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ABSTRACT

Many applications demand the automatic induction of the
tempo of a musical excerpt. The tempo estimation systems
follow a general scheme that consists of two main steps: the
creation of a feature list and the detection of periodicities
on this list. In this study, we propose a new method for the
implementation of the first step, along with the addition of a
final step that will enhance the tempo estimation procedure.
The proposed method for the extraction of the feature list is
based on Gammatone subspace analysis and Linear Predic-
tion Error Filters (LPEFs). As a final step on the system, the
application of a model that approximates the tempo percep-
tion by human listeners is proposed. The results of the eval-
uation indicate the proposed method compares favourably
with other, state-of-the-art tempo estimation methods, using
only one frame of the musical experts when most of the lit-
erature methods demand the processing of the whole piece.

1. INTRODUCTION

The tempo is a dominant element connected to the hierarchi-
cal structure of a music signal that can define various aspects
of it. Moreover, it is an intuitive music property that hu-
man listeners, even without any musical education are able
to perceive and understand only by listening to the first few
seconds of an excerpt. The tempo is defined as the rate of
the tactus pulse, a prominent level in the hierarchical struc-
ture of music, which is also referred to as the foot-tapping
rate.

The process of automatically inferring the tempo of a
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musical piece plays an important role among the applica-
tions in the field of Music Information Retrieval (MIR). Many
of them, for example, beat tracking and music classifica-
tion, need a preprocessing stage where tempo estimation
takes place. Beyond these, tempo induction is essential in
music similarity and recommendation, automatic transcrip-
tion and even audio editing. More complicated tasks such
as meter extraction and rhythm description also demand a
tempo estimation module. Finally, in applications with beat
synchronous visual and audio effects the estimation of the
tempo is a necessary part.

In such applications it is desired that correct tempo esti-
mation would be available to the system at about the same
time that the tempo is detected by a human listener. This
is technically very difficult because the human listeners are
able to use higher-level context cues to conduct tempo de-
tection. In fact, many algorithms proposed for tempo es-
timation in the past [7, 11] require a long signal segment
for producing reliable results. This is clearly a problem in
contents such as radio programs, where the rhythmic music
content may alternate with, for example, speech segments

Tempo induction algorithms follow a general scheme [4,
5], that consists of two main stages. In the first stage, the
audio signal is parsed and a set of features is created. These
features convey an initial rhythmic structure of the input mu-
sical piece. Literature reveals two main methods to obtain
features: either from a list of the inter onset intervals (101s)
of the musical signal or from the temporal evolution of the
musical signal.

Representative algorithms that fall in the first category,
and use IOIs for the creation of the feature list, are presented
in [1-3]. Algorithms in the second category rely on features
extracted directly from the audio signal. These features may
emphasize onset locations but they do not result from on-
set lists. In [11] an amplitude envelope of the signal in six
octave-spaced subbands is created at the first stage of the
system. This approach is expanded in [7], where a more
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generic and therefore robust accent signal is created across
four subbands.

During the second stage of the tempo estimation scheme,
periodic recurrences of the features are found and the tempo
is calculated. There are several methods to achieve this. For
example, the autocorrelation function (ACF) [12], comb-
filter resonators [7, 11] and phase-locking resonators [8].

The method proposed in this paper uses Gammatone anal-
ysis and linear prediction for extracting the feature list. Af-
ter that, the estimation of the existing periodicities takes
place. As alast step to the algorithm, a perceptual weighting
method is proposed for enhancing the system’s accuracy.

The results of the system are encouraging and indicate
that the addition of a perceptually inspired stage at the end
is advantageous for an algorithm that follows the tempo es-
timation general architecture. In addition to that, the use of
a single, 4 seconds long, frame to obtain the final results, fa-
cilitates the proposed algorithm to quickly adapt to possible
tempo changes in a given music excerpt.

The Gammatone filterbank models the input signal using
a frequency resolution which is similar to that of the hu-
man auditory system. Moreover, the use of LPEFs in the
first step, enables the accentuation of points where abrupt
changes take place in any frequency band of the input sig-
nal. These points in time are considered significant for the
task of tempo estimation.

The perceptual processing, that starts with the applica-
tion of the Gammatone filterbank on the input signal, pro-
ceeds with the weighting method that is added as a last step
on the system. This weighting method is based on a reso-
nance model that has been found to follow the perceptual
responses to a variety of musical excerpts [10, 13]. The use
of this model in order to enhance a tempo estimation system
is novel and leads to promising results.

The rest of the paper is organised as follows. In Section
2 the architecture of the system is described. Section 3 pro-
vides results and evaluates the developed system. Finally,
conclusions and future work are discussed in Section 4.

2. METHOD DESCRIPTION

The developed system follows the general scheme of tempo
estimation algorithms, with the addition of a last step where
the perceptual processing of the results takes place. The
block diagram of the system is shown in Figure 1. Each one
of the three major units depicted there, is described in details
in the following sections.

2.1 Feature List Extraction

When a listener listens to music, the musical events are re-
lated to a regular pattern of beats, called metrical structure.
These patterns are organised in a metrical hierarchy that ex-
ists in every musical sound and consists of two or more lev-
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Figure 1. The block diagram of the proposed system.
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Figure 2. The hierarchical structure of a piece with a 4/4
meter

els. When a beat is felt stronger that the other beats of the
same metrical level then it is also a beat at the higher musical
level. This hierarchy is depicted in Figure 2, where also the
first three levels of it are presented. The tempo is described
as the rate of the ractus beat, or based on the above explana-
tion the rate at which strong beats appear at the tatum level.

During this stage of the analysis the goal is to detect
events that are connected to the strong beat of the tatum
level. To achieve this, it is assumed that any event per-
ceived as a strong beat will appear as an abrupt increase in
the temporal evolution of the musical signal, baring signifi-
cantly more transient content than the rest of the beat-related
events.

Let us consider the input music signal z[n]. The first step
of the processing is the application of a bank of K’ Gamma-
tone filters on it:

zgn] = hg[n]*xzn] kel0,1,...,K -1}, (1
where hy[n] the impulse response of the k-th Gammatone
filter. During the implementation the value K was chosen
to be 16.

After the filtering of the input signal, each subband signal

is decimated K times as follows

@

zg[n] = xx[Kn).

The 2 [n] signals are then given as an input to a bank of
adaptive LPEFs. The use of the LPEFs enables the detection
of abrupt changes in the temporal evolution of the signal. By
adapting the linear prediction coefficients that these filters
use, it is possible to emphasize the events that the adaptive
algorithm fails to model. The strong beats that appear at the
tatum level are connected to these events.

The output of the adaptive LPEFs is the prediction er-
ror of the adaptive linear predictive algorithm given in Al-
gorithm 1. This algorithm is based on estimating the LPC
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coefficients of the initial M values of the IV long frame, and
adapting these coefficients using the Least Mean Squares
(LMS) algorithm for the remaining N — M samples. The
selected values for M and N are 23 ms and 1 second re-
spectively (converted in samples). More details on linear
prediction and the LMS algorithm can be found in [6].

The output signal, dfi[n], is the detection function, a
residual signal that presents high values when beat related
events take place in the temporal evolution of the signal.

Algorithm 1 The implemented adaptive LPEF algorithm.

mu «— 1073

w;[0] < LPC(x;[0])

for n=1to N — M do
Ex[n] — Wi [n] % %y [n]
dfi[n] — xk[n] — Z[n]

oo min mu, m
wiln 1] < wiln] + i)y o]

end for

A peak picking procedure, applied on the analysis frames
(of length ) of the smoothed and normalized signals dfy [n],
produces a time series

sl 1 if dfy[n] demonstrates a peak here
skln] =
. 0 otherwise

During peak picking, an adaptive threshold, calculated by
the sum of a predefined, static threshold and a moving me-
dian filter is used.

The time series ts [n] are then convolved with a Hanning
window in order to produce the mask functions my[n]. In
that way, a strongly smoothed version of the corresponding
detection function is created that however accentuates the
detected abrupt events. The above described processing for
the creation of the feature list combines the advantages of
the use of an onset list with those methods where the feature
lists are obtained in a continuous manner.

3

2.2 Tempo Induction

In the second part of the system, the periodicity analysis
is carried out, in order to infer the tempo from the list of
features (i.e. mask functions). The periodicity analysis is
done using a bank of comb filters.

Each one of the mask functions, my[n] is given as an
input to a bank of comb filters. Therefore, for the analysis
band k the following takes place:

“

Ye,r[n] = aryk-[n— 7]+ (1 — ar)msn],

for every 7 € 7. The interval 7 ranges from 42 to 242 beats
per minute (BMP). In this interval the filter’s delay 7 takes
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integer values. The term a, corresponds to the filter’s feed-
back gain and it is calculated as a = 0.570 . The time during
which the signal should reach its half energy is 7p. In this
system T} is equal to 4 seconds. The selection of this time
frame is motivated by the smallest tempi normally found in
a piece of music. With a minimum tempo of 42 BPM, this
frame is big enough to cover at least two repetitions of the
beat but also small enough for the system to quickly adapt
to any tempo changes, when more than one frames are used
as an input.

The energy of each filter, in each frequency band k is
then calculated by

n

el =1 > el

i=n—T7+1

&)

A sum across all the frequency bands &k will result to a wide
band energy signal for each tempo 7

K
er[n] = Z ek r[n] (6)
k=1
So far, for every time index n of the input signal we ob-
tain a vector

@)

consisting of the instant energies in every periodicity 7 € 7.

The N maximum components of the vector e are then
selected in order to form a vector w. The corresponding
tempi form the vector T'. The vector T contains the winning
tempi, and vector w their relative weights.

e = [esln] esln) eaaz[n]]"

2.3 Perceptual Model

The ambiguity in the perception of tempo has been modelled
and tested in experiments [10, 13] where the distribution of
responses from several listeners to the same pieces of music
were studied. This analysis resulted in the following reso-
nance model:

1 1
J@ -y s Vi

where A, is the effective resonance amplitude, ¢, is the res-
onance tempo, 3 the damping constant and ¢ is the tempo
variable. During experimenting, these parameters were fit-
ted to the distribution of the tapped tempi. It has been found
that, on average, music experts produce a resonant tempo of
138 BPM with a damping constant, § equal to 5.0. In Fig-
ure 3 the produced model, with the use of these parameters
is depicted.

In this paper the model of equation (8) is used to weight
the results from the periodicity analysis so that

Ac(t) = ®)

w, = A (T))w; i€[1,2,...,Np], )
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Figure 3. The resonance model that was described in [10]
and fits the distributions of responses to several pieces of
music.

where T; the ¢-th value of vector T and w; the corresponding
weight. After this step, elements w; form w’ which contains
the perceptually modified weights of the winning tempi in
T. The tempo estimation is therefore enhanced with per-
ceptual information.

Systems that estimate periodicity patterns in a signal stron-
gly respond to the multiples and aliquots of any fundamen-
tal periodicity that appears in it. Likewise, when it comes
to human listeners, the more ambiguities in determining the
tempo appear due to the selection of multiples and divisors
of the same tempo. In the vector of winning tempi, T, also
appear not only possible perceived tempi, but also multiples
and aliquots of them.

In order to discard some “false” estimations from T and
decide which is the perceived tempo in a group of tempi
that have a common divisor, an extra weighting step is intro-
duced. During experimenting, it was found that increasing
the weights of each tempo that appears in T with a factor of
the weight of its multiples and divisors that also appear in
T, has the following two desired effects:

a. Significant decrease in the (normalized) weights of
tempi whose multiples and aliquots are not present.

b. Highly accurate decision on which is the true per-
ceived tempo within a set of tempi that have the same
common divisor (as presented in Section 3).

This factor was chosen experimentally 0.3 for multiple pe-
riods and 0.6 for aliquots.

3. EVALUATION AND RESULTS
3.1 Datasets and Evaluation Measures

The developed system is evaluated using the measures pro-
posed in [5]. The two measures defined are Accuracy I and
Accuracy 2, corresponding to the percentage of tempo esti-
mates within 4% of the ground truth data. For the calcula-
tion of Accuracy 2 also integer multiplications and divisions
of the ground-truth tempo are considered to be correct esti-
mates.
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Winning T | T2 | T3 | T4 | T5
Tempi

Accuracy I | 30 40 | 2822 | 6.02 | 172 | 2.44
(%)

Accuracy 1

CDF (6 | 3840 | 6662 | 7264 | 7436 | 76.80

Table 1. The Accuracy I of the algorithm for the estimation
of the winning tempi

The results are based in two different datasets, both used
in [5] for a comparative evaluation of tempo induction algo-
rithms. That way our results can be compared to previous
work. The first dataset, Ballroom, consists of 698, (30 sec-
onds long each) audio excerpts. The second dataset, songs,
contains 465 audio excerpts, this time each one being around
20 seconds long. The two datasets cover a wide range of
genres (namely Rock, Classic, Electronica, Flamenco, Jazz,
AfroBeat, Samba, Balkan, Greek, Cha Cha, Rumba, Samba,
Jive, Quickstep, Tango and Waltz). Both datasets have been
made publicly available ! . It is mentioned here that due to
some missing or bad formatted files, the following results
have been calculated over a subset of the above datasets,
that covers the 97.25% of the whole data.

3.2 Results

The first phase of the evaluation procedure was to check
the accuracy of the algorithm in defining the vector of the
winning tempi, T, i.e. before applying the perceptual mod-
elling. The winning tempi in the vector are placed in de-
scending order, based on their weight. In Table 1, the results
on the Ballroom dataset are illustrated. In the first row, the
Accuracy 1 of the algorithm in each index of the winning
tempi is shown. The next row, presents the cumulative re-
sults up to each index of the vector T. As depicted in this
table, the algorithm has a success rate of 76.8% in estimat-
ing the correct tempo in the first 5 estimations.

The perceptual model at the end was inspired by this am-
biguity in the results. Although the algorithm is quite accu-
rate in detecting the right periodicity from a music excerpt,
it has a relatively low percentage (38.4%) to do so in the
first guess (i.e. the tempo with the higher energy). Until this
point, only low-level music features have been used. The
encoding of higher level knowledge on tempo perception in
the model could be useful in choosing the right index of the
winning tempi vector as the final estimation.

Indeed, the last step of the system achieves this task. The
perceptual method is applied to the output, improving sig-
nificantly the results of the algorithm. The results on both
datasets, for the two evaluation metrics can be seen in Table

Uhttp://mtg.upf.edu/ismir2004/contest/tempoContest/
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Ballroom Songs
Method Al A2 Al A2
Simple 38.40 | 69.05 | 34.68 | 55.18
Perceptual | 57.31 | 80.80 | 51.80 | 69.14

Table 2. Resulting percentages of the algorithm
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Figure 4. Accuracy I on the Ballroom dataset. The liter-
ature algorithms mentioned are the following: Alonso [1],
Dixon [3], Klapuri [7], Uhle [12], and Scheirer [11].

2. In the first row the results of the two datasets are pre-
sented, for both measures Accuracy I (Al) and Accuracy
2 (A2), without the application of the perceptual modelling
described in Section 2.3. In the second row, the correspond-
ing accuracy values are shown after the application of the
perceptual weighting.

Comparing Table 1 and Table 2, it becomes clear that
there is a significant improvement of 49% in the Accuracy 1
measure when the perceptual weighting is used as a last step.
Moreover, the fact that this improvement is not followed in
Accuracy 2 measure implies that the improvement in esti-
mation takes places due to less multiplication and division
errors.

As mentioned above, the use of the Ballroom and Songs
datasets, along with the use of the Accuracy 1 and Accuracy
2 measures, enables the comparison of the results to the cur-
rent state-of-the-art algorithms. In Figure 4 such a compar-
ison is depicted and the proposed system seems to perform
well. Further improvements to the proposed method are en-
visioned and these are discussed in the following section.

4. CONCLUSIONS AND FUTURE WORK

A new method to estimate the tempo of musical signals was
presented in this paper. The evaluation of this method was
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conducted using popular datasets for the tempo estimation
task along with previously defined evaluation measures. Al-
though at an early stage, the algorithm seems to operate very
well in comparison to the state-of-the-art, using only a sin-
gle frame (4 seconds long) for calculating the result.

As mentioned, the above described results are obtained
from a single frame of the input signal. An application of the
algorithm on the whole signal, and then the computation of
a median or average tempo estimate did not seem to yield a
significant improvement. However, the implementation of a
voting mechanism could improve the overall tempo estimate
of a piece. In such an extension an extra assumption has to
be made, i.e. that the tempo of the piece does not present
any variations throughout the song.

The use of adaptive LPEFs introduced by this work, seems
to work well in the task of extracting tempo estimation fea-
tures. However, it was observed during experimenting, that
the final results and success rates are sensitive to the the set
of parameters used by the feature list extraction part (LPC
order, peak picking static threshold). A detailed examina-
tion of the results that are obtained from different parameter
sets and the determination of an optimum set may further
improve the accuracy of the whole system.

Furthermore, the use of a different set of temporal fea-
tures that indicate the tempo can be considered in a later ver-
sion of the algorithm as the literature reveals some promis-
ing alternatives. For example, linear prediction coefficients
instead of the the prediction error have been successfully
used as features for music genre classification in [9].

Until now, the existing knowledge on the perceptual event
that leads to the well known action of foot-tapping, has not
been extensively used for a systematic way of estimating
perceived tempo. This study indicates that taking advan-
tage of auditory modelling tools can significantly improve
the performance of a tempo estimation algorithm.
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