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ABSTRACT

The most significant problem faced by Machine Learning-
based chord recognition systems is arguably the lack of high-
quality training examples. In this paper, we address this
problem by leveraging the availability of chord annotations
from guitarist websites. We show that such annotations can
be used as partial supervision of a semi-supervised chord
recognition method—partial since accurate timing informa-
tion is lacking. A particular challenge in the exploitation of
these data is their low quality, potentially even leading to a
performance degradation if used directly. We demonstrate
however that a curriculum learning strategy can be used to
automatically rank annotations according to their potential
for improving the performance. Using this strategy, our
experiments show a modest improvement for a simple ma-
jor/minor chord alphabet, but a highly significant improve-
ment for a much larger chord alphabet.

1. INTRODUCTION

Chords are musical features which compactly describe the
harmonic content of Western music. They have been used to
successfully identify keys [17], cover songs [2] and genres
[1], confirming their use in understanding and analysing mu-
sical harmony, underscoring the importance of systems able
to recognize chords from music audio. An important as-
pect of the chord recognition problem is the limited amount
of high-quality audio annotations on which to train machine
learning systems, currently limited to 218 songs by The Bea-
tles, Queen and Zweieck. 1 The result is that the perfor-
mance of machine learning systems for chord recognition

1 available at http://isophonics.net/
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are starting to stagnate at around 80% in the MIREX evalu-
ation metric for an alphabet of major and minor chords only.

In this paper, we propose a system that complements the
valuable available data with annotations found in large on-
line chord databases. In particular, here we make use of the
chord database e-chords.com 2 , a guitarist website contain-
ing approximately 140,000 partially labelled chord annota-
tions. Exploiting this data is non-trivial though: it does not
contain timing information, and the quality of the annota-
tions is highly variable.

The proof-of-concept that such information can be ex-
ploited in a semi-supervised learning setting has already been
provided in a very small-scale study [15]. Unfortunately, it
turns out that after scaling this up to more data this approach
by itself is insufficiently robust to overcome the quality is-
sues with the online annotations. In the current paper, we
therefore adopt a curriculum learning approach, which at-
tempts to add ‘easy’ data points first and ‘hard’ ones only
later (if at all). To quantify ‘easiness’, we also introduce a
new metric to evaluate chord recognition performance when
no ground truth annotation is available, but an online anno-
tation is. This new metric by itself is a valuable contribu-
tion, as it allows one to evaluate chord recognition systems
on artists other than The Beatles, Queen and Zweieck.

2. PRELIMINARIES

In this section we describe our overall approach to chord
recognition, the audio features we make use of, as well as
the data we were able to extract from e-chords.

2.1 Model Architecture

As a baseline system, we make use of a Hidden Markov
Model (HMM), which has been used extensively and suc-
cessfully for chord recognition [7, 17]. Here, the hidden
chain represents the sequence of chords in a sequence of
time frames the song is segmented in. Assuming that chords
rarely change between beats, we chose our frames to be

2 www.e-chords.com
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Figure 1. The HMM topology of our model, showing the
hidden nodes of the HMM (chords) emitting 12-dimensional
feature vectors (chromagrams).

the time periods between consecutive beats as estimated us-
ing BeatRoot [6]. The observed chain corresponds to 12-
dimensional chromagram feature vectors [6, 12] in the cor-
responding frames. The chromagram represents the distri-
bution of energy across pitch classes of the harmonic content
of the audio. The model is depicted in Fig. 2.1.

2.2 Feature Extraction: the Loudness-Based
Chromagram

There is no single method to compute a chromagram feature
vector, but the most popular ones are based on the Fourier
and constant-Q transforms [4, 9, 11]. In this paper we will
employ a newly proposed variant, called the loudness-based
chromagram [16]. The salient feature of this chromagram
is that it is closer to how humans perceive the strength of
pitches. Similar to existing variants, the loudness chroma
extraction process outputs a matrix C∈ R12×T from a monau-
ral signal x, where T is the length of the feature in number
of frames.

2.3 Ground Truth Extraction

For each song for which a ground truth is available, we con-
structed the chromagram C ∈ R12×T feature vector, where
T is the number of (estimated) beats. This is complemented
with a corresponding chord annotation A ∈ AT extracted
from the ground truth annotations, whereA is a chord alpha-
bet set. The fully annotated songs from The Beatles, Queen
and Zweieck thus make for three sets of training data, de-
noted as {CB,GTB}, {CQ,GTQ} and {CZ,GTZ}.

You know I love you

And I’ll prove my love is true

Want to show how I feel

Hoping that you love me
‘Cos it’s plain to see
That our love is real

C F

C G7

Dm9 G11

Figure 2. Example Untimed Chord Sequence (UCS) for
‘Our love is real’ (Matt McVicar), showing chord labels
above lyrics.

2.4 E-chords extraction

As in [15], we extracted Untimed Chord Sequences (UCSs)
from the chord database e-chords.com. These UCS are re-
ferred to as ‘untimed’ as they only contain (noisy) infor-
mation about the ordering of the chords, with no additional
information on exact timing. From the e-chords website we
were able to scrape over 140,000 such UCSs, but we could
only use those for which we had access to the audio as well.
We combined our personal music collections and found the
overlap with the UCS database to be 2008 tracks. Note that
although it is unfortunate that we were only able to extract
a small proportion of UCSs from the database (2008), this
number is significantly larger than the number of currently
available training examples (218).

We calculated a loudness-based chromagram for each of
these 2008 songs in the echords dataset and refer to the e-
chords chromagram/UCS set as {CEC,UCS}.

3. EXPLOITING UCS’S AS PARTIAL
SUPERVISION DURING TRAINING

The UCSs clearly provide information about the true chords
in an audio file, albeit only partial information. They convey
information on the chords of many songs, but unfortunately
the explicit timings of the sequences are not known. Making
use of unlabelled (or partially labelled) data together with la-
belled data for training is known as Semi-Supervised Learn-
ing (SSL) [5].

3.1 The semi-supervised learning approach

The general approach of exploiting UCSs during training
was introduced in [15], and we briefly summarize it here.
The approach works by initially training the chord recogni-
tion system (the HMM) based on the fully labelled training
data, here called the Core Training Set (CTS).

Subsequently, it attempts to reconstruct the timings of the
UCSs by aligning them to the chromagram feature vectors
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extracted from the corresponding audio. An example UCS
is shown in Figure 2. The first six chords are to be repeated,
although it is hard to infer this automatically without prior
knowledge of the song. Unfortunately, this source of ’struc-
tural noise’ is hard to capture using automatic methods to
scrape UCSs from websites, so we would miss this informa-
tion.

To overcome this, the Jump Alignment (JA) algorithm
(see [15]) can be used. The JA algorithm is able to align
UCSs to audio, while allowing for jumps to the start of other
lines (e.g. to allow a section to be repeated). The probabil-
ities of jumping forward or back in an annotation, as well
as the key transposition and version are all chosen by maxi-
mum likelihood. A different approach to dealing with struc-
tural noise in online annotations has recently been proposed
by the authors of [13], which could be combined with our
alignment method to yield further improvements.

After aligning our UCSs to their audio, they are in the
form of fully labeled training data and can be added to the
CTS. We refer to the resulting set of annotated data as the
Expanded Training Set (ETS). Finally, the chord recogni-
tion system can be retrained based on the ETS. The hope is
that this approach will allow one to train a chord recognition
system to be able to recognize chords in genres that are dif-
ferent from those for which fully annotated chord sequences
are available.

3.2 Evaluation setup in this paper

This approach was introduced and tested on a small scale
in [15], involving only songs for which a ground truth anno-
tation is available. In this paper we test this approach on a
significantly larger scale. In particular, as CTS, we use the
Queen and Zweieck songs:

CTS = {
⋃
{CQ,CZ},

⋃
{GTQ,GTZ}}

The ETS is the union of the CTS and the set of 2008 songs
for which we have the audio and a UCS from e-chords:

ETS = {
⋃

(CQ,CZ,CEC),
⋃

(GTQ,GTZ,AUCS)}

The test set consists of all The Beatles songs and their ground
truth annotations.

The flow-chart of this set-up is shown in Fig. 3, which
also shows the parameters that are inferred at various stages
(the HMM initial and transition probability matrices I and
T, as well as the mean and covariance matrices for the Gaus-
sian output probability densities, µ and Σ). After retraining
based on the ETS, they are referred to as I′, T′, µ′ and Σ′.

As the results in Sec. 5 show, unfortunately in this setting
this basic approach deteriorates performance, rather than
improving it. To resolve this issue, here we propose to addi-
tionally adopt a curriculum learning approach.

Estimate 
Parameters

Jump Alignment

Aligned UCSs

Update 
Parameters

Beatles 
Features

Viterbi 
Decoder

Beatles 
Prediction

Beatles GTs

Performance

Queen Features
Queen GTs

θ= {T, I, μ, Σ}

θ'= {T', I', μ', Σ'}

Zweiek Features
Zweiek GTs

UCS Features

UCSs

Figure 3. The schematic of our experiments. Data are
shown in square boxes, processes in curved. Detailed de-
scriptions of the processes are found in the text.

4. CURRICULUM LEARNING

In this section, we describe an addition to the scheme in
Figure 3 which makes the most of the available data using
curriculum learning. We also outline our new evaluation
method. We begin with some background information on
the subject.

4.1 Background

It has been shown that humans and animals learn more ef-
ficiently when training examples are presented in a mean-
ingful way, rather than in a homogeneous manner [8, 10].
Exploiting this feature of learners is referred to as Shaping
in the animal training community and Curriculum Learning
in the machine learning discipline [3].

The concept of the curriculum paradigm is that starting
with easy examples and slowly generalising leads to more
efficient learning, which can be realised in a machine learn-
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ing setting by carefully selecting training data from a large
set of examples. It was recently hypothesised that curricu-
lum learning offers faster training (in both optimization and
statistical terms) in online training settings, owing to the
way the learner wastes less time with noisy or harder to pre-
dict examples, and that additionally guiding the training into
a desirable parameter space will lead to greater generaliza-
tion [3].

We introduce an additional step into Figure 3 to deal with
curriculum learning in a novel way. Note that up to now we
have not defined what we understand by easy examples, or
equivalently, how to sort the available examples into a series
of increasing difficulty samples. Therefore, after the UCSs
have been aligned to the features, we will attempt to sort the
expansion set by appropriateness for learning. We propose
a new measure for evaluating how accurate the set AUCS
compared to its (unknown) ground truth annotations.

Thus we have the two following assumptions:

1. Introducing ‘easy’ examples into the training set leads
to faster learning.

2. It is possible to estimate which training examples from
a varied set are ‘easiest’.

We will address these assumptions in the following sub-
section.

4.2 Alignment Quality Proxy

When we created the ETS, we were unable to evaluate how
well the UCSs aligned to the loudness-based chromagrams,
since the ground truths are not available for these songs.
However, we were able to estimate the accuracy of the align-
ment in a different way.

To begin with, we noticed that many alignments con-
tained only a few chords and were therefore extremely un-
likely to be accurate chord alignments. We therefore re-
moved all alignments which contained fewer than 5 unique
chords.

After this pruning, we looked into a quantitative estimate
for the alignment quality. An output of the JA algorithm is
the log-likelihood of UCS correctly aligning to the loudness
chroma. For each UCS ∈ AUCS we used the log-likelihood
of the alignment normalised by the length of the alignment
as a proxy for the performance, and stored these in the align-
ment quality proxy vector Paqp:

P i
aqp =

log-likelihood of AUCSi

|AUCSi|
, i = 1 . . . |AUCS|

The results of the Alignment Quality Proxy performances
on our songs are displayed as a histogram in Figure 4. There
is a range from −1.79 (very poor alignment) to 7.03 (excel-
lent alignment), and we notice a skew towards good quality
alignments.
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Figure 4. Histogram of our proposed alignment quality
measure.

We then sorted the ETS with respect to Paqp and seg-
mented the set into bands according to alignment perfor-
mance. In order to investigate the quality of the proposed
alignment performance we ran JA on 173 Beatles songs for
which we had UCSs, with the alignment parameters from
Queen and Zweieck, yielding PB

aqp. We also used these pa-
rameters to make an HMM prediction for each of the 173
songs and measured the performance PB of these predic-
tions against the Beatles ground truth sequences.

Finally, we measured the correlation between the PB
aqp

and PB using Pearson’s linear correlation coefficient, which
gave a correlation of 0.73 with a p-value of 0.4 × 10−30,
indicating a highly significant result at the 5% level (p <
0.05). This result indicates that Paqp is an excellent proxy
for alignment accuracy, i.e. we have answered assumption 2
in Subsection 4.1 in the affirmative.

Satisfied that Paqp offers an approximation of how well
JA aligns UCSs, we decreased the size of the ETS by placing
a threshold on the alignment quality. Mathematically, we al-
lowed the ith chromagram and aligned UCS pair {Ci,AUCSi}
into the training set if

P i
aqp ≥ γ

for γ ∈ R. The value γ = −∞ corresponds to being care-
free with our data - all training examples are included. If
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we wish to be stringent with our data, selecting a large γ
will only allow high-quality alignments into the training set,
although we may suffer from lack of examples in this sce-
nario.

5. EXPERIMENTS

5.1 Simple Chord Prediction

In our first experiment we set the alphabet A to consist of
major and minor chords, along with a ‘No Chord’ symbol.
We refer to this alphabet asminmaj. All chords in the Core
Training Set CTS and Expanded Training Set ETS were
mapped to minor chords if they contained a minor third, oth-
erwise they were mapped to the corresponding major chord.
‘No Chord’ symbols were added to the beginning and end
of each of the Untimed Chord Sequences in UCS to account
for the silences at the beginning and end of the pieces.

To re-iterate, we trained an HMM on the ETS and tested
on all 180 Beatles songs. Performance was measured by
number of correctly identified frames divided by the number
of frames (×100%), averaged over the 180 songs, and are
shown in Table 1.

The results seen in Table 1 seem initially discouraging.
The peak performance of 77.87% obtained using the 1021
best UCSs (in terms of alignment performance) only achieved
an increase of 0.84%. However, upon performing a one-
sided t-test of the performance of the system against the
baseline performances (no expansion set), we obtained a p-
value of 0.0435, indicating significance at the 5% level.

Using additional data in a system which is already per-
forming well is unlikely to offer a large performance in-
crease, since there is not much to be gained. On the con-
trary, when the difficulty of the task increases it is possible
that extra data becomes beneficial. To investigate whether
this is the case, we will increase the complexity of the model
by using a larger library of chords.

5.2 Complex Chord Prediction

The results of subsection 5.1 showed that there is not much
to be gained by using additional data sources on a simple
chord model. To counteract this, we conducted the same
experiments using an unrestricted chord alphabetA = full.
This meant that each unique chord in the Core and Expanded
training sets were considered a unique state of our model,
as well as the transpositions of each of these chords into
each root pitch. This left us with 253 states, one order of
magnitude larger than the major/minor chord alphabet.

As before we then retrained on the Expanded Set and
tested on The Beatles. The results were measured as in Sub-
section 5.1. Figure 5 shows the results as well as the number
of songs in the expansion set for each cut-off.

Figure 5. Performance of our model on The Beatles dataset
with increasing alignment quality threshold quality γ. The
baseline performance (γ = ∞) is shown as a dashed line.
Values of γ for which the performance approaches or ex-
ceeds the baseline is shown in higher resolution steps of 0.2
increments. Randomizations of the same expansion set size
are shown in the dot-and-dashed line.

Immediately from Figure 5 we see that blindly adding all
of the available does not improve recognition. This is due
to the large variety in style and genre seen in the database,
along with the potentially poor alignments which we in-
cluded in the expansion set when γ is small. Upon increas-
ing γ we allowed heuristically better quality alignments into
the training set, and saw a rapid increase in recognition ac-
curacy, which peaks at 58.52%, 3.54% above the baseline
of 54.98%. Although this increase may seem incremental,
we performed a one-sided t-test of the performance of the
system against the baseline at the optimal γ of 5 and found
the p-value to be 1.28 × 10−7, indicating a significant im-
provement at 5% confidence level. This corresponded to an
improvement of 114 of the 180 songs.

To see if curriculum learning genuinely offered improve-
ments over homogeneous learning, we also included aligned
UCSs into the training set in random batches of the same
size as the previous experiment, and repeated 100 times to
account for random variations. The mean and standard devi-
ations over the 100 repeats are shown as the dot-and-dashed
line and bars in Figure 5. We can see that the specific order-
ing of the expansion set in section 4.2 offers substantial im-
provement over randomly selecting the expansion set. This
is good evidence that curriculum learning is the method of
choice for navigating a large set of training examples, and
also demonstrates that assumption 1 in Subsection 4.1 holds.
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Alignment Quality threshold γ -2 -1 0 1 2 3 4 5 ∞
Number of Expansion songs |AUCS| 1027 1027 1021 993 899 705 390 67 0
Performance (%) 77.83 77.83 77.87 77.81 77.77 77.53 76.94 76.79 76.79
p-value of paired t-test 0.0516 0.0516 0.0435 0.0555 0.0561 0.1137 0.4779 0.6906 -

Table 1. Performance of our model on the simple chord alphabet, A = minmaj. γ increases to the right, with the number of
expansion songs this corresponds to underneath. Performances and corresponding p-values between the difference between the
baseline level γ =∞ are shown in the final two rows. Results which are significant at the 5% level are shown in bold.

6. CONCLUSIONS

In this paper we have made three breakthroughs. First of
all, we demonstrated that chord databases can be used to
create new sequences for training chord recognition algo-
rithms. These sequences were shown to significantly im-
prove recognition accuracy on an unseen test set.

Also, we demonstrated a new technique for estimating
the quality of aligned chord sequences, which can be used to
select training examples from a large, noisy training data set.
This estimate allowed us to perform curriculum learning,
which achieved faster learning and improved results.

Finally, we also showed that with more data we are able
to make a more complex chord model, which led to a more
significant improvement in recognition accuracy. In order
to gain the most from these data we plan to further increase
the complexity of the decoding model, by including distinct
features for the bass and treble frequency range [14], includ-
ing a hidden ‘key chain’ to model modulations [18] or using
more complex emission probability models.
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