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ABSTRACT

This paper introduces a novel methodology for music sim-
ilarity retrieval based on chord progressions. From each
chord progression, a directed labeled graph containing the
interval transitions is extracted. This graph will be used as
input for a graph comparison method based on simple cy-
cles – cycles where the only repeated nodes are the first and
the last one. In music, simple cycles represent the repetitive
sub-structures of, e.g., modern pop/rock music. By means
of a kernel function [10] whose feature space is spanned
by these simple cycles, we obtain a kernel matrix (similar-
ity matrix) which can then be used in music similarity re-
trieval tasks. The resulting algorithm has a time complexity
ofO(n+m(c+1)), where n is the number of vertices, m is
the number of edges, and c is the number of simple cycles.
The performance of our method is tested on both an idiom
retrieval task, and a cover song retrieval task. Empirical re-
sults show the improved accuracy of our method in com-
parison with other string-matching, and graph-comparison
methods used as baseline.

1. INTRODUCTION

Since the beginning of the 15th century, motivic elements
have made part of Western music, becoming common prac-
tice during the 18th century. We can find numerous exam-
ples of this phenomenon nowadays in modern pop/rock mu-
sic which contain repetitive sub-structures, e.g., the chorus,
verse, etc. According to [5], such repetitive structures, or
motifs, act as cues in music perception. “A cue is a very
restricted entity ... often shorter than the group itself, but
always embodying striking attributes”. This notion of cue,
would let a listener encode information in a more efficient
way, allowing longer structures to be memorized by means
of smaller, more salient, features.
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Although motifs can be found in a song’s harmony or
melody, in this paper we will focus on harmonic motifs for
three reasons: (i) many songs share a part of their harmonic
structure, as the number of chord progressions that are pop-
ular in a musical style (idioms) remain limited, while the
melodic structure can vary greatly from one song to an-
other; (ii) studies in experimental psychology have shown
the essential role of harmony in musical sequence percep-
tion [6]; (iii) although the amount of chord progression data
is increasing thanks to chord estimation algorithms (see e.g.
[13]) and user-generated data (which is readily available from
the web), few efforts have been put on harmony-based sim-
ilarity measures.

On the other hand, human listeners, due to their musical
background, are more susceptible to like songs with a fa-
miliar harmonic structure, but yet different enough from the
songs they already know [14] 1 . We believe, thus, that com-
paring songs thanks to their harmonic motifs would yield
in a similarity measure that takes into account its repetitive
harmonic sub-structures.

One efficient way for motif extraction is the use of graphs.
Motif extraction on graphs has attracted a lot of attention
in the past years, e.g. in community detection [1], or in
graph comparison [10]. A motif is formally defined in [1] as
a connected undirected sub-graph (or weakly connected di-
rected sub-graph) which appears frequently in a graph show-
ing some kind of structure. Examples of motifs are cliques,
paths, cycles, or sub-trees. The method presented in this pa-
per relies on the concept of cycle as a motif for similarity
detection between graphs (isomorphism). By transforming
the chord sequences into graphs, and comparing their simple
cycles, we obtain a similarity measure based on the musical
motifs of a song (see Section 4.1 for a more precise descrip-
tion). The contributions of our work are as follows:

1. It is based on the repetitive harmonic features of
songs (which can be easily extracted from web re-
sources, as done in the present work).

2. The similarity measure deals with large structural

1 This is explained by [12] as ‘the compromise between the repetition
and the surprise” in the expectation of a human listener.
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changes in chord progression (e.g., addition of repe-
titions, bridge, etc.).

3. The similarity matrix can be extracted by means of
kernel functions.

4. The similarity is transposition invariant (the inter-
vals between chords are used, instead of the chords
themselves).

5. We provide a simple, general, methodology for com-
puting similarities from chord progressions (from the
text mining step to acquire the data, to the automatic
classification step with an SVM).

6. We exploit a novel source of user-generated data
that is readily available on the Internet (in form of gui-
tar chord progressions).

7. Empirical tests show that music similarity retrieval
can be performed solely on the basis of chords.

We will briefly review the related work about chord se-
quence similarity in Section 2. Section 3 introduces the
cyclic pattern kernels, on which our method is based. The
details of our algorithm can be found in Section 4, as well
as the graph extraction technique. Empirical testing is pre-
sented on two music retrieval tasks in Section 5, and even-
tually, Section 6 presents our conclusions.

2. RELATED WORK

Harmonic similarity has recently attracted the attention of
the MIR (Music Information Retrieval) community thanks
to the improvement in chord estimation techniques [13], as
well as the increase of the available data. One of the ad-
vantages of harmonic similarity is its ability to infer similar
songs whose melodies differ. In this context, [4] proposes an
approach based on the Tonal Pitch Space (TPS) which com-
pares the change of chordal distance to the tonic over time.
This local distance is then used to build a step function that
computes the global distance between two chord progres-
sions by minimizing the non-overlapping area of the two
step functions. However, this method requires information
about the key of the piece and does not support structural
changes (e.g., introduction of repetitions).

We can also find techniques based on approximate string
matching, such as the one proposed by [9]. This technique
extracts the most similar regions of the two chord sequences,
and computes a distance based on the number of simple op-
erations (insertion, deletion, substitution) that are needed to
transform the first region into the second. This algorithm
has complexity O(nm) where n and m are the length of the
sequences to compare, and edition costs must be provided.

Generative models are the third type of harmony similar-
ity techniques. Such models assume that harmony variations

occur according to an underlying model. The authors of [15]
propose to model chord transitions of a song by means of
a nth-order Markovian model, which serves as basis for
a Kullback-Leibler scoring function. A generative model
based on linguistics has also been applied in [3]. This har-
mony similarity method is based on the assumption of a gen-
erative grammar of tonal harmony. By applying a weighted
version of this grammar, a unique parse tree representing the
chord sequence is obtained for each song – note that context
free grammars produce multiple ambiguous parse trees, thus
a weighting of the rules is needed to choose among all possi-
bilities. In order to measure the similarity of a pair of parse
trees, the largest embeddable tree is extracted. However,
its time complexity is O(min(n,m)nm) and this technique
may reject a sequence which is considered as ungrammati-
cal.

3. CYCLIC PATTERNS KERNEL

Cyclic patterns represent harmonic motifs in chord progres-
sions. In order to extract these motifs for music similarity,
we will rely upon the cyclic pattern kernels from [10]. In
this section we will present the key concepts of this tech-
nique which computes a kernel based on the set of cyclic
and tree patterns of a graph.

3.1 Graphs and cycles

Let us first give some definitions concerning graphs and cy-
cles. Let G = (V,E, label) be a directed graph defined as
a finite set of vertices V , edges E ⊆ [V ]2, and their labels.
The cardinalities of V and E are n and m, respectively. We
define a simple cycle on G as a sequence

C = {v0, v1}, {v1, v2}, ..., {vk−1, vk} (1)

where v0 = vk and all others vi 6= vj for every i, j (1 ≤ i ≤
j ≤ k). Although a cycle may have several permutations,
only one of them (and the same in all cases) will be kept for
our purposes. We can now define the set S(G) as the set of
simple cycles of G, the set of unrestricted cyclic patterns as
C(G), and its relation:

S(G) ⊂ C(G) (2)

Similarly, we can define the set of tree patterns, T (G), as:

T (G) = {T is a connected component of B(G)} (3)

where B is the set of bridges ofG (see [10] for more details).

3.2 Kernel methods

The method presented in this paper belongs to the family of
kernel methods [7, 17], a well-founded technique in statisti-
cal learning which comprises three steps:
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1. A mapping φ of the data from the input space, x, (di-
rected labeled graphs G, in our case) into some mean-
ingful, application-dependent, feature space, F , (sim-
ple cycles):

φ : x→ φ(x) ∈ F (4)

2. An inner product defined in the feature space, φ(x),
in order to obtain the kernel matrix (a positive definite
matrix of similarities):

k(x, y) = 〈φ(x), φ(y)〉 (5)

3. A learning algorithm for discovering patterns in that
space (in our case, an RBF SVM for the automatic
classification based on the similarity matrix).

One interesting property of kernel functions is that, although
the feature space may have infinite dimension (the number
of possible cycles, in our case), it is often possible to com-
pute them in polynomial time. The obtained kernel matrix
can then be used as a similarity matrix for music retrieval
tasks.

3.3 Cyclic patterns kernel function

A cyclic patterns kernel function is proposed by [10], which
takes two graphs as input, extracts their cyclic C(G) and tree
patterns T (G) and uses them to build a mapping ΦCP(G)
into the feature space:

ΦCP(G) = C(G) ∪ T (G) (6)

The cyclic pattern kernel is defined as the set of all simple
cycles and tree patterns that appear in both graphs:

kCP(Gi, Gj) = |C(Gi) ∩ C(Gj)|+ |T (Gi) ∩ T (Gj)| (7)

However, the problem of computing cyclic pattern kernels
is NP -hard. For overcoming this issue, the authors in [10],
restrict the set of cyclic patterns to S(G), so that only sim-
ple cycles are computed (those cycles whose only repeated
nodes are the first and the last one). The advantage of sim-
ple cycles is that they can be computed in polynomial time.
The authors use the algorithm from [16], which extracts the
simple cycles of a graph by means of a depth-first search in
timeO(n+m(c+1)), where n is the number of vertices, m
is the number of edges, and c is the number of simple cycles.
It is important, thus, that there exists a bound (well-behaved
data) on the number of simple cycles for the sake of effi-
ciency of the algorithm. As empirically shown in Section 5
(see Figure 2), this is the case for our chord data.

4. PROPOSED SIMPLE-CYCLE
WEIGHTED KERNEL

In this section we present the proposed kernel, which is a
variant of the cyclic pattern kernels [10] introduced in the

previous section. We propose to focus our kernel only on
simple cycles which will represent the repetitive harmonic
sub-structure of a song. In order to favor longer simple cy-
cles, a weighted (normalized) version of the kernel will be
computed.

4.1 Graph extraction

Chord sequences represent the harmonic progression of a
song which may modulate over time, i.e., its key changes
through time. This is an important issue for the detection of
harmonic similarities, as the transposed chords may not co-
incide. In order to make our method transposition-invariant
we will thus convert the chord sequence into interval se-
quences, from which input graphs will be extracted. As
only structure matters for us, and not the “musical distance”
between a pair of chords (in semitones), a label λi will be
assigned to each chord transition with the same “musical
distance” (key invariant) 2 3 . For example, the transition
C → D#m will share the same label as F → G#m and
its enharmonic C → E[m, i.e.,

(C,D#m) = (C,E[m) = (F,G#m) = λk (8)

Chords C,G,Am,F,C,G,F,C,G,Am,C,G,F,C,G,Am,...
Labels (C,G) = (F,C) = λ1 , (G,Am) = λ2

(Am,F ) = λ3 , (G,F ) = λ4 , (Am,C) = λ5

Intervals λ1, λ2, λ3, λ1, λ1, λ4, λ1, λ2, λ5, λ1, λ4, λ1, ...

Graph

Table 1. Transformation of an extract of the chord progres-
sion of “Let it be” from The Beatles into an interval graph.

By sequentially reading the obtained interval sequence
x = {λ1, λ2, ..., λ1, ..., λl}, we will extract a directed graph
G (see Table 1) where each node represents a chord transi-
tion or interval (n = |{λi}|), and each interval transition is
represented by an edge (m = |{λi → λj}|).

2 For the sake of consistency we have not made the distinction between
ascending or descending intervals.

3 Please note that the chord type (minor, major, diminished, etc.) is
already incorporated in the graph representation through the λ values, e.g.,
(Cdim,Am) = (Edim,C#m) = λk .
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Figure 1. Computation of the simple-cycles weighted kernel on two initial graphs, G1 and G2.

4.2 Kernel function

Based on the algorithm from [10], we build a kernel which
takes any two interval graphs from the input space, extracts
their simple cycles to build a feature space, and computes a
similarity as the weighted inner product in the feature space.
In our case, the mapping function Φ is defined as a mapping
to the set of all possible simple cycles of the graph

G→ ΦSC(G) = S(G) (9)

which represent the repetitive sub-structures of an interval
graph. For a particular graph Gj , its feature vector has en-
tries [φ(Gj)]i which are equal to 1 if the simple cycle with
index i (denoted as cycle i in the sequel) is present in the
graph and 0 otherwise. We then compute the kernel func-
tion as the weighted inner product between the feature vec-
tors (simple cycles vector)

k(x, y) = 〈φ(x), φ(y)〉W̃ = φ(x)TDφ(y) (10)

where D is the normalized diagonal weight matrix

[D]ii = dii =
wi∑

j∈S(Gk)∪S(Gl)
wj

(11)

and wi is the length of the i-th cycle. The motivation for
this weighting is to favor longer cycles, so that two graphs
sharing a long cycle are considered as more similar as two
graphs sharing one short cycle. Furthermore, the kernel
weights are normalized by dividing them by their sum. The
complete procedure is described in Algorithm 1 and an ex-
ample on how to compute the weighted kernel is given in
Figure 1.

5. EMPIRICAL TESTING

To evaluate empirically the retrieval performance of our ker-
nel, two different tasks will be evaluated: (i) a cover song
retrieval task, and (ii) an idiom retrieval task. We will first
present the data used in the experiments, as well as the cho-
sen lexicon. Our simple-cycles weighted kernel method is

Algorithm 1 Simple-cycles Weighted Kernel: computa-
tion of the kernel matrix.
Input:
•maxL > 0: maximum length of extracted simple cy-
cles.
• s1, ..., sr: list of chord sequences to be compared.

Output:
•K: the Simple-cycles Weighted Kernel matrix.

1. for k,l = 1 to r do
2. Transform chord sequences sk and sl into directed

labeled graphs Gk and Gl following the procedure
from Table 1.

3. Extract all simple cycles of length < maxL, S(Gk)
and S(Gl), from Gk and Gl, with the algorithm de-
scribed in [16].

4. Create the feature vectors, φ(Gk) and φ(Gl), of
length |S(Gk) ∪ S(Gl)|, whose entry [φ(Gk)]i = 1
if the i-th cycle is in S(Gk) and 0 otherwise.

5. For all the cycles of S(Gk) ∪ S(Gl), compute the
corresponding elements i of the diagonal matrix D
from Equation (11).

6. Compute [K]kl = φ(Gk)TDφ(Gl).
7. end for

compared to several measures from string matching, as well
as graph comparison techniques.

5.1 The chord data sets

The cover song data set has been extracted from two dif-
ferent sources: the Beatles chord annotations from the Iso-
phonics 4 data base (Queen Mary, University of London),
and the user-generated chord files from the Ultimate-Guitar 5

data base. Although our first source of chord progressions
has already been used in MIR, we are the first to use, to
the best of our knowledge, a popular Internet guitar’s chord

4 isophonics.net
5 www.ultimate-guitar.com
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data base for similarity retrieval. The Ultimate-Guitar data
base contains more than 250,000 user-generated sequences
of guitar’s chords of popular pop/rock music. Although sev-
eral versions are available for each of the Beatles’ songs,
only well-ranked songs have been extracted (5 star rated
songs with at least 5 votes), making a total of 71 songs.
These same songs have been extracted afterwards from the
Isophonics data base, forming 71 classes of two songs each
(142 songs in total), where the songs from the Isophonics
data base are used as query over the remaining 71 songs
from the Ultimate-Guitar data base (one relevant song per
query). Although there exists a well-known MIREX audio
cover song task, this evaluation task takes audio signals as
input while our work is centered on chords, so that it cannot
be applied here.

The idiom data set has been fully extracted from the Ultimate-
Guitar data base and contains 296 songs partitioned in two
classes (101 songs for the first class, sharing a common 4-
chords idiom 6 , and 195 songs for the second class). Both
data sets are available from www.isys.ucl.ac.be/staff/

silvia/research.htm.
In both cases, a modest lexicon containing all major and

minor root chords (flat and sharp) has been used. We be-
lieve that this choice is representative enough for our pur-
pose, while avoiding bad transcription issues from users in
the Ultimate-Guitar data base, e.g., the chord C5 appears
instead of C.

5.2 Cover song retrieval task

Cover song retrieval (see for instance [2]) is a popular task in
MIR which aims at identifying the versions of a given song.
For this purpose, the cover song data set described above
has been used. We query the Ultimate-Guitar database with
each song from the Isophonics chord annotation (the ”query
song”), providing a ranking of the Ultimate-Guitar songs
in decreasing order of similarity with the Isophonics query
song (please see Section 5.1 for more details). The average
ranking position of all retrieved songs, as well as two recall
measures describing the accuracy of our method have been
reported in Table 2: the average first tier (the number of
correctly retrieved songs among the best (nc − 1) matches
divided by (nc − 1) with nc the class size, i.e., in our case
nc = 2), and the average second tier (number of correctly
retrieved songs among the best (2nc − 1) matches divided
by (nc − 1)).

In order to compare our method to other base line meth-
ods, the same methodology 7 has been applied to three string
matching techniques – the edit distance and longest com-

6 The sequence “C,G,Am,F” is considered as an idiom in modern
pop/rock composition. It appears in songs such as Let it be (The Beatles),
and With or without you (U2).

7 Interval sequences have been provided as input for each baseline
method, so that all compared methods are transposition invariant and eval-
uated under similar conditions.

mon subsequence widely used in sequence matching (see,
e.g., [8]) and the all-subsequences kernel [17] which is an
efficient method that compares all sub-sequences of two strings
–, and a graph comparison kernel – the fast sub-tree kernel,
a similarity measure between graphs that is fast to compute
and that outperforms other graph kernels [18]. For methods
needing a parameter, the fast sub-tree kernel and the simple-
cycles kernel, we have chosen a maximum cycle length (tree
depth) of 7 – longer cycles or deeper trees become too song-
specific, and are not of interest for us. Although chosen base
line methods may appear simplistic, our aim is to compare
our algorithm with a variety of methods under the same con-
ditions. Purpose-built methods using different chord repre-
sentations, or needing parameter tuning are not compared in
the present article for obvious reasons of adaptation, leaving
this task for further work.

Although results show no improvement for the first tier,
and just a slight improvement of the second tier (see average
first and second tier in Table 2) from the base line methods,
there is a clear improvement in the average general ranking
of retrieved songs. These results are encouraging for using
the Ultimate-Guitar data base as a future source for chord
progression data.

5.3 Idiom retrieval task

Idioms have recently attracted the attention of MIR as a new
object of musicological interest. An idiom is defined in [11]
as a “prominent chord sequence in a particular style, genre
or historical period”. Users have also discovered this notion
of idiom as shown in a youtube video 8 , where a sequence of
4 chords is used to assemble the melody of several pop/rock
songs. Interestingly, people who liked a few of these songs
tended to also appreciate the others.

We have tried to recover the songs containing the idiom
“C,G,Am,F” (or “I-V-VI-IV”) by applying a 10-fold double
cross validation with an RBF SVM on the idiom data set
from the Ultimate-guitar web site. Classification rates with
a 95% confidence interval are reported in Table 3. These
results show an increase of performance of our method of
7% from the closest base-line method.

Similarity First tier Second tier Average

average average ranking

Edit distance 78.87%± 6.76 87.32%± 5.51 4.169± 1.64

Longest common subs. 60.56%± 8.10 69.01%± 7.66 8.662± 2.59

All-subsequence kernel 28.17%± 7.45 43.66%± 8.22 15.929± 3.32

Fast sub-tree kernel 52.11%± 8.27 61.97%± 8.04 11.943± 2.78

Simple-cycles kernel 78.87%± 6.76 88.73%± 5.24 2.915± 1.09

Table 2. Average first tier, second tier, and average ranking
for the cover retrieval task with 95% confidence intervals.

8 http://www.youtube.com/watch?v=qHBVnMf2t7w

65



Poster Session 1

Similarity Classification rate and

confidence interval

Edit distance 68.56%± 1.53

Longest common subsequence 69.91%± 2.41

All-subsequence kernel 68.56%± 1.53

Fast sub-tree kernel 81.06%± 4.22

Simple-cycles kernel 88.50%± 2.02

Table 3. Classification rates with a 95% confidence interval
for the idiom retrieval task.

Figure 2. Error bar showing the average number of simple
cycles per song and per cycle length of our chord progres-
sions data. 95% confidence intervals are also shown.

6. CONCLUSION AND FUTURE WORK

In this paper we have introduced a simple-cycle similarity
method based on the harmonic progression of a song. We
have presented the notions of a theoretically well-founded
method, and shown its applicability to our problem. This
approach has furthermore been validated on an idiom and
a cover song retrieval task. The obtained results suggest
the utility of extracting repetitive sub-structures for music
similarity purposes by means of a simple-cycles weighted
kernel. Further work will try to improve the presented algo-
rithm by performing an approximate cycle matching, and by
replacing labels by musical distances between chords.
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