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ABSTRACT

We describe a computational method derived frorhael
ganizing mapping and multidimensional scaling &thans
for automatic classification and visual clusteriofylarge
vector databases. Testing the method on a larguusaf
folksongs we have found that the performance otthssi-
fication and topological clustering was signifidgintm-
proved compared to current techniques. Applying the
method to an analysis of the connections of 31 &anaand
North-American folk music cultures, a clearly ingegtable
system of musical connections was revealed. Theltses
show the relevance of the musical language gronphé
oral tradition of the humanity.

1. INTRODUCTION

The comparative study of different folk music cudtsl goes
back to the early 20th century [1-2]. Although ethmusi-

cologists seemed to gradually forget the conceptibthe

classical structural analysis and classificatitne, develop-
ment of the computation tools led to a renaissasfcthe

idea in recent years [3-4]. At the same time,rthmber of
representative national/regional digital folksongtadhases
is also increasing rapidly. Therefore, a computielec
comparison of different musical cultures in orderéveal

hidden contacts of different musical cultures bezarary

topical.

Current interdisciplinary research, based on thapeaation
of musicology, artificial intelligence research astata min-
ing, focuses on automatic similarity measuremesgren-
tation, contour analysis and classification usinffecent

statistical characteristics, e.g. pitch-intervalrbythm dis-
tribution. A very widely used kind of artificial neal net-

works, the self organising map (SOM) proved to beegy

versatile tool of computing musicology [5]. SOM-bds
systems have been elaborated for simultaneous ssaf/
the contour as well as the pitch, interval and tilomadistri-

butions, based on the symbolic representation eftlisic
[6]. A cross-cultural study of different musicallitwes was
also based on SOM technique [7].

The operation of a SOM can be summarised for ose ea
follows: Our input data to be classified are conteectors,
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containing subsequent pitch values of melodies &flle
song database. The main goal of self organisingpimggs
to characterise the multidimensional point systeom-c
structed by the set of these melody contour vediprs sig-
nificantly smaller set of “contour type vectors”sdeibing
the average contours in the local condensationiseoinput
contour vectors. Although the details of the caltiohs are
different, this goal essentially corresponds td tifahe so-
called K-means algorithm [8]. However, the SOM -pro
duces something more: it assigns the resultingocorype
vectors to the lattice points of a grid topographic The
topographic structure of the resulting map is piedi by a
cooperative learning, modifying the contour typectoes
located in neighbouring lattice points in paralkes a result
of this local cooperation, similar contour type togs are
located in neighbouring lattice points after leagni

Due to the topographic lattice, the SOM allows aisdé-
scribe the inherent relations of a melody collettio two
levels. Similar melodies are classified as variarita com-
mon contour type in the first level, while the tedas of the
classes represented by the contour types themsahees
mapped into the topographic lattice in the secamal o

The overall relations in a data set can be exdlieapre-
sented on a SOM, providing that these relationsbeawell
approximated by a two-dimensional structure. Howgeve
stretching a more complicated structure into anplattice
results in a significant loss of the accuracy &f thassifica-
tion on one hand, and a non-perspicuous map owttier
hand. In principle, it is possible to extend thepntimen-
sion, but the resulting exponential increase innthber of
lattice points dramatically increases the computimg and
the memory demand. Therefore, we need some chbr t
nigque to increase the degree of freedom of thetpdinthe
map.

Therefore, we elaborated a system combining the SOM
technique with a special version of the multidinienal
scaling (MDS) algorithm [9]. In MDS technique, thmgput
data to be visualised are presented in a quadnaditrix
containing some distance-like or similarity-likelwas be-
tween some objects. (For instance, the matrix caramn
geographical distances between towns, or dissityileat-
ings of melodies, etc.) The aim of the algorithntoisepre-
sent the objects (towns or melodies) in a low disiamal
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space (often in a plane) with the requirement thatdis- / =

tances of the low dimensional points must optimatyre- T T
spond to the input values. Fich

In the present work, firstly we describe a methauh-c ” f

structed by two independent stages correspondinthéo .
above-mentioned two-level characterisation of mglodr-

pora. The first stage is a simplified, non-coopeeat and

therefore non-topographic - version of SOM learningthe ) )
second stage, the topographic low-dimensional nmappf Figure 1. The generation of the melody contour vectirs
the resulting contour type vectors is accomplisiyda

variant of the MDS algorithm. This allows us to jeat the ~ One can see in the figure that the duration oftémeporal
spatial regularities of the multidimensional inpettor sys-  intervals of the pitch-time function is determinbgt the
tem to a continuous low-dimensional space withbetre-  rhythmic value of the corresponding note. Thus, rien
strictions of the planar grid structure of the SORlorder  rhythmic information is also encoded. For samplitg, to-
to express the contact to the original SOM prireighd to  tal length of the pitch-time function was divideata D

Time

emphasize the increased degree of freedom of thedio ~ portions. Then, the “melody vector”
rr:engio(réacl)gapping, we call this technique “selfamiging  x, = [XLk,X2k ...XDk]T was constructed from the se-
cloud” . ' '

As a generalisation of the original SOM principhes also ~ quence of the pitch-time samples of théh melody (See
present the cooperative version of the above legrays- Figure 1.).

tem, where the topographic arrangement is imprdy&e@ Since D was uniform for the whole set, melodies could be
feedback between the multidimensional learning #rel ~ compared to each other using a distance functiinetein

low dimensional mapping functions. the D -dimensional melody space, independently of their
We describe the results of a cross-cultural studylorep- individual length. Due to this normalisation, mefodon-
resentative Eurasian and North-American folksongeco ~ tours can be compared independently of their measur
tions, based on the modelling by “self organisingud” tempo and syllabic structure. We studied the melesiy

technique. The studied cultures are as follows:n&e,  tors of the entire songs in the analysis, and we liaund
Mongolian, Kyrgyz, Mari-Chuvash-Tatar-Votiac (Volga that a choice oD = 64 resulted in an appropriate accu-
Region), Sicilian, Bulgarian, Azeri, Anatolian, Kahay, racy for each melody.

Hungarian, Slovak, Moravian, Romanian, Cassubian

(North-Poland), Warmian (East-Poland), Great-Polish 3. DETERMINATION OF THE CONTOUR TYPE
(Southern-Central Poland), Finnish, Norwegian, Garm VECTORS

Luxembourgish, French, Dutch, Irish-Scottish-Erglis

(mainly Appalachian), Spanish, Dakota, Komi, Chanty In the first phase of the process, we determiNeD=64
Serbian-Croatian (Balkan), Kurd, Russian (Pskowr @8- gimensional “contour type” vector§;, characterising the
tapa_se conta|r_1$ digital n_otauons of nearly 3201 $ongs most important melody forms in a database contgiiMn
arising from different written sources. All of tleesources melodies. In a training step, the distances betveean-

apply the Western notation, thus, the microtonanamena
of the different cultures were eliminated by thethaws  dOomly selected melody contout, and the contour type

themselves. The time duration and musical structfine ~ Vectors are determined, and the contour type ofimah
melodies is very variable, therefore we normalizbd distanceC; is considered as the “winner”. The winner con-
length of the melody contours as follows. tour type is moved closer to the melody contour.

2. THE MELODY CONTOUR VECTORS In the initial state, the vectoiG; were filled by randomly

selected melodies of the database. The size ofdhour
type sets varied between 400 and 576. The algoritbm
sists of the following steps.

The generation of vectors from melodies is sumradris
Figure 1, showing the first section of a Hungarfialiksong
as an example. The continuous pitch-time functienved

from the score is represented by the thick linEigure 1. 1. A melody of the database was selected randondyita

There, the pitch is characterised by integer nusjber melody vectorX, was compared to the contour type vec-
creasing 1 step by one semitone, with the zerd leivehe tors C; using the Euclidean distance metric.

pitch corresponding to the C tone. (In order tauessini-

form conditions, each melody was transposed tofities

tone G.)
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2. The contour type vector of the minimal distafiGewas
determined as the “winner” and it was modified gsin

G =C +A(Xk —Ci) , (1)

where A is a scalar factor controlling the rate of conver-
gence and the accuracy.

The above technique can be considered as a K-nadgms
rithm [8], or equivalently, as a SOM with a leampiradius
of zero. This fact results in a remarkable simgéifion of
the SOM algorithm and a significant improvementtlod
classification as we will illustrate it below. Hower, these
advantages imply the disadvantage that the topbgrag-
rangement of the contour types — being a naturabe&o
guence of the original SOM process - requires &rttom-
putation. The algorithm producing a more compreivens
and adequate spatial arrangement of the contoer \gp-
tors is a version of the multidimensional scaliaghnique,
and is described below.

4. LOW DIMENSIONAL MAPPING OF THE
CONTOUR TYPE VECTORS

The basic idea of the multidimensional scaling atbm
can be formulated for our problem as follows: Weeha
set ofN pieces ofD=64 dimensional contour type vectors

Ci, and we can calculate ti¢*N dimensional quadratic,
symmetric matrixQ containing the squared Euclidean dis-
tancesq, ; of them. (The advantage of squaring will be ex-

plained below.) We want to represent thecontour types
by N vectorsV; of a low dimensional point system, so that

the distanceedh J- between these points converge to the best

low-dimensional approximations of the

D
q :Z(Ci,k_cj,k)z (2)
k=1
values in the sense of
N N
S=>>w (d;-q,;)*=min, 3)

where S

W

distance of the corresponding points in the stfesstion.
(For instance, the exact distance of very dissimikctors

is the stress function to be minimised, and
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=W, ; are weights expressing the importance of the

may not be important in certain cases. Thus, thgweal-
ues can be defined as functions of the input distaq, ;. )

The minimum of the stress function is searched kyaali-
ent algorithm. For sake of simplicity, we considlee case
when the low dimensional space is a plane, butébkalts
can be easily generalised to higher dimensionghétbe-
ginning, theN points are randomly located in the plane with

the coordinates(vrn’l,vm’2 , wherem denotes the serial

number of the points. The gradient components ®fthess
function in the A dimensional space of the point co-
ordinates are the partial derivatives

S & _ . \9d
avm’k-iZﬂI?ZW,j(di,; qi'j)av ’

=1 m,k

k=12 m=1.N. )(4

Let the “distance” of théth andjth points in the plane be
defined as

244
k=121i=1.N, j=1.N (5)
R . - 0d, ;
This definition yields a very simple expression for—— ,
Vm,k

and the gradient components of the stress funatidqua-
tion (4) become finally:

0S .
OV,

N
Zwi,m(vm,k ~Vik )(dm,i +d; = O — qi,m)
=

k=12m=1.N (6)

According to the gradient search principle, the resti-
mates of the optimal point co-ordinates are deteethias

_ . 8S
mk :uavm'k!

k =V 0
where the small scalar valpe determines the rate and the
accuracy of the convergence.

In the subsequent steps of the algorithm, the griidiom-
ponents of the stress function are re-calculatethénnew
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point locations using Equations (5) and (6), arel pbints
are replaced using Equation (7) again. The algorithn be
easily generalised to 3 or more dimensional poistesns.
Comparing the above algorithm to the self orgagisimap
(SOM), an important difference lies in the factttttee low
dimensional vectord/; are not fixed to lattice points, so
they are allowed to roam in the low dimensionalcgpan
search of their own optimal position. In order xpeess this
free roaming of the point system during learning] o dis-
tinguish between the original SOM and the aboverilesd
algorithm, we call it “self organising cloud” (SOC)

This non-cooperative form of the SOC algorithm aw€o
plishes a two-level systematisation of melody atifns. In
the first step, the contour type vect@sare determined,
representing the centres of local clusters of teédy con-
tour vectors in the D=64 dimensional melody spddeis,
the first level of the systematisation is assigning melo-
dies to the most similar contour type vectors. Hgvac-
complished this classification process, the conoestof
the melodies can be described, the higher-levehecions
of the resulting melody classes, however, remaire-un
vealed. These latter relations are described bypmgphe
D=64 dimensional contour type vectors to a low dime
sional space. Thus, the second level of the sysiwamtian
is the low dimensional representation and visutitinaof
the relations between the melody classes having dee
termined in the first level.

5. COOPERATIVE LEARNING

Up to this point, we have emphasized the advantafjdse
independence of the non-topographic learning- aedtd-
pographic visualising parts of the SOC techniqueweier,
the system can easily be modified to learn theagritypes
in a cooperative way. In this case, all of the oanttype
vectors located in the surroundings of the winmerraodi-
fied by the current training vector, and their nlow di-
mensional coordinates are re-calculated simultagigavith
the contour type learning steps, using Equatiohs(@ and
(7). Since the vectory; can freely move in the low dimen-
sional space during the process, this coopera&aening
approaches similar vectors to each other, resultirgmore
articulated system of the low dimensional clustétew-
ever, an uncontrolled cooperative process canteat ac-
celerated approach of neighbouring vectors, regplth a
total collapse of the whole system into one paithis prin-
cipal problem can be solved by the prohibitionh# toop-
erative training within a critical radius arouncetiinner.
Although this version produces a suboptimal contype
estimation - similarly to the SOM algorithm -, itam sig-
nificantly improve the visual representation of thesters.

6. CROSS-CULTURAL ANALYSIS OF 31 MUSICAL
CULTURES USING THE SOC ALGORITHM

As an application of the SOC algorithm, we sumneatise
procedure and the results of a cross-cultural stddA folk
music cultures in this chapter. The cultures werpre-
sented by 31 databases containing 1000 — 2500 raslbg
culture. The first step of the analysis was theaeination
of the contour type collections of the 31 cultungsing non-
cooperative SOC mapping of the databases one hylone
the second phase, we unified the resulting 31 cortype
collections into one training set, and trained ao-tw
dimensional “common” SOC having 1000 contour type-v
tors. After training by the nearly 12000 contoypeyectors
arising from the 31 collections (400-500 vectors duy-
ture), the resulting 1000 common vectors repretfeninost
characteristic melody contours appearing in thedfures.
Figure 2 shows the resulting common musical mapemge
ated by non-cooperative, as well as cooperativaitg of
the SOC. The figure verifies that the cooperatizarhing
yields a much more arranged “musical map”. The oalsi
meaning of the main areas of this map is demowestray
the contour type examples in Figure 3.

: &

/ i

' b
Figure 2. Self organising clouds of the common contour
type collection using non-cooperative (a), and evapve

(b) learning.

At this point, we have to define the concept oftitaation”
of the common contour type vectors as follows: ataor
type vector of the common SOC is “activated” byaning
vector when the distance between them is less than
threshold value (see Equation 2). For example,bibek
points in Figure 2 correspond to the contour types/ated
by the Hungarian melody of Figure 4. The distribntiof
the points illustrates that the cooperative leagrninoves
similar contour types into a more compact clusitend-
ing this concept to national/areal sets of trainiegtors, we
can say that the 31 contour type collections ateitffer-
ent subsets of the 1000 common vectors.

Figure 3 shows the common SOC with 6 differentaral
activations and some contour type examples beirmg ve
characteristic in the given cultures. Since tharagement
of the SOC reflects purely musical conditions,sitniot a
trivial result that the different cultures are Itz in more
or less continuous areas. This fact refers to diffemusical
styles dominating in different cultures. Some ddsh very
characteristic melody forms are also indicatedigufe 3.
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The sizes of the overlaps benchmarked against ata t
sizes of the activated area refer to the interditthe rela-
tions of musical cultures [7]. We considered thesative
overlap sizes as similarity ratings of musical atgs, and
represented the resulting system of musical langgagups
using the MDS algorithm described above. The two-
dimensional MDS plot of the connections is showrFig-
ure 5. The edges indicate pairs of cultures with l#rgest
overlaps. We also indicated some sub-graphs wheze t
nodes mutually are in close musical contacts wilche
other. The graph shows a very clear structure wihen
musically well interpretable clusters. The righameh of the
system contains the mutually very closely relat€thifiese

— Volga — Mongolian}, {Hungarian — Slovak} and {Tkish

— Karachay — Sicilian — Dakota} groups. The lefateh is
constructed by the {Finnish — Norwegian — ISE} and

Figure 3. Activated area of the common contour type cloud {German — Luxembourgian — French — Holland} cluster

by contour type collections of 6 different cultures

For instance, contour example 1 shows that desegndi
melodies with a high range are simultaneously datmg

in the Chinese, Hungarian and Turkish activatiosaaAn
example for such melodies with Hungarian, Chinésgto-
lian and Dakota parallels is shown in Figure 4.

Hungarian Chinese
. PR . 5.
& 5
.
- b
3 5
Anatolian Dakota
- . Ll m e £ o

Figure 4. Melody examples of type 1 in Figure 3.

Contour example 2 and 5, representing melodies lith
range demonstrate the musical background of thimitef
overlap between Anatolian and Bulgarian cultures.

The Hungarian area shows a significant overlap it
Chinese and Anatolian ones, but contour examplés8@ a
demonstrates a significant common musical styldoshed
melody forms with the Irish-Scottish-English cuur

At the same time, the Irish-Scottish-English corpas also
a significant overlap with the German one in theaaof as-
cending forms moving beyond the final tone (seetaan
example 4).

whereas the {Bulgarian — Balkan - Kurdish — Azesid
{Russian — Komi - Warmian (East-Poland)} groups con
struct clearly separate clusters.

The close contacts of the above discussed sevesicatu
language groups” can be traced back to certain galsi
styles being simultaneously present in more cuitu@om-
paring Figure 5 to Figure 3, one can recognise ttatsix
activator cultures of the common musical map carcdre
sidered as representatives of the above mentiomedical
language groups”. Therefore, contour examples 1-Big-
ure 3 represent right the most characteristic commasi-
cal forms contacting the musical language groupsedis
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Figure 5. MDS plot of the connections of 31 folk music
cultures. Connecting lines indicate the mutualtgést rela-
tive overlaps.

7. CONCLUSIONS
We have described a technique which learns thepgast

erages of the local condensations of multidimeradipoint
systems on the one hand and represents the styndaridi-
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tions of the learned average vectors in a low dgiteral
point system on the other hand. Basically, theritlym can
operate in two modes: In the non-cooperative moulg o
one average vector is modified in one training steg the
state of the other vectors is independent of thislifica-
tion. In the cooperative mode the training is edthto a
group of average vectors, and a feedback comesekits
tence between the learning of the multidimensicanzdr-
ages and the low dimensional arrangement.
The non-cooperative learning of the contour typetwes
permits the convergence to the exact centres ofata
condensations of the training vectors, therefore SOC
corresponds to the K-means algorithm in this cabe. co-
operative learning realises a compromise betweeradtlu-
racy of the multidimensional learning and the loimeh-
sional representation, therefore the system coegeirgo a
sub-optimal state in this case. However, the caipemess
can be tuned by the learning radius parameters,tlaad
benefit of a well accomplished cooperative trainingy be
a more transparent low dimensional representatioth®
multidimensional clusters, whereas the accuracythef
learning also remains acceptable.
The low dimensional topographic representatiorhefdon-
tour type vectors is accomplished by a weighted MR®-
rithm. This increases the degree of freedom ofthpping,
because the locations of the low dimensional pangsnot
bounded to a lattice, and their dimensionality banopti-
mised without a significant increase in the compgitime.
We applied the method to an analysis of the cotimes
of 31 Eurasian and North-American folk music cudsirwe
have found that the changeover to the continuousdi
mensional space of the SOC from the plain lattioecture
of the SOM yields a more articulated low dimenslateta
representation and a musically well interpretalyktesnati-
sation of the melody contours.
Using the SOC technique, we have determined a gatgu
musical map of the most important melody forms hie t
studied cultures, and have found that the diffecarures
occupy well defined continuous areas of this mape T
technique allowed us to trace back this “musicagye-
phy” to the dominance of certain well distinguiskeamusi-
cal styles in different cultures. Exactly the claserelation
of different cultures with certain areas of the rmakmap
calls the attention to the overlaps, referring ignificant
interactions of the studied cultures. The analggishese
overlaps revealed a perspicuous system of crossrall
connections, which was represented by an MDS [lthe
probabilities of deterministic interactions. Thernguoon
musical forms standing in the background of the tnios
portant cultural connections were also identifieanf the
overlap areas. We hope that these results demtanshra
timeliness of an extensive study of musical langugpups
and call the attention to the importance of thd orasical
tradition of the humanity.
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