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ABSTRACT 

The process of generating chords for harmonizing a melody 
with the goal of mimicking an artist’s style is investigated 
in this paper. We compared and tested three different ap-
proaches, including a rule-based model, a statistical model, 
and a hybrid system of the two, for such tasks. Experiments 
were conducted using songs from seven stylistically identi-
fiable pop/rock bands, and the chords generated by the sys-
tems were compared to the ones in the artists’ original 
work. Evaluations were performed on multiple aspects, in-
cluding calculating the average percentage of chords that 
were the same and those that were related, studying the 
manner in which the size of the training set affects the out-
put harmonization, and examining a system’s behaviors in 
terms of the ability of generating unseen chords and the 
number of unique chords produced per song. We observed 
that the rule-based system performs comparably well while 
the result of the system with learning capability varies as 
the training set grows. 

1. INTRODUCTION 

Automatic generation of harmony is a natural extension and 
application of harmonic analysis, an essential component in 
music information retrieval. Previous research in automatic 
harmonization focuses on Western classical music, apply-
ing various techniques ranging from rule-based models [4] 
to genetic algorithms [10] in order to automate the process 
of harmonization in styles. An example would be the four-
part harmonization in the Baroque period.  Recently, sys-
tems have been developed for automatic harmonization in 
popular music [3, 7, 9], i.e., creating a sequence of chords 
for a given melody representing the vocal part in a song. 
However, the concept of style is loosely defined or even 
missing in most of these systems. As the Beatles represents 

a firmly defining role in pop/rock music, the style of the 
individual artist must be considered. 
 In this paper we compare three different approaches for 
style-specific harmonization in popular music. The three 
approaches demonstrate a wide spectrum of techniques: a 
knowledge-driven model, a data-driven model, and a hybrid 
system combining the two. We conducted experiments by 
taking the melody of songs from seven identifiable 
pop/rock bands as the input for the three systems, and com-
pared the system-generated chords with the ones in the 
original artists’ work. For systems with learning capabili-
ties, we analyzed the relationship between the size of the 
training set and the quality of the output harmonization. We 
also examined the characteristics of each system in terms of 
the number of unique chords it generates for each song, and 
its ability to produce chords that are not included in training 
sets. 

2. PROBLEM DEFINITION 

Suppose a melody consists of m monophonic notes, {a1, 
…, am}, harmonized by a sequence of n chords {C1, …, 
Cn}, 1≤n≤m. The melody can also be represented as a set 
of n melody segments, {M1, …, Mn}, and each of the seg-
ments contains notes harmonized by a particular chord. For 
example, the melody segment Mi, harmonized by the chord 
Ci, can be represented as: 
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where |Mj| is the number of notes in the melody segment 
Mj. The location of a chord often aligns with the bar line 
between two measures, but not necessarily, as more than 
one chord may appear in a bar. Chords for two adjacent 
melody segments may be identical or different.  

In order to generate chords for a given melody, the har-
monization task requires two steps: segmenting the melody 
into melody segments and selecting a chord for each melo-
dy segment. In this paper we focus on the second step, 
chord selection, and assume the information about segmen-
tation is given. Each chord Ci is selected among 24 candi-
dates, 12 major triads and 12 minor ones. The choice of the 
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24 triads is partially due to the fact, as indicated in [8], that 
96% of the chords in the collected work by the Beatles are 
major and minor triads. And the choice of triads is also be-
cause of our intention to focus on the fundamental chords. 

3. SYSTEMS 

3.1 The Rule-Based Harmonic Analyzer 

The Harmonic Analyzer [11] (HA) proposed by Temperley 
and Sleator applies preference rules to rhythm analysis and 
harmonization in the Western classical music tradition. To 
harmonize a melody, the system first divides it into seg-
ments, and then assigns the root of the chord for each seg-
ment, without indicating the mode (major or minor). For 
the purpose of this paper, we focus on the process of root 
finding. The system operates on the application of the four 
Harmonic Preference Rules (HPR): 

HPR 1 (Compatibility Rule): prefer certain TPC (tonal 
pitch-class)-root relations over others, in the following or-
der: ,1̂ ,5̂ ,3̂ ,3̂b ,7̂b ,5̂b ,9̂b ornamental; 

HPR 2 (Strong Beat Rule): prefer chord-spans that start 
on strong beats of the meter; 

HPR 3 (Harmonic Variance Rule): prefer roots that are 
close to the roots of nearby segments on the line of fifths; 

HPR 4 (Ornamental Dissonance Rule): prefer ornamental 
dissonances that are (a) closely followed by an event a step 
or half-step away in pitch height, and (b) metrically weak. 

Given a melody segment, a score is calculated for each 
of the possible 12 roots as a weighted sum using the four 
preference rules. The compatibility rule (HPR 1) assigns a 
score to each note in the melody segment depending on the 
relationship of the note to the root. If the note is the tonic 

( 1̂ ) of the root, it receives the highest score. Notes that are 
not listed in the compatibility rule are given penalties, de-
pending on the inter-onset interval between the note to the 
next note a step or half-step apart in pitch and the note’s 
metrical strength (HPR 4). Whenever a new root is selected 
for a segment, i.e., a chosen root is different from the one in 
the previous segment, it receives a penalty based on the 
strength of the beat where the new root starts. If the new 
root starts at a strong beat, it will receive a lower penalty 
(HPR 2). To apply the harmonic variance rule (HPR 3), a 
center of gravity is calculated as the average position of 
roots in all previous segments on the line of fifths, weighted 
by the length and how recent the segments are. The current 
root is then assigned a penalty based on its distance to the 
center of gravity. The scores calculated on HPR1 and HPR 
3 are further weighted by the length of the segment. Finally, 

a dynamic programming algorithm is applied to retrieve the 
path of roots that report the highest overall score. 

We used the implementation of the system provided by 
Temperley and Sleator [12] for comparison in this paper. 
We converted melodies in the MIDI format to text files 
containing a sequence of note events with beat structures as 
the required input for the HA system. In order to make the 
output of the HA system comparable to the ones from other 
systems, we expanded the output root into a major or a mi-
nor triad. We interpreted the chords as being the common 
ones as described in the textbook for Music Theory [6]. The 
common chords, written in Roman Numerals, include I, ii, 
iii, IV, V, vi, and vii. For example, when a root G is report-
ed by the HA system in a song in the key of C major, we 
assign a G major (V) instead of a G minor (v) chord. For a 
root not listed as either major or minor in the set of com-
mon chords, we randomly assign a mode to the root. 

3.2 Hidden Markov Models 

Statistical approaches, particularly Markov Models, have 
been commonly utilized for harmonic analysis and genera-
tion in Western classical music [1, 5]. More recently, My-
Song [9] uses HMMs to automatically choose chords to ac-
company a vocal melody. Five categories of triads are con-
sidered in the MySong system, including major, minor, 
augmented, diminished and suspended triads. Chords are 
represented as their functional roles in relation to the key, 
which is given along with each song. The system models 
two types of relations: the co-occurrence of a chord and the 
distribution of pitches in the melody segment, and the co-
occurrence of two chords observed adjacently. Two proba-
bility matrices are constructed to record the statistical in-
formation about the two relations. The first matrix, melody 
observation matrix, records duration-weighted melodic 
pitch class histogram observed in training examples for all 
the chords in consideration. The second matrix, chord tran-
sition matrix, shows the logarithmic likelihood of the tran-
sition from one chord to another observed in the training 
examples. To generate chords for an input melody, a pitch 
class histogram is first produced for each melody segment 
as the observed state, and the likelihood of a chord chosen 
for that melody segment is calculated using melody obser-
vation matrix. Combining the resulting logarithmic likeli-
hood with chord transition probabilities, the Viterbi algo-
rithm is then applied to retrieve the most likely possible 
chord sequence for the entire melody. 

  The main design goal of MySong is different from the 
topic concerned in this paper. The system was trained on 
hundreds of songs by various artists across many genres at 
once, without concentrating on any particular style. The fi-
nal chord sequence was controlled by users through the ad-
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justment of two options: “happy factor” generates more ma-
jor triads, while “jazz factor” assigns more weights on the 
melody observation matrix than on the chord transition ma-
trix. Regardless of the different design goal, the underlying 
HMMs in MySong can be easily adapted to the generation 
of style-specific harmonization with proper modifications. 
Inspired by MySong, we implemented a HMM-based mod-
el for style-specific harmonization. We maintained the two 
matrices and the way they were calculated, and also applied 
the Viterbi algorithm to retrieve the final chord sequence. 
However, we discarded the two user options with the result 
that the generated chord sequence completely depends on 
the statistical information observed in the training exam-
ples. We also limited chord selection to among major and 
minor triads only, resulting in a 24-by-12 melody observa-
tion matrix and a 12-by-12 chord transition matrix. Infor-
mation such as melody segment and key is given. During 
the process of training, only songs written by one artist or 
band are supplied.   

 It is important to discuss the differences between the 
rule-based HA system and the HMM approach. In addition 
to the basic musical terms such as pitch, pitch class, chord 
and key that exist in both systems, the HA system has em-
bedded more knowledge of abstract musical structures, in-
cluding scale, rhythmic hierarchy, ornamental and circle-of-
fifths. The functional role of each melody note and that of 
each chord in relation to the hierarchical and abstract struc-
ture of the song are well defined in the HA system as pref-
erence rules. To generate harmonization for a given melo-
dy, chords are selected by a series of calculations using pre-
defined scores and penalties. In contrast, none of these ab-
stract structures are considered in the HMM approach. Only 
two relations are modeled in the HMM system: pitch class 
distribution in melody for each segment (the observed state) 
and transitions between adjacent chords (transitions be-
tween states). The preference of such relations in HMM is 
completely determined by the training examples without 
using any pre-set scores or penalties. 

3.3 Automatic Style-Specific Accompaniment System 

In [3], Chuan and Chew proposed an Automatic Style-
Specific Accompaniment (ASSA) system that generates 
accompaniments in a particular style to a melody given on-
ly a few training examples. The system takes a hybrid ap-
proach, applying statistical learning on top of a music theo-
retic framework. In ASSA, the relation between melodic 
notes and chordal harmonies is modelled as a binary classi-
fication task called chord tone determination: if the note is 
part of the chord structure, then the note is classified as a 
chord tone; otherwise it is labelled a non-chord tone. Each 
melody note is represented using 73 attributes, including 

pitch, duration, metrical strength, its relation to the neigh-
bouring tones, phrase location, etc. These attributes de-
scribe the functional role of each melody note in the various 
abstract musical structures of the song. However, unlike the 
HA system, the preference or suitability of a certain type of 
note or chord is not pre-programmed into the system; it is 
learned from the training examples. Therefore, the resulting 
classifier, a trained decision tree in ASSA, is completely 
determined by the style shared in common by the training 
songs.  

 Instead of representing chord transitions as pairs (source 
chord and destination chord) as in the HMM approach, the 
ASSA system applies neo-Riemannian transforms [2] to 
focus on the musical relationship between the two chords 
involved in the transition and the movements of pitches 
from one chord to another. For example, a transition from a 
C major triad to an E minor triad is described using the 
leading tone exchange (L) operation1 because the two triads 
share the pitches e and g, but the pitch c in C major is re-
placed by the E minor’s pitch b, which is the leading tone 
in C major. The transition from F major triad to A minor 
triad is also described using the same L operation, while 
such transition is recognized as a different chord pair (C 
major, E minor) in the HMM approach. Chord transitions in 
the ASSA system are represented in a manner that reflects 
their relation on the circle-of-fifths and voice leading be-
tween the chord tones. But unlike the HA system, which 
always prefers the movement in the shortest distance on the 
circle-of-fifths, the applicability of the transition type is de-
termined by the training examples.  

 Another difference between ASSA and the previous two 
systems can be observed in the generation of the final chord 
sequence for harmonization. ASSA generates harmoniza-
tion in a divide-and-conquer fashion. The system first di-
vides the input melody into sub-phrases delineated by bars 
in which melody notes strongly imply triads; then it gener-
ates a sequence of chords for each sub-phrase independent-
ly. For each sub-phrase, a Markov model is used to calcu-
late probabilities of all possible chord series. Given a series 
of n chords, {C1, …, Cn}, where each chord is indexed by 
its segment number, the probability that this chord series 
occurs can be expressed as: 

),...|,...( 11 nn SSCCP  

),,|()...,,|()|( 11211211 nnnn SSCCPSSCCPSCP −−=  

),,|,()...,|()|( 11212,111 nnnn SSNROPSSNROPSCP −−=   (2) 

                                                             
1  The four fundamental operations in neo-Riemannian 
transforms are I (Identify), L (Leading-tone exchange), P 
(Parallel) and R (Relative). 
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where NROi-1, i is the neo-Riemannian operation between 
chord Ci-1 and Ci, and Si is the phrase position of segment i, 
which falls into one of four possible categories: start, mid-
dle, ending and final. These sub-phrases of chords are at 
last combined, with refinements, to produce the chord pro-
gression for the entire melody.  

4. EXPERIMENTS AND RESULTS 

4.1 Experiments 

The objective of the paper is to examine the effectiveness 
of the three approaches – a rule-based system, a statistical 
model and a hybrid system – for the automatic generation 
of style-specific harmonization. We used 140 songs by sev-
en stylistically distinct pop/rock bands, including the Beat-
les (B), Bon Jovi (BJ), Green Day (GD), Guns N’ Roses 
(GR), Indigo Girls (I), Keane (K) and Radiohead (R). 
Songs by the same band are considered to have similar 
styles. We obtained information about each song such as 
melody, chord and key from the commercial lead sheet. 
Melodies were encoded in the MIDI format while chords 
and keys were written in text files with melody segments 
specified.  

 For systems with learning abilities, we conducted the 
Leave-One-Out test. We selected one song as the test song 
and formed a training set using the remaining songs by the 
same artist. We then compared the generated chords with 
the ones given in the commercial lead sheet (the ground 
truth) of the test song. To examine the manner in which the 
number of training examples affects the performance of the 
systems, we constructed training sets with various sizes by 
gradually adding one song into the set. Suppose we have m 
songs by an artist and n represents the number of songs in 
the training set, 1≤ n ≤ m-1. For each test song, we can con-
struct 1−m

nC different training sets. Therefore, for each n, we 

will have results from m x 1−m
nC different test instances. The 

number of test instances grows quickly and becomes infea-
sible as m and n increase. For example, if we have 20 songs 
by an artist and we form test sets of 10 songs, the resulting 
number of test instances is 20 x 19

10C  = 1847560. We lim-
ited the number of training sets by randomly choosing 120 
training sets for each test song if the total number of possi-
ble training sets exceeds 120. Therefore, for each n, the 
number of test instances is bounded by 120 x m. On the 
other hand, for the rule-based HA system that does not re-
quire training examples, the total number of test instances 
for an artist is equivalent to m.      

4.2 Results 

4.2.1 Same Chord Percentage 

Figure 1 shows the average percentage of generated chords 
that are identical to the ones in the ground truth with 95% 
confidence interval. Notice that the ASSA system reports a 
higher same chord percentage when the number of training 
songs increases. But the same chord percentage of HMM 
decreases as the increment of training songs increases in all 
cases except the one shown in Figure 1 (b). In general, 
ASSA reports higher or at least equivalent same chord per-
centage as HMM. However, comparing with ASSA and 
HMM, it is difficult to make general comments on the re-
sult of rule-based HA (the one with zero training songs) be-
cause of its wide confidence interval.  

 

Figure 1. Same chord percentage with different sizes of 
training sets. 

4.2.2 Related Chord Percentage 

Figure 2 shows the average percentage of generated chords 
that are closely related to the ground truth. Two chords are 
considered closely related if they show one of the following 
relations: identical, dominant, subdominant, relative, paral-
lel, dominant/relative, dominant/parallel, subdomi-
nant/relative and subdominant/parallel. For example, if the 
ground truth is C major, the closely related chords in the 
order are C major, G major, F major, A minor, C minor, E 
minor, G minor, D minor and F minor. When related chord 
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percentage is considered, the rule-based HA performs the 
best in general. HMM and ASSA perform similarly, but as 
the number of training songs increases, the results for 
ASSA improves while those for HMM decline. 

 

Figure 2. Related chord percentage with different sizes of 
training sets. 

4.2.3 Average Number of Unique Chords 

We also examine the number of unique chords generated 
for each song by the three systems, and compare that with 
the number of unique chords in each band’s original songs. 
Each unique chord chosen by a composer is analogous to a 
color used by a painter, and the number of colors that ap-
pear in a painting is usually considered a contributing factor 
of a painting style. The number of unique chords equals the 
total number of chords in the sequence subtract the number 
of duplicate chords. Figure 3 shows the average number of 
unique chords generated by the three systems and in the 
original songs. Notice that the average number of unique 
chords generated by the rule-based HA system is the closest 
to but slightly lower than the ground truth (GT). The num-
ber of unique chords generated by HMM grows as the 
number of training examples increases, which provides 
more chords as cases for HMM to learn from. In contrast, 
the number of unique chords generated by ASSA drops and 
becomes closer to the ground truth when the number of 
training examples increases. This may result from the use 
of the neo-Riemannian transform, which only represents the 

relative relation in the transition between chords, allowing 
more freedom to choose chord pairs that are not included in 
the training set as long as they share the same transition. 

 
Figure 3. Average number of unique chords per song using 
HMM, ASSA, HA and in the ground truth (GT). 

4.2.4 Average Number of New Chords 

For systems that require training examples, it is important 
to study how these examples affect the output. Particularly, 
we are interested in the system’s ability to generate chords 
that are not given in the training examples. For comparison, 
we also investigate the original songs to observe the num-
ber of chords in a song that do not appear in a given set of 
other songs by the same artist. We label these unseen 
chords as new chords. 

 Figure 4 presents the average number of new chords 
generated by HMM and ASSA, and in the original accom-
paniment, the GT. In the original accompaniments, when 
the training set is small, there are always one or two new 
chords in each song. As the training set grows, the training 
examples gradually cover all the chords in each song. In 
ASSA, because of the neo-Riemannian framework, it 
demonstrates the ability to create new chords but tends to 
generate too many when the training examples are too few. 
More training examples help ASSA become stable. On the 
other hand, the output chords of HMM are fully limited by 
the chords given in the training examples.  
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Figure 4. Average number of new chords per song using 
HMM, ASSA, HA and in the ground truth (GT). 

5. CONCLUSIONS AND FUTURE WORK 

In this paper we compared three different approaches, a 
rule-based model, a statistical model, and a hybrid system 
combining the two, for automatic style-specific harmoniza-
tion in popular music. We conducted experiments by using 
songs from several stylistically identifiable pop/rock bands, 
having the systems generate chords to harmonize given 
melodies, and compared the generated chords with the orig-
inal. We observed that the rule-based system generates the 
most chords within a close range of the original. As the 
number of training examples increases, the hybrid system 
reports more chords identical to the original than the other 
systems. Although the hybrid system has the ability to gen-
erate chords that were not present in the training set, it 
tends to produce too many types of chords for a given song. 
The HMM-based system, however, produces fewer and 
fewer chords that are similar to the original as the size of 
the training set grows. In the future we plan to study differ-
ent approaches for dividing melodies into melody segments 
for the harmonization task. We also plan to explore other 
methods for evaluating system-generated harmonization in 
a particular style. Besides comparing the generated chords 
with the original, we will investigate means for measuring 
the tension and relaxation created in the harmonization.  
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