses. Combinations of categories are 
shown in Table 1.  

Lyrics in this study were downloaded from an online lyr-
ic database, LyricWiki.com. One unique nature of lyrics is 
that repetitions are very common (e.g., chorus is usually 
repeated multiple times). However, the creative measures 
(e.g., Type-to-Token Ratio, r) punish repetitions, which is 
likely to be unfair in the case of lyrics. Unlike repetitions in 
other genres of text, lyrics usually repeat a whole line or 
paragraph. If a line is creative, then repeating it is still, if 
not more, creative. Therefore, to alleviate such bias, repeti-
tions of entire lines and paragraphs as well as notations in 
the lyrics were removed. 

In order to avoid any bias caused by lyric length, we ex-
cluded songs with lyrics that are too long (> 500 words) 
and too short (< 100 words). As the experiment results sug-
gested (see Section 6), the measures are indeed more or less 
sensitive to lyric length. We also balanced the datasets by 
setting the same number of songs in each comparable cate-
gories (e.g., positive vs. negative). In the cases where one 
category had more songs than the other as provided by the 
MTD, a random selection was conducted in the larger cate-
gory. Table 1 shows the combination of categories and lyr-
ics statistics. There are in total 2715 unique songs in this 
experiment.  

5.2 The Results 

5.2.1 Happy vs. Sad 
The creativity measures on happy and sad songs are pre-

sented in Table 2. A t-test was conducted to examine the 

                                                           
1http://www.music-ir.org/mirex/wiki/2010:Audio_Tag_Classification 
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significance of the differences. The results indicate higher 
creativity level (higher r, lower f and s) in sad lyrics based 
on all the three creativity measures, and the difference is 
consistently significant across all measures. Our hypothesis 
H1 is then not rejected. 

 Category 
Categories in 

MTD 
#.  of 
songs 

avg. lyric length 
(st.dev.) in words 

H1 
Happy glad, cheerful, 

gleeful 
842 218.80 (77.19)  

Sad 
sad, mournful, 
gloomy, brooding 

842 201.61 (73.36) 

H2 

Positive glad, cheerful, 
gleeful, confident 
hopeful, exiting 

1470 220.45 (78.64) 

Negative sad, mournful, 
gloomy, brooding 
angry, aggressive 

1470   203.29 (75.62) 

H3 
Active aggressive, angry, 

exciting, gleeful 
861 222.44 (83.05) 

Passive calm, dreamy 861 206.07 (76.90) 

Table 1. Lyrics categories and statistics. 

Category r f s 
Happy 0.5543 0.0563 -0.6344 
Sad 0.6042 0.0502 -0.6430 
p-value <0.0001 0.0030 0.0398 

Table 2. Results of Hypothesis 1 

5.2.2 Positive vs. Negative 

Measures on positive and negative songs are presented in 
Table 3. A t-test was conducted to examine the significance 
of the differences. We observed higher creativity level 
(higher r, lower f and s) in negative lyrics based on all the 
three measures. The difference is significant according to 
each of the measures. Our hypothesis H2 is not rejected. 

Category r F s 
Positive 0.5953 0.0557 -0.6366 
Negative 0.6523 0.0490 -0.6431 
p-value <0.0001 <0.0001 0.0399 

Table 3. Results of Hypothesis 2 

5.2.3 Active vs. Passive 

Measures on active and passive songs are presented in Ta-
ble 4. A t-test was conducted to examine the significance of 
the differences. We have observed lower WordNet similari-
ty (higher creativity) in passive songs, but higher Type-to-
Token Ratio (higher creativity) in active songs (although 
the difference was not significant for r). In addition, there 

was no significant difference in terms of unusual word as-
sociations (as indicated by the f measure). Hence our hypo-
thesis H3 is not consistently supported by all measures. 

Category r f s 
Active 0.5881 0.0525 -0.6322 
Passive 0.5775 0.0526 -0.6419 
p-value 0.0648 0.4804 0.0149 

Table 4. Results of Hypothesis 3 

6. DISCUSSION  

To further understand the relationship between lyric crea-
tivity and mood categories, we manually examined the 10 
most creative and 10 least creative songs for each measure 
(except for f where 306 songs had the smallest value, 0). 
The category distributions of these songs are listed in 
Tables 5 to 7. A general trend across these tables is that the 
most creative songs include more sad and negative songs 
while the least creative songs consist of mostly happy and 
positive songs. This observation is consistent with the re-
sults of statistical tests on Hypotheses 1 and 2. The trend 
regarding active and passive songs differs across measures, 
and thus once again we cannot draw consistent conclusion 
on hypothesis 3. 

Besides statistics, it is helpful to look at the lyrics them-
selves. The most creative song as measured by Type-to-
Token Ratio (r) is Elton John’s “Tiny Dancer”. Part of its 
lyrics is presented below. It is indeed more creative than 
most songs, and it happens to be the only happy song 
among the 10 most creative ones. This discrepancy with the 
general trend is worth further study in the future. 

... 
Ballerina you must've seen her 
Dancing in the sand 
And now she's in me always with me 
Tiny dancer in my hand 
 
Jesus freaks out in the street 
Handing tickets out for God 
Turning back she just laughs 
The boulevard is not that bad 

... 
 

As the second most creative song selected by WordNet 
Similarity (s), “Something in the Way” by Nirvana (Sad, 
Negative and Passive) contains the following lyrics: 

And the animals I trapped have all become my pets 
And I'm living off of grass and the drippings from 
my ceiling 
It's okay to eat fish 'cause they don't have any 
feelings 
Something in the way mmm 
... 
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As it can be seen, this piece of lyrics indeed has some 
unusual combination of words or concepts.    

10 Most Creative 
Songs (0.931 ≤ r ≤ 
0.971) 

Happy 1 Sad 5 

Positive 2 Negative 4 

Active 3 Passive 2 

10 Least Creative 
Songs ( 0.105 ≤ r ≤ 
0.203) 

Happy 9 Sad 1 

Positive 9 Negative 1 

Active 1 Passive 4 

Table 5. Categories of most and least creative songs meas-
ured by Type-to-Token Ratio (r) 

306 Most Creative 
Songs (f =0) 

Happy 76 Sad 98 

Positive 106 Negative 142 

Active 84 Passive 113 

10 Least Creative 
Songs ( 0.276 ≤ f ≤ 
0.369) 

Happy 4 Sad 3 

Positive 6 Negative 2 

Active 6 Passive 3 

Table 6. Most and least creative songs as measured by 
Word Norm Fraction (f) 

10 Most Creative 
Songs (-0.895 ≤ s ≤ 
-0.844) 

Happy 2 Sad 6 

Positive 2 Negative 6 

Active 0 Passive 3 

10 Least Creative 
Songs (-0.244 ≤ s ≤ 
0.088) 

Happy 5 Sad 0 

Positive 7 Negative 3 

Active 4 Passive 2 

Table 7. Most and least creative songs as measured by 
WordNet Similarity (s) 

  The fact that the word norm fraction measure (f) was 0 
for 306 songs is interesting. A close inspection of the lyrics 
reveals these 306 songs have short lyric lines. This helps 
attribute the low f value to the way the measure was calcu-
lated. The word pairs were formed with each line of lyrics, 
and when the lines were short, there were few word pairs 
which resulted in fewer pairs matching the norms.  

Another observation is that there are controversial songs. 
“Gangster Tripping” by Fatboy Slim was listed as the No.1 
least creative song by Type-to-Token Ratio (r) but was the 
No.1 most creative song selected by WordNet similarity (s) 
and was among the most creative songs measured by word 
norm fraction (f). A close examination of the lyrics uncov-
ers the reason: there are many word repetitions and thus its 
r value is very low. However, words in each line are neither 
similar nor with usual associations. A typical snippet of the 
lyrics is shown below:  
... 
We gotta kick that gangster shit 
C'mon we gotta kick that gangster shit 

C'mon we gotta get that 
get that get that get that get that get that get 
that get that get that get that 
 
It's what we're doin' when a 
What we're doin' when a 
What we're doin' when a fatboy's slippin' 

... 

Such discrepancy on a single song discloses the limita-
tions of the creativity measures. Type-to-Token Ratio just 
captures one kind of creativity, but it biases against crea-
tivity of repetitive patterns while repetition is a common 
feature of lyrics and does not necessarily indicate less crea-
tivity. Word norm fraction heavily relies on the given asso-
ciation norms. Furthermore, it favors lyrics with shorter 
lines since there are fewer word pairs in shorter lines, 
which possibly leads to lower scores (higher creativity). On 
the contrary, WordNet similarity favors longer lyric lines as 
those lines potentially contain more word pairs with simi-
larity value of -1 (no WordNet path between the words) 
which contributed to a lower s value (higher creativity). In 
addition, WordNet similarity is limited by the hypernym 
and hyponym hierarchy which is only available for nouns 
and verbs. This analysis suggests that combination use of 
multiple measures gives the most comprehensive estimation 
of creativity as a multi-faceted linguistic phenomenon. 

7. CONCLUSIONS AND FUTURE WORK 

In this study we examined the relationship between mood 
and creativity in U.S. rock lyrics. We used three computa-
tional measures, Type-to-Token Ratio, Word Norm Frac-
tion, and WordNet Similarity, to gauge lyrics creativity, 
and then compared the difference in creativity between lyr-
ics in various mood categories. Because the three measures 
capture different aspects of linguistic creativity, our result 
suggests combination use of multiple measures to gauge 
lyric creativity.  

We have also found that sad and negative lyrics corres-
pond to higher linguistic creativity based on all three meas-
ures. This result supports previous studies on psycholin-
guistics that people write more creatively when the text 
conveys sad or negative sentiment, but contradict previous 
research that positive mood triggers more unusual word as-
sociations. One interpretation is that the impact of mood on 
the task of writing a piece of text with certain theme (like 
lyrics) is different from that on recalling free association 
between words. The former one involves more specific de-
scription. Furthermore, the correlation between creative 
writing and negative emotion is actually reflected in voca-
bulary of human languages. Sentiment lexicons in different 
languages share a common feature that negative words out-
number positive words. Schrauf and Sanchez [19] also 
found that people recall more negative words than positive 
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words. These phenomena suggest that humans are actually 
better equipped with richer word choices when it comes to 
describe negative emotions. 

This study focuses on lexical creativity. As future work 
it is worth investigating other dimensions of linguistic crea-
tivity: syntactic, morphological, and semantic creativity. 
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ABSTRACT

The purpose of this paper is to address several aspects of
music autotagging. We start by presenting autotagging ex-
periments conducted with two different systems and show
performances on a par with a method representative of the
state-of-the-art. Beyond that, we illustrate via systematic
experiments the importance of a number of issues relevant to
autotagging, yet seldom reported in the literature. First, we
show that the evaluation of autotagging techniques is frag-
ile in the sense that small alterations to the set of tags to be
learned, or in the set of music pieces may lead to dramati-
cally different results. Hence we stress a set of methodologi-
cal recommendations regarding data and evaluation metrics.
Second, we conduct experiments on the generality of auto-
tagging models, showing that a number of different methods
at a similar performance level to the state-of-the-art fail to
learn tag models able to generalize to datasets from different
origins. Third we show that current performance level of a
direct mapping between audio features and tags still appears
insufficient to enable the possibility of exploiting natural tag
correlations as a second stage to improve performance.

1. INTRODUCTION

Music autotagging refers to the task of automatically clas-
sifying music audio excerpts with respect to a number of
high-level concepts (the “tags”) from potentially very di-
verse music facets such as Emotion, Musical instruments,
Genre, Usage, etc. In the literature, a number of approaches
to the task have been proposed that build upon previous
work in genre and artist classification, where a direct map-
ping is sought via machine learning models between low-
level features computed on short audio signal frames and
tags [2, 4, 10, 11]. These approaches are tailored to the fact
that the task is more difficult than genre classification in that
the number of classes is usually much higher (genres corre-

Permission to make digital or hard copies of all or part of this work for
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not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
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Audio 
feature 

extraction

Learning 
algo

Learning 
algo

Stage 1 Stage 2

Binarizationeval

Nfeats
x̄ = 0.02

feature values

...

[0 · · · 1]
tag probab.

Ntags
...

p(guitar) = 0.001
p(soft) = 0.03

{0,1}
tag membership

p(guitar) = 0
p(soft) = 1

...

Ntags

[0 · · · 1]
tag probab.

...

p(guitar) = 0.05

p(soft) = 0.02

Binarization

eval

{0,1}
tag membership

p(soft) = 1
...

p(guitar) = 1

audio

Figure 1. Generic 2-stage music autotagging framework
(training of learning algorithms not represented; audio fea-
ture extraction can be statistics or time series).

spond in fact to one among many facets), and models must
account for the possibility that multiple labels usually apply
to a given excerpt. Music tags are often correlated (for in-
stance, Genre tags often co-occur with Instruments or Emo-
tion tags), this is often the rationale behind implementing
a 2-stage architecture, where a second stage of processing,
modeling tag co-occurence relationships, can “correct” [8]
the imperfect tag predictions of the first stage (see illustra-
tion in figure 1). A number of authors report on perfor-
mance improvements with this procedure over the one-stage
approach [1, 6–9].

This paper aims at demonstrating via systematic experi-
ments the relevance of a number of music autotagging issues
that we believe are, to the best of our knowledge, only ad-
dressed superficially in current literature. After presenting
the data and systems used and reporting on initial experi-
ments in sections 2 and 3, we address in section 4 the notion
of “fragility” of evaluation methodologies and stress a num-
ber of methodological recommendations. In section 5, we
address the issue of generality of autotagging models, and
in section 6, we address limitations of exploiting tag corre-
lations in a second processing stage. We finally propose a
discussion on these issues and directions for future work in
section 7.

2. DATA AND SIGNAL FEATURES

In this paper we use two datasets with tag annotations made
available publicly to the community by fellow researchers
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and on which a number of papers have reported results.
CAL500. The Computer Audition Lab 500 (CAL500)

dataset (http://cosmal.ucsd.edu/cal/projects/AnnRet/)
is made up of 500 Western popular song excerpts of differ-
ent lengths. Excerpts annotations are among a set of 174
tags.

Magnatagatune. The Magnatagatune dataset (http://
tagatune.org/Magnatagatune.html) consists of 21642 ex-
cerpts of length 30 s from 230 different artists. Excerpts an-
notations are among a set of 188 tags. Some pre-processing
was applied to yield a cleaner dataset, referred to as Mag-
tag5k (see section 4.2 for more details), on which we ran
most of the experiments below.

Other datasets. We made use of two other publicly
available datasets with only genre annotations: the Latin
Music Dataset (LMD, http://www.ppgia.pucpr.br/˜silla/
lmd/index.html) and the ISMIR04 dataset (http://ismir
2004.ismir.net/genre_contest/index.htm) to evaluate the
generalization capacity of our autotagging systems (see sec-
tion 5).

Features. We used MARSYAS to extract 16 audio fea-
tures from 46ms frames of the audio signals with no overlap.
The features are: the spectral centroid, rolloff frequency,
spectral flux, and 13 MFCCs, including MFCC0. These fea-
tures as the same ones used in [7].

3. AUTOTAGGING SYSTEMS

3.1 Benchmark

In order to better compare our experiments with previous
literature and to facilitate the reproducibility of our experi-
ments, we use as a benchmark the system proposed in [7],
which is available under GPL in MARSYAS. 1 Performance
of the Benchmark have been reported in the 2010 MIREX
evaluation. In this system, frame features are collapsed in
a two steps process (texture windowing and computation of
global mean and standard deviation) into a 64-dimensional
feature vector for the whole audio excerpt [7]. This system
implements an architecture with two stages of processing,
illustrated in figure 1. A multiclass SVM classifier is used
in both stages. We report below on the performance of using
just the first stage of processing alone, or the whole system.

3.2 Alternative systems

1. External multiclass SVM in both stages: This sys-
tem (referred to as Sys1) is a 2-stage system similar
to the Benchmark, with the difference that it external-
izes the learning algorithm and directly uses the lib-
SVM software package (http://www.csie.ntu.edu.

1 The authors are grateful to Ness & Tzakenakis for kindly providing
and commenting the code used for these experiments.

tw/˜cjlin/libsvm). The other difference is that nor-
malization of the data is done via the libSVM package
and not in the MARSYAS code.

2. One-stage Markov models-based classifier: This ap-
proach consists of using the method for genre classifi-
cation based on Markov models previously described
in [5]. In the context of autotagging, for each tag a
pair of models are estimated and used to assign a tag
to a piece of audio. This approach is referred to as
Sys2.

3.3 Autotagging performance

CAL500 Magtag5k
Benchmark 0.452|0.245 0.312|0.083

Sys1 0.464|0.269 0.423|0.176
Sys2 0.480|0.246 0.411|0.171

Table 1. F-scoreg | F-scorept for Benchmark, Sys1, and
Sys2 on CAL500 and Magtag5k. Evaluation methodology
described in section 4.2.

Table 1 presents a comparison of the performance achieved
with the methods described previously and the performance
obtained with the Benchmark. The performance measure is
the F-score computed on global classification rates (denoted
F-scoreg) and the F-score based on the average per-tag clas-
sification rates (denoted F-scorept, see section 4.1 for fur-
ther methodological considerations). For both datasets Sys1
and Sys2 perform better than the Benchmark albeit in small
proportions in some cases. The Benchmark was chosen in
order to have a fair point of comparison to evaluate our ap-
proaches: it is a recent contribution that rates among the best
in the latest MIREX evaluation (2010).

Other examples using the same datasets can be found in
the literature: Using CAL500, Turnbull et al. [11], Hoffman
et al. [4] and Mahieux et al. [2] obtain F-scorespt equal to
0.20, 0.21 and 0.14 respectively but the evaluation is based
on a ranking of the first 10 most probable tags and thus
not comparable with our results. Seyerlehner et al. [9] ob-
tains F-scoreg = 0.50 and F-scorept = 0.30 on CAL500
and 0.42 | 0.22 with the Magnatagatune dataset thus slightly
above our results. Zhao et al. [12] achieve F-scorept = 0.31
on CAL500 but tags that were not recognized in the dataset
were ignored in the evaluation (using this metric we were
able to achieve F-scorept = 0.33 using Sys2). Similarly,
Miotto et al. [6] obtain a F-Scorept = 0.30 on CAL500 but
less frequent tags were removed which, as we will see in the
next section, affects significantly the results. To summarize,
we claim that the approaches presented in this paper are on
a par with the state-of-the-art as described in the recent lit-
erature.
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4. ISSUE 1: METHODOLOGICAL ISSUES IN
EVALUATING AUTOTAGGING SYSTEMS

4.1 On evaluation measures

Evaluation for autotagging systems is mostly based on In-
formation Retrieval measures, such as accuracy, precision,
recall, F-score, etc. These measures are generally computed
on a per-tag basis, separately for each tag and then averaged
across tags, or globally across the whole dataset. Music
datasets typically have a strong imbalance in tag distribu-
tions, and results on a per-tag or global basis can differ sig-
nificantly. This imbalance drives global scores artificially
high. The reason is simple: since the most common tags
account for a large percentage of all annotations, classifiers
that predict these tags well start off with high global scores.
Figure 2 shows the F-scores on CAL500 for Sys1 and Sys2,
when the most frequent tags (left) or the least frequent tags
(right) are removed from the dataset (tests with Magtag5k
had a similar outcome). Results confirm the dependence
of global scores on the most common tags [2, 6, 11]: the
left plot shows a sharp decrease in F-scoresg when the top
tags are removed (F-scorespt also decrease, albeit relatively
less). This indicates that the most frequent tags are on av-
erage better classified and have a substantial effect on the
overall performance. This is also seen in figure 6, where the
most common tags (the ones represented by larger circles)
have high scores, and the least frequent tags low scores. On
the other hand, figure 2 (right plot) also shows that the least
frequent tags, with lower classification rates, have little im-
pact on global scores but have a dramatic effect on per-tag
scores, a fact that is most often ignored. We therefore stress
the importance when reporting results on reference data to
include both global and per-tag metrics, and to consider the
influence of both the least and most frequent tags. For in-
stance, in [6] the evaluation is obtained excluding the 77
least frequent tags, which in our systems would result in a
increase in the F-scorespt above 10%.
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Figure 2. F-scoreg and F-scorept on CAL500 for Sys1 and
Sys2 autotaggers, as the most frequent (left) or the least fre-
quent tags (right) are removed.

Another important factor that can influence performance
scores is how thoroughly the songs in the dataset are an-
notated. CAL500 has a high number of tags per song (an
average of 26 tags per song): a trivial classifier (i.e. always
predicting all tags) has a precision of≈ 15% (with 100% re-
call). This “starting point” yields a F-scorept of 26%, which
is misleadingly high, and almost on a par with other results
reported in the literature (see the F-scorespt reported in sec-
tion 3.3). Note that in this case the F-scoreg equals F-scorept

and is much lower than what is reported in the literature,
hence a good indicator of the system’s sub-optimal perfor-
mance.

The choice of evaluation measure can hinder compar-
isons between different methods and can also conceal sub-
optimal performances. It is therefore important to report
both per-tag and global scores, and ideally, also document
how the individual tag performances are related to the a pri-
ori tag frequencies in the datasets used.

4.2 On data and evaluation methodology

Depending on the data gathering method, tag-annotated data-
sets can present several problems [11] such as misspelling,
impossible combinations of values, diverse types of noise,
etc. However, only few papers consider these potential prob-
lems when reporting on autotagging experiments with the
CAL500 or Magnatagatune datasets.

The Magnatagatune dataset reveals a significant number
of problems with annotation: (1) synonymy: we merged a
number of tags (e.g. “clasical”, “classical” and “classic”),
(2) trivial cases: we removed excerpts with tags such as
e.g. “silence”, (3) antonymy: we removed tag attributions
of an excerpt when they were not compatible (e.g. having
both “drums” and “no-drums” tags, or “fast” and “slow”),
(4) extreme sparseness: we removed excerpts with no tags,
and (5) duplication: many excerpts in the Magnatagatune
dataset are segments of the same original piece and have
different tag annotations, we kept those segments with the
maximum number of tags and removed the other segments.
After pre-processing the Magnatagatune dataset as detailed
above, the remaining data, referred henceforth as Magtag5k,
consists of 137 tags, 5259 excerpts from 230 artists. CAL500
did not require such pre-processing.

To avoid overfitting the data in building autotagging mod-
els, the literature fosters a number of evaluation methodolo-
gies, e.g. holdout validation, S-fold cross-validation, etc.
However, it seldom takes into account artist filtering in the
definition of the training and test datasets, a method whose
importance has been demonstrated in music similarity re-
search [3] (over-optimistic results can be achieved when the
same artists are present in both sets). Taking this additional
factor into account, the evaluation methodology should agree
with a number of constraints related to the statistics of the
data, i.e. the number of folds should not be higher than the
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number of artists per tag, nor than the number of excerpts
per tag. For instance, constraints from CAL500 favors a
2-fold cross-validation or holdout validation (instead of 10-
fold cross-validation [11]). We report results with the lat-
ter (with a 50% split). In Magtag5k, some tags have few
instances, from few artists (e.g. tag “water” has 16 songs
from 6 artists). Thus, we chose to set the maximum number
of folds to 3 (ensuring at least 2 different artists per tag per
fold) and report on results with 3-fold cross-validation. We
can clearly see in table 2 that very different results are ob-
tained when considering data and methodology issues dis-
cussed here and when not. To facilitate reproducible re-
search, the whole Magtag5k data pre-processing and result-
ing data are available 2 .

5. ISSUE 2: WHAT ARE WE REALLY LEARNING?

In this section we present results of a set of experiments that
were conducted in order to evaluate the extent of the results
obtained with the various systems. The objective was to
evaluate models’ ability to generalize when used with data
from different origins. We selected songs annotated with 35
tags common to both Magtag5k and CAL500. 3 Figure 3
shows for both the Benchmark (left) and Sys2 (right) two
F-scores for each of the 35 tags, these F-scores are obtained
with Magtag5k as test set, but with two different training
sets for building models, either Magtag5k or CAL500. 4

The F-score obtained with CAL500 is shown on the hor-
izontal axis while the F-score obtained with is Magtag5k
shown on the vertical axis. On these plots a model that per-
form equally well when trained with either datasets would
be on the diagonal, those performing worse when trained
with CAL500 data are above the diagonal.

When comparing performance obtained on the same test
set (Magtag5k) we observe much lower performance for
models based on CAL500 training than for those trained
with Magtag5k. This observation is valid for the Bench-
mark, Sys1 (not shown here) and Sys2. Nearly every point
is above the diagonal. Sys2 seems to perform slightly bet-
ter than other systems in terms of generalization but still the
performance is much lower for models trained with CAL500:
only three tags obtain a relatively high F-score for both train-
ing sets (man.singing, electro, and female.singing).

Models were also tested on the LMD and the ISMIR04
genre classification datasets. These two datasets were not
created for autotagging tasks therefore no ground truth is
available so our analysis is based on tag assignment fre-
quency. We processed the music pieces from these datasets
with Sys1 models trained with CAL500 and Magtag5k. Fig-

2 Please follow this link: http://tl.di.fc.ul.pt/t/
magtag5k.zip.

3 Hence reducing Magtag5k to 4549 songs.
4 Note that artist filtering and non-overlap of training and test data are

observed for Magtag5k.
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Figure 3. F-score on Magtag5k test set for Sys2 (right) and
Benchmark (left) autotaggers, either trained with CAL500
(x-axis) or Magtag5k (y-axis).
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Figure 4. Proportion of music pieces for which each tag
was assigned in the corresponding test set (rows). Sys1.

ure 4 shows the proportion of songs from a given test set to
which each tag was assigned. Each color/shade corresponds
to a training set and each row to a test set. We can see for ex-
ample that when testing with CAL500 (first row) and train-
ing with Magtag5k (orange, light shade) nine tags are as-
signed to all songs. When testing with Magtag5k (second
row), models trained with CAL500 (blue, dark shade) rec-
ognize very few tags. When testing on LMD and ISMIR04
we observe a strange phenomenon: the proportion of music
per tag is almost the same for both datasets and for all tags.
This indicates a strong bias on the models side and a weak
power of generalization.

Figure 5 shows the proportion of music pieces for which
each tag was selected when trained with Magtag5k and tested
with both LMD and ISMIR04 datasets (different colors) for
two modeling techniques (different rows). The first row
confirms what was seen on figure 4: with Sys1 the pro-
portion of songs per tag is almost the same independently
of the test set. When Sys2 is used, a different anomaly is
observed: very few tags are recognized and these tags are
over-represented. Moreover the same tags seem to be over-
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Figure 5. Proportion of music pieces for which each tag
was assigned for two kinds of models (rows) and two test
sets (colors).

represented in both datasets. When comparing the two rows
of the plot, we can see that the two autotagging techniques
have a very low level of agreement, for both test sets.

These experiments show that models obtained with au-
totagging techniques at the level of the state-of-the-art show
very limited ability to generalize to new datasets and that the
level of performance observed on a single finite dataset is
somewhat misleading. Current autotagging techniques are
still far from the long-term goal that is to allow automatic
tagging of sounds independently of their origin.

6. ISSUE 3: EXPLOITING TAG CORRELATIONS
IN A SECOND PROCESSING STAGE

Magtag5k 2-fold
Bench. stage 1 0.409|0.164 0.342|0.126

Bench. both stages 0.312|0.083 0.347|0.136

Sys1 stage 1 0.411|0.165 0.341|0.127
Sys1 both stages 0.423|0.176 0.347|0.136

Table 2. Comparison of F-scoreg|F-scorept for differ-
ent configurations of the Magnatagatune dataset: Mag-
tag5k, and 2-fold cross-validation over unprocessed Mag-
natagatune dataset (no artist filter).

In table 2, we compare Sys1 against the Benchmark, con-
sidering either stage 1 only or both stages. The first column
reports results on Magtag5k while the second reports results
with the data and evaluation methodology from [7]: 2-fold
over the whole Magnatagatune data, without artist filtering.
Looking at results for the Benchmark, we can see that al-
though results of the first stage (first row, second column)
are very similar to those published in [7], the second stage in
fact impairs results from the first stage only, i.e. the opposite
phenomenon than [7]. Similar improvements for the second
stage as those published can only be found when consider-
ing unadapted evaluation methodologies (e.g. no artist filter)
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Figure 6. Performance of stage 1 vs both stages, Magtag5k.
Individual tag F-scores are represented by circle centers. x-
axis are the stage 1 F-scores, and y-axis both stages. Radius
are proportional to corresponding tag frequency.

and noisy (see problems 1 to 4 in section 4.2) and redundant
data (see problem 5), as illustrated in the second column.

Results also show that the second stage of Sys1 does ap-
pear to bring a small improvement on the first stage. How-
ever, we can gain more insights on the actual effect of the
second stage by looking at figure 6 which illustrates the dif-
ference in tag’s individual F-scores between using only one
stage of processing vs using both stages. For a given data
point (i.e. a particular tag) to lie above the diagonal means
that the second stage improves results, while below the diag-
onal means impairing results from stage 1. For the Bench-
mark (left plot), the decrease in overall performance can be
seen on almost all tags individually. For Sys1 (middle plot),
if average results are better with both stages, we can see that
not all tags are affected in the same way by the second stage:
some improve (are above the diagonal) while others do not.
In our opinion, this distribution around both sides of the di-
agonal indicates that no clear pattern of improvement can be
identified with the 2-stage procedure.

A possible reason for the inability of the system to take
advantage of existing tag correlations may reside in the na-
ture of the second stage classifier. Hence we experimented
a different option for the second stage: a pool of binary
SVMs (one per tag) [8]. These experiments are restricted
to the particular task of tag co-occurrence modeling, i.e. we
compare classifiers that process correct input (we are not
evaluating the full system here, only what can serve as its
second stage). Results show that binary SVMs are clearly
better at the task than a multiclass SVM: in three-fold cross-
validation on Magtag5k the former reaches a F-scoreg and
F-scorept of 0.839 and 0.822 respectively while the latter
reaches 0.581 and 0.567. A corollary of the above is that
the second stage may fail precisely because it is trained on
data that only represents estimations of these correlations
(and relatively bad ones, as indicated by the performance
of stage 1). Hence we modified Sys1 with binary SVMs in
stage 2, trained with true tag annotations instead of proba-
bility estimations from stage 1. We refer to this system as
Sys3. Overall, Sys3 reaches F-scoreg and F-scorept of 0.411
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and 0.162, therefore slightly below the performance of Sys1
and comparable to using only stage 1 (see table 2). However,
when looking at the case of individual tags, i.e. rightmost
plot of figure 6, we can spot an interesting pattern: improve-
ments with stage 2 seem higher for tags with better perfor-
mance in stage 1. In other words, this seems to indicate that
a minimum performance in stage 1 should be expected for a
given tag —i.e. for its probability estimation— to be useful
in a second stage. Although proving this claim will require
more data, we wish to argue here that this pattern appears
as a logical and desirable property for an autotagging sys-
tem, and it indicates clear directions for future work: e.g.
improving stage 1; tailoring stage 2 classifier to a selection
of particular tags (e.g. the most reliable, the most “influen-
tial” [1]) instead of processing all tags the same way.

7. DISCUSSION

The experiments described in this paper show that diverse
techniques on a par with the state-of-the art in music auto-
tagging fail to achieve their goal in several aspects. It was
shown that autotagging tasks must be evaluated more care-
fully than what is usually done, that changing the set of tags
or altering the evaluation measure (per tag vs global F-score)
may dramatically alter the results, sometimes hiding weak-
nesses. It was also shown that current techniques used for
autotagging fail the generalization test. Finally it was shown
that the performance achieved with these techniques is not
sufficient to be able to take advantage of the correlations be-
tween tags. Research in music genre classification and mu-
sic similarity has seen recent progresses but its adaptation to
autotagging shows severe drawbacks. What are the causes
of these relatively negative results?

It is our opinion that some key differences between auto-
tagging and genre classification should be given more em-
phasis in autotagging research. In particular with regards
to data recollection and annotation [10]. Tags can corre-
spond to music facets more subjective than music genre. Or
they can have multiple meanings, as in the case of Instru-
ment tags: a song tagged “piano” can mean e.g. that piano
is salient all over the song, or that there is a piano accom-
panying (but it may be relatively quiet), or that some parts
have piano (but may have a short temporal span). In au-
totagging the procedure used to obtain ground truth differs
from one dataset to another, which results in a lack of con-
sistency. Public datasets are limited in quantity and in many
cases present errors or incompleteness. Also, where datasets
for genre classification are usually limited to 10-20 genres,
it is common to deal with hundreds of tags. This is not a
problem per-se but in these conditions it is much more dif-
ficult to achieve good results for every tags and to follow
good practices (artist filtering, S-fold cross validation). It
is hard to build models based on extremely unbalanced data

but it is even harder if the ground truth lacks consistency.
Future work will include seeking for improvements in terms
of generalization using recently published datasets like the
Million Songs or CAL10k datasets.

This paper’s results and previous observations lead us to
propose some directions regarding future work in music au-
totagging: Different processing could be applied depending
on categories of tags: (1) 2-stage architectures may be ben-
eficial for some tags (e.g. tags with reasonable performance
might help build models for other tags) but not for others
(discussion in [1] is also insightful on this matter). (2) Tag
models could be differentiated according to temporal char-
acteristics: models for tags that correspond to a short time
span should be based on local features whereas tags that cor-
respond to whole songs should use global features.
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ABSTRACT

We survey and evaluate popular audio fingerprinting sche-
mes in a common framework with short query probes cap-
tured from cell phones. We report and discuss results im-
portant for mobile applications: Receiver Operating Char-
acteristic (ROC) performance, size of fingerprints generated
compared to size of audio probe, and transmission delay if
the fingerprint data were to be transmitted over a wireless
link. We hope that the evaluation in this work will guide
work towards reducing latency in practical mobile audio re-
trieval applications.

1. INTRODUCTION
Audio fingerprinting provides the ability to derive a com-
pact representation which can be efficiently matched against
other audio clips. With smart phones becoming ubiquitous,
there are several applications of audio fingerprinting on mo-
bile devices. A common use case is query-by-example mu-
sic recognition: a user listens to a song in a restaurant, shop-
ping mall, or in a car, and wants to know more information
about the song. Shazam [1] and SoundHound [2] are ex-
amples of popular music recognition applications on cell-
phones. Other applications of audio fingerprinting on mo-
bile devices include copyright detection [4], personalized
entertainment and interactive television without extraneous
hardware [8].

Mobile query-by-example applications pose a unique set
of challenges. First, the application has to be low-latency
to provide users with an interactive experience. To achieve
low latency, the retrieval framework has to adapt to stringent
memory, computational, power and bandwidth requirements
of the mobile client. It is important that the size of the data
generated needs to be as small as possible to reduce network
latency, which is typically the bottleneck in 3G networks.
Second, the length of the audio required to get a match

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c⃝ 2011 International Society for Music Information Retrieval.

should be short for mobile applications (e.g., <10 seconds).
Current applications Shazam [1] and SoundHound [2] often
require >10 seconds for retrieval. For copyright detection,
one might use 30-60 second probes for retrieval [4], which
is not feasible for interactive mobile applications. Third, the
distortions introduced by cell phones tend to be more severe
than simple degradations like compression artifacts, time-
offsets, amplitude compression or structured noise present
in near-duplicate detection problems [4]. On mobile de-
vices, we need to be mindful of ambient noise present in
shopping malls or cafes, errors in sampling through tele-
phony equipment, low bit-rate voice compression and other
quality-enhancement algorithms that might be built into the
mobile device or introduced by the carrier network. In this
work, we evaluate the state-of-the-art in content-based au-
dio retrieval with focus on query-by-example mobile appli-
cations.

2. PRIOR WORK AND MOTIVATION

State-of-the-art audio retrieval applications use a set of low
level fingerprints extracted from the audio sample for re-
trieval. The fingerprints are typically computed on the spec-
trogram - a time frequency representation of the audio. Hait-
sma et al. [11] propose fingerprints based on Bark Frequency
Cepstrum Coefficients (BFCC). Highly overlapping frames
are considered to ensure that the query probe can be detected
at arbitrary time-alignment. Each fingerprint is 32 bits and
can be compared efficiently with Hamming distances. Ke
et al. [14] improve the performance of the fingerprinting
scheme in [11] using the AdaBoost technique from com-
puter vision. Baluja et al. [4] propose a scheme based on
wavelets. The overlapping spectrogram images are trans-
formed into a sparse wavelet representation and the pop-
ular min-hash technique [5] is used to obtain a 100 byte
fingerprint which can be compared directly with byte-wise
Hamming distances. In contrast to the three schemes above,
Wang [17, 18] proposes looking only at spectrogram peaks.

The authors are not aware of a comprehensive evaluation
of the different fingerprinting schemes in a common frame-
work. In contrast, several such evaluations exist for im-
age features in the computer vision community for content-
based image retrieval [15, 19]. Fingerprints developed for
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applications like query-by-humming and cover song detec-
tion are outside the scope of this paper. In particular, we
are interested in factors affecting practical query-by-exact-
example mobile applications. The questions that are most
critical for mobile applications are:

• How much fingerprint data does each scheme generate?

• How does the size of the fingerprint data compare to
the size of the compressed audio needed for accurate re-
trieval?

• What would the transmission delay be if the fingerprints
were transmitted over a typical 3G network?

• How discriminative are the different fingerprinting sche-
mes?

• How do the different schemes perform for really short(∼5
seconds) and noisy query probes captured by cell phones
?

• How does the performance of each scheme vary as a
function of probe length in the range of 5 to 15 seconds
typical for mobile applications?

3. CONTRIBUTIONS
We survey and evaluate popular audio fingerprinting sche-
mes in a common framework with short noisy query audio
probes captured from cell phones. We report and discuss re-
sults important for mobile applications: Receiver Operating
Characteristic (ROC) performance, size of fingerprints gen-
erated compared to size of audio probe, and transmission
delay if the fingerprint data were to be transmitted over a
wireless link. We hope that the evaluation in this paper will
provide key insights and guide us towards developing low
latency retrieval systems. In Section 4, we survey the differ-
ent audio fingerprinting schemes. In Section 5, we describe
the evaluation framework and provide experimental results.

4. SURVEY OF FINGERPRINTING SCHEMES
Before we survey popular audio fingerprinting schemes, we
discuss the typical pipeline for audio retrieval applications.
First, a set of fingerprints are extracted from the query song.
The fingerprints could be extracted at uniform sampling rate,
or only around points of interest in the spectrogram (e.g.,
spectrogram peaks in the case of Wang [18]). For mobile
applications, it is critical that individual fingerprints be ro-
bust against ambient noise, compared to the corresponding
database fingerprint.

Next the query is compared with a database of reference
tracks to find candidate matches. To avoid pairwise com-
parison between the query and all of the reference tracks,
the database is partitioned. The partitioning of the database
is precomputed for the database, and each partition is asso-
ciated with a list of database songs (also called an inverted
index). The partitioning on the database could be done by

direct hashing of the fingerprints (e.g., a 32 bit fingerprint
could be directly hashed into a table with 4 billion entries),
Locality Sensitive Hashing or techniques based on Vector
Quantization. This partitioning allows approximate-nearest-
neighbor-search as exact-nearest-neighbor search is infeasi-
ble in a database with billions of fingerprints. The inverted
file for each cell consists of a list of song IDs and the timing
offsets at which the fingerprints appear. The timing infor-
mation is used in the final step of the pipeline. Based on the
number of fingerprints they have in common with the query
probe from the inverted index, a short list of potentially sim-
ilar database songs is selected from the database.

Finally, a temporal alignment step is applied to the most
similar matches in the database. Techniques like Expecta-
tion Maximization [14], RANSAC [9], or Dynamic Time
Warping [6] are used for temporal alignment. In the case of
linear correspondence (i.e., the tempo of the database and
query songs are the same), Wang [18] proposes using a sim-
ple and fast technique that looks for a diagonal in the time-
vs-time plot for matching database and query fingerprints.
The existence of a strong diagonal indicates a valid match.
The temporal alignment step is used to get rid of false posi-
tives, and enables very high precision retrieval.

In this Section, we review three fingerprinting schemes in
detail: Ke [14], Baluja [4] and Wang [18]. In the interest of
space, we omit the scheme proposed by Haitsma [11] as the
fingerprint by Ke improves directly upon their scheme [14].
For a comparison of the two schemes by Ke and Haitsma,
interested readers are referred to [14]. For each scheme, we
first discuss the details of the scheme and the motivation
behind the approach, followed by system parameters sug-
gested by the authors that provide good trade-off between
accuracy and computational complexity.

4.1 Ke, Hoiem and Sukthankar

4.1.1 Description

Ke’s approach builds on popular classification techniques in
the computer vision community. Ke provides the important
insight that 1-D audio signals can be processed as conven-
tional images when viewed in the time-frequency spectro-
gram representation. The time-frequency spectrogram data
is treated as a set of overlapping images. To compute a com-
pact fingerprint on each image, the authors first train simple
AdaBoost classifiers based on box-filters, a technique pop-
ular in face detection. The training data for classification
is obtained by considering audio samples and their corre-
sponding versions degraded by noise. The output of each
classifier yields a binary value. E.g., each classifier outputs
a 1 or a 0 based on the differences between values aggre-
gated in two sub-rectangular regions of the spectrogram im-
age. The concatenated output of the set of classifiers is then
used as a fingerprint of the spectrogram image.
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4.1.2 System Parameters

Ke and Haitsma use the same set of parameters for comput-
ing the spectrogram. The spectrogram, obtained by Short
Term Fourier Transform (STFT), represents the power in
33 logarithmically-spaced frequency bands spaced 300 Hz
and 2000 Hz. Overlapping spectrogram images measured
over 0.372s windows are considered in 11.6 ms increments
(∼100 fingerprints/second). The short increments coupled
with large spectrogram images at each step are used to make
the scheme robust to sampling errors and small time-offsets.
For a 10 second probe, the scheme produces 860 finger-
prints. For the AdaBoosting step, 32 classifiers are chosen
out of a candidate list of 25000 filters. We use the training
data sets and code provided by the authors at [13]. Two fin-
gerprints are considered to be a match if they have a Ham-
ming distance <2, in the feature matching step of the re-
trieval pipeline.

4.2 Baluja and Covell
4.2.1 Description

Similar to Ke’s work, Baluja’s fingerprint is also inspired
from the image retrieval community. The pipeline for com-
puting “waveprints”(the term used by the authors to describe
their wavelet-based fingerprints) is illustrated in Fig. 1, and
in inspired from [12].

First, the authors compute overlapping spectrogram im-
ages using the same approach proposed by Ke. Next, the
spectrogram images are decomposed using multi-resolution
Haar wavelets. Wavelets are chosen due to their effective-
ness in the retrieval work presented in [12]. An image pro-
duces as many wavelet co-efficients as pixels. Next, the au-
thors retain only the top-t few wavelets, where t is chosen
to be much smaller than the size of the spectrogram im-
age. Next, the authors observe that the top-t wavelets are
sparse. To obtain a compact represenation, the authors only
retain the sign information (an approach also found effective
in [12]), and use the Min-Hash technique to generate a set
of p bytes that is used to represent the original spectrogram
image. Two spectrogram images can now be compared di-
rectly by computing the byte-wise Hamming distance of the
p bytes. For this approach to be effective, p needs to be
large (typically chosen to be 100). Nearest neighbor search-
ing in a 100 dimensional space is non-trivial. Hence, in the
final step, Locality Sensitive Hashing (LSH) is used to find
approximate-nearest-neighbor fingerprints in this space.

4.2.2 System Parameters

The authors optimize system parameters for accuracy and
computational complexity in [3, 4]. We use the parame-
ters recommended by the authors in [3]. Overlapping spec-
trogram images measured over 0.372 second windows are
considered in 0.09 second strides (∼10 fingerprints/second).
t = 200 top wavelets are considered. p is chosen to be

Figure 1. Pipeline for extracting waveprint features proposed by
Baluja [4]. Spectrogram images are represented as p bytes obtained from
Min-Hashing, which can be compared byte-wise directly for computing
similarity.

100, i.e., each fingerprint is represented as 100 bytes. For
LSH, the 100-byte fingerprint is divided into 25 equal 4-byte
bands. Each 4-byte band is stored as a 32 bit hash table. In
the feature-matching step, two fingerprints are considered to
be a match if their 4-byte representations match in at least
one of the 25 LSH bands.

Figure 2. Illustration of audio fingerprints proposed by Wang [17].
Triplet information ((t2 − t1, f1, (f2 − f1)) is quantized to form the fin-
gerprint.)

4.3 Wang
4.3.1 Description

While the schemes by Ke and Baluja use dense sampling
and compute fingerprints over fairly large spectrogram im-
ages, Wang proposes looking only at spectrogram peaks.
There are two reasons for choosing spectrogram peaks: First,
spectrogram peaks are more likely to survive ambient noise.
Second, spectrogram peaks satisfy the property of linear su-
perposition, i.e., a spectrogram peak analysis of music and
noise together will contain spectral peaks due to the music
and the noise as if they were analyzed separately [17]. The
fingerprinting scheme is illustrated in Fig. 2. For pairs of
peaks (t1, f1) and (t2, f2), the fingerprint is computed on
a triplet of ((t2 − t1), f1, (f2 − f1)). Each number in the
triplet is quantized and the concatenated value is treated as
the fingerprint.

4.3.2 System Parameters

For this scheme, we adapt the implementation provided by
Ellis [7]. We optimize over a parametric space, and choose
the following set of parameters. The frequency data in the
spectrogram is divided into 256 levels linearly. We con-
sider neighboring peaks in an adjacent frequency range of
64 units, and timing range of 64 units (sampling rate of the
audio signal is set to 8 KHz). The values ((t2−t1), f1, (f2−
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f1)) are represented as 6,8 and 6 bits respectively to ob-
tain a 20 bit fingerprint. For this data set, the 20 bit fin-
gerprint works better than a 32-bit fingerprint suggested by
Wang in [18] - note that over quantization could affect per-
formance adversely. We generate 20 fingerprints per second.

5. EXPERIMENTAL RESULTS
We use our own data set as we were not able to find any
publicly available data sets captured from mobile phones.
Most existing data sets introduce artificial distortions to the
audio (e.g., adding noise), and are not representative of dis-
tortions typical in the mobile scenario. We captured audio
clips on a Nexus One phone from a set of 39 songs played
on TV and from laptop speakers in noisy environments. In
our data collection, we tried to capture noise from differ-
ent ambient noise sources. Our song data set contains pop-
ular songs from artists like Lady Gaga, Michael Jackson,
Green Day, Avril Lavigne, to name a few. Each of these
clips is between 60 and 90 seconds long, which we divide
into non-overlapping 5, 10 and 15 second snippets to use
as query probes. This gives us a ground truth data set of
over a 1000 pairs of query probes and their corresponding
uncorrupted reference songs. All pairs between query and
reference, both positive and negative examples, are consid-
ered to generate Receiver Operating Characteristic (ROC)
curves.

5.1 Receiver Operating Characteristic
We evaluate the different fingerprinting schemes first after
the fingerprint indexing step, and subsequently, the temporal
alignment step.

5.1.1 Fingerprint Indexing

The inverted index on the database enables fast retrieval and
provides a shortlist of candidates to be considered for a more
extensive temporal alignment check. Each query fingerprint
votes for all the database fingerprints that it finds in the in-
verted index. The similarity between the database song and
query song is the number of fingerprints in common be-
tween them, based on the approximate-nearest-neighbor in-
dexing strategy. For Ke, the similarity measure is the num-
ber of fingerprints that have <2 Hamming distance. For
Baluja, the similarity measure is the number of fingerprints
that have >=1 matches in the 25 LSH bands. For Wang, the
similarity measure is the number of 20-bit fingerprints that
get hashed to the same bin.

We compute such a similarity score for matching and
non-matching pairs of ground-truth query and database songs,
for the different schemes. From these similarity scores, we
form two histograms, one for matching pairs and one for
non-matching pairs, as illustrated in Fig. 3. The overlap-
ping between the two histograms depends on the fingerprint-
ing scheme, and more importantly, the length of the query

probe. The longer the query probe, the lower the overlap be-
tween the two histograms, and the better the performance of
the scheme. Also, the more discriminative the fingerprint,
the lower the overlap between the two histograms. From
the two histograms we obtain a Receiver Operating Char-
acteristic (ROC) curve which plots correct match fraction
against incorrect match fraction. The different points on the
ROC curve are obtained by adjusting the similarity measure
threshold. The higher the ROC curve, the more effective the
retrieval system.
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Figure 4. ROC performance of different schemes. The number in brack-
ets is the length of the query probe in seconds. The performance of each
fingerprinting scheme increases as the query length increases. Baluja’s
scheme performs the best.

We plot the ROC performance of the three schemes in
Fig. 4. For each scheme, we note that the ROC performance
improves as the length of the query probe increases from 5
to 15 seconds, as expected. Typically, the returns are dimin-
ishing beyond 10 seconds. Baluja’s fingerprinting scheme
performs the best for all query probe lengths. The Min-
Hash based fingerprints (100 bytes each) are highly discrim-
inative and capture information over a longer time-duration
than Wang’s scheme.

The Wang fingerprints are far more compact - however,
the fingerprints are sensitive to small offsets in spectrogram
peak localization. The low dimensionality of the finger-
print makes it less discriminative, causing the scheme to re-
quire a longer probe to achieve a comparable performance to
Baluja’s scheme. Also, the lower dimensionality of the de-
scriptor implies that it does not scale well as the size of the
database grows. As the length of the query probe increases
to 15 seconds, Wang’s scheme catches up in performance.

Finally, we observe that Ke’s scheme performs poorly
for the short query probes that we are interested in. For
Ke’s scheme to catch up in ROC performance, much longer
probes would be required. The scheme also suffers due to
its dependence on the set of AdaBoost classifiers used to
generate the fingerprint. For our evaluation, we used the
AdaBoost classifiers provided by the authors in [13]. A
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Figure 3. Distribution of scores for matching and non-matching pairs of query probe and reference songs illustrated for the different fingerprinting schemes.
Ideally, we would like to have the matching pairs to have very high scores, and non-matching pairs to be exactly 0. The overlap in the distributions causes
errors in retrieval. This overlap depends on the discriminativeness of the fingerprinting scheme and also on the length of the query probe. Longer query probes
provide a better separation between the two distributions.

mismatch between training and test data can affect the per-
formance of this scheme adversely. We require robustness
against a broad range of mobile environments and noise
sources, and training a set of AdaBoost classifiers for dif-
ferent environments is not practical.

5.1.2 Temporal Alignment

Based on computational resources available, accuracy re-
quirements and the size of the database, retrieval systems
choose an operating point on the curve shown in Fig. 4.
E.g., state-of-the-art retrieval systems would typically op-
erate in the 80-90% True Positive Rate regime. At the oper-
ating point, we apply the Temporal Alignment (TA) scheme
proposed by Wang to get rid of false positives. It is rela-
tively easy to achieve high precision for audio retrieval ap-
plications. By requiring a minimum number of fingerprint
matches to satisfy TA, we can get rid of most false positives.
We set the minimum number of temporally aligned matches
to 5 for this experiment. We plot the percentage of queries
passing the temporal alignment check as a function of query
probe length in Fig. 5. Again, we observe Baluja’s scheme
performs the best, followed by Wang and Ke respectively.
The performance for each scheme improves as the length
of the query probe increases. We conclude that highly dis-
criminative fingerprints help significantly for short 5 second
query probes. Next, we study the amount of data generated
for each fingerprinting scheme.
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Figure 5. Recall as a function of query probe length for different sc-
hemes. Precision is 100% as the temporal alignment step eliminates false
positives.

5.2 Data Size and Transmission Delay

The different fingerprinting schemes generate different amo-
unts of data. Here, we present results for a 10 second probe,
as 10 second probes provide a balance between accuracy and
latency for all three schemes. Ke’s scheme produces 729
4-byte fingerprints, Baluja’s scheme produces 87 100-byte
fingerprints, and Wang’s scheme produces 587 20-bit finger-
prints on average for 10 second probes. The amount of data
generated for the different schemes is shown in Fig. 7. We
compare the size of fingerprint data to the size of a 10 second
Vorbis compressed audio at 64 kbps (80 KB). We observe
that the size of fingerprint data is significantly lower than
the size of the compressed audio for all fingerprinting sche-
mes (<10 KB). This motivates computing the fingerprints
on the device, whenever possible. We note that Wang’s
scheme produces less data than Baluja’s or Ke’s scheme.
For a fair comparison between the different schemes, we
plot the bitrate-Equal Error Rate (EER) performance in Fig-
ure 6. We note that the reduction in data for Wang’s scheme
comes at the cost of ROC performance shown in Fig. 6.

If fingerprinting were to be done on the device, how long
would the transmission delay be for sending the fingerprint
data? The transmission delay would depend on the wireless
network used: 3G or WLAN (Wireless LAN). WLAN sys-
tems provide much higher bandwidth compared to 3G, and
transmission delay is negligible even for large packet sizes.
Here, we present transmission delay numbers only for a 3G
connection, as it is the most prevalent on mobile phones to-
day [16]. For network transmission delay experiments, we
use the data presented in [10, 16]. The authors conduct ex-
periments in an AT&T 3G wireless network, with a total of
more than 5000 transmissions at locations where a typical
audio retrieval system would be used.

We present the time it would take to transmit fingerprint
data for the different schemes in Fig. 7(b). Transmitting fin-
gerprint data takes in the order of a few seconds, while trans-
mitting the compressed audio could take tens of seconds,
based on the wireless link. Note that the delay numbers
shown here only represent the data transmission delay for
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Figure 6. Equal Error Rate (EER) vs. bitrate tradeoff. Baluja scheme
works well at high bitrates, while Wang’s scheme works well at low bi-
trates.

different fingerprinting schemes. The end-to-end system la-
tency would depend on the streaming protocol, the length of
query probe considered, transmission delay and processing
delay on the server. Based on the experimental results pre-
sented here and in [10], we would expect the transmission
delay to be the bottleneck in 3G networks, which motivates
computing fingerprints on the device.
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Figure 7. Fig.(a) shows size of data generated by different schemes.
Fig.(b) shows the associated transmission delay if the data were to be trans-
ferred over a 3G network. The data and transmission delay numbers are
presented for 10 second query probes. Data for 5 and 15 second probes can
be extrapolated linearly.

Finally, we draw some parallels between mobile image
retrieval and audio retrieval. We note that Ke and Baluja
were both inspired by work in computer vision literature.
Interest point detectors and descriptors have been well stud-
ied in computer literature: readers are referred to the sur-
vey papers [15, 19]. What has pushed the field forward is
the availability of good image and patch level data sets that
capture the distortions (e.g., perspective and lighting in im-
ages) that interest point detectors and descriptors need to
be robust against. The availability of similar ground-truth
data sets will be useful for designing interest point detectors
and descriptors for audio retrieval. Spectrogram peaks pro-
posed by Wang is one example of interest point detection,
but other schemes need to be explored. Interest point de-
tectors are the first step in the pipeline, and improvements
here could affect blocks further down the pipeline. Next,
we note that the best descriptors in the vision literature are
high-dimensional and capture salient characteristics in a lo-
cal neighborhood around the interest point. In the case of
audio retrieval, we need descriptors around interest points to

be robust against small timing offset errors, and distortions
introduced by ambient noise. Both interest point detectors
and descriptors for audio retrieval in highly noisy environ-
ments are interesting areas for future work. We conclude by
noting that techniques and algorithms developed in recent
image retrieval literature can be used to further improve ef-
ficiency and performance of audio retrieval systems.

6. CONCLUSION
We perform a thorough survey and evaluation of popular
audio fingerprinting schemes in a common framework. We
report and discuss results important for mobile applications:
Receiver Operating Characteristic (ROC) performance, size
of fingerprints generated compared to size of the compressed
audio sample, transmission delay if the fingerprint data were
to be transmitted over a 3G wireless link and computational
cost of fingerprint generation.
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ABSTRACT

A study on the verbal attributes of musical timbre was con-
ducted in an effort to identify the most significant semantic
descriptors and to quantify the association between promi-
nent timbral aspects and several categorical properties of
environmental entities. A verbal attribute magnitude esti-
mation (VAME) type of listening test in which participants
were asked to describe 23 musical sounds using 30 Greek
adjectives together with verbal terms of their own choice
was designed and conducted for this purpose. Factor and
Cluster Analysis were performed on the subjective evalua-
tion data in order to shed some light on the relationships be-
tween the adjectives that were proposed and to conclude to
the number and quality of the salient perceptual dimensions
required for the description of this set of sounds.

1. INTRODUCTION

Musical timbre perception and its acoustical correlates have
been a subject of research since the late 19th century [15].
During the last decades numerous studies on musical timbre
have tried to uncover the number of significant perceptual
dimensions and their semantic associations. Having applied
different techniques most of these studies have concluded
to either 3 or 4 major perceptual dimensions for modelling
timbres of monophonic acoustic instruments and have also
proposed a wide range of verbal attributes to label them.
Grey in his state-of-the-art study in 1977 proposed a 3-D
space for musical timbre representation by applying Mul-
tidimensional Scaling techniques to pairwise dissimilarity
rating data [3]. Krumhansl and McAdams have also pro-
posed a 3-D space [8], [9] whose physical correlates vary
compared to the ones proposed by Grey.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.
c© 2011 International Society for Music Information Retrieval.

von Bismarck conducted a semantic differential listen-
ing test featuring 30 verbal scales in order to rate 35 speech
sounds [14]. According to this study timbre would have
four orthogonal dimensions. One of the four von Bismarck’s
dimensions is associated with volume (full-empty), another
one is a blend of vision and texture (dull-sharp), the third
is labelled colourful-colourless and the last one is labelled
compact-diffused. Other related studies also revealed three
or four perceptual axes. Pratt and Doak, working with sim-
ple synthetic tones have proposed a 3-D space featuring a vi-
sion (bright-dull), a temperature (warm-cold) and a wealth
(rich-pure) axis [11]. S̆tĕpánek’s study in the Czech lan-
guage [13] reveals one dimension associated with vision
(gloomy-clear), another one with texture (harsh-delicate),
a third one with volume (full-narrow) and a last one with
hearing (noisy/rustle-‘undefined’). Moravec’s work again in
Czech language has also resulted to four perceptual axes re-
lated to vision (bright/clear-gloomy/dark), texture (hard/sharp-
delicate/soft), volume (wide-narrow) and temperature (hot/
hearty - ‘undefined’) [10]. Finally, Howard’s study in the
English language [6] has uncovered four salient dimensions
the first of which is a mixture of vision, texture, volume and
temperature (bright/thin/harsh-dull/warm/gentle). The sec-
ond one is labelled pure/percussive-nasal, the third is as-
sociated with the material of the sound source (metallic-
wooden) and the fourth is related to the evolution in time
(evolving).

Although there seems to be some agreement concerning
the number and attributes of the timbre dimensions, some
differences between studies do exist. Such inconsistencies
could be due to the different experimental protocol used
each time and also due to generalization of the findings that
resulted from a particular ‘sampling’ of the vast timbre space.
Thus, the selection of an appropriate set of sounds that will
represent as much of the variance of the existing musical
timbres as possible and at the same time will keep the dura-
tion of a listening test relatively short is crucial. This work
addressed this issue by including a wide range of musical
timbres with high ecological validity drawn from acoustic
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instruments, electric instruments and synthesisers.
All of the cited studies have applied Factor Analysis and

Cluster Analysis techniques in order to achieve dimension
reduction of their multidimensional perceptual data. Factor
analysis is a multivariate statistical technique that is used to
uncover the latent structure of a set of inter-correlated vari-
ables [4]. It is widely applied in musical timbre research in
order to reduce a large number of semantic descriptions to a
smaller number of interpretable factors. Cluster Analysis is
another statistical technique that seeks to identify homoge-
neous subgroups within a larger set of observations [12]. In
the research on timbre perception it can indicate groups of
semantically related verbal descriptors.

The current work has also made use of these data analysis
techniques seeking for more definitive conclusions concern-
ing the nature of the significant verbal descriptors of musical
timbre. Overall, it aims at yielding a content analysis frame-
work based on extramusical semantics.

2. METHOD

For the purpose of this study a listening test exploiting a
variation of the Verbal Attribute Magnitude Estimation (VAME)
[7] method was designed and conducted. The subjects were
provided with a pool of 30 Greek verbal descriptors and
were asked to describe timbral attributes of 23 sound stim-
uli by choosing the adjectives they believed that were more
appropriate for each case. Once a subject chose a descriptor
he was further asked to insert its amount of relevance on a
scale anchored by the verbal attribute and its negation, such
as “ not brilliant - very brilliant”. This rating was performed
by a horizontal slider with a hidden continuous scale rang-
ing from 0 to 100. The verbal descriptors used, were En-
glish language equivalents that are commonly found in tim-
bre perception literature [1], [14], [2], [5] and are depicted
in Table 1. The subjects were also free to insert up to three
adjectives of their own choice for describing each stimuli in
case they felt that the provided terms were inadequate.

2.1 Stimuli - Material

A set of 23 sounds of high ecological validity (acoustic in-
struments, electric instruments and state-of-the-art synthe-
sisers) was selected. The following 14 instrument tones
come from the MUMS (McGill University Master Samples)
library: violin, sitar, trumpet, clarinet, piano at A3 (220 Hz),
double bass pizzicato, Les Paul Gibson guitar, baritone sax-
ophone B flat at A2 (110 Hz), oboe at A4 (440 Hz), Gib-
son guitar, pipe organ, marimba, harpsichord at G3 (196
Hz) and french horn at A3# (233 Hz). A flute recording at
A4 was also used along with a set of 8 synthesiser sounds:
Acid, Hammond, Moog, Rhodes piano at A2, electric piano
(rhodes), Wurltitzer, Farfisa at A3 and Bowedpad at A4. The
samples were loudness equalised with an informal listening

test within the research team. The playback level was set
between 65 and 75 A weighted dB SPL rms. 83% of the
subjects found that level comfortable and 78% reported that
loudness was perceived as being constant across stimuli.

The listening test was conducted in an acoustically iso-
lated listening room. Sound stimuli were presented through
the use of a desktop computer (Intel pentium 2.8 GHz, 1 GB
Ram, WinXP(SP3)), with an M-Audio (Firewire 410) exter-
nal audio interface, and a pair of Sennheiser HD60 ovation
circumaural headphones. The interface of the experiment
was built in Max/MSP.

2.2 Listening Panel

Forty one subjects (aged 19-55, mean age 23.3, 13 male)
participated in the listening test. None of them reported any
hearing loss and all of them were critical listeners and had
been practising music for 13.5 years on average (ranging
from 5 to 35). The majority of subjects were students at the
Department of Music Studies of the Aristotle University of
Thessaloniki. Course credit was offered as a reward for their
participation.

2.3 Procedure

Initially the listeners were presented with a familiarisation
stage which consisted of the random presentation of the stim-
uli set in order for them to get a feel of the timbral range
of the experiment. For the main part of the experiment
the playback of each sound was allowed as many times as
needed prior to submitting a rating. The sounds were pre-
sented in a random order for each listener in order to min-
imize bias to the responses. Subjects were advised to use
as many of the terms as they felt were necessary for an ac-
curate description of each different timbre and also to take
a break in case they felt signs of fatigue. They were also
free to withdraw at any point. The overall listening test pro-
cedure, including instructions, lasted around 40 minutes for
the majority of the subjects. The wide majority of subjects
rated the above procedure as easy to follow, clear and mean-
ingful.

2.4 Factor Analysis

Although the choice between Exploratory Factor Analysis
(FA) or Principal Components Analysis (PCA) for data re-
duction has long been debated, we believe that FA is the
appropriate choice for our investigation, as we focus on the
identification of potential underlying structures that shall de-
scribe and justify the semantic representation of listeners’
timbral experiences and judgements, across different musi-
cal sounds.

The basic FA model is described as:
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zj = aj1F1 + aj2F2 + . . . + ajnFn + Uj =

n∑
i=1

ajiFi + Uj

(1)
where j = 1 . . . m or in matrix notation,

Z = A· F + U (2)

where

ZT =
[

z1 · · · zm

]
is the array of m analysed variables

A =

 a11 · · · a1n

...
. . .

...
am1 · · · amn


is the matrix of factor loadings to be estimated from the
data,

FT =
[

F1 · · · Fn

]
is the array of n Common Factors, and

UT =
[

U1 · · · Um

]
is the array of m Unique Factors.

Actually, the problem and methodology of FA is to try
to create, from a set of original variables, a new set of con-
structs (the common factors, with n < m) that will com-
pactly describe the correlations between the original vari-
ables. Unique factors add to the versatility of the solution,
as they account for that part of the original variance that
cannot be attributed or modelled by the common factors.

3. RESULTS

The listeners’ responses were analysed employing Cluster
Analysis and Factor Analysis (FA). For this reason the quan-
tity estimations on each verbal descriptor and each musical
timbre were averaged over the 41 subjects of the test. Basic
statistics for each descriptor are shown in Table 1.

Only 37% of the subjects inserted at least one extra ver-
bal descriptor thus providing 36 additional terms. However,
only 9 of them where mentioned more than once and only 4
were mentioned by more than one subject. This sparsity and
inconsistency of the findings implies that our proposed set
of 30 adjectives was adequate for describing this particular
set of musical timbres.

As the distributions for most descriptors showed exces-
sive positive skewness, a square root monotonic transforma-
tion was applied. Initially, the terms empty, distinct, nasal
were removed following a bivariate correlation analysis over
the 30 descriptors that was employed to identify and remove

Table 1. Basic statistics for each verbal descriptor.

Descriptor Range Mean Descriptor Range Mean
Brilliant 25.68 8.63 Deep 59.93 10.82
Hollow 17.43 6.08 Distinct 34.34 11.65
Clear 48.39 8.76 Dry 24.00 8.13
Rough 33.45 8.47 Light 25.54 4.76
Metallic 39.17 14.02 Messy 39.73 4.90
Warm 23.66 9.01 Empty 36.80 6.93
Smooth 19.24 5.05 Dirty 41.51 8.60
Thick 47.32 8.26 Compact 17.22 7.91
Rounded 26.10 11.22 Dark 23.95 7.81
Harsh 25.88 9.48 Soft 34.32 6.14
Dull 30.41 10.93 Nasal 33.07 9.30
Thin 18.76 5.61 Full 35.90 13.50
Shrill 55.37 17.90 Dense 20.07 8.89
Cold 13.33 6.59 Bright 16.95 5.44
Sharp 36.31 10.96 Rich 20.49 6.68

those with several instances of low correlation coefficients
(absolute value < 0.2), which could potentially reduce the
validity of further dimensionality reduction analysis. A cen-
troid Hierarchical Cluster Analysis based on squared Eu-
clidean distances over the remaining 27 descriptors (Figure
1) identified 3 major clusters of descriptors, namely Clus-
ter 1: soft, light, warm, smooth, rounded, dull, rich, full,
thick, deep, dense, dark, compact, hollow, Cluster 2: bright,
brilliant, thin, clear, Cluster 3: shrill, sharp, rough, harsh,
dirty, messy, dry, cold, metallic. In order to further reduce
the number of verbal descriptors, a preliminary Factor Anal-
ysis was performed within each cluster and those with abso-
lute factor loadings 1 > 0.7 were selected for the subsequent
final Factor Analysis.

For each cluster FA, Maximum Likelihood (ML) factor
extraction with Oblimin rotation was employed. Maximum
Likelihood estimation of factor loadings allows for suffi-
cient, consistent and efficient representation of the FA’s pat-
tern matrix, under the provision of multivariate normality of
the data, a condition for which special steps have been taken
in this work (e.g. variable transformation).Traditionally, FA
results in a reduced size description of correlations between
the subjected variables using new ‘combined’ variables (the
factors) which are designed and computed as mutually or-
thogonal. However, in several cases, orthogonality of fac-
tors could impede the interpretability of results by consti-
tuting an unexpectedly strict and excluding possibility. We
believe that in this work we should relax the factors’ or-

1 Factor loadings are the correlation coefficients between variables and
factors. The values of the factor loadings indicate how well a certain vari-
able is represented by a particular factor and are crucial for the labelling
and interpretation of the factors.
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Figure 1. Dendrogram of the Hierarchical Cluster Analysis
over the 27 descriptors.

thogonality requirement, and follow a conceptually ‘wider’
approach, by employing a non-orthogonal (oblique) rotation
of the initial orthogonal solution. Later on, as it is usually
preferred, it will be possible to check and justify the neces-
sity for such a divergence from orthogonality requirements,
by considering inter-factor correlations. The Direct Oblimin
method (among others) is considered as a viable approach to
the problem of oblique factor rotation.

Principal components extraction was used prior to fac-
tor extraction in order to determine the number of factors
and ensure absence of multicollinearity. The Kaiser-Meyer-
Olkin (KMO) 2 measure of sampling adequacy was for all
three clusters bigger than 0.6 (Cluster 1: 0.672, Cluster2:
0.69, Cluster 3: 0.76), and the Bartlett’s test of spheric-
ity 3 also showed statistical significance. For each clus-
ter, the first 3 factors were decided to be retained from the
initial eigenvalues and the scree plots, accounting for more
than 79% of cumulative variance. After factor extraction,
the selected factors based on communalities 4 bigger than

2 The KMO assesses the sample size (i.e. cases/variables) and predicts
if data are likely to factor well based on correlation and partial correlation.
The KMO can be calculated for individual and multiple variables. KMO
varies from 0 to 1.0 and KMO overall should be .60 or higher to proceed
with factor analysis.

3 Bartlett’s test concerns whether correlations between variables are
overall significantly different from zero.

4 The communality measures the percent of variance in a given variable

0.6 were: Cluster 1: soft, light, warm, smooth, rounded,
rich, full, thick, deep, dense, Cluster 3: shrill, sharp, rough,
harsh, dirty, messy, dry. However, for the second cluster, a
3-factor solution could not be obtained and we decided to
reduce the number of factors to 1, leading to retained de-
scriptors as Cluster 2: bright, brilliant. In all 3 cases all
eigenvalues were > 0.014, avoiding singularity.

The descriptors selected in the preliminary stage were
then subjected to a final FA, again using ML and Oblimin
rotation. The KMO measure was 0.654 and the Bartletts test
of sphericity also showed statistical significance. Although
singularity was again avoided, extreme multicollinearity was
present leading to removal of ‘culprit’ descriptors. Next, the
FA was repeated with a reduced set of 15 remaining descrip-
tors. Again, 3 factors were extracted, accounting for more
than 85% of initial variance. Although only messy and dirty
had extracted communality < 0.6, for reasons of parsimony
we additionally posed a criterion of absolute factor loading
> 0.75 as a final step to data reduction. Maximum corre-
lation between rotated factors was 0.249. The prominent
descriptors over the three factors are shown in Table 2. Fac-
tor scores coefficients are given in Table 3. Multiplied by a
sample’s standardized measured score on the corresponding
variables, these coefficients will sum to the score of a given
sample on a given factor.

Table 2. Factor Loadings.
Factor

1 2 3
Brilliant -0.885
Deep 0.824
Soft 0.881
Full 0.851
Bright -0.946
Rich 0.993
Harsh -0.861
Rounded 0.904
Thick 0.798
Warm 0.787
Sharp -0.779

Factor loading values are the basis for inputting a label
to each of the different factors. A high factor loading in-
dicates that a particular variable is expressed strongly by a
certain factor. Based on Table 2, the three factors could be
identified as Factor 1 volume/wealth, Factor 2 brightness
and density, and Factor 3 texture and temperature(warmth).
Thus, it would seem possible to address musical timbre with
semantic associations to material objects properties. It also
seems, based on indications from the extracted variances,
and since the oblique rotation results in relatively low levels

explained by all the factors jointly.

810



12th International Society for Music Information Retrieval Conference (ISMIR 2011)

Table 3. Factor Scores Coefficients.
Factor

1 2 3
Brilliant -0.17 -0.121 0.020
Deep -0.057 0.266 0.079
Soft -0.035 0.098 0.160
Full 0.065 0.103 -0.022
Bright -0.051 -0.286 0.079
Rich 0.898 -0.186 -0.099
Harsh 0.003 0.006 -0.106
Rounded 0.011 0.006 0.588
Thick 0.076 0.258 0.009
Warm -0.000 0.006 0.065
Dense 0.18 0.052 0.003
Dry -0.005 0.018 -0.057
Sharp 0.003 -0.043 -0.095

of correlation between factors, that all factors share some
common and balanced portion ( 23%, 34% and 24% corre-
spondingly) of the total explained variance (∼ 82%), which
by turn reveals a relatively equal importance of descriptors
upon the timbral targets.

The low correlation between factors implies the existence
of a nearly orthogonal perceptual space, thus a positioning
of the 23 sound stimuli into a euclidean 3-D space seems
justified and is shown in Figures 2, 3 and 4. Figures 3 and
4 reveal a noticeable influence of fundamental frequency on
the brightness axis, as higher pitched sounds tend to be rated
as brighter than lower pitched ones. A potential similar in-
fluence on the other two axis cannot be supported by these
depictions.

4. DISCUSSION

The above findings share many things in common with re-
sults of previous studies -as presented in the introduction-
both on the number and on the attributes of the uncovered
timbre space dimensions. Indeed, volume, wealth, texture,
temperature and vision related terms have also been attributed
as labels to timbre space dimensions from previous research.
Furthermore, most of the past studies result in perceptual
spaces of either three or four dimensions for musical timbre
representation. This agreement is present even among stud-
ies that apply different experimental protocols and methods
for the creation of timbre spaces such as Multidimensional
Scaling on data from pairwise dissimilarity listening tests
or Principal Component Analysis for dimension reduction
among perceptual variables. It is important, however, to
emphasize the fact that the Factor Analysis applied on the
variables (i.e adjectives) of this experiment was based on
strictly mathematical criteria avoiding any bias from past

studies results.
One other important outcome of the current work is that

inter-dimension correlation is low. Consequently, even though
the orthogonality requirement was not initially followed, as
in most previous works, the result is still a nearly orthogonal
space with independent dimensions.

A confirmatory study for examining the adequacy of the
extracted perceptual dimensions regarding timbre descrip-
tion will be the next step for reaching the desired content
analysis framework. The definition of such a framework
will contribute towards a better understanding of musical
timbre and can be used for the development of perceptual
driven applications on musical sound modification and syn-
thesis.

Finally, this study also positively adds to the concept of
inter-linguistic agreement regarding musical timbre verbal-
ization and proposes a certain rationale for the interpretation
of the salient musical timbre space dimensions. The notion
of timbre perception as being projected on other less abstract
senses in order to facilitate expression and communication
could in a sense justify the inter-linguistic agreement. The
orientation of the human mind towards decoding and cate-
gorizing all incoming information to familiar entities could
be responsible for the semantic associations to material ob-
jects that were revealed in this study.

Figure 2. Volume/Wealth vs Texture/Temperature

5. CONCLUSION

In this paper, we have conducted an initial exploration of the
possible underlying semantic structure of adjective timbral
descriptors for musical sounds. Factor and Cluster Analy-
sis applied on the subjective evaluation responses revealed
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Figure 3. Brightness-Density vs Volume/Wealth.

three perceptual dimensions with high degree of indepen-
dence that explained over 80% of the total variance. These
dimensions are associated with material object properties
such as volume, brightness-density and texture-temperature
and constitute a framework for the semantic description of
this particular set of sound stimuli. A further challenging
issue is the conduction of confirmatory structural analysis
(e.g. Confirmatory Factor Analysis) along different groups
of sounds and/or different groups of listeners, since all aes-
thetic, stylistic and cultural factors could possibly affect the
validity of the hereby developed semantic model. Subse-
quently, such a developed semantic framework could be de-
ployed in a semantically driven framework of audio signal
processing with application in musical sound synthesis, au-
dio post-production or other similar fields.
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Fouss, François, 61

813



Author Index

Freeman, Tim, 783
Friedland, Lisa, 387
Fuhrmann, Ferdinand, 239
Fujihara, Hiromasa, 233, 311
Fujinaga, Ichiro, 293, 423, 555, 561, 573, 633

Garcı́a-Dı́ez, Silvia, 61
Gaymay, Rémi, 375
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Härmä, Aki, 197
Harvilla, Mark J., 139
Hatano, Kohei, 693
Headlam, Dave, 115
Henaff, Mikael, 681
Herrera, Perfecto, 97, 239
Hu, Xiao, 789
Hu, Yajie, 103

Ito, Akinori, 31
Ito, Masashi, 31

Jang, Jyh-Shing Roger, 191
Jarrett, Kevin, 681
Jeng, Shyh-Kang, 25, 85
Jensen, David D., 393
Jiang, Nanzhu, 615
Jo, Seokhwan, 227
Joo, Sihyun, 227
Juhász, Zoltán, 299
Juncher, Kim Lundsteen, 405

Kavukcuoglu, Koray, 681
Kim, Youngmoo E., 549, 621, 777
Kirlin, Phillip B., 393
Kita, Kenji, 133
Kitamura, Tadashi, 531
Klapuri, Anssi, 501
Knees, Peter, 323
Knight, Trevor, 573
Koduri, Gopala K., 157, 263
Kolozali, Sefki, 465
Kotropoulos, Constantine, 495
Kowalski, Matthieu, 687
van Kranenburg, Peter, 163

Lagrange, Mathieu, 663
Laitinen, Mika, 369
Lamere, Paul, 591
Lanckriet, Gert, 55, 537, 705, 723, 747
Langlois, Thibault, 795
Laplante, Audrey, 341
Large, Edward W., 185
Lartillot, Olivier, 209, 603
LeCun, Yann, 681
Lee, Honglak, 175
Lee, Hung-Shin, 85
Lee, Jin Ha, 109
Lee, Tsung-Chi, 191
Legaspi, Roberto, 753
Leider, Colby, 771
Lemieux, Simon, 729
Lemström, Kjell, 91, 369
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