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ABSTRACT

In this publication, we present a method to characterize two-
track audio recordings (bass and drum instruments) based
on musical attributes. These attributes are modelled using
different regression algorithms. All regression models are
trained based on score-based audio features computed from
given scores and human annotations of the attributes. We
compare five regression model configurations that predict
values of different attributes. The regression models are
trained based on manual annotations from 11 participants
for a data-set of 70 double-track recordings. The average
estimation errors within a cross-validation scenario are com-
puted as evaluation measure. Models based on Partial Least
Squares Regression (PLSR) with preceding Principal Com-
ponent Analysis (PCA) and on Support Vector Regression
(SVR) performed best.

1. INTRODUCTION

A lot of music pieces show stylistic influences from multiple
music genres. These influences usually can be linked to the
individual instrument tracks of a song. Instead of modelling
music pieces as a whole, we believe that it is more meaning-
ful to characterize them on a track-level. In this publication,
we investigate double-track recordings including bass and
drum instruments. Both instruments are essential parts of
the so-called “rhythm section” that establishes the rhythmic
and harmonic foundation of a band that performs a piece
of music. The bass track and drum track usually follow a
repeating, pattern-based structure.

The contribution of this paper is two-fold. First, we
present new features for the rhythmic and tonal analysis of
instrument tracks. Second, we investigate the applicability
of regression models to model semantic attributes of instru-
ment tracks based on human ratings. Since these attributes
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have a continuous scale, we use regression algorithms rather
than classification algorithms to automatically predict their
values for a given recording. The attributes introduced in
this work (see Sect. 5) allow to describe a piece of music on
a more abstract level than features derived from music the-
ory allow. This semantic level opens up a more general per-
spective to characterize, to compare, and to retrieve music
pieces. It is furthermore accessible to a broader selection of
users since it does not require detailed musical knowledge.

2. GOALS & CHALLENGES

We aim to develop a regression-based prediction system that
automatically  characterizes double-track bass and
drum recordings in terms of five different tonal and rhythmic
attributes. Since the recordings we investigate cover various
music styles from different regional backgrounds, we need
to identify features that allow a robust semantic description
independent of stylistic idiosyncrasies.

3. PREVIOUS WORK

In the last decade, score-based audio features (high-level
features) were mainly applied for classification tasks such
as genre classification [2,3,7]. In contrast to low-level and
mid-level audio features such as the spectral flux or the Mel-
Frequency Cepstral Coefficients (MFCC), high-level
features relate to expressions of music theory to character-
ize instrument tracks in terms of rhythmic and tonal prop-
erties. These features are derived based a score representa-
tion of a music piece, which can be generated either by an
automatic transcription of real audio files or directly from
symbolic formats such as MIDI. In the past, most methods
to extract high-level features comprise a statistical analysis
of note onsets, pitches, and intervals [3, 8]. In [4], differ-
ent regression algorithms were compared to predict differ-
ent emotion ratings based on extracted audio features. Mu-
sic recordings with guitar, bass guitar, and drums were ana-
lyzed as presented in [1] based on rhythmic high-level fea-
tures. In this publication, three different configurations of
regression models were compared to model 8 different mu-
sical attributes related to different instruments.
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Figure 1. Processing steps including the manual annotation
step, feature extraction, and regression analysis.

4. DATASET

In this study, we use a collection of 70 two-track record-
ings including a drum track and a bass track taken from
instructional bass literature [10] as dataset. These tracks
cover different Western music styles such as blues, funk,
boogie, and modern jazz, Non-western styles from Latin and
South America such as Cuban mambo, reggae, and samba as
well as some African styles. All audio recordings were per-
formed by professional musicians in a recording studio. The
processing steps pursued in this study are depicted in Fig. 1.
We used the audio recordings for the manual annotation of
the given attributes as explained in Sect. 5. In addition, we
extracted a score representation of the bass track based on
the related score sheets and manually transcribed the drum
track. Both track transcriptions were stored as MIDI files for
further analysis. The question of automatic bass and drum
transcription is not within the scope of this paper.

5. ANNOTATION PROCESS

For the annotations, we recruited 11 participants of differ-
ent levels of musical education (most of them being semi-
professional musicians). The participants were asked to an-
notate each audio track according to the attributes harmonic
clarity (HClar), harmonic predictability (HPred), rhythmic
clarity (RClar), rhythmic coherence (RCoh), and danca-
bility (Dan) using a 7-point numeric scale between 1 (very
low) and 7 (very high) with 4 being the neutral value. All
attributes were introduced to the participants based on ex-
planatory questions as shown in Tab. 1. The Annotation
Tool previously presented in [11] was used for the subjects
to manually assign attribute values for all recordings within
the dataset. The participants were allowed to skip single an-
notations if they were unsure of their annotations for those
particular tracks.
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6. FEATURE EXTRACTION

We used the MIDI toolbox [5] to extract the basic score pa-
rameters absolute pitch 6p 4 of all notes of the bass track
as well as onset o (in fractions of bar lengths) and du-
ration ¢p (in fractions of bar lengths) of all notes of both
tracks from the MIDI files. Based on these note parame-
ters, we compute high-level features related to rhythmic and
tonal properties of both tracks as explained in the following
sections. Both ¢p and ¢p provide a tempo-independent
rhythmic representation of the bass line. In addition to the
bass track (BA), we split the drum track (DR) into the three
instrument sub-tracks bass-drum (BD), snare drum & rim-
shot (sp), and hi-hat & cymbals (HH). In this section, we
first explain pre-processing steps and then illustrate the ex-
tracted rhythmic and tonal features. For each feature, the
corresponding instrument tracks are given in brackets.

6.1 Rhythmic features
6.1.1 Pre-processing

Metric level

In order to emphasize notes that occur on strong metric po-
sitions, we compute the metric level [; of each note within
the metric hierarchy of the corresponding bar. All examples
within the dataset are in a % time signature, thus we define
the quarter notes as the beat-level. If the note onset corre-
sponds to a beat position within the beat-level, we obtain
l; = 1, if it is not on the beat level but still on the first sub-
beat level (eight-notes), we obtain /; = 2, and so forth. For
simplification, we assign both triplets as well as duplets to
the same rhythmic level.

Similarity matrix (based on Levenshtein distance)

For each instrument track and each bar, we extract sequences
made of the corresponding notes. Each note is represented
by its modified note onset go = o mod 1. This repre-
sentation neglects the associated bar number of a note and
only takes its relative position within its bar into account.
We compute a rhythmic similarity measure s,, ,, between
bar m and bar n based on the Levenshtein distance measure
dmn @S S = 1 — dypy n/dimag. For each pair of bars, the
scaling factor d,,,4, corresponds to the length of the longer
note sequence. See [1] for further details.

6.1.2 Features

Average metric level (BA, DR)

In order to characterize the rhythmic complexity of an in-
strument track, we compute the average metric level I; over
all notes of this track as feature.

Tempo (An)
We use the tempo in BPM derived from the function get-
tempo from the MIDI toolbox.
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Attribute|| Related instru- | Explanatory questions
ment track(s)

HClar BA How clear could you imagine the harmonic content / harmonic progression of the music by
just listening to the bass line?

HPred BA When listening to the excerpt for the first time, did you find the harmonic progression im-
plied by the bass line predictable, or was it on the contrary surprising and unexpected?

RClar BA& DR How clear could you perceive the rhythmic structure (beat positions) by listening to the bass
and the drums?

RCoh BA& DR Did the two instruments contribute to a coherent rhythmic structure, or did they contradict?

Dan BA& DR While listening to the music, could you imagine that it is easy to dance to it or not?

Table 1. Attributes used for manual annotations.

Note density (BA, DR)

We compute the number of notes V,,, per bar. Then we take
the mean and standard deviation of all values of INV,,, as fea-
tures.

Rhythmic similarity within instrument tracks (BA, DR)

We compute mean and standard deviation over all similarity
values s, , With m # n to measure the average similarity
between all bars of an instrument track as well as its vari-
ance.

Rhythmic similarity between instrument tracks (BA-BD, BA-
SD, BA-HH, BD-SD, BD-HH, and HH-SD)

Similar to the previously explained feature, we compute the
bar-wise similarity between the bass and drum track pairs
BA- BD, BA- SD, BA-HH, and the drum track pairs BD-SD, BD-HH,
and HH-SD. For instance, this allows to detect whether the
bass and the bass-drum track play rhythmically in unison or
not. The participants agreed that this particular configura-
tion contributes to the perception of a high rhythmic coher-
ence between the bass and the drum instrument.

Divergence from a (Western) prototype rhythm (DR)

In accordance to the statements of various participants, we
identified a prototypic drum rhythm' as illustrated in Fig.
2 that was said to serve as a rhythmic orientation for locat-
ing the beat positions in an unknown bass and drum groove.
Therefore, we assume that the similarity between a given
drum track and this prototype rhythm can be interpreted as a
measure that is proportional to the perceived rhythmic clar-
ity. For each of the drum instrument tracks BD, SD, and HH,
we compute the similarity based on the Levenshtein distance
as explained above between the real drum track and the cor-
responding track in the prototype rhythm. Finally, we av-

! This rhythm can be found in different Western music genres. Consid-
ering that most of the participants said to have only minor listening experi-
ence with Latin American and African rhythms, we only take this rhythm
as a basis of comparison even though a couple of Latin American bass and
drum grooves are present in the database.
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Figure 2. (Western) prototype drum-rhythm. The three
drum classes introduced in Sec. 6 are represented by the
lowest note (bass drum - BD), the middle note (snare drum -
sp), and the cross-note (hi-hat - HH).

erage the similarity over all three instruments to derive an
overall similarity measure for the complete drum track. This
measure is averaged over all bars and taken as feature.

6.2 Tonal features
6.2.1 Pre-processing

Chromatic pitch representation

The chromatic pitch class 6 p ¢ represents all absolute pitch
values mapped to one octave as pc = 0p 4 mod 12 with
Op c € [0,11]. The note name C' corresponds to fp o = 0.

Diatonic interval representation

07 denotes the intervals between adjacent notes in semi-
tones. After all intervals are mapped to a maximum abso-
lute value of 12, we derive a diatonic interval representation
01 p that corresponds to the musical interval labels unison
(01,p = 1), second (0;,p = 2), and so forth up to seventh
(0r,p = 7). The octave (0; = 12 or §; = —12) is consid-
ered as a unison (; = 0) here according to the modulo-12
operation. For reasons of simplifications, we convert all de-
scending intervals 07 p < 0 into their complementary inter-
vals, i.e., a descending second (f;,p = —2) to an ascending
seventh (0 p = 7) etc.

Bass note detection

We aim to detect the dominant bass note in each bar. Since
no other instrument track is available for harmonic analysis,
we use this bass note as harmonic reference for the compu-
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tation of different tonal features. First, we retrieve all chro-
matic pitch classes HAP,C apparent in a bar of the bass line.
Then, we compute a chromatic presence value o, which ac-
cumulates the duration values ¢ p ; of all notes associated to
the same chromatic pitch class 0 p,c,, Within this bar:

1
2

Vi < 0p c,i=0p,ck

ey

a(éP,C,k) =

Each note is weighted according to its metrical level by the
weighting factor 1/1; (see Sect. 6.1.1). This is because notes
on strong metric positions are assumed to be more likely
perceived as bass notes than notes on weak metric positions.
Finally, we obtain the chromatic pitch class of the bass note
0p,c,p in this bar by maximizing o over all apparent chro-
matic pitch classes as

Opcp =0pci — k* = arg max al@pcr). @)

6.2.2 Features

Percentage of bass note changes (BA)

Since we assume that the bass note acts as an indicator for
the predominant harmony in a bar, we compute the number
of bass note changes in a bass line divided by its length in
bars as feature.

Diatonic intervals related to the bass note (BA)

In each bar, we compute the interval between the chromatic
pitch class of all bass notes and the chromatic pitch class
of the estimated bass-note fp ¢ p. Then, we derive the di-
atonic representation 0y p of this interval in the same way
as previously explained in Sect. 6.2.1. If the bass note re-
lates to the root note of the current chord and the bass line
plays mainly thirds and fifths (0; p = 3, 0;,p = 5), we
expect the harmonic predictability to be high since the bass
uses main chord tones. Therefore, we compute n (6 1,.D
3)+n(0rp =5))/ > n(0r p) as feature with n(f; p) in-
dicating the number of notes with the given diatonic interval
value. If only a small number of different diatonic intervals
are present, we assume the harmonic complexity of a bass
line to be low. Therefore, we compute the zero-order en-

tropy over the probability values
p(0r.p) =n(br,p)/ > n(fr D) as second feature:
Hy= - ZP(GI,D)IOgQ [p(01.0)] (3)

Tonal similarity between subsequences (BA)

To measure the tonal complexity of a bass line, we inves-
tigate, whether it is repeated after a certain number of bars.
Therefore, we subdivide the bass line into adjacent
sub-sequences of a lengthof L = 1, L = 2, and L = 4
bars. Each sub-sequence is represented by the absolute pitch
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values of the included notes. Again, we compute a similar-
ity measure based on the Levenshtein distance as described
in the previous section. Bass lines are often repeated after
a few bars but played in a transposed form, i.e., translated
in pitch by a constant term. To cope with that, we sub-
tract the lowest pitch value from all absolute pitch values
in each sub-sequence that is to be compared. Finally, we
average the similarity values between all adjacent pairs of
sub-sequences (e.g. for L = 1, we compare bar 1 with bar
2, bar 2 with bar 3, and so on) and derive one feature value
for each sub-sequence length.

7. EVALUATION
7.1 Regression analysis

We compare 5 different configurations of regression mod-
els based on Robust Regression (RR), Partial Least-Squares
Regression (PLSR), and Support Vector Regression (SVR).
The RR uses an iteratively algorithm to assign a weight to
each data point within the training data. This way, outliers
have a smaller influence on the regression model. A differ-
ent approach is followed by PLSR. A smaller number of less
correlated predictor variables is derived from a linear com-
bination of the initial feature dimensions. For the PLSR, we
investigate the influence of a preceding feature selection via
Principal Component Analysis (PCA). Therefore, we select
all feature dimensions with eigenvalues A > 1 during the
PCA. We then determine the optimal model order for the
PLSR models by minimizing the Akaike information crite-
rion (AIC). For the SVR, we compare v-SVR and e-SVR as
provided by the LibSVM toolbox [6]. We used the RBF
kernel with parameter v and cost factor C' for both con-
figurations. Based on a three-stage grid search, we deter-
mine the optimal parameters {C,~, v} for the »-SVR and
{C,~, €} for the e-SVR? by minimizing the mean squared
error (MSE) value. For more details on the regression meth-
ods, see for instance [6] and [9].

For each attribute, we select the features that are used
for the model training as illustrated in the third column of
Tab. 3. Leave-one-out cross-validation is used to evaluate
each configuration-attribute pair and to avoid model over-
fitting, i.e., a different sample is used within each fold for
testing and the remaining 69 samples are used for training
of the regression models. Within each fold, all vectors of the
training set are normalized to zero mean and unit variance.
Then, the feature vector of the test set is normalized using
the mean and standard deviation vectors derived from the
training set. The MSE is computed between the predicted
values and the ground-truth values of the test set and av-
eraged over 70 folds. For each configuration-attribute pair,

2 Search area for v is 0.01 : .05 : .5 and for e is (0.1: 0.1 : 1) - 1073,
The parameters C' and -y are selected via grid-search as proposed in [6].
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we store the test set ground truth values as well as the cor-
responding model predictions over all folds in two vectors.
Then, we compute the sample correlation between both vec-
tors. The correlation is considered as significant if p < .05
holds true for the corresponding p-value.

| HClar | HPred | RClar [ RCoh [ Dan

HClar / 0.82* | 0.48" | 0.57 0.24
HPred 0.82* |/ 0.5* 0.58* | -
RClar 0.48* | 0.5* / 0.77* | 0.38
RCoh 0.5" 0.58* | 0.77* |/ 0.31
Dan 0.24 - 0.38 0.31 /

Table 2. Correlation coefficients r between human anno-
tations of different attributes. Only significant correlations
(p < .05 or p < .001*) are shown.

7.2 Results

Correlation between attributes

As illustrated in Tab. 2, the annotations show that many of
the attributes are significantly correlated, especially the two
tonal attributes HClar and HPred (»r = .82) and the two
rhythmic attributes RClar and RCoh (r = .77). The danca-
bility of a bass and drum groove seems to be mainly influ-
enced by its rhythmic attributes (rpanRrClar .38,

TDan,RCoh = -31).

Regression experiment

The results of the regression experiments outlined in Sect.
7.1 are illustrated in Tab. 3. As depicted in the upper part
of the table, the SVR models lead to the smallest MSE val-
ues for all 5 attributes where the PLSR models performed
only slightly worse. The models for HClar and RClar show
the smallest prediction errors, while harmonic predictability
show the highest errors. The RR performed worse for all
attributes.

The sample correlation coefficients and the correspond-
ing p-values are given in the lower part of the table. In
contrast to the MSE values, highest (significant) correlation
coefficients can be observed for the attributes HPred with
r = .59 and Dan with » = .46. All significant correlations
can be observed for models based on PLSR with preceding
PCA or based on e-SVR. No model show significant corre-
lation for the attribute HClar.

Comments of participants

We identified a couple of problems during additional inter-
views with the participants after the annotation step. Two
participants generally had difficulties to distinguish between
clarity and predictability. The attributes HClar and HPred
were said be the most complicated ones to annotate since
the majority of the participants were not used to listen just to

213

the bass and the drum instrument without any accompanying
harmony instrument. Since the attribute HPred achieved the
highest estimation errors as shown above, we assume that
further score-based features need to be extracted from the
harmony track of a given music recording in order to model
this attribute.

8. CONCLUSION

In this paper, we compared five different regression algo-
rithms for the estimation of values related to five differ-
ent tonal and rhythmic attributes to characterize two-track
recordings of bass and drums. Score-based features were
extracted and used as predictor variables and manual user
annotations of 70 audio excerpts were used as response vari-
ables to train and evaluate the regression models. For all five
attributes, the PLSR+PCA model and the SVR models per-
formed best (and comparably well) in terms of estimations
errors. Significant correlations between annotated and es-
timated attribute values were only observed for four of the
attributes and in particular for PLSR+PCA models and the
e-SVR models. Since the highest (significant) correlation
coefficient is 7 = .59, we assume that further important as-
pects of the musical performance are not well captured by
the applied features so far.

In general, we believe that the presented approach can
be generalized to multi-track recordings including other in-
struments. However, we think that human attribute ratings
should be based on listening to the isolated tracks instead of
listening to the mixture signal. One issue of future work is
to investigate how strong the perception of these attributes
differs when human annotators listen to mixture of multiple
instruments instead.
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