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ABSTRACT

In this paper we propose a postprocessing technique for a
spectrogram diffusion based harmonic/percussion decom-
position algorithm. The proposed technique removes har-
monic instrument leakages in the percussion enhanced out-
puts of the baseline algorithm. The technique uses median
filtering and an adaptive detection of percussive segments in
subbands followed by piecewise signal reconstruction using
envelope properties to ensure that percussion is enhanced
while harmonic leakages are suppressed. A new binary mask
is created for the percussion signal which upon applying
on the original signal improves harmonic versus percussion
separation. We compare our algorithm with two recent tech-
niques and show that on a database of polyphonic Indian
music, the postprocessing algorithm improves the harmonic
versus percussion decomposition significantly.

1. INTRODUCTION

Music source separation has been a very important topic of
research with applications in transcription [1], audio cod-
ing [2], enhancement [3] and personalization [4]. Source
separation involves separating a polyphonic mono or stereo
music into its component instrument streams. As a prelim-
inary step towards source separation, decomposition of the
music signal into separate harmonic and percussive instru-
ment streams has been a popular approach in recent years.
The percussive instrument stream can be used for drums
transcription [5], rhythm analysis [6], audio remixing [3]
among the many applications. It has been shown that the
percussion stream results in better drum transcription [5,7]
than the original music itself. Likewise, the harmonic in-
struments stream can be used for multipitch estimation [1],

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

c© 2011 International Society for Music Information Retrieval.

pitch modification [4], note transcription and lead vocals ex-
traction [8] with greater ease.

McAulay et al. [9] first used sinusoidal modeling to de-
compose a signal into harmonic and noise components pop-
ularly known as the “sine+noise“ model. Verma et al. [10]
introduced the idea of modeling transients in a signal lead-
ing to the development of ”sine+transients+noise” model.
Various improvements to these models have been proposed
in [11, 12]. Gillet et al. [7] used noise subspace projections
to split polyphonic music into harmonic and noise compo-
nents with the noise components predominantly having the
percussive instruments. he noise signal was used for drum
transcription and was found to be more effective than the
original for the same task. Yoshii et al. [5] used a template
based approach for harmonic instrument suppression to ex-
tract drums sounds from polyphonic music for transcription.
Recently Ono et al. [3, 13] presented an iterative algorithm
using spectrogram diffusion to split music signals into the
component harmonic and percussion streams. The percus-
sion streams were used for remixing and equalisation pur-
poses. Fitzgerald [14] proposed a much simpler alternative
to Ono’s algorithm using median filtering.

But most of the above discussed algorithms are aimed at
Western music and specifically pop music which has strong
percussion accompaniments. These algorithms do not per-
form well for Indian music which has somewhat muted per-
cussion (often used just to give a basic beat to the lead in-
strument/vocalist) and an increased amount of vibratos in
the instrumental sections. This leads to a lot of leakages of
percussion into the harmonic stream and vice versa.

In this paper we develop a postprocessing technique that
can applied to the output of Ono’s algorithm (called the
baseline from here onwards) [3, 13] mentioned above. In
Section 2 we briefly describe the baseline algorithm to es-
tablish the framework for our algorithm. Section 3 describes
our post processing technique. The necessary framework to
test the algorithm, the experiments and comparative results
are described in Section 4. We conclude the paper in Section
5.
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Figure 1. Spectrogram of song No.151 from LSML
database. The strong vertical stripes are locations of percus-
sion and the horizontal stripes are the harmonics of pitched
instruments. The wavy horizontal lines between 8 secs and
10 secs are the vibratos in the lead male singing.

2. ONO’S ALGORITHM AND SHORTCOMINGS

The spectrogram diffusion based harmonic/percussion sepa-
ration algorithm proposed by Ono et al. [3,13] assumes that
steady harmonic instruments show up as horizontal lines
while percussive instruments show up as vertical lines in the
signal spectrogram. This is because of the steady nature
of harmonic instruments that play enduring discrete notes
while percussive instruments have a short time burst of en-
ergy leading to a wideband spectral structure as shown in
Figure 1. The diffusion algorithm uses a minimization of
the spectrogram’s vertical and horizontal derivatives using
an auxiliary function approach.

Let x[n] be a monaural polyphonic music signal sam-
pled at 16kHz. LetX(i, j) denote its STFT (Short Time
Fourier Transform) at theith frequency bin andjth frame.
Let W (i, j) be the range compressed version of the power
spectrogram given by,

W (i, j) = |X(i, j)|2γ , (1)

whereγ = 0.3.
Similarly letH(i, j) andP (i, j) represent the power spec-

trograms of the component harmonic and percussion sig-
nals.

A cost functionJ(H,P ) defined as below is used to min-
imize the gradients of the spectrograms.

J(H,P ) =
1

σ2
H

∑

i,j

(H(i, j)−H(i, j − 1))2

+
1

σ2
P

∑

i,j

(P (i, j)− P (i− 1, j))2. (2)

Then, we wish to findH andP that minimize the equa-
tion (2) under the constraint,

W = P +H. (3)

An iterative update method using auxiliary function ap-
proach is used for the minimization of equation (2). This
leads to the decomposition of the signalx[n] into its com-
ponent percussion and harmonic spectrogramsP andH re-
spectively for various values of the diffusion coefficientα
(0 < α < 1). P andH are “binarized“ toPbin andHbin as
in equations (4, 5) to attentuate the interference of harmonic
instruments in the percussive stream and vice versa.

Pbin(i, j) =

{

X(i, j) if P (i, j) > H(i, j) ,
0 if P (i, j) ≤ H(i, j).

(4)

Hbin(i, j) = X(i, j)− Pbin(i, j). (5)

Depending on the value ofα, either the percussive stream
will be emphasized or the harmonic stream will be empha-
sized. The percussive and harmonic streamsp[n] andh[n]
are reconstructed by inverting the STFTsPbin andHbin re-
spectively using the phase of the original signalx[n] (at each
frame during inversion) .

One of the shortcomings of this algorithm has been the
leakage of harmonic instrument components into thePbin

component and the leakage of low strength percussion into
theHbin portion. As noted earlier there is a high presence of
vibratos and muted percussion (tabla, mridangam1 ) in In-
dian music. This leads to a very bad decomposition scheme
using baseline algorithm. A much faster algorithm using
median filtering has been proposed in [14], but even that al-
gorithm suffers from the same shortcomings.

3. THE PROPOSED ALGORITHM

We use only the percussion streamp[n] from the baseline
algorithm and the original signalx[n] for the postprocess-
ing technique we propose. Since percussion appears as a
wideband signal in the spectrum and different harmonic in-
struments have different frequency characteristics, not all re-
gions of the spectrum are equally affected by the harmonic
leakage. Therefore we intend to remove the leakages using
subband processing. The signalp[n] is passed through an
even stacked cosine modulated perfect reconstruction filter-
bank of 16 filters. The filterbank was designed using the
LT-TOOLBOX 2 set of Matlab routines. The following op-
erations are performed on each subband signal. Letpi[n] be
the output of theith subband. The signal is split into frames
of 40ms (Frame lengthNl = 640 samples) with an overlap
of 20ms (Frame shiftNo = 320 samples). Each frame is
multiplied with a triangular window of lengthNl samples

1 A south Indian classical instrument
2 http://www.students.tut.fi/ jalhava/lt/intro.html
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Figure 2. A plot ofHµ (blue dash-dot) andM (red dotted)
for subband 2 for No.151 from LSML database.

to facilitate the overlap and add at the reconstruction stage.
Thejth frame is represented asPi(j, :).

As noted by Scheirer [15], the amplitude envelope is more
important than the frequency content for the perception of
percussion. Therefore we intend to manipulate the envelope
of the subband signals. The Hilbert envelope of a signal
has been exploited for detection of transients in polyphonic
music with great success [16]. We intend to use the same
framework with a view of including temporal noise shaping
(TNS) [2] for each frame in our future work.

Let the Hilbert transform for thejth frame beP̂i(j, :).
We find the Hilbert envelope of the signal [16] as:

Hi(j, :) =

√

Pi(j, :)2 + P̂i(j, :)2. (6)

We now use the sample mean ofHi(j, :) as a represen-
tative for thejth frame (We also tried with the energy of
each frame as a representative and the method works just as
fine, but since we intend to use TNS in our future work, we
choose to retain the Hilbert envelope within each frame).

Hµ(i, j) =
1

N

N
∑

k=1

Hi(j, k). (7)

Hµ is used to detect the frames having percussion and
harmonic instruments. In order to do this,Hµ is median
filtered with al point median filter.

M(i, j) = median{Hµ(i, j−k : j+k), k = l−1/2}, (8)

where we usedl = 7. We used a value ofl = 7 since
a median filter whose length is greater than the duration of
the transient noise can suppress it [17] and most percussive
transients are around 60-100ms long (3 to 5 frame shifts and
hence we used the next odd numbered window length).

As shown in Figure 2, inHi andM the presence of har-
monic instruments creates a change of shape in the usual

gamma function envelopes of percussion signals [18]. There-
fore, the novelty functionρ, defined as the ratio betweenHµ

andM,

ρ(i, j) = Hµ(i, j)/M(i, j), (9)

is low at places of leakage while it retains a high value if
percussion is present [17].

We now use two possible methods of finding a good thresh-
old for detecting percussion inρ. In the first method, we find
the mean (µ) and variance (σ) of ρ for each subband. The
threshold for theith subband,T (i) is computed as,

T (i) = min(1.75, µ(i) + 0.5 ∗ σ(i)). (10)

This threshold was decided empirically after testing on a
small dataset of audio clips and is similar to the one used
in [19].

In the second method, we assume that we have poly-
phonic audio with utmost10% of the values ofρ are due
to percussion. This is akin to the assumption that we have
2 percussion hits of50ms duration per second of the signal.
We find a threshold from the histogram ofρ such that10%
of the values ofρ lie to the right and the remaining90% lie
to the left of the threshold in the histogram.

We use the threshold obtained from the first method since
optimization process for the second approach is still under
development at the time of writing this paper. We now use
the threshold to determine the set of local maxima within
each subband that belong to the percussion as:

F(i, j) =

{

1 if Hµ(i, j) > T (i).M(i, j) ,
0 otherwise.

(11)

We locate local maxima inHµ for each subband and re-
tain only frames corresponding to them inF while the rest
of the frames are made0. Since a percussive signal has a
gamma function envelope, it has a minima to both sides of
the local envelope maxima on the time axis. Upon finding
the local maxima in the signal, we need to find the local
minima on both its sides on the time axis in order to fully
reconstruct the percussive signal as shown in Figure 3.

We rebuild the exact percussion signal by using the first
local minima to the temporal left and right of each detected
maxima as shown in Figure 4. This ensures that the entire
percussion signal is preserved in the envelope. The set of
non-zero frames in each subband are considered as the per-
cussive frames.

The percussive frames from each subband are finally added
using the overlap and add method to generate the subband
signal that is percussion enhanced. The subband signals are
then passed through the synthesis filterbank to generate the
new percussion signalpenh[n].
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Figure 3. Top:A percussion envelope (solid line) and its lo-
cal maximum and the minima (star).Bottom:Reconstructed
percussion envelope using the piecewise reconstruction
method described in this paper.

We use the newly generated percussion signal to enhance
theHbin signal given by the baseline algorithm. A STFT of
the signalpenh[n] is computed asPenh(i, j). Now the STFT
is averaged along the frequency axis as follows:

Pavg(i, j) =
1

m

i+(m−1)/2
∑

k=i−(m−1)/2

Penh(k, j), (12)

wherem = 2. Pavg changes fromPenh by a small
amount if the frame is a percussive frame (since a percus-
sion frame will have a wideband spectrum) while its value
changes significantly if the frame has predominantly har-
monic components.Pavg is compared with the spectrum of
the original signal. If any component ofPavg is greater than
a thresholdν timesX , that component is assigned to per-
cussion otherwise it is assigned to the harmonic stream of
the signal.

Pfin(i, j) =

{

X(i, j) if Pavg(i, j) > ν.X(i, j) ,
0 otherwise.

(13)

Hfin(i, j) = X(i, j)− Pfin(i, j). (14)

We used a value ofν = 0.45 in order to enhance even
weak percussive segments.

ThePfin andHfin are inverted to obtain the improved
percussionpfin[n] and harmonichfin[n] stream of the sig-
nalx[n]. As can be seen in Figure 5, the postprocessing re-
duces the harmonic leakages very well. In the next section
we compare our output with both the baseline algorithm and
Fitzgerald’s algorithm.

Figure 4. Top:Ground truth locations of percussion in
No.151 from LSML database.Middle:Plot of Hµ for sub-
band 2.Bottom:Percussion located by signal rebuilding after
local maxima detection.

Figure 5. Top:Ground truth locations of percussion in the
clip “Remember The Name-Fort Minor“ from MTG-MASS
database.Middle:Percussion stream from baseline Ono’s al-
gorithm.Bottom:Percussion stream after postprocessing.
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4. EXPERIMENTS AND RESULTS

Since we did not have the individual instrument streams for
Indian music as with the case in [13] for testing the efficacy
of harmonic/percussion separation, we developed our own
procedure as elaborated below.

To compare the working of our postprocessing technique,
we prepared a database of 26 clips from various Indian film
songs and also Western music songs. All songs have been
sampled at 16kHz and are an average 10 seconds long. Each
song was manually annotated using the gating technique
[20] for percussive transients by two people independently.
We annotated drums, mridangam, tabla, shakers and bass
guitar slaps as percussive instruments. The percussive por-
tions common to both the annotations were retained as the
ground truth. We will call this the LSML database.

In order to compare the output of our postprocessing tech-
nique with the baseline Ono’s algorithm, we derive the fol-
lowing measure.

Letp[n] andh[n] be the outputs of the baseline algorithm
andpfin[n] andhfin[n] be the outputs of our postprocessing
technique on the baseline algorithm. We now split each of
these signals into frames of40ms with an overlap of20ms.
The energy in each frame ofp andh are calculated as:

Ep(l) =

(l−1).No+Nl
∑

k=(l−1).No

p2[k], (15)

Eh(l) =

(l−1).No+Nl
∑

k=(l−1).No

h2[k]. (16)

(17)

Similarly the energy forpfin andhfin are computed and
stored inEpfin andEhfin respectively.

We now compare the energies betweenEp andEpfin.
Since bothp andpfin are percussive components, we use
the ground truth to find the total energy in the non-percussive
frames of both these signals. LetFP represent the set of
frames marked as percussive andFH represent the non-
percussive frames. Then we find the energy in the percussive
and non-percussive frames ofp[n] as:

EP
p =

∑

l∈FP

Ep(l), (18)

EH
p =

∑

l∈FH

Ep(l). (19)

Similarly we compute the same for thepfin asEP
pfin and

EH
pfin.
We now compare the energiesEH

p andEH
pfin after nor-

malizing the energiesEP
p andEP

pfin. We computeβP , where,

βP =
EP

p

EP
pfin

. (20)

Now ,

ΓP =
EH

p

βP .EH
pfin

, (21)

computes the ratio between energies in the non-percussive
frames ofp andpfin when the energies in the percussive
frames are equal. A value ofΓP > 1 indicates that the
signalpfin has lesser energy thanp in the non-percussive
segments.

Likewise, we compute the ratioΓH by normalizing the
energies ofh andhfin in the non-percussive sections and
finding the ratio of the energies in the percussive sections
as,

ΓH =
EP

h

βH .EP
hfin

, (22)

whereβH is ,

βH =
EH

h

EH
hfin

. (23)

We formΓTot as,

ΓTot = ΓP + ΓH , (24)

to give us an overall measure of how wellpfin andhfin

compare withp andh respectively.ΓTot attains a value of2
when the baseline algorithm is compared with itself.

We show the performance of our postprocessing algo-
rithm (PP1) and Fitzgerald’s method against the baseline
Ono’s technique in Figure 6. Both the postprocessing tech-
nique and Fitzgerald’s technique are compared against the
baseline algorithm. As can be seen, our method performs
better than both Fitzgerald’s technique and the baseline al-
gorithm for any value of diffusion coefficientα. Also, the
postprocessing technique performs better for a lower diffu-
sion coefficientα. With increasingα, energy in the percus-
sion streampbin decreases and hence the leakage too de-
creases. Therefore our postprocessing algorithm performs
better for lowerα.

5. FUTURE WORK AND CONCLUSIONS

In this paper we have proposed a simple postprocessing tech-
nique for Ono’s harmonic/percussion decomposition algo-
rithm using no prior information about the sources except
their production mechanism and the envelope structure. We
also are currently working on a technique that uses the har-
monic stream along with the percussive stream for improved
separation.
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Figure 6. Performance of the postprocessing technique (
PP1 ) against the Fitzgerald’s method and Ono’s baseline
algorithms for varyingα.
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