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ABSTRACT 
 
Automatic beat tracking and tempo estimation are 
challenging tasks, especially for audio music with time-
varying tempo. This paper proposes a two-fold dynamic 
programming (DP) approach to deal with beat tracking with 
time-varying tempo. In particular, the first DP computes the 
tempo curve from the tempogram. The second DP identifies 
the optimum beat positions from the novelty and tempo 
curves. Experimental results demonstrate satisfactory 
performance for music with significant tempo variations. 
The proposed approach was submitted to the task of audio 
beat tracking in MIREX 2010 and was ranked no. 1 for 6 
performance indices out of 10, for the dataset with variable 
tempo. 
 

Index Terms – Beat tracking, Tempogram, Time-varying 
tempo, Dynamic programming, Viterbi search 
 

1. INTRODUCTION 
 
Tempo and beat are two essential elements in music. Such 
information is useful in several applications such as query 
by tempo (querying a large database based on tempo), beat 
slicing [17] (segmentation into basic music units separated 
by beats), and beat synchronous mixing. However, 
automatic beat tracking and tempo estimation are still 
challenging tasks when the music has time-varying tempos.  

Conventional beat tracking schemes [1] rely on certain 
assumptions about music contents such as stable tempo over 
time, periodical percussions/onsets, and four beats per 
measure. Under these assumptions, most approaches of beat 
tracking are accomplished by two phases. In the first phase, 
the onset strength of music along time, called novelty curve, 
is estimated to indicate the possible positions of note onsets. 
In the second phase, the quasi-periodic patterns in novelty 
curve are analyzed to discover the possible tempo value and 

the corresponding beat positions. Here, tempo is assumed to 
be stable throughout the whole piece of music.  

However, the above-mentioned assumptions do not hold 
true universally, especially for music of classical and jazz. 
Music of these genres often has significant tempo variations, 
making it difficult to detect the periodical patterns. In order 
to detect the variations in tempo, Frequency Mapped Auto-
Correlation Function (FM-ACF) and Short-Time Fourier 
Transform (STFT) [2] are frequently used to derive a time-
frequency representation of the novelty curve, called 
tempogram [3]. The tempo information is embedded in 
tempogram. We can then apply dynamic programming (DP) 
to the tempogram to derive the so-called tempo curve, which 
represents the most likely tempo at each time frame. 

A number of beat tracking algorithms have been 
proposed in the literature under different methodologies, 
including beat-template training [2], neural networks [4], an 
agent-based method [5], and so on. Among them, DP is still 
considered an efficient and effective way for determining 
beat positions. The use of DP for beat tracking has been 
proposed in [1] with good performance, but it is based on a 
pre-estimated stable tempo which is estimated by time-
domain autocorrelation with window weighting. 

There are several important previous studies that 
attempted to deal with time-varying tempos. Klapuri et al. 
[18] used the bandwise time-frequency method to obtain 
accentuation information, then used comb filter resonators 
and probabilistic models to estimate pulse width and phase 
of different metrical levels, including tatum, tactus, and 
measure. Davies and Plumbley [19] proposed the use of 
complex spectral difference onset function [15] to obtain 
middle level representation. Their algorithm employs two-
state switching model, including general state and context-
dependent state, to obtain final beat positions. Groshe and 
Muller [16] used the novelty curve to generate predominant 
local pulse (PLP) for estimating time-varying tempos. 

In this study, we follow the three-phase framework [2, 6] 
of beat tracking and attempt to remove the stable-tempo 
restriction by developing a two-fold DP approach for robust 
beat tracking with time-varying tempos. To this end, the 
first DP estimates the time-varying tempo curve from the 
tempogram (which is obtained from the novelty curve). 
Then the second DP uses the time-varying tempo curve to 
identify the optimum beat positions on the novelty curve.  
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(In fact, we have proposed similar concepts for speech 
analysis, including DP-based robust pitch determination [13] 
for Mandarin tone recognition, and DP-based pitch marking 
[14] for TD-PSOLA synthesis.) In addition, we also propose 
partial-FFT-based tempo curve estimation and peak picking 
in tempogram for DP, which enhance the overall efficiency 
with almost no accuracy loss. The proposed approach was 
ranked no. 1 for 6 performance indices out of 10, for the 
dataset of time-varying temp in the audio beat tracking task 
of MIREX 2010.  

The remainder of this paper is organized as follows. 
Section 2 describes the details of the proposed framework. 
Performance evaluation is given in Section 3. Section 4 
concludes this work with potential future work. 
 

2. SYSTEM DESCRIPTION 
 

The proposed beat tracking system is shown in Figure 1.  
 

 
Figure 1. Flowchart of the proposed beat tracking system 

 
The first block computes the novelty curve based on [1, 6]. 
The second block generates the tempogram and estimates 
the tempo curve from the novelty curve. In the third block, 
beat positions are estimated by using the information from 
previous two blocks. Details of each block will be explained 
in the following subsections. 
 

2.1 Novelty Curve Estimation 
 

Figure 2 shows typical outputs of various steps in 
novelty curve estimation. A power spectrogram is first 
obtained by applying STFT to the source audio with a frame 
size 31.6 milliseconds and 87.5% overlap. The frequency 
components of spectrogram are then mapped into Mel-scale 
in Figure 2(a) for conforming to the characteristics of 
human perception [1]. Then we apply spectral flux (SPF) 
[12] to obtain the raw novelty curve, as shown in Figure 2 (b) 

To be more specific, we have 40 bands in the Mel-scale 
spectrogram, where each band has an equal width in the 
Mel-scale frequency. In other words, each frame is 
transformed into a vector of 40 elements of mean energy 
within the bands. Moreover, the Mel-scale spectral flux can 
be defined as follows:  

 
 

 𝑀𝑒𝑙𝐹𝑙𝑢𝑥(𝑡𝑖) = 1
𝑁
∑ 𝐻𝑅𝐹 �𝑀𝑒𝑙𝑆𝑝𝑒𝑐𝑡𝑟𝑜�𝑡𝑖+1, 𝑏𝑗� −𝑁
𝑗=1

                                                          𝑀𝑒𝑙𝑆𝑝𝑒𝑐𝑡𝑟𝑜�𝑡𝑖, 𝑏𝑗��      (1) 
 

 

where 𝑡𝑖  is the time for frame i , 𝑏𝑗  is Mel-band j,  
𝑀𝑒𝑙𝑆𝑝𝑒𝑐𝑡𝑟𝑜�𝑡𝑖, 𝑏𝑗� is the Mel spectrogram at frame i and 
Mel-band  j, and  𝐻𝑅𝐹�．� is the half-wave rectifier. 

 
 
In general, we neglect the locally periodical information 

above 500 BPM (beats per minute) due to the limitation of 
human perception [7]. Thus we use Gaussian smoothing 
(which acts as a low-pass filter) to filter out the redundant 
high-frequency parts in raw novelty curve, as shown in 
Figure 2 (c). The Gaussian filter has a cutoff frequency 
equal to the sampling frequency divided by 5. At last, we 
subtract the local mean (dotted curve in Figure 2 (c)) to 
obtain the final novelty curve, as shown in Figure 2 (d). The 
local mean is derived from Gaussian smoothed raw novelty 
curve filtered by another Gaussian filter with a cutoff 
frequency equal to the sampling frequency divided by 125.  
 
2.2 Tempo Curve Estimation 
 
In this block, we estimate the tempo curve by analyzing 
locally periodical patterns in novelty curve. Generally 
speaking, local periodicity estimation is usually 
accomplished by STFT, FM-ACF or a combined method [2]. 
However, the autocorrelation-based method generates non-
uniform tempo grids in tempogram, since the tempo is the 
inverse of the beat time difference. More specially, the 
lower the tempo is, the finer resolution (via interpolation, 
for instance) is required to achieve a high precision. To 
avoid such extra work for maintaining the precision, here we 
use STFT to obtain the tempo curve in our study. 
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Figure 2. (a) Power spectrogram. (b) Raw novelty curve. (c) 
Smoothed novelty curve with local mean curve (the dash 
curve). (d) Novelty curve after local mean subtraction 
 

As mentioned above, we do not have to analyze all 
frequency components in the novelty curve. Therefore, a 
partial FFT method is employed to eliminate high-frequency 
computation in STFT. Furthermore, the selection of 
analyzing window length significantly influences the 
capability for tracking tempo variation. In our 
implementation, the frame size is set to be 4 seconds with 
99.6% overlap. The resulting tempogram is shown in Figure 
3(a). 

In order to strike a balance between tempo continuity 
and novelty curve strength, a DP-based approach is used to 
obtain the tempo curve. Given the magnitude 𝑀𝑖,𝑗 of a point 
in the tempogram with time index 𝑖 (1 ≤ 𝑖 ≤ 𝑛), we want to 
find a tempo path  𝐏 =  �𝒑𝟏, ⋯, 𝒑𝒊 ⋯, 𝒑𝒏�, with 𝑝𝑖   is tempo 
value, such that the over-all objective utility function is 
maximized: 
 

 

J(𝐏, 𝜃)  = ∑ 𝑀𝑖,𝑝𝑖
𝑛
𝑖=1 −  θ × ∑ |𝑝𝑖 − 𝑝𝑖+1|𝑛−1

𝑖=1  , (2) 
 
where 𝜃  is the transition penalty factor incurred by the 
difference of the tempo path within two consecutive frames. 
The first term in the utility function is the magnitude values 

along the path over the tempogram, while the second term 
controls the smoothness of the path (thus the computed 
tempo curve). If θ is larger, then the tempo curve will be 
smoother. In particular, if 𝜃 = 0 in the extreme case, then 
maximizing the utility function is equivalent to maximum-
picking of each column (or equivalently, each frame) of the 
tempogram. 
     For efficiency, we shall employ DP to find the maximum 
of the utility function, where the optimum-valued function 
𝐷(𝑖, 𝑗)  is defined as the maximum utility starting from 
frame 1 to 𝑖 , with the frequency/tempo index ending at 𝑗 
(1 ≤ 𝑗 ≤ 𝑚). Then the recurrent equation for DP can be 
formulated as follows: 
 
𝐷(𝑖, 𝑗) = 𝑀𝑖,𝑗 + 𝑚𝑎𝑥𝑘,𝑗∈[1,𝑚]{𝐷(𝑖 − 1, 𝑘) − 𝜃 × 𝑡𝑑(𝑘, 𝑗)}          (3) 

where 𝑖 ∈ [2, 𝑛], 𝑘 𝑎𝑛𝑑 𝑗 are tempo index 
     td(．) is tempo difference function 
      

The initial conditions are  
 

𝐷(1, 𝑗) = 𝑀1,𝑗, 𝑗 ∈ [1, 𝑚]                                       (4) 
 
And the maximum utility is equal to 𝑀𝐴𝑋𝑗∈[1,𝑚]𝐷(𝑛, 𝑗). A 
similar DP-based pitch tracking method has been proposed 
for tone recognition in our previous work [13].  

In practice, we can replace 𝑡𝑑(𝑘, 𝑗)  in the recurrent 
equation with 𝑡𝑑(𝑘, 𝑗) = |𝑝𝑘 − 𝑝𝑗| , which represents the 
tempo difference between tempo indices 𝑘  and  𝑗 . This is 
adopted in our implementation. Figure 4 demonstrates 
typical results of DP over a tempogram, with (a) and (b) 
being the tempogram 𝑀 and the DP table 𝐷 , respectively, 
together with the optimum path obtained via DP. Figure 4 (c) 
and (d) shows the same plots using a 3D surface for easy 
visualization. 

As a common practice in DP, after the maximum utility is 
found, we can backtrack to find the optimum path together 
with the most likely tempo curve, as shown in Figure 3(b). 

The transition penalty factor 𝜃 controls tempo variations, 
that is, it determines the smoothness of tempo curve, as 
shown in Figure 3(c), where a larger value of  𝜃 leads to a 
smoother tempo curve. In our experiment, the transition 
penalty factor 𝜃 is set to 0.01 empirically in order to track 
the correct tempos. 
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Figure 3. (a) The tempogram obtained from the novelty 
curve (b) Local maxima of each column of the tempogram 
and the final optimum tempo path (solid line) with 𝜃 = 0.01 
(c) Tempo curves obtained with 𝜃 = 0.01 and 0.03, 
respectively. 

 
Figure 4. (a) Tempogram (as a contour map) and the 
optimum path. (b) DP table (as a contour map) and the 
optimum path. (c) Tempogram (as a 3D surface) and the 
optimum path. (d) DP table (as a 3D surface) and the 
optimum path.  
 
When 𝑛   is big, the computational complexity is still too 
high to compute the recurrent equation over all states. To 
reduce the computation, we can simply pick the 𝐿 largest 
local maxima within each column of the tempogram as the 
candidate states for DP, as shown in Figure 3 (b). In our 
experiment, this simplified algorithm with L equal to 10 can 
achieve almost the same performance as the original DP. 
 
2.3 Beat Tracking 
               

This block utilizes both the tempo curve and the novelty 
curve to find a sequence of beat positions that fits the tempo 
curve and the novelty strengths as much as possible. To 
achieve this task, we apply another DP-based method in a 
probabilistic framework (just like Viterbi search in speech 
recognition) to perform forward and backward beat tracking, 
starting from the anchor beat position (the position of the 
most prominent peak) of the novelty curve. We have 

proposed such a probability-based DP framework for pitch 
mark identification [14]. Another DP-based approach has 
been proposed for stable-tempo beat tracking [1], though not 
in a probabilistic framework. 

Here we use Figure 5 to explain the weighting-based DP 
method for beat position identification. First of all, we find 
the maximum of the novelty curve as the first beat position, 
which is referred to as the anchor candidate. Starting from 
the anchor candidate, we search on both sides, one side at a 
time, to obtain all beat positions. The search region is 
generally defined as a range from 0.2 to 2.2 times 𝑇, the 
beat period at the anchor candidate. We use a log-time 
Gaussian function over the search region as a weighting 
window for approximating the transition probability. Note 
that the maximum of the log-time Gaussian window is 
located at 𝑇 from the anchor candidate. 

In practice, only the largest 𝑁 peaks of the novelty curve 
within the next search region are selected as the candidates 
for the next beat positions. As a result, we need to perform 
normalization to guarantee that the transition probabilities 
sum to 1 within the search region. Similarly, the state 
probabilities of these 𝑁  candidates are obtained based on 
their heights within the novelty curve. 
 

 
 

Figure 5.  Backward beat search with 𝑁 =2  
 
Once the state and transition probabilities are defined, we 
can apply DP just like Viterbi search for the optimum beat 
positions. The search is performed twice for both forward 
and backward directions from the anchor candidate, and the 
results of them are merged to obtain the complete beat 
positions. In our experiment, we set N to 2. Figure 6 shows a 
typical result with 𝜃 = 0.01 and 𝑁=2. 

   
Figure 6. (a) Typical beat tracking results with 𝜃 = 0.01 and 
𝑁=2 (beat positions indicated by circles).  (b) The tempo 
curve used to obtain the beat positions in (a). 
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3. PERFORMANCE EVALUATION 
 
In this section, we present the performance of the proposed 
algorithm by using the results of the Audio Beat Tracking 
contest in Music Information Retrieval Evaluation 
eXchange (MIREX) 2010  [8]. 
 
3.1 Performance Indices 
 
There are a number of performance indices proposed for the 
audio beat tracking task in MIREX 2010 [8]. For simplicity, 
here we explain two performance indices which are 
generally adopted in beat tracking evaluation among all. The 
first one is F-measure [9] which considers the estimated beat 
as correct if it is within a tolerance window (±70ms in 
MIREX 2010) around the ground truth. The second one is 
P-score [10] which measures beat tracking accuracy by the 
summation of the cross-correlation between impulse trains 
of the estimated beats and the ground truth. 
 
3.2 Datasets 
 
Two music data sets are used to evaluate the performance of 
the proposed system with stable and time-varying tempo, 
respectively. 
 

- MCK dataset:  
 Collected by Martin F. McKinney and Dirk Moelants. 
 Contains 160 30-second excerpts. 
 Ground truth is annotated as stable tempo. 
 A large variety of instrumentation and musical styles. 

 

- MAZ dataset: 
 Collected by Craig Sapp. 
 A subset of 367 Chopin Mazurka pieces [10]. 
 Ground truth is annotated as time-varying tempo.  

 
3.3 Performance and discussion 
 
Tables 1 and 2 show the performance of participating teams 
in MIREX 2010 audio beat tracking task on stable and time-
varying tempo respectively. Only the best methods from 
each team are listed here. Algorithm TL2 uses the proposed 
method in this paper. LGG2 and MRVCC1 accomplish this 
task based on BeatRoot system proposed by Simon Dixon 
[5]. NW1 is based on Predominant Local Pulse curves (PLP) 
[6]. GP3 estimates beat and downbeat positions [11] 
simultaneously via an inverse Viterbi formulation and LDA-
trained beat-template [3]. ZTC1 tracks beat with a global 
stable tempo value. BES4 is based on bidirectional Long 
Short-Term Memory (BLSTM) recurrent neural networks.  
 
Algorithm 

ID TL2 LGG2 MRVCC1 NW1 GP3 ZTC1 BES4 

F-
Measure 42.0 50.0 25.7 35.6 50.3 1.2 54.5 

P-Score 50.6 55.0 38.4 45.7 56.5 0.9 59.2 

Table 1. Performance on MCK dataset (stable tempos) 

 
As shown in Table 1, the proposed algorithm (TL2) only 
performs moderately well on MCK dataset which has stable 
tempos. The performance in this dataset indicates we might 
have put too much emphasis on tracking tempo variations 
instead of identifying stable tempos. In other words, we 
might want to increase the value of the transition penalty 
factor 𝜃  such that the tempo variations can be kept small for 
this dataset. 
 
Algorithm 

ID TL2 LGG2 MRVCC1 NW1 GP3 ZTC1 BES4 

F-
Measure 68.5 41.5 49.2 27.6 47.1 24.6 58.7 

P-Score 72.2 43.5 51.0 31.4 48.7 26.1 57.9 

Table 2. Performance on MAZ dataset(time-varying tempos) 
 

 
Figure 7. The performance on MAZ dataset, including all 

submitted algorithms and 7 performance measures. 
 

On the other hand, in Table 2, the proposed algorithm 
(TL2) outperforms all the other teams based on the 
performance indices of F-measure and P-score. More 
specifically, if we consider all the submitted algorithms and 
all the performance measures, the proposed algorithm 
outperforms other 12 submitted algorithms on 6 
performance indices out of 9, as shown in Figure. 7. (Note 
that in the Figure, we only show 7 performance indices for 
clarity. Moreover, the performance measure by Goto is not 
counted since it is close to zero for all submitted algorithms.) 
This clearly demonstrates the feasibility of the proposed 
two-fold DP strategy for dealing with music of time-varying 
tempos. 
 

4. CONCLUSIONS 
 
In this paper, we have proposed a two-fold DP approach to 
beat tracking, especially for time-varying tempo music. The 
first DP is applied to estimate the tempo curve from the 
tempogram, and the second DP is used to find the optimum 
beat positions with maximum likelihood. The proposed 
method is very similar to our previous work on speech 
analysis, where the first DP is used for robust pitch 
determination [13] and the second DP for robust pitch 
marking [14]. Based on the results of the audio beat tracking 
contest of MIREX 2010, the proposed method performs ex-
tremely well for music with time-varying tempos, but only 
moderately well for music with stable tempos. To improve 
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the proposed algorithm, our immediate work is to use a 
training based method to select the transition penalty factor 
𝜃 such that it can deal with music with both stable and time-
varying tempos. Moreover, we would like to develop a more 
systematic way of defining the state and transition 
probabilities used for the second-fold DP for finding the 
optimum beat positions. We will also investigate the 
possibility of incorporating more acoustic features, either 
time- or frequency-domain, to define the more robust 
novelty curve that can deal with music with no percussions.  
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