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ABSTRACT

We propose an iterative algorithm to detect transient seg-
ments in audio signals. Short time Fourier transform (STFT)
is used to detect rapid local changes in the audio signal.
The algorithm has two steps that iteratively - (a) calculate
a function of the STFT and (b) build a transient signal. A
dynamic thresholding scheme is used to locate the poten-
tial positions of transients in the signal. The iterative pro-
cedure ensures that genuine transients are built up while the
localised spectral noise are suppressed by using an energy
criterion. The extracted transient signal is later compared
to a ground truth dataset. The algorithm performed well
on two databases. On the EBU-SQAM database of mono-
phonic sounds, the algorithm achieved an F-measure of 90%
while on our database of polyphonic audio an F-measure of
91% was achieved. This technique is being used as a pre-
processing step for a tempo analysis algorithm and a TSR
(Transients + Sines + Residue) decomposition scheme.

1. INTRODUCTION

Transients are portions of audio signals that evolve fast and
unpredictably over a short time period [1]. Transients can
be classified as attack transients (sound onsets), rapid de-
cay transients (sound offsets), fast transitions (portamen-
tos) and noise/chaotic regimes (sounds like handclaps, rain
etc) [2]. Percussive sounds, guitar slaps, stop consonants
(uttered during singing) are very good examples of tran-
sient signals. Transients generally last for 50ms and display
fast changes in amplitude and phase at various frequencies.
Transients can be classified as weak or strong based on the
strength of the envelope while they can also be charaterized
as fast or slow depending on the rate of change of envelope
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amplitude. Fast transients have sharp amplitude envelopes
while slow transients have broad (platykurtic) envelopes.
Transient detection is an important problem in many areas
of music research like - audio coding (parametric audio cod-
ing [3], pre-echo reduction [4] etc), onset detection [5, 6],
time-scaling of audio signals [2,7,8], note transcription[2],
rhythm analysis and percussion transcription [9,10].

One of the first attempts to detect and model transients was
the TMS (Transient Modeling Synthesis) model proposed
in [11] as an extension to the popular sinusoidal modeling
of McAulay et al. [12] and sine + noise model [13]. The
basic idea of the TMS model is the time-frequency dual-
ity. The TMS model is also dual to the sinusoidal model-
ing [12]. That is, by choosing a proper linear transform,
a pure sinusoid in time domain appears impulsive in the
frequency domain and an impulsive like signal in time do-
main looks sinusoidal in the frequency domain. Discrete
Cosine Transform (DCT) was thus chosen to provide the
mapping from the time domain to the frequency domain so
that transients in the time domain become sinusoidal in the
frequency domain. Energy of the original signal and its
residue from signal modeling using DCT is used for tran-
sient detection. Masri et al. [5] used the high frequency
content feature to detect attack transients for the purposes of
audio analysis/synthesis. Abrupt phase changes in a bank of
octave spaced filters has been employed to detect transients
in [7]. Recently, group delay function has been used to de-
tect transients in monophonic and pitched percussive instru-
ments [14]. In [15,16] linear prediction followed by thresh-
olding on the residual signal envelope have been used for
transient detection and modeling. Roebel used the center of
gravity (COG) of a signal to locate transients and use it for
onset detection with good results [6]. Torresani et al. [17]
have used a concept of “transientness“ to detect transient
signals. Two sets of basis functions that have sparse (dense)
representations for pure sinusoids and dense (sparse) repre-
sentations for transients simultaneously are chosen to define
the transientness of audio signals. For a more exhaustive
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survey on transient detection we refer the reader to [18].

Most of the above discussed works use monophonic audio
for their results. Daudet et al. [18] conducted a survey of
various techniques and their efficiency of transient detec-
tion on the popular “glockenspiel” and “trumpet” audio sig-
nals. Gnann et al. [14] have used the EBU-SQAM database
(monophonic signals) to test their algorithm and we use the
same too.

In this paper, we propose to build on Ono et al. [19, 20]
by using a much simpler iterative procedure. This algorithm
can be used for audio coding, rhythm analysis and percus-
sion transcription amongst the many possible tasks.
This paper is organised as follows. We describe our ap-
proach and choice of parameters in section 2. Section 3
presents our experimental setup, databases used and the re-
sults along with some advantages of our approach. We con-
clude in section 4.

2. THE TRANSIENT DETECTION ALGORITHM

We consider percussive sounds (drums, tom-toms etc), gui-
tar slaps and sung consonants as transients. They show up as
vertical lines in spectrograms [19] . Our algorithm detects
such vertical lines in the spectrogram that have sufficient
strength and bandwidth. We intend to detect reasonably fast
percussive transients like piano hits, guitar slaps and thevar-
ious drums while neglecting the slow transient signals like
gongs.

Let x[n] be a polyphonic audio signal. The signal is re-
sampled at 16kHz to account for varied sampling rates and
recording conditions (The algorithm works at any sampling
rate but we choose 16kHz to standardize steps for our TSR
algorithm). The signal is normalised such that its maximum
value is 1 as follows,

xnorm[n] =
x[n]

max(|x[n]|)
. (1)

The normalization step is not necessary for audio coding
applications. This signal is now split into frames of 40 ms
with an overlap of 30ms. Each frame of the signal is multi-
plied with a Blackman-Harris window of length,N = 640
samples to reduce sidelobes. A STFT of the signal analyses
the frequency content of the signal in regular periods. Let
X(i, k) denote the STFT of the signal for theith frame and
kth frequency bin. Then,

X(i, k) =

N−1
∑

n=0

x[n].w[n− iR].e−j.2π.n.k/N , (2)

wherew[n] is the windowing function,N is the number

of samples in a window andR is the time shift in samples
[21].

We now define functionsT
−

andT+ that are derived from
the magnitude spectrum of the signal as follows:

T
−
(i, k) = |X(i, k)| − |X(i− 1, k)|, (3)

T+(i, k) = |X(i, k)| − |X(i+ 1, k)|. (4)

The functionsT
−

andT+ act as intermediate functions which
detect vertical edges in the spectrogram. These derivatives
indicate onsets and offsets respectively. Since transients
have fast onsets followed by fast offsets, theT

−
andT+

functions should have high values at frames corresponding
to transients. We now form a smoothened version of the
above functions as follows;

F (i, j) = 0.5{

j+ν
∑

k=j−ν

{1 + sgn(T
−
(i, k))}.T

−
(i, k)

+{1 + sgn(T+(i, k))}.T+(i, k)}, (5)

where

sgn(θ) =

{

1 if θ ≥ 0 ,
−1 if θ < 0.

(6)

F (i, j) computes temporal changes in the magnitude spec-
trum at the framei. F (i, j) considers half wave rectified
positive values ofT+ andT

−
functions and adds it across

frequency binsj− ν to j+ ν. The half wave rectification in
equation (5) ensures that we detect only onsets fromT

−
and

offsets fromT+ respectively. The parameterν takes into ac-
count the spectral spread of the transient, neglecting noisy
inflections in the spectrogram.

As can be seen in Figure 1, the function in red (dashes) is
with smoothing along the vertical direction (vertical neigh-
boursν = 3) and the function in blue (dashes and dots) is
without smoothing (ν = 0). The smoothing operation en-
sures that only genuine vertical edges in the spectrogram are
accentuated and spurious changes (due to inflections in vo-
cals/instrumentation) are suppressed.

2.1 Proposed iteration steps

For the extraction of transients, we now useX andF in
an iterative framework as described below. The main algo-
rithm consists of 3 iterative steps. In the first step, dynamic
thresholds are computed.In the second step the transient sig-
nal updates are obtained. In the third step functions depen-
dent onX(i, k) are updated. We now use theF to detect the
presence of transients in the audio signal.
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Figure 1. FunctionF at bin number 2kHz for Claves-s sig-
nal from EBU-SQAM database. The transient regions get
accentuated more with vertical neighbours,ν = 3 compared
to ν = 0, while the local ringing noise is suppressed.

2.1.1 Step I: Computing dynamic thresholds

An adaptive threshold for the detection functionF (i, j) is
derived. Letλ(i, j) represent the desired threshold. Then,

λ(i, j) = β ×

∑i+τ
l=i−τ F (l, j)

2τ + 1
, (7)

whereβ is a parameter to control the strength of tran-
sients that are to be extracted. Equation (7) calculates a time
varying threshold for every time-frequency bin (ith frame
andjth frequency bin). A flag is set if the value ofF at the
bin j is greater than the thresholdλ(i, j). That is,

Γ(i, j) =

{

1 if F (i, j) > λ(i, j) ,
0 if F (i, j) ≤ λ(i, j).

(8)

Summing the flag functionΓ along the frequency bins
(represented byΣΓ) indicates the number of frequency bins
in a single frame that have more significant energy than their
neighbours and may reveal the presence or absence of a tran-
sient. That is,

ΣΓ(i) =

N−1
∑

j=0

Γ(i, j). (9)

2.1.2 Step II: Extraction of the transient portion and
update of X

If theΣΓ is greater than a thresholdλThr, the corresponding
frame is declared transient frame and a small fractionδ of
the magnitude spectrum is subtracted from that frame and
added to the functionP to build transients as follows,

P (i, j) =

{

P (i, j) if ΣΓ < λThr ,
P (i, j) + δ.X(i, j) if ΣΓ ≥ λThr ,

(10)

Figure 2. The function F - initial value and value after 20
iterations at 400Hz for Claves-s signal from EBU-SQAM
database.

wherej varies from0 toN − 1.
In case of detected transients, the magnitude spectrum is

modified as follows,

X(i, j) =

{

X(i, j) if ΣΓ < λThr ,
(1− δ).X(i, j) if ΣΓ ≥ λThr,

(11)

wherej varies from0 toN − 1.

2.1.3 Step III: Update of functions dependent on X

The functionsF , λ, Γ andΣΓ are updated using theX ob-
tained from 2.1.2.

We iterate over steps I, II and III forM times. Figure 2
shows the changes inF at a particular frequency bin after
various iterations. As can be seen from Figure 2,F de-
creases at places of transients and increases in the adjacent
frames. This is due to the definition ofF , since it consid-
ers a contribution fromT

−
andT+ only if they are positive.

If after a particular iteration, sayT
−
(i, j) becomes positive

because|X(i − 1, j)| reduced from the previous iteration
(see update equations in Algorithm.1), thenF (i, j) can be
greater than its value in the previous iteration.

The functionP at the end ofM iterations represents the
spectrogram of the transient signal. The same steps are pre-
sented as follows. From now on all variables and functions
used for the algorithm are superscribed with(n) (only if
their values depend on the iteration) to represent thenth it-
eration.

We begin by initialisingP to 0. The values for the func-
tionsX ,F , Γ, λ andΣΓ, calculated from the original signal,
are used for the initial values of the algorithm.

We thus have two parameters that control both the strength
of the extracted transient (controlled byβ) and its spread in
frequency (controlled byλThr). We have usedτ = 3 and
δ = 0.1 in our implementation.
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Input: InitialiseP (1) to 0, X(1) toX , F (1) toF , λ(1)

to λ, Γ(1) to Γ, Σ(1)
Γ toΣΓ

Output: Transient signal P extracted from X

foreach n = 1 to M do

(I, II) if Σ(n)
Γ (i) ≥ λThr then

(i)|X(n+1)(i, 0 : N − 1)| =
(1− δ)× |X(n)(i, 0 : N − 1)|

(ii)P (n+1)(i, 0 : N − 1) =
P (n)(i, 0 : N − 1) + δ × |X(n)(i, 0 : N − 1)|

else
(i)|X(n+1)(i, 0 : N−1)| = |X(n)(i, 0 : N−1)|
(ii)P (n+1)(i, 0 : N − 1) = P (n)(i, 0 : N − 1)

end
(III) Calculate F (n+1), λ(n+1), Γ(n+1), and
Σ

(n+1)
Γ using X(n+1)

end

Algorithm 1: Flow for updating equations of the algo-
rithm

The iterative procedure is used instead of a single step
transient detection since this algorithm is a part of a TSR
decomposition algorithm we are currently developing. The
iterative procedure helps to uncover slightly masked and
weak transients at later steps as has been revealed in our pre-
liminary experiments. The TSR decomposition algorithm
works by alternatively identifying and extracting transients
and sinusoids until we are left with a residue signal. Even
without the sinusoidal extraction steps here, the algorithm
does detect partially masked and low energy transients. As
can be seen from Figure 3, the transient signal builds slowly
over iterations.

After theM steps, the transient signal that has been gen-
erated is converted back into time domain by an inverse Dis-
crete Fourier transform (IDFT). The phase of the original
signal is used for the IDFT procedure. Frames of the tran-
sient signal that have less than5% of the maximum energy
are discarded to retain only significant transients. The loca-
tions of the transients are compared with the ground truth
data for evaluation.

Figure 4 shows the glockenspiel signal from EBU-SQAM
database and its extracted transient. As can be seen, the tran-
sient signal is well extracted.

3. EXPERIMENTS AND EVALUATIONS

A database of33 clips averaging10 seconds each was pre-
pared by selecting audio from various possible genres (pop,
rock, R&B etc). Each clip was converted to ’.wav’ format
from CDs, and resampled at 16kHz. Each clip was manually

Figure 3. The original signal and the extracted transient
signal after 1, 5 and 20 iterations. The strength and time
duration of the transient signal increases with iterations

annotated for percussive transients after multiple listening,
using the gating procedure [22]. Two people annotated the
database independently. The common transient segments
from both the annotators were chosen for our final ground
truth set. The database has a total of 1308 transient seg-
ments. The database was split into2 non-overlapping sets
consisting of10 clips for the training dataset having406
transient segments and 23 clips for the test dataset with902
transients respectively1 .

The parametersβ and λThr were optimised using the
training set consisting of 10 clips.β was varied in steps
of 0.1 from 1.25 to 2.5 while λThr was varied as a frac-
tion of frame lengthN (i.e N/10,N/9,N/8...). A transient
was declared to have been found if the extracted transient
overlapped with the ground truth segment. We got optimal
performance forβ = 2 andλThr = N/6. λThr parameter
selects only significantly long vertical lines in the spectro-
gram whileβ parameter evaluates the strength of the tran-
sients. We usedM = 20 iterations for the algorithm. This
way if a transient exists, approximately 90% of the magni-
tude can be extracted in the iterative steps if theΣΓ satisfies
the threshold conditions for all the20 iterations.

These parameters were used to test the remaining 23 songs
for their performance. The algorithm was able to correctly
detect (CD)808 (90%) transients with65 (7%) false posi-

1 This is denoted as the LSML database. We intend to make this a freely
available database for research soon
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Figure 4. Glockenspiel signal from EBU-SQAM database
and the extracted transient signal

Database Name Total CD FP FN DD
LSML 902 808 65 94 2
EBU-SQAM 276 237 11 39 0

Table 1. Performance of the transient extraction algorithm

tives (FP). This is equivalent to a Precision (P) of0.92 and
Recall (R) of0.89. The F measure is thus0.91.

We have also tested our algorithm on the EBU-SQAM
percussive monophonic database [14]. The testing proce-
dure followed in [14] was used for testing our algorithm on
this database. The EBU-SQAM database has276 percus-
sive transients in24 files. Our algorithm correctly detected
237 transients correctly while11 transients were detected
as FP. This gives our algorithm an F-measure of0.90. This
compares very well with the results from [14], where an F-
measure of0.92 is achieved on the same dataset of EBU-
SQAM database. While the parameters in [14] are opti-
mized for the EBU-SQAM database, we use the same pa-
rameters that are optimized for our LSML polyphonic music
database.

For the EBU-SQAM database we observed that we got
false positives during the slow transient portions of the sig-
nal or for signals with heavy ringing in the decay tail. Also,
a shortcoming that we observed with our algorithm was the
sensitivity to signal continuity. The EBU-SQAM database
has signal discontinuity in 2 files and those portions were
detected as transients.

The performance of our algorithm is tabulated in Table
1. Since the algorithm acts as a pre-processing stage for a
tempo analysis algorithm and a TSR decomposition algo-
rithm, the false positives do not harm much except when

Figure 5. The locations of the extracted transients are
shown w.r.t the ground truth.The blue lines indicate the ex-
tracted transient locations and the red lines the ground truth

Parameter Numeric value
Frame size 640
ν 3
δ 0.1
τ 3
β 2
M 20
Fthr 106

Table 2. Used parameters and their values

they have sufficient energies. Figure 5 shows the audio sig-
nal and extracted transient locations in comparison with the
groundtruth locations for a polyphonic piece from LSML
database.

The values of the parameters used by us in our imple-
mentation is given in Table 2.

4. CONCLUSIONS AND FUTURE WORK

We have discussed a simple iterative procedure for detecting
transients from polyphonic audio signals. The method is
used in a TSR decomposition algorithm. This algorithm is
also currently acting as a pre-processing step for a tempo
analysis algorithm. We are also looking at using generalised
TEF (Teager energy functions) type of functions to improve
our transient detection accuracy.
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