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ABSTRACT 

Machine learning and artificial intelligence have great po-
tential to help researchers understand and classify musical 
scores and other symbolic musical data, but the difficulty of 
preparing and extracting characteristics (features) from 
symbolic scores has hindered musicologists (and others 
who examine scores closely) from using these techniques. 
This paper describes the “feature” capabilities of music21, 
a general-purpose, open source toolkit for analyzing, 
searching, and transforming symbolic music data. The fea-
tures module of music21 integrates standard feature-
extraction tools provided by other toolkits, includes new 
tools, and also allows researchers to write new and power-
ful extraction methods quickly. These developments take 
advantage of the system’s built-in capacities to parse di-
verse data formats and to manipulate complex scores (e.g., 
by reducing them to a series of chords, determining key or 
metrical strength automatically, or integrating audio data). 
This paper’s demonstrations combine music21 with the 
data mining toolkits Orange and Weka to distinguish works 
by Monteverdi from works by Bach and German folk mu-
sic from Chinese folk music. 

1. INTRODUCTION 

As machine learning and data mining tools become ubiqui-
tous and simple to implement, their potential to classify da-
ta automatically, and to point out anomalies in that data, is 
extending to new disciplines. Most machine learning algo-
rithms run on data that can be represented as numbers. 
While many types of datasets naturally lend themselves to 
numerical representations, much of the richness of music 
(especially music expressed in symbolic forms such as 
scores) resists easily being converted to the numerical 
forms that enable classification and clustering tasks.  

The amount of preprocessing needed to extract the most 
musically relevant data from notation encoded in Finale or 
Sibelius files, or even MIDI files, is often underestimated: 
musicologists are rarely content to work only with pitch 
classes and relative note lengths—to name two easily ex-
tracted and manipulated types of information. They also 
want to know where a pitch fits within the currently im-
plied key, whether a note is metrically strong or weak, what 
text is being sung at the same time, whether chords are in 
open or closed position, and so on. Such processing and 
analysis steps need to run rapidly to handle the large reper-
tories now available. A robust system for data mining needs 
to integrate reliable and well-developed classification tools 
with a wide variety of methods for extracting data from 
large collections of scores in a variety of encodings. 

The features module newly added to the Python-
based, open source toolkit music21, provides this needed 
bridge between the demands of music scholars and of com-
puter researchers. Music21 [3] already has a well-
developed and expandable framework for importing scores 
and other data from the most common symbolic music for-
mats, such as MusicXML [4] (which Finale, Sibelius, 
MuseScore, and other notation software can produce), 
Kern/Humdrum [6], CCARH’s MuseData [11], Notewor-
thy Composer, the common folk-music format ABC [10], 
and MIDI. Scores can easily be transformed from symbolic 
to sounding representations (by uniting tied notes or mov-
ing transposing instruments to C, for instance); simultanei-
ties can be reduced to chords that represent the pitches 
sounding at any moment; and the key or metrical accents of 
a passage can be analyzed (even for passages that change 
key without a change in key signature).  

The features module expands music21’s data mining 
abilities by adding a battery of commonly used numeric 
features, such as numerical representations of elements pre-
sent or absent in a piece (0s or 1s, used, for example, to in-
dicate the presence of a change in a time signature), or con-
tinuous values representing prevalence (for example, the 
percentage of all chords in a piece that are triadic). Collec-
tions of these features can be used to train machine learning 
software to classify works by composer, genre, or dance 
type. Or, making use of notational elements found in cer-
tain input formats, they could classify works by graphical 
characteristics of particular interest to musicologists study-
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ing the reception of the work. Such graphical elements 
might identify the scribe, editor, or publisher of a piece. 

In the following sections, we will describe the feature-
extraction methods (FEMS) of music21. Because music21 
has many powerful, high-level tools for analysis and trans-
formation, FEMS can be tailored to the characteristics of 
particular repertories and can be combined to create more 
powerful FEMS than those available in existing software 
packages. This paper describes how new FEMS can be add-
ed to music21 and demonstrates their usefulness in classi-
fying both classical and popular works. 

2. FEATURE EXTRACTION IN MUSIC21 

2.1 Feature Extractors from jSymbolic 

One of the most useful aspects of the Features module is 
the integration of 57 features of the 111 implemented in 
Cory McKay’s jSymbolic toolkit [9], a subset of his larger 
jMIR toolkit that classifies music encoded in MIDI [8].  
(Music21 aims for full jSymbolic compatibility in the near 
future.) Because music21 is “encoding agnostic,” files in 
any supported format now have access to these FEMS, so 
that MusicXML and ABC files (among others) can, without 
conversion, be run through the same extractors that jSym-
bolic provided for MIDI files. In addition, Music21 FEMS 

are optimized so that closely related feature extractors that 
require the same preprocessing routines automatically use 
cached versions of the processed data, rather than recreat-
ing it.  

Example 1 shows how a single feature extractor, bor-
rowed from jSymbolic, can be applied to data from several 
different sources and datatypes. While using a single fea-
ture extractor on one or two works is not a useful way to 
classify these works, it is a convenient and informative way 
to understand the system and test the FEMS. All FEMS have 
documentation and code examples on the music21 website 
at http://mit.edu/music21. The website also gives instruc-
tions for obtaining and installing the software, as well as 
tutorials and references on using the toolkit. 

Example 1 shows how the fraction of ascending notes 
in a movement of Handel’s Messiah (encoded as MuseDa-
ta) can be found. 
 
from music21 import * 
handel = corpus.parse('hwv56/movement3-05.md') 
fe = features.jSymbolic.\ 
         DirectionOfMotionFeature(handel) 
feature = fe.extract() 
print feature.vector 
[0.5263] 

Example 1. Feature extraction on a MuseData score. 

Example 2 shows feature extraction run first on a lo-
cal file, and then on a file from the Internet. The feature ex-
tractor determines whether the initial time signature is a tri-
ple meter and returns 1 or 0.  The result is returned in a Py-
thon list, since some FEMS return an array of results, such as 
a 12-element histogram showing the count of each pitch 
class.  Like Example 1, this example uses file formats 
(ABC and MusicXML) that cannot be directly processed 
by jSymbolic. (In all further examples, the initial line, 
“from music21 import *” is omitted.) 
 
# a 4/4 basse danse in ABC format 
bd = converter.parse("/tmp/basseDanse20.abc") 
fe = features.jSymbolic.TripleMeterFeature(bd) 
print fe.extract().vector 
[0] 
# softly-softly by Mark Paul, in 3/4 
soft = converter.parse( 
 "http://static.wikifonia.org/10699/musicxml.xml") 
fe.setData(soft) 
print fe.extract().vector 
[1] 

Example 2. A local file and a web file in two different 
formats run through a triple-meter feature extractor. 

2.2 Feature Extractors Native to music21  

In addition to recreating the feature extraction methods of 
jSymbolic, music21’s features.native sub-module includes 
17 new FEMS. These FEMS take advantage of the analytical 
capabilities built into music21, its ability to work with no-
tational aspects (such as a note’s spelling or representation 
as tied notes), or the richer, object-oriented programming 
environment of Python. For example, native music21 

FEMS can distinguish between correctly or incorrectly 
spelled triads within a polyphonic context. (The Incorrect-
lySpelledTriadPrevalence FEM, called on Mozart’s pieces, 
returns approximately 0.5% of all triads, mostly reflecting 
chromatic lower neighbors). Notational features that do not 
affect playback, such as a scribe’s predilection for beaming 
eighth notes in pairs (as opposed to in groups of four) in 
4/4, can similarly form the basis for feature extraction. Fea-
ture extractors can also use a work’s metadata, along with 
the larger capabilities of the Python language, to add pow-
erful classification methods. An example of this is the 
ComposerPopularity feature, which returns a base-10 loga-
rithm of the number of Google hits for a composer’s name 
(see Example 3). 

s = corpus.parse('mozart/k155', 2)  
print s.metadata.composer 
W. A. Mozart 
fe = features.native.ComposerPopularity(s) 
print fe.extract().vector 
[7. 0334237554869485] 
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Example 3. The ComposerPopularity feature extractor re-
ports that there are about 10 million Google results, or ap-
proximately 107, for the form of Mozart’s name encoded 
in the version of K155 movement 2 that appears in the 
music21 corpus, a collection of approximately ten thou-
sand works provided with the toolkit. 

Several of the native FEMS are adaptations of jSym-
bolic extractors, expanded by capabilities offered by other 
modules in music21. For instance, McKay’s “Quality” 
feature classifies a piece as either in major or in minor 
based on information encoded within the initial key signa-
ture of some MIDI files. For files without this information, 
music21’s enhancement of this FEM (fea-
tures.native.QualityFeature) will also run a Krumhansl-
Schmuckler probe-tone key analysis (with the default 
Aarden-Essen weightings) [7] on the work to determine the 
most likely mode. The native module also includes many 
chord-related FEMS that were proposed by McKay but not 
included in the present release of jSymbolic. 

2.3 Writing Custom Feature Extractors 

One of the strengths of music21’s feature system is the 
ease of writing new FEMS. After inheriting the common su-
perclass FeatureExtractor, new FEMS can be created and 
used alongside existing FEMS. The core functionality is im-
plemented in a private method called _process(), which sets 
the values of the vector of an internally stored Feature ob-
ject. The FeatureExtractor superclass provides automatic 
access to a variety of presentations of the score, from a flat 
representation (using the .flat property) to a reduction as 
chords, along with  histograms of commonly requested mu-
sical features such as pitch class or note duration. These 
representations are cached for quicker access later as keys 
on a property called data (such as self.data['chordify']). The 
object also allows direct access to the source score through 
the stream property. 

Example 4 creates a new feature extractor that reports 
the percentage of notes that contain accidentals (including 
double sharps and flats, but excluding naturals) that are not 
B-flats. This feature could help chart the increased usage 
over the course of the Renaissance of musica ficta, that is, 
chromatic notes beyond B-flat (the only accidental common 
to Medieval and Renaissance music). 

# Feature Extractor definition 
class MusicaFictaFeature( 
             features.FeatureExtractor): 
 name = 'Musica Ficta' 
 discrete = False 
 dimensions = 1 
 id = 'mf' 
     
 def _process(self): 
  allPitches = self.stream.flat.pitches 
  # N.B.: self.data['flat.pitches'] works  
  # equally well and caches the result for  

  # faster access by other FEMS. 
  fictaPitches = 0 
  for p in allPitches: 
   if p.name == "B-": 
    continue 
   elif p.accidental is not None \ 
     and p.accidental.name != 'natural': 
    fictaPitches += 1 
  self._feature.vector[0] = \ 
     fictaPitches / float(len(allPitches)) 
 
# example of usage of the new method on two pieces 
# (1) D. Luca early 15th c. Gloria 
luca = corpus.parse('luca/gloria.mxl') 
fe = MusicaFictaFeature(luca) 
print fe.extract().vector 
[0.01616915422885572] 
# (2) Monteverdi, late 16th c. madrigal  
mv = corpus.parse('monteverdi/madrigal.3.1.xml') 
fe.setData(mv) 
print fe.extract().vector 
[0.05728727885425442] 

Example 4. A custom feature extractor to find musica fic-
ta, applied to an early 15th-century Gloria and a late 16th-
century madrigal. 

3. MULTIPLE FEATURE EXTRACTORS AND 
MULTIPLE SCORES 

Since the previous examples have extracted single features 
from one or two scores, similar results could have just as 
well been obtained through the object model or analytical 
routines of the music21 toolkit. But machine learning 
techniques require a large group of scores and many fea-
tures. The features module shines for such studies by mak-
ing it easy and, through caching, fast to run many scores (or 
score excerpts) through many FEMS, and to graph the results 
or output them in the formats commonly used by machine 
learning programs. 

3.1 Extracting Information from DataSets 

The DataSet object of the features module is used for clas-
sifying a group of scores by a particular class value using a 
set of FEMS. Its method addFeatureExtractors() takes a list 
of FEMS that will be run on the data. (For ease of getting a 
large set of FEMS, each feature extractor has a short id 
which allows it to be found by the method extractorsById(). 
The special id “all” gets all feature extractors from both na-
tive and jSymbolic libraries.) The addData() method adds a 
music21 Stream [1] (i.e., a score, a part, a fragment of a 
score, or any other symbolic musical data) to the DataSet, 
optionally specifying a class value (such as the composer, 
when the task at hand is classifying composers) and an id 
(such as a catalogue number or file name). For conven-
ience, addData() can also take a string containing a file 
path to the data (in any of several formats), a URL to the 
score on the internet, or a reference to the work in the mu-
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sic21 corpus. Example 5 sets up a DataSet to run three 
FEMS related to note length on four pieces: two by Bach, 
one by Handel, and an “unknown” work (also by Handel).  
If a file has been read in once and is unmodified since the 
last reading, its parsed version is cached in a Python “pick-
le” file for quicker reading in subsequent runs. 

ds = features.DataSet(classLabel='Composer') 
fes = features.extractorsById(['ql1','ql2','ql3']) 
ds.addFeatureExtractors(fes) 
 
b1 = corpus.parse('bwv1080', 7).measures(0,50) 
ds.addData(b1, classValue='Bach', id='artOfFugue') 
ds.addData('bwv66.6.xml', classValue='Bach') 
ds.addData('c:/handel/hwv56/movement3-05.md',  
              classValue='Handel') 
ds.addData('http://www.midiworld.com/midis/other/h
andel/gfh-jm01.mid') 
ds.process() 

Example 5. Setting up and processing a DataSet with 
three FEMS and four scores. 

Extracting the data from a DataSet is simple once pro-
cess() has been called.  The simplest way of getting the 
output of multiple feature extractors is through DataSet’s 
write() method, which can take a filename or a file format 
(if no file path is given, a file is saved to the user’s “temp” 
directory). File formats are specified as strings that call the 
appropriate OutputFormat object. Music21 comes with 
OutputFormats for comma-separated values (csv), tab-
delimited output (tab) for Orange, and Attribute-Relation 
File Format (arff) for Weka. The OutputFormat object is 
subclassable, so additional formats for R, Matlab, native 
Excel (an .xls reader/writer is packaged with music21), or 
json (for Java, Max/MSP, or other systems) can easily be 
developed.  

Other ways of obtaining extracted features include 
DataSet’s getFeaturesAsList() method, which returns a list 
of lists, one list of feature results for each piece, and 
getString(), which returns the data as a single string in any 
of the supported formats. If the optional Python package 
Matplotlib is installed, the data can also be graphed from 
within music21. Finally, because the DataSet is fully inte-
grated with the rest of the toolkit, specific Streams can be 
examined in notation. Example 6 takes the DataSet object 
from Example 5 and examines it in several ways.  Part (a) 
writes it out as an comma-separated file; (b) prints the at-
tribute labels; (c) gets the entire feature output as a list of 
lists and prints one line of it; (d) displays the entire feature 
data in OrangeTab output. Part (e) examines the feature 
vectors and displays as pngs (via Lilypond) any scores 
where the most common note value is an eighth note 
(length = 0.5); the resulting output contains the two Handel 
scores. Part (f) plots the last two features (most common 
note length and the prevalence of that length) for each 
piece. 
 

(a) 
ds.write('/usr/cuthbert/baroqueQLs.csv') 
 
(b) 
print ds.getAttributeLabels() 
['Identifier', 'Unique_Note_Quarter_Lengths', 
'Most_Common_Note_Quarter_Length', 
'Most_Common_Note_Quarter_Length_Prevalence', 'Composer'] 
 
(c) 
fList = ds.getFeaturesAsList() 
print fList[0] 
['artOfFugue', 15, 0.25, 0.6287328490718321, 'Bach'] 
 
(d) 
print features.OutputTabOrange(ds).getString() 
Identifier Unique_Note… Most_Common… Most_Com..Prevalence Composer 
string discrete continuous continuous discrete 
meta    class 
artOfFugue 15 0.25 0.628732849072 Bach 
bwv66.6.xml 3 1.0 0.601226993865 Bach 
hwv56/movem… 7 0.5 0.533333333333 Handel 
http://www.mid... 14 0.5 0.768951612903  

 
(e) 
for i in range(len(fList)): 
  if fList[i][2] == 0.5: 
    ds.streams[i].show('lily.png') 

[HWV 56 3-5, from the Messiah] 

 
[“Mourn ye afflicted Children,” from Judas Maccabaeus] 

 
(f) 
p = graph.PlotFeatures(ds.streams, 
           fes[1:], roundDigits = 2) 
p.process() 

 
Example 6. Viewing the contents of a DataSet object. 
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3.2 Using Feature Data for Classification 

Once the DataSet object has been plotted or viewed as mu-
sical data to check the results for obvious errors, then the 
outputted data can be fed into any number of standard data 
mining packages for analyses such as clustering or classifi-
cation. The package Orange (http://orange.biolab.si) inte-
grates well with music21 since it provides a Python inter-
face to its classification algorithms (in addition to having a 
GUI); other toolkits such as Weka [5] can also easily be 
used. Below, we include sample code for using Orange, but 
the results of Examples 8 and 9 were produced in Weka. 
Complete code examples, along with our sample data, can 
be found in the demos directory in the music21 distribu-
tion.   

4. DEMONSTRATIONS AND RESULTS 

We end this paper with two demonstrations of the power of 
feature extraction in music21 to enable automatic classifi-
cation of musical styles and composers from symbolic data 
encoded in many formats. The first example uses 24 pitch- 
and rhythm-based feature extractors (p1–16, 19–21, and 
r31–35) to classify monophonic folksongs from four files 
in the Essen folksong database as being from either China 
or Central Europe (mostly Germany). Two files, 
folkTrain.tab and folkTest.tab, are created according to the 
same model as Example 5. (Full source for this part of the 
example is available in the music21 distribution as de-
mos/ismir2011/prepareChinaEurope().) The files contain 
969 and 974 songs, respectively, and the extractors de-
scribed above result in 174 features, although about half are 
discarded during preprocessing because they have the same 
value for every song.  

Example 7 applies two classification methods (or 
learners) to the pair of data files, using the songs in the first 
file for training the classifier and those in the second for 
testing (i.e., validating) the classifier’s predictions. The first 
method, MajorityLearner, simply chooses the classification 
that is most common in the training data (e.g., for the data 
in Examples 5-6, it would label the unknown data as Bach, 
because Bach is represented twice as often as Handel in the 
labeled data), and thus reports a baseline accuracy for other 
classification methods to be measured against. The second 
method, k-nearest neighbors (kNN) [12], assigns to each 
test example the majority label among the k most similar 
training examples. After assigning an origin to each song in 
folkTest, the program consults the correct answer or 
“ground truth,” and in the end it prints the fraction of songs 
correctly labeled by each classifier: 69% for the baseline 
(MajorityLearner) and over 94% for kNN. The perfor-
mance of kNN over MajorityLearner stands only to in-
crease with the development, in the near future, of FEMS 

more suited to the nuances of folk music. 
 

import orange, orngTree 
trainData = orange.ExampleTable('/folkTrain.tab') 
testData  = orange.ExampleTable('/folkTest.tab') 
 
majClassifier = orange.MajorityLearner(trainData) 
knnClassifier = orange.kNNLearner(trainData) 
     
majWrong = 0 
knnWrong = 0 
     
for testRow in testData: 
  majGuess = majClassifier(testRow) 
  knnGuess = knnClassifier(testRow) 
  realAnswer = testRow.getclass() 
  if majGuess == realAnswer: 
    majCorrect += 1 
  if knnGuess = realAnswer: 
    knnCorrect += 1 
    
total = float(len(testData)) 
print majCorrect/total, knnCorrect/total 
0.68788501026694049 0.94353182751540043 

Example 7. Using data output from the features module of 
Music21 to classify folksongs in Orange. 
 
In Example 7, the training and testing data are split approx-
imately 50-50. We can increase both the amount of data 
used to train the models and the number of predictions they 
make by using a technique called 10-fold cross-validation. 
Example 8 shows the results of doing this, on the same da-
ta, using a variety of classifiers in Weka. 
 

Classifier Accuracy 
Majority (baseline) 63% 
Naïve Bayes 79% 
Naïve Bayes (using supervised  
       discretization option) 

91% 

Decision tree 93% 
Logistic regression 95% 
K-nearest neighbor (using k = 3) 96% 

Example 8. Accuracy of classifiers for distinguishing 
Chinese from Central European folk music. 

While kNN was the best classifier in all our experi-
ments, decision tree-based classification systems [2] can be 
helpful for users wishing to understand how a classifier  
decides which features are important. Example 9 shows a 
decision tree built to distinguish the vocal works of Bach 
and Monteverdi. Given a data set of 46 works from each 
composer, and the same features used previously, the clas-
sifier has selected just 6 features as informative when 
building this tree. (In a 10-fold cross-validation experiment, 
trees like this achieved about 86% classification accuracy.)  

Although it is not always possible to explain the algo-
rithm's choices intuitively, some of them make sense upon 
examination. For example, although Monteverdi uses 
sharped notes, he does not ever use sharps in his key signa-
tures, and thus sharped notes remain uncommon in his 
pieces. The decision tree picks up on this predilection in its 
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top-level split, the single most informative rule learned (fi-
nal line of Example 9): if more than 14.4% of the piece’s 
notes are MIDI note 54 (F#3), then the piece is by Bach 
(true all 30 out of 30 times in the data set).  
 
Basic_Pitch_Histogram_54 <= 0.144578 
| Initial_Time_Signature_0 <= 3: Bach (4.0) 
| Initial_Time_Signature_0 > 3 
| | Range <= 32: Bach (6.0) 
| | Range > 32 
| | | Basic_Pitch_Histogram_64 <= 0.05: Bach (3.0) 
| | | Basic_Pitch_Histogram_64 > 0.05 
| | | | Basic_Pitch_Histogram_60 <= 0.921569: Monteverdi (47.0/1.0) 
| | | | Basic_Pitch_Histogram_60 > 0.921569 
| | | | | Relative_Strength_of_Top_Pitches <= 0.96875: Bach (4.0) 
| | | | | Relative_Strength_of_Top_Pitches > 0.96875: Monteverdi (2.0) 
Basic_Pitch_Histogram_54 > 0.144578: Bach (30.0) 

Example 9. Decision tree algorithm applied to distinguish 
Bach and Monteverdi’s choral pieces. 

The results of these classification tests of folk and baroque 
music demonstrate music21’s utility in automatically de-
termining musical style from a score without human inter-
vention. Sophisticated style analysis tools open up oppor-
tunities in other areas, such as more accurate notation and 
playback. For instance, a program could choose appropriate 
instruments for digital performance depending on the esti-
mated location in which the piece was composed: fiddles 
for Irish jigs, kotos and shō for Japanese folk music. By 
lowering the barriers to using feature extraction, music21 
can bring the fruits of MIR to a wide audience of computer 
music professionals.  

5. FUTURE WORK 

Though these tools are extremely powerful already, the de-
velopment of new FEMS in music21 and application of the-
se features to the classification of musical scores is still in 
its infancy. The authors and the music21 community will 
continue to add new feature extractors to solve problems 
that range from assigning composer names to anonymous 
works of the Middle Ages and Renaissance, to genre classi-
fication of popular music leadsheets. to charting the slow 
change in use of chromatic harmony in the nineteenth cen-
tury. More sophisticated data mining tools such as support 
vector machines and clustering algorithms can be explored 
to improve the accuracy of the classification methods. The 
newest releases of music21 can take audio data as input; 
thus we hope to combine MIR of symbolic music data with 
feature extraction methods applied to audio files, inching 
closer to the goal of creating software for sophisticated mu-
sical listening. 
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