
12th International Society for Music Information Retrieval Conference (ISMIR 2011)

FEATURE EXTRACTION AND MACHINE LEARNING
ON SYMBOLIC MUSIC USING THE music21 TOOLKIT

Michael Scott Cuthbert Christopher Ariza Lisa Friedland
Music and Theater Arts

M.I.T.
cuthbert@mit.edu

Music and Theater Arts
M.I.T.

ariza@mit.edu

Department of Computer Science
University of Massachusetts Amherst

lfriedl@cs.umass.edu

ABSTRACT

Machine learning and artificial intelligence have great po-
tential to help researchers understand and classify musical
scores and other symbolic musical data, but the difficulty of
preparing and extracting characteristics (features) from
symbolic scores has hindered musicologists (and others
who examine scores closely) from using these techniques.
This paper describes the “feature” capabilities of music21,
a general-purpose, open source toolkit for analyzing,
searching, and transforming symbolic music data. The fea-
tures module of music21 integrates standard feature-
extraction tools provided by other toolkits, includes new
tools, and also allows researchers to write new and power-
ful extraction methods quickly. These developments take
advantage of the system’s built-in capacities to parse di-
verse data formats and to manipulate complex scores (e.g.,
by reducing them to a series of chords, determining key or
metrical strength automatically, or integrating audio data).
This paper’s demonstrations combine music21 with the
data mining toolkits Orange and Weka to distinguish works
by Monteverdi from works by Bach and German folk mu-
sic from Chinese folk music.

1. INTRODUCTION

As machine learning and data mining tools become ubiqui-
tous and simple to implement, their potential to classify da-
ta automatically, and to point out anomalies in that data, is
extending to new disciplines. Most machine learning algo-
rithms run on data that can be represented as numbers.
While many types of datasets naturally lend themselves to
numerical representations, much of the richness of music
(especially music expressed in symbolic forms such as
scores) resists easily being converted to the numerical
forms that enable classification and clustering tasks.

The amount of preprocessing needed to extract the most
musically relevant data from notation encoded in Finale or
Sibelius files, or even MIDI files, is often underestimated:
musicologists are rarely content to work only with pitch
classes and relative note lengths—to name two easily ex-
tracted and manipulated types of information. They also
want to know where a pitch fits within the currently im-
plied key, whether a note is metrically strong or weak, what
text is being sung at the same time, whether chords are in
open or closed position, and so on. Such processing and
analysis steps need to run rapidly to handle the large reper-
tories now available. A robust system for data mining needs
to integrate reliable and well-developed classification tools
with a wide variety of methods for extracting data from
large collections of scores in a variety of encodings.

The features module newly added to the Python-
based, open source toolkit music21, provides this needed
bridge between the demands of music scholars and of com-
puter researchers. Music21 [3] already has a well-
developed and expandable framework for importing scores
and other data from the most common symbolic music for-
mats, such as MusicXML [4] (which Finale, Sibelius,
MuseScore, and other notation software can produce),
Kern/Humdrum [6], CCARH’s MuseData [11], Notewor-
thy Composer, the common folk-music format ABC [10],
and MIDI. Scores can easily be transformed from symbolic
to sounding representations (by uniting tied notes or mov-
ing transposing instruments to C, for instance); simultanei-
ties can be reduced to chords that represent the pitches
sounding at any moment; and the key or metrical accents of
a passage can be analyzed (even for passages that change
key without a change in key signature).

The features module expands music21’s data mining
abilities by adding a battery of commonly used numeric
features, such as numerical representations of elements pre-
sent or absent in a piece (0s or 1s, used, for example, to in-
dicate the presence of a change in a time signature), or con-
tinuous values representing prevalence (for example, the
percentage of all chords in a piece that are triadic). Collec-
tions of these features can be used to train machine learning
software to classify works by composer, genre, or dance
type. Or, making use of notational elements found in cer-
tain input formats, they could classify works by graphical
characteristics of particular interest to musicologists study-

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page.

© 2011 International Society for Music Information Retrieval

387

Poster Session 3

ing the reception of the work. Such graphical elements
might identify the scribe, editor, or publisher of a piece.

In the following sections, we will describe the feature-
extraction methods (FEMS) of music21. Because music21
has many powerful, high-level tools for analysis and trans-
formation, FEMS can be tailored to the characteristics of
particular repertories and can be combined to create more
powerful FEMS than those available in existing software
packages. This paper describes how new FEMS can be add-
ed to music21 and demonstrates their usefulness in classi-
fying both classical and popular works.

2. FEATURE EXTRACTION IN MUSIC21

2.1 Feature Extractors from jSymbolic

One of the most useful aspects of the Features module is
the integration of 57 features of the 111 implemented in
Cory McKay’s jSymbolic toolkit [9], a subset of his larger
jMIR toolkit that classifies music encoded in MIDI [8].
(Music21 aims for full jSymbolic compatibility in the near
future.) Because music21 is “encoding agnostic,” files in
any supported format now have access to these FEMS, so
that MusicXML and ABC files (among others) can, without
conversion, be run through the same extractors that jSym-
bolic provided for MIDI files. In addition, Music21 FEMS

are optimized so that closely related feature extractors that
require the same preprocessing routines automatically use
cached versions of the processed data, rather than recreat-
ing it.

Example 1 shows how a single feature extractor, bor-
rowed from jSymbolic, can be applied to data from several
different sources and datatypes. While using a single fea-
ture extractor on one or two works is not a useful way to
classify these works, it is a convenient and informative way
to understand the system and test the FEMS. All FEMS have
documentation and code examples on the music21 website
at http://mit.edu/music21. The website also gives instruc-
tions for obtaining and installing the software, as well as
tutorials and references on using the toolkit.

Example 1 shows how the fraction of ascending notes
in a movement of Handel’s Messiah (encoded as MuseDa-
ta) can be found.

from music21 import *
handel = corpus.parse('hwv56/movement3-05.md')
fe = features.jSymbolic.\
 DirectionOfMotionFeature(handel)
feature = fe.extract()
print feature.vector
[0.5263]

Example 1. Feature extraction on a MuseData score.

Example 2 shows feature extraction run first on a lo-
cal file, and then on a file from the Internet. The feature ex-
tractor determines whether the initial time signature is a tri-
ple meter and returns 1 or 0. The result is returned in a Py-
thon list, since some FEMS return an array of results, such as
a 12-element histogram showing the count of each pitch
class. Like Example 1, this example uses file formats
(ABC and MusicXML) that cannot be directly processed
by jSymbolic. (In all further examples, the initial line,
“from music21 import *” is omitted.)

a 4/4 basse danse in ABC format
bd = converter.parse("/tmp/basseDanse20.abc")
fe = features.jSymbolic.TripleMeterFeature(bd)
print fe.extract().vector
[0]
softly-softly by Mark Paul, in 3/4
soft = converter.parse(
 "http://static.wikifonia.org/10699/musicxml.xml")
fe.setData(soft)
print fe.extract().vector
[1]

Example 2. A local file and a web file in two different
formats run through a triple-meter feature extractor.

2.2 Feature Extractors Native to music21

In addition to recreating the feature extraction methods of
jSymbolic, music21’s features.native sub-module includes
17 new FEMS. These FEMS take advantage of the analytical
capabilities built into music21, its ability to work with no-
tational aspects (such as a note’s spelling or representation
as tied notes), or the richer, object-oriented programming
environment of Python. For example, native music21

FEMS can distinguish between correctly or incorrectly
spelled triads within a polyphonic context. (The Incorrect-
lySpelledTriadPrevalence FEM, called on Mozart’s pieces,
returns approximately 0.5% of all triads, mostly reflecting
chromatic lower neighbors). Notational features that do not
affect playback, such as a scribe’s predilection for beaming
eighth notes in pairs (as opposed to in groups of four) in
4/4, can similarly form the basis for feature extraction. Fea-
ture extractors can also use a work’s metadata, along with
the larger capabilities of the Python language, to add pow-
erful classification methods. An example of this is the
ComposerPopularity feature, which returns a base-10 loga-
rithm of the number of Google hits for a composer’s name
(see Example 3).

s = corpus.parse('mozart/k155', 2)
print s.metadata.composer
W. A. Mozart
fe = features.native.ComposerPopularity(s)
print fe.extract().vector
[7. 0334237554869485]

388

12th International Society for Music Information Retrieval Conference (ISMIR 2011)

Example 3. The ComposerPopularity feature extractor re-
ports that there are about 10 million Google results, or ap-
proximately 107, for the form of Mozart’s name encoded
in the version of K155 movement 2 that appears in the
music21 corpus, a collection of approximately ten thou-
sand works provided with the toolkit.

Several of the native FEMS are adaptations of jSym-
bolic extractors, expanded by capabilities offered by other
modules in music21. For instance, McKay’s “Quality”
feature classifies a piece as either in major or in minor
based on information encoded within the initial key signa-
ture of some MIDI files. For files without this information,
music21’s enhancement of this FEM (fea-
tures.native.QualityFeature) will also run a Krumhansl-
Schmuckler probe-tone key analysis (with the default
Aarden-Essen weightings) [7] on the work to determine the
most likely mode. The native module also includes many
chord-related FEMS that were proposed by McKay but not
included in the present release of jSymbolic.

2.3 Writing Custom Feature Extractors

One of the strengths of music21’s feature system is the
ease of writing new FEMS. After inheriting the common su-
perclass FeatureExtractor, new FEMS can be created and
used alongside existing FEMS. The core functionality is im-
plemented in a private method called _process(), which sets
the values of the vector of an internally stored Feature ob-
ject. The FeatureExtractor superclass provides automatic
access to a variety of presentations of the score, from a flat
representation (using the .flat property) to a reduction as
chords, along with histograms of commonly requested mu-
sical features such as pitch class or note duration. These
representations are cached for quicker access later as keys
on a property called data (such as self.data['chordify']). The
object also allows direct access to the source score through
the stream property.

Example 4 creates a new feature extractor that reports
the percentage of notes that contain accidentals (including
double sharps and flats, but excluding naturals) that are not
B-flats. This feature could help chart the increased usage
over the course of the Renaissance of musica ficta, that is,
chromatic notes beyond B-flat (the only accidental common
to Medieval and Renaissance music).

Feature Extractor definition
class MusicaFictaFeature(
 features.FeatureExtractor):
 name = 'Musica Ficta'
 discrete = False
 dimensions = 1
 id = 'mf'

 def _process(self):
 allPitches = self.stream.flat.pitches
 # N.B.: self.data['flat.pitches'] works
 # equally well and caches the result for

 # faster access by other FEMS.
 fictaPitches = 0
 for p in allPitches:
 if p.name == "B-":
 continue
 elif p.accidental is not None \
 and p.accidental.name != 'natural':
 fictaPitches += 1
 self._feature.vector[0] = \
 fictaPitches / float(len(allPitches))

example of usage of the new method on two pieces
(1) D. Luca early 15th c. Gloria
luca = corpus.parse('luca/gloria.mxl')
fe = MusicaFictaFeature(luca)
print fe.extract().vector
[0.01616915422885572]
(2) Monteverdi, late 16th c. madrigal
mv = corpus.parse('monteverdi/madrigal.3.1.xml')
fe.setData(mv)
print fe.extract().vector
[0.05728727885425442]

Example 4. A custom feature extractor to find musica fic-
ta, applied to an early 15th-century Gloria and a late 16th-
century madrigal.

3. MULTIPLE FEATURE EXTRACTORS AND
MULTIPLE SCORES

Since the previous examples have extracted single features
from one or two scores, similar results could have just as
well been obtained through the object model or analytical
routines of the music21 toolkit. But machine learning
techniques require a large group of scores and many fea-
tures. The features module shines for such studies by mak-
ing it easy and, through caching, fast to run many scores (or
score excerpts) through many FEMS, and to graph the results
or output them in the formats commonly used by machine
learning programs.

3.1 Extracting Information from DataSets

The DataSet object of the features module is used for clas-
sifying a group of scores by a particular class value using a
set of FEMS. Its method addFeatureExtractors() takes a list
of FEMS that will be run on the data. (For ease of getting a
large set of FEMS, each feature extractor has a short id
which allows it to be found by the method extractorsById().
The special id “all” gets all feature extractors from both na-
tive and jSymbolic libraries.) The addData() method adds a
music21 Stream [1] (i.e., a score, a part, a fragment of a
score, or any other symbolic musical data) to the DataSet,
optionally specifying a class value (such as the composer,
when the task at hand is classifying composers) and an id
(such as a catalogue number or file name). For conven-
ience, addData() can also take a string containing a file
path to the data (in any of several formats), a URL to the
score on the internet, or a reference to the work in the mu-

389

Poster Session 3

sic21 corpus. Example 5 sets up a DataSet to run three
FEMS related to note length on four pieces: two by Bach,
one by Handel, and an “unknown” work (also by Handel).
If a file has been read in once and is unmodified since the
last reading, its parsed version is cached in a Python “pick-
le” file for quicker reading in subsequent runs.

ds = features.DataSet(classLabel='Composer')
fes = features.extractorsById(['ql1','ql2','ql3'])
ds.addFeatureExtractors(fes)

b1 = corpus.parse('bwv1080', 7).measures(0,50)
ds.addData(b1, classValue='Bach', id='artOfFugue')
ds.addData('bwv66.6.xml', classValue='Bach')
ds.addData('c:/handel/hwv56/movement3-05.md',
 classValue='Handel')
ds.addData('http://www.midiworld.com/midis/other/h
andel/gfh-jm01.mid')
ds.process()

Example 5. Setting up and processing a DataSet with
three FEMS and four scores.

Extracting the data from a DataSet is simple once pro-
cess() has been called. The simplest way of getting the
output of multiple feature extractors is through DataSet’s
write() method, which can take a filename or a file format
(if no file path is given, a file is saved to the user’s “temp”
directory). File formats are specified as strings that call the
appropriate OutputFormat object. Music21 comes with
OutputFormats for comma-separated values (csv), tab-
delimited output (tab) for Orange, and Attribute-Relation
File Format (arff) for Weka. The OutputFormat object is
subclassable, so additional formats for R, Matlab, native
Excel (an .xls reader/writer is packaged with music21), or
json (for Java, Max/MSP, or other systems) can easily be
developed.

Other ways of obtaining extracted features include
DataSet’s getFeaturesAsList() method, which returns a list
of lists, one list of feature results for each piece, and
getString(), which returns the data as a single string in any
of the supported formats. If the optional Python package
Matplotlib is installed, the data can also be graphed from
within music21. Finally, because the DataSet is fully inte-
grated with the rest of the toolkit, specific Streams can be
examined in notation. Example 6 takes the DataSet object
from Example 5 and examines it in several ways. Part (a)
writes it out as an comma-separated file; (b) prints the at-
tribute labels; (c) gets the entire feature output as a list of
lists and prints one line of it; (d) displays the entire feature
data in OrangeTab output. Part (e) examines the feature
vectors and displays as pngs (via Lilypond) any scores
where the most common note value is an eighth note
(length = 0.5); the resulting output contains the two Handel
scores. Part (f) plots the last two features (most common
note length and the prevalence of that length) for each
piece.

(a)
ds.write('/usr/cuthbert/baroqueQLs.csv')

(b)
print ds.getAttributeLabels()
['Identifier', 'Unique_Note_Quarter_Lengths',
'Most_Common_Note_Quarter_Length',
'Most_Common_Note_Quarter_Length_Prevalence', 'Composer']

(c)
fList = ds.getFeaturesAsList()
print fList[0]
['artOfFugue', 15, 0.25, 0.6287328490718321, 'Bach']

(d)
print features.OutputTabOrange(ds).getString()
Identifier Unique_Note… Most_Common… Most_Com..Prevalence Composer
string discrete continuous continuous discrete
meta class
artOfFugue 15 0.25 0.628732849072 Bach
bwv66.6.xml 3 1.0 0.601226993865 Bach
hwv56/movem… 7 0.5 0.533333333333 Handel
http://www.mid... 14 0.5 0.768951612903

(e)
for i in range(len(fList)):
 if fList[i][2] == 0.5:
 ds.streams[i].show('lily.png')

[HWV 56 3-5, from the Messiah]

[“Mourn ye afflicted Children,” from Judas Maccabaeus]

(f)
p = graph.PlotFeatures(ds.streams,
 fes[1:], roundDigits = 2)
p.process()

Example 6. Viewing the contents of a DataSet object.

390

12th International Society for Music Information Retrieval Conference (ISMIR 2011)

3.2 Using Feature Data for Classification

Once the DataSet object has been plotted or viewed as mu-
sical data to check the results for obvious errors, then the
outputted data can be fed into any number of standard data
mining packages for analyses such as clustering or classifi-
cation. The package Orange (http://orange.biolab.si) inte-
grates well with music21 since it provides a Python inter-
face to its classification algorithms (in addition to having a
GUI); other toolkits such as Weka [5] can also easily be
used. Below, we include sample code for using Orange, but
the results of Examples 8 and 9 were produced in Weka.
Complete code examples, along with our sample data, can
be found in the demos directory in the music21 distribu-
tion.

4. DEMONSTRATIONS AND RESULTS

We end this paper with two demonstrations of the power of
feature extraction in music21 to enable automatic classifi-
cation of musical styles and composers from symbolic data
encoded in many formats. The first example uses 24 pitch-
and rhythm-based feature extractors (p1–16, 19–21, and
r31–35) to classify monophonic folksongs from four files
in the Essen folksong database as being from either China
or Central Europe (mostly Germany). Two files,
folkTrain.tab and folkTest.tab, are created according to the
same model as Example 5. (Full source for this part of the
example is available in the music21 distribution as de-
mos/ismir2011/prepareChinaEurope().) The files contain
969 and 974 songs, respectively, and the extractors de-
scribed above result in 174 features, although about half are
discarded during preprocessing because they have the same
value for every song.

Example 7 applies two classification methods (or
learners) to the pair of data files, using the songs in the first
file for training the classifier and those in the second for
testing (i.e., validating) the classifier’s predictions. The first
method, MajorityLearner, simply chooses the classification
that is most common in the training data (e.g., for the data
in Examples 5-6, it would label the unknown data as Bach,
because Bach is represented twice as often as Handel in the
labeled data), and thus reports a baseline accuracy for other
classification methods to be measured against. The second
method, k-nearest neighbors (kNN) [12], assigns to each
test example the majority label among the k most similar
training examples. After assigning an origin to each song in
folkTest, the program consults the correct answer or
“ground truth,” and in the end it prints the fraction of songs
correctly labeled by each classifier: 69% for the baseline
(MajorityLearner) and over 94% for kNN. The perfor-
mance of kNN over MajorityLearner stands only to in-
crease with the development, in the near future, of FEMS

more suited to the nuances of folk music.

import orange, orngTree
trainData = orange.ExampleTable('/folkTrain.tab')
testData = orange.ExampleTable('/folkTest.tab')

majClassifier = orange.MajorityLearner(trainData)
knnClassifier = orange.kNNLearner(trainData)

majWrong = 0
knnWrong = 0

for testRow in testData:
 majGuess = majClassifier(testRow)
 knnGuess = knnClassifier(testRow)
 realAnswer = testRow.getclass()
 if majGuess == realAnswer:
 majCorrect += 1
 if knnGuess = realAnswer:
 knnCorrect += 1

total = float(len(testData))
print majCorrect/total, knnCorrect/total
0.68788501026694049 0.94353182751540043

Example 7. Using data output from the features module of
Music21 to classify folksongs in Orange.

In Example 7, the training and testing data are split approx-
imately 50-50. We can increase both the amount of data
used to train the models and the number of predictions they
make by using a technique called 10-fold cross-validation.
Example 8 shows the results of doing this, on the same da-
ta, using a variety of classifiers in Weka.

Classifier Accuracy
Majority (baseline) 63%
Naïve Bayes 79%
Naïve Bayes (using supervised
 discretization option)

91%

Decision tree 93%
Logistic regression 95%
K-nearest neighbor (using k = 3) 96%

Example 8. Accuracy of classifiers for distinguishing
Chinese from Central European folk music.

While kNN was the best classifier in all our experi-
ments, decision tree-based classification systems [2] can be
helpful for users wishing to understand how a classifier
decides which features are important. Example 9 shows a
decision tree built to distinguish the vocal works of Bach
and Monteverdi. Given a data set of 46 works from each
composer, and the same features used previously, the clas-
sifier has selected just 6 features as informative when
building this tree. (In a 10-fold cross-validation experiment,
trees like this achieved about 86% classification accuracy.)

Although it is not always possible to explain the algo-
rithm's choices intuitively, some of them make sense upon
examination. For example, although Monteverdi uses
sharped notes, he does not ever use sharps in his key signa-
tures, and thus sharped notes remain uncommon in his
pieces. The decision tree picks up on this predilection in its

391

Poster Session 3

top-level split, the single most informative rule learned (fi-
nal line of Example 9): if more than 14.4% of the piece’s
notes are MIDI note 54 (F#3), then the piece is by Bach
(true all 30 out of 30 times in the data set).

Basic_Pitch_Histogram_54 <= 0.144578
| Initial_Time_Signature_0 <= 3: Bach (4.0)
| Initial_Time_Signature_0 > 3
| | Range <= 32: Bach (6.0)
| | Range > 32
| | | Basic_Pitch_Histogram_64 <= 0.05: Bach (3.0)
| | | Basic_Pitch_Histogram_64 > 0.05
| | | | Basic_Pitch_Histogram_60 <= 0.921569: Monteverdi (47.0/1.0)
| | | | Basic_Pitch_Histogram_60 > 0.921569
| | | | | Relative_Strength_of_Top_Pitches <= 0.96875: Bach (4.0)
| | | | | Relative_Strength_of_Top_Pitches > 0.96875: Monteverdi (2.0)
Basic_Pitch_Histogram_54 > 0.144578: Bach (30.0)

Example 9. Decision tree algorithm applied to distinguish
Bach and Monteverdi’s choral pieces.

The results of these classification tests of folk and baroque
music demonstrate music21’s utility in automatically de-
termining musical style from a score without human inter-
vention. Sophisticated style analysis tools open up oppor-
tunities in other areas, such as more accurate notation and
playback. For instance, a program could choose appropriate
instruments for digital performance depending on the esti-
mated location in which the piece was composed: fiddles
for Irish jigs, kotos and shō for Japanese folk music. By
lowering the barriers to using feature extraction, music21
can bring the fruits of MIR to a wide audience of computer
music professionals.

5. FUTURE WORK

Though these tools are extremely powerful already, the de-
velopment of new FEMS in music21 and application of the-
se features to the classification of musical scores is still in
its infancy. The authors and the music21 community will
continue to add new feature extractors to solve problems
that range from assigning composer names to anonymous
works of the Middle Ages and Renaissance, to genre classi-
fication of popular music leadsheets. to charting the slow
change in use of chromatic harmony in the nineteenth cen-
tury. More sophisticated data mining tools such as support
vector machines and clustering algorithms can be explored
to improve the accuracy of the classification methods. The
newest releases of music21 can take audio data as input;
thus we hope to combine MIR of symbolic music data with
feature extraction methods applied to audio files, inching
closer to the goal of creating software for sophisticated mu-
sical listening.

6. ACKNOWLEDGEMENTS

Development of the feature extraction aspects of the mu-
sic21 toolkit is supported by funds from the Seaver Insti-
tute. Thanks to Seymour Shlien and Ewa Dahlig-Turek for
permission to distribute ABC versions of the Essen folk-
song database with music21.

7. REFERENCES

[1] C. Ariza and M. Cuthbert: “The music21 Stream: A
New Object Model for Representing, Filtering, and
Transforming Symbolic Musical Structures,”
Proceedings of the International Computer Music
Conference, 2011.

[2] L. Breiman et al.: Classification and Regression Trees.
Chapman & Hall, Boca Raton, 1984.

[3] M. Cuthbert and C. Ariza: “music21: A Toolkit for
Computer-Aided Musicology and Symbolic Music
Data,” Proceedings of the International Symposium on
Music Information Retrieval, pp. 637–42, 2010.

[4] M. Good: “An Internet-Friendly Format for Sheet
Music.” Proceedings of XML 2001.

[5] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P.
Reutemann, I. H. Witten: “The WEKA Data Mining
Software: An Update.” SIGKDD Explorations, 11(1),
2009.

[6] D. Huron: “Humdrum and Kern: Selective Feature
Encoding.” In Beyond MIDI: the Handbook of
Musical Codes. E. Selfridge-Field, ed. MIT Press,
Cambridge, Mass., pp. 375–401, 1997.

[7] C. Krumhansl: Cognitive Foundations of Musical
Pitch. Oxford University Press, Oxford, 1990.

[8] C. McKay: “Automatic Music Classification with
jMIR,” Ph.D. Dissertation, McGill University, 2010.

[9] C. McKay and I. Fujinaga: “jSymbolic: A feature
extractor for MIDI files.” Proceedings of the
International Computer Music Conference, pp. 302–5,
2006.

[10] I. Oppenheim, C. Walshaw, and J. Atchley.
“The abc standard 2.0.”
http://abcnotation.com/wiki/abc:standard:v2.0. 2010.

[11] C. S. Sapp: “Museinfo: Musical Information
Programming in C++.” http://museinfo.sapp.org,
2008.

[12] G. Shakhnarovich, T. Darrell, and P. Indyk: Nearest-
Neighbor Methods in Learning and Vision, MIT Press,
Cambridge, Mass. 2006.

392

